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machine learning
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Abstract
Laser-induced graphene (LIG) enables the creation of cost-effective sensing devices via one-step laser scribing on organic
substrates. This work aims to demonstrate the feasibility of LIG as an embedded damage sensor in structural composite
materials. LIG was produced on an inexpensive cork substrate using a low-power blue light laser engraving system. The
LIG was characterised to establish the relationship between the LIG’s physical properties and the lasing parameters.
Using the lasing parameters which offer the optimal LIG properties, a LIG mesh pattern lased on the cork substrate was
embedded in a glass fibre composite laminate as the damage-sensing core material to assess its sensing capability for
impact damage. By measuring the electrical resistance change in the LIG mesh pattern consisting of a series of horizontal
and vertical channels before and after impact loading, it was able to define the location of internal damage and its dam-
age size, validated by X-ray computed tomography results. It is demonstrated that the test data can be used to train a
machine learning algorithm to develop a simple damage-sensing system with a high accuracy rate of 94.3%, which signifi-
cantly reduces the manual effort for large-scale composite structural health monitoring. This simple damage sensing sys-
tem can be used to monitor internal impact damage in composite structures, such as off-shore wind turbine blades,
which are inaccessible for inspection by conventional non-destructive testing.
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Introduction

Fibre-reinforced polymeric (FRP) composites have
been widely used in aerospace, marine and renewable
energy applications for decades due to their light-
weight, high specific strength and exceptional corrosion
resistance.1 However, failure of FRPs can be compli-
cated and catastrophic, therefore, requiring damage
detection as early as possible. Structural health moni-
toring (SHM), which identifies undesirable structural
changes and damage that improve material reliability
and collects data for life cycle management, is becom-
ing increasingly popular among researchers.2 SHM sys-
tems for early damage detection is especially crucial for
internal damage that is not visible, as timely interven-
tions could prevent progressive failure and ensure
operational safety. Multiple techniques, such as optical
fibres,3 acoustic emission testing4,5 and resistance-

based sensing, have been investigated to detect and
locate damage in FRPs, specifically for delamination
and crack growth. Among these methods, SHM using
resistance-based sensing by embedded graphenic nano-
material6–10 generally requires only an inexpensive and
simple probing tool such as a digital multimeter, pro-
viding a straightforward approach for detecting non-
visible internal damage. After Lin et al. demonstrated

1Smart Manufacturing and Systems Research Group, University of

Southampton Malaysia, Iskandar Puteri, Johor, Malaysia
2School of Engineering, Faculty of Engineering and Physical Sciences,

University of Southampton, Southampton, UK

Corresponding author:

Xue Chen, School of Engineering, Faculty of Engineering and Physical

Sciences, University of Southampton, University Road, Highfield,

Southampton SO17 1BJ, UK.

Email: xc2e21@soton.ac.uk

uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/14759217241311516
journals.sagepub.com/home/shm
http://crossmark.crossref.org/dialog/?doi=10.1177%2F14759217241311516&domain=pdf&date_stamp=2025-01-16


the capacity to create graphene nanostructures on
commercial polyimide (PI) substrates in 2014,11 laser-
induced graphene (LIG) has attracted significant inter-
est as an in situ graphene generation method. In com-
parison to conventional chemical vapour deposition
(CVD)12 or carbon nanomaterials doping methods,13

the LIG method offers a substantial reduction in gra-
phene synthesis time and manufacturing cost. While
the CVD method requires expensive vacuum equip-
ment or high temperatures (.1000�C), nanomaterial
doping necessitates more chemical interventions and
prolonged dispersion processes. In light of this, LIG
could pave the way for economical embedded smart
sensing applications, particularly for FRP structural
components produced on a massive scale.

LIG has been extensively studied in a variety of sen-
sing applications as electrochemical sensors, moisture
sensors and triboelectric sensors. However, using it for
strain and damage sensing has gained more atten-
tion.14–16 Several types of LIG strain sensors have been
developed on PI films by CO2, visible and ultraviolet
laser systems.17–19 LIG typically has a unique three-
dimensional (3D) conductive porous nanostructure.
Therefore, LIG subjected to compression and tension
can give a decrease or increase in electrical impedance,
as the carbon–carbon contact that makes up the LIG
is pressed into contact or pulled apart. Groo et al.
developed a piezoresistive LIG interlayer for strain
sensing using the constant-pressure rolling transfer
technique to transfer the LIG from PI to glass fibre
prepreg.16,20 It has also been demonstrated that the
polymeric composite itself can be used as LIG precur-
sors, as both the epoxy resin matrix and the polymeric
or organic reinforcement fibres can be directly con-
verted to graphene/graphite.21 Nasser et al. used ara-
mid fibres to generate LIG with enhanced interlaminar
performance and investigated the electrical resistance
change of the composites under strain and ballistic
impact.22,23 Furthermore, it is also possible to create
laser-induced graphitic structure by multiple laser scan-
ning on glass fibre epoxy prepreg before and after cur-
ing to make multifunctional composites.24 However,
most works primarily focused on strain-sensing appli-
cations rather than impact damage detection. When it
is subjected to impact loading, there will be disintegra-
tion of the carbon–carbon contact network caused by
impact damage, leaving a permanent increase in electri-
cal resistance. This irreversibility in the electrical resis-
tance can be used as an indicator for the presence of
damage, even after the loading is removed. However, a
single LIG sensor can only indicate the presence of in-
plane damage, but not the extent of damage.
Therefore, by arranging them in a mesh pattern or net-
work, a damage map can be developed to show the
severity of the damage. In this work, the versatility of

the LIG synthesis process via laser irradiation allows
the production of bespoke LIG networks or patterns
according to the needs, which can be used to identify
the location of the damaged area and its size. The LIG
network can then be embedded in the composite mate-
rial as an internal damage sensor, for example follow-
ing an exterior impact event.

On the selection of LIG precursor, previous research
shows that the most common substrates used for the
synthesis of LIG are PI films,25 PI papers26 and other
polymers such as polyetherimide and polysulfide.27–30

However, PI films are typically thin and they exhibit
substantial irreversible thermal deformation after laser
irradiation and poor compatibility with the resin matrix
in composite materials. On the other hand, PI papers
offer improved thermal stability and compatibility with
resin due to their porous structure, but they are more
expensive due to their more complicated manufacturing
process, compared to PI films which are manufactured
by direct extrusion. Recent research has demonstrated
that the majority of biodegradable carbon-based pre-
cursors can be transformed into amorphous carbon
and then to graphene using multiple lasing methods,
offering a sustainable and eco-friendly way to synthe-
sise LIG.31,32 In this study, as a proof of concept, cork
is chosen to be the sustainable and biodegradable sub-
strate for LIG synthesis, aligning with previous investi-
gations that demonstrated good LIG quality in both
piezoresistive and capacitive sensing applications.33–35

Cork is inexpensive and easily available. It has a uni-
form porous structure, which allows the formation of
3D LIG structures with customisable thickness under
different lasing parameters.36 The porous structure of
cork facilitates effective infiltration by the resin matrix
when employed as a core material in a sandwich com-
posite structure, resulting in better compatibility with
the composite matrix.37–39 Its porous nature also
enables efficient dissipation of pyrolytic gases, allowing
intricate LIG patterns to be designed without thermal
deformation. In principle, any other substrates can be
used provided that they are compatible with the resin
matrix and thermally stable.

This study presents a new approach for using the
cork-derived LIG as damage sensor in a fibre-
reinforced composite. The properties of LIG on a cork
substrate after irradiation by a commercial blue laser
engraver are firstly characterised to assess its viability
as a sensing element following selected lasing para-
meters. The morphology, graphitisation quality and
electrical properties of the synthesised LIGs were then
investigated to find the lasing parameters that offer a
good balance between graphitisation quality and LIG
geometry. Subsequently, the LIG on cork substrate
was embedded into a glass fibre-reinforced epoxy com-
posite to demonstrate its damage sensing capability in
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a drop weight impact test for internal damage detec-
tion and damage area estimation, validated against
results from X-ray computed tomography (CT). It is
also demonstrated that the LIG sensor can be used in
conjunction with a machine learning (ML) algorithm
to process the data more efficiently and accurately
especially for borderline data.

Experiments

LIG synthesis and characterisation

Before laser treatment, the 1 mm thick agglomerated
cork paper was wiped with isopropyl alcohol and dried
at room temperature. It was then taped down on a
wooden board and placed in a commercial laser engra-
ver unit (GKTOOLS, FB03). The communication
between the laser engraver and the PC was done via
the LaserGRBL v4.8.0 control software (open source).
The laser head was designed to emit a focused blue
laser beam (l = 445 nm, laser spot diameter = 0.2
mm.) with an adjustable power range from 0 to a full
power of 2500 mW. The horizontal line-by-line tracing
approach is used for all patterns in characterisation
and sensing tests as shown in Figure 1(a). To limit the
number of parameters, the laser focal distance, scan-
ning speed and pattern resolution were fixed at
19.5 cm, 16.7 mm/s and 300 dot per inch (dpi), respec-
tively, based on the recommended setting imposed by
the hardware constraints. The line density of the scan-
ning was set at 2 lines/mm to avoid irreversible thermal

deformation and burnt marks on the substrate under
multiple scans. In this study, the variables for LIG gen-
eration that required optimisation were reduced to
two, that is, laser power and number of laser scans, as
they can be easily manipulated using the control soft-
ware. These characteristics are adequate to optimise
the LIG structure, providing high electrical conductiv-
ity for sensing purposes and good porosity for integra-
tion with epoxy resin, as will be demonstrated in
‘Microstructural and electrical properties of LIG’ sec-
tion. To determine the optimal laser parameters for
subsequent LIG pattern design, the geometrical char-
acteristics of the LIG such as line gap and cross-
sectional profile were investigated. This was then com-
bined with its electrical properties to identify the opti-
mal lasing parameters. For convenience, the LIG
samples prepared on cork paper were named based on
the processing parameters, that is, scanning time (1–3
times) and power (0.63, 1.25, 1.88, 2.50 W, which is
25%, 50%, 75%, 100% power, respectively), for exam-
ple, LIG-2T-1.88 refers to LIG fabricated with 2 times
scanning and 1.88 W power. As illustrated in Figure
1(b), two LIG patterns were created for characterisa-
tion. The square-shaped (10 mm 3 10 mm) LIG pat-
terns were lased for sheet resistance (SR) measurement,
while the rectangular (40 mm 3 3 mm) LIG patterns
were for LIG microstructural characterisation. All
laser treatments were processed under normal room
conditions. Silver conductive paste was applied on the
opposite edges of the LIG pattern to facilitate copper
wire connection for resistance measurement.

Figure 1. (a) Laser irradiation on a cork paper substrate, where the morphology and quality of the LIG can be designed by tuning
the laser power (P), scanning speed (v) and lasing pass number (n). (b) The square and rectangular LIG patterns (viewed from top)
used for sheet resistance measurement (left) and microstructural characterisation (right) respectively (v direction indicates the
scanning direction for each pass).
LIG: laser-induced graphene.
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The surface and cross-section morphology of LIG
were investigated via field emission scanning electron
microscopy (SEM, HITACHI SU8000). Horiba
XploRA PLUS Raman microscope was employed with
a 532 nm excitation laser at the power of 5 mW to
measure the chemical structures and carbonisation
level of the LIG. A 3D laser scanning confocal micro-
scope (Alicona G4 Infinite Focus) was used to charac-
terise the geometry of LIG lines. The surface resistance
of the LIG electrodes was determined by a handheld
digital multimeter (Fluke 175). All measurements were
carried out directly on the LIG on top of the cork
paper.

Fabrication of LIG damage-sensing composites

Following the characterisation work in ‘LIG synthesis
and characterisation’ section, the laser parameter set-
ting which gives the optimal LIG properties was used
to produce LIG mesh patterns before they were
embedded as the sensing layer in the glass fibre-
reinforced epoxy composite plates. The 10 cm 3 10
cm mesh pattern consisted of nine horizontal and nine

vertical 1.5 mm width LIG channels with the dimen-
sions as shown in Figure 2(a). The distributed cork-
LIG networks achieve two-dimensional (2D) damage
mapping with 3–9 mm sensing resolution. The design
of the mesh pattern featured a higher mesh density in
the central region, where larger deformation and dam-
age are expected to happen during impact tests, while
preventing cluttering the pattern with too many chan-
nels. The LIG sensing network is embedded at the
mid-thickness of the composite plate to give a good
estimation of the overall internal damage severity. Due
to its intricate conductive network, it is sensitive to
slight alteration of the LIG network caused by inter-
ply delamination after impact loading. The terminals
of each channel were connected to 0.1 mm thick cop-
per strips for electrical resistance measurement. As
shown in Figure 2(b), the cork paper with the LIG
mesh pattern was directly placed as the core material
between two face sheets each consisting of six plies of
S-913 unidirectional glass fibre/epoxy prepreg (HexPly;
USA: Hexcel Corporation, Stamford) arranged in a
cross-ply (0�/90�) configuration. The cork paper with
12 layers of prepregs were then vacuum bagged and

Figure 2. (a) The LIG mesh pattern design with 18 channels. (b) The cork paper with the LIG mesh pattern embedded between
two glass fibre composite face sheets in a vacuum bag. (c) The cork-LIG mesh before embedded in the composite plate. (d)
Composite plate with embedded LIG mesh before impact damage. (e) Discoloration of the composite plate with embedded LIG
mesh showing damage after impact.
LIG: laser-induced graphene.
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cured in the autoclave at 120�C and 7 bar for 60 min
following the prepreg manufacturer’s recommendation.
During the curing process, the excess resin was allowed
to flow and infiltrate into the porous cork paper sub-
strate, bonding the cork paper to the glass fibre com-
posite face sheets. Figure 2(c) and (d) displays the LIG
on cork paper before and after it was embedded in the
composites. A total of nine plates of the LIG self-
sensing composites, each measuring 14 cm 3 14 cm,
were manufactured for the drop weight impact test. Six
of the plates were used for providing training data to
the ML model (discussed in ‘LIG sensor working con-
cept and data processing with ML’ section) and the
remaining three plates for model validation purposes.
The impact energy applied on the composite plate spe-
cimens was generated by a drop tower impact system
(CEAST 9350, Instron) using a standard hemispherical
indenter (16 mm diameter). All composite plates were
placed on a support plate with a central 40 mm dia-
meter hole. The impact energy of 10 J was applied on
the six training plates, while 10, 12 and 15 J were
applied on the three test plates. The resolution of the
predicted damage size is given by the separation of the
LIG channels. Figure 2(e) shows composite specimens
with post-impact damage. The internal damage of the
composites was evaluated using a Nikon XTEK 225
kVp micro-focus X-ray CT system. The CT images
were reconstructed by the VGSTUDIO 2022 software
(Volume Graphics) with a voxel size of 75 mm/pixel
for the x- and y-axes, and 50 mm/pixel for the z-axis.

LIG sensor working concept and data processing with
ML

The working concept of embedding a LIG layer to
locate the damage affect area in composite materials is
inspired by previous graphene-based sensor designs.9

The epoxy resin fills up the LIG pores and offers
mechanical support to the otherwise fragile LIG micro-
structure. The LIG channels will give a change in elec-
trical resistance due to the disintegration of the
microstructure and debonding from the cork substrate
following a drop weight impact event. The vertical and
horizontal channels beneath the point of impact serve
as indicators along the x- and y-axes, respectively, pro-
viding precise information of the damage location.
However, the LIG channels around a small neighbour-
hood of the impact zone can also be affected as the
delamination propagates. The impact damage can
cause different amounts of resistance change in the
LIG channels, depending on the location and energy
of the impact on the LIG mesh pattern. When the
damage occurs at the edge of the plate, there are fewer
intact channels around the neighbourhood of the

affected channels to serve as alternative electrical
routes for resistance measurement, resulting in a signif-
icant increase in resistance. In contrast, affected chan-
nels in the centre of the plate are surrounded by more
intact channels which are closely packed, giving a
smaller increase in resistance. Moreover, real-world
impact scenarios can be more intricate with complex
geometries, making it challenging to characterise dam-
age at different severity levels. Therefore, the main
challenge is to distinguish between LIG channels
whose electrical resistance changes result from direct
impact damage and those marginally affected by pro-
pagated delamination in the adjacent areas. To this
end, a simple ML approach, was adopted to offer a
more adaptive and efficient solution for damage assess-
ment, especially for discerning the subtle variations in
resistance change between damaged and non-damaged
channels which are influenced by the specific location
of the damage.

In this study, the k-nearest neighbours (KNN)
model was selected due to its minimal parameter tuning
requirements and the limited training data obtainable
from experiments.40,41 The KNN algorithm is a non-
parametric, instance-based learning method that classi-
fies new instances based on their similarity to existing
instances in the training dataset.42 Compared to more
advanced models, such as Convolutional Neural
Networks, KNN employs lazy learning, deferring
model construction until a new instance requires classi-
fication which makes it computationally efficient for
small datasets and less susceptible to overfitting.
Following the impact test, the nine composite plates
were divided into two groups: a training group of six
plates to provide training data for the KNN algorithm
and a test group of three plates serve as new cases for
model validation. To evaluate the sensing capability of
the multichannel LIG mesh design, each of the six
plates was impacted at a different location having dif-
ferent LIG channel densities. The resistance of each
channel from each plate was measured three times
before and after the impact to minimise measurement
errors. After that, the resistance changes of each chan-
nel were fitted to a normal distribution, with the mean
(m) and standard deviation (std) calculated for each
plate. For simplicity, a damage threshold was estab-
lished at 1 std of resistance change determined from
the results of impact test at 10 J. The damage threshold
of 1 std is chosen here as the standard deviation is a
common concept in statistics to determine what consti-
tutes an outlier and what does not. The channels are
diagnosed as damaged when their resistance change
exceeds the damage threshold value. In practice, the
value of the damage threshold can be adjusted depend-
ing on the required conservatism. Nevertheless, chal-
lenges arise from two primary sources. First, the
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inherent material variability of the cork paper substrate
as a bio-derived material can lead to slight variation in
LIG quality and therefore the initial electrical resis-
tance reading can vary from plate to plate. Second, dif-
ferent impact scenarios at different energy levels and
impact locations can affect how damaged channels
influence their neighbouring channels. For example,
more extensive damage can substantially increase the
mean value of resistance change across the plate and
heavily skew the dataset, therefore, neglecting the resis-
tance changes of moderately damaged channels (i.e.
erroneously treating them as undamaged when they
should be considered as damaged) under the enlarged
standard deviation range. The main objective of using
the KNN model was to distinguish more adaptively the
damage status of the LIG channels as either damaged
or non-damaged under different impact scenarios. The
use of ML models such as the KNN model eliminates
the need to establish new resistance change thresholds
for different impact scenarios. Furthermore, the model
can also be easily adjusted to meet the desired level of
conservatism for specific applications.

To ensure accurate model training and mitigate
potential classification biases, data preprocessing tech-
niques were implemented prior to model construction.
Any resistance changes of the LIG channel exceeding
2 MO (about 60 times more than the typical initial
resistance reading), were confidently identified as a
completely broken channel and were excluded from the
calculation as it could heavily distort the normal

distribution of the results. The decimal scaling normali-
sation, and oversampling were employed to improve the
comparison of data points from six training plates and
to speed up the learning process.43 To further improve
the prediction accuracy of the algorithm, a hyperpara-
meter tuning process was undertaken through the grid
search algorithm.44 The hyperparameters subjected to
optimisation includes the k values, which determine the
number of nearest neighbours considered for data pro-
cessing; the distance threshold, which determines the
maximum distance a data point can be away from its
nearest neighbours to be considered in the same class;
the distance metrics, which quantify the dissimilarity
between data points through different distance function,
and the weight function, which is responsible for assign-
ing relative importance to the KNN. The logic behind
weighted KNN is to give more weight to nearby data
points and less weight to distant points, thereby improv-
ing the prediction performance. The remaining three
composite plates from the test group were employed to
validate the predictions made by the KNN model, after
comparing the results with the X-ray CT images. The
impact damage detection workflow for these plates is
summarised in Figure 3. The electrical resistance change
(DRi), average plate resistance change (DRaverage), rela-
tive resistance change (DRi 2 DRaverage) and the stan-
dard deviation of plate resistance change (stdi) were
selected as input features (f) to the KNN model. The
KNN algorithm and data processing code in this study
were implemented using Python 3.9 and the Scikit learn

Figure 3. Flowchart depicting the process of applying the KNN model to predict outcomes for new test samples. The steps for
model training are coloured grey, while the steps for model validation are in blue.
KNN: k-nearest neighbours.
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package for ML. The matplotlib and cv2 package was
used to create visualisation.45

Results and discussion

Microstructural and electrical properties of LIG

In order to determine the optimal laser parameters, the
characterisation results of LIG including its micro-
structure, graphitisation level and area electrical con-
ductivity are discussed in this section. It is essential to
ensure the creation of a LIG pattern with uniform
quality. Minimising the gap between adjacent laser
scanning paths was the first step to achieving a contin-
uous LIG surface, which is necessary for developing
consistent electrical conductivity and reliable sensing
capabilities. Figure 4 shows the microscope and SEM
images of the LIG pattern geometry. Line-by-line las-
ing was used to create a LIG region of finite width.
Prior research indicates that increased laser power and
the number of scans expand the carbonised area on the
substrate and improve the graphene quality.46,47 The
microscope image in Figure 4(a) reveals a distinct gap
between LIG lines when using a single pass scan at
2.5 W (100% power). In contrast, a uniform overlap

between adjacent LIG lines can be achieved via a sec-
ond pass of lasing, despite at a reduced energy level
(50% power). Therefore, the multipass laser scanning
method was employed in this study for two purposes:
primarily, it enhances the graphitisation of amorphous
carbon, and additionally, it facilitates the generation of
cork-derived LIG with uniform microstructure.
However, multipass lasing can cause permanent ther-
mal deformation of the cork substrate. Figure 4(b)
shows that the lasing path of the third pass no longer
aligns with the original path, leading to a significant
increase in linewidth but with no further carbonization;
hence, the third time scanning and above were not con-
sidered. Figure 4(c) and (d) shows the SEM images of
the cork-LIG microstructure from the top view pro-
duced using different number of lasing passes and
power. Figure 4(c) illustrates the transformation of the
regular cell structure of the cork into a more irregular
porous structure of LIG in the LIG-1T-1.25 W sample,
which is attributed to the gas release. The cork area
that stays intact between the LIG is bounded within
the two yellow dashed lines in the images. The two-
pass lasing at the lower 1.25 W power manages to close
the LIG line gap further, as shown in Figure 4(d). By
increasing the laser power to 1.88 W, in Figure 4(e),

Figure 4. Microscope and SEM images of LIG microstructure (viewed from top). (a) The microscope images of LIG pattern under
one-time scanning with 100% power (top) and two-time scanning with 50% power (bottom). (b) The LIG single line pass at 50%
power under n = 1–3 times scanning (left to right). The SEM images of (c) sample LIG-1T-1.25. (d) Sample LIG-2T-1.25. (e) Sample
LIG-1T-1.88. (f) Sample LIG- 2T-1.88.
LIG: laser-induced graphene; SEM: scanning electron microscopy.
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the width of the single-pass LIG lines increases with
decreasing gap between them, but not sufficient to
close the gap fully. Lastly, having two-pass lasing at
the higher 1.88 W power in Figure 4(f) successfully
transformed all cork to porous LIG structures without
any visible cork remaining, resulting in the formation
of fully interconnected LIG lines.

To develop the correlation between LIG morphol-
ogy and the laser parameters at the irradiation area, it
is necessary to quantify the irradiation energy encom-
passing all the lasing parameters. The dynamical flu-
ence energy F (J/mm2), which estimates the energy
injected into the scanning path encased by the laser
spot, can be calculated as follows in equation (1):

F =
nP

vs
ð1Þ

which is a function of laser power P, number of scan-
ning pass n, scanning speed v and laser spot radius s.
The cross-section profile of each LIG line under differ-
ent dynamical fluence energy is shown in the SEM
images in Figure 5 and is well described by a Gaussian
distribution. The Gaussian profile of the carbonised
area follows the hardware laser beam’s intensity
Gaussian distribution; therefore,the thermal energy
spatial distribution and material ablation on the cork
substrate equally adheres to this profile. For
F = 0.75 J/mm2 (Figure 5(a)), the carbonization area
shows a concave curve with the lowest depth. With
increasing F values, the carbonised cross-section curve
displays a sharper edge, and the overall depth of pene-
tration increases substantially (Figure 5(b)–(d)).
Fifteen representative points on each cross-sectional
profile were used and fitted with a Gaussian

Figure 5. SEM images showing the cross-section of single LIG lines and the relationship with F values. (a) LIG-1T-1.25, F = 0.75 J/
mm2. (b) LIG-2T-1.25, F = 1.5 J/mm2. (c) LIG-1T-1.88, F = 1.13 J/mm2. (d) LIG-2T-1.88, F = 2.25 J/mm2. (e) Comparison of the LIG cross-
section profiles with varying laser energy at a constant scanning speed of 16.67 mm/s. The profile is fitted using a Gaussian distribution.
LIG: laser-induced graphene; SEM: scanning electron microscopy.
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distribution (the yellow curves in the figure), enabling
the calculation of geometrical parameters such as line
width w, depth D and arc tilt angle u (at half Dmax;
Figure 5(e)). The results confirm that the carbonised
LIG profile conforms with the Gaussian irradiance
profile of the laser beam. The cross-sectional images
demonstrate how irradiation energy (F) relates to the
LIG line profile. By adjusting laser parameters, it is
possible to increase both depth Dmax (from 230 to
510 mm) and line width w (from 440 to 780 mm).
However, the arc tilt angle is more closely related to
the laser power than the number of scans. The higher
laser power results in a steeper slope and the second
pass at the same laser power significantly increases the
depth of the contour while maintaining a similar arc
tilt angle. This study of LIG geometry and laser para-
meters provides a design guideline to obtain the opti-
mum LIG geometry to fit certain applications given a
cork substrate thickness.

Raman spectroscopy is commonly applied for iden-
tifying and analysing the structure of graphene materi-
als.48 With the lasing power fixed at 1.25 W, the results
of Raman spectroscopy reveal a distinct change in the
LIG structure from a single pass up to three passes, as
shown in Figure 6(a). The characteristic peaks of the
D, G and 2D peaks, located at 1350, 1580 and
2700 cm-1, respectively, indicate the presence of gra-
phene in each of the three samples. Between the first to
third time lasing passes, the decrease in ID/IG ratio in
the second pass indicates reduced defect density and
improved sp2 crystallinity in the graphene structure.
Simultaneously, the increasing I2D/IG ratio suggests a
transition towards fewer graphene layers and enhanced
electrical property. The slightly leftward shift (red-
shift) of the 2D peak typically signifies reduced strain
on the graphene lattice. These spectral changes alto-
gether indicate the evolution towards higher-quality,
less-defective graphene with fewer layers and

Figure 6. (a) Raman spectra of one lasing pass, two lasing passes and three lasing passes on cork paper at the power of 1.25 W;
(b) Raman spectra of LIG processed under two-time lasing with varied F value; (c) ID/IG and I2D/IG ratios of LIG at different F values;
(d) empirical relation between sheet resistance of LIG and laser fluence. (The red region between the dashed lines represents the
error domain.)
2D: two-dimensional; LIG: laser-induced graphene.
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diminished external perturbations for the second laser
passes. After the second lasing, there is a noticeable
increase in the I2D/IG ratio and significant growth in
the 2D peaks, indicating that the additional scanning
can improve the quality of the graphene. However, the
broader 2D peaks and the increased ID/IG ratio after
the third pass of lasing indicate a rise in the LIG struc-
tural defects. It again confirms that two lasing passes
give the optimum graphene structure.

Figure 6(b) compares the representative Raman
spectra of LIG generated at fluence ranging from 0.75
to 3 J/mm2 (referring to lasing power from 0.625 to
2.5 W) for two lasing passes, while Figure 6(c) sum-
marises the corresponding intensity peak ratios as a
function of laser fluence. The decreasing ID/IG intensity
ratio and the increasing I2D/IG intensity ratio from 0.75
to 2.25 J/mm2 indicate the creation of graphene materi-
als with fewer structural defects and fewer layers. As
the fluence energy reaches 3 J/mm2, greater structural
defects and additional graphenic layers appear, reveal-
ing that the 2.25 J/mm2 energy fluence produces gra-
phene of the highest quality among the four chosen
fluence values. The exponential relation between SR
and laser energy fluence is depicted in Figure 6(d).
Within the range of fluence values investigated in this
study, an empirical relation SR = 71.30exp(2F/
0.4481) + 0.1974 can be defined after curve fitting.
The electrical conductivity improves with increasing
laser fluence as more sp2 carbon bonds break and sp3

carbon bonds are produced. Nevertheless, there is no
significant change in SR after 2.1 J/mm2. At higher
laser fluence, the SR only decreases slightly, but its ID/
IG ratio increases indicating increasing structural
defects in the graphene, and therefore a lower LIG
quality. So any further decrease in SR after 2.25 J/mm2

is simply due to the increase in the thickness of lower
quality LIG. At the optimal point where F = 2.25 J/
mm2, a good balance of the electrical conductivity, the
quality of the characteristics and the degree of sub-
strate distortion is achieved. Consequently, the LIG
used in the mesh pattern for damage detection was
synthesised at F = 2.25 J/mm2 achieved by having two
lasing passes at the power of 1.88 W, that is LIG-2T-
1.88.

Damage sensing of LIG in composites

The advantage of LIG production from cork paper via
a laser engraving process is that it allows bespoke
designs of complex patterns for large-scale sensing with
thermal stability. The initial electrical resistance read-
ing of the LIG in the cork layer when incorporated as
a core material within composite laminate also remains
stable (fluctuating within 0.8%) when left unloaded in
the room environment for 5 days. The embedment of

cork within the composite matrix mitigates the influ-
ence of ambient conditions on the electrical character-
istics of cork-LIG, thereby conferring a stable initial
baseline for subsequent damage-sensing applications.
This section demonstrates the impact sensing capability
of a 2D LIG mesh pattern with 18 independent chan-
nels, as described in the experimental section
(‘Fabrication of LIG damage-sensing composites’ sec-
tion). Following the characterisation study in
‘Microstructural and electrical properties of LIG’ sec-
tion, the combination of lasing parameters in LIG-2T-
1.88 was selected to create the LIG mesh pattern on
the cork paper before being embedded as the damage-
sensing layer in the glass fibre composites. Following
the impact event, damage such as interlaminar delami-
nation especially at the interface between the cork core
layer and the composite face sheet can be observed
through the translucent nature of the glass fibre com-
posite plates. Damage in the form of crack opening
and graphene pull-out perturbs the LIG microstruc-
ture, hence increasing the electrical resistance. When
the change in electrical resistance of the LIG channel
exceeds the damage threshold value of 1 std, as
described in ‘LIG sensor working concept and data
processing with ML’ section, it is used as an indicator
of damage in the LIG channel. Knowing the number
of damaged channels and their spacing in the horizon-
tal and vertical directions, similar to x- and y-coordi-
nates in a Cartesian coordinate system, one can
uniquely determine the position of the impact damage
and the damage size. Figure 7 displays the resistance
change for each channel of the six plates, along with
the corresponding threshold line used to distinguish
the damaged channels. Four out of the six plates
(Meshes 1–4) were impacted in the middle with a
4.5 mm LIG channel spacing, whereas the remaining
two (Mesh 5 and 6) were impacted near the edge of the
plate with channels having an 8–9 mm channel spac-
ing. The channels with resistance changes that
exceeded the threshold are highlighted in beige in the
figure indicating damaged channels.

The results of channel resistance changes can be
translated to a 2D damage heatmap to indicate the
damage location and its size on the composite plates.
Each horizontal and vertical LIG channel was assigned
a binary number for damage condition classification
after impact, that is 0 when undamaged and 1 when
damaged. Damage heatmaps were generated by sum-
ming the binary values at the location where the hori-
zontal and vertical LIG channels intersect, as shown in
Figure 8 (right). The intersection points having values
equal to 2, therefore, marking the damaged area and
its frequency of appearance on the plate can provide
an estimate of the damage size. The damage-sensing
capability of the LIG channels was assessed by
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Figure 7. The channel-by-channel resistance change of the LIG mesh after the impact event of 10 J of six composite plates. Meshes
1–4 were impacted in the centre of the plate, while meshes 5 and 6 at the edge of the plate. The red dash lines show the damage
threshold (1 std) calculated by normal distributions. The red cross represents the disconnected damaged channels.
LIG: laser-induced graphene; std: standard deviation.

Figure 8. The damage heatmaps (right) generated based on channel-by-channel resistance change and compared against X-ray CT
images (left) for (a) Mesh 1, (b) Mesh 2, (c) Mesh 3, (d) Mesh 4, (e) Mesh 5, (f) Mesh 6. The delaminated regions are highlighted in
red in the CT images.
CT: computed tomography.
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comparing the damage heatmaps with the scan results
of X-ray CT of the same specimens. The CT images of
the plates were reconstructed focusing on the interface
between the top face sheet and the cork layer, there-
fore, offer the direct visualisation of the internal dam-
age. The CT images were converted to grayscale
representations before further processing. To enhance
the visualisation of the CT results, the damaged or
delaminated regions were highlighted in red utilising
the masking function (cvtColor) in the VGSTUDIO
software. This masking process capitalised on the dis-
crepancy in the grayscale values between the solid and
air regions (i.e. delamination opening) within the
plates. The comparison reveals a strong correlation
between the electrical resistance heatmap and the pres-
ence of damaged channels observed in the CT images,
confirming the sensing capability of the resistance-
based LIG mesh for detecting impact damage. It is
worth to highlight that at this stage the damage classi-
fication of the LIG channels was all processed manu-
ally using the simple standard deviation damage
threshold without the KNN model. The good agree-
ment between the measured and CT scan results shows
that 1 std is a sensible choice.

Performance of KNN model prediction

The mesh design of the LIG channels can be integrated
with ML algorithms to develop a non-destructive mon-
itoring for composite structural health when facing

different impact scenarios in real life. Since the damage
status of each LIG channel is classified into a binary
outcome, either damaged or non-damaged, a straight-
forward classification objective can be posed. All the
input parameters and definitions used in the model
training are summarised in Table 1. The synthetic

Table 1. The training inputs for the KNN model and the data pre-processing methods before the model training.

Input parameters Definitions Equations

Electrical
resistance change

The resistance change of each channel before and
after impact (The average of three measurements).

DRi = R 2 Ri

(i.(1, 18), refers to the numbering
of each channel)

Average plate
resistance change

The average resistance changes of all the connected
channels (n is the number of the connected
channels) on the same plate.

Raverage = (
Pn

i = 1 Ri)/n

Relative resistance
change

The difference between resistance change of
channel i and the average plate resistance change.

DRi 2 DRaverage

Standard deviation
of plate
resistance change

The amount of variation or dispersion of the
channel resistance value about the average plate
resistance change (mean).

std =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i = 1
Ri�Raverageð Þ2
n�1

r

SMOTE Select a minority instance and generate new
samples to make the input classification case
balance.

smote = SMOTE (sampling_strategy = 1,
random_state = 42)

Truncation function Defining an upper limit (chosen to be 60 times
compare to the original channel resistance values)
to eliminate extreme values.

Math.truc (original, upper limit)

Decimal scaling
normalisation

Converting the values of numeric resistance change
to a common scale by dividing it by the maximum
absolute value of the attribute.

Resistance/max(np.abs(Resistance))

KNN: k-nearest neighbours; SMOTE: synthetic minority oversampling technique; std: standard deviation.

Figure 9. The 10-fold cross-validation test accuracy at
different k values and distance thresholds.
CT: computed tomography; KNN: k-nearest neighbours; std: standard

deviation.
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minority oversampling technique (SMOTE) was then
used to synthesise additional minority samples and
adjust the imbalance between damaged and unda-
maged channels; therefore, the model will be balanced
without inclination to predict the damaged channels as
non-damaged.49 The output of the model was the pre-
diction result in the form of a binary value of 0 or 1,
which indicates a non-damaged or damaged channel.
The accuracy score of the KNN model can be deter-
mined by comparing its predictions to the X-ray CT
results of the three validation plates.

The training accuracy is calculated based on the
mean accuracy of a 10-fold cross-validation test against
various values of K neighbours. A total of 103 data
points (m) were collected from the six plates discussed
in the previous section for training purpose. Figure 9
depicts the training accuracy with different hyperpara-
meters in the KNN model. After optimising the hyper-
parameters of the KNN model through the grid search
method, the K values = 5 were selected with a distance
threshold set at 0.4, using the Euclidean distance metric
and Gaussian Kernel weighting method.44 This

configuration was determined based on the criteria of
maximising the overall accuracy while minimising the
false negative (FN) rate, which corresponds to cases
where the presence of damage was not detected. To
evaluate the KNN model’s predictive performance on
new cases, especially across various impact energies, it
was tested against three additional plates (i.e. Mesh 7,
Mesh 8 and Mesh 9) with impact energies of 10 and
12 J applied at the centre and 15 J at the edge of the
plates.

The prediction results by the KNN model for the
test (validation) cases are shown in Figure 10, com-
pared against the results predicted by the manual sta-
tistical approach using the fixed 1 std as the damage
threshold. Table 2 summarises the performance of the
KNN model using the classical statistical framework
of a confusion matrix,50 showing 3 false positives
(FP = 3) and 0 FN (FN = 0). From a risk mitigation
perspective, it is preferable for the model to err on the
side of FP predictions rather than FN. FP predictions,
while potentially leading to unnecessary inspections,
pose a lesser risk compared to the potential

Figure 10. The three validation test plates after impact damage at different energies. First column – CT scan images with the
actual damage area highlighted in red and converted heatmap based on the CT scan results; second column – prediction by the 1 std
threshold method; third column – prediction by the KNN model.
CT: computed tomography; KNN: k-nearest neighbours; std: standard deviation.
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consequences of FN, which fail to detect the presence
of damage and can result in catastrophic failure or out-
comes. To facilitate result visualisation, the CT scan
results were also converted into the same damage heat-
map in Figure 10. For the test case of 10 J, both man-
ual statistical and ML approaches give 100%
agreement with the CT scan results in terms of damage
location and size. This is expected as the manual statis-
tical approach has already been proven in ‘Damage
sensing of LIG in composites’ section for the impact
energy of 10 J, while the KNN model was trained
using datasets of the same impact energy level of 10 J.
In the case of 12 J, both the manual statistical
approach and the KNN model overestimate the extent
of damage, treating the undamaged LIG channels
areas in close proximity to impact zone as damaged.
However, at the highest impact energy level of 15 J,
the manual statistical approach underestimates the
damage area resulting in two LIG channels with FN,
while the KNN model continues to slightly overesti-
mate the damage area. Overall, the KNN model
demonstrated greater reliability and consistency in
damage area estimation across varying impact energies,
especially in identifying damage in high-energy impact
scenarios from the conservative perspective.

Figure 11 shows the data distribution of the training
dataset and the prediction results for test (validation)
datasets on the same plot. Each data point corresponds
to one channel, and the erroneous prediction by the
KNN model is highlighted in maroon (those data
points with a cross). The KNN’s strength lies in its
ability to better handle individual outliers compared to
a rigid threshold. As a result, KNN tends to establish
localised thresholds that adapt to specific data regions,
rather than applying a global threshold across the
entire dataset. This adaptive approach allows KNN to
capture nuanced variations in new cases with higher
accuracy. Overall, the KNN model demonstrated a
high level of predictive performance, with an impres-
sive overall accuracy rate of 94.3%. The algorithm

successfully identified all damaged channels. However,
the model also incorrectly identified three healthy
channels as damaged channels (FP points in maroon
colour). These were the borderline data points belong-
ing to LIG channels with resistance changes close to
the damage threshold value due to the greater impact
energy compared to the training dataset. The recall
rate and precision for the damaged channel are 1 and
0.85, respectively, while the F1-score is 0.919, which
represents the harmonic mean of the binary model’s
precision and recall.51,52 The use of a ML algorithm
such as the weighted KNN model reduces the reliance
on human effort in manually sorting the resistance
changes and subjective judgement in determining the
damage status, especially when dealing with a huge
amount of real-time data obtained from a huge

Table 2. The confusion matrix result reporting TP, TN, FP and FN for the KNN model evaluation.

Actual value (based on X-ray CT results)

Positive (1) Negative (0)

Predicted value (by
the KNN model)

Positive (1) TP: 17
Correctly detect the
presence of damage in the LIG channels

FP: 3
Incorrectly identify damage in the LIG
channels when it is actually undamaged

Negative (0) FN: 0
Fail to detect the presence of
damage in the LIG channels

TN: 33
Correctly identify the non-damaged LIG channels

CT: computed tomography; FN: false negatives; FP: false positives; KNN: k-nearest neighbours; LIG: laser-induced graphene; TN: true negatives; TP:

true positives.

Figure 11. The data distribution of the resistance changes
after scaling. Blue and red colour representing the non-damaged
and damaged channels in both the training and validation
datasets. Data points of erroneous prediction are highlighted in
maroon.
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composite structure which can have a complicated
LIG pattern design. The accuracy of the model can be
improved further when more training data sets are pro-
vided under various loading scenarios and damage
severity. To enhance fault tolerance and assure struc-
tural safety in real-world applications, the model can
be adjusted to be conservative depending on the dam-
age tolerance level of the structure, for example by
assigning all borderline data points to the ‘damaged’
category.

Conclusions

Cork-derived LIG can be produced by an inexpensive
commercially available low-power blue light laser
engraving system. Cork substrate, when subjected to
multiple laser scanning, transforms amorphous carbon
to graphite structure without thermal deformation and
can be embedded as the core material in a composite
panel. By fitting the LIG profile using a Gaussian dis-
tribution, the relationship between LIG morphology
and energy fluence F value can be obtained, which can
be used to estimate the LIG physical parameters such
as the LIG line width and depth as required by the
application. A LIG mesh pattern lased on the cork sub-
strate was then embedded in a glass fibre composite
laminate as the damage-sensing core material to
demonstrate its sensing potential and sensitivity for
impact damage. The mesh pattern of LIG was designed
to enable unique identification and estimation of
impact damage size solely by electrical resistance
change through a series of intersecting horizontal and
vertical LIG channels. A weighted KNN model was
trained using the 10 J impact test results validated by
X-ray CT images. The trained model was used to pre-
dict the damage severity of various impact energies and
achieved an accuracy rate of 94.3%. The sensing per-
formance of the LIG mesh design and the accuracy of
the KNN model prediction demonstrated a potential
low-cost approach for monitoring structural damage in
large-scale composite structures. The work presented
here can be extended to different LIG pattern designs
on different substrates with more sophisticated
machine-learning techniques. The LIG pattern and its
line density can be easily upscaled with cost-effective
laser engravers and customised according to the area of
interest.

In real applications for large structure, it is not feasi-
ble to apply the mesh to cover the whole area. The
LIG mesh can be applied selectively at strategic or criti-
cal locations depending on the local loading conditions
(e.g. compression loading is more sensitive to delami-
nation damage compared to tensile loading) and geo-
metric conditions (e.g. thickness, stacking sequence

and proximity to local reinforcement like stiffeners or
edges).53–55 For example, considering a wind turbine
composite blade, it is more sensible to apply the dam-
age sensing system at the compression side of the blade
root which is more critical compared to the blade tip.
Unlike strain sensing, impact damage sensing does not
necessarily require real-time data acquisition. Real-
time monitoring can be done by having a DAQ system
onboard, while the data can be processed and stored
either on-site or wirelessly off-site. Alternatively, the
LIG sensing network can also be probed at any user-
defined time interval or following the routine mainte-
nance schedule, which can minimise the size of real-
time data storage. However, it is inevitable that the
data acquisition system will be more complicated for a
bigger coverage area. The binary data used in this
study will make the data acquisition process more man-
ageable. To further boost the system’s efficiency on
large datasets, the DAQ system can adopt established
standardised data logging interfaces and formats.

The required resolution of the LIG sensing mesh
can be modified or scaled accordingly based on the
local critical damage size which can be determined
experimentally or numerically using Finite Element
Analysis (FEA),54 and the required damage tolerance
level of the composite structure. Given that composite
structures are typically designed conservatively with
some safety factor, they can have sufficient residual
strength such that minimal or no repair is required if
the impact damage is smaller than the sensing resolu-
tion. However, the damage can propagate and grow to
a critical size over time which can affect the load-
carrying capability of the structure. Therefore, it is
essential to have a SHM sensing system that allows
critical damage to be found and repaired in time.
Future research trajectories could focus on enhancing
model precision through comprehensive data collection
and refined model training. Augmenting the training
dataset with additional test samples for different
impact energy levels and impact scenarios would
enable more robust handling of discontinuities and
outliers, mitigating overfitting concerns when employ-
ing more advanced ML algorithms in the future. The
development of a hybrid ML algorithm, for example,
the neural network can potentially incorporate both
classification and regression components with better
accuracy. Overall, the developed LIG-embedded sen-
sing composite system can pave the way for SHM in
engineering structures regardless of shape and size.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with
respect to the research, authorship and/or publication of this
article.

Chen et al. 15



Funding

The author(s) disclosed receipt of the following financial sup-
port for the research, authorship and/or publication of this
article: The authors acknowledge the funding from Ministry
of Higher Education (MoHE) under the Fundamental
Research Grant Scheme (FRGS; FRGS/1/2021/TK0/
USMC/03/4) and the PhD studentship from University of
Southampton Malaysia and School of Engineering,
University of Southampton. The authors also acknowledge
the m-VIS X-Ray Imaging Centre at the University of
Southampton for provision of tomographic imaging facilities,
supported by EPSRC grant EP/T02593X/1.

ORCID iD

Xue Chen https://orcid.org/0000-0001-7168-9165
Khong Wui Gan https://orcid.org/0000-0003-2377-5055
Suan Hui Pu https://orcid.org/0000-0002-3335-8880
Meisam Jalalvand https://orcid.org/0000-0003-4691-6252
Andrew R. Hamilton https://orcid.org/0000-0003-4627-
849X

References

1. Morampudi P, Namala KK, Gajjela YK, et al. Review

on glass fiber reinforced polymer composites. Mater

Today Proc 2021; 43: 314–319.
2. Ferreira PM, Machado M, Carvalho M, et al. Embedded

sensors for structural health monitoring: methodologies

and applications review. Sensors 2022; 22(21): 8320.
3. Theodosiou A. Recent advances in fiber Bragg grating

sensing. Sensors (Basel) 2024; 24: 532.

4. Huguet S, Godin N, Gaertner R, et al. Use of acoustic

emission to identify damage modes in glass fibre rein-

forced polyester. Compos Sci Technol 2002; 62:

1433–1444.
5. Jung HK and Park G. Integrating passive- and active-

sensing techniques using an L-shaped sensor array for

impact and damage localization. J Intell Mater Syst

Struct 2017; 29: 3436–3443.
6. Li S, Yang Z, Xu J, et al. Synthesis of exfoliated

graphene–montmorillonite hybrids as the fillers for

epoxy composites. J Compos Mater 2018; 53: 315–326.
7. Lu S, Du K, Wang X, et al. Real-time monitoring of low-

velocity impact damage for composite structures with the

omnidirection carbon nanotubes’ buckypaper sensors.

Struct Health Monit 2018; 18: 454–465.
8. Meehan DG, Shoukai W and Chung DDL. Electrical-

resistance-based sensing of impact damage in carbon

fiber reinforced cement-based materials. J Intell Mater

Syst Struct 2009; 21: 83–105.
9. Robert C, Pillin I, Castro M, et al. Multifunctional car-

bon nanotubes enhanced structural composites with

improved toughness and damage monitoring. J Compos

Sci 2019; 3(4): 109.
10. Uribe-Riestra GC, Ocampo-Bello JA, Gamboa F, et al.

Influence of electrode configuration on impact damage

evaluation of self-sensing hierarchical composites. J Intell

Mater Syst Struct 2020; 31: 1416–1429.
11. Lin J, Peng Z, Liu Y, et al. Laser-induced porous gra-

phene films from commercial polymers. Nat Commun

2014; 5: 5714.
12. Somani PR, Somani SP and Umeno M. Planer nano-

graphenes from camphor by CVD. Chem Phys Lett 2006;

430: 56–59.
13. Liu X, Wei B, Farha FI, et al. Densely packed, highly

strain sensitive carbon nanotube composites with suffi-

cient polymer penetration. Compos Part A Appl Sci Man-

ufac 2020; 130: 105728.
14. Luong DX, Yang K, Yoon J, et al. Laser-induced gra-

phene composites as multifunctional surfaces. ACS Nano

2019; 13: 2579–2586.
15. Houeix Y, Romero FJ, Moraila CL, et al. Laser-synth-

esis of conductive carbon-based materials from two flex-

ible commercial substrates: a comparison. Appl Surf Sci

2023; 634: 157629.
16. Groo L, Nasser J, Zhang L, et al. Laser induced gra-

phene in fiberglass-reinforced composites for strain and

damage sensing. Compos Sci Technol 2020; 199: 108367.
17. Stanford MG, Zhang C, Fowlkes JD, et al. High-resolu-

tion laser-induced graphene. flexible electronics beyond

the visible limit. ACS Appl Mater Interfaces 2020; 12:

10902–10907.
18. Wang L, Wang Z, Bakhtiyari AN, et al. A comparative

study of laser-induced graphene by CO2 infrared laser

and 355 nm ultraviolet (UV) laser. Micromachines

(Basel) 2020; 11: 1094.
19. Burke M, Larrigy C, Vaughan E, et al. Fabrication and

electrochemical properties of three-dimensional (3D) por-

ous graphitic and graphenelike electrodes obtained by

low-cost direct laser writing methods. ACS Omega 2020;

5: 1540–1548.
20. Groo L, Nasser J, Inman DJ, et al. Transfer printed laser

induced graphene strain gauges for embedded sensing in

fiberglass composites. Compos Part B Eng 2021; 219:

108932.
21. Groo L, Nasser J, Inman D, et al. Laser induced gra-

phene for in situ damage sensing in aramid fiber rein-

forced composites. Compos Sci Technol 2021; 201:

108541.
22. Nasser J, Groo L, Zhang L, et al. Laser induced gra-

phene fibers for multifunctional aramid fiber reinforced

composite. Carbon 2020; 158: 146–156.
23. Steinke K, Groo L and Sodano HA. Laser induced gra-

phene for in-situ ballistic impact damage and delamina-

tion detection in aramid fiber reinforced composites.

Compos Sci Technol 2021; 202: 108551.
24. Wang G, Wang Y, Luo Y, et al. A self-converted strategy

toward multifunctional composites with laser-induced

graphitic structures. Compos Sci Technol 2020; 199:

108334.
25. Luong DX, Subramanian AK, Silva GAL, et al. Lami-

nated object manufacturing of 3D-printed laser-induced

graphene foams. Adv Mater 2018; 30: e1707416.

16 Structural Health Monitoring 00(0)

https://orcid.org/0000-0001-7168-9165
https://orcid.org/0000-0003-2377-5055
https://orcid.org/0000-0002-3335-8880
https://orcid.org/0000-0003-4691-6252
https://orcid.org/0000-0003-4627-849X
https://orcid.org/0000-0003-4627-849X


26. Wang Y, Wang Y, Zhang P, et al. Laser-induced freestand-
ing graphene papers: a new route of scalable fabrication
with tunable morphologies and properties for multifunc-
tional devices and structures. Small 2018; 14: e1802350.

27. Lamberti A, Serrapede M, Ferraro G, et al. All-SPEEK
flexible supercapacitor exploiting laser-induced grapheni-
zation. 2D Mater 2017; 4: 035012.

28. Zhu C, Zhao D, Wang K, et al. Direct laser writing of
graphene films from a polyether ether ketone precursor.
J Mater Sci 2019; 54: 4192–4201.

29. Zhang Z, Song M, Hao J, et al. Visible light laser-induced
graphene from phenolic resin: a new approach for
directly writing graphene-based electrochemical devices
on various substrates. Carbon 2018; 127: 287–296.

30. Li JT, Stanford MG, Chen W, et al. Laminated Laser-
Induced Graphene Composites. ACS Nano 2020; 14:
7911–7919.

31. Jung Y, Min J, Choi J, et al. Smart paper electronics by
laser-induced graphene for biodegradable real-time food
spoilage monitoring. Appl Mater Today 2022; 29: 101589.

32. Ye R, Chyan Y, Jibo Z, et al. Laser-induced graphene
formation on wood. Adv Mater 2017; 29: 1702211.

33. Silvestre SL, Pinheiro T, Marques AC, et al. Cork
derived laser-induced graphene for sustainable green
electronics. Flexible Print Electron 2022; 7: 035021.
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