
Web Semantics: Science, Services and Agents on the World Wide Web 74 (2022) 100721

a

b

c

a
[
d
e
[
s
s
t
a
w
b
a
s

c

g
(

h
1

Contents lists available at ScienceDirect

Web Semantics: Science, Services and Agents on the
WorldWideWeb

journal homepage: www.elsevier.com/locate/websem

Satisfiability and containment of recursive SHACL
Paolo Pareti a,∗,1, George Konstantinidis b,1, Fabio Mogavero c,1

University of Winchester, Sparkford Road, SO22 4NR, Winchester, United Kingdom
University of Southampton, University Road, SO17 1BJ, Southampton, United Kingdom
Università degli Studi di Napoli Federico II, via Claudio, 21, 80125, Napoli, Italy

a r t i c l e i n f o

Article history:
Received 29 August 2021
Received in revised form 5 February 2022
Accepted 15 May 2022
Available online 14 June 2022

Keywords:
SHACL
Satisfiability
Containment
FOL
Logic
Data validation

a b s t r a c t

The Shapes Constraint Language (SHACL) is the recent W3C recommendation language for validating
RDF data, by verifying certain shapes on graphs. Previous work has largely focused on the validation
problem, while the standard decision problems of satisfiability and containment, crucial for design and
optimisation purposes, have only been investigated for simplified versions of SHACL. Moreover, the
SHACL specification does not define the semantics of recursively-defined constraints, which led to
several alternative recursive semantics being proposed in the literature. The interaction between these
different semantics and important decision problems has not been investigated yet. In this article we
provide a comprehensive study of the different features of SHACL, by providing a translation to a new
first-order language, called SCL, that precisely captures the semantics of SHACL. We also present MSCL,
a second-order extension of SCL, which allows us to define, in a single formal logic framework, the
main recursive semantics of SHACL. Within this language we also provide an effective treatment of
filter constraints which are often neglected in the related literature. Using this logic we provide a
detailed map of (un)decidability and complexity results for the satisfiability and containment decision
problems for different SHACL fragments. Notably, we prove that both problems are undecidable for
the full language, but we present decidable combinations of interesting features, even in the face of
recursion.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Data validation is the process of ensuring data is clean, correct,
nd useful. The Shapes Constraint Language (SHACL, for short)
1] is a recent W3C recommendation language for validation of
ata in the form of RDF graphs [2] and is quickly becoming an
stablished technology. Similar to ontology languages like OWL
3], SHACL can be seen as a language that strictly imposes a
chema on graph data models, such as RDF, which are inherently
chemaless. Unlike ontology languages, SHACL focuses more on
he structural properties of a graph rather than the semantic ones,
nd it is not intended for inference. A SHACL shape graph, which
e will call SHACL document in this paper, validates an RDF graph
y evaluating it against a set of constraints. In SHACL, constraints
re modelled as a set of shapes which, intuitively, define the
tructure that certain entities in the graph must conform to.
Despite its ongoing widespread adoption (see [4] for a re-

ent review), many aspects of SHACL remain unexplored. Several

∗ Corresponding author.
E-mail addresses: paolo.pareti@winchester.ac.uk (P. Pareti),

.konstantinidis@soton.ac.uk (G. Konstantinidis), fabio.mogavero@unina.it
F. Mogavero).
1 All authors contributed equally to the various aspects of the article.
ttps://doi.org/10.1016/j.websem.2022.100721
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important theoretical properties of the language have not been
studied. Among these are the decidability and complexity of
satisfiability and containment of SHACL documents, and this is
the main focus of this work. These problems have important
roles in the design and optimisation of SHACL applications. For
example, satisfiability can support an editor that checks whether
a developing SHACL document becomes inconsistent, or an in-
tegration system that tracks conflicts when integrating datasets
subject to different SHACL documents. Containment (and conse-
quently document equivalence, which is based on containment)
studies whether one document is subsumed by another one and
has important applications in optimisation and minimisation of
documents [5], detecting independence of documents from data
updates [6], data integration [7,8], maintenance of integrity con-
straints [9], and semantic data caching [10]. We study both prob-
lems for entire documents and individual shapes. At the level of
shapes, an unsatisfiable shape constraint might not necessarily
cause the unsatisfiability of a whole SHACL document, but it is
likely an indication of a design error. Being able to decide con-
tainment/equivalence for individual shapes offers more design
choices to the author of a SHACL document and it is an avenue for
optimisation. Moreover, shape containment is a problem that has
been studied in literature in connection with important practical
applications such as type checking in software [11,12].
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.websem.2022.100721
http://www.elsevier.com/locate/websem
http://www.elsevier.com/locate/websem
http://crossmark.crossref.org/dialog/?doi=10.1016/j.websem.2022.100721&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:paolo.pareti@winchester.ac.uk
mailto:g.konstantinidis@soton.ac.uk
mailto:fabio.mogavero@unina.it
https://doi.org/10.1016/j.websem.2022.100721
http://creativecommons.org/licenses/by/4.0/


P. Pareti, G. Konstantinidis and F. Mogavero Web Semantics: Science, Services and Agents on the World Wide Web 74 (2022) 100721

t
s
e
p
C
t
e
f
a
a
M
o
f
p
O
i
o
r

t
t
t
a
o
S

u
i
t
s
S
e
f
i
a
n
p
o
c
i
v
t
v
S
i
a
f
l

2

w
c
o
u
t
a
F
l
o
d
w
a
w
t

3

(
i

Note that satisfiability has two prevalent versions in the litera-
ure: finite and infinite/unrestricted. These adjectives refer to the
ize of an underlying model (here a data graph) that whenever
xists proves the theory (e.g., SHACL document) satisfiable. In
ractice, finite satisfiability is what we are usually interested in.
ommonly however, infinite satisfiability is a starting point for
heoretical studies as, being less restricted, it is often considered
asier to address. Indeed, very often the techniques for deciding
inite satisfiability are revealed through studying the infinite case
s a first approximation. As well, if the infinite case provides
quick decidability result then finite decidability also holds.
oreover, there are cases where a theory describes only part
f the model (possibly finite), but there is an infinite domain
or numbers or other parts of the theory. In this case (which is
ossible for SHACL), unrestricted satisfiability is of our interest.
ther practical cases that might imply infinite models, appear
n the face of reasoning with intensional knowledge, e.g., ontol-
gy TBoxes (see [13] for a work on SHACL in combination with
easoning).

Additionally, the W3C specification does not define the seman-
ics of SHACL in its full generality, since it does not describe how
o handle recursive constraints. Recent work [14] has suggested a
heoretical modelling of the language in order to formally define
recursive semantics; the same work also studied the complexity
f the validation problem. Alternative recursive semantics for
HACL have been further suggested in [15].
In this article, we extend [16] to capture SHACL semantics

sing mathematical logic. This is an important contribution on
ts own, as it offers a standard and well-established modelling of
he language, where SHACL documents are translated into logical
entences that are interpreted in the usual way. This makes
HACL semantics easier to understand and study compared to
xisting approaches that rely on auxiliary ad hoc constructs and
unctions. In particular, [14] defines validation based on the ex-
stence of an assignment of SHACL shapes to data nodes. This
ssignment captures which shapes are satisfied/violated by which
odes, while at same time the target nodes of the validation
rocess are verified. As [14] argues, in the face of SHACL recursion
ne may consider partial assignments, where the truth value of a
onstraint at some nodes may be left unknown. In addition, [15]
dentifies two major ways, called brave and cautious validation, to
erify the target nodes during the validation process. Deciding be-
ween partial or total assignments, and between brave or cautious
alidations gives rise to four different semantics for recursive
HACL, each with its own definition of validation. Using our log-
cal approach we are able to capture all four semantics in a clear
nd uniform way, providing for a better understanding of SHACL
eatures and taking advantage of the rich field of computational
ogic.

Our contributions are the following:

• In Theorem 1, we prove that all four major semantics of
SHACL coincide for non-recursive documents, and in
Theorem 2 that validation under the partial semantics (brave
or cautious) reduces to validation under the corresponding
total semantics, for all SHACL documents. This reduction
allows us later to focus only on total semantics, such that
any positive decidability and complexity results for total
carry over to partial semantics (Section 3).

• We formalise non-recursive SHACL semantics by translat-
ing to a novel fragment of first-order logic (FOL) extended
with counting quantifiers and a transitive closure opera-
tor; we call this logic SCL for Shapes Constraint Logic. The
provided translation from SHACL to SCL is actually an one-
to-one correspondence between these languages and we
have identified eight prominent SHACL features that trans-
late to particular restrictions of SCL. In effect, SCL is the
2

logical counterpart of SHACL; this is exhibited by Theorem 3
which proves that faithfulness of an assignment in SHACL,
a central notion used to define all semantics, translates to
satisfiability in SCL (Section 4).

• We extend SCL into a fragment of monadic second-order
logic, called MSCL, that intuitively allows us to impose
conditions over the space of all possible assignments and
captures all four major recursive SHACL semantics. We also
present Proposition 1 which considers ∃SCL, the existential
fragment of MSCL, expressive enough to capture several
interesting problems; Proposition 1 states that ∃SCL and
SCL are equisatisfiable, and we can only focus on SCL when
studying decidability and complexity. We also demonstrate
how our logical framework generalises previous languages
designed to model SHACL (Section 4).

• We present a series of results (Corollaries 1–6 and Lemma 4)
that reduce SHACL satisfiability and containment under all
semantics to the MSCL satisfiability problem. Going fur-
ther, the problems of finite/unrestricted satisfiability and
containment for non-recursive documents and the finite/un-
restricted satisfiability for recursive SHACL under brave se-
mantics can be captured by ∃SCL. We additionally present
other decision problems from literature, such as shape and
constraint satisfiability, and show how they are also cap-
tured by ∃SCL (Section 5).

• We pay particular attention to SHACL filters (e.g., constraints
on the value of particular elementary datatypes), which have
not been previously addressed in the literature, and provide
a corresponding axiomatisation in MSCL (Section 6).

• Finally, we turn our focus to SCL (in effect, ∃SCL) to ex-
plore the interaction of the main language features we
have identified and create a detailed map of decidability
and complexity results for many interesting fragments, for
all aforementioned problems captured by ∃SCL. In general,
satisfiability and containment for the full logic are undecid-
able. However, the base language has an ExpTime-complete
satisfiability and containment problem (Section 7).

. Preliminaries

With the term graph we implicitly refer to a set of triples,
here each single triple

⟨
s, p, o

⟩
identifies an edge with label p,

alled predicate, from a node s, called subject, to a node o, called
bject. Graphs in this article are represented in Turtle syntax [17]
sing common XML namespaces, such as sh to refer to SHACL
erms. Usually, in the RDF data model [2], subjects, predicates,
nd objects are defined over different but overlapping domains.
or example, while IRIs can occupy any position in an RDF triple,
iterals (representing datatype values) can only appear in the
bject position. These differences are not central to the problem
iscussed in this article, and thus, for the sake of simplicity, we
ill assume that all elements of a triple are drawn from a single
nd infinite domain. This assumption actually corresponds to
hat is known in the literature as generalised RDF [2]. We model
riples as binary relations in FOL, i.e., we write the atom R(s, o)
as a shorthand for the tuple ⟨s, R, o⟩, and call R a graph relation
name. We use a minus sign to identify the inverse role, i.e., we
write R−(s, o) in place of R(o, s). We also consider the distin-
guished binary relation name isA to represent class membership
triples, that is, we write

⟨
s, rdf:type, o

⟩
as isA(s, o).

. Shapes Constraint Language: SHACL

In this section we describe the Shapes Constraint Language
SHACL), a W3C language to define formal constraints for the val-
dation of RDF graphs [1]. Firstly, we introduce the main elements



P. Pareti, G. Konstantinidis and F. Mogavero Web Semantics: Science, Services and Agents on the World Wide Web 74 (2022) 100721

a
w
f
t
l
t
a
f
l
o
i
s
p
s
s
p

3

g

g

s
d

n
t
f
s
t
s

D
S
⟨

a
a

i
o
o
T
[
t
T
l
s
d
i
n

p
c
t
s
r
d
J
i

of its syntax, and explain the role they play in the validation
process. We then discuss assignments [14], that is, mappings that
llow us to capture which nodes in a graph satisfy or violate
hich constraints. Assignments have been used to formally de-

ine SHACL semantics and this can non-ambiguously happen for
he non-recursive case. For recursive SHACL, the specification
eaves the semantics of recursive constraints open for interpre-
ation, and there have been more than one ways to extend the
ssignments-based semantics for this. We review and discuss the
our major extended semantics that have been proposed in the
iterature to handle recursive constraints. Notably, in the absence
f recursion, we show the collapse of all four extended semantics
nto the same one. We also show that two of these extended
emantics can be considered a special case of the other two, by
roving a reduction from partial assignment to total assignment
emantics (defined later in this section). Having formalised SHACL
emantics, we define the satisfiability and containment decision
roblems for SHACL documents.

.1. SHACL syntax

Data validation in SHACL requires two inputs: (1) an RDF
raph G to be validated and (2) a SHACL document M that defines

the conditions against which G must be validated. The SHACL
specification defines the output of the data validation process as
a validation report, detailing all the violations of the conditions
set by M that were found in G. If the violation report contains
no violations, a graph G is valid w.r.t. a SHACL document M .
Determining whether a graph is valid w.r.t. a SHACL document
is the decision problem called validation.

A SHACL document is a set of shapes. Shapes essentially restrict
the structure that a valid graph should have, by defining a set of
constraints that are evaluated against a set of nodes, known as
the target nodes. Formally, a shape is a tuple ⟨s, t, d⟩ defined by
three components: (1) a shape name s, which uniquely identifies
the shape; (2) a target definition t which is a set of target dec-
larations; each target declaration can be represented by a unary
query and identifies the RDF nodes that must satisfy the con-
straints d; (3) a set of constraints which are used in conjunction,
and hence hereafter referred to as the single constraint d. The
SHACL specification defines several types of constraints, called
constraint components. The sh:datatype component, for exam-
ple, constraints an RDF term to be an RDF literal of a particular
datatype. Without loss of generality, we assume that shape names
in a SHACL document do not occur in other SHACL documents
or graphs. As we formally define later, a graph is valid w.r.t. a
document whenever all constraints of all shapes in the document
are satisfied by the target nodes of the corresponding shapes.

It is worth noting that one type of SHACL target declaration
might reference specific nodes to be validated that do not actually
appear in the graph under consideration. Given a document M
and a graph G, we denote by nodes(G,M) the set of nodes in G
together with those referenced by the node target declarations
in M . In the absence of a document, we use nodes(G) to denote
the nodes of a graph G. With shapes(M) we refer to all the shape
names in a document M . When it is clear from the context, we
might use a shape name s either to refer to the name itself or to
the entire shape tuple.

Constraints can refer to other constraints by using the name of
a shape as a short-hand to refer to its constraints. We call this a
shape reference. Let Sd0 be the set of all the shape names occurring
in a constraint d of a shape ⟨s, t, d⟩; these are the directly-
referenced shapes of s. Let Sdi+1 be the set of shapes in Sdi union the
directly-referenced shapes of the constraints of the shapes in Sdi . A
shape ⟨s, t, d⟩ is recursive if s ∈ Sd

∞
. A SHACL document M is said

to be recursive if it contains a recursive shape, and non-recursive
3

otherwise. For simplicity, all SHACL documents we consider in
this work do not contain the sh:xone constraint over shape
references, which models the logical operator of exclusive-or. Any
SHACL document, in fact, can be linearly transformed into an
equivalent document that does not contain the sh:xone operator
using a standard logical transformation. The intuition behind this
transformation is that an sh:xone defined over shapes s1 to sn is
equivalent to an sh:xone between two shapes sn and sk, where
sk is a fresh shape whose constraint is the sh:xone of shapes
s1 to sn−1. Then, any exclusive-or between two shapes can be
linearly transformed into an equivalent expression that uses only
conjunctions, disjunctions, and the negation operators.

3.2. Semantics of non-recursive SHACL

A target declaration t is a unary query over a graph G. We
denote with G |H t(n) that a node n is in the target of t w.r.t. a
raph G. The target declaration t might be empty, in which case

no node is in the target of t . To formally discuss about nodes
satisfying the constraints of a shape we need to introduce the
concept of assignments [14]. Intuitively, an assignment is used to
keep track, for any RDF node, of all the shapes whose constraints
the node satisfies and all of those that it does not.

Definition 1. Given a graph G, and a SHACL document M ,
an assignment σ for G and M is a function mapping nodes in
nodes(G,M), to subsets of shape literals in shapes(M) ∪ {¬s|s ∈

hapes(M)}, such that for all nodes n and shape names s, σ (n)
oes not contain both s and ¬s.

Notice that given a document and a graph, an assignment does
ot have to associate all graph nodes to all document shapes or
heir negations. In fact, there might exist node-shape pairs (n, s)
or which neither s ∈ σ (n) nor ¬s ∈ σ (n). This is the reason why
ometimes assignments are called partial assignments, as opposed
o total assignments which have to associate all nodes with all
hape names or their negation.

efinition 2. An assignment σ is total w.r.t. a graph G and a
HACL document M if, for all nodes n in nodes(G,M) and shapes
s, t, d⟩ in M , either s ∈ σ (n) or ¬s ∈ σ (n).

For any graph G and SHACL document M , we denote with AG,M

nd AG,M
T , respectively, the set of assignments, and the set of total

ssignments for G and M . Trivially, AG,M
T ⊆ AG,M holds.

When trying to determine whether a node n of a graph G sat-
sfies a constraint d of a shape, the outcome does not only depend
n d, n, and G, but it might also depend, due to shape references,
n whether other nodes satisfy the constraints of other shapes.
his latter fact can be encoded in an assignment σ . The authors of
14], therefore, define the evaluation or conformance of a node n
o a constraint d w.r.t. a graph G under an assignment σ as JdKn,G,σ .
his expression can take one of the three truth values of Kleene’s
ogic: True, False, or Undefined. If JdKn,G,σ is True (resp., False) we
ay that node n conforms (resp., does not conform) to constraint
w.r.t. G under σ . Note that if the set of constraints of a shape

s empty, then every node trivially conforms to it, that is, for all
odes n, graphs G and assignments σ , it holds that J∅Kn,G,σ is True.
Intuitively, the evaluation of JdKn,G,σ can be split into two

arts: the first verifies conditions on G, such as the existence of
ertain triples. The second part examines other node-shape pairs
hat d itself is listing for conformance and, instead of triggering
ubsequent evaluation, checks whether their conformance is cor-
ectly encoded in σ . Since – in general and for arbitrary SHACL
ocuments that might be recursive – σ is partial, it might be that
dKn,G,σ is Undefined. Table 1 provides examples of how JdKn,G,σ

s defined for certain salient constraints. For a comprehensive
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efinition of how all SHACL constraints are evaluated we refer
he reader to [14].2

It should be noted that the evaluation of certain constraints
o the truth value of Undefined might not affect the outcome of
he graph validation process (see Section 3.3 for an example).
raph validation depends on the existence of an assignment
uch that even if it is Undefined for certain nodes, at least is
onsistent (as defined below) and is True for all target nodes
n the constraints of the shapes that describe these nodes as
argets. Such assignments are known as faithful assignments [14].
ote that, as we show in Lemma 2, for non-recursive documents
here is a unique faithful assignment which is total and for which
ndefined conformance never appears.

Definition 3. For all graphs G and SHACL documents M , an
ssignment σ is faithful w.r.t. G and M , denoted by (G, σ ) |H M , if
he following two conditions hold true for any shape ⟨s, t, d⟩ in
shapes(M) and node n in nodes(G,M):

(1) s ∈ σ (n) iff JdKn,G,σ is True and ¬s ∈ σ (n) iff JdKn,G,σ is
False;

(2) if G |H t(n) then s ∈ σ (n).

Intuitively, condition (1) ensures that the evaluation described
by the assignment is indeed correct; while condition (2) en-
sures that the assignment agrees with the target definitions. The
existence of a faithful assignment is a necessary and sufficient
condition for validation of non-recursive SHACL documents [14].

Definition 4. A graph G is valid w.r.t. a non-recursive SHACL
document M if there exists an assignment σ such that (G, σ ) |H

M .

An example SHACL document is shown in Fig. 1. This example
captures the requirement that all students must have at least
one supervisor from the same faculty. The shape with name
:studentShape has class :Student as a target, meaning that
all members of this class must satisfy the constraint of the shape.
The constraint definition of :studentShape requires the non-
satisfaction of shape :disjFacultyShape, i.e., a node satisfies
:studentShape if it does not satisfy :disjFacultyShape. The
:disjFacultyShape shape states that an entity has no fac-
ulty in common with any of their supervisors. This is expressed
using the sh:path term, which defines a property chain (i.e.,
a composition of roles :hasSupervisor and :hasFaculty),
and the sh:disjoint term, which defines a constraint over this
property chain (i.e., the non-existence of a node reachable both
by this property chain, and directly by the :hasFaculty role).
The sh:path term is used to construct constraints over property
chains, but it does not, on its own, impose their existence. A graph
that is valid with respects to these shapes is provided in Fig. 1,
along with a faithful assignment for this graph. The graph can be

2 Some SHACL constraints are defined in the Appendix of the extended
ersion of [14].
4

Table 1
Example definitions of JdKn,G,σ for selected SHACL constraints d, given a node n,
a graph G and an assignment σ , where :s and :s1 are shape names, d′ and d′′

are SHACL constraints, and :r is an IRI. The second column shows which triples,
in a SHACL shape graph, define that :s has constraint d.
Description of
constraint d

SHACL triples for
applying d to shape :s

Definition of JdKn,G,σ

Empty constraint
(d = ∅)

{} True

Test whether
node is an IRI

{:s sh:nodeKind sh:isIRI} True if n is an IRI, or
else False

Conformance to
shape :s1

{:s sh:node :s1} True if :s1 ∈ σ (n),
False if ¬:s1 ∈ σ (n),
or else Undefined

Existence of an
:r-successor

{:s sh:path:r,
:s sh:minCount 1}

True if G contains a
triple with n as the
subject and :r as the
predicate, or else False

Conjunction of
constraints d′ and d′′

Union of SHACL triples for
applying d′ and d′′ to :s

Jd′Kn,G,σ ∧ Jd′′Kn,G,σ

made invalid by changing the faculty of :Jane in the last triple
to a different value.

As we will see later, the existence of a faithful assignment
is also a necessary condition for all other semantics that allow
recursion. For those cases, however, we will want to consider
additional assignments where the first property of Definition 3
holds, but not necessarily the second, i.e., assignments that agree
with the constraint definitions, but not necessarily the target
definitions of the shapes. In order to do this, we will remove the
targets from a document and look for faithful assignments against
the new document, since condition (2) of Definition 3 is trivially
satisfied for SHACL documents where all target definitions are
empty. Let M\t denote the SHACL document obtained by substi-
uting all target definitions in SHACL documentM with the empty
et. Then, the following lemma is immediate:

emma 1. For all graphs G, SHACL documents M and assign-
ents σ , condition (1) from Definition 3 holds for any shape s in
hapes(M) and node n in nodes(G,M) iff (G, σ ) |H M\t .

For non-recursive SHACL documents, the next lemma states
hat for any graph, there exists a unique faithful total assignment
or M\t and, if there is a faithful assignment for M , then this must
e it.

emma 2. For all graphs G and non-recursive SHACL documents M,
here exists a unique assignment ρ in AG,M

T such that (G, ρ) |H M\t ,
nd for every assignment σ in AG,M such that (G, σ ) |H M, then
= ρ.

roof. If M is non recursive, then there exists a non empty
ubset M ′ of M that only contains shapes whose constraints do
ot use shape references. Intuitively, the constraints of the shapes
n M ′ can be evaluated directly on any graph, independently
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of any assignment. Shape references are the only part of the
evaluation of a constraint that depends on the assignment σ ,
nd that could introduce the truth value Undefined under three-
alued logic [14]. Thus, for all graphs G, assignments σ , nodes n
nd constraints c in of a shape in M ′, it holds that the evaluation
f JdKn,G,σ (1) does not depend on σ and (2) has a Boolean truth
alue. It is easy to see that properties (1) and (2) also hold for
he document M ′′ which contains the shapes of M whose shape
eferences (if any) only reference shapes in M ′. This reasoning can
e extended inductively to prove that properties (1) and (2) hold
or all the shapes of M . Point (1) ensures that there cannot be
ore than one assignment such that (G, σ ) |H M\t , while point

2) ensures that such an assignment is total. This assignment σ
xists and it can be computed iteratively as follows. Let σ ′ be
he assignment for M ′ such that for any shape ⟨s, t, d⟩ in M ′

and node n, s ∈ σ ′(n), if JdKn,G,∅ is True, and ¬s ∈ σ ′(n),
otherwise. Then let σ ′′ be the assignment for M ′′ such that for any
shape ⟨s, t, d⟩ in M ′′ and node n, s ∈ σ ′′(n), if JdKn,G,σ

′

is True,
and ¬s ∈ σ ′′(n), otherwise. This process is repeated until the
assignment σ , defined over all of the shapes of M , is computed.
Notice that for all graphs G, SHACL documentsM and assignments
, fact (G, σ ) |H M implies (G, σ ) |H M\t . Thus the existence of
n assignment ρ ′ different than ρ such that (G, ρ ′) |H M , is in
ontradiction with the fact that there cannot be more than one
ssignment that is faithful for G and M\t . □

.3. Semantics of full SHACL

As mentioned, the semantics of recursive shape definitions
n SHACL documents has been left undefined in the original
3C SHACL specification [1] and this gives rise to several pos-

ible interpretations. In this work, we consider, and extend upon,
reviously introduced semantics of SHACL that define how to
nterpret recursive SHACL documents. These can be characterised
y two dimensions, namely the choice between (1) partial and
otal assignments [14] and (2) between brave and cautious vali-
ation [15], which we will subsequently formally introduce. To-
ether, these two dimensions result in the four extended se-
antics studied in this article, namely brave-partial, brave-total,
autious-partial and cautious-total.
Notice that the formulation of the brave and cautious no-

ions originates in the literature of non-monotonic reasoning and
ogic programming (see, e.g., [18,19], respectively). We do not
consider the less obvious dimension of stable-model semantics
[20], which also relates to non-monotonic reasoning in logic
programming [21–23] and inductive learning [24]. Our definitions
of partial assignments, total assignments, and brave validation
exactly correspond to existing definitions of [14]. For cautious
validation, instead, we adopt a more general definition than the
one previously considered in SHACL literature [15], where it was
only studied under stable-model semantics.

The first extended semantics that we consider coincides with
Definition 4. That is, the existence of a faithful assignment can
be directly used as a semantics for recursive documents as well.
Nevertheless, in this case the assignment is not necessarily total,
as is in the case of non-recursive documents proven in Lemma 2.
To stress this (as well as the ‘‘brave’’ nature of the semantics
discussed later), we call this the brave-partial semantics.

Definition 5. A graph G is validw.r.t. a SHACL documentM under
brave-partial semantics if there exists an assignment σ ∈ AG,M

such that (G, σ ) |H M .

The other three extended semantics are defined by adding
further conditions to the one just introduced. To motivate those,
first consider an example of a recursive document and of a non-

total faithful assignment that evaluates the conformance of some

5

nodes against some constraints to Undefined. This happens when
recursion makes it impossible for a node n to either conform or
not to conform to a shape s but, at the same time, validity does
not depend on whether n conforms to shape s or not. Consider,
for instance, the following SHACL document, containing the single
shape ⟨s∗,∅, d∗

⟩ defined as follows:

:InconsistentS a sh:NodeShape ;
sh:not :InconsistentS .

This shape is defined as the negation of itself, that is, given a node
n, a graph G and an assignment σ , fact Jd∗Kn,G,σ is True iff ¬s∗

∈

σ (n), and False iff s∗
∈ σ (n). It is easy to see that any assignment

that maps a node to either {s∗
} or {¬s∗

} is not faithful, as it would
violate condition (1) of Definition 3. However, an assignment that
maps every node of a graph to the empty set would be faithful for
that graph and document {s∗

}. Intuitively, this means that nodes
n the graph cannot conform nor not conform to shape s∗, but
his should not be interpreted as a violation of any constraint,
ince this shape does not have any target node to validate. In
ffect, conformance for all nodes to the constraint of {s∗

} is left as
ndefined, but the existence of a faithful assignment makes any
raph valid w.r.t. to {s∗

}.
In the W3C SHACL specification, where recursion semantics

as left open to interpretation, nodes can either conform to, or
ot conform to a given shape, and the concept of an ‘‘undefined’’
evel of conformance is arguably alien to the specification. It
s natural, therefore, to consider restricting the evaluation of a
onstraint to the True and False values of Boolean logic. This is
chieved by restricting assignments to be total.

efinition 6. A graph G is validw.r.t. a SHACL documentM under
rave-total semantics if there exists a total assignment σ ∈ AG,M

T
uch that (G, σ ) |H M .

Since total assignments are a more specific type of assign-
ents, if a graph G is valid w.r.t. a SHACL document M
nder brave-total semantics, than it is also valid w.r.t. M under
rave-partial semantics. The converse, instead, is only true for
on-recursive SHACL documents. In fact, as we show later on,
ll extended semantics coincide, for non-recursive SHACL docu-
ents. Note also, that there is no obvious preferable choice for

he semantics of recursive documents. For example, while total
ssignments can be seen as a more natural way of interpreting
he SHACL specification, they are not without issues of their own.
oing back to our previous example, we can notice that there
annot exist a total faithful assignment for the SHACL document
ontaining shape :InconsistentS, for any non-empty graph.
his is a trivial consequence of the fact that no node can conform
o, nor not conform to, shape :InconsistentS. In this example,
owever, brave-total semantics conflicts with the SHACL specifi-
ation, since the latter implies that a SHACL document without
arget declarations in any of its shapes (such as the one in our
xample) should trivially validate any graph. If there are no target
eclarations, in fact, there are no target nodes on which to verify
he conformance of certain shapes, and thus no violations of
onstraints should be detected.
Another dimension in the choices for extended semantics

tudied in literature [15] is the difference between brave and cau-
ious validation of recursive documents. When a SHACL document
is recursive, there might exist multiple assignments satisfying

roperty (1) of Definition 3, that is, multiple σ for which (G, σ ) |H
\t . Intuitively, these can be seen as equally ‘‘correct’’ assign-
ents with respect to the constraints of the shapes, and brave
alidation only checks whether at least one of them is compatible
ith the target definitions of the shapes. Cautious validation,

nstead, represents a stronger form of validation, where all such
ssignments must be compatible with the target definitions.
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Table 2
Definition of validity (from Definitions 5–7) of a graph G under a SHACL
ocument M (G |H M) w.r.t. the two dimensions of extended semantics

considered in this article, where σ ∈ AG,M and ρ ∈ AG,M
T .

Brave Cautious

Partial ∃ σ . (G, σ ) |H M ∃ σ . (G, σ ) |H M and
∀ σ . if (G, σ ) |H M\t ,

then (G, σ ) |H M

Total ∃ ρ. (G, ρ) |H M ∃ ρ. (G, ρ) |H M and
∀ ρ. if (G, ρ) |H M\t ,

then (G, ρ) |H M

Definition 7. A graph G is validw.r.t. a SHACL documentM under
autious-partial (resp., cautious-total) semantics if it is (1) valid
nder brave-partial (resp., brave-total) semantics and (2) for all
ssignments σ in AG,M (resp., AG,M

T ), it is true that if (G, σ ) |H M\t

olds then (G, σ ) |H M holds as well.

To exemplify this distinction, consider the following SHACL
ocument M1.
VegDishShape a sh:PropertyShape ;
sh:targetNode :DailySpecial ;
sh:path :hasIngredient ;
sh:minCount 1 ;
sh:qualifiedMaxCount 0 ;
sh:qualifiedValueShape [ sh: not :VegIngredientShape ] .

VegIngredientShape a sh:PropertyShape ;
sh:path [ sh:inversePath :hasIngredient ] ;
sh:node :VegDishShape .

his document requires the daily special of a restaurant, node
DailySpecial, to be vegetarian, that is, to conform to shape
VegDishShape. This shape is recursively defined as follows.
omething is a vegetarian dish if it contains an ingredient, and
ll of its ingredients are vegetarian, that is, entities conforming
o the :VegIngredientShape. A vegetarian ingredient, in turn,
s an ingredient of at least one vegetarian dish. Consider now a
raph G1 containing only the following triple.
DailySpecial :hasIngredient :Chicken .

ue to the recursive definition of :VegDishShape, there exist
wo different assignments σ1 and σ2, which are both faithful
or G1 and M\t

1 . In σ1, no node in G1 conforms to any shape,
hile σ2 differs from σ1 in that node :DailySpecial conforms to
VegDishShape and node :Chicken conforms to
VegIngredientShape. Essentially, either both the dish and the
ingredient from graph G1 are vegetarian, or neither is. Therefore,
2 is faithful for G1 and M1, while σ1 is not. The question of

whether the daily special is a vegetarian dish or not can be
approached with different levels of ‘‘caution’’. Under brave val-
idation, graph G1 is valid w.r.t. M1, since it is possible that the
daily special is vegetarian. Cautious validation, instead, takes the
more conservative approach, and under its definition G1 is not
valid w.r.t. by M1, since it is also possible that the daily special is
not vegetarian.

For each extended semantics, the definition of validity of a
graph G w.r.t. a SHACL document M , denoted by G |H M , is
summarised in the following list, and schematised in Table 2.

brave-partial there is an assignment that is faithful w.r.t. G and
M;

brave-total there is an assignment that is total and faithful w.r.t.
G and M;

cautious-partial there is an assignment that is faithful w.r.t. G
and M , and every assignment that is faithful w.r.t. G and
M\t is also faithful w.r.t. G and M .
6

cautious-total there is an assignment that is total and faithful
w.r.t. G and M , and every assignment that is total and
faithful w.r.t. G and M\t is also faithful w.r.t. G and M .

We now prove that, when considering only non-recursive
HACL documents, these four semantics are necessarily equiva-
ent to each other, since the semantics of non-recursive SHACL
ocuments is uniquely determined. The formalisation of this
quivalence given in the next theorem is essentially a conse-
uence of Lemma 2.

heorem 1. For any graph G, non-recursive SHACL document M,
nd extended semantics α and β , it holds that G |H M under α iff
|H M under β .

roof. Since AG,M
T ⊆ AG,M , for any graph G and SHACL document

, the definition of validity of cautious-total trivially subsumes
the one of brave-total and cautious-partial which, in turn, sub-
umes the one of brave-partial. Notice that for all graphs G, SHACL
ocuments M and assignments σ , if σ ∈ AG,M\t

T , then σ ∈ AG,M
T .

rom Lemma 2 we also know that a faithful assignment for M
and G is necessarily total, and it is the same unique assignment
that is faithful for M\t and G. Thus, for non-recursive documents,
the definition of validity of brave-partial subsumes the one of
cautious-total, and consequently the four extended semantics are
equivalent. □

An expert reader might observe that the above theorem re-
sembles a similar result in the literature of logic programming
for query answering under stratified programs [25], where the
existence of a unique perfect model forces the collapse of the two
notions of brave and cautious answers.

Given any notion of validity from Table 2, corresponding to
one of the four extended semantics, we can define the following
decision problems, which we study in detail in the remaining part
of the article.

• SHACL Satisfiability: A SHACL document M is satisfiable iff
there exists a graph G such that G |H M .

• SHACL Containment: For all SHACL documents M1, M2, we
say that M1 is contained in M2, denoted M1 ⊆ M2, iff for all
graphs G, if G |H M1 then G |H M2.

Obviously, the more meaningful satisfiability problem is one
n finite graphs.

• SHACL Finite Model Property: A SHACL document M enjoys
the finite model property if whenever it is satisfiable it is so
on a finite graph.

.4. From partial to total assignments

In the remainder of the paper we simplify our study of SHACL
y only considering recursive semantics based on total assign-
ents. We focus on this type of assignments because, as we see

ater, partial assignment semantics can be seen as a special case
f total. By showing positive results for extended semantics based
n total assignments, we are therefore also showing the same
esults for the corresponding semantics based on partial assign-
ents. It should be noted, however, that this does not hold for
egative results. This means that the decidability results that we
how in Section 7 apply to both total and partial assignments, but
ndecidability, instead, does not carry on to partial assignments;
his remains an open question.

We prove a reduction from partial to total assignments by
howing that any SHACL documentM can be linearly transformed
nto another document M∗ such that a graph G is valid w.r.t. M
nder brave-partial, or cautious-partial, iff G is valid w.r.t. M∗



P. Pareti, G. Konstantinidis and F. Mogavero Web Semantics: Science, Services and Agents on the World Wide Web 74 (2022) 100721

s
c
r
t
o

t
n

t
s
t
o
r
d

D
c
⟨

c
e
s
w

D
m
{

σ

a
f
t
M

L
σ

P
t
F
i
s
T
s
i

(
(

T
a
c
a
t
r
o
(
i
F

e
e
a

under brave-total or cautious-total, respectively. Intuitively, this
is achieved by splitting each shape s into two shapes s+ and

−, evaluated under total assignments semantics, such that the
onstraints of s+ and s− model the evaluation to True and False,
espectively, of the constraints of s, and such that the evaluation
o Undefined of the constraints of s correspond to the negation
f the constraints of both s+ and s−.
Note that the aforementioned reduction has strong similari-

ies with the notion of completion for programs with stratified
egation in logic programming [26] (see, also [27,28]).
In the following, we formalise the just discussed transforma-

ion by means of a function Γ over SHACL documents. With a
light abuse of notation, we use ¬ and ∧ to denote, respectively,
he negated form of a SHACL constraint, and the conjunction
f two SHACL constraints. We also denote s(x) the constraint
equiring node x to conform to shape s. We use s+ and s− to
enote two unique fresh shape names, which are a function of s.

efinition 8. Given a SHACL document M , document Γ (M)
ontains shapes ⟨s+, t, γ (d)⟩ and ⟨s−, t, γ (¬d)⟩ for every shape
s, t, d⟩ in M , such that, for every constraint d, the corresponding
onstraint γ (d) is constructed by replacing, for every shape s,
very occurrence of the negated atom ‘‘¬s(x)’’ in dwith ‘‘¬s+(x)∧
−(x)’’ and every occurrence of the non-negated atom ‘‘s(x)’’ in d
ith ‘‘s+(x) ∧ ¬s−(x)’’.

efinition 9. Given an assignment σ , let σ γ be the assign-
ent such that for every node n the following holds: σ γ (n) =

s+,¬s−
|s ∈ σ (n)}∪{¬s+, s−

|¬s ∈ σ (n)}∪{¬s+,¬s−
|s,¬s ̸∈

(n)}.

We can observe that for any SHACL document M , graph G and
ssignment σ for M and G, assignment σ γ is a total assignment
or Γ (M) and G. Also, it is easy to see that the complexity of the
ransformation Γ (M) is linear in the size of the original document
.

emma 3. Given a SHACL document M, a graph G, an assignment
, and a node n, the following hold:

• JdKn,G,σ is True iff Jγ (d)Kn,G,σ
γ
is True;

• JdKn,G,σ is False iff Jγ (¬d)Kn,G,σ
γ
is True;

• JdKn,G,σ is Undefined iff both Jγ (d)Kn,G,σ
γ
and Jγ (¬d)Kn,G,σ

γ

are False.

roof. Negation in SHACL is defined in the standard way, and
herefore JdKn,G,σ is True iff J¬dKn,G,σ is False. Since JdKn,G,σ is
alse iff J¬dKn,G,σ is True, proof of the first statement of the lemma
s also proof of the second. We can also notice that the third
tatement of the lemma necessarily follows from the first two.
hus the entire lemma can be proved by proving just the first
tatement. To prove the first item, we show the following two
mplications, separately:

⇒): if JdKn,G,σ is True, then Jγ (d)Kn,G,σ
γ
is True;

⇐): if Jγ (d)Kn,G,σ
γ
is True, then JdKn,G,σ is True.

In Kleene’s 3-valued logic, the evaluation of a sentence into
rue or False implies that this evaluation does not depend on
ny of its sub-sentences that are evaluated to Undefined (i.e.,
hanging the truth value of one such sub-sentence would not
ffect the truth value of the whole sentence). Notice also that
he only atoms that can be evaluated as Undefined are shape
eferences s(x) [14]. This means that if the 3-valued evaluation
f a constraint d over a node, a graph and an assignment is True
resp., False), then this evaluation would still be True (resp., False),
f every shape atom s(x) that evaluates to Undefined evaluates to

alse instead.

7

(⇒) If JdKn,G,σ evaluates to True, then Jγ (d)Kn,G,σ
γ
must also

valuate to True, since in the transformation from d to γ (d) (1)
very constraint that is not a shape reference remains unchanged,
nd (2) every shape reference (in d) is transformed into a con-

junction of shape references (in γ (d)) that still evaluates to the
same truth value of the original expression, unless this truth value
is Undefined. However, by our previous observation, changing an
Undefined truth value cannot affect the truth value of Jγ (d)Kn,G,σ

γ

since JdKn,G,σ evaluates to True. Thus implication (⇒) holds.
(⇐) Similarly, if Jγ (d)Kn,G,σ

γ
evaluates to True, then JdKn,G,σ

must also evaluate to True, since, in the inverse transformation
from γ (d) to d: (1) every constraint that is not a shape refer-
ence remains unchanged, and (2) every pair of shape references
‘‘s+(x)∧¬s−(x)’’ or ‘‘¬s+(x)∧s−(x)’’ is transformed into a single
shape reference which either (a) evaluates to the same truth
value, or (b) evaluates to the truth value of Undefined when the
original constraint evaluates to False. Notice that in SHACL, the
constraints of a shape are considered in conjunction, and nega-
tion only appears in front of shape references. Since Jγ (d)Kn,G,σ

γ

evaluates to True, a pair of shape references ‘‘s+(x) ∧ ¬s−(x)’’
or ‘‘¬s+(x) ∧ s−(x)’’ that evaluates to False w.r.t. n, G and σ γ

can only appear in a disjunction in γ (d) of which at least one
disjunct evaluates to True w.r.t. n, G and σ γ , since this disjunction
cannot be within the scope of negation. Pairs of shape references
‘‘s+(x)∧¬s−(x)’’ or ‘‘¬s+(x)∧s−(x)’’ that evaluate to False w.r.t.
n, G and σ γ , therefore, do not affect the truth value of Jγ (d)Kn,G,σ

γ
.

Thus implication (⇐) holds as well. □

From Definition 8 and Lemma 3 the main theorem of this
subsection easily follows. □

Theorem 2. Given a SHACL document M and a graph G, it holds that
G is valid w.r.t. M under brave-partial (resp., cautious-partial) se-
mantics iff G is valid w.r.t. Γ (M) under brave-total (resp., cautious-
total) semantics.

Thus, in the rest of the article we will only focus on total
assignments and we shall use the term brave semantics to refer
to brave-total and cautious semantics to refer to cautious-total.

4. Shapes Constraint Logic: SCL

In this section we provide a precise formalisation of SHACL se-
mantics and related decision problems in a formal logical system.
For the sake of simplicity of presentation, we first focus on the
brave semantics only, and then show how to adapt our system to
model cautious semantics (recall that, as shown in Section 3.4,
partial assignments semantics is, model-theoretically, a special
case of total assignments semantics). The main component of this
logical system is the SCL language, a novel fragment of first-order
logic extended with counting quantifiers and the transitive clo-
sure operator, that precisely models SHACL documents. We will
later show the equivalidity of SHACL and SCL, by demonstrating
how, for any graph, the latter can be used to model total faithful
assignments.

Our decision problems, instead, are modelled using MSCL, a
fragment of monadic second-order logic defined on top of SCL,
by extending the latter with second-order quantifications on
monadic relations. Intuitively, MSCL allows us to define condi-
tions over the space of all possible assignments, something that
cannot be expressed in SCL. Nevertheless, as we will see later,
several formulations of our decision problems are fully reducible

to the first-order logic satisfiability problem.
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4.1. A first-order logic for SHACL

In the presentation of our logical system and in the analysis of
ts decision problems, we consider arbitrary first-order relational
odels with equality as the only built-in relation. When we deal
ith the SHACL encoding, instead, we assume the first-order
odels to have the set of RDF terms as the domain of discourse,
lus a set of interpreted relations for the SHACL filters.
Assignments are modelled by means of a set of monadic re-

ation names Σ , called shape relations. In particular, each shape
is associated with a unique shape relation Σs. If Σs is a

hape relation associated with shape s, then fact Σs(x) (resp.
Σs(x)) describes an assignment σ such that s ∈ σ (x) (resp.
s ∈ σ (x)). Since our logical system uses standard Boolean

logic, for any element of the domain c and shape relation Σ , it
holds that Σ(c) ∨ ¬Σ(c) holds, by the law of excluded middle.
Thus any Boolean interpretation of shape relations defines a total
assignment.

Sentences and formulae in the SCL language follow the gram-
mar reported in Definition 10, whose main syntactic components
are described later on. In the rest of the article, we will focus
on this logic to study the decidability and complexity of our
SHACL decision problems. In particular, we are going to reserve
the symbols τ and τ− to denote the translations from SHACL
documents into SCL sentences and vice versa and refer the reader
to the Appendix for the full details about these translations. Bold
capital letters in square brackets on the right of some of the
grammar production rules are pure meta-annotations for naming
SCL features and, obviously, not an integral part of the syntax.

Definition 10. The Shape Constraint Logic (SCL, for short) is
the set of first-order sentences ϕ built according to the following
context-free grammar, where c is a constant from the domain of
RDF terms,Σ is a shape-relation name, F is a filter-relation name,
R is a binary-relation name, Kleene’s star symbol ⋆ indicates the
transitive closure of the binary relation induced by π (x, y), the
uperscript ± stands for a relation or its inverse, and n ∈ N:

ϕ := ⊤ | ϕ ∧ ϕ

| Σ(c) | ∀x. isA(x, c) → Σ(x)
| ∀x, y. R±(x, y) → Σ(x)
| ∀x.Σ(x) ↔ ψ(x);

ψ(x) := ⊤ | ¬ψ(x) | ψ(x) ∧ ψ(x) | x = c | F(x)
| Σ(x) | ∃y. π (x, y) ∧ ψ(y)
| ¬∃y. π (x, y) ∧ R(x, y) [D]
| ∀y. π (x, y) ↔ R(x, y) [E]
| ∀y, z. π (x, y) ∧ R(x, z) → ς (y, z) [O]
| ∃

≥ny. π (x, y) ∧ ψ(y); [C]
π (x, y) := R±(x, y)

| ∃z. π (x, z) ∧ π (z, y) [S]
| x = y ∨ π (x, y) [Z]
| π (x, y) ∨ π (x, y) [A]
| (π (x, y))⋆; [T]

ς (x, y) := x <± y | x ≤
± y.

Intuitively, sentences obtained through grammar rule ϕ corre-
spond to SHACL documents. These could be empty (⊤), a conjunc-
ion of documents, a target axiom (production rules 3, 4, and 5 of
ule ϕ) or a constraint axiom (production rule 6 of rule ϕ). Target
xioms take one of three forms, based on the type of target decla-
ations in the shapes of a SHACL document. There are four types
f target declarations in SHACL, namely (1) a particular constant
8

Table 3
Translation of a SHACL shape with name s and target declaration t , into an SCL
target axiom.
Types of target declarations in t SCL target axiom

Node target (node c) Σs(c)
Class target (class c) ∀x. isA(x, c) → Σs(x)
Subjects-of target (relation R) ∀x, y. R(x, y) → Σs(x)
Objects-of target (relation R) ∀x, y. R−(x, y) → Σs(x)

c (node target), (2) instances of class c (class target), or (3)–(4)
subjects/objects of a triple with predicate R (subject-of/object-of
target). The full correspondence of SHACL target declarations to
SCL target axioms is summarised in Table 3. The correspondence
of a target definition containing multiple target declarations, is
simply the conjunction of the corresponding target axioms.

The non terminal symbol ψ(x) corresponds to the subgrammar
f the SHACL constraints components. Within this subgrammar,
he true symbol ⊤ identifies an empty constraint, x = c a
onstant equivalence constraint and F a monadic filter relation
e.g., FIRI(x), true iff x is an IRI). By filters we refer to the SHACL
onstraints about ordering, node-type, datatype, language tag,
egular expressions, and string length [1]. Filters are captured by
he F(x) production rule and the O component. The C component
aptures qualified value shape cardinality constraints. The E, D
nd O components capture the equality, disjointedness and order
roperty pair components.
The π (x, y) subgrammar models SHACL property paths. Within

his subgrammar S denotes sequence paths, A denotes alternate
aths, Z denotes a zero-or-one path, and, finally, T denotes a
ero-or-more path.
As usual, to enhance readability, we define the following syn-

actic shortcuts:

• ψ1(x) ∨ ψ2(x) := ¬(¬ψ1(x) ∧ ¬ψ2(x));
• π (x, c) := ∃y.π (x, y) ∧ y = c;
• ∀y . π (x, y) → ψ(y) := ¬∃y . π (x, y) ∧ ¬ψ(y).

The above mentioned translations τ and τ− between SHACL
nd SCL are polynomial in the size of the input and computable
n polynomial time. Intuitively, as we show later in Theorem 3, a
HACL document M validates a graph G iff a first-order structure
epresenting the latter satisfies the SCL sentence τ (M). Vice versa,
very SCL sentence ϕ is satisfied by a first-order structure repre-
enting graph G iff the SHACL document τ−(ϕ) validates G.
Another important property of these translations is that they

reserve the notion of SHACL recursion, that is, a SHACL document
is recursive iff the SHACL document τ−(τ (M)) is recursive. We
ill call an SCL sentence φ recursive if τ−(φ) is recursive.
Given a SHACL document M , the SCL sentence τ (M) contains

shape relation Σs for each shape s in M . Sentence τ (M) can be
plit into constraint axioms and target axioms. Intuitively, these
re used to verify the first and second condition of Definition 3,
espectively. The constraint axioms of τ (M) correspond to the
entence τ (M\t ), i.e., to the translation of the document ignoring
argets, while the target axioms of τ (M) correspond to taking
argets into account, i.e., to a sentence φ, where φ ∧ τ (M\t ) is
(M).
Note that our translation τ results in a particular structure of

CL sentences, that we will call well-formed, and thus we restrict
he inverse translation τ− and define it only on well-formed SCL
entences. An SCL sentence ϕ is well-formed if, for every shape
elationΣ , sentence ϕ contains exactly one constraint axiom with
elation Σ on the left-hand side of the implication. Intuitively,
his condition ensures that every shape relation is ‘‘defined’’ by
corresponding constraint axiom. Fig. 2 shows the translation of
he document from Fig. 1 into a well-formed SCL sentence.
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Fig. 2. Translation of the SHACL document from Fig. 1 into an SCL sentence.

Before defining the semantic correspondence between SHACL
nd SCL we introduce the translations of graphs and assignments
nto first-order structures.

efinition 11. Given a graph G, the first-order structure Gτ

ontains a fact R(s, o), i.e., R(s, o) holds true in Gτ , if ⟨s, R, o⟩ ∈ G.

efinition 12. Given a total assignment σ , the first-order struc-
ture σ τ contains fact Σs(n), i.e., Σs(n) holds true in σ τ , for every
node n, if s ∈ σ (n).

Definition 13. Given a graph G and a total assignment σ , the
first-order structure I induced by G and σ is the disjoint union
of structures Gτ and σ τ . Given a first-order structure I: (1) the
graph G induced by I is the graph that contains triple ⟨s, R, o⟩
if I |H R(s, o) and (2) the assignment σ induced by I is the
assignment such that, for all elements of the domain n and shape
relations Σs, fact s ∈ σ (n) is true if I |H Σs(n) and ¬s ∈ σ (n) is
rue if I ̸|H Σs(n).

The semantic correspondence between SHACL and SCL is cap-
ured by the following theorem.

heorem 3. For all graphs G, total assignments σ and SHACL
ocuments M, it is true that (G, σ ) |H M iff I |H τ (M), where I
s the first-order structure induced by G and σ . For any first-order
tructure I and SCL sentence φ, it is true I |H φ iff (G, σ ) |H τ−(φ),
here G and σ are, respectively, the graph and assignment induced
y I.

This theorem can be proved by a tedious but straightfor-
ard structural induction over the document syntax, with an
perator-by-operator analysis of the translation we provide in the
ppendix.
Sentences in SCL have a direct correspondence to the sen-

ences of the grammar presented in [16]. For each non-recursive
HACL document, the differences between the sentences obtained
y translating this document are purely syntactic and the two
entences are equisatisfiable. In particular, the binary relation
asShape of [16] is now represented instead as a set of monadic
elations. For recursive SHACL documents, the grammar of Defini-
ion 10 introduces a one-to-one correspondence between SHACL
arget declarations/constraints, and target/constraint axioms re-
pectively.
The sub-grammar ψ(x) in Definition 10 corresponds to the

rammar of SHACL constraints from [14], with the addition of
ilters. The grammar from [14] omits filters by assuming that their
valuation is not more computationally complex than evaluating
quality. This assumption is true for validation, the main decision
roblem addressed in [14], but it does not hold for satisfiability
nd containment, as we further discuss in Section 6.
 u

9

Table 4
Correspondence between prominent SHACL components and SCL expressions.
Abbr. Name SHACL component SCL expression

D Property pair
disjointness

sh:disjoint ¬∃y. π (x, y) ∧ R(x, y)

E Property pair
equality

sh:equals ∀y. π (x, y) ↔ R(x, y)

O Property pair
order

sh:lessThan
sh:lessThanOrEquals

x <± y and x ≤
± y

C Cardinality
constraints

sh:qualifiedValueShape
sh:qualifiedMinCount
sh:qualifiedMaxCount

∃
≥ny. π (x, y) ∧ ψ(y)

with n ̸= 1

S Sequence paths SHACL list ∃z. π (x, z) ∧ π (z, y)

Z Zero-or-one paths sh:zeroOrOnePath x = y ∨ π (x, y)

A Alternative paths sh:alternativePath π (x, y) ∨ π (x, y)

T Transitive
paths

sh:zeroOrMorePath
sh:oneOrMorePath

(π (x, y))⋆

To distinguish different fragments of SCL, Table 4 lists a num-
ber of prominent SHACL components. The language defined with-
out any of these constructs is our base language, denoted ∅.

hen using an abbreviation of a prominent feature, we refer
o the fragment of our logic that includes the base language
ogether with that feature enabled. For example, S A identifies
he fragment that only allows the base language, sequence paths,
nd alternate paths.
The SHACL specification presents an unusual asymmetry in

he fact that equality, disjointedness and order components (cor-
esponding to E, D, and O in SCL) force one of their two path
xpressions to be an atomic relation. This can result in situations
here order constraints can be defined in just one direction,
ince only the less-than and less-than-or-equal property pair
onstraints are defined in SHACL. Our O fragment models a more
atural order comparison that includes the > and ≥ components,
y using the inverse of < and ≤. We instead denote by O′ the
ragment where the order relations in the ς (x, y) subgrammar
annot be inverted. In our formal analysis of Section 7 we will
onsider both O and O′.

.2. A second-order logic for SHACL decision problems

In order to model SHACL decision problems, we introduce
he Monadic Shape Constraint Logic (MSCL, for short) built on
op of a second-order interpretation of SCL sentences. A second-
rder interpretation of an SCL sentence φ is the second-order
ormula obtained by interpreting shape relations as free monadic
econd order variables. Obviously, shape relations that are under
he scope of the same quantifier describe the same assignment.
hile SCL can be used to describe the faithfulness of a single

ssignment, MSCL can express properties that must be true for
ll possible assignments. This is necessary to model all extended
emantics. As usual, disjunction and implication symbols in MSCL
entences are just syntactic shortcuts.

efinition 14. The Monadic Shape Constraint Logic (MSCL, for
hort) is the set of second-order sentences built according to the
ollowing context-free grammar Φ, where ϕ is an SCL sentence
nd Σ is the second-order variable corresponding to a shape
elation.

:= ϕ | ¬Φ | Φ ∧ Φ | ∃Σ .Φ | ∀Σ .Φ; ϕ := SCL.

he ∃SCL (resp., ∀SCL) fragment of MSCL is the set of sentences
btained by the above grammar deprived of the negation and

niversal (resp., existential) quantifier rules.
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Relying on the standard semantics for second-order logic, we
efine the satisfiability and containment for MSCL sentences, as
ell as the closely related finite-model property, in the natural
ay.

SCL Sentence Satisfiability An MSCL sentence Φ is satisfiable
if there exists a relational structure Ω such that Ω |H Φ.

SCL Finite-model Property An MSCL sentence Φ enjoys the
finite-model property if, whenever Φ is satisfiable, it is so
on a relational structure.

In Section 5 we discuss the correspondence between the
HACL and MSCL decision problems. In this respect, we as-
ume that filters are interpreted relations. In particular, we prove
quivalence of SHACL and MSCL, for the purpose of validity,
n models that we call canonical; that is, models having the
ollowing properties: (1) the domain of the model is the set of
DF terms, (2) constant symbols are interpreted as themselves
as in a standard Herbrand model [29]), (3) such a model contains
uilt-in interpreted relations for filters, and (4) ordering relations
and ≤ are the disjoint union of the total orders of the different

omparison types allowed in SPARQL. To enforce the fact that
ifferent RDF terms are not equivalent to each other we adopt the
nique name assumption for the constants of our language. For
he purpose of our decision problems, it is sufficient to axiomatise
he inequality of all the known constants.

Finally, we state a trivial result used later on to show how to
olve some of the mentioned decision problem by looking at the
‘simpler’’ SCL satisfiability and validity decision problems.3

roposition 1. An ∃SCL (resp., ∀SCL) sentence Φ≜ ∃Σ1 . . . ∃Σm. ϕ
resp., Φ≜∀Σ1 . . . ∀Σm. ϕ) is satisfiable (resp., valid) iff the subfor-
ula ϕ interpreted as an SCL sentence is satisfiable (resp., valid).

. From SHACL decision problems to MSCL satisfiability

The rich expressiveness of the MSCL language, defined in the
revious section, allows us to formally define several decision
roblems. We first use this language to define the main such
roblems studied in this article, namely SHACL validation, sat-
sfiability and containment. We then show how MSCL can also
apture a number of related decision problems that have been
roposed in the literature.

.1. Principal decision problems

In this section we describe the equivalidity of MSCL and
HACL, and provide a reduction of our decision problems into
SCL satisfiability. Notably, we also show how some of them
an be further reduced into ∃SCL. As we will see later, this last
eduction can be easily translated to a reduction into first-order
ogic, from which we derive several decidability results.

We again focus only on total assignment semantics. Given a
econd-order formula φ, second-order interpretation of an SCL
entence, we denote with ∃(φ), respectively ∀(φ), the MSCL sen-
ence obtained by existentially, respectively universally, quanti-
ying all of the shape relations of φ. Recall that, by construction,
he assignments induced by models of an MSCL sentence are total,
nd that the second-order variables under the scope of the same
uantifier represent a single assignment.
The following corollaries, which rely on the standard notion of

odelling of a sentence by a structure, easily follow from Theo-
em 3 and the definitions of validity from Table 2. The first two

3 The term valid here refers to the notion of validity in mathematical logic
nd model theory, not to be confused with SHACL validation.
10
corollaries define the correspondence between SHACL and MSCL
validation. The last four corollaries express our formalisation of
the SHACL satisfiability and containment decision problems in the
case of brave validation and in the case of cautious validation.
Recall also that Gτ denotes the first-order structure induced by
a graph G, and M\t denotes the SHACL document obtained by
removing all target declarations from SHACL document M , which
we use to test first condition of Definition 3 in isolation from the
second.

Corollary 1 (Brave-Total Validation). A graph G is valid w.r.t. a
SHACL document M under brave-total semantics if Gτ |H ∃(τ (M)).

orollary 2 (Cautious-Total Validation). A graph G is valid w.r.t. a
HACL document M under cautious-total semantics if Gτ |H ∃(τ (M))
∀(τ (M\t ) → τ (M)).

orollary 3 (Brave-Total Satisfiability). For any SHACL document M,
ocument M is (finitely) satisfiable under brave-total semantics if
(τ (M)) is (finitely) satisfiable.

orollary 4 (Cautious-Total Satisfiability). For any SHACL docu-
ent M, document M is (finitely) satisfiable under cautious-total
emantics if ∃(τ (M)) ∧ ∀(τ (M\t ) → τ (M)) is (finitely) satisfiable.

orollary 5 (Brave-Total Containment). For any pair of SHACL
ocuments M1 and M2, document M1 is contained in M2 under
rave-total semantics iff ∃(τ (M1)) → ∃(τ (M2)) is valid, that is, iff
(τ (M1)) ∧ ¬∃(τ (M2)) is unsatisfiable.

orollary 6 (Cautious-Total Containment). For any pair of SHACL
ocuments M1 and M2, document M1 is contained in M2 under
autious-total semantics if(
∃(τ (M1)) ∧ ∀(τ (M\t

1 ) → τ (M1))
)

→

(
∃(τ (M2)) ∧ ∀(τ (M\t

2 ) → τ (M2))
)

s valid, that is, iff(
∃(τ (M1)) ∧ ∀(τ (M\t

1 ) → τ (M1))
)

∧ ¬

(
∃(τ (M2)) ∧ ∀(τ (M\t

2 ) → τ (M2))
)

s unsatisfiable.

We now provide a simplified definition of containment for
on-recursive SHACL documents by exploiting the properties of
emma 2, and the fact that all extended semantics are equivalent
or non-recursive SHACL.

emma 4. For any pair of non-recursive SHACL documents M1 and
2 document M1 is contained in M2 iff ∃(τ (M1)) ∧ ∃(τ (M\t

2 ) ∧

τ (M2)) is not satisfiable.

roof. For non-recursive SHACL documents all semantics are
quivalent, thus containment of two non-recursive SHACL doc-
ments can be expressed as containment under brave-total se-
antics (Corollary 5), namely the unsatisfiability of ∃(τ (M1)) ∧

(¬τ (M2)). Notice that for all assignment σ and graphs G, if
G, σ ) ̸|H M\t then trivially (G, σ ) ̸|H M , thus we can rewrite
ontainment as the unsatisfiability of the following sentence:

(τ (M1)) ∧ ∀(¬τ (M\t
2 ) ∨ ¬τ (M2)),

hich is trivially equivalent to the following:

(τ (M )) ∧ ∀(τ (M\t ) → ¬τ (M )) is unsatisfiable.
1 2 2
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From Lemma 2 we know that, for any graph G, there exists an
ssignment σ such that (G, σ ) |H M\t . By Theorem 3, the structure
τ induced by any G models ∃(τ (M\t

2 )), and thus ∃(τ (M\t
2 )) is

rue for any model. We can therefore rewrite the containment
riterion as the unsatisfiability of the following sentence:

(τ (M1)) ∧ ∃(τ (M\t
2 )) ∧ ∀(τ (M\t

2 ) → ¬τ (M2)),

hich is trivially equivalent to:

(τ (M1)) ∧ ∃(τ (M\t
2 ) ∧ ¬τ (M2)) ∧ ∀(τ (M\t

2 ) → ¬τ (M2)).

From Lemma 2 we also know that there is only one assignment
such that (G, σ ) |H M\t , thus the conjunct in the for all

uantification can be removed. □

From the above results we can notice that several decision
roblems are reducible to the satisfiability of ∃SCL sentences,
hich, as defined in Proposition 1, can be further reduced to
he satisfiability of SCL. In Section 7 we will study the prop-
rties of SCL to provide decidability and complexity results for
ur decision problems that can be reduced to ∃SCL satisfiability,
amely the satisfiability and containment of non-recursive SHACL
ocuments, and satisfiability of (recursive) SHACL documents
nder brave-total (and thus also brave-partial) semantics. The
emaining decision problems, namely containment for recursive
HACL documents (under any extended semantics), and satisfia-
ility for recursive SHACL documents under cautious validation,
equire the expressiveness of second-order logic, and are likely
ndecidable even for very restrictive fragments of SHACL.
It is important to notice that the undecidability results of

ection 7 only consider the arbitrary unrestricted (non-finite)
atisfiability problem. It is not immediately clear whether these
an be extended to the finite problem too, but we conjecture that
Trakhtenbrot-like undecidability proof [30,31] can be used for

he SCL fragments containing at least the O construct.

.2. Additional decision problems

Our logical framework allows us to express a number of addi-
ional decision problems that shift the focus on more fine-grained
bjects, such as shapes and constraints. While these additional
ecision problems are not the focus of this article, we discuss
hem for the sake of completeness. To better model these addi-
ional problems, we will use tn to denote a constraint definition
hat targets the single node n.

Given a SHACL documentM , and two shapes s and s′ inM , the
ecision problem of shape containment [12] determines whether
is contained in s′. Intuitively, this means that whenever M is
sed for validation, nodes conforming to s necessarily conform to
′. The definition of shape containment, adapted to the notation
f our article, is the following.

efinition 15. Given a SHACL document M , and two shapes ⟨s,
, d⟩ and ⟨s′, t ′, d′

⟩ in M , s is shape contained in s′ under brave-
artial (resp. brave-total) semantics if, for all graphs G, nodes n
n nodes(G,∅) and assignments σ in AG,M (resp. AG,M

T ) such that
G, σ ) |H M , if s ∈ σ (n) then s′

∈ σ (n).

While the original definition only considered brave-total se-
antics, our formulation is more general, as it also includes
rave-partial. It is important to notice that, if a SHACL document
s unsatisfiable, any pair of shapes within that document trivially
ontain each other. In other words, the containment of a shape
nto another is not necessarily caused by any particular property
f those shapes.
We should also note that the fragment studied in [12] for

hich shape containment is decidable is the SHACL fragment

orresponding to the SCL sub-fragment of C (the base language a

11
lus counting quantifiers) where filters are not allowed. This
s in agreement with our decidability results, that we present
n Section 7, where we demonstrate decidability of the similar
HACL satisfiability problem for even more general fragments of
.
The shape containment problem can be expressed as the ex-

stence of a node n such that document M ∪ {⟨s∗, tn, d∗
⟩} is

unsatisfiable under brave-partial (resp. brave-total) semantics,
where s∗ is a fresh shape name, tn is a target declaration that tar-
ets only node n, and d∗ is the constraint obtained by conjuncting
′ and the negation of d.

heorem 4. Given a SHACL document M, and two shapes ⟨s, t, d⟩
nd ⟨s′, t ′, d′

⟩ in M, s is not shape contained in s′ under brave-
artial (resp. brave-total) semantics iff there exist a node n such
hat document M ∪ {⟨s∗, tn, d∗

⟩} is satisfiable under brave-partial
resp. brave-total) semantics, where s∗ is a fresh shape name, tn is a
arget declaration that targets only node n, and d∗ is the constraint
btained by conjuncting d and the negation of d′.

roof. Given a node n let M ′
= M ∪ {⟨s∗, tn, d∗

⟩}.
(⇒) If M ′ is satisfiable, let G be a graph that is valid w.r.t. it.

f n ∈ nodes(G) it is easy to see that the following properties are
rue for graph G: (1) it is valid w.r.t. M (since M is a subset of M ′),
2) there exists an assignment σ that is faithful (resp. faithful and
otal) for M and G, and such that s ∈ σ (n) and ¬s′

∈ σ (n) (since
satisfies constraints d, but not d′). One such assignment σ can

be obtained by taking an assignment σ ′, faithful for G and M ′,
and by removing elements s∗ and ¬s∗ from all the sets in the
codomain of the σ ′ function. Thus, shape s is not contained in s′

w.r.t. M . Instead, if n ̸∈ nodes(G), then there exists another graph
G′ such that G′ is valid w.r.t. M ′ and n ∈ nodes(G′). One such
graph G′ is G ∪ {⟨n∗, r∗, n⟩}, where n∗ and r∗ are, respectively,
fresh constant and a fresh relation name. This is because the
hapes of a SHACL document can only target nodes mentioned
n the document, or those that are reachable by the relations
entioned in the document. Moreover, the evaluation of any
HACL constraints on a node is unaffected by that node being the
bject of a triple with an unknown predicate. Since G′ satisfies the
ame properties as G, we can apply the same reasoning as above
as for case n ∈ nodes(G)) to prove that shape s is not contained
n s′ w.r.t. M .

(⇐) If shape s is not contained in s′ w.r.t. M then there exists
graph G, an assignment σ faithful (resp. faithful and total) for
and M , and a node n such that s ∈ σ (n) and ¬s′

∈ σ (n).
herefore, Jd∗Kn,G,σ must be true. Let σ ∗ be the extension of the
assignment that accounts for the s∗ shape, namely σ ∗(j) =

(j)∪{s∗
|Jd∗Kj,G,σ = ⊤}∪{¬s∗

|¬Jd∗Kj,G,σ = ⊤}, for any node j in
odes(G,M). It is easy to see that assignment σ ∗ is faithful (resp.
aithful and total) for M ′ and G, and thus M ′ is satisfiable. □

The above mentioned theorem introduces the following aux-
liary decision problem.

efinition 16. Given a SHACL document M , a shape name s
ot in M and a constraint d that only references shapes in M ∪

s}, template satisfiability under brave-partial (resp. brave-total)
emantics is the problem of deciding whether there exists a
ode n such that document M ∪ {⟨s, tn, d⟩} is satisfiable under
rave-partial (resp. brave-total) semantics.

Two additional decision problems, constraint satisfiability and
onstraint containment, are defined in [16] to study the properties
f non-recursive SHACL constraints. Intuitively, a constraint d
s satisfiable if there exists a node that conforms to d, and a
onstraint d is contained in d′ if every node that conforms to d
lso conforms to d′. We provide here a generalisation of these
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problems by introducing a SHACL document as an additional in-
put. The primary purpose of this additional document is to study
constraints under recursion, that is, constraints that reference
recursive shapes. However, it can also be used to study constraint
satisfiability and containment subject to a particular document
being valid. When this document is empty the following deci-
sion problems correspond to the ones defined in [16], namely
constraint satisfiability and containment without recursion.

Definition 17. Given a SHACL constraint d and a SHACL docu-
ment M , such that d does not reference shapes not included in
M , constraint d is satisfiable under extended semantics α if there
xists a node n such that SHACL document M ∪ {⟨s, tn, d⟩} is

satisfiable under α, where s is a fresh shape name.

Definition 18. Given two SHACL constraints d and d′ and a SHACL
documents M such that d and d′ do not reference shapes not
included in M , constraint d is contained in d′ under extended se-
antics α if for all nodes n, document M∪{⟨s, tn, d⟩} is contained

nM∪{⟨s′, tn, d′
⟩} under α, where s and s′ are fresh shape names.

The problem of constraint satisfiability under brave-partial
nd brave-total semantics are, by definition, sub-problems of
HACL template satisfiability for the respective semantics. Con-
traint containment for non-recursive SHACL documents is also
sub-problem of SHACL template satisfiability. This is a conse-
uence of the fact that containment of two non-recursive SHACL
ocuments can be decided by deciding the satisfiability of an
SCL sentence (Lemma 4). As we will prove later in Section 6,
he problem of template satisfiability can be expressed as ∃SCL
entence satisfiability. Therefore, our positive results that will be
resented in Section 7 also provide decidability and upper bound
omplexity results for the decision problems expressible as tem-
late satisfiability, namely (1) shape containment, (2) constraint
atisfiability under brave-partial and brave-total semantics and
3) constraint containment for non-recursive SHACL documents.

. From interpreted to uninterpreted models via filter ax-
omatisation

In this section we discuss explicit axiomatisations of the se-
antics of a set of filters, inspired by the relational axiomatisation
f the LTL path formulae in the conjunctive-binding fragment
f Strategy Logic [32]. The main goal of these axiomatisations
s to account for filter semantics without requiring filters to be
nterpreted relations. For any MSCL sentence Φ we construct
xiomatisations α such that Φ is satisfiable on a canonical model
f and only if Φ ∧α is satisfiable on an uninterpreted models, that
s, models whose domain is the set of RDF terms, but where filters
nd ordering relations are simple relations instead of interpreted
nes. This reduction to standard first-order logic (FOL) allows
s to prove decidability of the satisfiability and containment
roblems for several SCL fragments in the face of filters.
We first present a simplified but expensive formulation of

his axiomatisation, that is exponential on size of the original
entence. We then provide an alternative axiomatisation, poly-
omial on size of the original sentence, that however requires
ounting quantifiers to express certain filters. We exclude from
ur axiomatisation the sh:lessThanOrEquals or sh:lessThan

constraints (the O and O′ components of our grammar) that are
binary relations, and which do not belong to any decidable frag-
ment we have so far identified, as shown in the next section.
We also exclude the sh:pattern constraint, which tests whether
he string representation of a node follows an extended ver-
ion of regular expressions,4 from our polynomial axiomatisation.

4 Corresponding to SPARQL REGEX functions [33].
12
However, in our simplified axiomatisation we allow a restricted
version of the sh:pattern constraints precisely corresponding to
standard notion of regular expressions (i.e., regular expressions
that can be converted into a finite state machine). All features
defined as filters in Section 5, with the exception of O and O′

components, are represented by monadic relations F (x) of the
SCL grammar. While equality remains an interpreted relation, for
which we do not provide an axiomatisation, we will also consider
equality to a constant c as a monadic filter relation (which we call
equality-to-a-constant) whose interpretation is the singleton set
containing c.

6.1. Naïve axiomatisation

The semantics of each monadic filter relation is a predeter-
mined interpretation over the domain. For example, the interpre-
tation of filter relation FIRI is the set of all IRIs, since FIRI(x) is true
iff x is an IRI. Notice also that filters are the only components
of MSCL whose interpretation is predetermined. Thus, we can
axiomatise the semantics of filters w.r.t. deciding satisfiability
by capturing which conjunctions of filters are unsatisfiable, and
which conjunctions of filters are satisfiable only by a finite set of
elements. For example, the number of elements of the Boolean
datatype is two, the number of elements that are literals is
infinite, and there are four elements of integer datatype that are
both greater than 0 and lesser than 5. Let a filter combination F(x)
denote a conjunction of atoms of the form x = c, x ̸= c, F (x) or
¬F (x), where c is a constant and F is a filter predicate. Given a
filter combination, it is possible to compute the set of elements
of the domain that can satisfy it. Let γ be the function from filter
combinations to subsets of the domain that returns this set. The
computation of γ (F(x)) for the monadic filters we consider is
tedious but trivial as it boils down to determining: (1) the lexical
space of datatypes; (2) the cardinality of intervals defined by
order or string-length constraints; (3) the number of elements
accepted by a regular expression; (4) well-known RDF-specific
restrictions, e.g., the fact that each RDF term has exactly one node
type, and at most one datatype and one language tag. Combina-
tions of the previous four points are similarly computable. Let FΦ
be the set of filter combinations that can be constructed with the
filters predicates and constants occurring in an MSCL sentence
Φ . The naïve filter axiomatisation α(Φ) of a sentence Φ is the
following conjunction, where Σf is a fresh shape name.

α(φ) =

⋀
F(x)∈Fφ,|γ (F(x))̸=∞|

(
∀x. Σf (x) ↔ F(x)

)

∧

⎛⎝∀x. Σf (x) ↔

⎧⎨⎩⊥, |γ (F(x))| = 0⋁
c∈γ (F(x)) x = c, otherwise

⎞⎠
To better illustrate this axiomatisation, consider the following

MSCL sentence φ∗.

φ∗
= Σ(q) ∧ ∀x.

(
Σ(x) ↔∃

4y. R(x, y) ∧ F
>0(y)

∧ F
≤5(y) ∧ Fdt=xsd:int (y)

∧ y ̸= 2 ∧ y ̸= 3
)

Intuitively, this sentence is satisfiable if a constant q can be in the
R relation with four different integers that (a) are greater than
0, (b) that are less than or equal than 5, and (c), that are not
equal to 2 or 3. Since there are only three integers that satisfy
the conditions (a), (b) and (c) simultaneously, this sentence is not
satisfiable on a canonical model. This sentence contains the filters
F>0(x), F≤5(x) and Fdt=xsd:int (x), that denote, respectively, the fact
hat x is greater than the number 0, the fact that x is less or equal
than the number 5, and the fact that x belongs to the XSD integer
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datatype.5 The set of known constants of φ∗ is {2, 3, q}. We will
ssume that q is an IRI and that all other known constants are
iterals of the XSD integer datatype.

The naïve filter axiomatisation α(φ∗) contains, among others,
he following conjuncts, where Σf is a fresh shape name.(
∀x. Σf (x) ↔ F

>0(x) ∧ F
≤5(x) ∧ Fdt=xsd:int (x) ∧ x ̸= 2 ∧ x ̸= 3

)
∧
(
∀x. Σf (x) ↔ x = 1 ∨ x = 4 ∨ x = 5

)
This axiomatisation states that only three constants satisfy the

main filter combination of φ∗, and thus φ∗
∧α(φ∗) is unsatisfiable

n an uninterpreted model.

heorem 5. Given an MSCL sentence φ and its naïve filter ax-
omatisation α(φ), sentence φ is satisfiable on a canonical model
ff φ ∧ α(φ) is satisfiable on an uninterpreted model. Containment
1 ⊆ φ2 of two MSCL sentences on all canonical models holds iff
1 ∧ α(φ1 ∧ φ2) ⊆ φ2 holds on all uninterpreted models.

roof. We focus on satisfiability, since the proof for containment
s similar. Let c be any element of the domain and F(x) be any
filter combination that can be constructed with the constants
and filter relations in φ. Since the semantics of filter relations
has a universal interpretation, F(c) is either true on all canonical
models, or false on all canonical models. Notice that, by con-
struction of our axiomatisation, the truth value of F(c) on all
canonical models corresponds to the truth value of F(c) on all
uninterpreted models of α(φ). Let I ′ be an uninterpreted model
f φ ∧ α(φ), we can construct I , canonical model of φ, by (1)
hanging all the uninterpreted filter relations in I ′ for their cor-
esponding interpreted ones in I and (2) dropping from I ′ the
nterpretation of all the shape relations that occur in α(φ). Let I be
canonical model of φ, we can construct I ′, uninterpreted model
f φ ∧ α(φ), by (1) changing all the interpreted filter relations
n I for their corresponding uninterpreted ones in I ′ and (2) by
dding the following interpretation of each shape relation Σf (x)
ccurring in α(φ) to I: let F(x) be the filter combination such
hat ∀x. Σf (x) ↔ F(x) is one of the conjuncts of α(φ) (notice
hat one such conjunct exists for any shape relation), relation Σf
ontains all the elements of the domain which satisfy the filter
ombination F(x) on canonical models. □

.2. Bounded axiomatisation

The main exponential factor in the axiomatisations above is
he set of all possible filter combinations. However, we can limit
n axiomatisation to filter combinations having a number of
toms smaller or equal to a constant number, thus making our
xiomatisation polynomial w.r.t. an MSCL sentence Φ . This new
xiomatisation is applicable to all filters considered before, with
he exception of sh:pattern. Intuitively, this can be achieved
ecause FΦ contains several redundant filter combinations. To

illustrate this point, consider datatype filters atoms Fdt=c(x), de-
ived from the sh:datatype constraint component, that are true
f x is a literal with datatype c.6 Let Φ be an MSCL sentence
and F(x) be a filter combination Fdt=c(x)∧ Fdt=c′

(x) of FΦ , where
c ̸= c′. Since no RDF term can have two different datatypes, the
truth value of F(x) is always false (i.e. |γ (F(x))| = 0). Trivially, any
filter combination in FΦ whose conjuncts are a proper superset
of F(x) is also false, and thus its axiomatisation is not necessary.

5 The https://www.w3.org/TR/xmlschema11-2/#integer datatype is supported
y SPARQL 1.1, and thus it has a predetermined lexical space.
6 According to the SPARQL standard literals with different datatype or

anguage tags are different RDF terms (e.g. literal ‘‘10’’ of datatype integer is
ot equal to literal ‘‘10’’ of datatype float).
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In order to limit the size of the filter combinations to a con-
stant number, we reason about each filter type to determine
the maximum number of conjuncts of that type to consider
in any filter combination. We call this number the maximum
non-redundant capacity (MNRC) of that filter type. Any filter com-
bination that contains more conjuncts of that type than its MNRC,
is necessarily redundant.

Definition 19. A filter combination F(x) is redundant if there
xists a filter combination F′(x) such that γ (F(x)) = γ (F′(x)) and
F′(x) is a proper subset of F(x).

We will now define the MNRC for all the monadic SHACL filter
types. In the following proofs we will assume that all conjuncts of
a filter combination are syntactically different from each other as
any filter combination that contains multiple copies of the same
conjunct is trivially redundant. The MNRC of datatype filters is
two.

Lemma 5. Any filter combination F(x) that contains more than two
datatype filter conjuncts is redundant.

Proof. Since no RDF term can have two datatypes, if F(x) contains
two positive datatype filter conjuncts, then F(x) is unsatisfiable.
Thus F(x) cannot contain more than two positive datatype filter
conjuncts without being redundant. Since RDF literals do not
need to be annotated with a datatype, any negation ¬Fdt=c(x)
of a datatype filter does not affect the truth value of a filter
combination, unless the datatype filter also contains conjunct
Fdt=c(x), in which case the filter combination is trivially unsat-
isfiable. Thus, if F(x) is not redundant, either it does not contain
negated datatype filters, or it contains the two filters Fdt=c(x) and
¬Fdt=c(x) for a constant c. In this last case, the occurrence of any
further datatype filter in F(x) would make the filter combination
redundant. □

We represent language tag filters, derived from the
sh:languageIn and sh:uniqueLang, with the F languageTag = c(x)
filter relation, which is true if x is string literal with language tag
c. Since not all string literals have a language tag, but no string
literal has more than one such tag, this type of filter behaves
analogously to the datatype filter. The proof of the following
lemma, which states that the MNRC of language tag filters is two,
can be derived from the one above.

Lemma 6. Any filter combination F(x) that contains more than two
language tag filter conjuncts is redundant.

The order comparison filters, which are expressible in SHACL
with the sh:minExclusive, sh:maxExclusive,
sh:minInclusive and sh:maxInclusive constraint compo-
nents, denote the x > c , x < c , x ≥ c and x ≤ c operators,
respectively. Order comparison filters have an MNRC of two.

Lemma 7. Any filter combination F(x) that contains more than two
order comparison filter conjuncts is redundant.

Proof. If two order comparison filters in F(x) are defined over
incompatible comparison types (e.g. strings and dates) then F(x)
is unsatisfiable, and all the other comparison filters in F(x) are
redundant. In a set of filters, we define as the most restrictive the
one with the smallest number of elements satisfying it, or any
such filter if there is more than one. If all the comparison filters
in F(x) are defined over the same comparison type, let α be the
most restrictive conjunct in F(x) of type x > c , ¬x < c , x ≥ c and
¬x ≤ c (or ⊤ if none such conjunct exists), and ω be the most
restrictive conjunct in F(x) of type ¬x > c , x < c , ¬x ≥ c and

https://www.w3.org/TR/xmlschema11-2/#integer
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x ≤ c. Trivially, F(x) is semantically equivalent to F′(x), which is
constructed by removing from F(x) all comparison filters that are
not α or ω. □

String length comparison filters are expressed in SHACL with
the constraint components sh:minLength and sh:maxLength,
and they behave analogously to the order comparison filters. The
proof of the following lemma, which states that the MNRC of
string length comparison filters is two, can be derived from the
one above.

Lemma 8. Any filter combination F(x) that contains more than two
string length comparison filter conjuncts is redundant.

Node kind filters can be represented by three filter relations
F IRI(x), F literal(x) and F blank(x) that are true if x is, respectively, an
IRI, a literal or a blank node. Node kind filters have an MNRC of
three.

Lemma 9. Any filter combination F(x) that contains more than
three node kind filter conjuncts is redundant.

Proof. This lemma can be proven in the same manner as
Lemma 5, with the exception that, since all RDF terms belong to
exactly one of the tree node kinds, filter combination ¬F IRI(x) ∧

¬F literal(x)∧¬F blank(x) is unsatisfiable and it is not redundant. □

We can establish an MNRC of 1 for the equality-to-a-constant
operator (expressed in SHACL with the sh:hasValue and sh:in
constraints), by noticing that any variable x, by the law of ex-
cluded middle, is either interpreted as one of the known con-
stants, or as none of them. In SCL we can express with Σν(x) the
fact that x is none of the known constants C , where ν is a unique
shape name defined as Σν(x) ↔

⋀
c∈C ¬x = c. Intuitively, we

consider all possible interactions of the equality operator with
filter combinations by considering whether an element x is one of
the known constants, or whether it conforms to shape Σν(x). In
order to use this new shape ν in our axiomatisation, we redefine
a filter combination F(x) as a conjunction of atoms of the form
x = c, x¬ = c, Σν(x), F (x) and ¬F (x).

Lemma 10. Any filter combination F(x) that contains more than
one equality-to-a-constant conjuncts is redundant.

Proof. Any filter combination F(x) that contains more than
one equality-to-a-constant operator, of which at least one is
in positive form, is redundant. In fact, a filter combination is
made redundant by: (a) any two positive equality-to-a-constant
operators x = c ∧ x = c′, with c ̸= c′ (recall that we are
using the unique name assumption), which is unsatisfiable by the
standard interpretation of the equality operator, and (b) any pair
of a positive and a negative equality-to-a-constant operators x =

c∧x ̸= c′ because (b.1) if c and c′ are the same constant, then the
pair of conjuncts is unsatisfiable by the standard interpretation of
the equality operator and (b.2) if c is not the same constant as c′

then conjunct ¬x = c′ is redundant.
Moreover, any filter combination F(x) that contains equality-

to-a-constant operators, but all negated, is also redundant. Let D
be the domain of discourse, C be the set of known constants in
the sentenceΦ from which the filter combinations have been cre-
ated, and C− the set of constants that are in the negated equality-
to-a-constant operators of F(x). The equality-to-a-constant oper-
ators in F(x) restricts the domain to elements D \ C−. Let F∗(x)
be the subset of F(x) without equality-to-a-constant conjuncts.
We can rewrite F(x) into an equivalent set of filter combinations
F̄ that contain at most one equality-to-a-constant operator by
noticing that we can rewrite D \ C− as (D \ C) ∪ (C \ C−), and
14
that the left-hand side of this last union of sets corresponds
to the elements in the interpretation of Σν(x), while the right-
hand side is a finite set of known constants. The set of filter
combinations F̄ that makes F(x) redundant is defined as follows:
F̄ = {F∗(x) ∧ Σν(x)} ∪ {F∗(x) ∧ x = c|c ∈ C \ C−

}. Since every
element of the domain either belongs to Σν(x) or it is one of the
known constants, the restrictions imposed by F(x) and by the set
F̄ are equivalent. □

The only filter constraint that does not have a maximum non-
redundant capacity is sh:pattern, since any number of regular
expressions can be combined together to generate novel and
non-redundant regular expressions.

We define the set of bounded filter combinations F
′φ of an MSCL

sentence φ the set of all conjunctions such that (1) the conjuncts
are atoms of the form x = c, Σν(x), F (x) or ¬F (x), where c is a
constant occurring in φ and F is a filter predicate occurring in φ;
(2) the number of conjuncts of each filter type, and of equality,
does not exceed its maximum non-redundant capacity.

Notice that in the previous axiomatisation the size of each
conjunct depends on the size of the finite sets computed by the
γ function. While certain filter constraints, such as sh:nodeKind,
are either satisfiable by an infinite number of elements, or are
unsatisfiable, other constraints can be satisfied by an arbitrar-
ily large number of elements. We can reduce the size of each
conjunct to a logarithmic factor (with a binary numeric repre-
sentation) by using counting quantifiers. This allows us to ex-
press the maximum number of elements that can satisfy a filter
combination without explicitly enumerating them.

Given an MSCL sentence φ and the set C of all known constants
in φ, the bounded axiomatisation ᾱ(φ) of φ is defined as follows.

ᾱ(φ) =

(
Σν (x) ↔

⋀
c∈C

¬x = c

)
∧

⋀
F(x)∈F′φ ,|γ (F(x))̸=∞|

∃
≤γ (F(x))x. F(x)

By Lemmas 5 to 10 if φ does not contain any filter of the
sh:pattern type, the bounded axiomatisation only includes filter
combinations of up to 12 conjuncts. Thus, the size of the bounded
axiomatisation is polynomial w.r.t. φ.

To better explain this second axiomatisation, let us consider
again the example of the MSCL sentence φ∗ defined before. The
bounded axiomatisation ᾱ(φ∗) of φ∗ contains, among others, the
following conjuncts:(
Σν(x) ↔ x ̸= 2 ∧ x ̸= 3 ∧ x ̸= q

)
∧
(
∃

≤5x. F>0(x) ∧ F
≤5(x) ∧ Fdt=xsd:int (x)

)
∧
(
∃

≤3x. F>0(x) ∧ F
≤5(x) ∧ Fdt=xsd:int (x) ∧Σν(x)

)
∧
(
∃

≤0x. F>0(x) ∧ F
≤5(x) ∧ Fdt=xsd:int (x) ∧ x = q

)
Of the four elements required by the existentially bounded

sub-formula of φ∗ to satisfy a filter combination, only three can
belong to Σν(x) (by the third line of the axiomatisation). The
remaining one must satisfy both (x = 2∨ x = 3∨ x = q) and x ̸=

2 ∧ x ̸= 3, and thus cannot be a constant other than q. However,
q is not compatible with the filter combination (by the last line
of the axiomatisation). Therefore, φ∗

∧ ᾱ(φ∗) is unsatisfiable on
an uninterpreted model.

It should be noted that the bounded axiomatisation does not
follow the MSCL grammar, while the naïve filter axiomatisa-
tion does, albeit not resulting in well-formed sentences. The
differences between our axiomatisations and well-formed MSCL
sentences, however, do not affect our decidability and complexity
results presented in the following section since (a), the positive
results are applicable to fragments of first-order logic that are
general enough to express our axiomatisations and (b), the neg-
ative results are applicable to SHACL sentences without filters,
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which therefore do not require an axiomatisation. For the pur-
poses of the decidability and complexity analysis presented in the
following section, the naïve filter axiomatisation is compatible
with all of the language fragments, while the bounded filter
axiomatisation is compatible with the fragments that include
counting quantifiers.

Theorem 6. Given an MSCL sentence φ and its bounded filter
xiomatisation ᾱ(φ), sentence φ is satisfiable on a canonical model
ff φ ∧ ᾱ(φ) is satisfiable on an uninterpreted model. Containment
1 ⊆ φ2 of two MSCL sentences on all canonical models holds iff
1 ∧ ᾱ(φ1 ∧ φ2) ⊆ φ2 holds on all uninterpreted models.

roof. We focus on satisfiability, since the proof for contain-
ent is similar. First notice that every canonical model I of Φ

s necessarily a model of φ ∧ α(φ). Indeed, by definition of the
unction γ , given a filter combination F(x), there cannot be more
han |γ (F(x))| elements satisfying F(x), independently of the
nderlying canonical model. Thus, I satisfies α(φ). Consider now
model I of φ∧α(φ) and let I⋆ be the structure obtained from I by
eplacing the interpretations of the monadic filter relations with
heir canonical ones. Obviously, for any filter combination F(x),
here are exactly |γ (F(x))| elements in I⋆ satisfying F(x), since I⋆
s canonical. As a consequence, there exists a injection ι between
he elements satisfying F(x) in I and those satisfying F(x) in I⋆. At
this point, one can prove that I⋆ satisfies Φ . Indeed, every time a
value x, satisfying F(x) in I , is used to verify a subformula ψ of Φ
in I , one can use the value ι(x) to verify the same subformula ψ
in I⋆. □

6.3. From template satisfiability to MSCL satisfiability

As anticipated in the previous section, the problem of template
satisfiability (Definition 16) can be reduced into an ∃SCL satis-
fiability problem. In particular, achieving this reduction in the
face of filters requires the additional machinery of the bounded
filter axiomatisation. The correspondence between SHACL tem-
plate satisfiability and ∃SCL sentence satisfiability is given by the
following theorem. The intuition behind this theorem is that,
in an uninterpreted model, unknown constant symbols are in-
terchangeable. Therefore, on an uninterpreted model, consid-
ering template satisfiability for one unknown constant symbol
amounts to considering this problem for all possible constants.
Let Constant(φ) denote the set of constants in φ.

Theorem 7. The answer to the template satisfiability problem for
M, s and d under brave-total semantics is True iff there exists a
onstant symbol f ∈ Constant(φ) ∪ {c}, with c a fresh constant
ymbol, such that φ∧ ᾱ(φ)∧Σs(f ) is satisfiable on an uninterpreted
odel, where φ = τ (M ∪ {⟨s,∅, d⟩}).

roof. Recall that, by Theorem 6, there exists a canonical model
′ such that I |H φ∧Σs(n) iff there exists an uninterpreted model
J such that J |H φ ∧Σs(n) ∧ ᾱ(φ ∧Σs(n)).

(⇒) Assume that the answer to the template satisfiability
roblem for M , s and d under brave-total semantics is true. Per

Definition 16 this means that there exists an RDF graph G and
node n such that G is valid w.r.t. M ∪ {⟨s, tn, d⟩}. From the

ranslation of target declarations in Table 3 it follows that τ (M ∪

⟨s, tn, d⟩}) can be written as φ∧Σs(n), where φ = τ (M ∪{⟨s,∅,
⟩}). Moreover, by Theorem 3, there exists a canonical structure I
uch that I |H τ (M∪{⟨s, tn, d⟩}), which means that I |H φ∧Σs(n),
hanks to our previous observation. Consider the following cases:
1) n ∈ Constant(φ) and (2) n ̸∈ Constant(φ).

In the first case, let f be n. Then there exists an uninterpreted
odel J such that J |H φ ∧Σ (f ) ∧ ᾱ(φ ∧Σ (f )). Notice also that
s s

15
he bounded filter axiomatisation of an MSCL sentence ρ depends
nly on the set of filter relations and the set of constants in ρ.
herefore, if n ∈ Constant(φ) then ᾱ(φ ∧Σs(f )) = ᾱ(φ). Thus the
hesis follows.

In the second case there exists an uninterpreted model J and
a constant n such that J |H φ ∧ Σs(n) ∧ ᾱ(φ ∧ Σs(n)). Notice
that ᾱ(φ∧Σs(n)) implies ᾱ(φ), since sentence φ∧Σs(n) contains
the same filter relations as φ, and all the constants of φ plus one
additional constant. The additional constant in φ ∧ Σs(n) only
results in a stronger axiomatisation that considers more cases.
Thus J |H φ∧ᾱ(φ) andΣs is not empty in J . Let J∗ be the extension
of the uninterpreted model J where constant symbol f is mapped
to n, then J∗ |H φ ∧ ᾱ(φ) ∧ Σs(f ) as required by the theorem
tatement.
(⇐) Assume that there exists an uninterpreted model J such

hat J |H φ ∧ ᾱ(φ) ∧ Σs(f ). We distinguish two cases similar
to the cases discussed before: (1) f ∈ Constant(φ) and (2) f ̸∈

Constant(φ).
In the first case, the thesis can be proven by following the

reverse proof of the first case of the previous directionality. More
specifically, ᾱ(φ) = ᾱ(φ∧Σs(f )) and thus J |H φ∧ ᾱ(φ∧Σs(f ))∧
Σs(f ). By Theorem 6 there exists a canonical model I such that
I |H φ ∧Σs(f ).

In case (2), we prove that J |H φ ∧ ᾱ(φ) ∧ Σs(f ) implies the
existence of a value v in the domain of constants such that the
uninterpreted model J[f ↦→ v] (obtained by mapping constant
symbol f to v in J) models φ ∧ Σs(f ) ∧ ᾱ(φ ∧ Σs(f )). If no
such value v exists, then it must follow that there exist a non-
empty filter combination F, without equality operators, such that
J |H F(f ), but such that ᾱ(φ ∧ Σs(f )) → ∀x.¬F(x). Since F
does not contain equality operators, and since φ ∧ Σs(f ) and
φ contain the same shape relations, it follows that ᾱ(φ) →

∀x.¬F(x), which is in contradiction to the premises. Intuitively,
this is due to the fact that the interpretation of filters is universal,
so if a filter combination F is unsatisfiable, it is unsatisfiable in
all axiomatisations whose filter relations can express F. Having
proven the existence of uninterpreted model J[f ↦→ v], such that
J[f ↦→ v] |H φ∧Σs(f )∧ ᾱ(φ∧Σs(f )) the existence of a canonical
model I such that I |H φ∧Σs(v) easily follows, and thus the thesis
is proven. □

By this theorem, the positive decidability results that we will
present in Section 7 are also applicable to SHACL template satis-
fiability, and the complexity of the corresponding decision pro-
cedures can be considered an upper bound for the complexity of
SHACL template satisfiability in the same fragment, when it is at
least polynomial. This, in turn, allows us to extend our positive
results to many of the additional decision problems discussed in
Section 5.2.

7. SCL satisfiability

We finally embark on a detailed analysis of the satisfiability
problem for different fragments of SCL. Some of the proven and
derived results for sentences are visualised in Fig. 3.

The decidability results are proved via embedding in known
decidable (extensions of) fragments of first-order logic, while the
undecidability ones are obtained through reductions from either
the classic domino problem [34] or the subsumption problem of
constructs called role-value maps [35] in Description Logic [36],
that are undecidable even in very restricted forms [37].

Since we are not considering filters explicitly, but through
axiomatisation, the only interpreted relations are the standard
equality and the orders between elements.

For the sake of clarity and readability, the map depicted in

the figure is not complete w.r.t. two aspects. First, it misses few
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ragments whose decidability can be immediately derived via
nclusion into a more expressive decidable fragment, e.g., Z A D
C or S Z A T D. Second, the remaining missing cases have an
pen decidability problem. In particular, while there are several
ecidable fragments containing the T feature, we do not know
ny decidable fragment with the O or O′ features. Notice that the
ndecidability results exploiting the last two features are only
pplicable in the case of generalised RDF.
The letters denoting all SCL fragments directly correspond

o SHACL constraint components, as specified in Table 4. The
un)decidability of an SCL fragment α translates to the
un)decidability of our decision problems for the corresponding
HACL fragment, that is, the fragment that excludes the constraint
omponents identified by the letters not included in α. The results
eported in Fig. 3 show that the decidability of our decision
roblems for SHACL fragments is achieved by the exclusion of
ither complex constraint components or complex path expres-
ions. This is exemplified by the two largest decidable fragments.
he S Z A T D fragment (shown on the left of the figure),
ontains all of the SHACL path expressions, but it excludes three
onstraint components, namely cardinality constraints and both
he property pair equality and order constraints. The Z A D E C
ragment (shown on the right of the figure), in contrast, contains
ll SHACL constraints, with the exception of the property pair
rder one, but significantly restricts the path expressions. In Z A
E C, predicate paths (i.e., single relations) can only be combined
ith the zero-or-one path expression. It is also worth noting that
he following SHACL features are included in the base grammar∅,
hich is decidable: logical constraint components (e.g., conjunc-
ion, disjunction, and negation of constraints); filter constraints;
hape references (potentially recursive); a limited form of the
ardinality constraint that can only express cardinality ≥ 1.
16
7.1. Decidability results

As a preliminary result, we show that the base language ∅
s already powerful enough to express properties writable by
ombining the S, Z, and A features. In particular, the last one does
ot increase in expressive power when the D and O features are
lso taken in consideration.

heorem 8. There are (a) semantic-preserving and (b) polynomial-
ime finite-model-invariant satisfiability-preserving translations
mong the following SCL fragments: 1. ∅ ≡ S ≡ Z ≡ A ≡ S Z ≡

A ≡ ZA ≡ SZA; 2. D ≡ AD; 3. O ≡ AO; 4. DO ≡ ADO.

roof. To show the equivalences among the fourteen SCL frag-
ents mentioned in the statement, we consider the following

irst-order formula equivalences that represent few distributive
roperties enjoyed by the S, Z, and A features w.r.t. some of the
ther language constructs. The verification of their correctness
nly requires the application of standard properties of Boolean
onnectives and first-order quantifiers.

• [S] The sequence combination of two path formulae π1 and
π2 in the body of an existential quantification is removed by
nesting two plain quantifications, one for each πi:

∃y. (∃z. π1(x, z) ∧ π2(z, y)) ∧ ψ(y)
≡ ∃z. π1(x, z) ∧ (∃y. π2(z, y) ∧ ψ(y)).

• [Z] The Z path construct can be removed from the body of
an existential quantification on a free variable x by verifying
whether the formulaψ in its scope is already satisfied by the
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value bound to x itself:

∃y. (x = y ∨ π (x, y)) ∧ ψ(y) ≡ ψ(x) ∨ ∃y. π (x, y) ∧ ψ(y).

• [A] The removal of the A path construct from the body of
an existential quantifier or of the D and O constructs can be
done by exploiting the following equivalences:

∃y. (π1(x, y) ∨ π2(x, y)) ∧ ψ(y) ≡ (∃y. π1(x, y) ∧ ψ(y))

∨ (∃y. π2(x, y) ∧ ψ(y));

¬∃y. (π1(x, y) ∨ π2(x, y)) ∧ R(x, y) ≡ (¬∃y. π1(x, y) ∧ R(x, y))

∧ (¬∃y. π2(x, y) ∧ R(x, y));

∀y, z. (π1(x, y) ∨ π2(x, y)) ∧ R(x, z) → σ (y, z) ≡ (∀y, z. π1(x, y) ∧ R(x, z) → σ (y, z))

∧ (∀y, z. π2(x, y) ∧ R(x, z) → σ (y, z))

t this point, the equivalences between the fragments naturally
ollow by an iterative application of the reported equivalences
sed as rewriting rules. This clearly concludes the proof of Item a.
The removal of the Z and A constructs from an existential

uantification might lead, however, to an exponential blow-up
n the size of the formula due to the duplication of the body ψ
f the quantification. Therefore, to prove Item b, i.e., to obtain
olynomial-time finite-model-invariant satisfiability-preserving
ranslations, we first construct from the given sentence ϕ a finite-
odel-invariant equisatisfiable sentence ϕ⋆. The latter has size

inear in the original one and all the bodies of its quantifications
re just plain relations. Then, we apply the above described
emantic-preserving translations to ϕ⋆ that, in the worst case,
nly leads to a doubling of the size. The sentence ϕ⋆ is obtained by
teratively applying to ϕ the following two rewriting operations,
ntil no complex formula appears in the scope of an existential
uantification. Let ψ ′(x) = ∃y. π (x, y) ∧ ψ(y) be a subformula,
here ψ(y) does not contain quantifiers other than possibly
hose of the S, D, and O features. Then: (i) replace ψ ′(x) with
y. π (x, y) ∧ Σ(y), where Σ is a fresh monadic relation; (ii)
onjoin the resulting sentence with ∀x.Σ(x) ↔ ψ(x). The two
ewriting operations in isolation only lead to a constant increase
f the size and are applied only a linear number of times. □

It turns out that the base language ∅ resembles the descrip-
ion logic ALC extended with universal roles, inverse roles, and
ominals [36]. This resemblance is effectively exploited as a key
bservation at the core of the following result.

heorem 9. All SCL subfragments of SZA enjoy the finite-model
roperty and an ExpTime-complete satisfiability problem.

roof. The finite-model property follows from the fact that the
ubsuming S Z A D fragment enjoys the same property, as shown
ater on in Theorem 12.

As far as the satisfiability problem is concerned, thanks to
tem 1 of Theorem 8, we can focus on the base fragment ∅.

On the one hand, on the hardness side, one can observe
hat the description logic ALC extended with inverse roles and
ominals (ALCOI) [36] and the fragment ∅ deprived of the
niversal quantifications at the level of sentences (i.e., the ∅
ubfragment generated by grammar rule ϕ := ⊤ | ϕ ∧ ϕ |

(c)) are linearly interreducible. Indeed, every existential modal-
ty ∃R.C (resp., ∃R−.C) can be translated back-and-forth to the SCL
onstruct ∃y. R(x, y) ∧ ψC (y) (resp., ∃y. R−(x, y) ∧ ψC (y)), where
C represents the recursive translation of the concept C . More-
ver, every nominal n corresponds to the equality construct x =

n, where a natural bijection between nominals and constant
ymbols is considered. At this point, since the aforementioned
escription logic has an ExpTime-complete satisfiability problem
38,39], it holds that the same problem for all subfragments of S
A is ExpTime-hard.
17
On the other hand, completeness follows by observing that the
niversal quantifications at the level of sentences can be encoded
n the further extension of ALC with the universal role U [38,40,
1], which has an ExpTime-complete satisfiability problem [42].
ndeed, the universal sentences of the form (a) ∀x. isA(x, c) →

(x), (b) ∀x, y. R±(x, y) → Σ(x), (c) and ∀x.Σ(x) ↔ ψ(x) can be
ranslated, respectively, as follows: (a) nc ∧∀isA−.Σ , where nc is
he nominal for the constant c; (b) ∀U .∀R∓.Σ; (c) ∀U .(Σ ↔ Cψ ),
here Cψ is the concept obtained by translating the ∅-formula ψ

nto ALCOI. □

To derive properties of the Z A D E fragment, together with
ts sub-fragments (two of those – E and A E – are included
n Fig. 3), we leverage on the syntactic embedding in the two-
ariable fragment of first-order logic [43].

heorem 10. The ZADE fragment of SCL enjoys the finite-model
roperty and a NExpTime satisfiability problem.

roof. Via a syntactic inspection of the SCL grammar one can
bserve that, by avoiding the S and O features of the language,
t is only possible to write formulae with at most two free
ariables. For this reason, every Z A D E-formula belongs to the
wo-variable fragment of first-order logic [43] which is known to
njoy both the exponentially-bounded finite-model property and
NExpTime-complete satisfiability problem [44]. □

The embedding in the two-variable fragment used in the pre-
ious theorem can be generalised when the C feature is added
o the picture. However, the gained additional expressive power
oes not come without a price, since the finite-model property is
ot preserved.

heorem 11. The non-recursive C fragment of SCL does not enjoy
he finite-model property (on both sentences and formulae) and
as a NExpTime-hard satisfiability problem. Nevertheless, the finite
nd unrestricted satisfiability problems for the ZADEC fragment are
ExpTime-Complete.

roof. As for the proof of Theorem 10, one can observe that every
A D E C-formula belongs to the two-variable fragment of first-
rder logic extended with counting quantifiers. Such a logic does
ot enjoy the finite-model property [45], since it syntactically
ontains a sentence that encodes the existence of an injective
on-surjective function from the domain of the model to itself.
he non-recursive C fragment of SCL allows us to express a similar
roperty via the following sentence ϕ, thus proving the first part
f the statement:
ϕ ≜ isA(0, c) ∧Σ(0) ∧ ∀x.Σ(x) ↔ ψ1(x) ∧ ∀x.

isA(x, c) → ψ2(x);

1(x) ≜ ¬∃y. R−(x, y);

2(x) ≜ ∃
=1y. (R(x, y) ∧ isA(y, c)) ∧ ¬∃

≥2y. R−(x, y).

ntuitively, the first three conjuncts of ϕ force every model of
he sentence to contain a distinguished element 0 that (i) does
ot have any R-predecessor and (ii) is related to an arbitrary but
ixed constant c w.r.t. isA. In other words, 0 is contained in the
omain of the relation isA, but is not contained in the image of
he relation R. Then, the final conjunct of ϕ ensures that every
lement related to c w.r.t. isA has exactly one R-successor, also
elated to c in the same way, and at most one R-predecessor.
hus, a model of ϕ must contain an infinite chain of elements
airwise connected by the functional relation R.
It is interesting to observe that the ability to model an infinity

xiom is already present at the level of constraints, as witnessed
y the following C-formula, where the constant 0 is replaced by
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the existentially quantified variable x, where ψ1(x) and ψ2(x) are
he previously introduced formulae with one free variable:

˜(z)≜ (z = c)∧∃x. (isA−(z, x)∧ψ1(x))∧∀x. isA−(z, x) → ψ2(x).

By generalising the proof of Theorem 9, one can notice that
the C fragment of SCL semantically subsumes the description
logic ALC extended with inverse roles, nominals, and cardinality
restrictions (ALCOIQ) [36]. Indeed, every qualified cardinality
restriction (≥ n R.C) (resp., (≤ n R.C)) precisely corresponds to the
CL construct ∃

≥ny. R(x, y)∧ψC (y) (resp., ¬∃
≥n+1y. R(x, y)∧ψC (y)),

here ψC represents the recursive translation of the concept C .
hus, the hardness result for C follows by recalling that the spe-
ific ALC language has a NExpTime-hard satisfiability problem
46,47].

On the positive side, however, the extension of the two-
ariable fragment of first-order logic with counting quantifiers
as decidable finite and unrestricted satisfiability problems.
pecifically, both can be solved in NExpTime, even in the case of
inary encoding of the cardinality constants [48,49]. Hence, the
econd part of the statement follows as well. □

For the S Z A D fragment, we obtain model-theoretic and
complexity results via an embedding in the unary-negation frag-
ent of first-order logic [50]. When the T feature is considered,
he same embedding can be adapted to rewrite S Z A T D into
he extension of the mentioned first-order fragment with regular
ath expressions [51]. Unfortunately, as for the addition of the
feature to Z A D E, we need to pay the price of losing the

finite-model property.

Theorem 12. The SZAD fragment of SCL enjoys the finite-model
roperty, while the non-recursive STD fragment does not (on both
entences and formulae). Nevertheless, the finite and unrestricted
atisfiability problems for the SZATD fragment are solvable in
ExpTime.

roof. By inspecting the SCL grammar, one can notice that every
ormula that does not make use of the T, E, O, and C constructs can
e translated into the standard first-order logic syntax, with con-
unctions and disjunctions as unique binary Boolean connectives,
here negation is only applied to formulae with at most one

ree variable. For this reason, every S Z A D-formula semantically
elongs to the unary-negation fragment of first-order logic, which
s known to enjoy the finite-model property [50,52].

Mutatis mutandis, every S Z A T D-formula belongs to the
unary-negation fragment of first-order logic extended with reg-
ular path expressions [51]. Indeed, the grammar rule π (x, y) of
SCL, precisely resembles the way the regular path expressions
are constructed in the considered logic, when one avoids the
test construct. Unfortunately, as for the two-variable fragment
with counting quantifiers, this logic also fails to satisfy the finite-
model property since it is able to encode the existence of a
non-terminating path without cycles. The non-recursive S T D
fragment of SCL allows us to express the same property, as de-
scribed in the following. First of all, consider the S T-path-formula
π (x, y)≜ ∃z. (R−(x, z) ∧ (R−(z, y))⋆). Obviously, π (x, y) holds be-
tween two elements x and y of a model iff there exists a non-
trivial R-path (of arbitrary positive length) that, starting in y, leads
to x. Now, by writing the S T D-formula ψ(x)≜¬∃y. (π (x, y) ∧

R(x, y)), we express the fact that an element x does not belong
to any R-cycle since, otherwise, there would be an R-successor y
able to reach x itself. Thus, by ensuring that every element in the
model has an R-successor, but does not belong to any R-cycle, we
can enforce the existence of an infinite R-path. The non-recursive
S T D sentence ϕ expresses exactly this property, where c is an
 d
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arbitrary but fixed constant:

ϕ ≜ isA(0, c) ∧ ∀x. isA(x, c) → (ψ(x) ∧ ∃y. (R(x, y) ∧ isA(y, c))).

The same can be stated via the following non-recursive S T
-formula:˜(z)≜(z = c) ∧ isA(0, z) ∧ ∀x. isA−1(z, x)
(ψ(x) ∧ ∃y. (R(x, y) ∧ isA(y, c))).

On the positive side, however, the extension of the unary-
egation fragment of first-order logic with arbitrary transitive re-
ations or, more generally, with regular path expressions has de-
idable finite and unrestricted satisfiability problems. Specifically,
oth can be solved in 2ExpTime [51,53,54]. □

At this point, it is interesting to observe that the O feature
llows us to express a very weak form of counting restriction
hich is, however, powerful enough to describe an infinity axiom.

heorem 13. The non-recursive O and EO′ fragments of SCL do not
njoy the finite-model property (on both sentences and formulae).

roof. Similarly to the use of the C construct of SCL, a simple
ombination of just few instances of the O feature allows us
o write the following sentence ϕ encoding the existence of an
njective function that is not surjective. Indeed, a weaker version
f the role of the counting quantifier is played here by the O′

onstruct that enforces the functionality of the two relations R
nd S. Then, by applying both O′ and O to the inverse of R and S,
e ensure that S is equal to R−, which in its turn implies that the

atter is functional as well. Hence, the statement of the theorem
mmediately follows.

ϕ ≜ isA(0, c) ∧Σ(0) ∧ ∀x.Σ(x) ↔ ψ1(x) ∧ ∀x.
isA(x, c) → ψ2(x);

1(x) ≜ ¬∃y. R−(x, y);

2(x) ≜ ∃y. (R(x, y) ∧ isA(y, c))
∧ ∀y, z. R(x, y) ∧ R(x, z) → y ≤ z ∧ ∀y, z. S(x, y)
∧S(x, z) → y ≤ z
∧ ∀y, z. R−(x, y) ∧ S(x, z) → y ≤ z ∧ ∀y, z. R−(x, y)
∧S(x, z) → y ≥ z.

To show that the E O′ fragment does not enjoy the finite-model
roperty too, it is enough to replace the last two applications of
he O′ and O features with the E-formula ∀y. R−(x, y) ↔ S(x, y),
hich clearly ensures the functionality of R−, being S functional.
Notice that also in this case we can express the above property

t the level of formulae with one free variable, where ψ1(x) and
2(x) are defined as above:˜(z)≜ (z = c) ∧ ∃x. (isA−(z, x) ∧ ψ1(x))
∧∀x. isA−(z, x) → ψ2(x). □

.2. Undecidability results

In the remaining part of this section, we show the unde-
idability of the satisfiability problem for several fragments of
CL through a semi-conservative reduction from (1) the stan-
ard domino problem [34,55,56], whose solution is known to be
1
0 -complete (see Theorems 14 and 15) and (2) and the subsump-

ion problem of role-value maps [35] in DL (see Theorem 16).
A N × N tiling system ⟨T,H, V ⟩ is a structure built on a non-

mpty set T of domino types, a.k.a. tiles, and two horizontal and
ertical matching relations H, V ⊆ T × T. The domino problem
sks for a compatible tiling of the first quadrant N × N of the

iscrete plane, i.e., a solution mapping ð :N×N → T such that, for
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all x, y ∈ N, both (ð(x, y), ð(x+1, y)) ∈ H and (ð(x, y), ð(x, y+1)) ∈

V hold true.

Theorem 14. The sentence satisfiability problems of the non-
recursive SO, SAC, SEC, SEO′, and SZAE fragments of SCL are
undecidable, even with a bounded number (4, 3, 4, 4, and 8,
respectively) of binary relations.

Proof. The main idea behind the proof is to embed a tiling system
into a model of a particular SCL sentence ϕ that is satisfiable iff
the tiling system allows for an admissible tiling. The hardest part
in the reduction consists in the definition of a satisfiable sentence
all of whose models homomorphically contain the infinite grid of
the tiling problem. In other words, this sentence should admit
an infinite square grid graph as a minor of the model unwinding.
Given that, the remaining part of the reduction can be carried out
in the base language ∅.

Independently of the fragment we choose to prove undecid-
able, consider the following definition:

ϕ ≜
(⋁

t∈T isA(0, t)
)

∧

(⋀
t∈T ∀x. isA(x, t) → (ψ t

T (x) ∧ ψG(x))
)
.

Intuitively, the first conjunct ensures the existence of the point
0, i.e., the origin of the grid, labelled by some arbitrary tile in
the set T. Notice that T is lifted to a set of constants in SCL. The
second conjunct, then, states that all points x, labelled by some
tile t , need to satisfy the properties expressed by the two monadic
formulae ψ t

T (x) and ψG(x). The first one, called tiling formula, is
used to ensure the admissibility of the tiling, while the second
one, called grid formula, forces all models of ϕ to necessarily
embed a grid.

ψ t
T (x)≜

t ′ ̸=t⋀
t ′∈T

¬isA(x, t ′)

∧

⎛⎝∀y. H(x, y) →

⋁
(t,t ′)∈H

isA(y, t ′)

⎞⎠
∧

⎛⎝∀y. V(x, y) →

⋁
(t,t ′)∈V

isA(y, t ′)

⎞⎠.
The first conjunct of the tiling formula ψ t

T (x) verifies that the
point associated with the argument x is labelled by no other tile
than t itself. The second part, instead, ensures that the points y
on the right or above of x are labelled by some tile t ′ which is
compatible with t ,w.r.t. the constraints imposed by the horizontal
H and vertical V matching relations, respectively. Notice here that
the relation symbols H and V are the syntactic counterpart of H
and V , respectively.

At this point, we can focus on the grid formula ψG(x) defined
as follows:

ψG(x)≜ (∃y. H(x, y)) ∧ (∃y. V(x, y)) ∧ γ (x).

The first two conjuncts guarantee the existence of an horizon-
tal and vertical adjacent of the point x, while the subformula γ (x),
whose definition depends on the considered fragment of SCL,
needs to enforce the fact that x is the origin of a square. In other
words, this means that, going horizontally and then vertically
or, vice versa, vertically and then horizontally, the same point is
reached.

To do this, we make use of the two S-path-formulae
πHV(x, y)≜ ∃z. (H(x, z) ∧ V(z, y)) and πVH(x, y)≜ ∃z. (V(x, z) ∧

H(z, y)). In some cases, we also consider the S A-path-formula

πD(x, y)≜πHV(x, y)∨πVH(x, y) combining the previous ones, which

19
implicitly define a diagonal relation. We now proceed by a case
analysis on the specific fragment.

• [SO] By assuming the existence of a non-empty relation
D connecting a point with its opposite in the square, i.e.,
the diagonal point, we can express the fact that all points
reachable through πHV or πVH are, actually, the same unique
point:

γ (x)≜ ∃y. D(x, y)
∧ ∀y, z. πHV(x, y) ∧ D(x, z) → y ≤ z
∧ ∀y, z. πHV(x, y) ∧ D(x, z) → y ≥ z
∧ ∀y, z. πVH(x, y) ∧ D(x, z) → y ≤ z
∧ ∀y, z. πVH(x, y) ∧ D(x, z) → y ≥ z.

The S O-formula γ (x) ensures that the relation D is both non-
empty and functional and that all points reachable via πHV
or πVH are necessarily the single one reachable through D.

• [SAC] By applying a counting quantifier to the formula πD,
which encodes the union of the points reachable through
πHV or πVH, we can ensure the existence of a single diagonal
point:

γ (x)≜¬∃
≥2y. πD(x, y).

• [SEC] As for the S O fragment, here we use a diagonal rela-
tion D, which needs to contain all and only the points reach-
able via πHV or πVH. By means of the counting quantifier, we
enforce its functionality:

γ (x)≜ ¬∃
≥2y. D(x, y)

∧ ∀y. πHV(x, y) ↔ D(x, y)
∧ ∀y. πVH(x, y) ↔ D(x, y).

• [SEO′] This case is similar to the previous one, where the
functionality of D is obtained by means of the O′ construct:

γ (x)≜ ∀y, z. D(x, y) ∧ D(x, z) → y ≤ z
∧ ∀y. πHV(x, y) ↔ D(x, y)
∧ ∀y. πVH(x, y) ↔ D(x, y).

• [SZAE] The proof for this final case is inspired by the one
proposed for the undecidability of the guarded fragment
extended with transitive closure of binary relations [57].
This time, the functionality of the diagonal relation D is
indirectly ensured by the conjunction of the four formulae
γ1(x), γ2(x), γ3(x), and γ4(x) that exploit all the features of
the fragment:

γ (x)≜ γ1(x) ∧ γ2(x) ∧ γ3(x) ∧ γ4(x)
∧ ∀y. πD(x, y) ↔ D(x, y),

where

γ1(x)≜ ∀y.

⎛⎝ ⋁
i∈{0,1}

Di(x, y)

⎞⎠ ↔ D(x, y),

γ2(x)≜

⎛⎝ ⋁
i∈{0,1}

¬∃y. Di(x, y)

⎞⎠
∧

⎛⎝ ⋀
i∈{0,1}

∀y. Di(x, y) → ∃z. D1−i(y, z)

⎞⎠,
γ3(x)≜

⋀
i∈{0,1}

∀y.
(
x = y ∨ Di(x, y) ∨ D−

i (x, y)
)

↔ Ei(x, y), and

γ4(x)≜
⋀

∀y.(∃z. (Ei(x, z) ∧ Ei(z, y))) ↔ Ei(x, y).

i∈{0,1}
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Intuitively, γ1 asserts that D is the union of the two accessory
relations D0 and D1, while γ2 guarantees that a point can
only have adjacents w.r.t. just one relation Di and that these
adjacents can only appear as first argument of the opposite
relation D1−i. In addition, γ3 ensures that the additional
relation Ei is the reflexive symmetric closure of Di and γ4
forces Ei to be transitive too.
We can now prove that the relation D is functional. Suppose
by contradiction that this is not case, i.e., there exist values a,
b, and c in the domain of the model of the sentence ϕ, with
b ̸= c such that both D(a, b) and D(a, c) hold true. By the
formula γ1 and the first conjunct of γ2, we have that Di(a, b)
and Di(a, c) hold for exactly one index i ∈ {0, 1}. Thanks to
the full γ2, we surely know that a ̸= b, a ̸= c , and neither
Di(b, c) nor Di(c, b) can hold. Indeed, if a = b then Di(a, a).
This in turn implies D1−i(a, d) for some value d due to the
second conjunct of γ2. Hence, there would be pairs with the
same first element in both relations, trivially violating the
first conjunct of γ2. Similarly, if Di(b, c) holds, then D1−i(c, d)
needs to hold as well, for some value d, leading again to
a contradiction. Now, by the formula γ3, both Ei(b, a) and
Ei(a, c) hold, but Ei(b, c) does not. However, this clearly
contradicts γ4. As a consequence, D is necessarily functional.

ow, it is not hard to see that the above sentence ϕ (one for
ach fragment) is satisfiable iff the domino instance on which the
eduction is based on is solvable. Indeed, on the one hand, every
ompatible tiling ð :N×N → T of a tiling system ⟨T,H, V ⟩ induces
grid model that trivially satisfies ϕ. On the other hand, a model
f ϕ necessarily embed a grid whose points are labelled by tiles
atisfying the horizontal and vertical relations. □

heorem 15. The formula satisfiability problems of the non-
ecursive STO, SATC, STEC, STEO′, and SZATE fragments of SCL
re undecidable, even with a bounded (at least 4, 3, 4, 4, and 8,
espectively) number of binary relations.

roof. The proof of this theorem builds on top of the one of the
revious result, by showing that, with the addition of the tran-
itive closure operator, we can encode the solution of a domino
roblem as the existence of a constant satisfying the following
CL formula ψ(x), where the relation symbols H and V and the
iling and grid formulae ψ t

T and ψG are defined as in Theorem 14:

(x)≜

(⋁
t∈T

isA(x, t)

)
∧ ∀y.

((
∃z. (H(x, z))∗ ∧ (V(z, y))∗

)
→

(⋀
t∈T

isA(y, t) → (ψ t
T (y) ∧ ψG(y))

))
.

Intuitively, the formula ψ(x) is satisfied by a constant c if this
element is labelled by a tile in T and every other element y, reach-
able from c via an arbitrary numbers of horizontal steps followed
by another arbitrary number of vertical steps, satisfies both the
tiling and grid formulae. Obviously, ψ(x) is satisfied at the root of
a grid model induced by a compatible tiling ð :N × N → T of a
tiling system ⟨T,H, V ⟩. Indeed, every node in the grid is reachable
from the root by following a first-horizontal then-vertical path.
oreover, its labelling is coherent with what is prescribed by the

wo matching relations H and V , so, ψ t
T (y) necessarily holds at

every node of the grid. Vice versa, every structure satisfying ψ(c)
induces a compatible tiling, as the set of elements reachable from
c form a grid, due to the formula ψG, and are suitably labelled

t
thanks to the formula ψT . □ m

20
We now prove the undecidability of the non-recursive SE
fragment of SCL. Observe that, even if this statement directly
subsumes some of the results reported in Theorems 14 and 15, it
does so in a weak way, as the family of sentences defined in the
reduction below does require an unbounded number of binary
relations.

Theorem 16. The satisfiability problem for both sentences and
formulae of the non-recursive SE fragment of SCL is undecidable.

Proof. It has been proved that the subsumption problem of role-
value maps in description logic is undecidable [35], via a reduc-
tion from the word problem of groups. This specific problem can
be formalised by means of a constraint-satisfaction problem as
follows, where we consider the n binary relations {Ri | i ∈ [1, n]}
and the 2(m+1) binary relations {Pi, Qi | i ∈ [0,m]} as vocabulary.

Problem 1. Decide whether the set of constraints {P0 ̸= Q0} ∪ {

Pi = Qi | i ∈ [1,m]} is satisfiable, under the proviso that, for all i ∈

[0,m], it holds that Pi = Rj1Pi
◦ . . . ◦ R

j
kPi
Pi

and Qi = Rj1Qi
◦ . . . ◦ R

j
kQi
Qi

,

for some j1Pi , . . . , j
kPi
Pi ∈ [1, n] and j1Qi , . . . , j

kQi
Qi ∈ [1, n], with

kPi , kQi ∈ N.

The author of [35] has shown that the above problem can
be encoded in ALC extended with role composition, by con-
sidering an additional binary relation R as technical device. By
unravelling the FOL semantics of this encoding, we obtain the
reduction of the problem to the (un)satisfiability of the for-
mula ψ(x)≜

(⋀n
i=1 δi(x)

)
∧
(
¬ψ0(x) ∧

⋀m
i=1 ψi(x)

)
∧
⋀m

i=0

(
γPi (x)∧

γQi (x)
)
, whose components are defined as follows, with

Z ∈ {Pi, Qi | i ∈ [0,m]}:

δi(x)≜ ∀y. ((∃z. R(x, z) ∧ Ri(z, y)) ↔ R(x, y));
ψi(x)≜ ∀y. R(x, y) → (∀z. Pi(y, z) ↔ Qi(y, z));
γZ (x)≜ ∀y. R(x, y) → (∀z. γZ (y, z) ↔ Z(y, z));

γZ (y, z)≜ ∃wkZ−1.

(
. . .

(
∃w1. Rj1Z

(y,w1) ∧ Rj2Z
(w1,w2)

)
. . .

)
∧R

j
kZ
Z
(wkZ−1, z).

ow, it is evident that ψi(x) just uses the E construct, while
i(x) and γZ (x) exploit both the S and E constructs. No other
pecial construct is applied, thus, the formula ψ(x) belongs to the
on-recursive SE fragment of SCL.
Intuitively, the conjunct

(
¬ψ0(x) ∧

⋀m
i=1 ψi(x)

)
models the set

f constants {P0 ̸= Q0} ∪ {Pi = Qi | i ∈ [1,m]}, while
m
i=0

(
γPi (x) ∧ γQi (x)

)
ensures the side conditions Pi =

j1Pi
◦ . . . ◦ R

j
kPi
Pi

and Qi = Rj1Qi
◦ . . . ◦ R

j
kQi
Qi

. Finally, the conjunct⋀n
i=1 δi(x)

)
is a technical expedient to guarantee the correctness

f the reduction.
At this point, Theorem 3.5 and, in particular, Lemma 3.1 of

35] guarantee the undecidability of the class of formulae just
escribed. As a consequence, the formula satisfiability problem
or the non-recursive SE fragment is necessarily undecidable. The
ame holds for the sentence satisfiability problem, by considering
he non-recursive SE sentence Σ(c) ∧ ∀x.Σ(x) ↔ ψ(x). □

. Conclusion

In this article we have studied the satisfiability and contain-
ent problems for SHACL documents and shape constraints. In
rder to do so, we examined several recursive semantics pro-
osed in the literature and proved that they all coincide for
on-recursive documents. We also proved that partial assign-
ents semantics reduces to total assignments, and focused on
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the latter. We then provided a complete translation between:
(1) non-recursive SHACL and SCL, a new fragment of first-order
logic extended with counting quantifiers and transitive closure,
(2) recursive SHACL and MSCL, an extension of SCL into a monadic
second-order logic, where shape names become monadic second-
order variables. These translations into mathematical logic are
effective since, firstly, they offer a standard framework to model
the language, contrary to previous ad hoc modellings, and, sec-
ndly, they allow us to study several formal properties: from
apturing the semantics of filters (that have not been addressed
n literature before), to laying out a detailed map of SHACL frag-
ents for which we are able to prove (un)decidability along
ith complexity results, for our decision problems. We also ex-
ose semantic properties and asymmetries within SHACL which
ight inform a future update of the W3C language specifica-

ion. Although the satisfiability and containment problems are
oth undecidable for the full SHACL, decidability can be achieved
y restricting the usage of certain SHACL components, such as
ardinality restrictions over shape or path properties.
Nevertheless, the status of some weak fragments of SHACL,

uch as O and S C, as well as the finite-satisfiability problem for
the SE, SO, SAC, SEC, SEO′, and SZAE fragments remains an open
question worthy of further investigation.
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ppendix A. Translation from SHACL to SCL

In this section we present our translation τ (M) from a SHACL
ocument M (a set of SHACL shape definitions) into sentences

of our SCL grammar. For the sake of completeness, we define
our translation τ , for any SHACL document. However, it should
e noted that within SHACL, the same constraint can some-
imes be expressed with syntactically different, but semantically
quivalent expressions. This syntactic detail is not relevant to
ur analysis of SHACL, which is focused on semantics. Never-
heless, our formulation of Theorem 3 requires us to work with
‘‘standardised’’ syntactic representation of SHACL documents.
hus, we restrict ourselves to standardised SHACL documents, that
e will define next. In essence, a standardised SHACL document
estricts the usage of these syntactic variations without affecting
enerality. Given any SHACL document, it is always possible to
ransform it into a standardised one in linear size and time.

efinition 20. A standardised SHACL document is a SHACL doc-
ment that has the following properties:

1. all shape names are identified by IRIs (instead of blank
nodes);

2. it does not contain the following terms: sh:qualified
ValueShapesDisjoint, sh:in, sh:class, sh:minCount,
21
sh:maxCount, sh:qualifiedMaxCount, sh:and, sh:or,
and sh:xone;

3. it does not contain triples with a subject that is a prop-
erty shape, and a predicate that is one of the following:
sh:hasValue, sh:datatype, sh:nodeKind, sh:pattern,
sh:node, sh:property, sh:minExclusive, sh:min
Inclusive, sh:maxExclusive, sh:maxInclusive,
sh:maxLength, sh:minLength and sh:not;

4. triples with sh:languageIn as the property contain a list
with a single element as the object;

The translation into SCL grammar of a document M is⋀
s∈M τ (s), where τ (s) is the translation of a single SHACL shape

s in M . Given a shape ⟨s, t, d⟩, its translation τ (⟨s, t, d⟩) the
following, where τt,s and τd,s are, respectively, the target and
constraint axioms of the shape.

τ (⟨s, t, d⟩) = τt,s ∧ τd,s

The translation of axiom τt,s is defined in Table 3 if t is not
empty, or else it is ⊤. We do not discuss implicit class-based
targets, as they just represent a syntactic variant of class targets.
The translation τd,s is the following, where τ (x, s, d) is the unary
formula that models the constraints d of shape s.

τd,s = Σs(x) ↔ τ (x, s, d)

In the reminder of this section we define how to compute
τ (x, s, d). The constraints of d of a shape s in a SHACL document
M , is the set of triples that (1) have s as the subject in the RDF
graph representing M , or (2) define property paths or lists of
elements. As convention, we use c as an arbitrary constant and
C as an arbitrary list of constants. We use s, s′ and s′′ as shape
names, and S̄ as a list of shape names. Variables are defined as x,
y and z. Arbitrary paths are identified with r .

The translation of the constraints of a shape τ (x, s, d) is de-
fined in two cases as follows. The first case deals with the prop-
erty shapes, which must have exactly one value for the sh:path
property. The second case deals with node shapes, which cannot
have any value for the sh:path property. Recall that we use no-
tation ⟨s, p, o⟩ to represent an RDF triple with subject S, predicate
p and object o.

τ (x, s, d) = ⊤ ∧

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⋀
∀⟨s,y,z⟩∈dτ2(x, r, ⟨s, y, z⟩)

if ∃r.⟨s, sh:path, r⟩) ∈ d⋀
∀⟨s,y,z⟩∈d τ1(x, ⟨s, y, z⟩)

otherwise

Next, we define the translations τ1 of node shapes triples, τ2
of property shape triples and τ3 of property paths.

A.1. Translation of node shape triples

The translation of τ1(x, ⟨s, y, z⟩) is split in the following cases,
depending on the predicate of the triple. In case none of those
cases are matched τ1(x, ⟨s, y, z⟩)

.
= ⊤. The latter ensures that

any triple not directly described in the cases below does not alter
the truth value of the conjunction in the definition of τ (x, s).

• τ1(x, ⟨s, sh:hasValue, c⟩)
.
= x = c.

• τ1(x, ⟨s, sh:in, C⟩) .
=
⋁

c∈C x = c.
• τ1(x, ⟨s, sh:class, c⟩)

.
= ∃y.isA(x, y) ∧ y = c.

• τ1(x, ⟨s, sh:datatype, c⟩))
.
= F dt=c(x).

• τ1(x, ⟨s, sh:nodeKind, c⟩)
.
= F IRI(x) if c =sh:IRI; F literal

(x) if c =sh:Literal; F blank(x) if c =sh:BlankNode. The
translations for a c that equals sh:BlankNodeOrIRI,
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sh:BlankNodeOrLiteral or sh:IRIOrLiteral are triv-
ially constructed by a conjunction of two of these three
filters.

• τ1(x, ⟨s, sh:minExclusive, c⟩)
.
= x > c if order is an

interpreted relation, else F>c(x).
• τ1(x, ⟨s, sh:minInclusive, c⟩)

.
= x ≥ c if order is an

interpreted relation, else F≥c(x).
• τ1(x, ⟨s, sh:maxExclusive, c⟩)

.
= x < c if order is an

interpreted relation, else F<c(x).
• τ1(x, ⟨s, sh:maxInclusive, c⟩)

.
= x ≤ c if order is an

interpreted relation, else F≤c(x).
• τ1(x, ⟨s, sh:maxLength, c⟩)

.
= FmaxLength=c(x).

• τ1(x, ⟨s, sh:minLength, c⟩)
.
= FminLength=c(x).

• τ1(x, ⟨s, sh:pattern, c⟩)
.
= F pattern=c(x).

• τ1(x, ⟨s, sh:languageIn, C⟩) .
=
⋁

c∈C F languageTag = c(x).
• τ1(x, ⟨s, sh:not, s′

⟩) .
= ¬Σs′ (x).

• τ1(x, ⟨s, sh:and, S̄⟩)
.
=
⋀

s′∈S̄ Σs′ (x).
• τ1(x, ⟨s, sh:or, S̄⟩)

.
=
⋁

s′∈S̄ Σs′ (x).
• τ1(x, ⟨s, sh:node, s′

⟩) .
= Σs′ (x).

• τ1(x, ⟨s, sh:property, s′
⟩) .

= Σs′ (x).

A.2. Translation of property shapes

The translation of τ2(x, r, ⟨s, y, z⟩) is split in the following
cases, depending on the predicate of the triple. In case none of
those cases are matched τ2(x, r, ⟨s, y, z⟩)

.
= ⊤.

• τ2(x, r, ⟨s, sh:hasValue, c⟩)
.
= ∃y.r(x, y) ∧ τ1(y, ⟨s,

sh:hasValue, c⟩)
• τ2(x, r, ⟨s, p, c⟩)

.
= ∀y.τ3(x, r, y)) → τ1(y, ⟨s, p, c⟩), if

p equal to one of the following: sh:class, sh:datatype,
sh:nodeKind, sh:minExclusive, sh:minInclusive,
sh:maxExclusive, sh:maxInclusive, sh:maxLength,
sh:minLength, sh:pattern, sh:not, sh:and, sh:or,
sh:xone, sh:node, sh:property, sh:in .

• τ2(x, r, ⟨s, sh:languageIn, C⟩) .
=

∀y.τ3(x, r, y)) → τ1(y, ⟨s, sh:languageIn, C⟩).
• τ2(x, r, ⟨s, sh:uniqueLang, true⟩)

.
=
⋀

c∈L ¬∃
≥2y.r(x, y) ∧

F lang=c(y)
where L = {c|c ∈ C ∧ ∃s′.⟨s′, sh:languageIn, C⟩ ∈

M} ∪ {cuniqueL} and cuniqueL is a fresh unique constant.
This translation is possible because sh:languageIn is the
only constraint that can force language tags constraints on
literals.

• τ2(x, r, ⟨s, sh:minCount, c⟩)
.
= ∃

≥cy.τ3(x, r, y)).
• τ2(x, r, ⟨s, sh:maxCount, c⟩)

.
= ¬∃

≤cy.τ3(x, r, y)).
• τ2(x, r, ⟨s, sh:equals, c⟩)

.
= ∀y.τ3(x, r, y) ↔ τ3(x, c, y).

• τ2(x, r, ⟨s, sh:disjoint, c⟩)
.
= ¬∃y.τ3(x, r, y)∧τ3(x, c, y).

• τ2(x, r, ⟨s, sh:lessThan, c⟩)
.
= ∀y, z.τ3(x, r, y)∧τ3(x, c, z)

→ y < z.
• τ2(x, r, ⟨s, sh:lessThanOrEquals, c⟩)

.
= ∀y, z . τ3(x, r, y)

∧ τ3(x, c, z) → y ≤ z.
• τ2(x, r, ⟨s, sh:qualifiedValueShape, s′

⟩) .
= α ∧ β ,

where α and β are defined as follows. Let S ′ be the
set of sibling shapes of s if M contains
⟨s, sh:qualifiedValueShapesDisjoint, true⟩, or the
empty set otherwise.
Let ν(x) = Σs′ (x)

⋀
∀s′′∈S′ ¬Σs′′ (x). If triple

⟨s, sh:qualifiedMinCount, c⟩ is contained in M , then α
is equal to ∃

≥cy.τ3(x, r, y) ∧ ν(x), otherwise α is equal to
⊤. If M contains the triple ⟨s, sh:qualifiedMaxCount, c⟩,
then β is equal to ¬∃

≤cy.τ3(x, r, y) ∧ ν(x), otherwise β is
equal to ⊤.

• τ2(x, r, ⟨s, sh:closed, true⟩)
.
=

⋀
∀R∈Θ ¬∃y.R(x, y) if Θ is

all
not empty, or else ⊤, where Θ is defined as follows. Let Θ o
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be the set of all relation names in M , namely Θall
= {R|⟨x, R,

y⟩ ∈ M}. If this FOL translation is used to compare multiple
SHACL documents, such in the case of deciding contain-
ment, then Θall must be extended to contain all the relation
names in all these SHACL documents. Let Θdeclared be the
set of all the binary property names Θdeclared

= {R|{⟨s,
sh:property, x⟩ ∧ ⟨x, sh:path, R)⟩} ⊆ M}. Let Rclosed be
a unique fresh relation name, Θ ignored be the set of all the
binary property names declared as ‘‘ignored’’ properties,
namely Θ ignored

= {R|R ∈ R̄ ∧ ⟨s, sh:ignoredProperties,
R̄⟩ ∈ M}, where R̄ is a list of IRIs. The set Θ can now be
defined as Θ = (Θall

∪ {Rclosed}) \ (Θdeclared
∪Θ ignored).

A.3. Translation of property paths

The translation τ3(x, r, y) of any SHACL path r is given by
the following cases. For simplicity, we will assume that all prop-
erty paths have been translated into an equivalent form having
only simple IRIs within the scope of the inverse operator. Using
SPARQL syntax for brevity, where the inverse operator is iden-
tified by the hat symbol ˆ, the sequence path ˆ(r1/r2) can be
simplified into ˆr2/r̂1; an alternate path ˆ(r1 | r2) can be simplified
into ˆr2 | ˆr1. We can simplify in a similar way zero-or-more,
one-or-more and zero-or-one paths ˆ(r∗/+/?) into (ˆr)∗/+/?.

• If r is an IRI R, then τ3(x, r, y))
.
= R(x, y)

• If r is an inverse path, with r = ‘‘[sh:inversePath R]’’,
then τ3(x, r, y))

.
= R−(x, y)

• If r is a conjunction of paths, with r = ‘‘(r1, r2, . . . , rn)’’,
then τ3(x, r, y))

.
= ∃z1, z2, . . . , zn−1. τ3(x, r1, z1)) ∧

τ3(z1, r2, z2)) ∧ ... ∧ τ3(zn−1, r2, y))
• If r is a disjunction of paths, with r =

‘‘[ sh:alternativePath (r1, r2, . . . , rn) ]’’, then τ3(x, r, y)).
= τ3(x, r1, y)) ∨ τ3(x, r2, y)) ∨ ... ∨ τ3(x, rn, y))

• If r is a zero-or-more path, with r = ‘‘[ sh:zeroOrMorePath
r1]’’, then τ3(x, r, y))

.
= (τ3(x, r1, y)))∗

• If r is a one-or-more path, with r = ‘‘[ sh:oneOrMorePath
r1]’’, then τ3(x, r, y))

.
= ∃z.τ3(x, r1, z)) ∧ (τ3(z, r1, y)))∗

• If r is a zero-or-one path, with r = ‘‘[ sh:zeroOrOnePath
r1]’’, then τ3(x, r, y))

.
= x = y ∨ τ3(x, r1, y))

ppendix B. Translation from SCL to SHACL

In this section we present the translation τ−, inverse of τ , from
entences in the SCL grammar into SHACL documents. We begin
y defining the translation of the property path subgrammar
(x, y) into SHACL property paths:

• τ−(R) .
= R

• τ−(R−) .
= [ sh:inversePath R ]

• τ−(r⋆(x, y)) .
= [ sh:zeroOrMorePath τ−(r(x, y)) ]

• τ−(x = y ∨ r(x, y)) .
= [ sh:zeroOrOnePath τ−(r(x, y)) ]

• τ−(r1(x, y) ∨ r2(x, y))
.
= [ sh:alternativePath

(τ−(r1(x, y)), τ−(r2(x, y)) ])
• τ−(r1(x, y) ∧ r2(x, y))

.
= (τ−(r1(x, y)), τ−(r2(x, y)))

The translation of the constraint subgrammar ψ(x) is the fol-
owing. we will use τ−(ψ(x)) to denote the SHACL translation of
hape ψ(x), and ι(τ−(ψ(x))) to denote the IRI corresponding to its
hape name. To improve legibility, we omit set brackets around
ets of RDF triples, and we represent them in Turtle syntax.
or example, a set of RDF triples such as ‘‘s a sh:NodeShape ;
h:hasValue c . ’’ is to be interpreted as the set {⟨s, rdf:type,
h:NodeShape⟩, ⟨s, sh:hasValue, c⟩}. When alternative transla-
ions are possible, the one listed first takes precedence. In other
ords, a translation in the following list is applied to a formula

nly if no translation listed before it are applicable.
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R

• τ−(⊤) .
=

s a sh:NodeShape .
• τ−(x = c) .

=

s a sh:NodeShape ;
sh:hasValue c .

• τ−
(⋀

c∈L ¬∃
≥2y.r(x, y) ∧ F lang=c(y)

)
, where cuniqueL ∈ L

s a sh:PropertyShape ;
sh:path r ;
sh:uniqueLang true .

• τ−(F (x)) .
=

s a sh:NodeShape ;
f C .

Predicate f and the RDF term C is the filter function iden-
tified by F , namely one of the following: sh:datatype,
sh:nodeKind, sh:minExclusive, sh:minInclusive,
sh:maxExclusive, sh:maxInclusive, sh:maxLength,
sh:minLength, sh:pattern, sh:languageIn. Depending
on the type of the filter, C could be a literal, an IRI, or an
RDF list with a single element.

• τ−(Σs′ (x)) .
=

s a sh:NodeShape ;
sh:node s′.

if s′ is a node shape, else:
s a sh:NodeShape ;
sh:property s′.

• τ−
(⋀

∀R∈Θ ¬∃y.R(x, y)
)
where Θ is a set of property rela-

tion names that includes Rclosed, and Θlist is the RDF list
representation of all the property relation names in the SCL
formula that are not in Θ
s a sh:PropertyShape ;
sh:close true ;
sh:ignored Θlist.

• τ−(¬ψ(x)) .
=

s a sh:NodeShape ;
sh:not ι(τ−(ψ(x))).

• τ−(ψ1(x) ∧ ψ2(x))
.
=

s a sh:NodeShape ;
sh:and (ι(τ−(ψ1(x))), ι(τ−(ψ2(x)))) .

• τ−(∃≥ny.r(x, y) ∧ ψ(y)) .
=

s a sh:PropertyShape ;
sh:path τ−(r(x, y));
sh:qualifiedValueShape ι(τ−(ψ(y)));
sh:qualifiedMinCount n.

• τ−(∀y.r(x, y) ↔ R(x, y)) .
=

s a sh:PropertyShape ;
sh:path τ−(r(x, y));
sh:equals R.

• τ−(¬∃y.r(x, y) ∧ R(x, y)) .
=

s a sh:PropertyShape ;
sh:path τ−(r(x, y));
sh:disjoint R.

• τ−(∀y, z.r(x, y) ∧ R(x, z) → y < z) .
=

s a sh:PropertyShape ;
sh:path τ−(r(x, y));
sh:lessThan R.

• τ−(∀y, z.r(x, y) ∧ R(x, z) → y ≤ z) .
=

s a sh:PropertyShape ;
sh:path τ−(r(x, y));
sh:lessThanOrEquals R.

We now define the translation τ−(ϕ) of a complete sentence
of the ϕ-grammar into a SHACL document M as follows.

• τ−(ϕ1 ∧ ϕ2)
.
= τ−(ϕ1) ∪ τ−(ϕ2))

• τ−(Σs(c))
.
= s sh:targetNode c.

• τ−(∀x. isA(x, c) → Σ (x)) .
= s sh:targetClass c.
s

23
• τ−(∀x, y. R(x, y) → Σs(x))
.
= s sh:targetSubjectsOf R.

• τ−(∀x, y. R−(x, y) → Σs(x))
.
= s sh:targetObjectsOf R.

• τ−
(
Σs(x) ↔ ψ(x)

) .
= τ−(ψ1(x)) such that s =

ι(τ−(ψ1(x))).
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