Title

Management Strategies for Bilateral Intra-abdominal Testes: Insights

from a Tertiary Paediatric Centre

Authors Name and Affiliation

Ahmed O Mohamed^a, Nadeem Al-Khafaji^a, George Bethell^a, Robert

Peters^b, Harriet Corbett^a

Authors Affiliations

A- Department of Pediatric Surgery, Alderhey Children's

Hospital, E Prescot Rd, Liverpool L14 5AB, L14 5AB, United

Kingdom.

B- Department of Pediatric Surgery, Royal Manchester

Children's Hospital, Oxford Rd, Manchester M13 9WL,

United Kingdom.

Corresponding Author

Ahmed O Mohamed, Apartment 51, The keel Building, Liverpool, L3

4GE.

Email: <u>Dr.ahmed.osama.salama@gmail.com</u>

Acknowledgment

Ahmed O Mohamed and Nadeem Al-Khafaji both contributed equally

to this piece of work and are designated joint first authorship.

Acknowledgements

The authors would like to express their gratitude to Mr Colin Baillie for his invaluable support in completing this research project.

1	Management Strategies for Bilateral Intra-abdominal Testes:
2	Insights from a Tertiary Paediatric Centre
3	
4	Abstract
5	Introduction
6	Cryptorchidism, occurring in 2-4% of male newborns,
7	necessitates orchidopexy to mitigate associated risks,
8	preferably between ages 3-12 months. While unilateral cases
9	are common, bilateral intra-abdominal testes (BIAT) present
10	unique challenges. This study reviews outcomes following
11	bilateral Fowler-Stephens orchidopexy (FSO) at a paediatric
12	surgical tertiary centre, aiming to enhance preoperative
13	counselling and contribute to management consensus.
14	Methods
15	A retrospective analysis was conducted at a tertiary paediatric
16	centre, identifying BIAT cases between 2005 and 2021. Clinical
17	records of patients undergoing bilateral staged orchidopexy
18	were reviewed. Primary endpoints included testicular size and
19	position, with secondary outcomes examining staged versus
20	non-staged procedures.
21	Results
22	We identified thirty patients who underwent Fowler-Stephens
23	orchidopexy (FSO) for bilateral intra-abdominal testes (BIATs)
24	between 2005 and 2021. The procedures were performed using

25	both open surgery (n=6) and laparoscopic techniques (n=24),
26	based on consultant preference. Among these patients, three
27	underwent single-stage procedures, with 2 out of 3 having both
28	sides operated on the same day. For the remaining twenty-seven
29	patients, staged procedures were performed. In 22 out of 27
30	cases, the first stages were conducted bilaterally during the
31	same operation. The second stages were performed
32	synchronously in 3 out of 27 patients and on a metachronous
33	basis in 24 out of 27 patients. The mean age at the time of the
34	first procedure was 1.7 years, ranging from 3 months to 10
35	years. Outcomes revealed a success rate of 82%, with 14%
36	atrophy and 3.5% ascent rates. Comorbidities were noted in
37	50% of patients, and only eight boys underwent endocrine
38	evaluation.
39	Conclusion
40	Management of BIATs requires tailored approaches, with
41	staged FSO offering favourable outcomes. Further research is
42	needed to establish consensus guidelines for optimal
43	management strategies.
14	
45	Keywords

Undescended testes, Fowler-Stephens, Orchidopexy

48 Abbreviations

BIAT – Bilateral Intraabdominal Testes

1.Introduction

Cryptorchidism affects 2-4% of male newborns (1,2), however 80% of these testes descend within the first 3 months after birth reducing the true incidence of testes requiring an orchidopexy to 1% (3). The Royal College of Surgeons commissioning guide recommends performing orchidopexy for palpable undescended testes between the ages of 6 to 18 months, if feasible (4). In boys with impalpable testes, the testis may be absent, ectopic, located in the inguinal canal, or within the abdominal cavity, the latter is termed 'intraabdominal testes' (IAT) (5-7). Fowler-Stephens orchidopexy (FSO) is a widely used surgical approach to mobilize IATs into the scrotum, often performed as a two-stage procedure. The reported success rate of FSO ranges from 65-85%, with failure defined as testicular atrophy or ascent (5,6,8-13).

Approximately 10% patients present with bilateral intra-abdominal testes (BIAT) (14). While the technical aspects of management do not differ in these cases, additional considerations include the timing of staged surgeries on each side, the risk of anorchia in the event of bilateral atrophy, and the potential implications for puberty and fertility in affected individuals. There is no published consensus on the optimal management pathway for boys with BIAT, and the

existing literature is challenging to analyse due to the lack of differentiation between unilateral and bilateral IAT cases.

Specifically, there is a dearth of data on the possibility of anorchia resulting from bilateral atrophy, as well as possible risk reduction strategies to mitigate this complication and allow pubertal progression.

The aim of this study was to report the outcomes of patients undergoing bilateral FSO at a tertiary paediatric surgical centre with a view to identifying practical insights that can enhance preoperative counselling for patients. A secondary aim was to contribute to the accumulation of data necessary for establishing a consensus on the optimal management of BIAT.

2.Methods

Patients with BIAT treated at Alder Hey Children's Hospital between
January 1, 2005, and March 31, 2021 were identified using ICD10
codes Q53.1-9 for undescended testis. The medical records were
reviewed: all patients whose records confirmed the diagnosis of
BIAT, who underwent one or two stage bilateral Fowler- Stephens
orchidopexy (OPSC9 N08.3-4) and had documented follow up were
included in the study. Patients who underwent any other form of
orchidopexy were excluded. The primary endpoint was subjective
analysis of testicular size and position by a clinician during follow-up
visits. Secondary outcomes were categorized based on synchronous
versus metachronous procedures. Success was defined as the

presence of palpable testicular tissue in the scrotum before

puberty, after a minimum follow-up period of three months.

Patients with Prune Belly syndrome were excluded as management

of their BIATS was influenced by more clinically urgent

comorbidities in most cases. A summary of their treatment and

outcomes has been published separately (15).

3. Results

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

3.1 Surgical Strategy

Thirty patients who underwent Fowler-Stephens orchidopexy (FSO) for bilateral intra-abdominal testes (BIAT) between 2005 and 2021 were identified. Care was provided by nine consultants; perioperative protocols were not standardized. The procedures were performed via an open (n=6) or laparoscopic approach (n=24), based on consultant preference. Three underwent single-stage procedures because the testis achieved enough length after dissection to reach a good **scrotal position**, 2 of whom had both sides operated on at the same sitting. For the remaining 27 patients, staged procedures were performed. In these staged procedures, the testicular vessels were clipped or ligated in the first stage and the testis was brought down to the scrotum in the second stage. In 22 out of 27 cases, first stage FSO was conducted bilaterally during the same operation. The second stage FSO were performed synchronously in 3 patients and metachronously in 24 patients (Figure 1). In 4 out of 24 patients, the second-stage procedure on the second side was postponed until after puberty for various reasons (see section 3.2). The mean age at the time of the first procedure was 1.7 years (range 3 months to 10 years), late referral delayed surgery in six cases.

126

124

125

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

3.2 Testicular outcome

Testicular outcomes were assessed during follow-up appointments at outpatient clinics (Figure 2). Twenty-two (73%) boys successfully completed treatment with two normal-sized testes in their scrotum. However, one of the 22 boys required a unilateral redo orchidopexy due to testicular ascent. Another boy experienced ascent of one testis to the superficial inguinal ring, which was considered unsuitable for a redo procedure. Currently, this patient awaits puberty, at which point revision or orchidectomy will be considered. Four patients who completed treatment before reaching puberty had unilateral (n=3) or bilateral (n=1) testicular atrophy. Hormonal support through puberty was required for the patient with bilateral atrophy. In four patients who had unsuccessful second stage FSO surgery on the first side, a decision was made to leave the remaining testis within the abdomen to guide them through puberty, to avoiding pre-pubertal anorchia. The reasons for surgical failure included testicular atrophy (n=3) and orchidectomy for a dysplastic testis (n=1). Of these patients, only one has undergone completion of the second side at the time of writing, which was successful. (Figure 2). Table 1 shows the outcomes in relation to the type of operation performed.

149

To date, 57 out of 60 testes have undergone surgical treatment, with 150 151 an atrophy rate of 14% (8/57) and an ascent rate of 3.5% (2/57), one 152 of which was successfully revised. Additionally, one orchidectomy 153 was performed for a dysplastic-looking testis. The median follow-up 154 duration was 16 months, range: 3-54 months, after the final 155 procedure. 156 3.3 Comorbidity 157 Within this cohort, 14/30 children had associated abnormalities, 158 including 5 with endocrine or genital abnormalities but no cases of 159 disorder of sexual differentiation were identified (Table 2). These 160 patients were referred to the endocrine team for hormonal 161 assessment and continued follow up. 162 163 164 *3.4 Endocrine Outcome* 165 Eight boys were referred for endocrine evaluation out of which 3 had 166 associated genital abnormalities. Two post pubertal and 2 pre-167 pubertal boys with successful bilateral orchidopexies were found to 168 have abnormal endocrine function. Conversely, one patient with a 169 single testis had a normal endocrine profile. 170 171 4. Discussion 172 In this series, the largest in the literature, the outcomes for 30 173 patients undergoing management of bilateral intra-abdominal testes 174 (BIAT) over a 16-year period are described. We report a success rate 175 of 73% whereby success is defined as 2 palpable testes in the

scrotum before the child reaches puberty. Specifically, 8 (14%) testes atrophied leaving one boy anorchic. The findings highlight heterogeneity in the management of BIAT, likely reflecting variations in general practice.

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

176

177

178

179

The study identifies a higher atrophy rate than those reported in other studies examining BIAT outcomes as summarised in Table 3, although the atrophy rate is consistent with meta-analyses of Fowler-Stephens orchidopexy (FSO) overall (16). Hvistendahl and Algaratnam report series including both bilateral and unilateral cases (11,17). Hvistendahl et al. reported a 14% overall atrophy rate but did not specifically address bilateral cases. They suggested that bilateral cases had favourable outcomes compared to unilateral cases, possibly due to the lower mean age at surgery in bilateral cases, although statistical analysis was not conducted. Algaratnam et al. observed atrophy in 3.2% of bilateral cases versus 11.3% of unilateral cases, but this difference did not reach statistical significance, likely due to the small sample size. Furthermore, the median age did not differ between groups in Algaratnam's study, undermining Hvistendahl's suggestion of a lower atrophy rate in bilateral cases due to the younger age at surgery. None of the aforementioned studies included patients with unilateral atrophy who underwent delayed procedures until after puberty, nor did they mention this strategy. This series benefits from ample follow-up time (median 16 months, range: 3–54 months) using a pragmatic assessment of testicular outcomes in the absence of an objective

method due to its retrospective nature. This approach is consistent with many other series and may even overestimate atrophy rate, highlighted by the patient who had spontaneous puberty with what was assumed to be a solitary atrophic testis.

Assessing the impact of orchidopexy on an individual child's risk of testicular cancer presents challenges. Epidemiological studies investigating the link between undescended testes and malignancy are typically large but often lack detailed information on the preoperative position of the testis (18,19). BIAT could be associated with a higher risk of malignant transformation, although quantifying this relationship remains challenging due to the rarity of both BIAT and testicular tumours. Cortes *et al.* conducted a biopsy study on 1335 boys undergoing orchidopexy, finding a higher frequency of premalignant and malignant processes in BIAT and in children with abnormal external genitalia (20). As a result, paediatric surgeons are generally reluctant to leave a testis within the abdominal cavity if orchidopexy is not feasible, opting instead for orchidopexy or orchidectomy.

Moreover, children with BIAT are at risk of anorchia as a result of failed surgical management. With a reported atrophy rate of approximately 10-15%, bilateral failure of orchidopexy can lead to anorchia or very low testosterone levels, potentially inadequate for puberty (16). According to guidance from 2015, early endocrine assessment is recommended for all patients with bilateral

undescended testes, and this is now recommended practice in our centre (4).

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

228

229

Considering the risk of anorchia, we advocate for a synchronous first stage followed by a metachronous second-stage, as it allows for the option of delaying the second stage of the second testis until after puberty should the first side atrophy. This strategy was employed in four of our patients. Notably, one patient completed treatment after a delay of 6.1 years, which was ultimately successful. It's important to note that if this strategy is employed, close followup until final orchidopexy is mandatory because of the risk of malignancy. The remaining three patients await their delayed second-stage procedure. However, single-stage bilateral procedures may be suitable for children with significant comorbidities to reduce exposure to general anaesthesia. This approach was taken in a child with arthrogryposis, with a good outcome. Additionally, it is noteworthy that fertility in patients with BIAT is poor, even after successful orchidopexy, with azoospermia reported in over 50% of cases [20]. Thus, the aim of orchidopexies in these boys is to move the testes out of the abdomen and place them in the scrotum to allow self-examination, and to preserve their endocrine function.

249

250

251

252

253

Any consensus on the management of BIAT must consider all of the factors discussed above. Unfortunately, much of the literature on the outcomes of intra-abdominal testes does not clearly differentiate between unilateral and bilateral cases. A literature search revealed

only four studies specifically commenting on the outcomes of surgery for BIAT (11,17,21–22). Case series from Algaratnam, Safwat, and Hvistendahl distinguish between unilateral and bilateral IATs.

Kaye describes a single-stage non-FSO technique for BIAT with success rates exceeding 90%. Where management of BIAT is described, there is typically a failure to address the specific challenges of managing these patients. Consequently, there is little guidance on management in the situation of testicular atrophy one side and incomplete staged orchidopexy on the other.

Several limitations of this review should be noted. Hospital coding may be unreliable, and so some cases with BIAT may not have been captured. Moreover, testicular outcomes were subjectively assessed by clinicians, and preoperative testicular size documentation was inconsistent. The small sample size precluded statistical analyses.

Conclusions

The management of bilateral intra-abdominal testes (BIAT) demands careful consideration, yet a published consensus remains elusive.

Based on the findings of this study and existing literature, staged orchidopexy with metachronous second-stage procedures, performed at a young age, seems a relatively low-risk approach to BIAT management. Metachronous second-stage procedures should be spaced adequately to allow for assessment of the outcome of the first side before proceeding with the second procedure, as bilateral atrophy remains a possibility. Moreover, Early endocrine

280	assessment is recommended for all patients with BIATS regardless
281	of the orchidopexy outcome.
282	
283	Conflict of interest statement
284	None to declare
285	
286	Funding
287	This research did not receive any specific grant from funding
288	agencies in the public, commercial, or not-for-profit sectors.
289	
290	Ethical Approval
291	None Required
292	
293	Generative AI and AI-assisted technologies were NOT used in the
294	preparation of this work
295	

296 References 297 298 [1] Kolon TF, Herndon CDA, Baker LA, Baskin LS, Baxter CG, Cheng EY, 299 et al. Evaluation and treatment of cryptorchidism: AUA guideline. J 300 Urol. 2014;192:337–45. doi:10.1016/j.juro.2014.05.005. 301 [2] Hutson JM, Balic A, Nation T, Southwell B. Cryptorchidism. Semin 302 Pediatr Surg. 2010;19:215-24. 303 doi:10.1053/j.sempedsurg.2010.04.001. 304 [3] A-Khatwa UA, Menon PS. Management of undescended testis. 305 Indian J Pediatr. 2000;67(6):449–54. 306 [4] Commissioning guide: paediatric orchidopexy for undescended testis. Br Assoc Paediatr Surg, R Coll Surg Engl, British Assoc Urol 307 308 Surg; 2015. 309 [5] Baillie CT, Fearns G, Kitteringham L, Turnock RR. Management of 310 the impalpable testis: the role of laparoscopy. Arch Dis Child. 311 1998;79:419-22. doi:10.1136/adc.79.5.419. 312 [6] Castillo-Ortiz J, Muniz-Colon L, Escudero K, Perez-Brayfield M. 313 Laparoscopy in the surgical management of the non-palpable testis. 314 Front Pediatr. 2014;2:28. doi:10.3389/fped.2014.00028. 315 [7] Snodgrass WT. RE: Papparella A, et al. The value of laparoscopy in 316 the management of non-palpable testis. J Pediatr Urol. 2011;7:500-317 1; author reply 502. doi:10.1016/j.jpurol.2011.01.002. 318 [8] Casanova NC, Johnson EK, Bowen DK, Kraft KH, Wan J, Bloom DA, 319 et al. Two-step Fowler-Stephens orchiopexy for intra-abdominal 320 testes: a 28-year single institution experience. J Urol. 321 2013;190:1371–6. doi:10.1016/j.juro.2013.04.056.

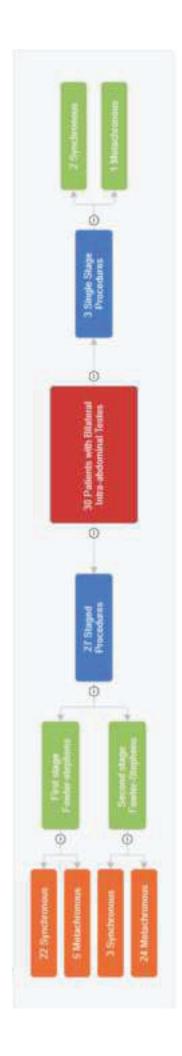
- 322 [9] Powell C, McIntosh J, Murphy JP, Gatti J. Laparoscopic orchiopexy
- 323 for intra-abdominal testes—a single institution review. J
- 324 Laparoendosc Adv Surg Tech A. 2013;23:481–3.
- 325 doi:10.1089/lap.2012.0578.
- 326 [10] Stedman F, Bradshaw CJ, Kufeji D. Current practice and
- 327 outcomes in the management of intra-abdominal testes. Eur J
- 328 Pediatr Surg. 2015;25:409–13. doi:10.1055/s-0034-1383854.
- 329 [11] Alagaratnam S, Nathaniel C, Cuckow P, Duffy P, Mushtaq I,
- 330 Cherian A, et al. Testicular outcome following laparoscopic second
- 331 stage Fowler-Stephens orchidopexy. J Pediatr Urol. 2014;10:186–92.
- 332 doi:10.1016/j.jpurol.2013.08.005.
- 333 [12] El-Anany F, Gad El-Moula M, Abdel Moneim A, Abdallah A,
- Takahashi M, Kanayama H, et al. Laparoscopy for impalpable testis:
- classification-based management. Surg Endosc. 2007;21:449–54.
- 336 doi:10.1007/s00464-006-9003-0.
- 337 [13] Hassan ME, Mustafawi A. Laparoscopic management of
- impalpable testis in children, new classification, lessons learned, and
- rare anomalies. J Laparoendosc Adv Surg Tech A. 2010;20:265–9.
- 340 doi:10.1089/lap.2009.0244.
- 341 [14] Sweeney DD, Smaldone MC, Docimo SG. Minimally invasive
- surgery for urologic disease in children. Nat Clin Pract Urol.
- 343 2007;4(1):26–38.
- 344 [15] Philip J, Mullassery D, Craigie RJ, Manikandan R, Kenny SE.
- 345 Laparoscopic orchidopexy in boys with prune belly syndrome—
- outcome and technical considerations. J Endourol. 2011;25:1115–7.
- 347 doi:10.1089/end.2010.0257.

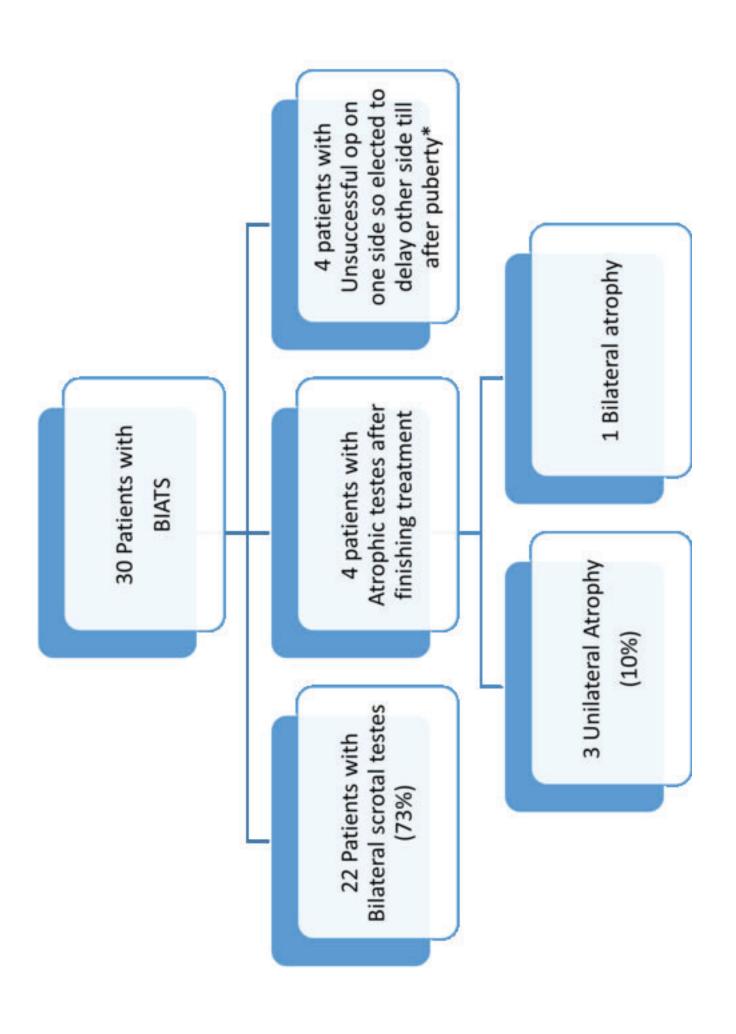
348	[16] Elyas R, Guerra LA, Pike J, DeCarli C, Betolli M, Bass J, et al. Is
349	staging beneficial for Fowler-Stephens orchiopexy? A systematic
350	review. J Urol. 2010;183:2012–8. doi:10.1016/j.juro.2010.01.035.
351	[17] Hvistendahl GM, Poulsen EU. Laparoscopy for the impalpable
352	testes: experience with 80 intra-abdominal testes. J Pediatr Urol.
353	2009;5:389–92. doi:10.1016/j.jpurol.2009.04.004.
354	[18] Pettersson A, Richiardi L, Nordenskjold A, Kaijser M, Akre O. Age
355	at surgery for undescended testis and risk of testicular cancer. N Engl
356	J Med. 2007;356:1835–41. doi:10.1056/NEJMoa067588.
357	[19] United Kingdom Testicular Cancer Study Group. Aetiology of
358	testicular cancer: association with congenital abnormalities, age at
359	puberty, infertility, and exercise. BMJ. 1994;308:1393–9.
360	[20] Cortes D, Thorup JM, Visfeldt J. Cryptorchidism: aspects of
361	fertility and neoplasms. A study including data of 1,335 consecutive
362	boys who underwent testicular biopsy simultaneously with surgery
363	for cryptorchidism. Horm Res. 2001;55:21–7.
364	doi:10.1159/000049959.
365	[21] Kaye JD, Palmer LS. Single setting bilateral laparoscopic
366	orchiopexy for bilateral intra-abdominal testicles. J Urol.
367	2008;180:1795–9; discussion 1799. doi:10.1016/j.juro.2008.03.108.
368	[22] Safwat AS, Hammouda HM, Kurkar AA, Bissada NK. Outcome of
369	bilateral laparoscopic Fowler-Stephens orchidopexy for bilateral
370	intra-abdominal testes. Can J Urol. 2013;20:6951–5.
371	
372	

Treatment	Total	Complete	Bilateral	Unilateral	Bilateral	Unilateral	Orchidectomy
Strategy			Good	Atrophy	Atrophy	Ascent	
Strategy			Outcome				
Single Stage	3	3/3	3	0	0	0*	0
Staged	2	2/2	1	1	0	0	0
Synchronous							
Staged	21	21/21	17	2	1	1	0
Metachronous							
Delayed	4	1/4	0	3	0	0	1
second side							
Total	30	27/30	21	6	1	1	1

Table 1 – Patient outcome following Fowler Stephens orchidopexy for bilateral intra-abdominal testes according to treatment strategy.

* One patient in the single stage group required revision orchidopexy which was successful.


Embryological / Genetic	Genital/Endocrine
Trisomy 9	Micropenis
ASD, Pulmonary regurgitation	
Noonan's Syndrome	
11p13 deletion	Peno-scrotal hypospadias, Mullerian remnant
T21	
Coarctation	
Hydrocephalus	
Noonan's Syndrome	
Hepatic/Portal venous anomaly	Hypospadias, Partial androgen insensitivity
Beckwith Wiedemann syndrome, CHI, Cleft	
Palate	
ASD, VSD	
Malrotation, Pulmonary stenosis, ASD,	
Tracheomalacia	
ASD	Peno-scrotal Hypospadias
Tracheomalacia, Jejunal Atresia, Duplex	
Kidney, Arthrogryposis	
	Gonadotrophin deficiency
Club Feet	


Table 2: Associated abnormalities in the boys with BIAT

Study	Number of Patients		Outcome Bilateral (Unilateral)				Timing of Stages			
							Follo (Bilateral Only)			Only)
						w up				
							(Week			
							s)			
	Bilate	Unilat	Pend	Atro	Asc	%Succ	Minimu	Single	Synchro	Metachrono
	ral	eral	ing	phy	ent	ess	m	Stage	nous	us
			$2^{\rm nd}$				(Media			
			side				n)			
Algarat	19	75	-	1	5	80	12	0	11	8
nam				(8)	(4)	(83)	(109)			
Safwa	24	0	-	2	5	86	Not	6	Total of 18	
t							stated			
Hvisten	70 7	Γotal	-	-	-	82(8	12		No	t stated
dahl						0)	(12)			
Kaye	21	0	-	2	0	91	26	19	1	1
							(26)			
This	30	0	3	8	1	73	14(10	3	3	24
Study							1)			
Total	94			12	11	82%		27 66		66
(Mean										
%)										

Table 3: Summary of studies examining BIATs outcomes

388	Figure Legends
389	
390	Figure 1: Cohort of BIAT
391	Figure 2: Outcomes of FS in BIAT.
392	*One case had successful orchidopexy on the other side.
393	
394	

