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During the inspiral of a binary neutron star, viscous processes in the neutron star matter can
damp out the tidal energy induced by its companion and convert it to thermal energy. This tidal
dissipation/heating process introduces a net phase shift in the gravitational wave signal. In our
recent work (Ghosh et al., Phys. Rev. D 109, 103036 (2024)), we showed that tidal dissipation
from bulk viscosity originating from the non-leptonic weak interactions involving hyperons could
have a detectable phase shift in the gravitational-wave (GW) signal in the next-generation GW
detectors. In this work, we model the dephasing due to tidal dissipation in a post-Newtonian (PN)
expansion and incorporate this in gravitational waveforms for equal mass binary neutron stars.
We then estimate the systematic bias incurred in tidal deformability measurements in simulated
signal injection studies when this physical effect is not accounted for in waveform models. Lastly,
we perform a full Bayesian parameter estimation with our model to show how accurately we can
measure the additional phase due to tidal dissipation in future GW observations and discuss its

significance in extreme matter studies.

I. INTRODUCTION

Neutron stars (NSs) are unique astrophysical compact
objects that can aid our understanding of dense matter
under extreme conditions that are far beyond the reach
of terrestrial experiments. Recent multi-messenger and
gravitational wave (GW) observations of NSs have facil-
itated accurate measurements of their masses, radii, and
tidal deformabilities. The latter property characterizes
the tidal response of NSs during the late stages of a
binary inspiral [1], and has been very crucial for studies
of dense matter behavior inside neutron stars [2-12].
The equation of state (EOS), which represents the
behavior of the pressure of the NS matter as a function
of its energy density at equilibrium, is essential for
calculating these macroscopic properties. Effects of
out-of-equilibrium properties of nuclear matter, such as
viscosity, on the gravitational wave emission from NSs
have also been studied extensively in the context of
damping of unstable mode oscillations [13-21] and also
recently for the damping of post-merger oscillations [22—
33].

During the inspiral phase of a binary neutron star
(BNS) system, tidal interactions of the component stars
trigger an exchange of mechanical energy and angular
momentum between them at the expense of their orbital
energy. These tidal interactions can drive the system
out of equilibrium depending on the relevant nuclear
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reactions timescales. These out-of-equilibrium viscous
processes inside the star damp out the tidal energy and
convert this energy to heat which we refer to as “tidal
dissipation” or equivalently “tidal heating”. The tidal
dissipation also induces a “tidal lag” angle between the
direction of the bulge and the orbital separation. At low
temperatures (T < 10° K) relevant to the inspiral phase
of a BNS coalescence, the dominant source of this dissi-
pation is the shear viscosity, arising from the momentum
transport due to ee and nn scattering [34, 35]. Earlier,
Lai (1994) [35] found that shear viscous damping of mode
oscillations of NSs during the inspiral could only heat
the stellar core to T ~ 108K, and the timescale of the
viscous dissipation being much longer than the inspiral
timescale, the imprints of these effects on the dynamics
of a BNS merger are negligible in gravitational-wave
studies [35, 36]. Recently, in Ref. [37], signatures of the
tidal lag in gravitational waves was re-analysed in an
effective theory, and it was shown that the “dissipation
number” enters the GW phase at 4PN order compared
to the point-particle case. An analysis of the BNS
merger event GW170817 [2] was performed in Ref. [38],
constraining the dissipation numbers and estimating
upper limits for the shear and bulk viscosities of nuclear
matter inside NSs. This analysis was later extended to
include relative 1PN effects in tidal dissipation recently
in Ref. [39]. A recent study by Saketh et al (2024) [40]
also presented the theory of tidal heating in neutron
stars in a fully relativistic formalism as a gravitational
Raman scattering problem.

These earlier studies by Lai (1994) [35], Arras et
al. (2019) [41] and the recent work by Saketh et al.
(2024) [40] considered the dominant source of viscos-
ity to be ordinary neutron matter inside neutron stars.
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But at the core of the neutron stars, strangeness con-
taining exotic particles, such as hyperons, kaons or even
deconfined quark matter can become stable components
due to weak equilibrium [42—44]. Although bulk viscos-
ity originating from direct and modified Urca reactions
are dominant at high temperatures (T > 10° K), hyper-
onic bulk viscosity originating from non-leptonic process
can be several orders higher (=~ 10® — 1019 times) than
the shear viscosity from ee scattering in the temperature
range of 106 — 108K [14, 15, 20]. Recently we have shown
in Ref. [45] that tidal heating due to the dissipation from
hyperon bulk viscosity can heat up the star upto 0.1 — 1
MeV, a range much higher than the earlier estimates.
In the latter work, we had not considered the effect of
superfluidity on the hyperonic bulk viscosity although
superfluidity is known to have a significant impact on
the reaction rates and the bulk viscosity at the critical
temperature of ~ 10? K [18]. We had found the phase dif-
ference induced in the GW signal due to this dissipation
to be of the order 1073 — 0.5 rad depending on the com-
ponent neutron star masses. In that work [45] based on
the dissipation of the dominant f-mode oscillation during
the inspiral, the phase estimation had been done in the
leading order estimate assuming the dissipated energy
is much less than the emitted gravitational-wave energy.
Going ahead, if we want to probe the signatures of tidal
heating in real GW data from BNS mergers, we need to
accurately model the phase difference introduced into the
waveform. With this goal, the current work extends our
earlier study to calculate the phase difference using the
stationary phase approximation (SPA) [46].

Currently, BNS waveform models do not consider
the effects of tidal dissipation in NSs. We incorporate
the phase correction introduced by this phenomenon in
existing BNS waveforms, and conduct Bayesian param-
eter estimation of simulated events in third-generation
GW detectors such as Einstein Telescope (ET) [47, 48]
and Cosmic Explorer (CE) [49] to investigate biases in
the recovered tidal deformability parameter in current
waveform models. In the effective field theory formalisms
of tidal dissipation described in Ref. [37, 38] and also
in Ref. [40], it was assumed that the “dissipation num-
ber” remains constant throughout the binary inspiral
timescale. However, this assumption fails in realistic
scenarios since the viscous coefficients are dependent
on the local temperature profile inside the NS, which
heats up during the inspiral due to tidal dissipation.
Consequently, these coefficients reflect an inherent
dependence on the inspiral frequency. In our earlier
work [45], it was shown how the temperature changes as
a function of the inspiral frequency due to the dissipation
from hyperonic bulk viscosity. In this work, we model
the frequency-domain GW phase correction arising due
to tidal heating, which captures this dependence of the
dissipation parameter on the frequency. We also perform
Bayesian parameter estimation studies to evaluate its
effect on the measurement of NS tidal deformability.

The article is organized as follows: in Sec. II, we cal-
culate the energy dissipated due to the hyperon bulk vis-
cous dissipation of the dominant f-mode. In Sec. III, we
estimate the phase due to this energy dissipated and esti-
mate the bias in the recovery of tidal deformability from
binary NS mergers using current and future generational
detectors. In Sec. IV, we model the frequency domain
phase of the waveforms using polynomial functions of or-
bital velocity. We also perform full Bayesian parameter
estimation studies to show how accurately we can de-
termine this additional phase from simulated events in
future-generation detectors. Finally, in Sec. V we discuss
the main implications of this work and also future direc-
tions. We use the geometric units, assuming G = ¢ = 1,
unless stated explicitly otherwise.

II. DISSIPATED TIDAL ENERGY IN THE
MODE-SUM APPROXIMATION

In this section we recapitulate the theory of Newtonian
tidal heating from linear perturbations of a background
solution for a star in equilibrium, following Refs [35, 45].
Under the adiabatic approximation, the effect of the tidal
potential due to the companion star is measured in terms
of the Lagrangian fluid displacement vector &(r,t) from
its equilibrium position. This displacement can be anal-
ysed in terms of the normal modes of the neutron star,

S(rﬂf) = Z&a(r)aa(t)7 (2‘1)

where o = {n,l,m} denotes the normal mode in-
dex, €4 (7) is the eigenfunction and a,(¢) is the time-
dependent amplitude of the particular eigenmode due to
the tidal field of the companion. During the inspiral of
the binary neutron star system, tidal interactions may in-
duce resonant or non-resonant excitation of these oscilla-
tion modes inside the star depending on their frequencies
(wq) compared to the orbital frequency () [50]. Since
the fluid is viscous, a fraction of this dynamical tidal
energy is dissipated as thermal energy, and increase the
temperature of the system. This energy dissipation de-
pends on the timescale of viscous dissipation compared
to the orbital timescale. Assuming the viscous dissipa-
tion timescale is much larger than the inspiral timescale,
the time-dependent amplitude of a particular mode is
governed by the equation [35]

. M,Wlanl i®d(t)
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where M’ is the companion mass, Q,; is the tidal cou-
pling for the mode, 7, is the viscous damping rate, D
and @ are the separation and phase of the decaying orbit
respectively, and W;,, are numerical coefficients defined
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The viscous damping rate (or equivalently the inverse of
dissipation timescale) for these normal modes is given by

Yoo = : visc,oz/2Eo¢ 5 (24)

where FE, is the energy of the mode and E\,isc,a is the
energy dissipation rate. For a viscous fluid, the rate of
dissipated energy is given in terms of the viscous stress
tensor o;; [35]

Evisc = /deUij‘/;,j; (25>

where V' denotes the perturbation velocity vector. The
viscous stress tensor o;; can be written as [51]

2
055 = NSV (W,j + V;J' - 35ijV.V> + C(SHV.V7 (2.6)

where ngy! and ¢ are the shear and bulk viscosity coef-
ficients respectively. For any particular mode, the eigen-
function can be written as a sum of the radial and tan-
gential components:

Ea(r) = [Gu(r)er + & (r) V] Yin(0, ),

where e,. is the radial vector and Y;,, (0, ¢) are the spher-
ical harmonic functions. Using the expression of the
displacement vector in Eq. (2.1) and V = 4¢(r,t) in
Eq. (2.5), we get the viscous dissipated energy as

Evisc ~ Z Q’Yada (t)2
«

(2.7)

(2.8)

in this mode-sum approach during the inspiral. To
leading order, when the viscous dissipation rate is
smaller than twice the mode frequency(y, < 2w,), the
mode amplitude a, can be obtained by solving Eq. (2.2)
and then plugging it into Eq. (2.8) to get the total
dissipated energy.

In this work, we are considering the energy dissipated
due to the viscous damping of the dominant f-mode. Al-
though there are other modes such as low frequency g-
modes that can contribute to tidal heating, the coupling
of these modes to the GW emission is very small [50], ren-
dering their effects largely subdominant. Given a back-
ground equilibrium EOS, we determine the f-mode fre-
quency and eigenfunctions via a relativistic Cowling ap-
proximation [52] and the normalised mode eigenfunctions

1 subscript added to avoid any confusion with the symmetric mass
ratio of a binary system used later.

are also used to calculate the tidal coupling defined as

R
Qui = / PIAEn (Pep + rE8Idr . (29)

R being the radius of the star and p its energy-density.
Also, we only consider the dissipation that comes from
the bulk viscosity originating from the weak nonleptonic
processes involving A hyperons, since this has been shown
to have a detectable effect during the binary inspiral [45].
If we consider only the bulk viscosity contribution to the
energy dissipation given in Eq. (2.5) for the f—mode, we
can express the viscous dissipation rate as [35]

1A+ |m)! R om 2
Toulke = 57— |m|)!/0 rdrg ( or Tt
ey’
z(z+1)r) . (2.10)

where ¢" and &+ are the radial and perpendicular
component of the f-mode eigenfunction, and the cor-
responding velocity field can be written as v = —iw€.
Given an equilibrium EOS and the bulk viscosity from
weak interactions, we have shown in Ref. [45] how
the temperature changes as a function of separation
between the binary masses which is related to the
inspiral frequency. Having obtained the temperature as
a function of the inspiral frequency, one can relate the
latter with bulk viscosity and integrate Eq. (2.10) inside
the star to get ypuk as a function of the orbital velocity.
In Fig 1, we show this for different binary systems of
equal mass for the parametrization of the FSU2 EOS as
considered in Ghosh et al.(2024) [45]. The resonance-like
behavior of yp,x with the orbital velocity comes from
the resonance of hyperon bulk viscosity - matching of
relevant reaction rates to the perturbation timescale
at a finite temperature (refer to Fig. 3 in Ghosh et al
(2024) [45]). The increase in the Yy values with higher
masses are due to the increase in hyperon fractions
inside the heavier neutron stars.

Considering the amplitude of the [ = m = 2 f-mode
obtained by integrating Eq. (2.2), the viscous energy dis-
sipation rate in an equal-mass binary system was esti-
mated to be [45]

: 247 M2 _ R\’
Eyise = —w; ' Q§ <D> Youlk » (2.11)
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where M is the total mass, @y is the tidal coupling
strength of the f-mode and wg is the normalised fre-
quency of the f-mode.



III. ESTIMATION OF PHASE & EFFECT ON
WAVEFORM

A. Numerical dephasing calculation

The dissipative loss of energy and angular momentum
in a hyperonic NS due to its high bulk viscosity drains
energy from its orbit during the inspiral of a BNS coales-
cence, resulting in a faster inspiral rate. The latter fact
introduces changes in the phase evolution of the gravita-
tional waveforms of these binaries as predicted by general
relativity (GR). To construct gravitational waveforms for
a compact binary coalescence (CBC) under GR, the Ein-
stein field equations (EFEs) can be analytically solved, in
a perturbative manner, under the post-Newtonian (PN)
framework. PN formalism works well when the system
under consideration can be approximated to be weakly
gravitating and its components slowly moving in the
center-of-mass frame. For a BNS system, these condi-
tions translate to the requirement that the NSs orbit each
other with velocities much lower than the speed of light
in vacuum, and they are sufficiently far apart so that the
system is not too compact. In this formalism, the evolu-
tion of the orbital phase ¢(t) of a compact binary system
is computed as a perturbative expansion in a small pa-
rameter, typically taken to be the characteristic velocity
v = (7Mf)Y/3, M being the total mass of the binary.
This analytical procedure requires v < 1, which makes
it useful in the early inspiral phase of a CBC.

The loss of binding energy E(v) of the two-body sys-
tem with time equals the GW flux emitted to future null
infinity (F°°(v)) plus the energy dissipated due to the
internal viscous forces of NS (Evisc(v)). So the energy
balance condition becomes

_diiv) =F (U) + Evisc(v)-
Evolution of the orbital phase ¢ and the characteristic
velocity v, obtained from this equation, read
dp  * dv  F(v)
dat M’ dt — E'(v)’
where F(v) = F®(v) 4+ Eyise(v). These equations yield
a solution for the phase ®(f) of the frequency-domain
waveform h(f) = A(f)e~"®) [46]:

B(f) = 2te/ M)~ 200~ 7/4- = [~ 7?)

(3.1)

(3.2)

E'(v)
F(0)
(

dv,
3.3)
where E’'(v) = dE(v)/dv. The separation D between
the NSs in Eq. (2.11) and the orbital frequency Q are
related by
M

= ﬁ 5
where Q2 = 7 f, f being the GW frequency corresponding
to the (2,2) mode. So we get

02 (3.4)

M3

(M) = D

(3.5)

implying
(3.6)

Using this in Eq. (2.11) we get (in geometric units)

Eyisc oc (M?/R) x (@3 /wg) x (R/M)? X (ypuic) x v'®.

(3.7)
Defining the compactness to be C = M/R, this can be
written as

Foiee x C77 x (Qg/wé‘) X Ybulk (V) X v x R. (3.8)

Up to the leading order (LO) and next-to leading order
(NLO), the post-Newtonian expansions for the functions
E(v) (orbital energy) and F>°(v) (energy flux to the in-
finity) have the general form [53]

E(v) = —%nMvQ [1 — (9+’7)U2] ,

= (3.9)

and

32 1247 35
F>(v) = €v10n2 [1 —v? (336 + 1277) + 47rv3} .
(3.10)

where 7 is the symmetric mass ratio of the binary system

defined as n = % We plug the expressions for

E(v), F*(v) and Fyis from Egs. (3.9), (3.10) and (2.11)
respectively in Eq. (3.3), and integrate to get the phase
of the gravitational waveform. To see the relative phase
difference due to the tidal dissipation alone, we simply
subtract the numerically integrated phases obtained by
integrating Eq. (3.3) with and without considering the
tidal dissipation. In Fig. 2, we plot this numerically ob-
tained phase difference due to the tidal dissipation for
three equal-mass binary systems considering the FSU2
EOS parametrizations from Ghosh et al. (2024) [45].

B. Injection-Recovery Study for bias in Tidal
deformability

To see how this extra phase shift due to the tidal dis-
sipation which is not accounted for by any current BNS
waveform model can impact the inference of the neutron
star properties from the binary mergers, we compare this
numerically obtained dephasing to what we can expect
from the leading order tidal deformability. The Newto-
nian or leading order dephasing due to the tidal deforma-
bility enters the GW waveform at 5PN order compared
to the point-particle phase and given by [1]

117 0°

0P = —— 3.11
T T (311)
where ) is defined as
~ 1 [ My +12M, My + 12M,
A= — A A 12
26 M, LI VA 2 (3.12)
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FIG. 1: Bulk viscous dissipation rate of hyperonic neu-

tron stars as a function of their characteristic velocity in

gravitational-wave binaries. Equal-mass BNS systems are

considered here, with the legend reporting the total mass for

each of the binaries. The black squares represent the individ-
ual maxima.

Given an EOS, the tidal deformability parameter (\) can
be calculated by solving a set of differential equations
coupled with the TOV equations [1] and is related to the
[ = 2 love number (k3) as

A= %kgRS. (3.13)
In Fig 2, for three equal mass binary systems we have
compared the numerically obtained phase difference as
described in Sec. ITT A due to tidal dissipation with same
from tidal deformability from eqn. (3.11) [1]. For neutron
stars of mass > 1M, the dimensionless tidal deforma-
bility decreases with increasing mass [1]. As a result, the
magnitude of dephasing also decreases with increasing
component masses of the binary system. On the other
hand, increasing component masses entail higher hyperon
content inside the star(Refer to Table I in Ghosh et
al.(2024) [45]) leading to more tidal dissipation [45]. We
see that for 1.6 Mg, the dephasing due to tidal deforma-
bility is higher than due to tidal heating. For 1.8Mg),
the dephasing for both are almost same and for very high
mass of 2M), the dephasing due to tidal heating domi-
nates. So, we expect to see large systematic biases in es-
timation of tidal deformability from these high mass sys-
tems if the effects of tidal dissipation are not accounted
for properly.

Since none of the current BNS waveforms incorporate
the effects of tidal heating, we do an ‘Injection-Recovery’
study to see how the tidal deformability recovery with
current waveform models gets biased for ignoring the ef-
fects of tidal heating. We consider the simulated inspi-
ral only frequency domain TaylorF2 (denoted by ‘TF2’
henceforth) waveform model with 3.5 PN point particle
phase, adiabatic tidal effects up to 7.5 PN [54] as im-
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FIG. 2: Estimated phase due to tidal deformability (dot-

ted lines) and tidal heating (solid lines) as a function

of v = (mMf)'/3 for equal mass binary of 1.6,1.8 and
2.0Mg individual masses.

plemented in LALSimulation [55]. We assume that the
neutron stars are non-spinning and the orbits are quasi-
circular, i.e., we ignore the individual spins and orbital
eccentricity parameters. We also do not incorporate any
dynamical tides in these waveforms as they become rel-
evant only at high frequencies close to the merger [56].
Since in this work, we are mostly interested in the tidal
heating effects in the inspiral phase, where also the tidal
deformability effects are dominant, we focus on the in-
spiral waveform only and truncate the waveform at a
frequency that is the minimum among the contact fre-
quency or the frequency of the ISCO (innermost sta-
ble circular orbit). The injected waveform starts at a
minimum frequency of 20Hz. We inject the signals with
(denoted by ‘HeatedTF2’) and without the extra phase
shift introduced due to the tidal heating, but we always
recover the signals without the tidal heating (standard
TF2 waveform). We consider the two detector configu-
rations of the third generation (3G) Einstein Telescope
(ET) with ET-D sensitivity [57] and 40-km long Cosmic
Explorer [49] detector as implemented in the software
BILBY [58]. We include Gaussian noise in our analysis.
We focus on the nearby sources with luminosity distance
= 150Mpc and also fix source position during the recov-
ery(which is based upon the assumption that the BNS
events can be associated with electromagnetic counter-
parts). The priors are Gaussian in Chirp mass (M) with
mean at injection value and ¢ = 0.2M, uniform in sym-
metric mass ratio () in the range (0.1,0.26) and uniform
for A in the range (0 —5000). We perform parameter es-
timation using the nested sampler dynesty [59] as imple-
mented in the parameter estimation package BILBY [58]
for these simulated BNS events. In Fig. 3 and Fig. 4, we
show the recovery of the parameter A only for the three
cases of different masses and three difference choices of
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done with the TF2 model. Black line shows the injected value.

EOS parametrizations from Ghosh et al.(2024) [45] con-
sidering that they cover the current uncertainity range
of the EOS with HZTCS and NL3 being the softest and
stiffest EOS considered here respectively for the detec-
tor ET and CE respectively. We see that for 1.6Mg),
even when we include tidal heating, the estimate of tidal
deformability is not biased at all and is well recovered
within 90% credible of recovered posterior. For slightly
heavier masses of 1.8 M, we start to see the slight biases
(~5-10%) in the recovery of tidal deformability for ET,
but for CE we do not see any bias in this case as well. For
stiffer EOS such as NL3, we also do not see much bias
because the hyperon content in the neutron star cores
is relatively less, leading to less dissipation. But for the
case of My = My = 2.0My, we see that the recovered
tidal deformability when the injected signal has effects of
tidal heating, is heavily biased irrespective of the EOSs
and detector sensitivity, and the recovered posterior does

not contain the injected value. This leads us to conclude
that for high mass neutron stars than can contain sig-
nificant hyperon fraction in their core, tidal heating can
be significant and if not included or modelled in the cur-
rent waveform models, can introduce a huge bias in the
recovery of tidal deformability parameters and thus the
EOS inference in the third generation gravitational wave
detector era.

IV. MODELING THE FREQUENCY-DOMAIN
PHASE

Since we consider only non-spinning NSs, we expect
the leading-order phase contribution of the viscous dissi-
pation to appear at the 4PN order relative to the point-
particle phase [37, 39]. However, variation of the bulk
viscous dissipation rate v,k with frequency, as shown
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sensitivity of equal masses for three different EOSs: a) HTZCS(upper panel) b) FSU2( middle panel) and ¢)NL3
(lower panel). Blue and orange posteriors show injection without (TF2) and with effects of tidal heating (Heated)
respectively. Recovery is always done with the TF2 model. Black line shows the injected value.

in Fig. 1, reveals that it has a maximum within the fre-
quency range of interest. For a given value of the NS
mass, the frequency response of ypux differs notably be-
fore and after the maximum occurs. Although one can
assume a theoretically motivated ansatz for this dissipa-
tion rate, namely, ypux = Av®/(1 + Bv!?), nevertheless,
when considering the dependence of the bulk viscosity on
the temperature [45], it fails to capture this effect accu-
rately over the full frequency range of interest with our
PN-inspired model where we expand the series around
v = 0. One can, in principle, attempt to model the two
regions around the maxima separately and connect them
by imposing C") continuity, but that procedure would
introduce too many parameters into the model just to
incorporate one physical effect. When they are treated
as free parameters in parameter estimation (PE) stud-
ies, possible degeneracies between them would hinder any
meaningful conclusion. As a first step, here we implement

the phase correction in frequency domain only after the
maxima in v,k occur, and set the phase correction to
zero before that. This choice enables us to construct a
fairly accurate model(as shown in Fig. 5) with 4 new pa-
rameters, at the expense of sacrificing the phase contribu-
tions before the maxima in k. For high-mass neutron
stars where this effect is dominant, the cut-off frequency
is closer to the minimum frequency making the model
accurate over most of the frequency domain. To model
the numerical data for the frequency-domain phase, we
consider an ansatz that contains the leading order 4PN
and higher-order terms:

12 10

T 12805

niv®logv + nov? 4+ ngv

Ad(v) [T dio

, (4.1

where n; 2 3 are phenomenological coefficients whose val-
ues are given in table I. Note that the prefactor reflects
the fact that we limit our investigations here to equal-
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FIG. 5: Model of the frequency-domain dephasing due to

tidal heating for three different total mass values. The solid

curves show the dephasing obtained by numerically integrat-

ing Eq. (3.3), and the individual fits with the ansatz in
Eq. (4.1) are shown by the black dashed curves.

mass binaries, with » = 1/4. Since the 4PN term is
degenerate with the time of coalescence t., we consider
the logarithmic term at 4PN order [37].

The lower cutoff for fitting this ansatz with data is
chosen to be the frequencies at which Y,k has maxima.
We fit a linear ansatz with the data for these maxima
and generate a phenomenological analytical expression
for the lower cutoff, given by

Vlower = Q1 + QQ(M/MG) ’ (42)

with a1 = 0.4881 and ay = —0.0893. The fit is shown in
Fig. 6. In Fig. 1 we demonstrate the bulk viscous dissi-
pation rate as a function of v, and show the lower cutoff
considered here. This cutoff eliminates lower frequency
influence on the phase before the maxima in ~y,yy for all
the binaries within this mass range, ensuring that the de-
phasing due to tidal heating appears at 4PN and higher
orders.

To test the robustness of the model and check if we can
recover the model parameters in a successful signal de-
tection, we carry out Bayesian parameter estimation with
BILBY [58]. As described earlier, we get the largest dissi-
pation for a 2M g neutron star. So, we choose an equal-
mass binary system with component masses of 2Mg for
the ET detector with ET-D sensitivity [57] and 40-km
Cosmic Explorer [49]. We first inject ‘Heated TF2’ wave-
forms as described in Sec. II1I B with the tidal dissipation
phase modeled as &y in Eqn. (4.1) with a lower fre-
quency cutoff decided by the Eqn. (4.2) and a higher
frequency cutoff of 500 Hz. For the waveform , the start-
ing frequency is 20 Hz and the upper cutoff frequency is
taken to be the corresponding ISCO frequency. We in-
clude Gaussian noise in our analysis. We focus on the
nearby sources with luminosity distance fixed at 150Mpc
and also fix source position during the recovery(which

3.2 3.3 3.4 35 3.6 3.7 3.8 3.9
Total mass (M)

FIG. 6: We fit a linear ansatz with the individual maxima
to model the lower cutoff. The red dashed line shows the
best fit.

is based upon the assumption that the BNS events can
be associated with electromagnetic counterparts). The
priors for the masses, tidal deformability and the model
parameters are shown in Table I. We do the parameter es-
timation using the nested sampler dynesty [59] as imple-
mented in the parameter estimation package BILBY [58].
Figure 7 shows the density plots of the posteriors of the
tidal deformability for both the detectors. We can see
that the tidal deformability is well recovered around the
injection values unlike the cases when tidal heating was
not modeled in the waveform(as shown in Fig. 3 and
Fig. 4). From the recovered model parameters, we also
reconstruct the phase difference that is introduced in the
gravitational wave signal due to the tidal dissipation fol-
lowing eqn. 4.1 and plot the 1o confidence interval of the
reconstructed phase from the recovered model posterior
as shown in Fig. 8. We see that the phase difference is
also well recovered around the injection value.

V. DISCUSSION

In this paper, we have investigated the effect of
viscous dissipation of tidal energy of binary neutron
star systems on their gravitational waveforms. Earlier
studies [35, 36] concluded that viscous dissipation due to
the viscosity of neutron stars from nuclear matter occurs
at a timescale much larger than the inspiral, and thus it
does not have any observable signatures in gravitational
waveforms. However, Ghosh et al. (2024) [45] recently
showed that if hyperons are present at the high density
core of neutron stars, bulk viscosity originating from
non-leptonic weak reactions involving hyperons can be
much higher than the neutron star shear viscosity from
ee scattering and can leave detectable imprints on the
GW waveforms for the next generation ground-based



| Parameters [ Injection [Prior distribution | Range [ Unit |
Chirp Mass(M) 1.76 (for My = My = 2Mp) Gaussian Mean = 1.76, Sigma = 0.2 Mg
Symmetric mass ratio (n) 0.25 (for My = Ms) Uniform (0.1,0.26) Dimensionless
Effective tidal deformability(A)| 75((for My = M = 2M)) Uniform (0,5000) Dimensionless
ny 1136 Uniform (10,5000) Radian
na 22160 Uniform (10000,30000) Radian
ns3 -19951 Uniform (-40000,0) Radian
d1 14.4 Uniform (0,100) Dimensionless

TABLE I: Choice of priors for the Bayesian posteriors presented in Fig. 7 and 8.
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FIG. 7: Recovery of tidal deformability(A) for 20
BNS system with ‘Heated TF2’ model

GW detectors.

In the current paper, we first briefly recapitulate
the Newtonian tidal heating calculation and estimate
the rate of viscous energy dissipation in the mode-sum
method (the tidal perturbations are decomposed in
terms of the quasi-normal modes of the star). We
estimate the energy dissipated from the dominant
f-mode oscillation due to the hyperonic bulk viscosity
and estimate the additional phase contribution to the
gravitational waveform using the stationary phase
approximation. Comparing the dephasing thus obtained
with that from the static conservative tides (or tidal
deformability) of neutron stars, we see that although for
neutron star masses < 1.8Mg the tidal deformability
contributes to the phase dominantly, for heavier stars
with masses ~ 2.0My tidal dissipation contribution to
the phase dominates over the tidal deformability. This
behavior follows the fact that as the component neutron
star masses are increased, the tidal deformability values
rapidly fall down (as A o« M~ [1]), on the other
hand, higher densities at the core of heavier neutron
stars accommodate more hyperons at the core and
increase the viscous dissipation. Next, we performed
an injection-recovery study from a single simulated
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FIG. 8: 1o posterior bound of the reconstructed phase
difference from the model parameters along with the
injection value

BNS event considering next generation GW detector
sensitivity to show that if tidal dissipation is not
modeled in BNS waveforms, it can introduce systematic
biases in the recovered tidal deformability estimations,
thereby biasing the equation of state inferences from
GW observations that rely on accurate measurements of
mass and tidal deformability. This bias is demonstrated
with systems up to a maximum distance of ~ 300 Mpc
with the third-generation GW detectors.

Circumventing this systematic bias entails modeling
the phase correction due to the tidal dissipation and im-
plementing it in the gravitational waveforms. Recently,
efforts have been made to model this tidal dissipation
or tidal lag in an effective theory of tidal responses via
the parameter “dissipative tidal deformability” that
was assumed to remain constant throughout the inspi-
ral [37, 38, 40]. However, such constant parametrization
fails to capture the tidal dissipation accurately as these
parameters depend on the viscosity of the neutron star
matter, which is a strongly temperature-dependent
quantity (refer to Fig. 3 in Ghosh et al.(2024) [45]). As
a BNS system goes through the inspiral phase, the dissi-
pated energy is converted into thermal energy, increasing



the system temperature and thus changing the viscosity
coefficients. For the hyperon bulk viscous dissipation,
this heating was also shown to happen at a rate faster
than the inspiral [45]. In this mode-sum approach, the
viscous dissipation rate of the mode (ypuk) characterizes
the tidal dissipation. We have shown how it changes as
a function of the inspiral frequency, taking into account
the temperature increase due to this tidal heating.
The resonance of bulk viscosity (matching of reaction
rates to the perturbation timescale) is reflected in the
resonance-like behavior of v,k with the peak shifting
to lower frequencies with increasing mass (and hence the
dissipation). Due to this resonance, it becomes difficult
to model the parameter in current state-of-the-art
frequency domain BNS waveforms like ‘TaylorF2’ [54] or
‘NRTidal’ [60-63] based models that essentially expand
the tidal phase as functions of the characteristic velocity
v. Instead of modeling the phase correction over the
whole frequency range of interest, we model it only
within the frequency range Youk € [fpeak,00Hz] in
a Post-Newtonian expansion starting from 4PN order
with 4 additional parameters. fpear is the frequency
corresponding to the peak of Yhuk. The phase is well
modeled above the peak frequency with an accuracy
upto 4-5% level for all masses. Then we perform a full
Bayesian parameter estimation of single simulated BNS
events of 2My each for next-generation GW detectors
with this model for the additional phase, and confirm
that both the tidal deformability and the reconstructed
phase are recovered well within their injection values.

This work has established that tidal dissipation in bi-
nary neutron star systems is not going to be negligible if
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exotic matter containing strange particles such as hyper-
ons are present inside their core. Tidal dissipation can
thus be a smoking gun signature for their presence inside
a neutron star, as there is no known source for such high
viscosity from nuclear matter. We have built a waveform
taking into account the dependence of viscosity on the
temperature. The waveform thus constructed is able to
accurately estimate the phase correction, and it elimi-
nates the systematic biases in estimating the tidal de-
formability using the next generation GW detectors. In
the future, consolidated efforts should be given to model
the tidal dissipation in BNS waveforms more accurately
over the whole parameter space of mass and frequency,
since this avenue offers a unique complimentary probe
from the GW data of the out-of-equilibrium effects of
dense matter at extreme conditions, whereas conserva-
tive tidal effects (static and dynamical) only probe the
equation of state under equilibrium.
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