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Welcome to the third edition of C-MAS, the International Workshop on Citizen-
Centric Multiagent Systems. Over the past two years, C-MAS has focused on reshaping
how we think about AI and multiagent systems in relation to society and role of end
users. We continue to challenge the conventional view of users as passive data sources
or service consumers. Instead, we emphasise the role of citizens as active agents with
their own goals, preferences, and responsibilities within sociotechnical systems. As AI
technologies increasingly shape our public spaces, communities, and infrastructures,
a citizen-centric perspective become crucial for ensuring these systems are inclusive,
trustworthy, and socially beneficial. C-MAS 2025 builds on the foundations laid in
2023 and 2024, pushing further into questions of participation, agency, and impact.

This year, we are expanding our focus to highlight not only the design of citizen-
centric MAS but also their deployment and evaluation in real-world contexts. Our
sessions cover key themes such as “Empowering Citizens in Critical Services”, “Mod-
elling Human Needs in Shared Environments”, “Multiagent Learning for Public Decision-
Making”, and “Ethics, Fairness, and Normative Reasoning”. Through these discus-
sions, we aim to bridge the gap between research prototypes and impactful, citizen-
focused AI solutions. We are excited to welcome an interdisciplinary community of
researchers all contributing to a shared vision: AI systems that serve and empower the
citizens.
Further details about CMAS-2025 are available at: https://sites.google.com/view/cmas25
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1 Keynote: Tackling Societal Challenges with Multi-
Agent Systems: Bridging Theory and Practice

Keynote by Dr. Fei Fang, Carnegie Mellon University

This talk will cover real-world challenges—from wildlife conservation to public
health—often involve coordination or competition among multiple agents. In this talk,
Prof. Fei Fang will present their work on multi-agent systems and their applications
in critical societal domains, including anti-poaching efforts, food rescue operations,
and mental health support. She will discuss key theoretical advancements, practical
deployments, and the lessons learned in translating multi-agent research into real-world
impact.

Dr. Fei Fang is an Associate Professor at the Software and Societal Systems De-
partment in the School of Computer Science at Carnegie Mellon University. Before
joining CMU, she was a Postdoctoral Fellow at the Center for Research on Computa-
tion and Society (CRCS) at Harvard University, hosted by David Parkes and Barbara
Grosz. She received her Ph.D. from the Department of Computer Science at the Univer-
sity of Southern California advised by Milind Tambe (now at Harvard). Fei’s research
lies in the field of artificial intelligence and multi-agent systems, focusing on integrat-
ing machine learning with game theory. Her work has been motivated by and applied
to security, sustainability, and mobility domains, contributing to the theme of AI for
Social Good. She is the recipient of the Allen Newell Award for Research Excellence
2023, 2022 Sloan Research Fellowship, and IJCAI-21 Computers and Thought Award.
She was named to IEEE Intelligent Systems’ “AI’s 10 to Watch” list for 2020. Her
work has won the Best Paper Award at GameSec’23, Deployed Application Award
at IAAI’23, Best Paper Honorable Mention at HCOMP’22, Best Paper Runner-Up at
AAAI’21, Distinguished Paper at IJCAI-ECAI’18, Innovative Application Award at
IAAI’16, the Outstanding Paper Award in Computational Sustainability Track at IJ-
CAI’15. She received an NSF CAREER Award in 2021. Her dissertation is selected
as the runner-up for IFAAMAS-16 Victor Lesser Distinguished Dissertation Award,
and is selected to be the winner of the William F. Ballhaus, Jr. Prize for Excellence
in Graduate Engineering Research as well as the Best Dissertation Award in Computer
Science at the University of Southern California.

3



Proceedings of the 3rd International Workshop on Citizen-Centric Multiagent Systems 2025 (C-MAS 2025)

2 Empowering Citizens in Critical Services

2.1 MEAL: Model of Empathy Augmented Logistics for Food Se-
curity
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Meal: Model of Empathy Augmented Logistics
for Food Security

Seoyeong Park1[0009−0001−4402−6160] and Munindar P.
Singh1[0000−0003−3599−3893]

North Carolina State University, Raleigh, NC, USA
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Abstract. Millions globally lack access to nutritious food, experiencing
food insecurity. Efforts to address food insecurity seek to provide con-
sumers food that may be rescued (i.e., what warehouses or grocers would
otherwise soon discard as unusable), directly donated, or acquired using
governmental funds.
Current approaches produce allocations that optimize global objectives
to store and move food efficiently across food banks. However, they
largely overlook consumer preferences and constraints. As a result, the
resulting allocations lead to consumers either using foods they do not
care for or discarding such foods, leading to food waste.
This paper presents a new model, studied via human study and agent-
based simulation, that shows how incorporating the consumer perspec-
tive on par with the provider perspective can lead to better outcomes
overall. We find that persuasive messages that include individual circum-
stances and the social context can promote prosociality and empathy.

Keywords: Food security · Multiagent system · Agent-based simulation

1 Introduction

Food insecurity is the condition of a household having poor access to adequate
food and reduced quality of food intake [8]. One-eighth (approximately 17 mil-
lion) of US households experience food insecurity [8], and it is a critical global
concern [7].

The US food bank system is a nonprofit organization that reduces food waste
and alleviates food insecurity by collecting, storing, and distributing food to
those in need [1]. The federal government provides funding and capabilities to
procure, store, transport, and distribute food [8]. Local food banks (providers)
may receive donations from organizations, retailers, and individuals as well as
allocations from regional food banks. Volunteers sort and distribute food to
consumers and sometimes to smaller sites called food pantries. A consumer is a
household experiencing food insecurity. Consumers deserve not only to satisfy
their health-based or cultural dietary needs and to have a choice on what they
eat, albeit limited by what is available.
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Ensuring equitable distribution is difficult when supplies are in short supply,
and preferences are diverse. Thus, a traditional approach may end up giving its
limited supply of milk to a household without children while a household with
children has to do without. Or, it might allocate starchy foods to a person with
diabetes. Current research addresses logistic efficiency [2, 12] or concentrating on
consumers’ tastes [11], but not on both aspects together.

We propose Meal for Model of Empathy Augmented Logistics for Food
Security. Meal allocates food by considering both consumer needs and societal
objectives such as reducing food waste and improving equity. Meal’s novelty
thus lies in combining prosociality with a multistakeholder model of food security.
Through extensive simulation experiments, we find that Meal reduces waste
and increases satisfaction in distributing food items compared to models that
consider only one side, either consumers or providers. Through a human study, we
find that persuasive messages, especially those that fit individual circumstances
and the social context, can promote prosociality.

2 Motivation for Meal

In an ideal world, everyone would get the food items they most prefer. How-
ever, it is impossible to match everyone’s preferences with constraints. Previous
approaches to promoting food security through sharing food with those in need
have generally taken a rigid stance. In these approaches, an organization such
as a food bank, which has all the power and the food, decides how to allocate
it to food-insecure households. Besides the obvious challenges of not accommo-
dating the wishes of the intended recipients of the food, this approach leads to
greater food waste system-wide because foods that do not match the constraints
and preferences of the recipients cannot be used by them. This top-down al-
location inevitably ends up with some consumers not receiving their preferred
items, which not only leaves them less satisfied but also worsens food waste.
Therefore, we consider restructuring the problem such that other acceptable al-
locations can be found. Our approach builds on key principles: social welfare,
equity, prosociality, and empathy.

2.1 Stakeholders

We consider two main types of stakeholders. Consumers are households served
through our recommendation system. They aim to acquire food items that align
with their preferences and needs. This consumer-centric perspective emphasizes
the importance of enhancing consumer satisfaction and personalized experiences
for food allocation [3]. As consumers interact with the system, their preferences
for food items are constantly captured and refined. These preferences evolve over
time and are shaped by factors such as age, health status, dietary constraints,
household status, and willingness to make prosocial choices [4, 5]. The agent
learns these dynamics by reflecting consumer feedback toward recommended
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food items. This learning process allows the agent to provide recommendations
matching a consumer’s tastes and current needs.

Providers seek to improve the effective distribution of the available food. This
entails reducing food waste, maximizing the distribution of food, and meeting
the needs of their community while providing food items that suit consumer
preferences. The provider prioritizes not merely using in-stock items but also
fulfilling consumer requests as closely as possible [3]. However, they might pro-
pose less-preferred alternatives when necessary. The provider intends to trigger
empathy and gently nudge consumers to accept alternatives through social and
psychological factors that influence decision-making.

2.2 Research Questions

Accordingly, this study investigates these research questions.

RQprosociality How can Meal produce equitable allocations by incorporating a
dynamic multistakeholder context (consumers and providers) and supporting
prosocial behavior among consumers?

RQpersuasion Do persuasion and empathy influence human decisions about food
and prosocial behavior?

3 Empirical Evaluation with Humans

Even if Meal recommends substitutes that are mostly consistent with prefer-
ences, simply offering those without any context or with a generic explanation
is less effective and unhelpful for consumers. To validate our assumptions on
human behavior and prosociality underlying our simulation, we conducted an
IRB-approved human study on consumer decision-making. Our study shows per-
sonalized, context-rich persuasive messages may improve engagement compared
to simple and generic ones.

We observed no significant difference in decision-making with or without a
persuasive message. The acceptance rates were similar for No persuasion and
Persuasion, 62.5% in the former and 63.7% in the latter. Applying the two-
proportion Z-test [10] produced a p-value of 0.7, indicating no significant differ-
ence. This indicates that the consumers are highly likely not affected by persua-
sive situations when the system provides justification and context, implying that
the persuasive message used in the study was too weak or generic to resonate
with the participants’ priorities.

Similarly, we found no statistically significant difference in consumer satis-
faction: the mean of 3.57 No persuasion and the mean of 3.43 Persuasion, with
a Mann-Whitney U test [6] p-value of 0.193. The results show that consumer
satisfaction was not greatly affected by the given persuasive message. This in-
dicates that the observed increase in acceptance rate with persuasion may not
necessarily translate to a corresponding increase in consumer satisfaction. In
other words, simply encouraging to accept substitutes may not be accompanied
to enhance the consumer’s experience.
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Understanding what motivates consumers to accept recommendations is cru-
cial. The survey given at the end of the study revealed that the participants are
most likely to accept if the alternatives are what they like or similar to their
original choices in terms of taste, type of food, or nutritional value; in other
words, familiarity matters.

Consumers may measure their satisfaction not only with fulfilling personal
desires but also by feeling rewarded for helping others. Almost all survey respon-
dents answered that they would highly likely change their decision of refusing
a recommended item regardless of their personal situations if they know their
choice helps promote social well-being, unless they have strong dietary restric-
tions.

4 Model Design

Our goal is to simultaneously maximize consumer satisfaction and maximize the
provider’s benefit. The agent understands stakeholders’ values, the future state
of the world for each action it can perform, and the social experience its consumer
will derive for each action it can perform. Then, since we cannot maximize both
objectives, the agent moderates to achieve an optimal trade-off between two
stakeholders.

We now formalize our problem setup. We have a set of consumers U and a set
of food items F , where each consumer in U has profile information and unique
food preferences toward each food item in F . Each item in F carries attributes
that reflect its importance in consumption priority and benefits to the provider.
These attributes include multiple factors, such as inventory capacity, expiration
date, and perishability, shaping the provider benefits cu,d,t associated with each
recommendation happening at time step t. Within this dynamic framework,
du,f,t ∈ D represents a recommendation for consumer u at a specific time step t.
It contains two attributes: a recommended food item and a binary indicator of
whether it is accepted. Subsequently, we define that consumer satisfaction hu,d,t

comes as ratings at a time step t, ranging from 0 (no preference or experience)
to 5 (extremely like). The provider’s benefit c is determined by the aggregate
score of accepted food items, scaling to the same range as h. These scores are
updated in real time as allocations are made.

The problem involves finding the optimal way to distribute the available food
to consumers over time while considering their preferences and impact on the
community, in other words, managing the trade-off between these two objec-
tives. To balance these objectives, a weighted sum of consumer satisfaction H
and provider benefit C is used with a weighting factor denoted as ω (0 ≤ ω ≤ 1).
We choose the optimal value of ω that maximizes both H and C. Therefore, the
agent’s overall reward for the decision-making objective is a weighted combina-
tion of satisfaction and provider benefit.

By using Q-learning [9], our model effectively adapts to dynamic changes in
consumers’ needs, food availability, and other factors and incorporates long-term
interaction into their decision-making process.
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5 Results

Our study considers three baselines: random recommendation, consumer-focused,
and provider-focused approaches.

Random recommendation Recommends items randomly from in-stock in-
ventory, regardless of consumer preferences or provider benefit. This baseline
disregards fairness and trust.

Consumer-focused Solely prioritizes consumers’ preferences based on their
past interactions and preferences. This model is equivalent to assigning a
weighting factor ω of 1 and completely ignores provider benefit.

Provider-focused Solely prioritizes the provider-side operation exclusively and
disregards consumer preferences. It is equivalent to assigning a weighting
factor ω of 0.

5.1 Consumer Satisfaction

Consumers find greater satisfaction with recommendations that consider both
consumer preference and society’s welfare. This trade-off indicates that Meal
fulfills the intended objectives even though it might sacrifice some provider ben-
efits.

The provider-focused model delivers the highest cumulative provider bene-
fit, and the consumer-focused model achieves the lowest provider benefit. The
provider benefit decreases as the weight assigned to the provider decreases, in
other words, it increases inversely related to ω. Consumer satisfaction visibly im-
proves, unlike what we originally expected both stakeholders to sacrifice to some
extent if we set a parameter for the reward. The evenly considered (ω = 0.5)
model and the optimal (ω = 0.2) model outperform the consumer-focused model
in terms of getting higher consumer satisfaction. It indicates that Meal recom-
mends items that consumers like more.

This implies that the weighted models distribute resources in a way that actu-
ally benefits both consumers and providers more. By incorporating the provider’s
perspective, Meal achieves a more efficient and equitable allocation, meaning
that a greater number of consumers are served or a greater number of consumers
get better at matching their preferred items among the available inventory.

5.2 Acceptance of Recommendations

How much the model skews to consumer satisfaction affects the acceptance
rate. The higher the weight on consumer preferences, the higher the accep-
tance rate. The gap in the acceptance rate between the consumer-focused and
provider-focused models differs notably. The consumer-focused model dominates
all other models, particularly the provider-focused and random recommendation.
We could observe that the acceptance rate gradually drops in the provider-
focused model, unlike increasing in other models. This result implies that when
the provider recommends items that need to be sold quickly, without paying
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much attention to whether they match the consumer’s preferences, consumers
often find these recommendations less appealing. As a result, they are more likely
to reject them.

Interestingly, models that incorporate some preference weighting tend to con-
verge to acceptance rates that are similar to the consumer-focused model, with
only slight differences of less than 1%. This observation indicates that while the
consumer-focused model has the strongest alignment with consumer preferences
and needs, weighted models still achieve comparable acceptance rates. It means
that consumers are highly likely to accept substitutions even when recommenda-
tions are not perfectly tailored but reasonably close to their preferences, which
eventually results in a better overall resource allocation.

5.3 Potential in Food Waste Reduction

Our result represents the estimated percentage of food wasted at each timestep.
Waste after acceptance is excluded but all other expired food items are included.
It shows that the percentage of food waste increases early stages but gently
decreases after a certain point. The optimal model (ω = 0.2) lowers the waste
below the consumer-focused model and is close to the provider-focused model.
That is, the optimal model shows only a small difference in food waste compared
to the provider-focused model, even though the model considers the provider’s
benefit less.

6 Limitations and Future Work

Our proposed model faces some limitations. First, Meal elides nutritional fac-
tors and health considerations and recommends items solely relying on explicit
preferences toward each food item given by consumers. Likewise, attributes such
as socioeconomic background, culture, religion, and other diversity across com-
munities remain challenging for optimization.

Incorporating additional stakeholder types would provide a more holistic view
but complicate ensuring well-being, fairness, and trust among the stakeholders.

7 Conclusion

Achieving equitable food distribution requires a multifaceted endeavor that meets
various goals. Meal seeks to optimize the allocation strategy toward maximiz-
ing the rewards for consumer satisfaction and provider benefit, employing Q-
learning. Our findings highlight that the right balance of the stakeholders’ ob-
jectives enhances consumer satisfaction while maximizing provider benefits. Our
experiments simulate the society aligning with theoretical literature and other
empirical findings in the relevant fields. Such alignment reinforces the robustness
and applicability of our proposed method in real-world scenarios.

Acknowledgments. This work is supported by the NSF under grant 2125600.
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Appendix

A.1 US Food Bank System

Fig. 1: Food distribution system, based on the US setting.

A.2 Concept of Operations in Meal

We envision that consumers register with the food-sharing app by providing their
profiles (e.g., household information). Consumers indicate preferences for some
food items, e.g., fresh fruits and vegetables, milk, and whole grains. Then, they
request food items as they need. Based on the inventory availability, community
demands, and the consumer’s profile and past selections, the app recommends
alternative items from the same categories if one or more requested items are
not available. The consumer can choose to accept or reject these substitutions
and indicate their satisfaction with the accepted items, which the app uses to
refine its suggestions.

Fig. 2 illustrates our conception. The agent serves as a mediator between
consumers and a provider using consumer preferences and profiles to form the
foundation for personalized recommendations. The agent received the provider’s
inventory information to make accurate up-to-date recommendations. Then, it
aggregates demand and trends, estimates the level of prosociality of consumers
and the goodness of food items, and processes interactions so that all parties
benefit.
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Fig. 2: Model architecture.

In general, the app cannot always recommend the consumer’s most preferred
items. For instance, if apples have a higher demand than available stock, the
app might suggest oranges. Doing so helps ensure as many people as possible
get what they need and keeps the food bank running smoothly. Thus, consumers
and providers have different perspectives. Meal recognizes complexity by mod-
eling consumers focusing on household needs and preferences, and a provider
managing availability and community demand.

A.2.1 Model Formulation

Formally, we define the above problem as a Partially Observable Markov Deci-
sion Process (POMDP) where an agent (recommender) interacts with the en-
vironments (consumers and food provider) over time to maximize cumulative
rewards of combined benefits. ⟨S,A, T,R,O,Ω, γ⟩, where s ∈ S is a finite set
of states (i.e., consumer preferences and profiles, inventory status), a ∈ A is a
finite set of actions (i.e., the possible recommendations), T is a set of transition
probabilities between states (i.e., the probability of acceptance), O is a set of
observations (i.e., whether the recommendation is taken or not, consumers’ satis-
faction feedback), Ω is a set of conditional observation probabilities of receiving
an observation o ∈ O after taking action a ∈ A at state s, R is a reward function
(i.e., a combination of consumer satisfaction and provider’s benefit controlled by
the weighting factor ω, as defined in Equation 2), and γ ∈ [0, 1) is the discount
factor.

rω = ω · h+ (1− ω) · c (1)

ω∗ = arg max
ω∈[0,1]

r(ω) (2)

A.3 Empirical Study Design

To conduct this study, we built a simple app that follows the streamlined flow of
food requests and recommends replacements. We recruited 49 (adult, US-based)
volunteers without any restrictions to ensure diverse representation.

The study involves two sessions of three food-requesting flows each. One
session does not have persuasive messages when recommending replacements; the
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Fig. 3: User study design.

other does. All 49 participants completed both the Persuasion and No persuasion
sessions but in randomized order to consider potential dropout in the middle of
the study. In each episode, the participants choose items from a list of fruits,
vegetables, and meats. In the treatment, we replace two items in each food
category after each request, and the participants can choose to accept or reject
the replacements. At the end of the sessions, the participants rated how satisfied
they were with the replacements they accepted.

Table 1: Data summary and results
No persuasion Persuasion

Total responses 515 463
Accepted 322 295
Rejected 193 168
No satisfaction response 91 54

Acceptance percentage 62.52 63.71
Mean satisfaction 3.57 3.43
Median satisfaction 4 4

A.4 Experimental Setting

We evaluate our model through simulations to understand how prosocial deci-
sions are made throughout interactions. The simulated environment comprises
data consisting of three sets: consumer profiles, preference ratings, and food in-
ventory. Since it is hard to acquire real-world food preference data and food
bank availability, we arbitrarily approximated the values of food items in our
simulation by seeding the survey results of food pantry needs [1].

A.4.1 Consumer Profile and Prosociality

The main agents in our model are the consumers. We have crafted a consumer
community with unique profiles. For simplicity, each consumer’s profile includes
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age, whether they have one or more children, whether they have dietary restric-
tions or disease, family size, and ratings towards food items. We set 33% of
consumers as aged over 65 and 45% of consumers as having a child. The family
size distribution followed the statistics derived from a survey: the mean is three,
and the standard deviation is two [1].

A consumer may accept or reject a recommendation. The probability of ac-
ceptance hinges on two factors: the consumer’s preference and inherent willing-
ness to yield. Consumers don’t know how much the provider gains from their de-
cisions. Ratings for particular items may be undefined. If undefined, we estimate
satisfaction with the most similar consumer preferences using cosine similarity.

A.4.2 Food Inventory

Our simulation necessitates a comprehensive and realistic dataset that encom-
passes not just the items but also their attributes. We obtained a food list from
[2] (169 different items) and classified it into six categories that people request
every day, which are meat, fruits and vegetables, dairy, eggs, cooking items (like
oils and seasoning), and others. However, since the [2] data lacks the specific
attributes we need, we augmented attributes with feasible assumptions as close
to demands mentioned in [1]. For simplicity, we limit to considering quantity,
expiration date, and perishability as key components of setting urgency of allo-
cation.

A.4.3 Trade-Offs: Provider versus Consumer

We evaluate various weightings to determine the optimal value of ω, as in Equa-
tion 2. We observe that the weighted models surpass the consumer-focused model
in cumulative satisfaction, demonstrating the effectiveness of Meal.

A.5 Visualizations of Results

To verify our model, we conduct simulations with 1,000 agents, each correspond-
ing to consumers, one agent corresponding to the provider, and Meal agent
acting as a moderator between the consumers and the provider.

The parameter ω ranges between completely provider-focused valuation (ω =
0) and completely consumer-focused (ω = 1), with increment of 0.1. H and C
are updated each time a particular recommendation is taken.

To evaluate our model’s performance, we consider two distinct values for
the weighing factor (ω): 0.2, optimal in our setting determined by Equation 2,
and 0.5, which evenly considers both sides. The results consistently show that
our model with the optimal value of the weighting factor achieves our goal of
satisfying both stakeholders’ objectives. The model is trained with a learning
rate (α) of 0.1, a discount factor (γ) of 0.9, an exploration rate (ϵ) of 0.1, and a
prosociality weight (β) of 0.1.
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Fig. 4: Cumulative provider benefit. The provider-focused model gains the most
while the consumer-focused model gains the least.
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Fig. 5: Cumulative consumer satisfaction. Weighted models have the potential
to achieve higher satisfaction.
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Abstract. Diagnostic reasoning entails a physician’s local (mental) model based 
on an assumed or known shared perspective (global model) to explain patient 
observations with evidence assigned towards a clinical assessment. But in several 
(complex) medical situations, multiple experts work together as a team to opti-
mize health evaluation and decision-making by leveraging different perspectives. 
Such consensus-driven reasoning reflects individual knowledge contributing to-
ward a broader perspective on the patient. In this light, we introduce STRUCture-
following for Multiagent Systems (STRUC-MAS), a framework automating the 
learning of these global models and their incorporation as prior beliefs for agents 
in multiagent systems (MAS) to follow. We demonstrate proof of concept with a 
prosocial MAS application for predicting acute kidney injuries (AKIs). In this 
case, we found that incorporating a global structure enabled multiple agents to 
achieve better performance (average precision, AP) in predicting AKI 48 hours 
before onset (structure-following-fine-tuned, SF-FT, AP=0.195; SF-FT-
retrieval-augmented generation, SF-FT-RAG, AP=0.194) vs. baseline (non-
structure-following-FT, NSF-FT, AP=0.141; NSF-FT-RAG, AP=0.180) for bal-
anced precision-weighted-recall-weighted voting. Markedly, SF-FT agents with 
higher recall scores reported lower confidence levels in the initial round on true 
positive and false negative cases. But after explicit interactions, their confidence 
in their decisions increased (suggesting reinforced belief). In contrast, the SF-FT 
agent with the lowest recall decreased its confidence in true positive and false 
negative cases (suggesting a new belief). This approach suggests that learning 
and leveraging global structures in MAS is necessary prior to achieving compet-
itive classification and diagnostic reasoning performance. 

Keywords: Multiagent Systems, Machine Learning, Structure Learning, Health 
Informatics. 

1 Introduction 

When performing rounds in a hospital, physicians evaluate patients and communicate 
their clinical reasoning with their peers, who may agree or disagree with their assess-
ment. Similarly, when physicians participate in clinical boards (e.g., tumor board for 
reviewing potential cancers and treatment), experts collaboratively form an assessment 
and assign a diagnosis, with the goal of exploring the full range of possibilities. Both 
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types of clinical interactions involve multiple perspectives that are used to determine a 
patient’s “next step.” Such approaches extend to other interdisciplinary scenarios, 
where generalists (e.g., internists) often consult with others for specific expertise (e.g., 
nephrologists) [1]. These approaches aim to optimize health outcomes and diagnostic 
reasoning by employing different types of experience, coalescing individual insights 
into a more complete picture of the patient that informs clinical reasoning [2]. By anal-
ogy, local knowledge is woven together into an explanation for a patient based on a 
shared knowledgebase (a “global structure”) representing all patients. These collective 
assessments have been shown to improve patient care and outcomes in myriad settings 
[3-5]. 

However, despite its high value, there can be significant costs and difficulties asso-
ciated with this approach [6]: not all healthcare environments have the same degree of 
access to expertise (e.g., a limited number or no experts in a low-resource setting) [1, 
4]; communication may be challenging (e.g., due to lack of (quality) documentation to 
understand another physician’s reasoning); and decision-making may be time sensitive 
[7]. Indeed, the use of clinical boards is underutilized in part because of the need for 
considerable human resources.  

To help address these issues, we introduce the first implementation of STRUCture-
following for Multiagent Systems (STRUC-MAS) [8], a framework that draws inspira-
tion from the construct of a clinical group of experts in a prosocial context [9] to facil-
itate “on-demand” specialist knowledge workers. Specifically, STRUC-MAS provides 
a way to learn the “global structure” of a domain problem, which can then be incorpo-
rated as prior beliefs for agents in multiagent systems (MAS) to follow. To demonstrate, 
we address the critical problem of predicting the onset of acute kidney injury (AKI) as 
a group of interacting agents, each with different perspectives (i.e., AKIBoards) that 
update their beliefs over time to reach agreement in an explainable manner [8]. 

2 Methods 

2.1 AKIBoards: Predicting acute kidney injuries 

Fig. 1 overviews the general architecture of STRUC-MAS [8], which was adapted to 
the specific problem of predicting acute kidney injuries. From a health perspective, 
AKIs can lead to chronic kidney disease (CKD) and other long-term health complica-
tions. Most AKIs are preventable if there is sufficient time to intervene and provide 
treatment. However, the onset of many AKIs go undetected until too late, and some are 
not even recognized until after the fact. To address this problem, AKIBoards was de-
signed as a data-driven, clinically-oriented board using the STRUC-MAS framework. 
Following Stein et al.’s definition of a citizen-centric multiagent system, we shaped 
AKIBoards to be: 1) citizen-aware, taking into account stakeholder (health system, cli-
nician) perspectives and requirements; 2) citizen-beneficial, providing value by im-
proving current processes positively; and citizen-auditable, provide interpretable/ex-
plainable output and allow input from stakeholders [10]. 
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Fig. 1. AKIBoards in STRUC-MAS. Models are locally hosted with note and structure template. 
If the criteria from the prosocial layer are met, the framework proceeds with structure-following 
or semi-structure-following. Agent generated output is logged for evaluation.   

Dataset and representation. To develop AKIBoards, an AKI dataset was extracted 
from MIMIC-III [11], a freely-available database comprising deidentified health-re-
lated data [11]. Details regarding the dataset as well as the developed AKI algorithm 
can be found in a previous study [12]. Briefly, the dataset contains clinical laboratory 
values and was stratified and randomized into train (70%, n=9,176), valid (15%, 
n=1,966), and test (15%, n=1,967) sets. The fine-tuning of a pre-trained large language 
model (LLM) was fit on the training set, the structures fit on the validation set, and the 
agents evaluated on the holdout test set. We adapted a basic note template, where the 
data is serialized into knowledge triples (feature name, is, value) [13]. Notably, serial-
ization transforms the tabular data into a standardized note. 
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Structure learning: Rank learning module and structure template. When the struc-
ture is unknown to clinicians and/or agents, traditional machine learning or statistics 
methods can help learn plausible structures to follow [12]. We build on the rank learn-
ing module from Ranking Approaches for Unknown Structures (RAUS) [14] to learn 
structures that also capture feature value directionality and pairwise interactions [15-
17]. In this work, we used SHapley Additive exPlanations (SHAP) given its wide ac-
ceptance as an interpretability method. We transformed categorical features into 
dummy variables to enable interpretability at the bin level. Further, we used best-k (i.e., 
top) ranked features, where k=10 (Appendix 6.1, Figure 2). Note that SHAP output is 
automatically incorporated into the standardized structure template (see Appendix 6.1, 
Table 1). 

Prosocial layer. We integrate prosocial logic [9] via Boolean constraints to help ensure 
that the system is used for augmenting physicians rather than replacing them. The key 
issues this system aims to address are: 1) health professional shortages, either due to 
time constraints or unavailability; 2) unavailable reasoning for an AKI diagnosis, or to 
further support clinical decision making; and/or 3) general support (e.g., training of 
physicians to detect AKIs, demonstrating the reasoning process). These issues are in-
corporated into a “prosocial” score (PScore, Eq. 1) to measure the complementary na-
ture of the implementation. Note that the system must address at least one issue to have 
permission to run.  

𝑃𝑆𝑐𝑜𝑟𝑒	 = 	 𝑖!𝛼! +	∙∙∙ 	+	𝑖"𝛼#		(1) 

where i1 is issue 1 (health professional shortages), 𝛼!	is the weight of i1, i2 is a secondary 
issue (unavailable reasoning), 𝛼$	is the weight of i2, etc. Two options are available for 
each issue (true or false), where the value (ranges from 0-1) for true is 0.99 and false is 
0.01. Note that the higher the value the more “prosocial” the option. Further, 𝛼!, …, 
𝛼#, must sum to 1. In this work, all issues are equally weighted (i.e., 0.333). Thus, the 
minimum PScore required for the system to run is 0.336. As we identified and ad-
dressed three issues (options set to true), the PScore was 0.989. This approach can be 
used to address a single or multiple issues. 

Pre-trained LLMs, fine-tuning, and retrieval-augmented generation. LLMs in 
STRUC-MAS exploit the global structure (Appendix 6.1, Table 1) to infer local struc-
tures (i.e., individualized diagnostic reasoning) and diagnoses over time (i.e., iterations 
of iteration). We designed two paths: 1) structure-following, which exploits the global 
structure; and 2) semi-structure-following, which exploits the global structure and ex-
plores via retrieval-augmented generation (RAG) [18] – enabling agents to retrieve a 
previous similar note from the training set for comparison. Three open-source LLMs 
ranging from 8-32B parameters were selected based on their reported leading instruc-
tion-following and reasoning capabilities: 1) QWEN 2.5 Instruct [19]; Phi4 [20]; and 
Llama 3.1 Instruct [21], and fine-tuned via quantized low-rank adaptation (QLoRA) 
[22]. 
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Smart rounds. To efficiently orchestrate multiple LLMs we build on existing frame-
works and design a coordination style that is more akin to health system routines (see 
Appendix 6.2, Fig. 4) [23]. This setup mimics clinical rounds, where there is frequently 
a mixture of expertise levels (e.g., medical students, residents, attendings), to teach less 
experienced experts to perform at the level of more experienced experts (i.e., a mixture 
of experts) [24]. In this scenario, the assumption is that individual weaker experts can 
adopt the knowledge from stronger/more experienced experts to update their beliefs 
over time/rounds (i.e., knowledge distillation) [25]. Further, stronger experts can rein-
force and/or increase their confidence in their beliefs. Likewise, smart rounds aim to 
optimize reaching consensus across the agents in as few rounds as possible without 
sacrificing performance. If performance gain in a given round is less than a set threshold 
then early stopping occurs (i.e., the agents achieved near maximum exploitation of the 
global structure). 

Multi-agent system logs/records and evaluation. Multiagent records (MAR) log 
agent-generated output using a new vocabulary called agent-based terms (ABT) [26]. 
(see Appendix 6.3, Table 2-3). We evaluated the agent-based diagnosis (AD) using 
confusion matrix-based metrics (area under receiver operating characteristic curve, 
AUCROC; average precision, AP; precision; recall; false positive, FP; false negative, 
FN; true positive, TP; true negative, TN). We evaluated the agent-based diagnostic rea-
soning (ADR) using semantic similarity metrics (BERTScore) [27]. We developed a 
balanced classification and reasoning score (BCRScore, Eq. 2) to jointly assess AD and 
ADR (see Appendix 6.8, Table 8): 

BCRScore	 = Aα + Bβ  (2) 

where A is the AD metric (e.g., AP), α is A’s weight, B is the ADR metric (e.g., average 
BERTScore F1), and β is B’s weight. Note that α and β must sum to 1. Further, we 
assess agent confidence levels (ACL) as well as agent documentation burden via agent 
time spent on documentation (ATSD) and agent documentation length (ADL). 

3 Results 

Round 0 shows SF-FT Agents 2 and 3 perform similarly with AP of 0.186 and 0.202, 
respectively (see Appendix 6.4, Table 4). Notably, in Round 0, SF-FT Agent 1 per-
formed poorly (AP of 0.133) with a recall of 0.01 (misdiagnosing almost all TP as FN), 
whereas SF-FT Agents 2 and 3 achieved a recall of 0.67 and 0.62, respectively. Round 
1 shows SF-FT Agents 1, 2, and 3 perform similarly (AP of 0.190, 0.192, 0.198, re-
spectively). Interestingly, via explicit interactions, SF-FT Agents 1 and 2 recall in-
creased to 0.62 and 0.68, respectively (i.e., knowledge distillation). Similarly, SF-FT-
RAG Agent 1 and Agent 2 recall increased to 0.52 and 0.69, respectively. Further, the 
recall for the BPRV increased from 0.37 to 0.62 in Round 1 for SF-FT (the team cap-
tures approximately 1.6 TP for every FN). Note that since P (round 1 BPRV AP) – O 
(round 0 BPRV AP) < Q (0.040), early stopping occurred. 
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Markedly, SF-FT Agent 1 was highly confident in Round 0 regarding TP and FN 
cases even though it was misdiagnosing almost all positive cases as negative cases, but 
after explicit interactions, its high confidence in TP and FN cases dropped (see Appen-
dix 6.6, Table 6). We also observed that Agents 2 and 3 increased their confidence in 
TP and FN cases from Round 0 to Round 1, suggesting the explicit interactions rein-
forced their prior beliefs (see Appendix 6.6, Table 6). Appendix Table 7 shows that 
incorporating RAG made all agents highly confident in Round 0 TP and FN cases. Ap-
pendix Figure 5-6 shows the ADR alignment analysis by TP, FP, FN, and TN cases, 
highlighting that SF-FT Agent 3 reference group SF-FT Agent 2 were more aligned 
than SF-FT Agent 1 reference group SF-FT 2 in Round 0, while in Round 1 the align-
ment increased. Appendix Figure 7-8 shows that the SF-FT-RAG Agent 2 ADR was 
more aligned with SF-FT Agent 2 for TP, FP, FN, and TN cases. Appendix Table 5 
shows the agent documentation burden. Appendix Table 8 shows the BCRScores. 

4 Discussion 

In this work, we highlight the role global structure plays in LLM-based agents. In our 
use case for predicting AKI, pretraining, fine-tuning, and/or RAG are no replacement 
for learning structure via traditional machine learning or statistics methods. In review-
ing the “reasoning” for structure-following agents, we found that it leveraged the global 
structure of the data and associations between variables to provide local answers. Board 
configurations may be suitable for other clinical specialties as well, such as where the 
overlap of organs/systems makes it difficult to assume or know the underlying struc-
tures (e.g., oncology, cardiology, endocrinology, gastroenterology, rheumatology). 
Structure-following approaches seem like a promising path forward to utilize and eval-
uate these emerging technologies in the health domain. Future work may explore im-
plementing multiple boards (i.e., multi-stakeholders) and dynamic resource allocation. 

5  Conclusion 

We demonstrated that global structure is necessary prior to achieving competitive clas-
sification and reasoning performance in the health domain. Further, we showed that not 
all models can leverage the global structure in a meaningful way; however, models that 
are stronger in specific capabilities can help the team improve. We showed that across 
multiple rounds agents can increase and decrease their confidence levels based on ex-
plicit interactions with other models. We also demonstrated that smart rounds were suf-
ficient to get cheaper, faster, and informative results.  
 
Author Contributions. Most intellectual work was done by DG with guidance from AB. DG 
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6  Appendix 

6.1 Learning the Structure Template 

 
Fig. 2. SHAP value feature rank for MIMIC.  
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Table 1. Autogenerated Structure Template 

Site Structure Template 

MIMIC 

 
Having the lowest bin (i.e., 1) for es:mated glomer-
ular filtra:on rate (eGFR) is the most important fea-
ture and indicates the highest risk for acute kidney 
injury (AKI). Having the second lowest bin (i.e., 2) 
for eGFR is the second most important feature and 
indicates higher risk for AKI. Having the lowest bin 
for calcium (i.e., 1) is the third most important fea-
ture and indicates higher risk for AKI. Having the 
highest bin for blood urea nitrogen (i.e., 4) is the 
fourth most important feature and indicates higher 
risk for AKI. Having the lowest bin for blood urea 
nitrogen (i.e., 1) is the fiLh most important feature 
and indicates decreased risk for AKI. Having the 
second lowest bin for hemoglobin (i.e., 2) is the 
sixth most important feature and indicates higher 
risk for AKI. Having the highest bin for eGFR (i.e., 4) 
is the seventh most important feature and indicates 
decreased risk for AKI.  Having the lowest bin for 
sodium (i.e., 1) is the eighth most important feature 
and indicates higher risk for AKI. Having the highest 
bin for hemoglobin (i.e., 4) is the ninth most im-
portant feature and indicates decreased risk for 
AKI. Having the highest bin for white blood cell 
count (i.e., 4) is the tenth most important feature 
and indicates increased risk for AKI. 
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6.2 Smart Rounds 

 

Fig. 4. Smart rounds: Include an outer plate (Round 0) and an inner plate (Round 1). Note that 
the inner plate repeats until P-O < Q. Q is the smart rounds early stopping threshold (e.g., Q = 
0.040), P is the round 1 AP, and O is round 0 AP. In round 0 (implicit interactions), experts 
(i.e., agents) do their own individual assessments, and the end user (e.g., healthcare provider) 
may then calculate the aggregate/population statistics across the multiple agents via majority 
vote, precision-weighted vote, recall-weighted vote, or balanced precision-weighted-recall-
weighted vote (BPRV). In round 1+ (explicit interactions), agents explicitly interact/consult 
with each other via conversational interactions (directed edges) to potentially update their prior 
diagnosis and prior diagnostic reasoning from round 0. This results in updated diagnosis, diag-
nostic reasoning and aggregate statistics.
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6.6 Agent Confidence Levels 

  

Table 6. SF-FT Agents reported confidence levels by TP, FP, TN, and FN. 

 
Table 6 above shows that in the initial round Agent 1 was highly confident in its 
diagnosis and ADR of FN cases; however, Agent 1 missed almost all the positive 
cases, suggesting it couldn’t differentiate between the groups very effectively. 
After explicit interactions in round 1 we see that Agent 1 reduced its high confi-
dence, suggesting the other agent’s diagnosis and ADR was influential. Further, 
we see that in the initial round Agent 2 and Agent 3, though having considerably 
higher recall than Agent 1, were more uncertain and after explicit interactions 
with the other agent’s their confidence levels increased. 
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Table 7. SF-FT-RAG and NSF-FT-RAG Agents reported confidence levels by TP and 
FN. 
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6.7 Agent Diagnostic Reasoning Alignment Analysis 

 
Fig. 5-6. In Fig. 5 above we see Agent 3 reference group Agent 2 (highest recall) is more aligned 
than Agent 1 reference group Agent 2. Since Agent 2 and Agent 3 have similar precision and 
recall scores we expect those two agents to be more aligned across case types. In Fig. 6 we see 
that after explicit interactions the BERTScore increases. Further, we see that the gap between 
Agent 3 reference group Agent 2 and Agent 1 reference group Agent 2 decreases for TP and FP 
cases, suggesting more similar ADR. Yet, they are still statistically significant different, suggest-
ing their ADR are not identical (i.e., there exists some unique reasoning).  

 

 
Fig. 5. SF-FT Round 0 

 

 
Fig. 6. SF-FT Round 1 

 

p <0.0001               

ns (small n) 

p £0.001 

ns (small n) 

p <0.05 

p <0.0001 

p <0.0001 

p <0.001 
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Fig. 7-8. In Fig. 7 above we see SF-FT-RAG Agent 2 reference group SF-FT Agent 2 
(highest SF-FT recall agent) is more aligned than NSF-FT-RAG Agent 2 reference 
group SF-FT Agent 2. We hope to see this trend continue in subsequent rounds to 
demonstrate the utility of structure-following combined with RAG (i.e., semi-structure-
following) vs. RAG alone. In Fig. 8 we see that after explicit interactions the 
BERTScores increase and SF-FT-RAG Agent 2 reference group SF-FT Agent 2 re-
mains more aligned than NSF-FT-RAG Agent 2 reference group SF-FT Agent 2, 
demonstrating the benefit of leveraging the global structure.

 

 

 
Fig. 7. SF-FT-RAG Agent 2 reference group SF-FT Agent 2 and NSF-FT-RAG Agent 2 reference group SF-FT Agent 2 Round 0 

 

 
Fig. 8. SF-FT-RAG Agent 2 reference group SF-FT Agent 2 and NSF-FT-RAG Agent 2 reference group SF-FT Agent 2 Round 1 

 

p <0.0001 p <0.0001 

p <0.0001 p <0.0001 
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p <0.0001 p <0.0001 
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6.8 Joint Assessment of Classification and Reasoning  

 

 
The BCRScore aims to provide a balance between the agent classification performance 
and the agent diagnostic reasoning. In this implementation, we set α and β to 0.50. 
However, end-users may tune α and β to favor classification over reasoning and vice 
versa, as long as they sum to 1. Note that while we use the average precision (AP) of 
the balanced precision-weighted-recall-weighted vote for the AD metric, it can be re-
placed with other metrics (e.g., AUCROC, etc.). Also, regarding the ADR metric, we 
selected the average BERTScore F1, but it can be replaced with other metrics (e.g., 
(average) Rouge, (average) BLEU, etc.). Note that the higher the BCRScore the better 
the overall performance for diagnosis as well as diagnostic reasoning alignment. In Ta-
ble 8 above we see that the BCRScore in round 1 was higher than in round 0 for SF-FT 
Agent 1 reference group SF-FT Agent 2 for FN cases, suggesting improvement in agent 
diagnosis and agent diagnostic reasoning for FN cases. Similarly, we see that the 
BCRScore in round 1 was higher than in round 0 for SF-FT Agent 1 reference group 
SF-FT Agent 2 for TP cases. 

Table 8. Balanced Classification and Reasoning Score (BCRScore) 
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Abstract. Developing approaches for ensuring that the collective be-
haviour of Multi-Agent Systems (MAS) is beneficial for all human stake-
holders is a critical challenge for the safe deployment of MAS in real-
world settings, where the goals of agent owners may partially conflict.
A key direction towards addressing this challenge is understanding how
to reliably incentivise prosocial behaviour among self-interested learning
agents with partially conflicting goals through simulation experiments.
However, methods for incentivising certain behaviours can lead to un-
intended consequences if the underlying influence of environmental and
social pressures on behaviour are poorly understood. Avoiding side effects
of behavioural incentives is challenging in the real world, where environ-
mental and social pressures are dynamic and constantly changing.
In this paper, we present ongoing work developing EnvCraft, a frame-
work for composing diverse multi-agent environments from modular build-
ing blocks that are parametrised to enable precise control and system-
atic variation of environment and population conditions. We detail re-
quirements of EnvCraft for supporting robust evaluation of methods
for incentivising prosocial behaviour, and for characterising the relation-
ships between incentives, environment conditions and learned behaviour,
through systematic exploration of the environment configuration param-
eters.

1 Introduction

Understanding how to design autonomous agents that can reliably achieve so-
cially beneficial outcomes alongside other agents in multi-agent systems (MAS)
is an important challenge towards the development of agents that can safely
interact with humans and other artificial agents in the real world. Real-world
multi-agent settings are inherently mixed-motive, i.e. there is partial alignment
and conflict between the individual goals of agents arising from their assigned
roles and the interests of human owners and stakeholders. Recent works inves-
tigating how different kinds of prosocial behaviour can be incentivised among
self-interested learning agents present a promising direction for future research.
Through simulation experiments in mixed-motive multi-agent environments, re-
searchers have studied models of various human social mechanisms, such as in-
direct reciprocity [8], social norms and ethical principles [2, 10].
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Specialised benchmarks and simulation frameworks are important across 
MAS research for supporting the development and evaluation of novel methods 
in key problem areas. While there are several popular frameworks for multi-agent 
reinforcement learning (MARL) that provide diverse mixed-motive multi-agent 
scenarios [5, 1, 9, 6], there is a need for specialised environments that better cap-
ture the challenges associated with incentivising prosocial behaviour in the real 
world. Real world multi-agent systems are subject to unique environmental and 
social pressures that influence the decision-making o f agents and human stake-
holders. These pressures create their own underlying behavioural incentives, and 
changes in these pressures can lead to dramatic shifts in collective behaviour. 
Characterising the relationships between different environmental conditions and 
learned behaviours through simulation experiments could help to inform the de-
velopment of robust methods for incentivising prosocial behaviour under different 
pressures. Evaluating such methods under systematic variation of environmental 
conditions could also help to identify the kinds of conditions where methods are 
susceptible to unintended side effects.

Contributions In this paper, we present ongoing work towards developing En-
vCraft, a simulation framework for composing modular environments with 
parametrised dynamics from reusable components. We propose key features and 
requirements for EnvCraft to support the study of methods for incentivising 
prosocial behaviour among self-interested agents under diverse environmental 
and social pressures.

Organisation The rest of the paper is organised as follows: In Section 2, we detail 
challenges and experiences from previous work studying prosocial incentives that 
have informed our proposals for EnvCraft. In Section 3, we describe high-level 
proposals for building EnvCraft environments. In Section 4, we conclude by 
discussing directions and objectives for developing EnvCraft as a research tool.

2 Case Study: CustomHarvest

Our aim of developing EnvCraft was motivated by our prior work with Cus-
tomHarvest (Figure 1), a simulation environment that we created to study 
methods for incentivising prosocial behaviour among independent learning agents. 
In CustomHarvest agents must learn to survive by collecting resources; we 
designed CustomHarvest as a mixed-motive environment with configurable 
environment parameters for altering the alignment and conflict b etween indi-
vidual and collective incentives. The default parametrisations of CustomHar-
vest capture social dilemmas, with immediate incentives for individualism, but 
greater long-term incentives for cooperation. Through parameter selection, long-
term individual survival can be made dependent on group survival and resource 
sharing, i.e. if on average, individual agents use resources faster than they can 
collect them. By allowing agents to share resources over distances, agents can 
coordinate as a group to collect resources faster than they use.
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Fig. 1. Screenshot of recent version of the CustomHarvest environment, including 
UI elements for configuring simulation runs with different environment parameters. In 
CustomHarvest agents navigate a grid world and collect berries to survive. Berries 
are resources that are consumed to restore energy, which agents use energy to move, and 
health. Agents become helpless if they run out of energy, meaning they stop moving, 
and start to lose health over time. When agents run out of health, they are removed 
from the simulation. Agents that become helpless can only survive if another agent 
shares one of their collected berries with them by throwing it from a distance. Code 
available https://github.com/dec2g14/custom-harvest.

In Collins et al. [4], we used CustomHarvest to evaluate a novel method 
for incentivising prosocial behaviour among independent reinforcement learning 
agents. With this method, agents model a self-imposed “implicit” sense of respon-
sibility for the welfare of others by self-penalising for (A) failing to help agents 
in need if (B) they were aware that the agent was in need of help (C) they were 
capable of helping without significant risk to themselves. In this work, we devised 
CustomHarvest-specific rules for formulating conditions (A-C) in terms of the 
time and resources needed for survival. In a social dilemma parametrisation, we 
observed greater sample efficiency in learning to survive cooperatively compared 
to a population of baseline RL agents [4]. However, experiments were not re-
peated in different parametrisations in this work. In subsequent experiments, we 
found certain CustomHarvest parametrisations where our method resulted in 
poorer collective survival times unexpectedly. With any method for incentivising 
desirable behaviour, both in simulation and the real world, there is an interplay 
between incentives arising from the intervention and the underlying pressures of 
the environment. This can lead to unexpected and unintended consequences if 
the relationships between environment conditions and behavioural incentives are 
poorly understood. We highlight this as an important consideration for future 
work.
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A recent version of CustomHarvest (Figure 1) includes a simple interface 
for exploring the effects o f p arametrisation o n p opulation b ehaviour f or fixed-
policy agents. The parametrisation of the dynamics of CustomHarvest is an 
useful feature for enabling systematic characterisation of the effects o f changes 
in environment dynamics on population behaviour. To better understand these 
parameter effects, c omparisons o f R L a gent b ehaviour d uring t raining could 
provide a more robust characterisation of behavioural incentives across different 
environment configurations. Repeating training over all parameter combinations 
would be prohibitively expensive using CustomHarvest. However, implement-
ing environments using JAX [3] may provide sufficient improvements in  training 
speed through end-to-end GPU acceleration of both the simulation and model 
training to enable these experiments.

In ongoing work, we are adapting our implicit responsibility [4] method to for-
mulate conditions (A-C) in terms of empowerment [7], an information-theoretic 
measure capturing information about an agents potential influence over future 
states of the environment. Empowerment maximization as an intrinsic motiva-
tion can enable agents to learn survival strategies in the absence of extrinsic 
reward. In very simple environments, such as discrete grid worlds with deter-
ministic or pseudo-random dynamics, the empowerment of an agent in a given 
state can be computed directly using a simplified version of the Blahut-Arimoto 
(BA) algorithm [7]. Similar to model-based planning, empowerment computa-
tion using the simplified BA a lgorithm i nvolves s ampling a ll p ossible successor 
states from a state transition function for some number of steps into the future. 
To enable experiments with agents that use BA algorithm or model-based plan-
ning methods, CustomHarvest and similar environments would benefit from 
stateless simulation logic, where state transitions are implemented as pure func-
tions of a state and set of actions. If all state information is contained within the 
state argument, state transition functions can progress the environment from ar-
bitrary states, supporting planning, and evaluation of trajectories from arbitrary 
states of interest.

Implementing state transitions as pure functions of state would also sup-
port the use of functional JAX [3] operations. Writing simulation and training 
algorithms in JAX enables end-to-end GPU acceleration, offering large improve-
ments in training speed [6] that may be necessary systematic exploration of 
environment parameters.

3 EnvCraft Design

This section details high level principles, design features and proposed approaches 
for developing and implementing EnvCraft. For simplicity, we focus on require-
ments for the modular composition of discrete grid world environments.

Modular Composition EnvCraft environments should be readily config-
urable from a specification of reusable modular building blocks. To achieve this, 
we consider the following abstractions based on the Entity-Component-System
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(ECS) architecture. Entities are representations of different types of object that 
interact with an environment. We define entities as configurable sets of  Compo-
nents, named data structures used to represent and access variable properties 
of entities. Systems define the s tate t ransition dynamics o f an environment. To 
enable modular composition of state transition logic, we define systems as con-
figurable sequences of Callables, individual functions for accessing and operating 
on sets of components. To enable parametrisation of the dynamics of EnvCraft 
environments by default, all components and callables should be implemented 
with configuration P arameters t hat a re s pecified when composing new entities 
and systems. For example, a numerical component would have a parameter for 
specifying upper and lower bounds, and a callable may require a parameter ar-
gument to adjust its operation.

Arbitrary States and Automatic Indexing To enable functionally pure 
state transitions while preserving environment modularity, EnvCraft should 
use components implemented as static data structures that contain tuples of 
unique indices with equal length to their associated data. Rather than treating 
components as objects that maintain their own internal variables, the indices 
stored by components can be used to access associated data from a global state 
array s. For example, a 2D position component representing a coordinates prop-
erty (x, y) and bounds parameters (minx, miny, maxx, maxy) would contain two 
tuples of indices with lengths 2 and 4. By iterating through indices, starting from 
zero, each component and parameter for a given environment setup can assigned 
enumerated indices at instantiation such that the final i ndex g ives t he dimen-
sions of s needed to represent the environment. This approach enables state 
transitions to be implemented as configurable s equences o f pure f unctions that 
take in s and an array of indices as input, access relevant data from s, per-
form some operation, then return a new state array. EnvCraft should provide 
an intuitive interface for interacting with sets of environment elements, e.g. by 
providing methods for indexing a set of components by passing sets names of 
components and entities.

4 Discussion

A complete implementation of EnvCraft as a software tool is currently an early 
work-in-progress. In this section, we conclude by discussing future directions and 
objectives for developing EnvCraft to enable further use cases in prosocial 
MAS research.

System Characterisation and Robustness Evaluation The parametrised 
design of EnvCraft environments enables precise exploration of variations in 
environment pressures in arbitrary environments, readily facilitating experiments 
for the characterisation of relationships between environmental conditions, pop-
ulation characteristics, emergent behaviours, and collective outcomes. Modular 
composition allows users to introduce new components and systems to investi-
gate how population dynamics change under different interventions. Future work
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will focus on extending EnvCraft for evaluating the robustness of prosocial in-
centive methods under perturbations in environment dynamics, particularly fo-
cusing on how heterogeneous agent characteristics interact with environmental
pressures and influence the underlying behavioural incentives in an environment.

GPU Acceleration The proposed implementation of EnvCraft using func-
tional state transitions through indexing of arbitrary states supports the use of
JAX [3] for GPU acceleration of both environment simulation and agent train-
ing. Integrating hardware acceleration is critical for realising the benefits of En-
vCraft.

Dynamic Environment Changes Functionality should be added to En-
vCraft for dynamic parameter schedules, allowing certain setup parameters to
vary according to specified dynamics at run-time. Such features could support
work promoting social good in open-ended multi-agent learning environments.
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Abstract. Efficient urban traffic management remains a critical chal-
lenge, yet traditional congestion games fail to capture the dynamic and
competitive nature of real-world transportation systems. We introduce
the Multi-Market Routing Problem (MMRP), an online and oligopolis-
tic extension that models competition amongst route providers utilising
adaptive microtolling strategies to influence driver behaviour and miti-
gate congestion. We formally define the MMRP, highlighting the com-
putational complexity of solving the MMRP, and use an adapted version
of Proximal Policy Optimisation (PPO) to improve update stability in
multiagent environments to address this problem in online settings. Our
empirical analysis demonstrates that our PPO-based approach not only
matches the performance of existing benchmarks but also significantly
enhances equity, reduces travel times for users, and increases profitability
for providers.

Keywords: Multiagent Reinforcement Learning · Competitive Games ·
Congestion Games · Adaptive Pricing · Mechanism Design.

1 Introduction

Urban transportation systems are increasingly burdened by congestion, a chal-
lenge that significantly impacts economic productivity and quality of life (4).
Traditional Congestion Game (CG) (13) models provide valuable insights into
individual route choices and their impacts on traffic flow, but neglect the com-
petitive dynamics present in modern, dynamic, transportation networks, where
multiple transportation providers compete in an oligopolistic manner. Effective
modelling of competition in modern urban transportation networks provides
valuable insights into how to maximise the efficiency of existing infrastructure
and guide the strategic development of new transportation systems (19).

Traditional CGs are non-cooperative models where individual players select
resources (i.e. routes in the context of transportation CGs) and an associated cost
is incurred, which escalates with the popularity of that resource. In traffic man-
agement, CGs are essential for simulating user behaviours and decision-making
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in congested environments (22; 8), offering insights into traffic patterns and iden-
tifying bottlenecks for optimisation (5; 17; 7; 1; 15; 2). A detailed discussion of
existing applications of CGs to congestion management can be found in (au-
thor?) (11, 12, 20). While these models offer valuable insights into the impact
of individual decisions on overall system performance, they are typically static
and offline problems which assume perfect information. These simplifications fail
to capture the dynamic and competitive interactions inherent in modern urban
transportation networks, where multiple route providers continuously compete
in real time. This limitation underscores the urgent need for more sophisticated
modelling that more closely reflects the dynamic and competitive nature of urban
transportation systems.

To overcome these limitations, we propose a novel framework that extends
traditional CGs into an online and competitive setting, referred to as the Multi-
Market Routing Problem (MMRP). In our framework, transportation net-
works are modelled as systems where multiple route providers are able to utilise
adaptive pricing to influence the behaviour of transportation users in response
to fluctuating traffic conditions and competitive pressures. To solve the MMRP
in practice, we propose a multiagent reinforcement learning based approach,
utilising Proximal Policy Optimisation, to learn adaptive pricing strategies that
effectively manage congestion in real time. Our framework bridges the gap be-
tween theoretical models and practical traffic management, and our empirical
results demonstrate significant improvements in travel times, equity, and prof-
itability, underscoring its potential impact on intelligent transportation systems.

2 Online Multi-Market Routing Problem

We expand the definition of a Congestion Game (19; 14) to the Multi-
Market Routing Problem (MMRP) M , where M is a 6-tuple: M =
(R, V, (Φj)j∈V , (Θj)j∈V , (Di)i∈R, (Ωi)i∈R) The set R = {R0, . . . , Ri} is the set
of available routes; the set V = {V0, . . . , Vj} is the set of players. For each
player Vj ∈ V , Φj denotes the strategy space of player Vj and Θj denotes the
Value of Time (VoT) of player Vj . For each route Ri ∈ R, Di : {0, . . . , j} → R
represents the delay function of the route, mapping the number of players
selecting a route to a travel time, and Ωi represents the route cost strat-
egy. For each player Vj ∈ V , Φj ⊆ 2R defines the strategy space. We de-
fine MMRP as an optimisation problem, where the optimal assignment of
an instance of MMRP is one in which players incur the lowest total travel
time. When this problem is extended to online scenarios, we use the 7-tuple
OM = (R, V, (Φj)j∈V , (Θj)j∈V , (Λj)j∈V , (Ti)i∈R, (Ωi)i∈R) where the variables
(R, V, Φ) from the offline 6-tuple definition are not changed. In the online defini-
tion, Λi represents the entry time of a player Vi, and functions D,Ω are changed
to become strategies that depend on time t, becoming D(x, t) and Ω(x, t).

Given the dynamic and real-time decision-making requirements of the online
(MMRP), it is essential to understand the computational challenges posed by the
offline version, where all players and routes are known in advance. To this end,

Proceedings of the 3rd International Workshop on Citizen-Centric Multiagent Systems 2025 (C-MAS 2025)

49



we establish the computational intractability of the offline MMRP by proving
its NP-Hardness through a reduction to the 3-Partition Problem.

3 Proof of NP-Hardness

The theoretical confirmation of the offline MMRP’s NP-Hardness serves as a
foundation, informing our algorithmic strategies for both offline and online sce-
narios, and justifies the necessity for the use of heuristic and learning-based
approaches such as Reinforcement Learning, which is utilised to address the
online problem.

Theorem 1. There exists a reduction from the strongly NP-Complete 3-
Partition Problem to the MMRP

Proof. To show that the offline MMRP is NP-Hard, we demonstrate a reduction
from a known NP-Complete problem, the 3-Partition Problem (3PP), to the
offline MMRP.

The 3PP is formally defined as a multiset A = {a1, a2, . . . , a3m} of 3m pos-
itive integers, a bound B such that each integer satisfies B

4 < ai < B
2 for all

ai ∈ A such that the total sum of the integers is
∑3m

i=1 ai = mB. An instance of
the 3PP is valid if A can be partitioned into m disjoint subsets A1, A2, . . . , Am,
each containing exactly 3 integers, such that the sum of the integers in each
subset is exactly B.

To show a reduction from the 3PP to MMRP, we construct an instance of
the MMRP such that finding an optimal assignment with a specific total delay
directly corresponds to a valid instance of the 3PP. In the earlier definition, we
define the MMRP as an optimisation problem. In this instance of the problem,
we define the MMRP as a decision problem where a valid instance exists if the
total cost (i.e. the travel time of players) of the instance is equal to or lower than
a given L. The optimisation problem can be formed as multiple instances of the
decision problem, where if an MMRP instance M is valid for L, it is necessary
to check with L− 1 until the (M,L) combination is invalid.

For each integer ai in the 3-Partition instance, we create a correspond-
ing player Vi. Thus, V = {V1, V2, . . . , V3m}. We create m routes R =
{R1, R2, . . . , Rm}, each representing a potential subset in the 3-Partition. For
each player in V , the strategy space Φi = {R1, R2, . . . , Rm}, allowing them to
select any of the m routes. In this instance of the problem, we set all routes to
have a cost strategy of Ωi(Rk) = 0 for all routes Rk. In turn, this negates the
impact of all players’ value of time Θi for Vi ∈ V , and therefore, Θi can be set
to any value. For each route Rk, the delay function is defined as:

Dk(n) =

{∑
Vi∈Sk

ai if n = 3 and
∑

Vi∈Sk
ai = B,

∞ otherwise,

where Sk is the set of players assigned to route Rk. It follows from this definition
that all routes must have exactly three players assigned, and the sum of Sk must
equal B for an instance to be valid.
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To align the objectives between this instance of the MMRP and the 3PP, we
set L = mB. This reduction aims to find an assignment of players to routes such
that the total delay is equal to or below L. As L is set to the sum of all integers,
it is impossible for there to exist a solution lower than L, so this instance of the
MMRP will only return true if there is a valid partitioning for the 3PP.

To show the bidirectional correspondence between the 3PP and the MMRP,
we consider the following two instances:

– If the 3PP instance is valid, then it follows that assigning each subset Ak to
the corresponding route Rk ensures that:

Dk(Sk) =
∑

ai∈Ak

ai = B.

Leading to a total delay:
∑

Rk∈R

Dk(Sk) = mB = L.

This assignment holds in the MMRP as the total delay is below the value of
L.

– If there exists an assignment of players to routes in the MMRP such that
the total delay is L = mB, then:

∑

Rk∈R

Dk(Sk) = mB.

As it follows from the definition of Dk(Sk) that Dk(Sk) = B, it follows that
Rk has exactly three players assigned with the sum of integers equal to B.
This assignment would constitute a valid instance of the 3PP for the original
set A.

The analysis highlights the NP-Hardness of the offline MMRP, demonstrating the
significant computational challenges in optimising routing assignments through
pricing strategies, even with complete information. This complexity makes exact
optimisation methods impractical for large-scale instances, necessitating the use
of heuristics and adaptive learning-based approaches.

The offline formulation of the MMRP is NP-hard1, rendering exact optimi-
sation methods computationally intractable for large-scale instances and online
problems. To this end, we employ Multiagent Reinforcement Learning (MARL),
specifically an adapted version of independent Proximal Policy Optimisation
(PPO) (16). The use of PPO over existing MARL approaches is deliberate;
the inherently competitive nature of route providers suggests that approaches
which require inter-agent coordination, such as centralised learning with de-
centralised execution, are impractical. Consequently, we employed independent
PPO, adapted for increased training stability and suitability in our environment,
1 Proof omitted due to space constraints.

Proceedings of the 3rd International Workshop on Citizen-Centric Multiagent Systems 2025 (C-MAS 2025)

51



which allows each provider to optimise its pricing strategy. To adapt PPO for
use in the MMRP, we employed separate policy and value networks (21), proven
effective in multiagent and highly stochastic settings (6), to enhance stability.
To mitigate divergence, we normalised rewards by first running random-agent
experiments to compute the mean (µR) and variance (σR) of rewards, and then
applied R̃t =

Rt−µR

σR
. Finally, we enabled multiple parallel experiments to repli-

cate the vectorised actor framework used in single-agent PPO (16).
This approach enables each route provider to dynamically adjust tolls in

real time, approximating the complex equilibrium behaviour of the system and
effectively managing congestion. Our method thus offers a scalable, adaptive
solution that bridges the gap between theoretical complexity and practical real-
world traffic management. We consider a two-route network (R = {R1, R2}),
akin to the parallel two-link models in (18; 9). Each route’s delay is defined by
the Bureau of Public Roads volume delay function: Di(x) = f0(1 + α( x

fc
)β),

where x is the number of vehicles at time t, f0 is the free-flow travel time, fc is
the route capacity, and the calibration parameters α = 0.68 and β = 2.73 align
the function with real-world data (10). For the values of (fc, f0), we set R1 as
(15, 20) and R2 as (30, 20) for routes 1 and 2 respectively.

We trained our PPO agent for 4× 107 steps, with each episode lasting 1000
timesteps. In each episode, the number of players was sampled from a uniform
distribution U(500, 1000) to generalise across varied traffic scenarios. Agents
share the same architecture, enabling robust performance without environment-
specific tuning. The reward function is defined as profit per timestep to reflect
a route provider’s objective, and the action space consisted of three discrete
actions: increase, maintain, or decrease the price by 1.

For our evaluation, we measured the average travel time and profit per vehi-
cle, and employed the Gini coefficient (3) to quantify inequality in travel times
across our simulations. A lower Gini coefficient indicates a more equitable distri-
bution of travel times, while a higher value reveals significant disparities . This
multi-faceted evaluation framework not only demonstrates the efficiency of our
adaptive pricing strategies, but also rigorously assesses their fairness, providing
a comprehensive picture of system performance under our proposed solution.

4 Results

Our results (Table 1) demonstrate that our adapted PPO-based approach signifi-
cantly outperforms a random pricing agent in a two-route synthetic environment.
At 500 players, our method achieves an average travel time of 26.66 timesteps
compared to 32.50 timesteps for the Random Agent, while consistently main-
taining lower Gini coefficients and yielding higher profits (rising from 13.38 at
500 players to 90.41 at 1000 players). Moreover, under infinite capacity condi-
tions, our agents converge towards equilibrium strategies, confirming that our
approach effectively captures equilibrium-like behaviour.

These results underscore the potential of our adaptive pricing strategy to
transform real-world traffic management, delivering not only reduced congestion,
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Table 1. Adaptive Pricing Results for the Online MMRP.

|V| 500 600 650 700 750 800 900 1000

MMRP-PPO
Time 26.66 30.85 36.24 51.58 117.1 255.65 469.12 1739.88
Gini Coef. 0.14 0.14 0.17 0.26 0.33 0.25 0.18 0.13
Profit 13.38 24.65 36.67 47.54 66.04 77.91 86.78 90.41

PPO
Time 30.45 35.18 38.34 66.95 108.31 257.13 791.88 1863.87
Gini Coef. 0.15 0.14 0.17 0.44 0.44 0.33 0.25 0.15
Profit 34.08 29.95 31.87 33.95 30.16 33.70 39.88 40.94

Random
Time 32.50 34.87 40.14 68.67 151.83 291.61 553.88 2083.49
Gini Coef. 0.18 0.15 0.18 0.39 0.44 0.37 0.20 0.14
Profit 46.13 50.8 46.64 49.61 47.28 49.94 48.52 46.55

but also a fairer distribution of travel costs. The robust convergence towards
equilibrium under infinite capacity further validates our approach, suggesting
its applicability in more complex, real-world scenarios.

5 Conclusion

In this study, we introduced the Multi-Market Routing Problem (MMRP),
an online, oligopolistic extension of traditional congestion games that models
real-world traffic competition through multiple route providers employing adap-
tive microtolling. We formally defined MMRP and, to overcome its computa-
tional complexity, we developed an enhanced Proximal Policy Optimisation
(PPO) algorithm tailored for competitive multiagent settings. Our evaluations
demonstrate that our approach significantly reduces travel times, promotes eq-
uity, and increases provider profitability compared to benchmarks. Future work
will explore scalability, reduced training costs, advanced techniques such as oppo-
nent modelling, and improved explainability to further bridge theory and prac-
tical traffic management. Overall, our contributions advance congestion game
theory and offer actionable strategies for developing intelligent, adaptive trans-
portation systems.

Acknowledgments. We would like to acknowledge Dr Vahid Yazdanpanah
for his feedback on this work. This research is supported by an ICASE stu-
dentship from EPSRC and Yunex Traffic, the EPSRC AutoTrust platform grant
(EP/R029563/1), and an EPSRC Turing AI Acceleration Fellowship on Citizen-
Centric AI Systems (EP/V022067/1).

Proceedings of the 3rd International Workshop on Citizen-Centric Multiagent Systems 2025 (C-MAS 2025)

53



Bibliography

[1] Brown, P.N., Marden, J.R.: Optimal mechanisms for robust coordination in
congestion games. IEEE Transactions on Automatic Control 63(8), 2437–
2448 (2017)

[2] Correa, J., Hoeksma, R., Schröder, M.: Network congestion games are robust
to variable demand. Transportation Research Part B: Methodological 119,
69–78 (2019)

[3] Dorfman, R.: A formula for the gini coefficient. The review of economics
and statistics pp. 146–149 (1979)

[4] Dresner, K., Stone, P.: Multiagent traffic management: A reservation-based
intersection control mechanism. In: Autonomous Agents and Multiagent
Systems, International Joint Conference on. vol. 3, pp. 530–537. Citeseer
(2004)

[5] Griesbach, S.M., Hoefer, M., Klimm, M., Koglin, T.: Public signals in net-
work congestion games. In: Proceedings of the 23rd ACM Conference on
Economics and Computation. pp. 736–736 (2022)

[6] Huang, S., Dossa, R.F.J., Raffin, A., Kanervisto, A., Wang,
W.: The 37 implementation details of proximal policy op-
timization. In: ICLR Blog Track (2022), https://iclr-blog-
track.github.io/2022/03/25/ppo-implementation-details/, https://iclr-
blog-track.github.io/2022/03/25/ppo-implementation-details/

[7] Khan, Z., Koubaa, A., Benjdira, B., Boulila, W.: A game theory approach
for smart traffic management. Computers and Electrical Engineering 110,
108825 (2023)

[8] Massicot, O., Langbort, C.: Public signals and persuasion for road net-
work congestion games under vagaries. IFAC-PapersOnLine 51(34), 124–
130 (2019)

[9] Milchtaich, I.: Congestion games with player-specific payoff functions.
Games and economic behavior 13(1), 111–124 (1996)

[10] Neuhold, R., Fellendorf, M.: Volume delay functions based on stochastic
capacity. Transportation research record 2421(1), 93–102 (2014)

[11] de Palma, A., Fosgerau, M.: Dynamic and static congestion models: A re-
view. HAL Working Papers (hal-00539166) (2010)

[12] de Palma, A., Lindsey, R.: Traffic congestion pricing methodologies and
technologies. Transportation Research Part C: Emerging Technologies
19(6), 1377–1399 (2011)

[13] Rosenthal, R.W.: A class of games possessing pure-strategy
nash equilibria. International Journal of Game Theory
2(1), 65–67 (Dec 1973). https://doi.org/10.1007/BF01737559,
https://doi.org/10.1007/BF01737559

[14] Roughgarden, T., Tardos, É.: Bounding the inefficiency of equilibria in
nonatomic congestion games. Games and economic behavior 47(2), 389–
403 (2004)

Proceedings of the 3rd International Workshop on Citizen-Centric Multiagent Systems 2025 (C-MAS 2025)

54



[15] Scarsini, M., Schröder, M., Tomala, T.: Dynamic atomic congestion games
with seasonal flows. Operations Research 66(2), 327–339 (2018)

[16] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

[17] Swamy, C.: The effectiveness of stackelberg strategies and tolls for network
congestion games. ACM Transactions on Algorithms (TALG) 8(4), 1–19
(2012)

[18] Tavafoghi, H., Teneketzis, D.: Informational incentives for congestion games.
In: 2017 55th Annual Allerton Conference on Communication, Control, and
Computing (Allerton). pp. 1285–1292. IEEE (2017)

[19] Tos,a, C., Mitrea, A., Sato, H., Miwa, T., Morikawa, T.: Economic growth
and urban metamorphosis. Journal of Transport and Land Use 11(1), 273–
295 (2018)

[20] Yang, L., Chen, X., Liu, Z.: Impact analysis of congestion pricing scheme
in a multimodal transport network. In: CICTP 2019, pp. 3237–3248. ASCE
(2019)

[21] Yu, C., Velu, A., Vinitsky, E., Gao, J., Wang, Y., Bayen, A., Wu, Y.: The
surprising effectiveness of ppo in cooperative multi-agent games. Advances
in Neural Information Processing Systems 35, 24611–24624 (2022)

[22] Zhang, J., Lu, J., Cao, J., Huang, W., Guo, J., Wei, Y.: Traffic conges-
tion pricing via network congestion game approach. Discrete & Continuous
Dynamical Systems: Series A 41(7) (2021)

Proceedings of the 3rd International Workshop on Citizen-Centric Multiagent Systems 2025 (C-MAS 2025)

55



Proceedings of the 3rd International Workshop on Citizen-Centric Multiagent Systems 2025 (C-MAS 2025)

3.3 Combining Human-Centric Modeling and System Optimiza-
tion in Rural Microtransit

56



Combining Human-Centric Modeling and System
Optimization in Rural Microtransit

Divya Sundaresan1[0009−0005−2680−0190], Danushka
Edirimanna2[0000−0002−5652−161X], Eleni Bardaka1[0000−0001−8306−4939],

Samitha Samaranayake2[0000−0002−5459−3898], and Munindar P.
Singh1[0000−0003−3599−3893]

1 North Carolina State University, Raleigh, NC 27606, USA
2 Cornell University, Ithaca, NY 14850, USA

Abstract. This paper describes ongoing work integrating AI techniques
for modeling humans and system optimization in the rural microtransit
setting. We consider humans (riders) as central to the system, incorpo-
rating their preferences while also accounting for system-wide benefit.
Our goal is to develop a microtransit system that maximizes service
efficiency, enabling more people to be served with the same resources
without increasing costs for riders. We describe the architecture of our
system and define our main use cases, as well as our piloting plans and
other possible extensions of this work.

Keywords: Civic services · Sociotechnical systems · Public ride sharing

1 Introduction

In many small communities, inhabitants rely on microtransit for their daily tran-
sit needs, such as to access employment and healthcare [1]. In these small commu-
nities, point-to-point inflexible bus systems are expensive to run as well as under-
utilized. Hence, microtransit has emerged as a promising solution for connecting
suburban and rural populations. Microtransit refers to a shared, technology-
enabled public transit system with flexible routing and pickup and dropoff lo-
cations that accommodates on-demand trip requests. Rides are booked via an
app, but unlike commercial ride-booking systems like Uber and Lyft, microtran-
sit rides are meant to be shared and a nominal fare is charged for usage.

Our goal is to develop, test, and evaluate a smart public microtransit system
designed with community-supported solutions for distributing travel demand in
an equitable manner [2]. Our contributions are as follows. First, we describe our
vision wherein we approach the problem not as a fixed requirement resource
allocation problem but as a resource allocation problem where modifications
to requirements may be possible at the social tier. We posit that riders may
be flexible in their requirements in terms of their pickup and dropoff times if
such flexibility would improve some system-wide metric or help another rider.
This willingness to adjust one’s schedule for another’s benefit is an instance
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of prosociality. We use AI-based interventions to understand rider preferences
and persuade them to be prosocial [11], and hence serve the commmunity as a
whole more effectively. Second, we describe the architecture and use cases of the
proposed system that we plan to pilot city-wide in Wilson, NC.

1.1 Motivation: Social Need

In small, disadvantaged communities where the number of zero-vehicle house-
holds is high, a large number of inhabitants rely on microtransit to access basic
services such as employment and healthcare. The cost of building and maintain-
ing a functional city-wide microtransit system is high, and the lack of funding
limits the amount of service that can be provided. This leads to high waiting
times, delays, and unserved trip requests.

In the City of Wilson, NC (our partner in this study), microtransit is the only
public transit available and is used by a large percentage of the population. In
a recent customer survey in Wilson, 47% of the respondents indicated that they
use microtransit primarily to travel to and from work, 86% are carless and 57%
make less than $25K per year [3]. Wilson’s microtransit receives about 18,000
trip requests per month; unfortunately, about 25% of these requests are not
served. This poses a daily struggle for inhabitants who depend on microtransit.

1.2 Challenges and Vision

A key motivation for our approach is the synthesis of artificial intelligence with
traditional schedule optimization to satisfy rider needs while respecting system
constraints. Our goal is to use AI interventions to guide riders toward prosocial
behavior. To do so, we must understand rider preferences as well as combine
them with system-wide optimization metrics to decide what optimal adjustments
are. We posit that in small cities and towns such as Wilson, inhabitants have a
strong sense of community. Hence, demand management strategies that motivate
prosocial behavior are likely to be more successful than in larger cities and have
the potential to significantly improve the day-to-day lives of the transportation
disadvantaged groups within these communities.

A sociotechnical system (STS) [8] is a multistakeholder cyberphysical system
with a social tier of people and organizations and a technical tier of cyberphysical
resources and data. Our contributions are as follows. First, we describe our vision
wherein we model the microtransit setting as an STS where its stakeholders
(including users and providers, i.e., riders, drivers, and the city transit authority)
form the social tier and its cyberphysical resources and data (i.e., vehicles and
the associated information technology to request rides) form the technical tier.
Since solving the problem at the technical tier is not computationally feasible,
we propose that appealing to riders’ empathy for other riders and considering
rider preferences as flexible (i.e., intervening at the social tier) will make the
problem tractable. We hence define our research question as follows:
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RQprosociality: Can framing microtransit optimization as a socially flexible
problem—encouraging riders to adopt prosocial behavior and make adjustments—
lead to a more efficient system by enabling more requests to be served with the
same resources, reducing wait times, and enhancing rider satisfaction?

2 Architecture

We now describe the architecture of the proposed system. We follow conventional
architecture design that has been used in previous deployment of similar systems
[12]. Figure 1 shows the main modules and flow of the system. First, a rider
books a trip on a mobile app (Rider App), where a trip request consists of
the origin, destination, and preferred time of pickup. The Backend contains the
updated state of the system, such as the realtime position of all the vehicles and
trips in progress, as well as scheduled trips, which it passes to the Coordinator
along with the incoming request. The Coordinator is a per-city module that
considers viable options (where options are alternative time slots during which
the incoming request could be scheduled) based on the World Model (which
contains the current scheduled trips) and scores them (with the Scorer) based
on system benefit and rider preferences. The system benefit of a time slot is
calculated by considering both historical demand (a measure of the history-based
expected demand for the time slot) and current demand (the scheduled bookings
in the time slot as of the current time). Lower demand slots and slots that align
with currently scheduled rides have higher system benefit. Rider preferences
between time slots are computed by the Rider Agent module, which is designed
to model rider behavior by learning their preferences and travel patterns. There
is one Rider Agent for each rider. The Rider Agent initializes expected preference
over time slots for a rider based on their employment type. Based on repeated
interactions, where riders accept specific time slots and indicate their satisfaction
with the option, the Rider Agent updates its knowledge of the rider’s preferences.

Given a set of optimal alternative time slots, the Optimizer evaluates which
of them are feasible. The top three feasible options are provided to the rider,
who chooses the one they prefer and indicates their satisfaction through a sim-
ple feedback system. This feedback is used by the Rider Agent to learn rider
preferences, and the app displays the updated trip with the rider’s choice.

We also have a few database components. Demand History contains the his-
tory of previous requests and trip demand history, which we use to calculate
historical demand. Rider DB contains editable information about each rider
such as their home and work address. Rider Trip Logs contains appendable in-
formation about trips taken by riders. Rider DB and Rider Trip Logs are used
to learn rider preferences since we consider riders’ self-specified data, feedback,
and travel history to understand them.

We develop the system to accommodate three use cases: on demand, preschedul-
ing, and commuter programs. We describe each use case below.
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Fig. 1. The main modules of the system.

2.1 Use Case: On Demand

In the on demand use case, riders book trips in real time. When an on demand
trip request is received, we aim to serve it immediately (within the next thirty
minutes) if there is space in the system to incorporate the trip. Otherwise, the
Rider Agent checks whether the ride is flexible, where flexible is defined as a
trip that can afford to be pushed to later in the day. Trips to work, the doctor,
and back home (since riders should not be left stranded outside) are considered
inflexible, while trips to go shopping are considered flexible. If the trip is in-
flexible, we serve it as soon as possible (during the earliest available time slot).
If the trip is flexible, we calculate alternative time slots during which the rider
may take this trip that would both align with their preferences and benefit the
system. These alternative time slots are calculated by considering the destina-
tion hours, the Rider Agent’s understanding of rider preferences, and the system
benefit, calculated based on historical demand, current demand, and alignment
with scheduled trips. Figure 2 shows the sequence of interactions between the
components of our system in the on demand use case.

2.2 Use Case: Prescheduling

In the prescheduling use case, we allow riders to request a ride for the next
calendar day. After the rider submits their trip request, the Rider Agent analyzes
whether the trip is flexible or not, similar to the on demand case. If inflexible, we
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Fig. 2. Sequence of interactions between the rider, the rider agent, and the optimizer
in the on demand use case.

allow the rider to specify a 30 minute pickup window. If this window is saturated,
we check the windows closest to it until we find an available slot.

If the trip is calculated to be flexible, riders are asked to specify a pickup
window which we default to two hours during a low demand time. Riders are
prompted to select a larger pickup window if they are flexible, but have the
option to decrease it to a 30 minute window. If they select a large window, we
schedule them based on system benefit in a time slot within that window. If
they choose a small window during a busy time, we request them to shift their
trip to another time, similar to the on demand use case. While selecting these
alternative time options, we adopt the same approach as in the on demand use
case.
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2.3 Use Case: Commuter Program

We allow a fixed number of eligible riders to join our subscription-based com-
muter program. Our optimizer arranges commuters on rides by identifying com-
mon desired arrival times and pickup and dropoff locations.

Our contribution is to develop optimization algorithms that enable the inte-
gration of commuter programs with our on demand microtransit system. This
introduces significant complexity, because some rides need to be scheduled in
advance, while also retaining space to service on demand requests.

3 Discussion

We present a conception of a prosocial approach to microtransit by combining
human-centric modeling and system optimization. We describe how modeling
the microtransit problem in this way can increase system efficiency by increasing
the requests served with the same resources, reducing wait times, and increasing
rider satisfaction. We describe ongoing work detailing the architecture of the
system we plan to pilot in Wilson, NC, and outline our main use cases.

3.1 Piloting Plans

To evaluate our system in a real-world setting, we plan to operate a pilot micro-
transit service in the City of Wilson, NC, for four months using four microtransit
vehicles. Wilson’s current microtransit service provides a valuable point of com-
parison to assess the impact of our AI-based approach. This pilot will allow
us to measure key performance indicators such as service rate improvements,
rider satisfaction, and the effectiveness of AI-driven interventions in optimiz-
ing scheduling. In addition, we aim to measure changes in riders’ prosociality:
whether they accept more of our prosocial interventions over time, and how
satisfied they are with these adjustments. The insights gained will inform fur-
ther refinements, ensuring that the system is both efficient and equitable before
broader deployment.

3.2 Future Work

There is growing interest in developing multi-modal transit systems that in-
tegrate mass transit (public transit buses, trams, subways) with microtransit,
particularly in low-density demand settings where traditional mass transit is
less efficient [4, 10]. Extending our AI-driven microtransit framework to a multi-
modal setting is a natural extension of this work.

Another direction for future research is to incentivize people to act proso-
cially by walking further (rather than adjusting their times). In congested urban
settings, small location adjustments could greatly benefit the system. Finally,
it is necessary to ensure that riders’ trust is maintained while building systems
that attempt to persuade them to behave differently. An understanding of trust
[5, 7], consent [9] and privacy requirements [6] is required to design agents that
do not violate riders’ autonomy.
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Abstract. Indirect reciprocity (IR) is a key mechanism to explain coop-
eration in human populations. With IR, individuals are associated with
reputations, which can be used by others when deciding to cooperate
or defect: the costs of cooperation can therefore be outweighed by the
long-term benefits of keeping a specific reputation. IR has been studied
assuming human populations. However, social interactions involve nowa-
days artificial agents (AAs) such as social bots, conversational agents,
or even collaborative robots. It remains unclear how IR dynamics will
be affected once artificial agents co-exist with humans. In this project
we aim to develop game-theoretical models to investigate the potential
effect of AAs in the dynamics of human cooperation. We study settings
where artificial agents are potentially subject to the different reputation
update rules as the remaining individuals in the population. Further-
more, we consider both settings where reputations are public and setting
where reputations are privately held. We show that introducing a small
fraction of AAs, with a strategy discriminating based on reputation, in-
creases the cooperation rate in the whole population. Our theoretical
work contributes to identify the settings where artificial agents, even
with simple hard-coded strategies, can help humans solve social dilem-
mas of cooperation. At this workshop, we hope to discuss future research
avenues where citizens preferences, incentives, and strategic adaptation
are considered when designing artificial agents to leverage cooperation
in hybrid systems.

Keywords: Social Dilemmas · Evolutionary Game Theory · Hybrid
Populations · Indirect Reciprocity.

1 Introduction

Altruistic cooperation requires that individuals spend a cost (c) to provide a
benefit (b) to others. When b > c, cooperation implies a social dilemma: coop-
eration is socially desirable yet, given the cost involved, refusing to cooperate is
the dominant strategy. Explaining cooperation is a fundamental challenge across
disciplines [6] and previous research has identified mechanisms to stabilize it [12].
Among these, indirect reciprocity (IR) stands as a primary mechanism to enable
cooperation between unrelated individuals [13]. IR requires that interactions are
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observed and individuals assigned reputations [2], which spread through the pop-
ulation (e.g., via gossiping [5]). Simply put, under IR cooperating today might
contribute to build a reputation that leads others to reciprocate tomorrow [28].

Research in IR spans many disciplines. This mechanism is intrinsically re-
lated to the evolution of morality, culture and was pointed as a crucial component
of a cohesive social structure [2]. To this end, evolutionary game theoretical mod-
els have been successfully applied to understand reputation dynamics and their
influence in human cooperation [15]. Importantly, however, the viability of IR
as a mechanism to sustain cooperation in hybrid populations – composed of hu-
mans and artificial agents (AAs) – remains unknown. Overcoming this research
gap is the key goal of this project 1.

Humans are now increasingly co-existing with AI systems, particularly with
socially interactive agents [11]. Examples of these include collaborative robots
for navigation [19, 30] or education [24]. It is pressing to understand the impacts
that AI systems will have on our collective behavior [1] and our ability to trust
and cooperate with AI [4, 16, 26]. Previous works have suggested the role of com-
munication, embodiment [10] and the perception of facing an AA as important
aspects of cooperation [9] in hybrid populations. In the context of IR, one must
identify the differences in how humans and AAs are assessed, and the role of
AAs that discriminate in pre-defined ways to opponents’ reputations.

In our project, here summarized, we aim to provide a step in addressing two
central questions related to IR in hybrid populations: 1) What is the impact
of artificial agents introduced in a human population interacting under
IR? 2) Which social norms promote cooperation in a system composed
of humans and artificial agents? Finally, we ask 3) Can the impacts of
artificial agents in indirect reciprocity be generalized to the domain
of private reputation systems?

To answer these questions, we develop theoretical models based on evolu-
tionary game theory (EGT) [28] where a finite population composed of adaptive
agents (representing humans) and AAs repeatedly play a donation game. In this
game, an agent, playing as donor, can cooperate (C), that is, donate, or defect
(D) with a receiver. As introduced above, to cooperate means paying a cost c to
concede a benefit b, where b > c > 0. In our model, agents have reputations that
are dynamically updated based on a social norm, i.e., rules that map the action
of the donor and the reputation of the receiver to a new reputation for the donor
[22]. Furthermore, our model also enables different judgments between adaptive
agents and AAs by defining distinct social norms used by observers depending
on the nature of the donor, allowing us to consider that humans primarily judge
artificial agents by their actions, and not their intentions [8].

We show that introducing a small fraction of AAs whose actions are con-
ditioned on reputations can trigger high levels of cooperation in settings where
defection previously prevailed (i.e., low b/c ratio) [17]. Finally, we show that arti-
ficial agents can mitigate some of the challenges of IR when considering private
reputations [18]. Next we summarize these results.

1 The results reported here are originally published in [17] and [18]
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2 Results

Fig. 1. A: A small fraction of fixed-strategy agents in a population of adaptive agents
– simulating artificial agents in a population of humans – can trigger cooperation. This
effect is more pronounced for the social norms Image Score (Cooperation is Good),
Simple Standing (Cooperation is Good yet Defecting with Bad opponents is justifiable
and also Good) and Stern-Judging (Cooperating with the Good or Defection with the
Bad is Good) – details in [17]. B: Under Simple Standing, the advantages of fixed-
strategy agents extend to private reputation systems (low Gossip, O) and settings
where individuals judge the AA using simpler norms (i.e., Image-Score) – details in
[18]). Parameters: Z = 100, b = 2, c = 1, ee = ea = 0.01, β = 1, γ = 0.01.

In Figure 1A, we show how a small fraction of fixed agents (using a Disc strat-
egy, see Section 4) can improve cooperation of a majority population of adaptive
agents. We focus on a regime where cooperation is challenging to engineer (low
benefit to cost ratio, b/c = 1.2). However, improvements in cooperation depend
on the social norm used. Under Simple Standing and Stern-Judging, where repu-
tations are on average very high, the AA primarily rewards cooperators, leading
to high reputations. When using Image Score, we observe a first improvement in
cooperation, followed by a decay as the fraction of AAs increases and the pop-
ulation approaches a Disc equilibrium, where reputations are neutral. Finally,
under Shunning, where reputations are very low due to any interaction with a
bad individual leading to a bad reputation, the effect of AAs is less pronounced
as they mostly punish every individual. Furthermore, in Figure 1B, we show
that interactions with AAs can also improve cooperation under the more strict
assumptions that reputations are private (i.e., low gossip, O), adaptive agents
do not imitate AAs, and judge the AA using a simplified norm (Image Score).

3 Conclusions

In this project, we investigate cooperation in adaptive populations under the
presence of artificial agents (AAs) in the context of indirect reciprocity. The
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study of IR is of particular interest, given the importance of this mechanism
in explaining cooperation among unrelated individuals [13] and the possibility
that AAs impact IR dynamics by acting as donors, receivers, or observers. It is
unclear if IR will work effectively when artificial systems permeate society.

We developed models to study the impact of artificial agents, implemented
with a fixed strategy, integrated in a well-mixed population of adaptive agents.
Our results indicate that the effects of such AAs depend primarily on their strat-
egy, as well as the social norm under which humans and AAs are judged. We
draw several conclusions: Firstly, the presence of Disc Fixed-Strategy agents in-
creases cooperation in previously uncooperative scenarios, under IS, SS and SJ
(Figure 1A). This result is of particular importance for IS, which is a first-order
social norm with low cognitive complexity [21, 23]. Furthermore, if Disc AA are
evaluated with a positive bias, always being assessed with a good reputation, the
previously uncooperative SH supports high cooperation levels; cooperation lev-
els under IS increase as well (see [17]). Additionally, we highlight that negative
biases towards Disc AAs result in two opposite forces: an increase of discrimi-
nators, which could increase cooperation, and a reduction of good individuals,
which typically reduces cooperation. The effect of these agents is thus dependent
on the social norm, but also on the benefit of cooperation versus that of defection
– we do note that, in general, introducing a low fraction of these agents still aug-
ments cooperation. These findings align with the conclusions of other works on
cooperation in hybrid populations outside IR [20, 3, 7, 25], where low fractions
of (pro-social) seeding agents considerably improve cooperation. In addition, we
show how AAs are still capable of promoting cooperation in private reputations,
where cooperation has been shown to be notably harder to maintain.

The effect of AAs which unconditionally defect is also of great importance,
as it highlights a vulnerability of cooperative behavior to uncooperative agents.
Our experiments demonstrated that cooperation does not evolve if a low fraction
of agents are unconditional defectors. This poses the question of how to develop
mechanisms that are resilient against these agents. We also highlight the inef-
ficacy of AllC agents, which, due to the dominance of AllD among adaptive
agents, lead to the exploitation of AAs, which prevents increasing the coopera-
tion levels of the adaptive agents. While a purely theoretical model, these results
provide a clear framework and baseline for future human-AI experiments, which
can help steer AI development towards a focus on promoting pro-social behavior.

Finally, extracting results from game theoretical models to inform real-world
applications and policies requires care [29]. Despite suggesting that discriminat-
ing agents can promote cooperation, it is important to note the ethical concerns
involved in having autonomous systems dictate what constitutes an acceptable
action [27], as well as the fundamental difference in having systems that opt not
to cooperate versus ones that actively defect. Our results are constrained to the
scope of donation games and indirect reciprocity, discarding eventual risks of
over-trusting AI systems. We highlight the need for more thorough human-AI
interaction studies [16] in order to bridge the gap between theoretical and ex-
perimental results. These works should aim to study how humans judge AAs,
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both robots and virtual agents, how concrete social norms could be implemented
in artificial agents, and also how humans interpret and value judgments made
by artificial agents. Furthermore, larger experiments studying how AAs can in-
fluence human cooperation could also be conducted in formats similar to our
theoretical model. Another direction for future work is to study artificial agents
using machine learning as opposed to fixed strategies, allowing for a deeper un-
derstanding of human adaptation when facing evolving AAs.

4 Methods

We consider a finite and well-mixed population consisting of Z adaptive individ-
uals, following prior work on IR [22]. These agents engage in repeated donation
games, where an agent, designated as the donor, can either cooperate, C, paying
a cost c to offer the other agent, the recipient, a benefit b, where b > c > 0, or
defect, D, where no donation is made, and thus no cost is paid. Other agents
observe these interactions and hold a view of every other agent. That is, any
agent i considers another agent j either Good (G) or Bad (B). We define
two regimes: public reputations, where all agents agree on the reputation of a
focal agent as a consequence of gossip, and private reputations, where two indi-
viduals must not necessarily agree on the reputation of a focal agent. We vary
regimes by considering a number T of gossip rounds happening after each in-
teraction, where a randomly picked observer will adopt the opinion of another
observer. At T = 0 reputations are private, and at T → ∞ disagreement is
null and reputations are public. We interpolate between the two regimes using
T = −log(ϵ) ∗O ∗ Z,O ∈ [0, 1], where ϵ is a small threshold value.

The action of each agent is guided by its strategy, which in turn utilizes the
reputation assigned to the recipient. A strategy is formally represented as a pair
s = (sG, sB), where sG and sB are the probability of cooperating with an agent
perceived as G and B, respectively. Agents adopt one of three specific strategies
at any given moment: AllC (1, 1), where cooperation is always selected inde-
pendently of the reputation of the recipient; AllD (0, 0), where the donor always
defects; and Disc (1, 0), where an individual will only donate to good individuals,
and defect against bad individuals. Furthermore, we consider execution errors:
with probability ee, a cooperative action results in defection instead.

We model a hybrid population where human agents interact alongside arti-
ficial agents (AAs). In it, AAs can fulfill any of the three roles in the donation
game: Donor, Recipient, or Observer. AAs also hold views of others and act based
on one of the three strategies. As opposed to adaptive agents, the strategy of an
AA is predetermined and remains fixed over time [7, 25]. In addition, we assume
that AAs are perfectly coordinated in their assessments. We define τ to be the
probability that, for any interaction, a human will instead play an AA. The fixed
strategy of all AAs is equal and designated by sA ∈ S = {AllC,AllD,Disc}.

Updates to agents’ private reputations are governed by second-order social
norms [21]. These norms assess the donor’s action (C or D) in light of the re-
ceiver’s reputation to determine the donor’s new reputation. Each norm is spec-
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ified by a 4-bit tuple d = (dG,C , dG,D, dB,C , dB,D), representing the probability
of assigning a good reputation in any of the four possible scenarios. This allows
for a total of 16 second-order social norms, of which we focus on four key norms
known to sustain cooperation [14]: Image Score (IS), d = (1, 0, 1, 0), where co-
operating is always good and defecting is always bad; Simple Standing (SS),
d = (1, 0, 1, 1), where only defecting against a good individual is bad; Shunning
(SH), d = (1, 0, 0, 0), where only cooperating with a good agent is good; and
Stern Judging (SJ), d = (1, 0, 0, 1), where both cooperating with good agents
and defecting against bad agents is good, and the remaining is bad. As humans
and AAs are judged differently [8], two potentially distinct social norms are ap-
plied: dH , for humans, and dA, for AAs. We allow for assessment errors, where
with a probability ea the reputation of an agent is incorrectly recalled.

Given these dynamics, we model the adoption of strategies by adaptive agents
via a birth-death process [28], where two mechanisms exist: mutations (a prob-
ability γ of adopting another available strategy) and social learning. The latter
is modeled using the pairwise comparison rule, otherwise known as the Fermi
update rule, where an individual will imitate the strategy of another with a
probability that increases with the difference in fitness of the two strategies. We
calculate the population dynamics using a Markov chain where each state corre-
sponds to a possible strategy configuration of the adaptive population, and the
transition probabilities correspond to the probability of a single agent changing
between strategies. The full details of how these dynamics are calculated are
presented in [18]. Finally, we measure cooperation through a cooperation index,
defined by the average fraction of donations in the population at any time-step.
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Abstract. Large Language Models (LLMs) have demonstrated poten-
tial in simulating macroeconomic systems by integrating the agent-based
models. Unlike rule-based systems or neural networks with fixed learning
patterns, LLM agents capture the heterogeneity of economic actors. How-
ever, existing LLM-based simulation environments are generally static,
maintaining constant government policies. In this study, we introduce
a hierarchical framework that incorporates LLM economic agents and
an LLM planner capable of formulating policies in response to evolv-
ing economic conditions. Utilizing the proposed framework, we further
examine the simulated system’s resilience to economic shocks by ana-
lyzing how economic agents respond to unforeseen events and how the
planner adapts to mitigate these challenges. Our results indicate that
the proposed framework improves the stability of the economic system
and captures more dynamic macroeconomic phenomena, offering a pre-
cise and versatile simulation platform for studying real-world economic
dynamics.

Keywords: Agent-Based Model · Large Language Model· Macroeco-
nomic Modeling

1 Introduction

The complexity of modern economies has prompted researchers to explore meth-
ods for simulating macroeconomic systems, with a particular focus on Agent-
Based Models (ABMs) [22, 7]. Early models, relying on rule-based systems or
neural networks, struggled to capture the behavioral heterogeneity of real economies
[3, 10]. The introduction of neural networks has improved the flexibility and in-
telligence of modern ABM models by integrating deep learning methods such as
reinforcement learning [23, 29].

However, generalization and robustness across different environments re-
main challenging. Recent advancements in Large Language Models (LLMs) have
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demonstrated advanced abilities such as reasoning and decision-making [12, 4],
enabling them to simulate complex economic activities like trade and resource
allocation [21, 13, 25, 27]. EconAgent, which employs LLM agents for macroe-
conomic simulations, offers a more nuanced representation of economic agents
but still treats agent interactions statically and overlooks dynamic government
policies and economic shocks [17].

We propose a hierarchical, dynamic multi-agent framework that incorpo-
rates LLM agents to simulate economic policy planning and shock resilience.
Our framework simulates adaptive agent behavior and evaluates the system’s
response to economic shocks by enabling LLM agents to adjust policies such as
tax rates and inflation targets, thereby capturing interactions between heteroge-
neous agents and policy planners. Our experiments demonstrate that both LLM
planners and agents can detect shocks, leading to swift recovery and enhanced
system stability.

2 Method

Fig. 1. An overview of the proposed framework. The planner monitors macroeconomic
indicators and analyzes them using the principle module’s guidance. It also considers
past data to offer suggestions for future economic policy-making. Based on these in-
sights, the planner formulates policies, such as inflation target and tax rates for the
next year, aiming to balance equality and GDP within the simulation. These policies
influence the behavior of economic agents, influencing their consumption choices and
work propensity. Additionally, unexpected economic shocks may arise, impacting the
labor, consumer and momentary markets. Both the planner and agents adjust in re-
sponse, restoring the stability of the simulated environment.

2.1 Hierarchical Multi-Agent Framework

Building on the work of EconAgent [17], we introduce a macroeconomic simula-
tion framework that employs agent-based modeling to capture complex economic
interactions, as illustrated in Figure 1. The system consists of a planner and
multiple heterogeneous economic agents operating on different timescales. Our
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framework extends previous efforts by incorporating dynamic planner decision-
making and economic shocks to better mirror real-world conditions.

The planner optimizes macroeconomic variables—such as tax rates and infla-
tion targets—on an annual basis, while the economic agents adjust their behavior
monthly according to individual preferences and incentives. The planner P ob-
serves ot based on: (1) macroeconomic indicators—such as unemployment rate,
inflation rate, GDP growth, average wage, and economic equality—for the past L
years, and (2) historical government policies over the past L years. Based on these
observations, the planner sets tax rates for each income bracket (τ1, . . . , τB), con-
strained between τlow and τhigh, and determines the target inflation rate πt for
the coming year. For example, when the planner adjusts income tax rates, it
affects the post-tax income that agents receive, which in turn alters their utility
functions. This multi-agent learning problem, which naturally emerges in vari-
ous economic and machine learning scenarios [9, 6], resembles a Stackelberg game
[24], where the planner, acting as a leader, optimizes long-term economic out-
comes while individual agents, as followers, make strategic decisions to maximize
their own utilities within the constraints of these policies.

2.2 Grounding LLM as Planner

To effectively simulate the planner’s role using an LLM, we incorporate reflective
and iterative reasoning processes. The Principle and Observation Module pro-
vides macroeconomic guidelines for adjusting tax rates and setting inflation tar-
gets based on economic growth, inequality, and stability. Following Laffer curve
theory [15], the planner optimizes tax rates to maximize redistribution without
hindering economic activity. Additionally, the Taylor Rule [26, 5] and the Phillips
Curve [18] guide the planner in balancing inflation and unemployment to enhance
social welfare. The Reflection Module reviews historical trajectories by retrieving
L prior action-observation pairs, facilitating continuous policy improvement. By
analyzing past trajectories, fundamental economic principles, and current obser-
vations, the LLM-based planner iteratively refines its decision-making, ensuring
adaptive and robust policy formulation.

3 Experiments

Our experiments explore how a planner can control key macroeconomic indica-
tors—such as GDP growth, unemployment, inflation, and equality—through the
implementation of tax policies and inflation targets. We set the number of agents
to 50. Figure 2 illustrates the system’s economic situation during a natural dis-
aster, where the productivity factor A drops sharply, triggering price inflation
and reducing GDP. In our method, the unemployment rate spikes to 20% and
societal equality falls below 50%. As productivity recovers after five years, infla-
tion stabilizes around 1%, unemployment decreases to 10%, and equality rises
above 50%, indicating economic recovery.
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Fig. 2. Variation of annual macroeconomic indicators under an economic shock caused
by a natural disaster. The shock occurs in the eighth year of the simulation.

In contrast, the EconAgent environment maintains high societal equality im-
mediately after the shock. However, this hinders economic recovery post-disaster
[14]. Rule-based models recover GDP better but show equality levels below 50%
(in some cases below 40%), suggesting uneven recovery benefits. Additionally,
these models experience extreme inflation fluctuations between -60% and 60%.
AI-ECO exhibits 35% equality and 50% unemployment, resulting in consistently
low GDP.

Fig. 3. Planner policies under the economic shock: natural disaster. The planner ad-
justs economic policies in response to the prevailing conditions of the environment.

We then analyze how agents and the planner adapt to economic conditions.
Figure 3 depicts the planner’s adjustments to tax rates and inflation targets dur-
ing a natural disaster, aligning with macroeconomic fluctuations shown in Figure
2. Typically, the planner lowers tax rates to stimulate consumption and GDP
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growth when the natural disaster occurs. However, if social inequality surpasses
a critical threshold, tax rates—especially for high-income earners—are increased
to promote equity. Inflation targets are generally set between 3% and 5% to
balance consumption and unemployment through moderate interest rates. In re-
sponse to significant macroeconomic shifts, the planner adopts more aggressive
tax and inflation measures to restore stability. For example, in the 10th year,
stagflation emerges, characterized by high inflation and unemployment. Since re-
ducing inflation requires higher taxes while lowering unemployment necessitates
tax cuts, the planner resolves this conflict by imposing steeper tax increases on
higher-income groups while applying smaller adjustments to lower-income brack-
ets. The findings suggest that the planner effectively tailors policies to evolving
economic conditions, guiding agents to align with its objectives. This hierar-
chical approach enhances system sustainability, stability, and resilience against
economic shocks.

4 Conclusion

In conclusion, this work advances macroeconomic simulation with the hierarchi-
cal framework of economic agents and a dynamic policy planner. Unlike static
models, our planner adapts to evolving conditions, aligning better with real-
world complexities. By utilizing the principle and reflection modules, it effec-
tively handles economic shocks and enhances social welfare, resulting in a re-
silient system. The study shows that our method captures intricate economic
behaviors, making it a valuable platform for exploring macroeconomic policies.
This work highlights the potential of LLMs in simulating complex economic
systems, opening new pathways for analyzing responsive policymaking and eco-
nomic phenomena.
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A Appendix

A.1 Planner Decisions

Planner policies, particularly those involving tax rates and inflation targets, are
critical for guiding economic development and ensuring social welfare. These poli-
cies significantly affect the decision-making of household agents. In our frame-
work, the government adjusts tax rates and inflation targets on an annual basis.
Specifically, the government planner P observes ot:

– Macroeconomic indicators Im over the past L years, including unemploy-
ment rate, inflation rate, GDP growth, average wage of agents, and eco-
nomic equality5. The observed indicators for the years are represented as
(I1, ..., Iy, ..., IL).

– Historical government policies over the past L years, allowing the planner to
reflect on the effectiveness of previous policy adjustments.

Based on these observations, the government determines the following actions
ap:

– The tax rate for each income bracket (τ1, ..., τk, ..., τB), where the tax rate
in bracket k is constrained between τlow and τhigh, defining the proportion
of income that agents in that bracket must contribute in taxes.

– The target inflation rate πt, representing the desired inflation level for the
coming year.

Taxes are collected from all agents’ incomes for that year. The progressive
tax for agent i’s income zi is computed as follows:

T (zi) =
B∑

k=1

τk((bk+1 − bk)1[zi > bk+1] + (zi − bk)1[bk < zi ≤ bk+1]) (1)

where 1[·] is the indicator function. The tax brackets follow the 2018 U.S. Federal
tax schedule [28]. Following [17, 28], tax revenue is redistributed evenly among
all agents. Therefore, the post-tax income of agent i is:

ẑi = zi − T (zi) + zr = zi − T (zi) +
1

N

N∑

j=1

T (zj) (2)

where zr represents redistribution. Agent savings are updated accordingly:

si ← si + ẑi (3)

The target inflation rate guides changes in interest rates. We use the widely
accepted Taylor rule to determine interest rates [26]:

r = max(rn + πt + απ(π − πt) + αu(un − u), 0) (4)
5 Economic equality is measured using the Gini coefficient. Further details are provided

in appendix A.6
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where rn and un represent the natural interest rate and unemployment rate,
respectively. πt is the target inflation rate, π is the actual annual inflation rate,
and u is the annual unemployment rate. The coefficients απ and αu are ad-
justable parameters used to regulate the effects of inflation and unemployment,
respectively.

A.2 Economic Shocks

Introducing economic shocks into macroeconomic simulations is essential for
accurately modeling real-world economic dynamics. These shocks represent sud-
den, often unexpected events that significantly alter the course of an economy,
such as technological breakthroughs, financial crisis, or natural disaster. Includ-
ing such shocks allows simulations to reflect the volatility and complexity of
the real world, providing insights into how agents and planner adjust to rapid
changes in the economic environment [8, 5]. Previous studies have shown that
incorporating economic shocks enhances the realism of simulations, allowing for
the exploration of how different shocks propagate through an economy and how
policies are adapted in response [26, 2, 19, 11].

Economic shocks can be introduced in various global forms. One prominent
example is a technological advancement, which leads to an increase in universal
productivity. Such a shock would affect all agents by improving production effi-
ciency and raising output [1]. This could be modeled as a positive productivity
shock that increases the productivity factor A across the economy:

A′ = A× (1 + St), St ∼ U(a1, b1) (5)

where St represents the size of the technological shock, drawn from a uniform
distribution between a and b. This shock would have widespread effects, raising
wages, lowering the price of goods due to increased supply, and boosting overall
consumption.

Another example of a shock is natural disasters or pandemics, which can
reduce labor supply or cause significant disruptions to production [2]. A shock
to labor supply could reduce the total hours worked across all agents, thereby
reducing the productivity factor A. The shock will lead to lower output and a
reduced supply of goods:

A′ = A× (1− St), w′
i = wi × (1−Ws · h(wi)) St,Ws ∼ U(a1, b1) (6)

where A′ represents the reduced productivity due to decreased labor supply and
St models the shock to the productivity. The equation for w′

i models the impact
on wages, where wi represents the initial wage of agent i, Ws represents the
size of the natural disaster that reduces average wage, and h(wi) is a function
that decreases with increasing wi. This means that lower-income agents face
larger proportional reductions, reflecting their vulnerability to natural disasters,
whereas higher-income agents are affected to a lesser extent. As a result, this
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dynamic leads to greater inequality and highlights the uneven economic impacts
experienced during such shocks.

Lastly, a financial crisis such as a stock crash can be modeled as a shock to
the monetary market of the environment, where agents experience sudden losses
in wealth or savings, leading to a sharp contraction in consumption [11]. This
scenario can be represented as a reduction in agents’ savings and wages:

s′i = si × (1− Sw), w′
i = wi × (1−Ws · f(wi)), A′ = A× (1− St)

Sw,Ws, St ∼ U(a2, b2), r = 0
(7)

where Sw represents the size of the financial shock that reduces savings. The
function f(wi) is defined such that agents with higher initial wages experience
proportionally greater reductions. This is based on the notion that higher-income
sectors are often more exposed to economic fluctuations, particularly during a
stock market crash, which can severely impact executive compensation and high-
paying sectors. The productivity A of the society is also reduced to model the
stock crash situation because a sharp decline in stock market value can lead to
reduced investments and widespread layoffs. In addition, the interest rate r of
the environment is force to 0 to mimic real-world situation. As a result, this
differential impact forces agents to cut back on their consumption according to
their wage levels, potentially leading to a prolonged economic downturn.

In addition, a recovery policy is implemented if the productivity factor A′ is
less than the original A.

A(t) = max (A,A′ + rn ·max(0, t− t0 − n)) (8)

where t0 is the time when the shock occurs, n represents the number of
years after which recovery begins, and rn is the annual recovery rate. This rep-
resentation ensures that after an initial lag of n years, productivity starts to
recover linearly at rate r until it reaches the original value A, after which it sta-
bilizes. This equation aims to simulate the restoration of productivity gradually,
mitigating the long-term negative effects of the shock and supporting economic
recovery. During the economic shock, additional sentences will be added into the
input for both the agents and the planner, enabling them to better perceive the
current economic conditions. Once productivity A returns to its original level
or t − t0 > 5n, the economic shock is considered to have ended, and the extra
sentences will be removed from the input.

A.3 Agent Decisions

In the framework, agent i make decisions monthly on work and consumption:

– Agents decide whether to work, denoted by li ∼ Bernoulli(pwi), where pwi

represents the agent’s work propensity. If an agent chooses to work (li = 1),
they receive a monthly wage as income, which differs across agents. Initially,
each agent has an hourly wage wi, drawn from a Pareto distribution [29].
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The monthly wage vi is then calculated by multiplying 168 hours (assuming
21 working days at 8 hours per day [16]). If the agent decides not to work
(li = 0), their income for that month is zero.

– The consumption propensity pci reflects the proportion of an agent’s total
wealth (current savings and income in the month) that they intend to allocate
for purchasing essential goods.

Modeling the varied decisions of heterogeneous agents is crucial for reflecting
macroeconomic dynamics. The decision-making process for each agent is shaped
by several economic factors, including anticipated income and tax obligations.

A.4 Productivity and Consumption

By incorporating agent decisions and government taxation, the dynamics of labor
and consumption markets are simulated based on economic principles. Agents
who work contribute 168 hours of productivity per month, leading to the pro-
duction of essential goods. The total inventory of goods, G, is updated as:

G← G+ S = G+
N∑

j=1

lj × 168×A (9)

where S represents the volume of goods produced from the labor supply, and
A is the productivity factor. For consumption, the total demand for goods is
expressed as:

D =
N∑

j=1

dj =
N∑

j=1

pcjsj
P

(10)

where dj is the demand of agent j, pcj is the consumption propensity, sj is
the current savings, and P is the price of essential goods. Both labor and con-
sumption markets update based on the imbalance relation between supply and
demand. The imbalance is defined as:

ϕ̄ =
D −G

max(D,G)
(11)

When there is a shortage of essential goods, meaning demand exceeds supply,
wages should increase to encourage production. As labor costs rise, the prices
will be updated correspondingly. The hourly wage is updated as:

wi ← wi(1 + ϕi), ϕi ∼ sign(ϕ̄)U(0, αw|ϕ̄|) (12)

The price of goods is adjusted similarly:

P ← P (1 + ϕP ), ϕP ∼ sign(ϕ̄)U(0, αP |ϕ̄|) (13)

where αw and αP are the maximum rates of wage and price adjustments, respec-
tively. The dynamics of consumption are also modeled. Specifically, an agent j
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is randomly chosen to consume goods, with actual consumption limited by the
available inventory:

d̂j = min(dj , G), ĉj = d̂j × P (14)
This indicates that demand is met only if there is sufficient supply. The total
goods inventory is reduced accordingly:

G← G− d̂j (15)
This process repeats until each agent has consumed goods once.

A.5 Financial Market

According to the change of interest rate, the savings of each agent increase based
on the equation:

si ← si × (1 + r) (16)
The inflation and unemployment rate are defined as:

π =
P̄n − P̄n−1

P̄n−1
, u =

∑12
m=1

∑N
j=1(1− lj)

12N
(17)

A.6 Equality

The equality of the society is measured by equality index, which is calculated
by:

eq(xc) = 1− gini(xc)N

N − 1
(18)

where xc = (xc
1, x

c
2, . . . , x

c
i , . . . , x

c
N ) is the vector of wealth of all N agents after

taxation and redistribution. The wealth of one agent means the wage of current
month and previous saving: xc

i = wi+si. gini(xc) represents the Gini coefficient,
a standard measure of inequality, with values ranging from 0 (perfect equality)
to 1 (perfect inequality). The Gini coefficient is calculated as:

gini(xc) =

∑N
i=1

∑N
j=1 |xc

i − xc
j |

2N
∑N

i=1 x
c
i

(19)

This formula computes the relative differences in wealth between all agents. If
all agents have the same wealth, the Gini coefficient is zero, indicating maximum
equality. Conversely, a high Gini coefficient indicates greater inequality, with one
agent controlling most of the wealth.

A.7 Economic Shock

For the f(wi) and h(wi), the general form equation is:

g(wi, σ) = 0.8 + 0.2×
(

wi

wmax

)
· σ (20)

Specifically, f(wi) equals to g(wi) when σ = 1, h(wi) equals to g(wi) when
σ = −1.
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A.8 Baselines

LEN The LEN [16] model is an Agent-Based Model (ABM) that simulates
macroeconomic interactions between households and firms. Households decide
labor supply and consumption, while firms adjust prices and wages according to
economic conditions. In this model, consumption decisions are memory-based,
meaning they depend on both current income and past accumulated savings.
The consumption propensity is expressed as:

pic =

(
P

si + zi

)β

(21)

where pic is the consumption propensity, P is the price of goods, si is the current
savings of household i, zi is the current income, and β ∈ [0, 1] is a parameter.

CATS The CATS [8] model simulates an economy with households, firms,
and banks. Unlike LEN, consumption decisions here are non-memory-based, rely-
ing only on current income. Households aim to maintain a desired ratio between
savings and income. The consumption propensity is given by:

si
zi

= (1 + r)

(
si + (1− c)zi

zi

)
= h pci =

czi
si + zi

(22)

where si is the savings, zi is the income, r is the interest rate, h is the desired
savings-to-income ratio, and c is the proportion of income consumed.

For the work rule of these two baselines, we follow EconAgent [17] setup. The
equation for work propensity is:

pwi =

(
wi

si(1 + r)

)γ

(23)

Composite The composite baseline is a hybrid model where an agent’s ac-
tion is randomly selected from either the CATS or LEN [17]. This allows the
agent to alternate between decision-making frameworks based on probabilistic
rules. The agent’s action, ai, is determined using a Bernoulli distribution, where
the probability of choosing the CATS or LEN model is equal:

X ∼ Bernoulli(0.5) ai =

{
aCATS , if X = 0

aLEN , if X = 1
(24)

Saez Formula: The Saez tax formula optimizes tax rates based on the in-
come distribution and the elasticity of income with respect to tax rates. Tax
elasticity e(z) measures how sensitive an individual’s income is to changes in the
tax rate. It is defined as:

e(z) =
dz/z

d (1− τ(z)) /(1− τ(z))
,

where z is the pre-tax income and τ(z) is the marginal tax rate. Higher
elasticity implies that a small increase in the tax rate significantly reduces the
income earned.
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We follow the setup of AI-Economist to use Multi-period Saez Formula here.
In a multi-period setting, the tax elasticity ẽ is estimated at the start of each
tax period, where a buffer D = {(zαi , ταi )}α, a set of observed income and tax
rate pair is used for estimation.

Then the income is modeled as:

zt = z0 · (1− τt)
ẽ (25)

where z0 is the hypothetical income without taxation. This can be rewritten as:

log(zt) = ẽ · log(1− τt) + log(z0) (26)

We estimate ẽ using ordinary least-squares regression on this equation, utiliz-
ing the most recent data from several tax periods. This allows stable estimation
of the average elasticity ẽ, ensuring accurate adaptation of the tax rates in each
period. In the experiment, the buffer size is 30,000 with the most recent incomes
and tax rates observed during rollout episodes.

Rule-based Inflation Target We apply a rule-based baseline similar to
the Taylor rule [26, 5, 17] for adjusting the inflation target rate based on devi-
ations from desired macroeconomic variables such as inflation, unemployment,
and GDP growth. The formula is:

πt+1 = max
(
0,min

(
0.08, πt + (βπ · (π − πt)) + (βu · (u− un)) + (βy · (Yg − Y n

g ))
))

(27)
where the coefficients βπ, βu, and βy determine the weight of each macroeco-
nomic variable on the adjustment of the inflation target. u∗ and Y ∗

g are the target
values of unemployment and GDP growth. The adjustment is capped within a
reasonable range to prevent extreme inflation rates, specifically between 0% and
8%. This method dynamically adjusts the inflation target based on real-time
economic data, such as inflation and unemployment, as well as key economic
goals.

AI-Economist AI-Economist [28] is a learning based method using multi-
agent reinforcement learning (RL). In this model, agents are driven to maximize
their utility, which is a function of savings, consumption, and labor effort. The
agents’ utility function incorporates consumption and goods prices, while labor
exerts a negative influence, reflecting the cost of effort. Specifically, the utility
function is given by:

Ui =
(si/P )1−λs − 1

1− λs
× (ci/P )1−λc − 1

1− λc
− λlli (28)

where si is the agent’s savings, ci is consumption, P is the price of goods,
and li represents labor effort. The parameters λs, λc, and λl control the relative
importance of savings, consumption, and labor, respectively, in determining the
agent’s utility. The agents in AI-Economist make decisions based on various
economic factors, such as monthly wages, interest rates, and tax rates, all of
which affect their work and consumption behavior.
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The planner in the AI-Economist aims to set tax policies that optimize social
welfare, which balances economic productivity and equality. The social welfare
function can be expressed as the product of equality and productivity:

swf(xc) = eq(xc) · prod(xc) (29)

where eq(xt) represents equality and prod(xt) refers to the total value of the
society, equals to

∑N
i=1 x

c
i . The Planner uses RL to iteratively adjust tax rates

over time, based on the agents’ evolving behaviors and incomes. It observes
macroeconomic indicators and updates the tax schedule accordingly to achieve
the desired balance between productivity and equality.

In application, we apply Proximal Policy Optimization (PPO) [20], a rein-
forcement learning algorithm, to train agents agent planner in maximizing their
own utility over time.

A.9 Implementation Parameters

The parameters for the simulation environment, rule-based baselines and AI-
Economist are shown below. The total training step for AI-Economist is 24000000.

Experiment Hyperparameters Values
αw 0.05
αp 0.10
rn 0.01
un 0.04
απ 0.5
αu 0.5
Y n
g 0.02
βπ 0.3
βu 0.2
βy 0.2

βLEN 0.1
γLEN 0.1
hCATS 1

Table 1. Additional implementation parameters of simulation environments and rule-
based baselines
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Training Parameter Agent Policy Planner Policy
clip_param 0.3 0.3

entropy_coeff 0.2 0.025

entropy_coeff_schedule 0: 0.3
10,000,000: 0.1 null

gamma 1.0 0.998
grad_clip 10.0 10.0
kl_coeff 0.0 0.0
kl_target 0.01 0.01
lambda 1.0 0.98

lr 0.0001 0.0003
lr_schedule null null

fc_dim 128 256
emb_dim 4 4

emb_vocab 100 100
lstm_cell_size 128 256

num_conv 2 2
num_fc 2 2

max_seq_len 25 25
use_gae true true

vf_clip_param 50.0 50.0
vf_loss_coeff 0.05 0.05
Table 2. Training Parameters for AI-Economist
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Abstract. Prioritising citizens in the design and development of multi-
agent systems (MAS) is key to ensuring that MAS are socially benefi-
cial. To ensure that artificial agents within MAS act in citizen-centric
ways, agents should foster prosociality, defined as behaving in ways that
support the well-being of others. Principles from normative ethics—the
philosophical study of morality—can be operationalised in the decision-
making capacities of agents to discern ethically acceptable actions and
promote prosocial behaviour. However, challenges exist in operational-
ising principles: (1) individual principles may be unintuitive; (2) while
incorporating multiple principles mitigates issues with individual princi-
ples, conflicts may arise between them. We present PriENE, a method for
combining multiple principles in individual decision-making to encourage
agents learning prosocial behaviour. We evaluate PriENE in a simulated
berry harvesting scenario. Interestingly, preliminary results show that
societies of PriENE agents do better along metrics one might expect
individual principles to have an advantage: one might expect egalitari-
anism to minimise inequality, but PriENE societies minimise inequality
further; one might expect maximin to have highest minimum experience,
but PriENE societies raise minimum experience further; one might ex-
pect utilitarianism to have highest cumulative experience, but cumulative
experience is further increased in PriENE societies.

Keywords: ethical decision-making · cooperation · fairness · prosocial-
ity

1 Introduction

Principles from normative ethics, the rational and systematic study of right
and wrong, provide frameworks for guiding moral judgements (Murukannaiah
and Singh, 2020; Woodgate and Ajmeri, 2022). Operationalising principles in
decision-making enables artificial agents (hereafter referred to as agents) to con-
sider the well-being of others and discern ethically acceptable actions (Woodgate
et al., 2025). The capacity of agents to consider others and act ethically becomes
paramount as multi-agent systems (MAS) are increasingly adopted in real-world
applications with diverse impacts on citizens (Stein and Yazdanpanah, 2023). To
ensure that MAS are beneficial to citizens, agents within MAS should be proso-
cial, defined as acting in ways intended to benefit others (Paiva et al., 2018;
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Sundaresan et al., 2025). Implementing principles in decision-making capacities
supports agents considering others and learning behaviours that are prosocial
insofar as they support the well-being of others as well as the agent’s own needs
(Ajmeri et al., 2020; Mashayekhi et al., 2022).

Previous works cultivate cooperation and prosociality by appeal to existing
behaviours (Anavankot et al., 2023; Dell’Anna et al., 2020; Lupu and Precup,
2020; Tzeng et al., 2024; Santos et al., 2018). However, learning from others
without evaluating behaviour to identify potentially better options risks perpet-
uating existing injustices. Implementing normative ethics mitigates difficulties,
as principles are prescriptive, denoting what ought to happen, rather than de-
scriptive, denoting what is happening (Kim et al., 2021). However, challenges
arise with operationalising principles.
(1) Individual principles may be unintuitive. Ethics can be defined in
various ways, each with strengths and weaknesses (Woodgate and Ajmeri, 2024).
Applying specific principles in certain situations may yield unintuitive outcomes;
for instance, utilitarianism, which aims to maximise total utility (Mill, 1863),
can lead to unfair treatment of minorities. Using multiple principles in decision-
making supports the ability to view problems from diverse perspectives and helps
mitigate issues with individual principles.
(2) Principles may conflict. Considering multiple principles broadens ethical
reasoning; however, specific principles may conflict with one another. For in-
stance, maximin prioritises improving the minimum experience in society (Rawls,
1967), while egoism seeks the best outcome for oneself (Sidgwick, 1907). Aggre-
gating various principles can help resolve conflicts and balance the strengths and
weaknesses of individual recommendations.
Contribution. We present PriENE, a method to operationalise and combine
normative ethics principles egoism, utilitarianism, maximin, and egalitarianism
in the decision-making of individual agents to learn prosocial behaviours.
Novelty. PriENE advances prior work by (1) implementing a variety of prin-
ciples in learning mechanisms; (2) aggregating multiple principles to mitigate
weaknesses with individual principles.

We empirically evaluate PriENE in a simulated berry harvesting scenario
to examine the effects of decision-making in a society with unequal resource
distribution. We compare PriENE societies with societies of agents implementing
individual principles. Interestingly, we find that PriENE societies do better where
one might expect individual principles to have an advantage: PriENE minimises
inequality more than egalitarianism; raises minimum experience above maximin;
improves total social welfare above utilitarianism.

2 PriENE

We now present the PriENE method. We model PriENE agents using reinforce-
ment learning (RL), in which an agent optimises long-term return by repeatedly
interacting with its environment (Sutton and Barto, 2018). A PriENE agent op-
erationalises egoism, which promotes achieving the greatest outcome possible for
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oneself (Sidgwick, 1907), through basic Q-learning with DQN. DQN is an RL
algorithm that uses a neural network to parametrise an approximate Q-function
(Mnih et al., 2015).

To consider well-being of others and learn prosocial behaviour that is citizen
beneficial, a PriENE agent operationalises normative ethics. We adapt the utility
function proposed by Leben (2020) to model a distribution of resources d and
well-being of each member of society. From Leben (2020), ui(d) → (υi) models
a distribution of resources d for an agent i; n is the number of living agents; (υi)
is a measurement of well-being for each agent ag1, . . . , agn; ut(d, υi) is utility
for agent i given its resources d at time t; Ut = {ut(d, υ1), . . . , ut(d, υn)} is the
set of utilities for all agents in a society at t. To operationalise each principle, a
PriENE agent compares Ut, before acting and Ut+1, after acting. A sanction is
a reaction to approved or disapproved behaviour. A PriENE agent perceives a
self-directed sanction f (directed towards and affecting only its sender (Nardin
et al., 2016)) from each principle p1, . . . , pm indicating whether utility improved,
worsened, or did not change.
Utilitarianism. Maximise total net utility (Mill, 1863). Compute utility distri-
butions by summing aggregate utilities, thus UT =

∑n
i=1 u(d, υi).

Maximin. Prioritise well-being of the worst-off (Rawls, 1967). Compute mini-
mum experience–lowest utility of an agent, MA = miniu(d, υi).
Egalitarianism. Confer equal shares to each individual (Binns, 2018). Compute
accumulated difference of each agent’s utility to an ideal where all agents are

perfectly equal. Thus, EG =
∑n

i=1 |u(d, υi) − µ(U)| where µ(U) =

∑n

i=1
u(d,υi)

n
denotes average utility of the society.

Aggregating principles mitigates difficulties with individual principles. A
PriENE agent computes aggregated sanction F from mean of all sanctions
fp1 , . . . , fpm so that F (fp1 , . . . , fpm) = 1

m

∑m
i=1 fpi . Various ways of combining

principles may be appropriate for distinct scenarios. For example, in a situation
where causing harm is risky, if even one principle indicates an action is negative,
the overall sanction should be negative. In scenarios where it is preferable to
incorporate the recommendations of all principles, the overall sanction could be
computed as the mean of all sanctions.

To make decisions, at each time step t, a PriENE agent observes state st and
selects action a with predicted max Q-value from DQN. After acting, the agent
perceives reward r from the environment. For each principle, the agent calculates
self-directed sanction fp1

, . . . , fpm
, and aggregates them to obtain sanction F .

The agent combines F with the environment reward r through reward shaping,
which provides immediate feedback based on heuristics, resulting in r′ = r+ F .
Finally, the agent passes r′ to DQN for learning.

3 Experimental Setup

We create a harvest environment, illustrated in Figure 1, in which an agent can
move, forage for berries, eat berries, throw berries to other agents. To examine
the effects of various principles, we train five agent types: egoistic, egalitarian,
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maximin, utilitarian, and PriENE. We run e = 1000 episodes. Each episode runs
until all agents have died or tmax = 200 steps. Appendix A.1 includes additional
details of experimental setup including compute information, hyperparameter
selection, simulation parameters, and range of values tried.

Reproducibility Our simulation codebase, including complete simulation param-
eters, is publicly available (Woodgate and Ajmeri, 2025).

Fig. 1. Colours harvest. Each agent moves freely but only collects berries of a specific
colour. Some colours are more plentiful, giving those agents access to more resources.
Agents can throw berries to each other across the grid.

Metrics We examine the quality of individual agents’ experience, measured by
the number of berries consumed agberries. To evaluate fairness, we compute:
M1 (inequality). Gini index (distance to perfect equality (Gini, 1912)) of ac-
cumulated agberries across the society. Lower is better.
M2 (minimum experience). Minimum individual accumulated agberries at the
end of each episode. Higher is better.
To evaluate sustainability, we assess the following metrics:
M3 (maximum experience). Maximum individual accumulated agberries at
the end of each episode. Higher is better.
M4 (social welfare). Total agberries accumulated at the end of each episode.
Higher is better.
M5 (robustness). Length of each episode. Higher is better.

4 Results

Table 1 displays preliminary results of agberries mean for PriENE societies and
societies implementing individual principles. Results are calculated by examining
the agberries of each individual agent at the end of each episode.

M1 (inequality) is lowest in PriENE societies and highest in utilitarian soci-
eties. M2 (minimum experience) is highest egalitarian followed by PriENE. M3
(maximum experience) is highest in utilitarian societies, followed by maximin,
egoistic, PriENE, then egalitarian. M4 (social welfare) is highest in maximin
societies followed by PriENE. M5 (robustness) is highest in PriENE societies.
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Table 1. Comparing PriENE and individual principles mean x̄ and standard deviation
σ of agberries.

Metric Egoistic Utilitarian Maximin Egalitarian PriENE

x̄ σ x̄ σ x̄ σ x̄ σ x̄ σ

M1 0.43 0.14 0.48 0.11 0.42 0.12 0.38 0.14 0.37 0.11

M2 2.06 2.43 1.96 2.15 2.09 2.14 3.23 4.69 2.81 2.59

M3 35.48 11.66 42.9 5.72 37.95 9.5 29.28 12.05 35.0 11.47

M4 69.12 34.08 77.14 21.9 79.51 29.06 65.82 39.13 78.64 34.19

M5 95.08 83.91 100.55 83.75 106.2 85.38 94.83 79.48 106.85 82.12

Discussion Interesting highlights include: one might expect egalitarian to min-
imise inequality but PriENE minimises inequality further; one might expect
maximin to have highest minimum experience but PriENE improves minimum
more; one might expect utilitarian to have highest social welfare but PriENE is
higher. The combination of lowest inequality and second highest minimum ex-
perience indicates PriENE societies have a satisfactory level of fairness. PriENE
societies also have second highest social welfare and highest robustness, indicat-
ing a PriENE agent is not acting at unlimited cost to itself; it is not giving away
berries when it is itself in need. Results suggest PriENE agents learn prosocial
behaviours that support the well-being of the agent as well as the society.

5 Conclusions and Directions

PriENE is a method for operationalising multiple normative ethics principles in
decision-making capacities of individual agents, to promote prosocial and citizen-
centric behaviour. Overall, results show that PriENE societies lead to lowest
inequality, second highest minimum experience and social welfare, and highest
robustness. These results suggest that PriENE encourages agents to learn proso-
cial behaviours that support the well-being of others, fostering the propensity
of MAS to benefit the interests of citizens. To expand analysis to more complex
settings, future directions involve evaluating heterogeneous societies in which
agents operationalise different principles to one another; implementing scenarios
closer to the real world; increasing the agent population; inferring well-being of
others utilising solely local information, such as identifying implicit responsibility
(Chopra et al., 2024); examining the effects of limited observability; consider-
ing longer term impact of actions on the well-being of others; exploring the
influence of context on ethical decision-making including social norms, which
are standards of expected behaviour (Chopra et al., 2018; Morris-Martin et al.,
2019); implementing additional principles (Woodgate and Ajmeri, 2024).
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A Appendix

A.1 Details of Experimental Setup

We train k = 4 agents in a grid size 8 × 8 with binitial = 12 berries. An agent
begins with hinitial = 5.0 health, which decays by hdecay = 0.1 at each time step.
If an agent forages at a location where a berry exists then it can carry the berry
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in its bag agberries-carried. If an agent has b >= 1 in its bag, it can eat a berry
and its health increases by hgain. When an agent’s health is above hthrow, it can
throw a berry to another agent. For simplification, agents observe one another’s
well-being as a single number agwell-being. agwell-being is measured by how many
days an agent has left to live, a function of how many berries it is carrying and
its health, where agwell-being =

aghealth+(agberries-carried×hgain)
hdecay

. In the real world,
this is analogous to agents observing a sickly appearance. Each episode runs
until all agents die, or tmax = 200 steps.

A.2 Computing Infrastructure

We conducted the simulation experiments on a workstation with Intel Xeon
Processor W-2245 (8C 3.9 GHz), 256GB RAM, and Nvidia RTA A6000 48GB
GPU.

A.3 Hyperparameter Selection

Table 2 lists the interaction module parameters and range of values tried per
parameter. We select these parameters empirically, with reference to literature
Bengio (2012).

Table 2. DQN Parameters.

Description Parameter Range Tried Final Value Criterion

Batch size B {32, 64, 128} 64 Training time

Iteration for updating
weights of target net-
work

C {1000, 100, 50} 50 Test performance

Probability of explo-
ration

ϵ 0.9–0.0 0.0 Test performance

Learning rate α {0.01, 0.001, 0.0001} 0.0001 Test performance

Number of hidden units Hn {32, 64, 128} 128 Test performance

Number of hidden lay-
ers

Hl 1–3 2 Test performance

A.4 Simulation Parameters Selection

Table 3 lists the simulation parameters and range of values tried per parameter.
We select these parameters empirically.
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 Table 3. Simulation Parameters.

Description Parameter Range Tried Final Value

Grid size obasic × pbasic {4× 4, 8× 4} 8× 8

Number of agents k {2, 4} 4.0

Initial number of berries binitial {8, 12, 16} 12.0

Initial health of agent hinitial {5.0, 10.0} 5.0

Health decay hdecay {–0.01, –0.1} −0.01

Health gain from eating berry hgain {0.1, 1.0} 0.1

Minimum health to throw hthrow {0.5, 0.6, 1.0} 0.6

Number of episodes e {500, 1000} 1000.0

Maximum steps in episode tmax {50, 200} 200.0

Rewards To encourage agents to learn to survive, agents are positively rewarded
for reaching the end of an episode and negatively rewarded for dying. Agents
are rewarded for throwing to provide incentive for egoistic agents that do not
implement ethics sanctioning to learn cooperative behaviours. Providing envi-
ronmental rewards for cooperative behaviours allows for fair comparison between
agent types, rather than giving agents that implement ethical principles addi-
tional rewards. Rewards are also normalised between egoistic agents and agents
implementing ethical principles to avoid obvious results by giving additional
rewards. Table 4 lists complete rewards received by agents.

Table 4. Rewards received by an agent. Rewards are normalised between egoistic and
other agents to avoid obvious results by giving agents implementing other principles
more rewards.

Action Egoistic Principles

Survive episode 1.00 1.00
Eat berry 1.00 0.80
Forage berry 1.00 0.80
Throw berry 0.50 0.50
Try to eat without berries −0.20 −0.10
Try to throw without berries −0.20 −0.10
Try to throw without sufficient health −0.20 −0.10
Try to throw without recipient −0.20 −0.10
Die −1.00 −1.00
Positive ethics sanction 0.00 0.40
Negative ethics sanction 0.00 −0.40
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Abstract. This paper introduces a novel method for estimating the
self-interest level of Markov social dilemmas. We extend the concept of
self-interest level from normal-form games to Markov games, providing
a quantitative measure of the minimum reward exchange required to
align individual and collective interests. We demonstrate our method on
Commons Harvest, which represents a common-pool resource.

Keywords: Social Dilemma · Game Theory · Reinforcement Learning.

1 Introduction

Social dilemmas are situations where individual incentives conflict with group in-
terests, and they present significant challenges in multiagent cooperation. Agents
need sufficient motivation to care about others for collective action to become
more attractive than selfish behaviour. We address this with reward exchange,
whereby agents agree to exchange a fixed proportion of their rewards with each
other, creating an incentive for them to improve the well-being of others.

The self-interest level [11] quantifies the greatest proportion of their own
rewards that agents can retain while using reward exchange to resolve a social
dilemma. It serves as a solution to social dilemmas, and a metric for players’
propensity to cooperate, assessing the gap between individual and collective
incentives. A low self-interest level indicates strong incentives for players to avoid
prosocial behaviour. In this paper we present a novel method for estimating the
self-interest level of stochastic game representations of social dilemmas.

2 Related Work

Our work focuses on extending two prominent approaches. The first approach
develops game-theoretic metrics to quantify the amount of shared interest re-
quired to achieve socially optimal equilibria in mixed-motive games [1,5,3,2].
These contributions are applicable to analytically tractable games. The second
approach [9,7] develops more complex models using stochastic games that can
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capture nuanced aspects of real-world social dilemmas, such as cooperativeness
as a graded quantity, agents with partial information about the state of the
world, and decisions with temporally extended consequences. In this setting, re-
ward transfers have been used to promote collective behaviours in multiagent
reinforcement learning agents [10,6,12].

3 Background

3.1 Markov Social Dilemmas

Social dilemmas are situations in which individuals face the choice between act-
ing selfishly (to defect) for personal gain or acting in a prosocial manner (to
cooperate) which yields greater overall benefits to the collective. For all agents:
(i) the collective does better when an agent chooses to cooperate than when the
agent chooses to defect; (ii) each agent may be better off individually when it
defects; and, (iii) all agents prefer mutual cooperation over mutual defection.

An n-player Markov social dilemma is a tuple (M,
#»

Π =
#»

Πc ∪
#»

Πd), where
M is a Markov game and

#»

Πc and
#»

Πd are two disjoint sets of policies said to
implement cooperation and defection respectively. The utility function for player
i, Ri(

#»π ), denotes the expected total reward in a game rollout given the joint
policies, and satisfies the following properties:

(i) ∀i
∑

j
Rj(πc

⌢ #    »π−i) >
∑

j
Rj(πd

⌢ #    »π−i)

(ii) ∀i ∃ #    »π−i : Ri(πd
⌢ #    »π−i) > Ri(πc

⌢ #    »π−i)

(iii) ∀i Ri((πc, πc . . . πc)) > Ri((πd, πd . . . πd))

Where #    »π−i represents the tuple of policies for all players other than player i, and
⌢ is a coupling operator that inserts πi into #    »π−i such that #»π = πi

⌢ #    »π−i.

3.2 Reward Exchange

We allow the agents to enter into a contract to exchange proportions of their
future rewards between one another. We introduce a parameter, s, denoting the
proportion of its own rewards that an agent retains, termed the self-interest of
the agents. The remainder, 1 − s, is distributed equally among the other n − 1
co-players. The post-transfer reward function for agent i, R′

i, is therefore:

R′
i(

#»r , s) = sri +
1− s

n− 1

∑

j ̸=i

rj (1)

3.3 Self-Interest Level

We say that a social dilemma is resolved when all agents prefer to cooperate.
The self-interest level of a Markov social dilemma, denoted s∗, is defined as:

s∗ = max{s | ∀i R′
i(R(πC

⌢ #    »π−i), s) > R′
i(R(πD

⌢ #    »π−i), s)}
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Note that when s = 1
n , the post-transfer reward function (Equation (1)) for all

agents is equivalent to maximising the sum of rewards:

R′
i(

#»r ,
1

n
) =

1

n

n∑

j=1

rj

Consequently, in a Markov social dilemma with s = 1
n , cooperative policies are

preferable to defect policies, because cooperation increases the total reward due
to inequality (i). However, players may still strictly prefer cooperative policies
for s > 1

n . The self-interest level therefore has a lower bound, and s∗ ∈ [ 1n , 1].

4 Method

We now introduce a method to estimate the self-interest level of Markov social
dilemmas. Computing dominant policies is computationally intractable, so we
use learning algorithms to find approximately optimal joint policies, and assesses
the resulting equilibria.

4.1 Estimating the self-interest level

We consider joint policies achieving equivalent collective reward to those trained
to maximise the sum of rewards (when s = 1

n ) to be maximally cooperating. The
self-interest level is estimated as the largest value of s for which independent
policies converge to a maximally cooperative equilibrium.

Writing joint policies trained with a self-interest of s as #»πs:

s∗ = max
1
n≤s≤1

:
∑

j
Rj(

#»πs)) ≈
∑

j
Rj(

#  »π 1
n
))

We wish to guarantee that policies convergence to cooperative equilibria,
regardless of their initialisation, implying that cooperation is dominant. We ap-
proximate this by choosing challenging initialisations: policies that have con-
verged to equilibria with poor rewards, found by training without reward ex-
change, so that the agents have incentives to act selfishly and shirk cooperation.

4.2 Policy Training

The policies are trained in two stages:

1. Pre-training: We gradually increase the number of players in the environ-
ment, training for a fixed number of episodes each time.

2. Training: We continue training the independent policies while iteratively
decreasing their self-interest after a number of episodes.

We use a range of self-interest values based on the ratio of the fraction of
reward an agent keeps for itself compared to the proportion of a co-players’
reward it receives, because the agents typically face a choice between taking a
benefit for themselves, or allowing a co-player to gain it. The ratios we use are
[20:1, 10:1, 5:1, 3:1, 5:2, 2:1, 5:3, 4:3, 1:1].
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Fig. 1: Pre-training, increasing numbers of players

4.3 Evaluation

Due to the stochastic nature of reinforcement learning and Markov games, we
repeat the training for five different policy initialisations. Furthermore, we iden-
tify the self-interest level with a degree of tolerance, selecting the largest value
of s that achieves a total reward not statistically worse than the best measured:

– Compute the mean and standard deviation of the sum of rewards after train-
ing for each value of s, and set smax to the s value with the largest mean.

– Conduct a one-sided Dunnett’s test [4], a method to compare multiple sam-
ples with a single control, to assess which of the means are statistically worse
than smax. We accept a p-value of < 0.1 as significant.

– Choose s∗ as the largest s value with a total reward mean that is not statis-
tically worse that that of smax, otherwise s∗ = smax if all are worse.

5 Results

We illustrate this process on Commons Harvest [8], which models a common
pool resource. The challenge is to manage the resource sustainably and avoid a
tragedy of the commons. Commons Harvest comprises seven agents harvesting
apples from four large and two small apple patches. Collecting an apple pro-
vides as reward of 1. Harvested apples regrow with probability proportional to
the number of apples remaining in the patch. If all the apples in a patch are
harvested, however, it is depleted and no apples will regrow.

5.1 Pre-training

Figure 1 shows that the best performance is achieved when there is only a single
agent. In principle, multiple players should be able to match or exceed the reward
of a single agent. That they fail to do so in practice is due to the mixed-motive
structure of the rewards for n > 1 players. While the benefits of harvesting an
apple are entirely captured by the harvester, the cost of a reduced regrowth rate
is shared among all agents; consequently, the agents have incentives to harvest
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Fig. 2: Iteratively decreasing self-interest during training

s 1 0.77 0.63 0.46 0.33 0.29 0.25 0.22 0.18 0.14
mean 102 102 169 208 295 540 510 524 519 464

std dev 20 28 165 231 171 45 48 30 13 24
p-value 0 0 0 0.01 0.01 N/A 0.17 0.27 0.17 0.01

Table 1: Dunnett’s test results

more apples than is socially optimal. Over the range of 2–4 players, all five seeds
maintain good social outcomes. However, with 5–7 players, the performance
collapses to poor equilibria. Here, the agents quickly consume every apple, so
nothing is able to regrow, and the tragedy of the commons has materialised.

5.2 Training

Figure 2 demonstrates that all seeds have recovered good social performance by
s = 0.29. Although the agents achieve a reward slightly less than that which a
single agent can achieve (in Figure 1, with n = 1), this is due to the difficulty
of coordination in independent multiagent reinforcement learning. Indeed, by
s = 0.14, the agents have an effective team reward, and would be better off if
one of them followed the single agent policy and the other six remained inactive.

We calculate the mean and standard deviation of the total reward achieved
at the end of training for all values of s, and compute the one-sided Dunnett’s
test p-value to determine whether the means are statistically lower. The results
are presented in Table 1. In this case, the optimal performing value is s = 0.29,
and all the larger values of s have a statistically worse mean total reward. We
therefore estimate the self-interest level to be in the range 0.29 ≤ s∗ ≤ 0.33.
Longer training periods or a larger number of seeds might yield slightly different
results, by limited computational resources prevented exhaustive investigation.
To validate the self-interest level for Commons Harvest, we train new policies
with fixed reward exchange proportions: s = 1 (fully independent), s = s∗ (self-
interest level), s = 1

n (team reward) and a value of s slightly larger than the
range that s∗ was determined to lie within, which we call s+.
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Fig. 3: Training with fixed self-interest

Figure 3 confirms that without reward exchange, policies fail to learn co-
operation, while training at the self-interest level reaches a cooperative equilib-
rium that slightly outperforms the team reward and s+. This demonstrates how
our method enables cooperation without requiring agents to completely sacri-
fice their individual interests. By using the minimal necessary reward exchange
rather than full team rewards, we potentially avoid credit assignment challenges
while still achieving socially optimal outcomes.

6 Conclusion

We introduced a novel method for estimating the self-interest level of Markov
social dilemmas, bridging the gap between game-theoretic metrics and complex
multiagent reinforcement learning models. The self-interest level serves as a valu-
able metric for assessing the propensity of cooperation in mixed-motive games,
by quantifying the gap between individual and collective incentives.

Our work offers both practical metrics and solutions for real-world social
dilemmas. As a metric, the self-interest level enables risk assessment: systems
with low self-interest levels face significant barriers to cooperation and may be
prone to conflict, allowing system designers to identify where intervention is nec-
essary. As a solution mechanism, reward exchange can be applied to problems
like fishery management, where traditional quotas often fail due to persistent
incentives to overfish. If fishing nations were to exchange a proportion of their
fishing profits with other fishing nations, this would reduce each country’s incen-
tive to overexploit fish stocks while simultaneously motivating all participating
countries to improve ocean health.
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A Appendix

See http://arxiv.org/abs/2501.16138 for our full paper, which features greater
discussion, further experiments and additional environments. More detail on
our experimental setup can be found in our GitHub at https://github.com/
willis-richard/meltingpot/tree/markov_sd/.
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Abstract. We consider one-sided matching problems in citizen-facing
allocation systems such as school choice. In these settings, agents are
allocated items based on their stated preferences. Posing this as an as-
signment problem, the average rank of obtained matchings can be min-
imized using the Rank Minimization (RM) mechanism. RM matchings
can lead to significantly better rank distributions than matchings ob-
tained by random-priority mechanisms such as Random Serial Dictator-
ship (RSD). However, these matchings are also vulnerable to strategic
behavior, where agents manipulate their reported preferences to achieve
better outcomes. In this work, we derive a best response strategy for a
scenario where agents aim to be matched to their top-n preferred items
using the RM mechanism under a simplified cost function. This strategy
is then extended to a first-order heuristic strategy for being matched to
the top-n items in a setup that minimizes the average rank. Based on
this finding, an empirical study is conducted examining the impact of the
first-order heuristic strategy. The study utilizes data from both simulated
markets and real-world matching markets in Amsterdam, taking into ac-
count variations in item popularity, fractions of strategic agents, and the
preferences for the n most favored items. For most scenarios, RM yields
more rank efficient matches than Random Serial Dictatorship, even when
agents apply the first-order heuristic strategy. In competitive markets,
the matching performance can become worse when 50% of agents or more
want to be matched to their top-1 or top-2 preferred items and apply the
first-order heuristic strategy to achieve this. These findings contribute to
the design of matching systems, showing how agents might manipulate
preferences and how this manipulation can impact allocation efficiency.

Keywords: Matching · Strategic Manipulation · Rank Minimization
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1 Introduction

Matching agents to items given agents’ preferences is an essential problem with
real-world applications such as school admissions and housing allocation. [6, 7].
Deferred Acceptance with Single Tie-Breaking (DA-STB) is the most well-known
matching algorithm, providing stable, envy-free and Pareto-optimal matchings
for two-sided preferences [14]. When preferences are one-sided, DA-STB reduces
to Random Serial Dictatorship (RSD), and matches are no longer efficient [3,8].
This inefficiency is reflected in the rank distributions [10] commonly reported by
institutions that apply matching mechanisms [1,2]. Recent works have proposed
the rank-minimizing (RM) mechanism [4,10,13,17], which minimizes the average
rank received by all agents. Despite efficiency gains, implementing RM in the real
world is risky as it is not strategyproof, and agents can receive better matches
by misreporting their preferences [4, 17]. In matching problems with one-sided
preferences, it is impossible for a mechanism to provide more efficient matches
compared to RSD without being vulnerable to manipulation [15]. [17] shows that
although RM is manipulable, it is not an obviously manipulable mechanism, as
no single strategy ensures beneficial gains over being truthful without complete
knowledge of all other agents’ preferences; suggesting that the shortcoming of
non-strategyproofness in RM may not be so severe. [13] show through an em-
pirical study that when agents are strategic using i.i.d. preferences, they do not
stand to gain significantly better allocations. However, this study assumes that
agents misreport preferences uniformly, and has a uniform distribution of pref-
erences over items.

We motivate that agents can be strategic despite not having complete infor-
mation of others’ preferences, and the impact of strategic preferences can vary
across markets with differing demand for items. This extended abstract sum-
marizes our work which implements rank minimization using the well-known
Hungarian Algorithm (RM-HAL), assuming linear cost over rank [16]. Our con-
tributions are as follows: we derive a best response strategy for RM-HAL under
a simplified cost function, propose a heuristic strategy when costs are linear, and
measure the impact of these strategies on matching performance across various
market conditions. We find that RM-HAL provides better rank efficiency than
RSD, particularly when the number of strategic agents is limited. However, per-
formance declines when more than half of the agents apply the heuristic strategy
to secure top-1 or top-2 matches.

2 Strategies for RM-HAL

Let S and M denote sets of agents and items. P represents the set of all possible
ordered preference lists, where each list has a fixed length l and pi,n denotes the
nth preferred item of agent i (n ∈ Z+). Let n-rank popularity of an item fj,n
be denoted by the difference between the total number of agents picking item j
within their top-n ranked choices and the capacity of j. Items with fj,n > 0 are
considered popular, those with fj,n ≤ 0 are less popular. Let N be the set of all
popular items.
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(a) Synthetic data. (b) Amsterdam data.

Fig. 1: Markets with varying demand over items. Y-axis shows the share of agents
who ranked each item as their top preferred item.

The rank minimizing (RM) mechanism finds a set of matchings (i, j) ⊂
S ×M such that the average rank of the items to which the agents are matched
is minimized. The RM mechanism is implemented using the Hungarian algo-
rithm [5,9,11,12], by assuming some cost c(i, j) for matching agent i to item j.
Henceforth we refer to this as RM-HAL.

Strategies for manipulating RM-HAL are considered for two scenarios: (i)
single-step cost and (ii) linear cost. In the first scenario, cost is zero for matching
agents to their top-n preferred items, and constantly high for others. We analyze
the steps of the Hungarian algorithm to derive a best response strategy for a
strategic agent with complete information on others’ preferences. The use of this
best response strategy by all agents results in a Nash equilibrium.

Theorem 1. The best response strategy for agent i to be matched to their top-
n preferred items with RM-HAL is (pi,1, . . . pi,n, j1, ..., jl−n) where fj,n > 0,
j /∈ {pi,1 . . . pi,n}, and |N | ≥ l.

Deriving a best response strategy when costs are linear over rank is non-
trivial, as the agent has to consider the correlations between other agents’ pref-
erences. For this scenario, a first-order heuristic strategy is proposed: beyond
top-n items, the agent selects items with fj,1 > 0 and orders them in descending
order of popularity. This heuristic aims to delay the agent being matched to
items beyond the top-n, but is not guaranteed to be optimal. Deriving a best
response strategy for this case is left for future work.

3 Experimental Results

A simulation study is conducted using both synthetic and real-world datasets to
evaluate the impact of the first-order heuristic strategy in matches made using
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Fig. 2: Average rank of RM-HAL matches when agents apply the first-order
heuristic strategy for varying values of n and f . Scenarios where RM-HAL has
a worse average rank than RSD are highlighted in red.

RM-HAL. The synthetic data set models three types of markets (logistic, linear,
and exponential) with varying demand distributions of 10 items between 2000
agents. The real-world dataset, sourced from the Amsterdam school choice sys-
tem, contains preferences of 7,500 students across three education levels (VWO,
HAVO, VMBO). The demand for the items in these datasets is visualized in
Figure 1. Strategic preferences are simulated using the first-order heuristic strat-
egy, with the assumption that agents truthfully ranked their top-n choices. The
matching performance of RM-HAL using strategic preferences is compared with
RSD using truthful preferences. Four experiments were conducted, varying levels
of strategic manipulation, number of strategizing agents and assessing its effects
on overall rank efficiency and impact on strategic and truthful agents. Strategic
scenarios involved varying n (acceptable top ranks) and f (fraction of strategic
agents), as well as mixed-n cases, where groups of agents used different n values.

We find that despite strategic manipulation, RM-HAL provides matches with
a better average rank than RSD in most scenarios, as shown in Figure 2. Only
in extreme scenarios, where more than 50% agents apply the first-order heuris-
tic strategy to be matched to their top-1 or top-2 items, the average rank of
RM-HAL is worse than RSD. We also find that applying the first-order heuristic
strategy is effective but risky for agents, particularly for n = 1. The rank effi-
ciency of matches is also market-dependent, with RM-HAL performing signifi-
cantly better than RSD in competitive markets. However, the impact of strategy
is also worse in these markets. Strategic agents also always have a better average
rank than truthful students, implying that using RM-HAL in practice can lead
to unequal outcomes between the two groups.

This work aims to promote discussion on the nature of strategic manipula-
tions and their impact for efficient mechanisms such as RM-HAL. While RM-
HAL is not obviously manipulable, the first-order heuristic strategy is found to
be effective and easy to apply, as it only requires information on the relative
popularity of items. Our simulation study shows improved match probabilities
for top-n preferred items when applying the heuristic strategy. Although the
strategy is not devoid of risks, these results suggest an incentive for agents to
employ strategic preference reporting.
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