
GTV: Generating Tabular Data via Vertical
Federated Learning

Zilong Zhao‡¶ , Han Wu§∗, Aad van Moorsel†, Lydia Y. Chen∥
‡National University of Singapore, Singapore

¶Betterdata, Singapore
§University of Southampton, UK
†University of Birmingham, UK

∥University of Neuchâtel, Switzerland

Abstract—Synthetic data has emerged as a promising avenue
for privacy-preserving data sharing. However, constructing syn-
thetic data generators necessitates access to the real dataset,
posing challenges, particularly when data features are disparately
distributed across different organizations. Vertical Federated
Learning (VFL) is a collaborative approach to training machine
learning models among distinct tabular data holders, such as
financial institutions, who possess disjoint features for the same
group of customers. In this paper, we introduce the GTV
framework for Generating Tabular Data via Vertical Federated
Learning and demonstrate that VFL can be successfully used
to implement GANs for distributed tabular data in a privacy-
preserving manner, with performance close to centralized GANs
which assume shared data. We make design choices with respect
to the distribution of GAN generator and discriminator models,
and we introduce a training-with-shuffling technique so that no
party can reconstruct training data from the GAN conditional
vector. The paper presents (1) an implementation of GTV, (2)
a detailed quality evaluation of the GTV-generated synthetic
data, (3) an examination of GTV framework on different
data distribution and number of clients, and (4) an analysis
on GTV’s robustness against Membership Inference Attacks
with different settings of Differential Privacy, for a range of
datasets with diverse distribution characteristics. Our results
demonstrate that GTV can consistently generate high-fidelity
synthetic tabular data of comparable quality to that generated
by a centralized GAN algorithm. The difference in machine
learning utility can be as low as 2.7%, even under extremely
imbalanced data distributions across clients. Code is available
at: https://github.com/zhao-zilong/gtv

Index Terms—Vertical Federated Learning, GAN, Privacy-
preserving machine learning, Tabular data

I. INTRODUCTION

Tabular data, organized in rows and columns, is the most
prevalent data format in industry [1]. Recent years have seen
the proliferation of the use of synthetically generated tabular
data as a privacy-preserving approach for data analysis and
product development [2], [3]. The state-of-the-art generation of
synthetic tabular data utilizes Generative Adversarial Networks
(GANs) [4], [5], [6], [7], [8], [9]. However, training these
GANs still requires direct access to all training data, raising an
additional privacy concern if the data is coming from multiple
sources.

∗ Corresponding author: h.wu@soton.ac.uk

Consider the following scenario. A regional e-commerce
company and a bank hold separate information for a set of
shared customers. Generating a synthetic dataset that combines
the bank’s customer income records with the customer’s pur-
chasing history in the e-commerce company would be highly
beneficial to create more valuable data analysis and associated
products. For instance, e-commerce can leverage this synthetic
dataset to conduct an in-depth analysis and then launch a
stronger compaign at the targeted customer profile. In such
cases, collecting and combining data from the bank and e-
commerce company to train tabular GANs is not an option,
because it involves sharing personal customer information
across different organizations. In other words, we require a
privacy-preserving approach to train the GANs, which should
meet these specific criteria: (i) ensuring that no organization
shares its local data; (ii) addressing the unique challenge of
disparate features held by different organizations for the same
group of individuals; (iii) maintaining the quality of synthetic
data comparable to centralized training, where organizations
disregard all risks and share their real data on a centralized
server for GAN training.

To address the above challenges, we present a novel frame-
work – GTV which provides an infrastructure to train GANs
for Generating Tabular data via Vertical federated learning.
Federated learning [10] is a widely explored technique to train
machine learning models on distributed data without sharing
the data. Data remains in participating parties that hold data
(known as clients) and learning is achieved by exchanging
model information with a central party (also called the server),
without sharing the data itself. In Vertical Federated Learning,
clients hold a local dataset with unique features pertaining
to the same individuals or other identified subjects. This
makes VFL particularly appropriate for various tabular data
applications, while image or audio data would more naturally
utilize horizontal federated learning, in which all clients have
data with the same data feature structures. To train a prediction
model under VFL [11], each client passes its local data through
a bottom model (on the client side) and sends the output to
a top model (on the server side) to calculate gradients. This
ensures that local data is only accessed by the owning client,
and only intermediate results are shared. Previous studies of
VFL have concentrated on prediction models such as decision

1

https://github.com/zhao-zilong/gtv


trees [12] and deep neural networks [13], there is no platform
to train tabular GANs using VFL.

The main challenge in deploying GTV is to determine the
bottom and top models, such that no data or personal infor-
mation leaks from the individual clients, and the performance
is close to that of a centralized model. By partitioning both
GAN generator and discriminator models, placing pieces in
each client and in the server, we assure that no data needs to
be exchanged but that correlations between different clients’
local data can be captured by passing intermediate outcomes
to the top model.

Advanced tabular GANs utilize a technique called con-
ditional GAN (CGAN)[5] and GTV supports CGANs. In
CGANs, a conditional vector (CV) is utilized to specify
conditions related to the data being considered during each
learning step, such as gender-specific limitations. In GTV, the
server distributes the CV to all clients, enabling them to select
data for their respective bottom models accordingly. However,
this poses a notable security risk: as clients select their local
data according to the CV, it is possible for the server to
reconstruct the layout of the clients’ local categorical features
based on the selected indexes. To mitigate this risk, in the
end of each training round, GTV implements a mechanism
called training-with-shuffling in which all clients shuffle their
local data using the same random seed. This ensures that the
data after shuffling is still consistent across clients, but is not
known to the server. Through this mechanism, the mapping
between the CV and data index changes each round, making it
impossible for server to reconstruct the training data of clients.

We extensively evaluate GTV using nine different partitions
of the generator and discriminator neural networks between
server and clients, and compare it to a centralized tabular
GAN. The experiments are conducted on five commonly used
tabular datasets in machine learning. We report on the ma-
chine learning (ML) utility and statistical similarity difference
between the real and synthetic data. Results show that as long
as the top model of the discriminator is large enough, GTV
performs comparably to the centralized tabular GAN baseline.
In the data partition experiments, we discover that the more
imbalanced the number of data columns across the clients, the
lower the ML utility of the synthetic data. However, by shifting
more neural networks of the generator from bottom to top
model, GTV mitigates the negative effects of this imbalance.
Additionally, we find that with an increasing number of
clients, expanding the size of the generator neural network
helps counteract the degradation in synthetic data quality.
Finally, we evaluate the vulnerability of GTV to Membership
Inference Attacks (MIA). The full black-box MIA from [14]
on GTV generated synthetic data shows a low success rate.
Implementing Differential Privacy (DP) on GTV can further
lower the success rate of MIA, albeit at the expense of GTV’s
performance.

The main contribution of this study can be summarized as
follows:
• We present GTV, the first distributed framework of its kind

to integrate state-of-the-art conditional GANs for generating

Fig. 1: Traditional VFL architecture for prediction model.

tabular data within a vertical federated learning architecture.
• We introduce a training-with-shuffling mechanism for

privacy-preserving integration of conditional vectors and
propose a secure synthetic data publication strategy to
reduce inference attack risks.

• We consider the semi-honest threat model and use it to
motivate the design of GTV. We qualitatively analyze the
potential privacy risks in GTV training. We experimen-
tally evaluate the robustness of GTV against Membership
Inference Attack. Differential Privacy is also studied to
implement on GTV to provide protection.

• We evaluate GTV on 5 datasets using 8 metrics for ML
utility and statistical similarity. Results show GTV reliably
generates high-fidelity synthetic data even with imbalanced
client distributions, and we recommend optimal setups based
on resource constraints, client count, and data distribution.

II. PRELIMINARIES

GTV enables training SOTA tabular GANs on VFL. In this
section, we describe the preliminary of VFL and GAN.

A. Vertical Federated Learning

As depicted in Fig.1, a typical VFL system involves multiple
clients, such as a bank and an e-commerce company, which
possess distinct features for a shared group of users. It is
important to note that in the illustration, the data instances of
the clients have been aligned such that each row corresponds
to the same individual across all clients. Data alignment across
clients can be achieved by the Private Set Intersection (PSI)
technique [15], [16], which is a common assumption used by
VFL studies [12], [17], [18]. We also adopt it into our GTV.

The goal of VFL is to train a common machine learning
model using the features from all clients. In VFL, there are
two types of models: top and bottom models as represented in
Fig.1. During the training, each client passes their local data
through the bottom model and sends the intermediate logits to
the server. In practice, the server is typically managed by the
client that holds the label column. As depicted by the dotted
line in Fig.1, Bank is the label holder. The server horizontally
concatenates the intermediate logits from all the clients and
uses the concatenation as input for the top model. The top and
bottom models are then updated using the gradients calculated
from the discrepancy between the output of the top model and
the label.



Fig. 2: Conditional GANs (centralized).
B. Tabular Generative Adversarial Network

Generative Adversarial Networks (GANs) [4] are a type of
machine learning model designed to generate synthetic data
that is similar to a given training dataset. They are composed
of two parts: a generator (G) and a discriminator (D). The
generator is trained to generate synthetic data that is similar
to the real data, while the discriminator is trained to distinguish
between the synthetic data generated by the generator and
the real training data. This competing process continues until
the generator produces synthetic data that is indistinguishable
from the real data.

To better indicate the category of generation (e.g., ‘male’
or ‘female’ in gender column), conditional GANs are widely
used for table synthesis [5], [7], [8]. Fig. 2 illustrates the
structure of a conditional GAN (CGAN), which incorporates
an auxiliary conditional vector (CV) to control synthetic data
generation. This approach enhances diversity, fidelity, and
relevance by ensuring the generated data aligns with specific
attributes, surpassing the limitations of traditional GANs[19].
The generator and discriminator are conditioned on the same
CV. When using the real data to train D, once a CV is given,
the real data needs to sample one row of training data whose
class is corresponding to the condition indicated in the CV. It
is worth noting that the D is trained separately by the synthetic
data and real data, while during the G training step, only the
synthetic data is used. Feature engineering is another important
tool for training tabular GANs. Before entering real data to
D, [5], [7], [8], [9] use mode-specific normalization [5] to
encode continuous columns, one-hot encoding for categorical
columns, mixed-type encoding [7] for column contains both
categorical and continuous values. Throughout this paper,
we use the terms ‘tabular GANs’ and ‘conditional GANs’
interchangeably.

III. METHODOLOGY

In this section, we begin by providing an overview of GTV.
We then justify the design of GTV by introducing the privacy
and security consideration.

A. GTV Architecture

In this part, we begin by discussing the components of GTV
with an explanation of the design rationale for the structure,
then introduce the threat model of our framework followed by
a walkthrough of the training process. We then delve into the
specifics of training, including possible adjustments. Secure
design for publishing synthetic data is explained in the end.

1) GTV overview: Fig. 3 shows an example of GTV with
two clients. The notions of the components are provided
in Tab. I. Each client contains unique data columns. GTV
establishes a separate server instead of assigning the client that

Fig. 3: The workflow of GTV.

holds the label as server, as in Fig. 1. The reason is twofold:
(1) In table synthesis, when label column is not needed, no
label holder exists. (2) For privacy reasons, clients should not
access both the CVs and selected data indexes. The server
also should not have access to the shuffle function that the
client uses to shuffle local data (we discuss this function in
more detail in Section III-A4). In Fig. 3, one notable feature
is the partition of the discriminator and generator between the
server and the clients. The design of the bottom models, i.e.,
Db

1, Db
2 and Gb1, Gb2, are also motivated by privacy concerns.

First, Db
1 and Db

2 are used because clients cannot directly send
their real data to the server. Second, Gb1 and Gb2 are necessary
because otherwise, the output from Gt would only go through
Db

1, Db
2 and return to the server. If so, the server could reverse-

engineer Db
1, Db

2 and reconstruct the clients’ data. One may
also question the necessity of Dt and Gt. Without Dt, all
generations would be examined only by discriminators in each
client. As a result, the generations from different clients would
not be correlated because their correlations are never checked.
Similarly, without Gt, each client would sample a separate
random noise vector for Gb1 and Gb2, which would prevent the
synthetic data from learning column correlations across clients
since there is no correlation between two separate random
noise vectors.

2) Threat Model: In line with many previous works in the
field of VFL [12], [20], [17], [18], we focus on the semi-
honest model in the design of our proposed GTV architecture.
Specifically, we assume that the clients and server are honest
but curious, and their behaviors obey the following rules:

• All clients and the server comply with the GTV protocol
and execute the training process honestly.

• While client or server may attempt to extract additional
information from the exchanged messages, none of them
intentionally modify the values to disrupt the GTV training.

• Clients do not engage in any collusion to exchange infor-
mation with other clients or the server except for necessary
messages (i.e., the intermediate outputs of the models).

These assumptions form our threat model for the GTV



Algorithm 1: GTV Training Process
Input: Number of client N ; Server side generator Gt

and discriminator Dt; Conditional vector filter
Ds; Client side generator Gbi , discriminator Db

i

and data Ti for client i, i ∈ [1, N ]; Training
round R. Discriminator training epochs per
round e.

Output: Trained Generator {Gt, Gbi }, Discriminator
{Dt, Ds, Db

i}
Client i (i ∈ [1, N ]) operates:

1 Encode(Ti);
2 while current round < R do

Train Discriminator, freeze {Gt, Gbi }:
3 while current local epoch < e do

Server operates:
4 CVp, idxp ← CVGeneration(N clients)

where the condition column is constructed by
Client p

5 {Gti (Z,CVp), i ∈ [1, N ]} ←
Split(Gt(Z,CVp))

Client i (i ∈ [1, N ]) operates:
6 Output Db

i (Gbi (Gti (Z,CVp))) as Db,i
out to server;

Server operates:
7 Dt

inS ← Concat(Db,i
out, Ds(CVp)), i ∈ [1, N ]);

8 Output Dt(Dt
inS);

Client i (i ∈ [1, N ]) operates:
9 if i == p then

10 Output Db
p(Tp[idxp]) to server;

11 else
12 Output Db

i (Ti) to server;
13 end

Server operates:
14 Dt

inR ← Concat(Db
i (Ti)[idxp], Db

p(Tp[idxp]),
Ds(CVp)), i ∈ [1, N ] and i ! = p);

15 Output Dt(Dt
inR);

16 Calculate LossD(Dt(Dt
inS), Dt(Dt

inR)) and
update {Dt, Ds, Db

i}.
17 end

Train Generator, freeze {Dt, Ds, Db
i}

Server operates:
18 CVp, idxp ← CVGeneration(N clients) where

the condition column is constructed by Client p
19 {Gti (Z,CVp), i ∈ [1, N ]} ← Split(Gt(Z,CVp))

Client i (i ∈ [1, N ]) operates:
20 Output Db

i (Gbi (Gti (Z,CVp))) as Db,i
out to server;

Server operates:
21 Dt

inS ← Concat(Db,i
out, Ds(CVp)), i ∈ [1, N ]);

22 Calculate LossG(Dt(Dt
inS)) and update {Gt, Gbi }.;

Client i (i ∈ [1, N ]) operates:
23 Shuffle(Ti), i ∈ [1, N ];
24 end

TABLE I: Summary of Notations

Notation Description
Gt, Dt top models of generator, discriminator
Ds conditional vector filter which runs on server
Gb
i , Db

i bottom model of generator, discriminator on client i
Ti real tabular data held by client i
CVp conditional vectors constructed by client p
idxp data indexes, the corresponding data contains

the indicating classes in CVp

Pr ratio vector, the number of features in each client
to the total number of features across all the clients

architecture, and our design aims to address potential threats
that may arise under these assumptions.

3) GTV Training Procedure: The training process of GTV
is similar to that of a centralized tabular GAN, despite the fact
that GTV distributes the default tabular GAN into multiple
separate components. As the example shown in Fig. 3, the
workflow is numerated, parallel actions are noted with the
same numbers.

During the discriminator training phase, the process starts
with the generator. After initializing the random noise and
conditional vectors, they are concatenated and fed to Gt and
Ds (i.e., 1 ). The data is then passed through 2 to 5 . After
5 , the server concatenates the intermediate logits and uses

the concatenation as input for Dt to produce predictions for
the synthetic data. At the same time, clients select their real
training data following 6 then 5 , and the server concatenates
the intermediate logits and produces predictions for the real
data. These predictions for real and synthetic data are used to
calculate the gradients for updating {Dt, Ds, Db

1, Db
2}.

During the generator training phase, the process also begins
with the generator. The concatenation of the random noise
and conditional vectors is passed through 1 to 5 , and Dt

produces predictions. These predictions are used to update
{Gt, Gb1, Gb2}. Once all network components are updated, one
training round is complete. At the end of each training round,
all clients shuffle their local training data using the same
random seed to ensure data consistency between them.

4) Training Details: Algo. 1 elaborates the training
flow detail. The whole process involves of several func-
tions, namely Encode, CVGeneration, Split, Concat,
LossD, LossG and Shuffle. In step 1, each client needs
to encode their local data. One-hot encoding for categorical
column, mode-specific normalization [5] for categorical col-
umn and mixted-type encoder [7] for column contains both
categorical and continuous values. In step 3, the training of
discriminator needs a local training epochs e because our
tabular GAN algorithm is based on Wasserstain GAN plus
gradient penalty [21] loss function. This training method needs
more discriminator update (by default e = 5) than generator;
In step 4, server uses CVGeneration to notify all the
clients to generate their local conditional vector (CV) based
on the CV construction method proposed by CT-GAN [5],
then it randomly choose one of the clients’ CVs based on
the probability vector Pr calculated by the ratio of number of
features in the client to the total number of features across all
the clients. The selected client p does not only upload the CVp



Fig. 4: When GTV works without shuffling, the server can
infer the layout of categorical features.

to the server, but also the indexes of selected training data idxp

that meets the conditions represented in CVp. Due to privacy
concern, the idxp is only kept between the selected client and
server, and the potential risk is discussed in Sec. III-A6. In step
5, Split function vertically splits output logits proportionally
based on the ratio vector Pr. In step 7, Concat function
horizontally concatenates all the intermediate logits into one
input Dt

inS . During step 9 to 13, for the client p, it just needs
to select out the idxp training data and passes through the
Db

p(Tp[idxp]). For the rest of the clients, they need to pass
all their local data through the local discriminator; Then in
step 14, except the output from client p, the server needs
to first use idxp to select their outputs, then concatenate all
these intermediate logits into one input Dt

inR. In step 16, With
Dt

inS and Dt
inR, we can use LossD to calculate gradients

and update all discriminator parts. The training steps for the
generator from 18 to 21 are the same as the steps from 4 to 7.
The difference is that to update the generator, function LossG

(i.e., the step 22) only needs Dt
inS .

5) Training-with-shuffling: At the end of each training
round, it is necessary to invoke the Shuffle function (rep-
resented as the Row shuffler in Fig. 3) on all clients to per-
mute the order of their respective local training data’s index.
Notably, the Shuffle function is designed to synchronize
the shuffling process across clients. This can be achieved by
using Multi-Party Computation (MPC) technology, which has
been extensively explored in the context of Federated Learning
[22], [18], [23], [24]. This shuffling operation rearranges the
order of data rows, while ensuring that corresponding rows
across clients remain aligned. Additionally, the negotiation
of the Shuffle function and random seed among clients is
assumed to be conducted securely prior to the training process,
independent of the server’s involvement.

We highlight the necessity and significance of this approach
by illustrating the contrast between GTV training without
shuffling (Fig. 4) and GTV training with shuffling (Fig. 5).
Note that the term ’User ID’ in Fig. 4 and Fig. 5 serves as a
reference for readers to comprehend the shuffling mechanism
and is not part of the features or utilized in the GTV training
process. The term ’Index’ denotes the sequential order of data

Fig. 5: When training-with-shuffling is enabled, GTV prevents
privacy leakage in indexes.

points (rows) within the feature vector.
In the example depicted in Fig. 4, two clients collaborate

in the GTV without shuffling. Each client holds a distinct
categorical feature (Gender and Loan), and both features have
two classes. According to the CV construction method of CT-
GAN, the CV of our example contains four bits, each of which
represents one class of the categorical columns, and we can
only indicate one class per CV. For each training round, we
sample new CVs, and the corresponding classes of selected
local training data need to match the new CVs. For example,
at round r, if our sampled CVs contain three [1,0,0,0] vectors,
then the corresponding data indexes (1,2,3) also return to the
server (i.e., step 4 in Algo. 1), then round r + 1 with three
[0,1,0,0] in CVs and indexes (4,5,6), round r + 2 with two
[0,0,1,0] in CVs and indexes (1,2), and finally round r + 3
with four [0,0,0,1] in CVs and indexes (3,4,5,6).

The server can use the indexes and CVs obtained during
the training process to reconstruct the entire dataset after a
certain number of rounds, as illustrated in Figure 4. Despite
not having knowledge of the number of categorical columns or
their names in the system, the server can infer this information
by analyzing the one-hot encoding of each row. In Figure 4,
after round r + 3, the server can deduce that there are two
categorical columns in the system, each containing two cate-
gories. Additionally, the server can infer the ratio of categories
within each column, such as a 1:1 ratio for first column and a
1:2 ratio for second column. If the synthetic data is released
by clients, the server can determine the corresponding column
by analyzing the ratio of categories in all categorical columns.

Fig. 5 shows an example of the GTV utilizing training-
with-shuffling. At round r, we still sample CVs that contain
three [1,0,0,0] vectors and get the corresponding data indexes
(1,2,3). But this time, we launch the shuffling function in each
client. At round r + 1, we can see that the index column
remains the same as last round but the data content part have



shuffled, and more important the client 1 and client 2 have the
same order in User ID column. If round r + 1 sampled CVs
that contain three [0,1,0,0], the server gets the indexes [1,2,4].
But these indexes in the new round correspond to different
data content. Therefore, the server would fail to reconstruct
clients’ data.

6) Further Discussion: Incorporating CV into the training
of the GTV algorithm is not a straightforward task. Since
CV is a part of the generator’s input, it cannot be hidden
from the server. However, we have control over whether to
pass selected data indexes to the server. GTV chooses to
share this information with the server, so at step 12, we
allow clients who do not contribute CV to pass their entire
local data through Db

i , and then at step 14, the server selects
the corresponding indexes data from the intermediate logits.
This design increases local computation and communication
between the server and clients, but it ensures that there is
no privacy leakage. In order to decrease the overall training
time, certain calculations can be performed in parallel. After
step 4, all the clients are aware of whether their conditional
vectors have been selected. Therefore, all the clients are able
to execute steps 10 or 12 right after step 4.

An alternative design for GTV involves clients sharing
selected data indexes in a peer-to-peer (P2P) manner instead of
with the server. While this prevents the server from accessing
index information, it introduces significant drawbacks: the ex-
ponential cost and insecurity of maintaining P2P connections
and indirect privacy leaks. For instance, repeated selection
of minority-class data rows can reveal common features in
certain columns, making the system vulnerable to inference
attacks even if shuffling is enabled. This is because index-level
shuffling does not obscure feature mappings across clients.

7) Synthetic Data Publication: To enhance privacy-
preservation, clients shuffle the order of their synthetic data
before publication using the same Shuffle function as in
Sec. III-A5. Without shuffling, the server could independently
gain partial black-box access [14] to G, assuming the server
has knowledge of the input random noise, the output synthetic
data, and their corresponding input-output pairs. This level of
access poses substantial privacy risks. Hence, shuffling before
publishing is essential to eliminate partial black-box access by
preventing the server from possessing knowledge of the input-
output pairs of G. It is important to note that in GTV, nothing
beyond the final synthetic data is published. The partial neural
networks employed by the clients and server are considered
private assets and are not deployed as part of the API.

B. Privacy Analysis in GTV Training Flow

According to the threat model, here we analyze the privacy
leakage risk in GTV training, and explain the motivations
behind our design. We highlight the sensitive information ex-
changed and used in GTV, including feedforward activations,
and backpropagation process on G and D, model weights, and
model gradients. Here both G and D represent the combination
of top and bottom generator and discriminator in GTV.

Feedforward and Backpropagation in Generator. In
the feedforward phase, each client inputs random noise Z
combined with a conditional vector CV into the generator
G, which passes through its neural network layers to produce
synthetic tabular data, without ever using the real datasets Ti.
Even if all clients except one collude with the server, they
can only infer synthetic data intended for publication, not
real records. During backpropagation, G updates its model
parameters using the loss LossG(Dt(Dt

inS)) via Stochastic
Gradient Descent (SGD). Unlike traditional VFL classification
models, there is no risk of label leakage because G does not
use real data Ti or act as a classifier. While a client might
infer its own CV through gradient changes, only the selected
client knows which rows are chosen, making CV leakage an
insignificant privacy concern.

Feedforward and Backpropagation in Discriminator.
The discriminator D functions similarly to a traditional VFL
classifier, but instead of using labels from the original dataset,
it relies on real and fake labels generated by each client,
eliminating the label inference risks discussed in [25], [26],
[18]. Although intermediate logits sent from clients to the
server could reveal some sensitive information, such as match-
ing categorical values [18], GTV mitigates this by keeping
the server independent and unaware of any dataset details.
In backpropagation, since clients already know the real and
fake labels, traditional label leakage is not a concern. While
collusion between malicious clients and the server might ex-
pose some data characteristics, this information aligns with the
purpose of GTV —producing a shared synthetic dataset—and
is considered acceptable within its intended use case.

Model weights and model gradients. The model weights
are considered intensive information in VFL studies [12],
[18], since the values indicate the relative importance of
each feature for the learning tasks. In GTV, this may cause
feature importance leakage once the malicious clients share
the trained model weights of D with the server. As mentioned
above, the feature importance here is only in reference to the
impact of the features on distinguishing real and synthetic
data. Additionally, while traditional VFL tasks take the trained
model as the final product and it is normal to share the
model weights among clients, our GTV sees the joint synthetic
dataset as the ultimate outcome. As a result, model weights
are supposed to be kept safe and never exposed in GTV.

Recent studies [27], [28], [29] have shown that model
gradients can lead to privacy leakage. In [29], the authors
present a new algorithm CAFE for recovering large amounts
of private data from shared aggregated gradients in the VFL
settings. CAFE has a high recovery quality and is backed by
theoretical guarantees. However, the assumptions made by the
algorithm are quite restrictive and do not apply to our GTV
scenarios. One of the key prerequisites in [29] is that the server
knows the data index, which is not feasible in our settings.
Just as with the privacy of model weights, the risk of data
leakage from gradients can only occur when malicious clients
are working in collusion with the server.

In summary, when malicious participants act alone, the GTV



system is robust to privacy leakage issues present in traditional
VFL. However, the system becomes vulnerable when multiple
parties collude. This can lead to even more severe security
problems, as other advanced attacks may also pose a threat
to GTV. These issues are discussed in greater detail in the
following section.

C. Privacy Resilience Analysis

Here, we discuss the possibility of state-of-the-art adversar-
ial attacks in the context of GTV.

Feature and Label Inference Attacks. Feature inference
attacks, such as those by Luo et al. [30], use generative regres-
sion networks (GRN) to infer feature distributions with high
accuracy by leveraging correlations between the malicious and
victim clients’ features. Similarly, label inference attacks aim
to extract label information during Vertical Federated Learning
(VFL) processes [31], [26], [25]. However, these attacks often
rely on unrealistic assumptions, such as the availability of
trained model parameters or auxiliary labeled data [30], [25],
and are largely constrained to specific scenarios like binary
classification [26]. Since GTV does not share trained models
or use tabular dataset labels directly in training, these attacks
are ineffective and do not pose significant threats in GTV.

Membership Inference Attack. In addition to the afore-
mentioned privacy threats on VFL, a distinct form of attack,
known as the Membership Inference Attack (MIA), specifi-
cally targets generative models such as GANs [32], [14], [33].
The MIA is executed in the following manner: the adversary
is granted access to the machine learning model, which could
be black-box or white-box access depending on the specific
scenario. The adversary also has access to a set of data records.
By conducting MIA, the adversary attempts to infer whether
a data record has been used to train the model. This could
potentially expose sensitive information.

In GTV, the generator G is split across clients, making
full white-box access by an attacker unlikely without collu-
sion among all parties. Shuffling before publishing mitigates
partial black-box access risks, as discussed in Section III-A7.
However, within our threat model, a potential risk persists
where an adversary could perform MIA using full black-box
access. This access permits the attacker to solely retrieve the
generated sample set from the well-trained black-box G. In
Section IV-C4, we conduct a comprehensive evaluation of
GTV’s resilience against [14]’s full black-box MIA, specif-
ically assessing the efficacy of Differential Privacy (DP) as a
defense measure against this attack.

IV. EMPIRICAL EVALUATION

A. Experiment Setup

Datasets Our algorithm is tested on five commonly used
machine learning datasets: Adult, Covertype, Intrusion, Credit,
and Loan. Adult, Covertype, and Intrusion are obtained from
the UCI machine learning repository[34], while Credit and
Loan are obtained from Kaggle[35]. All five datasets contain
a target variable. Due to computing resource limitations, we
randomly sample 50K rows of data in a stratified manner

with respect to the target variable for the Covertype, Credit,
and Intrusion datasets. The Adult and Loan datasets are not
sampled. For all the datasets, we train the algorithms 300
epochs for all the experiments. Each experiment is repeated
three times and the average result is reported.

Baseline To the best of our knowledge, GTV is the first
architecture to incorporate SOTA tabular GAN into vertical
federated learning. Our baseline for comparison is therefore a
centralized tabular GAN. We enhance the centralized base-
line by incorporating techniques from CT-GAN [5] and CTAB-
GAN [7], including one-hot encoding for categorical columns,
mode-specific normalization for continuous columns, a mixed-
type encoder for hybrid columns (i.e., columns contain both
categorical and numeric value), and CT-GAN’s conditional
vector construction method. The generator and discriminator
structures mirror those in CT-GAN. The generator is a Resnet-
style [36] neural network comprising two residual blocks fol-
lowed by a fully-connected (FC) layer. Each residual network
(RN) block includes three successive layers: FC, batchnorm,
and relu. The discriminator has two fully-connected network
(FN) blocks followed by another FC layer. Each FN block
consists of three successive layers: FC, leakyrelu, and dropout.
The output dimension for all the RN block and FN block is
fixed to 256.

Testbed Experiments are conducted on two Ubuntu 20.04
machines, each with 32 GB RAM, an NVIDIA GeForce RTX
2080 Ti GPU, and a 10-core Intel i9 CPU. One acts as the
server, while the other hosts 2 to 5 clients.

B. Evaluation Metrics

We evaluate the synthetic data in two dimensions: (1)
Machine Learning Utility and (2) Statistical Similarity. The
two dimensions cover the row-wise correlation and column-
wise distribution. Given the local training data RDA and RDB

for clients A and B, respectively, the synthetic data produced
by the clients is denoted as SDA and SDB . Unless otherwise
stated, in the following context, synthetic data refers to the
concatenation of SDA and SDB , and real data refers to the
concatenation of RDA and RDB .

1) Machine Learning Utility: To evaluate the effectiveness
of synthetic data for machine learning tasks, we have designed
the following evaluation pipeline. We first split the original
dataset into training and test sets. The training set (i.e.,
RDA and RDB) is used as input to the GTV models to
generate synthetic data of the same size. The synthetic and real
training data are then used to train five widely used machine
learning algorithms (decision tree classifier, linear support
vector machine, random forest classifier, multinomial logistic
regression, and multi-layer perceptron). The trained models are
then evaluated on an independent real test set. Performance is
measured using accuracy, F1-score, and the area under the
curve (AUC) of the receiver operating characteristic curve,
difference between models trained by real and synthetic data
is reported. The goal of this design is to determine whether
synthetic data can be used as a substitute for real data to train
machine learning models.



(a) Generators under different partition strategies (b) Discriminators under different partition strategies

Fig. 6: Neural Network Partition. Gn1
n2

denotes the generator with n1 RN block(s) in server and n2 RN block(s) in each client.
Dn3

n4
denotes the discriminator with n3 FN block(s) in server and n4 FN block(s) in each client.

2) Statistical Similarity: Three metrics are used to quantify
the statistical distance between real and synthetic data. (i) Av-
erage Jensen-Shannon divergence (JSD). JSD measures the
difference between the probability distributions of categorical
columns in real and synthetic datasets. It ranges from 0 to 1, is
symmetric, and is averaged across all categorical columns for a
compact score. (ii) Average Wasserstein distance (WD). WD
quantifies the similarity between the distributions of continu-
ous/mixed columns in real and synthetic datasets. Unlike JSD,
which can be unstable for continuous columns, WD offers
numerical stability. The average WD across columns forms
the final score. (iii) Difference in pair-wise correlation (Diff.
Corr.). To evaluate the preservation of feature interactions
in synthetic datasets, we compute the pair-wise correlation
matrix separately for real and synthetic datasets. The dython1

library is used to compute correlation matrix for each table.
The l2-norm of difference between the real and synthetic
correlation matrices is then calculated and abbreviated as Diff.
Corr.. In the neural network partition experiment with two
clients, to examine the preservation of column correlations
within each client and between two clients, we first separately
calculate the Diff. Corr. for each client’s data, and then name
the average results Avg-client, we also report the difference
of correlation matrices between both clients’ data, the result
is named Across-client. Assuming clients A and B, with
their local real data RDA and RDB , respectively, produce
synthetic data SDA and SDB . Avg-client averages the Diff.
Corr. of {RDA, SDA} and Diff. Corr. of {RDB , SDB}.
Across-client calculates the l2-norm of difference between the
correlation matrix of {RDA, RDB} (i.e., pair-wise correlation
between columns in RDA and RDB) and the correlation
matrix of {SDA, SDB}. These two metrics are designed to
demonstrate the ability of GTV to capture intra- and inter-
dependencies of training data columns within and across
clients.

C. Result Analysis

The goal of the experiments is to determine the optimal
configuration of GTV for synthesizing high-fidelity tabular
data while protecting privacy. To this end, we aim to answer
four research questions: (1) What is the optimal partition
of generator and discriminator neural networks between the

1http://shakedzy.xyz/dython/modules/nominal/#compute associations

server and clients? (2) How does GTV respond to variations
in number of data features across clients? (3) How does GTV
adapt to changes in the number of clients participating in
the system? (4) How to protect GTV generated data from
Membership Inference Attacks? To answer these questions,
we have designed four experiments. The centralized baseline
serves as the basic tabular GAN algorithm for GTV to dis-
tribute and train in VFL. In practice, the number of clients in
a VFL scenario is constrained by the number of features in
the tabular dataset. Therefore, following the VFL experiments
setup in [30], [25], [18], our (1) (2) and (4) experiments are
performed in a two-client setting. The GTV architecture can
be readily expanded to accommodate more clients. We assess
the influence of the number of clients in Section IV-C3.

1) Neural Network Partition: For this experiment, we
evenly split the training datasets for two clients (or one
client may have one more column if the total number of
columns is odd), and the column orders are preserved as they
were downloaded. As illustrated in Fig. 6, we propose three
ways to partition the neural networks of both the generator
and discriminator across the server and clients. Both the
generator and discriminator have two network blocks (same
as in centralized baseline), so we consider three divisions for
each of them: (i) all blocks in the server, (ii) one block in
the server and one block in each client, (iii) all blocks in
the client. This results in a total of nine combinations. The
partition notions of Gn1

n2
and Dn3

n4
are explained in Fig. 6. The

sum of the output dimension of partitioned RN/FN block is
the same as in their centralized scenario, i.e., 256. The output
dimension of each partitioned block is calculated based on the
ratio vector Pr (see Tab. I) for each client.

Figure 7 shows the neural network partition results where
all results are averaged over five datasets. In all three sub-
figures, it is clear that the centralized method performs best
on all metrics, as expected. Of the other partition methods,
D2

0G
2
0, D2

0G
1
1, and D2

0G
0
2 stand out as they consistently

outperform the other six configurations on all metrics. These
three partition methods have all the FN blocks on the server
side. Among these three, D2

0G
1
1 performs slightly better in

terms of statistical similarity and slightly worse in correlation
difference, but clearly worse in terms of ML utility compared
to the other two. D2

0G
2
0 and D2

0G
0
2 show similar results across

all evaluation metrics and consistently outperform all other

http://shakedzy.xyz/dython/modules/nominal/#compute_associations


Fig. 7: Neural network partition results: the difference between real and GTV data. A lower value indicates higher quality.

Fig. 8: An example of the G0
2 generator partition in 1090 data

partition experiment.

configurations in terms of ML utility. D2
0G

2
0 achieves F1-

score only 2.7% lower to the centralized method. Above result
suggests that having a sufficiently large discriminator on the
server side is crucial to the success of GTV, and that GTV
can achieve performance similar to the centralized method if
the discriminator and generator are properly positioned.

Based on the overall performance, we consider D2
0G

2
0

and D2
0G

0
2 to be the two best configurations for GTV. To

choose between these two configurations, we must consider the
computation and communication overhead of the system. In
terms of communication overhead, their only difference is the
size of the intermediate logits transferred between the server
and clients for generator, which can be controlled by the FC
layer before logits are sent from the server to the client. In
current setting, D2

0G
2
0 has higher communication overhead;

In terms of computation overhead, if the server is powerful,
placing both the generator and discriminator on the server can
speed up the training process. However, many computations
are now performed on the cloud, there is a cost associated with
using the server. It may be more cost-effective to distribute
calculations to the clients. Additionally, as the number of
clients increases, the generator can become larger, making it
more expensive to place the entire generator on the server side.
Therefore, when D2

0G
2
0 and D2

0G
0
2 achieve the similar result,

D2
0G

0
2 is preferred.

2) Training Data Partition: The experiment in Sec. IV-C1
suggests that D2

0G
2
0 and D2

0G
0
2 are two optimal configura-

tions for GTV when data features are randomly and evenly
distributed among two clients. In real-world cases, feature dis-
tribution across clients is often highly imbalanced. Therefore
in this experiment, we examine the impact of data partition on
these setups of GTV, in order to assess its robustness against
imbalanced feature distribution among clients.

For each dataset, we use the Shapley value [37] to evaluate
the importance of each feature in predicting the target column

using an MLP (Multi-layer Perceptron) model with one hidden
layer containing 100 neurons. We sort the features impor-
tance and consider three different feature divisions: (i) 1090:
the 10% most important features and the remaining 90%,
(ii) 5050: 50% most important features and 50% remaining
features, and (iii) 9010: 90% most important features and
10% remaining features. For each division, we assign the
two parts to two clients. The target column is always located
on the client WITHOUT the most important features. The
intuition behind these designs is that it is easier to learn the
correlations among features within a single client than learning
correlations among features distributed across multiple clients.
Fig. 8 shows an example of 1090 data partition for G0

2. It is
worth noting that when partitioning the data, we also split
the RN block proportionally among the clients based on the
ratio vector Pr. But the sum of the output dimension of the
partitioned block is still the same as the centralized baseline,
i.e., 256.

Fig. 9 shows the results for D2
0G

0
2 on five datasets. Focusing

on the ML utility metrics, we see that data partition has a
smaller impact on the final synthetic data for the Adult and
Covtype datasets, but a much larger impact on the Loan,
Intrusion, and Credit datasets, where the 9010 partition leads
to significantly worse results compared to the other two con-
figurations. Regardless of the size of the impact, we observe
on almost all datasets that the 1090 partition consistently
performs better than the 5050 partition, which in turn performs
better than the 9010 partition. This is because each dataset
contains several important features for predicting the target
column, and as these features are excluded step-by-step from
the label holder, it reduces GTV’s ability to fully capture the
correlations between these features and the label. The results
for statistical similarity are similar across all datasets and
configurations. Diff.Coff. results align with the results of ML
utility, the variations on Loan, Intrusion, and Credit datasets
are more obvious than on Adult and Covtype datasets. This
result is intuitive since the preservation of column correlations
should be related to the ML utility.

The results for D2
0G

2
0 on the five datasets are shown in

Figure 10. In terms of ML utility, especially the F1-Score, the
1090 partition performs best on all datasets. The results on
Loan dataset are still affected by the data partition, However,
it is also clear that D2

0G
2
0 is much less impacted compared

to D2
0G

0
2. The results for statistical similarity for D2

0G
2
0 are

similar to those for D2
0G

0
2, with little impact from the different

data partitions on GTV’s ability to recover the column-wise



Fig. 9: Data partition results with D2
0G

0
2: the difference between real and GTV data. Corr.Diff. (right axis).

Fig. 10: Data partition results with D2
0G

2
0: the difference between real and GTV data. Corr.Diff. (right axis).

distribution in the synthetic data. The Diff. Corr. shows that the
1090 partition still outperforms the other two configurations.
But comparing to D2

0G
0
2, D2

0G
2
0 is less affected by data

partition. The reason is that the larger generator on the server
side is able to better capture the column correlations across
clients. Comparing the result of D2

0G
0
2 and D2

0G
2
0 in the

data partition experiment provides additional information to
help us choose between these two configurations. In neural
network partition experiment, when features are evenly and
randomly distributed to clients, D2

0G
0
2 and D2

0G
2
0 achieve

similar result, leading us to prefer D2
0G

0
2 due to its lower

cost and better scalability. However, when the data partition
is extremely imbalanced, especially when the label holder
contains significantly fewer features than other clients, D2

0G
2
0

becomes the preferred configuration. One possible solution to
increase the performance of D2

0G
0
2 is to increase the size of

neural network on the client who contains fewer features, this
left for future work.

3) Scalability w.r.t No. of Clients: For this experiment, we
study the impact of number of clients on GTV. We randomly
and evenly distribute data columns into 2, 3, 4 and 5 clients on
D2

0G
2
0 and D2

0G
0
2 configurations. For each dataset, the number

of columns is fixed, the more clients in the system, the less data
columns for each client. To address the potential performance
degradation caused by an increasing number of clients in
the system, we introduced two settings for the generator: (1)
default and (2) enlarged. In the default setting, for D2

0G
0
2,

as the number of clients increases, we simply create more
partitions of the original RN block. However, the sum of the
output dimension of the divided RN block remains constant,
at 256, as in the centralized case. The output dimension of all
RN blocks is also 256 for D2

0G
2
0. Default setting ensures, no

matter how many clients join the system, the communication
overhead between server and clients remains the same for
D2

0G
2
0 and D2

0G
0
2, respectively; For enlarged setting, we

increase the output dimension of RN block to 768 (3 × 256)

for both D2
0G

2
0 and D2

0G
0
2, We will explain the reason for

choosing this number with the results later.
Fig. 11 and 12 present the results on five metrics, with

solid lines representing the results of the default setting and
dashed lines representing the results of the enlarged setting.
All results are averaged over five datasets. With default setting,
the results show that with more clients in the system, i.e., each
client contains less features, the ML utility of synthetic data
becomes slightly worse. For example, as the number of clients
increases from 2 to 5, D2

0G
2
0 and D2

0G
0
2 increase their F1-

Score from 0.11 and 0.12 to 0.19, respectively; With enlarged
setting, ML utility also decreases with increasing number of
clients, but to a significantly lesser extent; The results of the
Average WD and Average JSD indicate that the statistical
similarity on both generator settings for both D2

0G
2
0 and D2

0G
0
2

remains largely unchanged regardless of the number of clients.
Again, Coff.Diff. results are inline with ML utility. The result
becomes worse with increasing number of clients for both
settings. In most of scenarios, D2

0G
0
2 slight outperforms D2

0G
2
0.

Therefore, in that case, D2
0G

0
2 is still the preferred con-

figuration. The results for two settings on generator reveal
that the enlarged setting has less variation as the number of
clients increases. However, when there are only two clients
in the system, the enlarged setting performs worse on the
Loan dataset. The output dimension of the enlarged setting
is determined through trial and error, highlighting the impor-
tance of considering the trade-off between the size of the
neural network and the model convergence. It shows that
increasing the size of the neural network does not always
lead to improved results. Given that the Loan dataset only
contains 5000 data instances, increasing the neural network
size resulted in slower convergence for the generator in the
enlarged setting. Optimal neural network size exploration for
GTV under different dataset and different number of clients
is left for future work.

Note GTV is primarily tailored for cross-silo collaboration



Fig. 11: D2
0G

2
0 setting, the diff. between real and GTV data

over varied numbers of clients: default generator (firm line),
enlarged generator (dashed line), Corr.Diff. (right axis).

Fig. 12: D2
0G

0
2 setting, the diff. between real and GTV data

over varied numbers of clients: default generator (firm line),
enlarged generator (dashed line), Corr.Diff. (right axis).

among enterprise-level stakeholders, rather than for cross-
device FL systems that typically involve hundreds of clients.
In real-world scenarios, involving five clients in GTV would
require identifying five distinct organizations, each possess-
ing unique feature sets for the same group of individuals
- a condition that is exceedingly rare. Additionally, unlike
cross-device FL, where computational resources and network
stability are significant constraints due to the involvement of
numerous lightweight clients (e.g., sensors, mobile phones),
GTV operates under the assumption that substantial compu-
tational resources are available. In this sense, GTV can be
considered a lightweight framework for enterprises, offering
an efficient and scalable solution for cross-silo scenarios.

4) Membership Inference Attack on GTV with Differential
Privacy: As we discussed in Section III-C, GTV can be
vulnerable to the full black-box MIA [32], [14], [33]. In our
experiments, we conduct [14]’s full black-box MIA on GTV,
and evaluate the performance of this attack on the five datasets.
Moreover, we introduce Differential Privacy (DP) into GTV as
it is considered the most effective defense mechanism against
MIA [38], [39], [40]. Specifically, we use the DP stochastic
gradient descent (DP-SGD) [41] for training the discriminator
D (both client and server side) since the real training data is
only fed into D as shown in Fig. 3. The algorithm can be
summarized into a two-step process. Firstly, the per-sample
gradient computed during each training iteration is subject to
clipping by its L2 norm using a predetermined threshold. Sec-
ondly, calibrated random noise is deliberately incorporated into
the gradient to introduce stochasticity, thereby safeguarding
privacy during the training process. In DP-SGD, the privacy
budget ϵ determines the level of privacy protection. Smaller ϵ
values offer stronger privacy guarantees but introduce larger
amounts of noise into the model, leading to a notable decrease

Fig. 13: The performance of Membership Inference Attack
(full black-box generator) [14] on GTV (D2

0G
2
0−5050 setting),

under different Differential Privacy settings.

Fig. 14: Under D2
0G

2
0−5050 setting, The impact of Differential

Privacy on GTV performance. Corr.Diff. (right axis).

in model performance. In our experiments, we fix the privacy
budget ϵ to three commonly used values (i.e., 1, 5, and 10) [42]
and observe the impacts.

Fig. 13 presents the performance of MIA (evaluated via
AUC scores) under different DP settings, while the impact of
DP on VT-GAN performance is evaluated through synthetic
data quality in Fig. 14. The experiments are conducted on
the D2

0G
2
0 setting, which demonstrates superior performance

based on Sec. IV-C1, using randomly and evenly split features
across two clients. Notably, even in the absence of DP, the
effectiveness of MIA is limited (random guess achieving AUC
of 0.5), which is consistent with the findings in [14]. The AUC
of MIA for the Loan dataset is slightly higher than that for
the other datasets. This is mainly due to the smaller size of
the Loan dataset, which makes it more vulnerable to attack
[14]. Nonetheless, despite the effect being weak, we observe
that for the Covtype and Credit dataset, adopting DP-SGD
reduces the AUC of MIA for the Covtype and Credit datasets,
with smaller ϵ values providing stronger protection.

The results presented in Fig. 14, averaged across five
datasets, demonstrate a significant decrease in the quality of
synthetic data when adopting DP-SGD. All evaluated metrics
show a notable impact. Specifically, the F1-score difference
between models trained on real data and GTV-generated
data exceeds 0.5 after applying DP-SGD, which is over five
times larger compared to the case without DP. While the
impact on JSD is relatively less pronounced, it still triples
in magnitude with DP-SGD. Furthermore, a clear trend is
observed, indicating that smaller values of the privacy budget
ϵ lead to poorer synthetic data quality. Increasing ϵ from 1 to
10 results in some enhancement, yet the improvement remains
insufficient when compared to the scenario without DP.

Take Aways The experiments show that a key factor for
a successful GTV is having a sufficiently large discriminator
model on the server side. When the number of data columns is
evenly distributed among two clients in GTV, both D2

0G
0
2 and

D2
0G

2
0 exhibit similar performance and are comparable to the



centralized algorithm. In cases where these two configurations
yield comparable results, D2

0G
0
2, i.e., distributes most of the

generator network to client, is preferable due to its superior
scalability and cost-effectiveness. However, when data is un-
evenly distributed among clients, then D2

0G
2
0, i.e., distributes

most of the generator network to server, is preferred. If control
over the distribution of data columns among clients is possible,
e.g., excluding certain overlapping data columns in certain
clients, it is recommended to balance the number of columns
among the clients in the system. With a fixed total number
of features in the system, an increasing number of clients
in GTV reduces the quality of synthetic data. Strategically
increasing the generator model size can effectively counter this
performance degradation. For the security analysis, despite the
limited effectiveness of DP in countering MIA, its adoption
in GTV significantly diminishes the quality of synthetic data,
leading us to discourage the use of strong DP measures.

V. RELATED WORK

A. Vertical Federated Learning

While Horizontal Federated Learning (HFL) has been thor-
oughly studied [43], [44], Vertical Federated Learning (VFL)
starts to gain more attention more recently [45], [12], [23],
[46], [17], [18], [47]. Among them, homomorphic Encryption
(HE) is employed in BlindFL[18] to safeguard against pri-
vacy attacks, while [47] reduces communication bottlenecks
through cached-enabled local updates. Note that none of these
studies covers generative models like GANs within a VFL
framework.

FedDA [48] trains separate GANs for each participant in a
VFL setting to achieve data augmentation. However, the study
focuses primarily on image generation, which is not a typical
application of VFL. Moreover, it is limited to two clients and
does not utilize a conditional vector. Similarly, VFLGAN [49]
and VERTIGAN [50] both target image synthesis in a VFL
context and rely on traditional GAN architectures. None of
these VFL frameworks are designed to support state-of-the-
art tabular conditional GANs. In contrast, GTV employs a
single GAN, integrates a conditional vector, and supports
collaboration among multiple clients.

B. Privacy Preserving Techniques

Differential Privacy (DP) [51] has been extensively studied
for GANs [38], [39], [40] and in HFL scenarios [52], [53],
[54], [55] to provide provable privacy guarantees. In VFL
with graph data processing, DP can be achieved by injecting
noise into the sample representation [56]. Local Differential
Privacy (LDP) has also been applied to VFL tree boosting
models in a recent study [57]. However, there is currently no
clear guidance on how to apply DP in VFL when dealing
with both GANs and tabular data, i.e., the scenario of GTV.
Moreover, DP’s utility is significantly limited due to the
negative impact of noise injection on model performance,
leading most VFL studies to deprecate its use [18], [17], [12],
[23], [24], [48]. Another solution to enhance privacy in GTV is
through the use of multi-party computation (MPC) techniques

including homomorphic encryption (HE) and secret sharing
(SS) [22], [18], [23], [24]. BlindFL[18] presents the federated
source layer based on the HE and SS techniques to achieve
promising privacy guarantees without affecting VFL model
accuracy. Although this approach is also compatible with the
GTV architecture, its high communication cost makes it less
desirable compared to the privacy guarantees already provided
by the GTV architecture.

C. GANs for Tabular Data

GANs are initially known for its success in image synthesis.
However, with its ample application scenarios in areas such
as medicine [2] and finance [58], research on GAN for
tabular data synthesis also gains attention. Previous research
on GANs for tabular data synthesis CT-GAN [5], CTAB-
GAN [7] and CTAB-GAN+ [8], which improve data synthesis
through preprocessing steps for categorical, continuous, or
mixed data types and the use of a conditional vector to reduce
mode collapse on minority categories. While there are different
generative models, e.g., variational autoencoders (VAE)[5],
diffusion models[59], and large language models [60], to
synthesize tabular data, GAN remains the most widely used
and efficient approach in this area, motivating us to incorporate
the GAN structure into VFL.

VI. CONCLUSION

In this paper, we propose the GTV framework for training
tabular data synthesizers using vertical federated learning.
GTV introduces a privacy-preserving architecture to train
state-of-the-art tabular GANs across distributed clients with
unique features and a novel training-with-shuffling mechanism
to incorporate conditional vectors. Our results demonstrate
that GTV effectively captures column dependencies across
clients and achieves synthetic data quality comparable to state-
of-the-art tabular GANs trained in centralized mode. GTV
remains stable even with imbalanced data and varying client
numbers, and Differential Privacy against Membership Infer-
ence Attacks, while with reduced data utility. Additionally,
GTV enables distributed training for high-dimensional tabular
data, addressing memory constraints in centralized training.
Benchmarking and refining GTV for such efficiency purpose
are left for future work.

VII. ACKNOWLEDGEMENTS

This work was supported in part by the Asian Institute of
Digital Finance (AIDF) under grant A-0003504-09-00. This
research was partly funded by the NWO Perspectief project,
DepMAT, and the SNSF project, Priv-GSyn 200021E-229204.
This work was funded in part by UK EPSRC grant “AGENCY:
Assuring Citizen Agency in a World with Complex Online
Harms” under grant EP/W032481/2.

REFERENCES

[1] S. O. Arik and T. Pfister, “Tabnet: Attentive interpretable tabular
learning,” arXiv preprint arXiv:1908.07442, 2019.

[2] E. Choi, S. Biswal, B. Malin, J. Duke, W. F. Stewart, and J. Sun, “Gen-
erating multi-label discrete patient records using generative adversarial
networks,” arXiv preprint arXiv:1703.06490, 2017.



[3] A. Mottini, A. Lheritier, and R. Acuna-Agost, “Airline passenger name
record generation using generative adversarial networks,” arXiv preprint
arXiv:1807.06657, 2018.

[4] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Proceedings of the 27th NIPS - Volume 2, Cambridge, MA, USA, 2014,
p. 2672–2680.

[5] L. Xu, M. Skoularidou, A. Cuesta-Infante, and K. Veeramachaneni,
“Modeling tabular data using conditional gan,” in NeurIPS, 2019.

[6] N. Park, M. Mohammadi, K. Gorde, S. Jajodia, H. Park, and Y. Kim,
“Data synthesis based on generative adversarial networks,” Proc. VLDB
Endow., vol. 11, no. 10, p. 1071–1083, 2018.

[7] Z. Zhao, A. Kunar, R. Birke, and L. Y. Chen, “Ctab-gan: Effective table
data synthesizing,” in Proceedings of The 13th Asian Conference on
Machine Learning, vol. 157, 17–19 Nov 2021, pp. 97–112. [Online].
Available: https://proceedings.mlr.press/v157/zhao21a.html

[8] Z. Zhao, A. Kunar, R. Birke, H. Van der Scheer, and L. Y. Chen, “Ctab-
gan+: Enhancing tabular data synthesis,” Frontiers in big Data, vol. 6,
p. 1296508, 2024.

[9] J. Lee, J. Hyeong, J. Jeon, N. Park, and J. Cho, “Invertible tabular gans:
Killing two birds with one stone for tabular data synthesis,” NeurIPS,
vol. 34, pp. 4263–4273, 2021.

[10] Q. Li, Z. Wen, Z. Wu, S. Hu, N. Wang, Y. Li, X. Liu, and B. He, “A
survey on federated learning systems: Vision, hype and reality for data
privacy and protection,” IEEE Transactions on Knowledge and Data
Engineering, 2021.

[11] K. Wei, J. Li, C. Ma, M. Ding, S. Wei, F. Wu, G. Chen, and
T. Ranbaduge, “Vertical federated learning: Challenges, methodologies
and experiments,” arXiv preprint arXiv:2202.04309, 2022.

[12] Y. Wu, S. Cai, X. Xiao, G. Chen, and B. C. Ooi, “Privacy preserving ver-
tical federated learning for tree-based models,” in The 46th International
Conference on Very Large Data Bases (VLDB), 2020, pp. 2090–2103.

[13] D. Romanini, A. J. Hall, P. Papadopoulos, T. Titcombe, A. Ismail,
T. Cebere, R. Sandmann, R. Roehm, and M. A. Hoeh, “Pyvertical: A
vertical federated learning framework for multi-headed splitnn,” arXiv
preprint arXiv:2104.00489, 2021.

[14] D. Chen, N. Yu, Y. Zhang, and M. Fritz, “Gan-leaks: A taxonomy
of membership inference attacks against generative models,” in Pro-
ceedings of the 2020 ACM SIGSAC conference on computer and
communications security, 2020, pp. 343–362.

[15] C. Dong, L. Chen, and Z. Wen, “When private set intersection meets big
data: an efficient and scalable protocol,” in Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security, 2013, pp.
789–800.

[16] H. Chen, K. Laine, and P. Rindal, “Fast private set intersection from
homomorphic encryption,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, 2017, pp.
1243–1255.

[17] F. Fu, Y. Shao, L. Yu, J. Jiang, H. Xue, Y. Tao, and B. Cui, “Vf2boost:
Very fast vertical federated gradient boosting for cross-enterprise learn-
ing,” in Proceedings of the 2021 International Conference on Manage-
ment of Data, 2021, pp. 563–576.

[18] F. Fu, H. Xue, Y. Cheng, Y. Tao, and B. Cui, “Blindfl: Vertical federated
machine learning without peeking into your data,” in Proceedings of
the 2022 International Conference on Management of Data, 2022, pp.
1316–1330.

[19] M. Mirza, “Conditional generative adversarial nets,” arXiv preprint
arXiv:1411.1784, 2014.

[20] W. Fang, D. Zhao, J. Tan, C. Chen, C. Yu, L. Wang, L. Wang, J. Zhou,
and B. Zhang, “Large-scale secure xgb for vertical federated learning,” in
Proceedings of the 30th ACM International Conference on Information
& Knowledge Management, 2021, pp. 443–452.

[21] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville,
“Improved training of wasserstein gans,” in the 31st NIPS, 2017, p.
5769–5779.

[22] P. Mohassel and P. Rindal, “Aby3: A mixed protocol framework for
machine learning,” in Proceedings of the 2018 ACM SIGSAC conference
on computer and communications security, 2018, pp. 35–52.

[23] Y. Liu, Y. Liu, Z. Liu, Y. Liang, C. Meng, J. Zhang, and Y. Zheng,
“Federated forest,” IEEE Transactions on Big Data, 2020.

[24] Q. He, W. Yang, B. Chen, Y. Geng, and L. Huang, “Transnet: Training
privacy-preserving neural network over transformed layer,” Proceedings
of the VLDB Endowment, vol. 13, no. 12, pp. 1849–1862, 2020.

[25] C. Fu, X. Zhang, S. Ji, J. Chen, J. Wu, S. Guo, J. Zhou, A. X. Liu, and
T. Wang, “Label inference attacks against vertical federated learning,” in
31st USENIX Security Symposium (USENIX Security 22), Boston, MA,
2022.

[26] O. Li, J. Sun, X. Yang, W. Gao, H. Zhang, J. Xie, V. Smith, and C. Wang,
“Label leakage and protection in two-party split learning,” in Proceed-
ings of the 10th International Conference on Learning Representations
(ICLR), 2022.

[27] L. Zhu, Z. Liu, and S. Han, “Deep leakage from gradients,” Advances
in neural information processing systems, vol. 32, 2019.

[28] J. Geiping, H. Bauermeister, H. Dröge, and M. Moeller, “Inverting
gradients-how easy is it to break privacy in federated learning?” Ad-
vances in Neural Information Processing Systems, vol. 33, pp. 16 937–
16 947, 2020.

[29] X. Jin, P.-Y. Chen, C.-Y. Hsu, C.-M. Yu, and T. Chen, “Cafe: Catas-
trophic data leakage in vertical federated learning,” Advances in Neural
Information Processing Systems, vol. 34, pp. 994–1006, 2021.

[30] X. Luo, Y. Wu, X. Xiao, and B. C. Ooi, “Feature inference attack on
model predictions in vertical federated learning,” in 2021 IEEE 37th
International Conference on Data Engineering (ICDE). IEEE, 2021,
pp. 181–192.

[31] P. Vepakomma, O. Gupta, A. Dubey, and R. Raskar, “Reducing leakage
in distributed deep learning for sensitive health data,” ICLR AI for social
good workshop, 2019.

[32] B. Hilprecht, M. Härterich, and D. Bernau, “Monte carlo and re-
construction membership inference attacks against generative models.”
Proceedings of Privacy Enhancing Technologies, vol. 2019, no. 4, pp.
232–249, 2019.

[33] A. Hu, R. Xie, Z. Lu, A. Hu, and M. Xue, “Tablegan-mca: Evaluating
membership collisions of gan-synthesized tabular data releasing,” in
Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, 2021, pp. 2096–2112.

[34] U. M. L. Repository, “Uci machine learning repository,” https://archive.
ics.uci.edu/ml, 2024, accessed: Dec. 3, 2024.

[35] Kaggle, “Kaggle: Your machine learning and data science community,”
https://www.kaggle.com, 2024, accessed: Dec. 3, 2024.

[36] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[37] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model
predictions,” Advances in neural information processing systems, vol. 30,
2017.

[38] L. Xie, K. Lin, S. Wang, F. Wang, and J. Zhou, “Differentially private
generative adversarial network,” arXiv preprint arXiv:1802.06739, 2018.

[39] D. Chen, T. Orekondy, and M. Fritz, “Gs-wgan: A gradient-sanitized
approach for learning differentially private generators,” arXiv preprint
arXiv:2006.08265, 2020.

[40] A. Torfi, E. A. Fox, and C. K. Reddy, “Differentially private syn-
thetic medical data generation using convolutional gans,” arXiv preprint
arXiv:2012.11774, 2020.

[41] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov,
K. Talwar, and L. Zhang, “Deep learning with differential privacy,” in
Proceedings of the 2016 ACM SIGSAC conference on computer and
communications security, 2016, pp. 308–318.

[42] J. Hsu, M. Gaboardi, A. Haeberlen, S. Khanna, A. Narayan,
B. C. Pierce, and A. Roth, “Differential privacy: An economic
method for choosing epsilon,” in IEEE 27th Computer Security
Foundations Symposium, CSF 2014, Vienna, Austria, 19-22 July, 2014.
IEEE Computer Society, 2014, pp. 398–410. [Online]. Available:
https://doi.org/10.1109/CSF.2014.35

[43] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial intelligence and statistics. PMLR, 2017, pp. 1273–
1282.

[44] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning:
Concept and applications,” ACM Transactions on Intelligent Systems and
Technology (TIST), vol. 10, no. 2, pp. 1–19, 2019.

[45] Y. Hu, D. Niu, J. Yang, and S. Zhou, “Fdml: A collaborative machine
learning framework for distributed features,” in Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, 2019, pp. 2232–2240.

[46] K. Cheng, T. Fan, Y. Jin, Y. Liu, T. Chen, D. Papadopoulos, and
Q. Yang, “Secureboost: A lossless federated learning framework,” IEEE
Intelligent Systems, vol. 36, no. 6, pp. 87–98, 2021.

https://proceedings.mlr.press/v157/zhao21a.html
https://archive.ics.uci.edu/ml
https://archive.ics.uci.edu/ml
https://www.kaggle.com
https://doi.org/10.1109/CSF.2014.35


[47] F. Fu, X. Miao, J. Jiang, H. Xue, and B. Cui, “Towards communication-
efficient vertical federated learning training via cache-enabled local
updates,” in The 46th International Conference on Very Large Data
Bases (VLDB), 2022.

[48] J. Zhang and Y. Jiang, “A data augmentation method for vertical
federated learning,” Wireless Communications and Mobile Computing,
vol. 2022, pp. 1–16, 2022.

[49] X. Yuan, Y. Yang, P. Gope, A. Pasikhani, and B. Sikdar, “Vflgan: Vertical
federated learning-based generative adversarial network for vertically
partitioned data publication,” arXiv preprint arXiv:2404.09722, 2024.

[50] X. Jiang, Y. Zhang, X. Zhou, and J. Grossklags, “Distributed gan-based
privacy-preserving publication of vertically-partitioned data,” Proceed-
ings on Privacy Enhancing Technologies, 2023.

[51] C. Dwork, A. Roth et al., “The algorithmic foundations of differential
privacy,” Foundations and Trends® in Theoretical Computer Science,
vol. 9, no. 3–4, pp. 211–407, 2014.

[52] Z. Sun, P. Kairouz, A. T. Suresh, and H. B. McMahan, “Can you really
backdoor federated learning?” arXiv preprint arXiv:1911.07963, 2019.

[53] H. B. McMahan, D. Ramage, K. Talwar, and L. Zhang, “Learn-
ing differentially private recurrent language models,” arXiv preprint
arXiv:1710.06963, 2017.

[54] R. C. Geyer, T. Klein, and M. Nabi, “Differentially private federated
learning: A client level perspective,” arXiv preprint arXiv:1712.07557,
2017.

[55] M. Naseri, J. Hayes, and E. De Cristofaro, “Local and central differential
privacy for robustness and privacy in federated learning,” arXiv preprint
arXiv:2009.03561, 2020.

[56] P. Qiu, X. Zhang, S. Ji, T. Du, Y. Pu, J. Zhou, and T. Wang, “Your
labels are selling you out: Relation leaks in vertical federated learning,”
IEEE Transactions on Dependable and Secure Computing, 2022.

[57] X. Li, Y. Hu, W. Liu, H. Feng, L. Peng, Y. Hong, K. Ren, and
Z. Qin, “Opboost: A vertical federated tree boosting framework
based on order-preserving desensitization,” Proc. VLDB Endow.,
vol. 16, no. 2, p. 202–215, nov 2022. [Online]. Available:
https://doi.org/10.14778/3565816.3565823

[58] S. A. Assefa, D. Dervovic, M. Mahfouz, R. E. Tillman, P. Reddy,
and M. Veloso, “Generating synthetic data in finance: Opportunities,
challenges and pitfalls,” in ICAIF, New York, NY, 2020. [Online].
Available: https://doi.org/10.1145/3383455.3422554

[59] A. Kotelnikov, D. Baranchuk, I. Rubachev, and A. Babenko, “Tabd-
dpm: Modelling tabular data with diffusion models,” arXiv preprint
arXiv:2209.15421, 2022.

[60] V. Borisov, K. Sessler, T. Leemann, M. Pawelczyk, and G. Kasneci,
“Language models are realistic tabular data generators,” in The Eleventh
International Conference on Learning Representations, 2023. [Online].
Available: https://openreview.net/forum?id=cEygmQNOeI

https://doi.org/10.14778/3565816.3565823
https://doi.org/10.1145/3383455.3422554
https://openreview.net/forum?id=cEygmQNOeI

	Introduction
	Preliminaries
	Vertical Federated Learning
	Tabular Generative Adversarial Network

	Methodology
	GTV Architecture
	GTV overview
	Threat Model
	GTV Training Procedure
	Training Details
	Training-with-shuffling
	Further Discussion
	Synthetic Data Publication

	Privacy Analysis in GTV Training Flow
	Privacy Resilience Analysis

	Empirical Evaluation
	Experiment Setup
	Evaluation Metrics
	Machine Learning Utility
	Statistical Similarity

	Result Analysis
	Neural Network Partition
	Training Data Partition
	Scalability w.r.t No. of Clients
	Membership Inference Attack on GTV with Differential Privacy


	Related Work
	Vertical Federated Learning
	Privacy Preserving Techniques
	GANs for Tabular Data

	Conclusion
	Acknowledgements
	References

