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A B S T R A C T 

Nearly a hundred progenitor-less, thin stellar streams have been discovered in the Milky Way, thanks to Gaia and related surveys. 
Most streams are believed to have formed from star clusters and it was recently proposed that extended star clusters – rich in 

stellar-mass black holes (BHs) – are efficient in creating streams. To better understand the nature of stream progenitors, we 
quantify the differences between streams originating from star clusters with and without BHs using direct N -body models and 

a new model for the density profiles of streams based on time-dependent escape rates from clusters: the Quantifying Stream 

Growth (QSG) model. QSG facilitates the rapid exploration of parameter space and provides an analytic framework to understand 

the impact of different star cluster properties and escape conditions on the structure of streams. Using these models it is found 

that, compared to streams from BH-free clusters on the same orbit, streams of BH-rich clusters: (1) are approximately 5 times 
more massive; (2) have a peak density 3 times closer to the cluster 1 Gyr post-e v aporation (for orbits of Galactocentric radius 
� 10 kpc ), and (3) have narrower peaks and more extended wings in their density profiles. We discuss other observable stream 

properties that are affected by the presence of BHs in their progenitor cluster, namely the width of the stream, its radial offset 
from the orbit, and the properties of the gap at the progenitor’s location. Our results provide a step towards using stellar streams 
to constrain the BH content of e v aporated (globular) star clusters. 

Key words: stars: black holes – globular clusters: general – Galaxy: halo – Galaxy: kinematics and dynamics – Galaxy: struc- 
ture – galaxies: star clusters: general. 
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 I N T RO D U C T I O N  

tellar streams are the debris of e v aporated star clusters (for example
denkirchen et al. 2001 ; Grillmair & Dionatos 2006 ) and accreted
warf galaxies (for example Ibata, Gilmore & Irwin 1994 ) and are
ound in both the inner (Ibata, Malhan & Martin 2019 ) and outer
alo (for example Belokurov et al. 2006 ; Newberg et al. 2010 ; Shipp
t al. 2018 ) of the Milky Way (MW) as well as in other galaxies
for example Ibata et al. 2001 ; Mart ́ınez-Delgado et al. 2010 , 2023 ).
n recent years, there has been a significant uptick in the disco v ery
ate of streams in the MW halo (see the re vie w by Bonaca & Price-

helan 2025 ), thanks to the advent of the European Space Agency
ESA) Gaia space telescope (for example Malhan, Ibata & Martin
018 ; Ibata et al. 2019 ) and deep, wide-area photometric surv e ys (for
 xample Koposo v et al. 2014 ; Bernard et al. 2016 ; Shipp et al. 2018 ).
treams are powerful tools in studies of the MW: their shapes provide

mportant constraints on the gravitational potential of the MW (for
xample Lynden-Bell & Lynden-Bell 1995 ; Koposov, Rix & Hogg
010 ; K ̈upper et al. 2015 ; Bovy et al. 2016 ; Erkal et al. 2019 ; Koposov
t al. 2023 ) and their chemistry and orbits help to reconstruct the
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ssembly history of the MW (for example Bonaca et al. 2021 ; Li et al. 
022 ). 
The precise astrometric data provided by Gaia have tightly

onstrained the orbits of the observed globular clusters (GCs) and
tellar streams (for example Li et al. 2022 ; Bonaca & Price-Whelan
025 ). For streams originating from star clusters, the orbit combined
ith the Galactic potential provides constraints on the mass-loss
istory of the progenitor cluster (Baumgardt & Makino 2003 ,
ereafter BM03 ; Gieles & Gnedin 2023 , hereafter GG23 ; Chen et al.
025 ). 
The narrow width and low velocity dispersion of the GD-1 stream

Koposov et al. 2010 ) and the chemistry of its stars (Balbinot,
abrera-Ziri & Lardo 2022 ) argue for a star cluster origin. Ho we ver,
e Boer, Erkal & Gieles ( 2020 ) noted that the initial stellar mass in
he GD-1 stream is about 5 times larger than the estimated maximum

ass of a star cluster that can e v aporate on that orbit, based on
-body calculations of Roche-filling star clusters e v aporating in a
alactic tidal field ( BM03 ). Curiously, some GCs with much closer
ericentric passages than the GD-1 stream have no noticeable tidal
ails associated with them (Kuzma, Da Costa & Mackey 2018 ). This
uggests that, in addition to the time spent on that orbit, an orbit-
ndependent parameter is required to explain the variation in mass-
oss rates of GCs. 
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ty. This is an Open Access article distributed under the terms of the Creative 
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Figure 1. The mass of the streams from Patrick et al. ( 2022 ), that are believed 
to have had GC progenitors which have now evaporated, as a function of the 
Galactocentric radius of the equi v alent circular orbit with the same average 
mass-loss rate, R eff ( BM03 ). In addition, we include Jet (Ferguson et al. 
2022 ), C-19 (Martin et al. 2022 ), and Phlegethon (Ibata et al. 2018 ) (denoted 
by the diamond markers) which are also believed to have GC progenitors. 
The blue hatched region denotes the area of parameter space that can be 
populated by GCs without BHs that can e v aporate within 10 Gyr . The orange 
hatched region denotes the area of parameter space that can be populated 
by GCs with BHs that can e v aporate within 10 Gyr and the dashed (solid) 
orange line marks the median (maximum) mass of a GC with BHs and an 
e v aporation time of 10 Gyr (see the text for details). The error bars do not 
take into account the possibility of unobserved low density extensions to the 
streams and therefore these data points should be regarded as lower bounds 
on the progenitor mass. 
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Gieles et al. ( 2021 , hereafter G21 ) showed that the additional
arameter is most likely the dynamical effect of stellar-mass black 
oles (BHs) in the progenitor star cluster. N -body models of tidally 
imited star clusters with different initial masses (Pavl ́ık et al. 2018 )
nd densities ( G21 ; Wang et al. 2024 ) retain a different fraction of
Hs and therefore evolve to have different BH populations today 

Breen & Heggie 2013 ), impacting the mass-loss of the cluster 
Banerjee & Kroupa 2011 ; Giersz et al. 2019 ). G21 build upon
his to show that the stream associated with the halo GC Palomar
 (hereafter Pal 5) – just like the GD-1 stream – also contains more
ass than can be explained by the models of the e v aporation of star

lusters without BHs ( BM03 ). Because this is the most prominent
tream with a known progenitor, G21 attempted to reproduce the 
bserved properties of both the cluster and the stream with N -body 
imulations. They found that both the peculiar, large half-light radius 
f r eff � 20 pc of Pal 5, as well as the mass in the stream can only
e reproduced if the cluster contains a BH population, constituting 
 fraction of f BH � 0 . 2 of the total present-day cluster mass. From
hese models, G21 found that both the mass in the tails as well as r eff 

orrelate with f BH and concluded that BH-rich GCs are the likely 
rogenitors of cold streams. The higher mass-loss rate of GCs with 
Hs also helps to explain the shape of the GC mass function and the
istribution of nitrogen-rich stars in the inner halo that are believed 
o originate from GCs ( GG23 ). 

In addition to GD-1 and the Pal 5 stream, there are more streams
ith masses abo v e the maximum masses of clusters without BHs that

an e v aporate on their orbits. Fig. 1 displays the masses of the streams
ncluded in P atrick, Koposo v & Walker ( 2022 ) that are believed to
ave had GC progenitors which have now evaporated as a function 
f the Galactocentric radius of their equi v alent circular orbits with
he same average mass-loss rate ( R eff = R p (1 + ε), where R p is the
alactocentric radius at pericentre and ε is the orbital eccentricity; 
M03 ). In addition, we include Jet, C-19, and Phlegethon streams
hich are believed to have GC progenitors. The orbital parameters 
sed to calculate R eff for the streams in Patrick et al. ( 2022 ) were
btained from Li et al. ( 2022 ) for all streams except GD-1 and Pal
 which used the values from Bonaca et al. ( 2020 ) and K ̈upper
t al. ( 2015 ), respectively. The mass estimates and orbital parameters
or Jet, C-19, and Phlegethon were taken from Ferguson et al.
 2022 ), Martin et al. ( 2022 ), and Ibata et al. ( 2018 ), respectively.
he lines show model predictions ( GG23 ) for the initial mass,
fter stellar evolution, of GCs with an evaporation time of 10 Gyr
ithout BHs (blue) and with BHs (orange). In Appendix A , we
rovide details on how these limiting masses were derived from 

he GG23 model. The ‘wBH’ lines correspond to clusters that have
Hs during their entire evolution, and ‘noBH’ lines are for models

hat either quickly ejected BHs early in the evolution because of a
hort initial relaxation time (low GC mass/high density), or never 
ad BHs. 

Apart from Ophiuchus and Phlegethon, which lie well below the 
oBH line, and Phoenix which lies just below the noBH line, every
ther stream’s mass exceeds the noBH limit. Patrick et al. ( 2022 )
alculate the mass of the stream by generating a new simulated stellar
opulation from the fitted colour–magnitude diagram, allowing the 
ass estimate to account for unobserved low mass stars. Yet, these
asses are likely lower limits because Patrick et al. ( 2022 ) did not

nclude features offset from the stream track (such as the spur of
D-1), nor corrections for stars outside of their defined ends of the

treams which are difficult to pick out from the background. This
mplies that their mass estimates are lower limits of the initial stellar

ass of the streams’ progenitor GCs. A particularly stark example 
s that of GD-1, for which Patrick et al. ( 2022 ) determine the stream

ass to be ∼ 5 × 10 3 M �, whereas Boer et al. ( 2020 ) estimate a total
ass of ∼ 10 4 M � (after stellar evolution mass loss). In addition,

t is important to note that the mass estimate of C-19 in Martin
t al. ( 2022 ) is a lower limit as it is expected that the stream extends
e yond the observ ed range. This comparison confirms that most
treams e v aporated faster than what is expected from models of GCs
ithout BHs, calling for stream formation models that include the 

ffect of BHs. 
Most stream modelling efforts to date have focused on the shape

nd features such as epicyclic overdensities (for example Bovy 2014 ;
anders 2014 ; Fardal, Huang & Weinberg 2015 ; K ̈upper et al. 2015 )
nd could therefore adopt a constant escape rate. Ho we ver, it is
ell understood that the mass-loss rate is not constant, instead 

he magnitude of the mass-loss rate decreases as the progenitor 
 v aporates for noBH GCs (Fukushige & Heggie 2000 ; Baumgardt
001 ; BM03 ; Lamers, Baumgardt & Gieles 2010 ), while it increases
or wBH GCs (Banerjee & Kroupa 2011 ; Giersz et al. 2019 ; G21 ),
nd there is yet to be a study of the dependence of a stream’s
orphology on the progenitor’s mass-loss rate. Moti v ated by this, the

uggestions that BH-rich clusters are the progenitors of (most of the)
old stellar streams ( G21 ) and that wBH streams should exhibit a gap
t the progenitor’s position post-e v aporation (Boer et al. 2020 ), and
lso by the availability of more luminosity-based mass estimates and 
orresponding density profiles of streams (for example Boer et al. 
020 ; Patrick et al. 2022 ), we here present a model for streams based
n a time-dependent mass-loss history of their progenitor clusters. 
o parametrize this new model, we use direct N -body simulations 
f star clusters e v aporating in a Galactic tidal field with and without
Hs, to shed light on the nature of stream progenitors by investigating
hether the structure of a stream can be used to discriminate between
MNRAS 538, 454–469 (2025) 
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M

Table 1. The initial conditions and the e v aporation 
time of the N -body simulations used in this work. 

Value at t = 0 noBH-Nbody wBH-Nbody 

R (kpc) 20 20 
V c (kms −1 ) 220 220 
M 0 (M �) 2596 18 175 
N 4600 28 500 
r h , 0 ( pc ) 3.49 5.96 
t ev (Gyr) 7.79 8.36 
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Figure 2. The evolution of the total cluster mass (top), its mass-loss rate 
(middle), and the mass of the black hole population (bottom) of the two N - 
body models discussed in Section 2.1 (noBH-Nbody in blue and wBH-Nbody 
in orange), with the contributions from stellar mass loss and e v aporation in 
the tidal field shown separately. The o v erplotted black dashed lines are M( t) 
(equation 2 ) and Ṁ ( t) (equation 3 ), with t ev = 8 . 2 Gyr and η = 0 . 36; M i = 

1 . 66 × 10 3 M � (noBH) and η = −0 . 94; M i = 1 . 03 × 10 4 M � (wBH). In the 
bottom panel the o v erplotted dashed line corresponds to M BH = 150 M �, 
the total mass of the retained BH population used in the wBH-QSG 

models. 
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H-rich and BH-free progenitors and identify features which display
 dependence on the retained BH population. 

This paper is organized as follows: in Section 2 , we introduce
he N -body simulations and the model for the density profiles of
treams with time-dependent mass-loss histories. In Section 3 , we
iscuss the impact of a BH population in the progenitor cluster on
tream properties and the discussion and conclusions are presented
n Sections 4 and 5 , respectively. 

 A  M O D E L  F O R  STREAMS  F RO M  

IME-DEP ENDENT  MASS-LOSS  RATES  

n this section, we present a model for streams forming from clusters
n circular orbits with time-dependent mass-loss rates. We first
resent two N -body models of clusters with and without BHs in
ection 2.1 and then describe the (semi-)analytic model for the stream
ensity profile in Sections 2.2 –2.4 . In Section 2.5 , we compare the
tream model to the N -body simulations. 

.1 N-body simulations 

o quantify the effect of a BH population on the resulting stream,
e run N -body models of two clusters on the same orbit, where
ne model contains BHs (‘wBH-Nbody’) and the other cluster
oes not (‘noBH-Nbody’), the key parameters of these models are
ummarized in Table 1 . We run both simulations with PETAR 

1 (Wang
t al. 2020 ), which includes the effect of stellar and binary evolution
Hurley, Pols & Tout 2000 ; Hurley, Tout & Pols 2002 ) with the
ecent updates for massive star winds and BH masses from Banerjee
t al. ( 2020 ). We adopt the rapid supernova mechanism by Fryer
t al. ( 2012 ), for which 60 per cent (70 per cent) by number (mass)
f the BHs do not receive a natal kick due to fall back, for the
dopted stellar initial mass function (IMF) (Kroupa 2001 ; in the range
 . 1 − 100 M �) and metallicity ( Z = 10 −3 , that is, [Fe / H] � −1 . 1).
or the noBH-Nbody model we prevent the formation of BHs by

runcating the IMF at 20 M �. We adopt a ‘GD-1 like’ orbit: a
ircular orbit at a Galactocentric radius of R = 20 kpc in a singular
sothermal sphere (SIS) using the GALPY library (Bovy 2015 ). 2 

The initial positions and velocities of the stars are drawn from
 Plummer model (Plummer 1911 ) truncated at 20 times the half-
ass radius ( r h ). We define the initial r h , r h , 0 , in units of the half-
ass radius of a Roche-filling cluster ( r h , f ), for which we adopt the

alue from H ́enon ( 1961 ) of r h , f = 0 . 15 r J , where r J is the Jacobi

adius. For the SIS, r J , 0 = 

[
GM 0 / (2 �2 ) 

]1 / 3 
, where M 0 is the initial

ass of the cluster and � = V c /R is the angular frequency of the
rbit. Because clusters expand as a result of stellar mass loss, we
NRAS 538, 454–469 (2025) 

 https:// github.com/ l w ang-astro/PeTar
 We use GALPY ’s pseudo-isothermal sphere with circular velocity of V c = 

20 km s −1 at large radii and a core radius of 1 pc. 
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tart with r h , 0 < r h , f . For the noBH-Nbody cluster, we adopt r h , 0 =
 . 7 r h , f and for the wBH-Nbody cluster we adopt a slightly smaller
adius of r h , 0 = 0 . 6 r h , f , because this cluster expands more due to
he dynamical effect of the BHs following stellar mass loss. What
emains to be decided is the initial number of stars ( N ) of both
odels. We find values for N by iteration, such that both models
 v aporate approximately at an age of 8 Gyr, where we define the
 v aporation time ( t ev ) as the time at which the cluster reaches 0.5
er cent of the initial cluster mass. Our initial estimates are guided
y the analytic expressions for Ṁ and M( t) of GG23 for clusters
ith different BH contents. After a few iterations of N -body models
ith different N we settled on N = 4600 for the noBH-Nbody model

nd N = 28500 for the wBH-Nbody model, where the difference is
ue to the higher mass-loss rate of a GC with BHs. The evolution
f the total cluster mass, the mass-loss rate, and the mass of the BH
opulation of both models is shown in Fig. 2 . In the next section, we
iscuss the resulting streams as well as a generative model for the
tream that we base on the mass evolution of these N -body models. 

https://github.com/lwang-astro/PeTar
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.2 Mass-loss rate 

n this section, we develop a semi-analytic model for the streams from
lusters with and without BHs and benchmark the results against the 
-body models from Section 2.1 . 
We only model the mass-loss due to e v aporation, that is, we do

ot include mass-loss by stellar evolution, which dominates in the 
arly evolution of the GCs. As can be seen in Fig. 2 , stellar evolution
ominates the mass-loss of the N -body models until ∼ 1 Gyr. As
emonstrated by GG23 , the mass-loss rate due to e v aporation is well
escribed by a power-law dependence on M of the form 

˙
 = −AM 

η = − M i 

(1 − η) t ev 

(
M 

M i 

)η

, (1) 

here M is the cluster mass, M i < M 0 is the remaining mass
fter most stellar evolution mass loss has occurred, and t ev is the
 v aporation time, defined here as the time it takes for the mass to
each 0 . 005 M 0 . From integrating equation ( 1 ), we obtain the GC
ass evolution in time 

( t) = M i 

(
1 − t 

t ev 

)1 / (1 −η) 

. (2) 

y substituting this expression for M( t) into equation ( 1 ), or by
aking its deri v ati ve with respect to time, we find an expression for
˙
 ( t) 

˙
 ( t) = − M i 

(1 − η) t ev 

(
1 − t 

t ev 

)η/ ( 1 −η) 

. (3) 

he mass dependence of Ṁ is encapsulated in the parameter η, 
here the mass evolution of noBH clusters is well described by 
� 1 / 3 ( BM03 ) and for wBH clusters, −1 � η � −1 / 3 ( GG23 ).
he abo v e e xpressions are simplified v ersions of M( t) and Ṁ ( t)
xpressions recently presented in GG23 . 3 These authors showed with 
-body models that clusters with lower initial densities retain more 

f their BHs, and have a smaller (that is, more ne gativ e) η. F or η < 0,
he (absolute) mass-loss rate increases as the progenitor e v aporates, 
hich is the result of the increasing fraction of mass in BHs. GG23

lso show that the constant of proportionality A (which is inversely 
roportional to t ev ) in equation ( 1 ) depends on η, M 0 , and the strength
f the tidal field. 
The dependence of η on the mass of the BH population, M BH , is

ecause there exists a critical f BH for tidally limited GCs (few per
ent) at which the stellar mass-loss rate equals the BH mass-loss rate
nd therefore f BH remains constant (Breen & Heggie 2013 ). If f BH >

 BH , crit then f BH increases which leads to an accelerating mass-loss 
ate ( η < 0) and a BH-dominated cluster (Banerjee & Kroupa 2011 ;
iersz et al. 2019 ; G21 ). On the other hand, if f BH < f BH , crit then f BH 

ecreases, leading to a decelerating mass-loss rate ( η > 0; Fukushige 
 Heggie 2000 ; Baumgardt 2001 ; BM03 ; Lamers et al. 2010 ). It is

mportant to note that a GC without BHs with a low initial density
an have a similar high mass-loss rate as a wBH GC with the same
ass, but G21 shows that this area of parameter space is extremely

mall and as such we consider an accelerating mass-loss rate to be
he result of a retained stellar-mass BH population. 

Rather than using the full expressions from GG23 , we here stick
o the simpler expressions from abo v e and find the values of M i 

nd η that are needed to describe the two N -body models. The 
ass and mass-loss history for the N -body models and the analytic 

pproximations are displayed in the top two panels of Fig. 2 . M i and
 They define Ṁ ∝ M 

1 −y , such that our η relates to their y as η = 1 − y. 

(
b
i
o

are determined by a least-squares fit to the mass evolution ( M( t))
nd the mass-loss rate ( Ṁ ( t)), excluding the contribution by stellar
volution. We set an upper bound for M i of the total stellar mass in
he N -body model post-e v aporation. For the noBH model, we then
nd M i � 0 . 64 M 0 � 1 . 66 × 10 3 M � and η � 0 . 36. A similar mass
ependence of the mass-loss rate was found previously in models 
f clusters without BHs ( BM03 ; Lamers et al. 2010 ). For the wBH
odel, we find M i � 0 . 56 M 0 � 1 . 03 × 10 4 M �4 and η � −0 . 94.
his ne gativ e η causes mass loss to accelerate as the progenitor
 v aporates, as found here (see orange lines in top and middle panels
f Fig. 2 ) and also in other models of e v aporating clusters with BHs
Giersz et al. 2019 ; Wang 2020 ; GG23 ). 

We plot the resulting analytic expressions for M( t) and Ṁ ( t) in
ig. 2 . These expressions ensure that a GC will e v aporate at a chosen
 ev (informed by N -body simulations), which is key when examining 
he growth of the gap that forms at the progenitor’s position post-
 v aporation. 

.3 The Quantifying Stream Growth (QSG) model 

o investigate the differences in streams resulting from the noBH and
BH clusters, a model of the growth of streams is required. Here,
e introduce a new model that follows the formalism of Erkal &
elokurov ( 2015 ). It adopts a reference frame that is centred on the
luster and co-rotates with the orbit, where the x-axis points towards
he galactic anticentre, the y-axis points along the orbit, and the z-
xis is along the angular momentum vector of the orbit, perpendicular 
o the orbital plane. We restrict ourselves to a cluster on a circular
rbit, with galactocentric radius R and circular velocity V c , within
 spherical potential. Stars are then assumed to escape through the
agrange points, offset from the centre of the cluster along x by
 distance ±f e r J ( M( t)), where f e is a dimensionless constant of
rder unity to be determined, and they are released with some initial
elocity offset � �v = ( �v x , �v y , �v z ). In this model the velocity
ffset in the y-direction ( �v y ) is related to the escape radius by ε,
 dimensionless free parameter of order unity, such that �v y is the
andom component of the velocity (in the galactocentric reference 
rame ε = 1 means that escapers have on average the progenitors
ngular velocity, whereas ε = 0 corresponds to escapers having on 
verage the progenitors orbital velocity). The equations of motion for 
tars that have escaped the progenitor are derived in Appendix B and it
s important to note that these equations ignore the progenitor’s mass
s they are intended to describe the stripped stars’ motion when the
luster potential experienced by the escapers is negligible compared 
o the galactic potential. The time-dependent angle from the centre 
f the potential of the ejected particle (relative to the progenitor) is
iven by 

1 ( t) = −4 − γ 2 

γ 2 

(
�v y + (1 + ε) 

f e r J 

R 

V c 

)
t 

R 

− 2 

γ 3 
( γ 2 − 2 − 2 ε) 

f e r J 

R 

sin ( γ�t ) 

+ 

1 

γ 3 

4 �v y 

V c 
sin ( γ�t ) 

− 1 

γ 2 

2 �v x 

V c 
( 1 − cos ( γ�t ) ) , (4) 
MNRAS 538, 454–469 (2025) 

100 M � for wBH and 20 M � for noBH), the ratio M i /M 0 is similar in 
oth cases because the fraction of the initial mass abo v e 20 M � that ends up 
n BHs is ∼ 0 . 45, that is, only slightly lower than the remaining mass fraction 
f the IMF below 20 M �. 
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here 

2 = 3 + 

R 

2 

V 

2 
c 

∂ 2 R 
 ( R) , (5) 

s the ratio of epicyclic frequency to the angular frequency, 
 ( R) is
he spherical galactic potential, t is the time since escape, and the
e gativ e sign in front of the equation means that stars ejected from
he outer (inner) Lagrange point fall behind (mo v e ahead) of the
rogenitor, as expected. 
The radial offset (that is, the displacement from the progenitor’s

rbital track in the direction of the galactic anticentre) as a function
f time is given by 

r( t) = f e r J cos ( γ�t) + 

2 R 

γ 2 

(
�v y 

V c 
+ (1 + ε) 

f e r J 

R 

)

× ( 1 − cos ( γ�t) ) + 

R�v x 

V c 

sin ( γ�t) 

γ
, (6) 

here we note that �r( t = 0) = �x( t = 0). The velocity in the z
irection simply tilts the orbital plane of the escaping star (Erkal,
anders & Belokurov 2016 ) and the resulting motion perpendicular

o the progenitor’s orbital plane is given by 

z( t) = �v z 
R 

V c 
sin 

(
V c 

R 

t 

)
. (7) 

The density at a point along the stream is the product of the mass-
oss rate and the φ1 distribution of that mass integrated from the start
f stripping up until the observation time. This can be expressed in
erms of the velocity distribution and used to map the density along
he stream, ρ( φ1 , t), at all times 

( φ1 , t ) = 

γ 2 

4 − γ 2 

∫ t 

0 

R 

t − t ′ 
| Ṁ ( t ′ ) | P ( �v y ( φ1 , t 

′ )) d t ′ , (8) 

here P ( �v y ( φ1 , t)) is the probability of the offset velocity required
or a star to be at position φ1 at a given time. This equation sums up all
ossible stripping events up to the observation time and scales their
ontribution by the velocity distribution. By assuming a Gaussian
istribution of offset velocities, the probability of a particular value
s 

 ( �v y ) = 

1 √ 

2 πσ 2 
e 
− 1 

2 

(
�v y 
σ

)2 

, (9) 

here σ is the velocity dispersion of a Plummer model (Plummer
911 ) at the escape radius, 

= 

√ 

GM 

6 a 

[ 

1 + 

(
f e r J 

a 

)2 
] −1 / 4 

. (10) 

o get the ratio f e r J /a we assume that the cluster fills the Roche
adius, that is, r h /r J � 0 . 15 (H ́enon 1961 ) and we note that r h �
 . 305 a for Plummer’s model. As demonstrated by equation ( 4 ), there
s a deterministic relation between φ1 , t , and �v y , from which a time-
ependent expression for �v y is found by ignoring the oscillatory
erms in equation ( 4 ) to obtain the average motion of a star 

1 ( t) = −4 − γ 2 

γ 2 

(
�v y + (1 + ε) 

f e r J 

R 

V c 

)
t 

R 

, (11) 

nd rearranging for �v y 

v y ( φ1 , t) = − γ 2 

4 − γ 2 

φ1 R 

t 
+ (1 + ε) 

f e r J 

R 

V c . (12) 
NRAS 538, 454–469 (2025) 
y switching variables to τ = ( t − t ′ ) −1 an expression that can be
asily numerically e v aluated is obtained, 

( φ1 , t) = 

γ 2 

4 − γ 2 

∫ τf 

τi 

R 

τ
| Ṁ ( τ ) | P ( �v y ( φ1 , τ )) d τ. (13) 

Equation ( 13 ) can then be e v aluated at regular intervals of φ1 at
ny point in time, before or after the progenitor has e v aporated,
o gain the one-dimensional density profile of the resulting stream.
ereafter, this (semi-)analytic model to quantify the stream growth is

eferred to as the QSG-AN (Quantifying Stream Growth–ANalytic)
odel. The model has two dimensionless parameters, ε and f e , that
e will determine through a comparison to the N -body models in
ection 2.5 . ε and f e relate the mean velocity of escapers to the
scape radius and set the escape radius, respectively. From this, and
quation ( 11 ), it is clear that there is some de generac y between
hem as both affect the mean drift velocity of escapers (that is, the
ocation of the centre of the �v y distribution). Ho we ver, f e is the
ole free parameter dictating the velocity dispersion in addition to the
luster mass. Throughout this work, we use the analytic mass-loss
ate from Section 2.2 as this gives us the smoothed case for a cluster
ith the given initial conditions removing the stochastic noise of
ynamical ejections. Ho we ver, one could also use the mass-loss rate
rom numerical N -body simulations so long as it is corrected for the
ass-loss due to stellar evolution. 

.4 Particle spray method 

SG-AN does not capture all elements of a stream’s structure, not
nly because it does not include the epicyclic overdensities due to the
se of equation ( 11 ) which ignores the oscillatory terms, but because
t only describes the one-dimensional density profile and therefore
ffers no insight in the stream offset from the orbit, nor the width.
o describe these additional features of a stream we employ a Monte
arlo model using equations ( 4 ), ( 6 ), and ( 7 ) for motion along the

tream, radially to the stream and perpendicular to the progenitor’s
rbital plane, respectively, we refer to the resulting particle spray
odel as QSG-PS (Quantifying Stream Growth–Particle Spray).

n QSG-PS a population of stars is generated, their escape times
re calculated from equation ( 3 ) and their f e r J are calculated at
heir escape times using the mass of the cluster (equation 2 ). Their
elocity offset in each direction ( �v x , �v y , �v z ) is sampled from
 Gaussian distribution centred on zero with a width equal to the
elocity dispersion given by equation ( 10 ). Then, at any point in
ime prior- or post-e v aporation those stars that have escaped the
luster can be selected and their positions calculated from equations
 4 ), ( 6 ), and ( 7 ). 

.5 Comparison to N-body 

o compare to the N -body models of Section 2.1 , we adopt an SIS
otential for the galaxy with V c = 220 km s −1 as in the N -body
odels. We create stream models without BHs and with BHs, using

oth QSG-AN and QSG-PS, which we refer to as noBH-QSG and
BH-QSG, respectively. The models parameters are listed in Table 2 .
or all models, we adopt circular orbits at R = 20 kpc about the SIS
otential. The analytic M( t) and Ṁ ( t) for these choices of parameters
re shown in Fig. 2 by the black dashed lines. In the QSG-PS model,
 ∗ = 0 . 36 M � stars 5 are used such that the noBH-QSG has N =
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Figure 3. A comparison of the QSG-PS (green solid) and QSG-AN (blue dashed) models with the N -body simulations (orange) for the noBH model (left) and 
wBH model (right) at 4 times. From top to bottom these times are 0.5, 1, 2, and 4 Gyr after the progenitor has e v aporated. The vertical dashed lines denote the 
50th and 90th percentile by mass. As the QSG models predict the total mass distribution of a stream, the density profile of the N -body streams includes the 
contribution of white dwarfs and low-mass stars to provide a fair comparison. Due to the differing M i and η, 0 . 5 Gyr post-evaporation (top row) the peak linear 
density is o v er an order of magnitude greater in the wBH model than in the noBH model and remains a factor of ∼ 5 greater 4 Gyr post-e v aporation (bottom 

row). It is also seen that the 90th percentile is o v er twice the 50th percentile for the wBH model, whereas it is less than twice the 50th percentile in the noBH 

model. 

Table 2. The parameters used in the noBH-QSG and 
wBH-QSG models. 

noBH-QSG wBH-QSG 

Potential SIS SIS 
R (kpc) 20 20 
V c (km s −1 ) 220 220 
M i (M �) 1664 10 310 
η 0.36 −0.94 
t ev (Gyr) 8.2 8.2 
M BH (M �) 0 150 
N 4622 28 638 
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6 We refer to the region between the two peaks centred at φ1 = 0 as ‘the gap’, 
even though there are stars in this region. 
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622 and wBH-QSG-PS model has N = 28638, comparable to the 
-body simulations. We approximate the mass in the BH population 

s a constant, M BH = 150 M �, which is a reasonable approximation
or M BH ( t) in the N -body simulation during the final 1 Gyr , in which
he BHs have the strongest influence on the escape conditions of the
tars (an increased M BH would lead to greater differences between 
he wBH and noBH cases). 

We find the values for the two model parameters ε and f e by
omparing the distribution of stars in the φ1 and �r directions in the
SG-PS models and the density profile of the QSG-AN models to 

hose of the N -body models. The resulting QSG-AN density profiles 
nd QSG-PS streams are in very good agreement with the N -body 
imulations for ε � 0 . 57 and f e � 1 . 5, as can be seen in Fig. 3
QSG-AN) and Figs 4 and 5 (QSG-PS). It is these values that are
sed throughout the rest of this work in both QSG-AN and QSG-PS
odels and in both wBH and noBH cases. We stress that this is

n ef fecti ve model and as such one should not read too much into
he meaning of ε. Instead ε should be regarded as a parameter that
an be obtained from a comparison to N -body models. Ho we ver,
or completeness, we note that ε < 1 does indicate prograde in an
nertial frame (retrograde in a co-rotating frame). 

As seen in Fig. 3 , both QSG-AN and QSG-PS are able to reproduce
ccurate linear density profiles for streams with and without BHs. 
o we ver, after the progenitor has e v aporated the density profile does
e viate some what within the gap 6 at φ1 = 0. This is due to the
dealized nature of our model assuming that even the final stars
ollow our prescription for the escape conditions. Despite this, they 
apture important features such as the peak of the density profile,
ize, and shape of the wings, and the size of the gap remarkably well
or such a simple model. 

As is seen in Fig. 4 , QSG-PS is able to reproduce the structure of the
tream in the φ1 - �r plane well in both wBH and noBH cases and both
rior and post-e v aporation. In particular, it captures well the length,
idth, offset from the progenitor’s orbital track, and mass distribution 

long the stream. Ho we ver, due to the simplifying assumptions and
he idealized nature of the escape conditions there are some aspects
here it diverges. In particular, because we assume a constant M BH 

n the wBH-QSG-PS model there are fewer stars within the gap than
n the wBH-Nbody model. In addition, during the final stages of
 v aporation we still assume that the stars follow our prescription for
he escape conditions which may not be true and this manifests as
he stream being very narrow near the progenitor’s position post- 
 v aporation, whereas the N -body models have a greater spread in
r near to the progenitor. This disparity is particularly noticeable 

n the wBH, 4 Gyr (bottom, right) panel of Fig. 4 . We see that this
isparity between QSG-PS and N -body models is greatly reduced 
n the noBH models (see the bottom, left panel of Fig. 4 ), implying
MNRAS 538, 454–469 (2025) 
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M

Figure 4. A comparison of QSG-PS (red-purple) with the N -body simulations (yellow-green) for the noBH models (left) and wBH models (right) for stream 

projections on the orbital plane. The density normalization, ρmax , is the maximum density across all the snapshots for both wBH and noBH models, hence why 
the noBH models never reach the maximum value. The leading and trailing tails are symmetric, such that no information is lost by showing one tail of each 
model, which we do here for ease of comparison. The peak of the linear density profile is denoted by the grey dashed line. 

Figure 5. A comparison of QSG-PS (red-purple) with the N -body simulations (yellow-green) for the noBH models (left) and wBH models (right) for stream 

projections on the φ1 − z plane (that is as seen from the centre of the galaxy). Note that �z is equi v alent to the commonly used �φ2 coordinate for an observer 
at the Galactic centre. As in Fig. 4 , the density normalization, ρmax , is the maximum density across all the snapshots for both wBH and noBH models and the 
leading and trailing tails are symmetric, such that no information is lost by showing one tail of each model. The peak of the linear density profile is denoted by 
the grey dashed line. 
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he need for a study of the escape conditions of stars in wBH GCs
uring the final stages of e v aporation. 
As seen in Fig. 5 , QSG-PS does not fare as well in the φ1 - �z plane.

he simplistic nature of the QSG-PS model does not reproduce the
iffuse nature of the stream in the φ1 − �z plane. Instead, QSG-PS
roduces a much sharper o v erdensity at the orbital plane, �z = 0,
NRAS 538, 454–469 (2025) 
hich resembles a combination of a narrow and broad Gaussian. This
s seen in other particle spray codes as well (for example Gibbons,
elokurov & Evans 2014 ). 
Throughout this work, we compare the QSG models to the total

tream in the N -body simulations (inclusive of white dwarfs and low-
ass stars, which are not visible in observations) to facilitate a fair
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Figure 6. Top: the cumulative mass as a function of the angular displacement 
from the progenitor along the stream for the noBH-Nbody (blue) and wBH- 
Nbody (orange) models at 4 times since e v aporation (sho wn by the different 
line styles). The o v erplotted gre y dotted and dashed lines denote the M i of the 
noBH-QSG stream and the maximum M i of a noBH GC that can e v aporate 
within a Hubble time, respectively. Bottom: the cumulative mass fraction 
as a function of the fraction of the half stream length, where we define the 
stream length as twice the mass weighted 98th percentile of the stellar | φ1 | 
coordinates. 
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omparison. Ho we ver, if one were to omit these objects to obtain the
isible stream, then we note that the shape of the linear density profile
s approximately unchanged and is just offset in normalization. This 
s because low-mass stars are preferentially lost as the GC evolves 
owards energy equipartition and the white dwarfs are mainly lost at 
ate times, with the two processes approximately balancing along the 
ength of the stream. 

The simple, fast, flexible nature of the QSG models makes them 

nvaluable tools to explore the impact of the progenitor’s properties 
n the structure of the resulting stream. With further refinement of
he prescription of escape conditions to produce even more realistic 
treams, the QSG models have a wide range of application including 
onstraining the possible parameter space of stream progenitors. In 
he next section, we discuss the properties of the wBH and noBH
treams in detail. 

 T H E  I M PAC T  O F  A  RETA INED  BLACK  H O L E  

OPULATION  

rom the models discussed in the previous section, we find that there
re four main aspects of the stream’s structure that differ due to the
etained BH population: (1) the mass in the stream/inferred mass-loss 
ate; (2) the growth rate/stream length; (3) the shape of the central
ap after the progenitor has e v aporated; and (4) the width and offset
f the stream near the progenitor in the radial direction from the
rogenitor’s orbital track soon after the progenitor has e v aporated. 
he first three are because of differences in the mass-loss rate and the

ourth property is sensitive to the retained mass of the BH population.
elow, we discuss all four properties guided by the results from the
odels from the previous section. 
In this work, we consider only noBH and wBH streams of equal

 v aporation time, and as a result, they have differing initial masses.
e posit that this is the most pertinent case to discuss because most

bserv ed GC streams hav e no progenitor ( t ev � 10 Gyr ) and have not
et fully phase mixed into the halo ( t − t ev � few Gyr ), suggesting
hat there is a modest range of e v aporation times, that is of order a
ew Gyr . The alternate case of streams with the same initial mass,
hich is discussed in Appendix C , displays significant differences 

n stream length and density due to the differing evaporation times. 
urthermore, in Appendix D we briefly discuss the unphysical case 
f streams with the same initial mass and e v aporation time, for
ompleteness. 

.1 Mass in the stream 

he top panel of Fig. 6 displays the cumulative mass in the
tream as a function of angular displacement from the progenitor’s 
osition for the noBH-Nbody and wBH-Nbody models at 4 times 
ince e v aporation ( t − t ev = 0 , 1 , 2 , 4 Gyr ). These are compared to
he initial mass of the noBH-Nbody model after stellar evolution 
 M i = 1 . 66 × 10 3 M �). It is observed that the wBH-Nbody model
ignificantly exceeds the total mass of the noBH-Nbody model by 
 φ1 | ∼ 1 ◦ at t − t ev = 0 Gyr and by | φ1 | ∼ 10 ◦ at t − t ev = 4 Gyr . In
ddition, Fig. 6 compares the cumulative mass in the stream to the
ass, after stellar evolution, of a noBH GC that can e v aporate on

he same orbit within a Hubble time ( M i ∼ 3 . 6 × 10 3 M �) which is
enoted by the dashed grey line. At t − t ev = 0 Gyr the wBH stream
xceeds this upper limit within ∼ 2 . 5 ◦ of the centre of the stream,
nd within | φ1 | ∼ 15 ◦ at t − t ev = 4 Gyr . This demonstrates that we
nly need to observe a modest portion of a stream, if the orbit is well
onstrained, to deduce whether the density profile is consistent with 
he noBH case. 

It is not just the total mass in the stream that differs but also
he distribution of this mass (Figs 3 and 6 ). As one would expect
rom the mass dependencies of the mass-loss rates of the wBH and
oBH cases, the same fraction of the stream’s mass is concentrated 
ithin a smaller fraction of the stream length in the wBH case than

he noBH case. In the noBH-Nbody model the φ1 coordinate of the
0th percentile by mass is less than twice that of the 50th percentile,
hereas in the wBH-Nbody model the φ1 coordinate of the 90th 
ercentile is o v er twice that of the 50th percentile. 
Since the gap grows after evaporation in both models, the enclosed
ass at some distance of the wBH-Nbody model will eventually drop

elow M i of the noBH-Nbody model. Howev er, ev en at t − t ev =
 Gyr the mass within 10 ◦ of the progenitor of the wBH-Nbody model
xceeds the theoretical maximum for a BH-free GC on this orbit; this
s owed not only to the greater initial mass of the wBH-Nbody model,
ut to the accelerating mass-loss rate resulting in the same fraction
f the mass being concentrated closer to the progenitor’s position as
een in Fig. 3 . 

In addition, the work of GG23 allows us to estimate the maximum
xpected density of a stream from a noBH progenitor on the same
rbit with the same e v aporation time ( t ev = 8 . 2 Gyr ) from ρ ∝ Ṁ / v .
aking the initial mass from Section 2.2 ( M i = 1 . 66 × 10 3 M �)
nd the maximum mass-loss rate of this cluster on this orbit ( Ṁ �
0 . 3 M �/ Myr , from equation 1 of GG23 ), we then need the mean

rift velocity of a typical star, v . This is found by differentiating
quation ( 11 ) with respect to time 

˙1 R = −4 − γ 2 

γ 2 

(
�v y + (1 + ε) 

f e r J 

R 

V c 

)
, (14) 
MNRAS 538, 454–469 (2025) 
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Figure 7. Left: a comparison of the position of the peak of the linear density 
profile as a function of time since e v aporation. Right: the position of the peak 
normalized by half the stream length (that is, the distance from the centre of 
the stream, where φ1 = 0, to the 98th percentile by mass of | φ1 | ) as a function 
of time since e v aporation. 
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btaining 7 a mean drift velocity of v � 0 . 8 pc Myr −1 . Dividing this
ass-loss rate by the mean drift velocity and then by two, to account

or mass escaping into the leading and trailing tail, gives an expected
aximum density of ρ � 64 M � deg −1 of a noBH stream on the

ame orbit. This density is ∼ 1 . 2 times the maximum density in the
op-left panel of Fig. 3 , which is due to the fact that for the noBH
odel the maximum density in the tails occurs approximately when

tripping begins. The wBH streams density exceeds this value out to
 φ1 | ∼ 30 ◦ for all panels of Fig. 3 , except t − t ev = 4 Gyr where the
entral gap dips below it. This shows that the peak linear density is
nother useful metric in assessing the nature of the progenitor after
t has e v aporated and the centre of the stream is uncertain. 

.2 Growth rate 

he average growth rate of a stream can be approximated from
quation ( 14 ) by considering a typical star that has the velocity
ffset equal to the mean of the Gaussian distribution upon escape
 �v x = �v y = 0). This shows that the average speed at which a
tar mo v es along the stream is determined by r J at the time of
elease, with an adjustment to account for the offset velocity. This
lso shows that only the velocity in the y-direction leads to the bulk
otion along the stream, whereas the velocity offsets in the x and
 directions give rise to oscillations. For a circular orbit about an
IS potential this gives that a typical star travels along the stream
ith an average speed of (1 + ε) f e r J �. In the simplest scenario,

aking ε and f e both to be unity, this agrees with K ̈upper, Macleod
 Heggie ( 2008 ), showing that it is solely dependent on the mass

f the progenitor, the progenitor’s orbit, and the Galactic potential
through γ , as seen in equation 14 ). Therefore, the wBH stream
ill grow approximately 1 . 8( M i , wBH /M i , noBH ) 1 / 3 � 3 . 3 times faster

s the noBH stream, which can be clearly seen in Fig. 3 . 
Due to the low density at the extremes of the stellar streams,

ncertainties arise in formally defining the stream length, as well as
esolving the ends of the streams from the background. Therefore, it is
ore pertinent to look at the peak of the linear density profile, which

s the region that is most likely to be resolved in observations. The
osition of the peak of the linear density profile as a fraction of the
tream length is determined by the mass-loss rate of the progenitor,
hile the φ1 coordinate is dictated by both the mass-loss rate and the
ass of the progenitor cluster at the time that the stars that compose

he peak escaped. 
When tidal stripping begins, the peak of the linear density profile

s at the progenitor’s location ( φ1 = 0) for both wBH and noBH
Cs. During the final stages of e v aporation, the decelerating mass-

oss rate of a noBH GC and differential streaming counterbalance
ne another to result in a linear density profile that is flat along
pproximately half the length of the tails, before declining to the
nd of the tails. Ho we ver, for a wBH progenitor, the accelerating
ass-loss rate and differential streaming compound one another to

ncrease the magnitude of the density gradient along the stream, with
he mass concentrated near the progenitor’s position. Hence, in both
oBH and wBH cases, the peak of the linear density profile is located
t φ1 = 0 just before the progenitor has fully e v aporated. 

Once the progenitor has e v aporated, the propagation of stars
way from the progenitor’s position, and the velocity distribution
NRAS 538, 454–469 (2025) 

 Note that the same expression can be obtained by differentiating and time 
veraging equation ( 4 ) over an integer number of epicycles and for a typical 
tar ( �v y = 0) this is the same expression as was derived in K ̈upper et al. 
 2010 ) if f e = ε = 1. 

p  

f
8  

a  

p  

s  
f these stars leads to differential streaming occurring both at the
xtremes of the stream and at the centre of the stream ( φ1 = 0).
n the noBH case, this results in the peak of the linear density
rofile rapidly shifting along the tail until a quasi-equilibrium is
eached approximately halfway from φ1 = 0 to the end of the stream,
esulting in the formation of a gap. From this point forward, the
eak remains approximately halfway from the centre of the stream
o the end, asymptotically approaching φ1 ( ρmax ) / (0 . 5 L ) → 0 . 6 as
 − t ev → ∞ , where L is the stream length. Meanwhile, the stream
s growing, resulting in the peak propagating at a near-constant rate,
nd differential streaming leads to the peak widening and flattening.
his process can be seen in Fig. 7 , in which we see that at t − t ev the
eak is at φ1 = 0 ◦, but at t − t ev = 0 . 1 Gyr it is located at φ1 = 8 . 5 ◦

nd, as seen in Fig. 3 , at t − t ev = 4 Gyr the peak is located at
1 = 16 . 5 ◦ which is half the distance from the centre of the stream

o the end. 
In the wBH case, the propagation of stars away from the progen-

tor’s position also results in the density peak, which was located
t the progenitor’s position at e v aporation, propagating along the
tream. Differential streaming not only causes the peak to widen and
atten, as in the noBH case, but for it to mo v e along the length of the
tream. As the peak mo v es to a greater fraction of the stream length,
symptotically approaching φ1 ( ρmax ) / (0 . 5 L ) → 0 . 6 as t − t ev → ∞
similar to what we found for the noBH case), the average velocity
f the stars that compose the peak increases due to the greater cluster
ass when they escaped, leading to the rate at which the peak

ropagates increasing. This process can be seen in Fig. 7 , in which we
ee that at t − t ev = 0 Gyr the peak is at φ1 = 0 ◦, at t − t ev = 2 Gyr it
s located at φ1 = 5 ◦ = 0 . 05 L , at t − t ev = 4 Gyr the peak is located
t φ1 = 10 . 4 ◦ = 0 . 08 L , and at t − t ev = 8 Gyr the peak is located at
1 = 23 . 3 ◦ = 0 . 15 L . 
As seen in the left-hand panel of Fig. 7 , for all noBH and wBH

treams of equal e v aporation time, there will exist a point at which
he φ1 coordinate of the position of the peak for the noBH and
BH streams will coincide. The time since e v aporation at which this

ntersection happens is dependent on the initial mass, orbit, the choice
f free parameters ( f e and ε), and η (with a more positive η resulting
n a peak further along the stream and a more ne gativ e η resulting in a
eak closer to the progenitor’s position post-e v aporation). Ho we ver,
or the noBH-QSG and wBH-QSG models this occurs at t − t ev ∼
 . 5 Gyr (that is, ∼ 6 . 7 Gyr in the future, if we assume the GC to were
ccreted 10 Gyr ago). As seen in the right-hand panel of Fig. 7 , the
osition of the peak of the linear density profile as a fraction of the
tream length is approximately 4 times greater in the noBH case than
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Figure 8. A plot of the impact of η on the shape of the central gap at 
φ1 = 0 when t − t ev = 2 Gyr for GCs with t ev = 8 . 2 Gyr . The limiting cases 
are noBH-QSG (blue) where η = 0 . 36 and wBH-QSG (orange) where η = 

−0 . 94. Left: M BH = 0 for all η. Right: M BH = 0 for η ≥ 0 and M BH = 

−0 . 0155 ηM i for η < 0 such that M BH ∼ 150 M � for wBH-QSG where 
η = −0 . 94 and M BH = 32 M � for the case of η = −1 / 3 and M i = 6257 M �. 
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he wBH case, and remains approximately twice that of the wBH 

ase at t − t ev = 8 Gyr . 

.3 Central gap 

he shape of the density profile of the gap from the progenitor’s
osition at the centre to the peak of the linear density profile has an
symmetric ‘S’-shape, as seen in Figs 3 and 8 . We define the shape of
he linear density profile of the gap as the shape of the linear density
rofile from the centre to the peak of the linear density profile where
1 and ρ are normalized by the values of the peak (that is, ρ/ρmax 

nd φ1 /φ1 ( ρmax )). The shape of this curve is primarily dictated by the
ass-loss rate of the progenitor but it has a secondary dependence 

n the mass of the retained BH population. 
The left panel of Fig. 8 displays the shape of the gap for streams

f equal t ev with dif fering v alues of η and all have M BH = 0.
he decelerating mass-loss rate of a noBH progenitor, as well as
ifferential streaming, results in the density increasing from φ1 = 0 
harply and gently rounding off to the peak. The resulting shape is
eminiscent of a function of the form y = 

n 
√ 

x or an incomplete beta
unction 8 with a ∼ 1 , b > 1. With increasing time since e v aporation
he widening and flattening of the peak leads to a gentler increase
rom φ1 = 0, replicated by an incomplete beta function where 
 ∼ 1 and b is decreasing with time. Whereas, because the wBH
rogenitor’s mass-loss rate was increasing as it e v aporated, the 
hape of the linear density profile of the gap is dominated by the
ass-loss just prior to e v aporation, resulting in a more symmetrical

hape that is reminiscent of the Gaussian profile one would expect 
rom a single burst of mass-loss, or an incomplete beta function 
ith a ∼ b > 1. With time since e v aporation the shape of the linear
ensity profile of the gap of a wBH stream remains approximately 
onstant. 

The retained BH population has a secondary impact on the shape 
f the gap. As a noBH cluster approaches e v aporation, the cluster
ass tends to zero, leading to the Jacobi radius and, therefore, 

he mean velocity of the escaping stars to also tend to zero. This
eads to mass being distributed throughout the gap and the linear 
ensity profile starting to increase from φ1 = 0. Ho we ver, for a
BH progenitor approaching e v aporation, the cluster mass tends 

o the mass of the retained BH population and, therefore, the average
 Incomplete beta function of the form: 
I x ( a, b) = � ( a + b) / [ � ( a) � ( b)] 

∫ x 
0 t 

a−1 (1 − t ) b−1 d t . 

a  

&  

h  

t

elocity of the final stars is given by equation ( 14 ) for r J ( M = M BH ).
n the wBH-QSG models r J � 14 pc at t − t ev = 0 Gyr , such
hat the final star escapes at a radial distance of 21 pc from
he centre of the cluster and, according to equation ( 14 ), has an
verage speed along the stream of ∼ 0 . 4 km s −1 with respect to the
rogenitor assuming it has a velocity offset equal to the mean of
he velocity distribution. In the wBH-Nbody model at e v aporation,
he average radial distance of stars within 50 pc of the progenitor’s
osition is ∼ 15 . 7 pc , such that according to equation ( 14 ) (taking
= f e = 1 for simplicity) these stars will have an average velocity

f ∼ 0 . 35 km s −1 . This results in a gap with a flat bottom that expands
ith time since e v aporation, as the final stars are better able to
eep pace with the peak, and a shape reminiscent of a translated
igmoid function or an incomplete beta function with a > b > 1.

ith increasing M BH , the more e xtensiv e the flat section of the
inear density profile as the final stars have, on average, a higher
elocity. This is an artifact that cannot be reproduced by a noBH
tream because it is directly caused by the mass of the retained BH
opulation. 
Within QSG, the rate at which the gap expands or, due to our

efinition of the gap, equi v alently the rate at which the density peaks
ropagate, can be well approximated from equation ( 14 ) e v aluated
or the total stellar mass and BH mass contained within the gap, M gap ,
hich we have defined as the region | φ1 | ≤ φ1 ( ρmax ). This assumes

hat the peak of the linear density profile/end of the gap propagates
ith the mean velocity of the stars that compose that section of the

tream and so we observe the rate at which the gap expands, v gap , to
ave a dependence on the orbit and galactic potential, as well as the
ass contained within the gap, of the form 

 gap ∝ �1 / 3 M 

1 / 3 
gap . (15) 

or a noBH stream, the gap expands at near constant v gap (Fig. 7 ),
ecause M gap is near constant post-e v aporation. Ho we ver, for a wBH
tream, M gap is time varying, leading to v gap increasing with time
ince e v aporation, because the density peak mo v es to a greater
raction of the stream length post-e v aporation. This v ariation in
 gap is only significant briefly after e v aporation due to the weak
ependence on M gap , such that in wBH-QSG v gap can be considered
pproximately constant for t − t ev � 3 Gyr , as demonstrated in
ig. 7 . 
When comparing the linear density profile of the gap of our

dealized model to the N -body models (as in Fig. 3 ) we observe
hat, while the noBH-Nbody and noBH-QSG models are in good 
greement and have a similar amount of mass retained within the gap,
he centre of the gap in the wBH case is not devoid of mass as the QSG
odel predicts. Instead, as seen particularly in the t − t ev = 4 Gyr

bottom-left) panel of Fig. 3 , the density peaks are not as sharp in
BH-Nbody as predicted by wBH-QSG because more stars exist 
ithin the region which wBH-QSG predicts to have no stars. This

uggests that the motion of the final stars to escape the progenitor
C are no longer well approximated by the QSG equations of
otion and perhaps that the assumption of a constant M BH may

e insufficient. This can be understood from the fact that during
he final stages of e v aporation the lo w-mass cluster is dominated
f stars with energies well abo v e the critical energy for escape (so-
alled ‘potential escapers’; Fukushige & Heggie 2000 ), which have 
verage distances from the cluster centre of ∼ 0 . 5 r J (Claydon, Gieles
 Zocchi 2017 ) from which they are able to escape because of their

igh energy. This breaks the explicit assumption of the QSG model
hat all stars escape through the Lagrange points. 
MNRAS 538, 454–469 (2025) 
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.4 Stream width and radial offset 

o gain a sense of how the width and radial offset of a stream depend
n the progenitor’s properties, these quantities can be estimated from
r . As the typical star escapes with �v x = �v y = 0, equation ( 6 )

educes to 

r = f e r J 

[
cos ( γ�t) + 

2 

γ 2 
(1 + ε) ( 1 − cos ( γ�t) ) 

]
. (16) 

he radial offset of the stream from the progenitor’s orbital track can
e approximated as the average radial displacement of a typical star
 v er time 

r = 

2 

γ 2 
(1 + ε) f e r J . (17) 

he width of the stream in the radial direction, w x , can be approxi-
ated as twice a typical star’s mean displacement from �r , 

 x = 2 〈| �r − �r |〉 = 

4 

π

[
2 

γ 2 
(1 + ε) − 1 

]
f e r J . (18) 

or a progenitor on a circular orbit about an SIS potential these
imply become �r = (1 + ε) f e r J , w x = 4 π−1 εf e r J . This shows that
he width and radial offset are dependent on the escape radius. Note
hat these expressions are the same as can be obtained from the
quations of motion of K ̈upper et al. ( 2008 ) if ε = f e = 1. 

For the assumptions we have made of a circular orbit about a
pherical potential, Erkal et al. ( 2016 ) demonstrate that the width
erpendicular to the orbital plane of the progenitor is determined by
he spread in the stars orbital planes 

 z = 

σ√ 

2 �
, (19) 

here σ is the velocity dispersion at the escape radius given by
quation ( 10 ). 

From equation ( 17 ), it is clear that our model predicts that the final
tars in the wBH case should escape from ∼ 21 pc due to the retained
H population, whereas in the noBH case, as the final stars escape
 J tends to zero. This separation of 42 pc between the centres of the
ails should be detectable in direct observations. This offset which is
resent only in the wBH case, not the noBH case, is a feature that is
olely due to the mass of the retained BH population. 

When comparing the wBH-QSG and wBH-Nbody models dis-
ributions in the x − y plane (see Fig. 4 ), we observe that the
BH-Nbody does not display such a clearly defined offset between

he streams. This can be understood due to potential escapers no
onger necessarily escaping through the Lagrange points. In addition,
laydon et al. ( 2017 ) demonstrated that the velocity dispersion at the

acobi radius is better fit by a σ ∝ M 

5 / 24 relation than the σ ∝ M 

1 / 3 

elation of a Plummer model that we assume here, leading to a
actor of two increase in the velocity dispersion at M � 10 3 M �. All
hese factors contribute to the diffuse nature of the central portion
f the stream. Nevertheless, as seen in the t − t ev = 4 Gyr (bottom)
anels of Fig. 4 , the width of the stream in the central few degrees is
ider in the wBH-Nbody model than the noBH-Nbody model even

ccounting for the differing initial masses, and this is owed to the
ass of the retained BH population. Ho we ver, real stellar streams do

ot exist in isolation, as our N -body models do. Perturbations from
ark-matter subhalo (DMSH) flybys, disc shocks, or encounters with
ther GCs and dwarf galaxies can cause variations in the structure
f the stream. Under the right circumstances, these could potentially
ause a similar effect increasing the width in the central region. 

Comparing the distributions in the y − z plane, for the noBH-
body model, we observe that post-e v aporation the width in the
NRAS 538, 454–469 (2025) 
-direction, w z , decreases significantly (by a factor of 2 at t − t ev =
 Gyr ) from the location of the peak of the linear density profile to the
entre. As can be seen from equation ( 19 ), this is due to the decreasing
luster mass leading to the reduction in the velocity dispersion and,
herefore, as you mo v e to the centre the stream there is a smaller
istribution of orbital planes. Ho we ver, in the wBH-Nbody model
e see that the width in the z-direction is more uniform along the

ength of the stream and w z at the centre is ∼ 0 . 9 times w z at the
eak of the linear density profile in the t − t ev = 4 Gyr snapshot.
his effect is due to the differing mass-loss rates. 

 DI SCUSSI ON  

he first three stream properties discussed in Sections 3.1 , 3.2 , and
.3 formally depend on the mass-loss rate and not directly on the
Hs, meaning that alternative scenarios that lead to similar mass-

oss histories (such as a low initial cluster density; G21 ) might
esult in similar stream properties. This means that finding such tail
roperties is a necessary, but not sufficient, condition for the presence
f BHs. Ho we ver, G21 sho w that the region in parameter space (low
nitial density and high initial mass) of clusters without BHs that
ave similarly high mass-loss rate is extremely small and this ‘fine-
uning’ problem makes the BH hypothesis a more likely scenario.

e therefore conclude that if the tails suggest that the progenitor
ad a high mass-loss rate, the most likely interpretation is that the
rogenitor was rich in BHs. 
One of the advantages of the QSG models that we present here

s the speed at which they can generate realistic streams/density
rofiles, taking less than 0 . 01 s for as single snapshot of wBH-QSG-
N/PS (including generating the initial conditions for QSG-PS).
he speed of these models allows for quick exploration of parameter
pace compared to N -body models. These models are not just limited
o investigating the impact of mass-loss rate on stream structure.
he QSG models could potentially be used in conjunction with the
quations of motion from Erkal & Belokurov ( 2015 ) for stars after
 DMSH flyby to quickly narrow down the parameter space of the
MSH from the properties of the gap left behind. 
The QSG-PS and QSG-AN models are able to quickly produce

ealistic streams and density profiles prior- or post-e v aporation for
oth the noBH and wBH cases, as seen in Figs 3 , 4 , and 5 . There
re, ho we ver, a fe w aspects of the streams structure that QSG-PS
oes not capture well. Namely, the distribution in the φ1 –�z plane
nd the distribution of central stars near the progenitor cluster post-
 v aporation which both require the implementation of more realistic
scape conditions. Further refinement with the implementation of
 more realistic velocity distribution of escapers such as that of
laydon et al. ( 2017 ), a time varying M BH , and a refined prescription
f escape conditions following a study of stars escaping wBH GCs
uring the final stages of e v aporation (which may call for a time
arying f e ) would greatly reduce these discrepancies making the
nsights gleaned from these models more reliable and impactful. 

Our model is only valid for streams on circular orbits, but those
n low eccentricity orbits can be approximated using a circular
rbit of equal period with radius R T and minimizing the effect of
he periodic stretching and compression due to the eccentricity by

ultiplying φ1 by R ( t) 2 /R 

2 
T . For a Kepler orbit R T is the semimajor

xis and this approximation is within 1 per cent (10 per cent) of
he azimuthal period for orbits with eccentricities below ∼ 0 . 25
0.75) in an SIS. The expected orbit-averaged mass-loss rate for
ccentric orbits can be calculated using an equi v alent circular orbit
ith the same mass-loss rate (see BM03 ), which does not include any

nhancement/reduction in mass-loss at peri-/apo-galacticon. This is
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mportant as GCs typically exist on eccentric orbits (Odenkirchen 
t al. 1997 ; van den Bosch et al. 1999 ) and through this methodology
ot only can we project streams on to circular orbits to compare to
he QSG models, but we can project the QSG models on to eccentric
rbits allowing us to escape the confines of the circular orbit case. 
The easiest approach to extend the model to eccentric orbits is with

he QSG-PS model. The model parameters ε and f e r J may need to
e redetermined and may depend on eccentricity and/or the Galactic 
otential. A model for eccentric orbit can be deployed to directly 
nfer the model parameters η, M i from stream density profiles such 
s the ones presented in Patrick et al. ( 2022 ). Other improvements
nclude the preferential escape of low-mass stars and variations in the 
tellar mass function which when combined with deep photometry 
f streams can provide additional constraints on the IMF of GCs in
ddition to IMF constraints from mass modelling of GCs (Baumgardt 
t al. 2023 ; Dickson et al. 2023 , 2024 ). 

 C O N C L U S I O N S  

n this work, we present a semi-analytical model of stream formation 
rom star clusters on circular orbits and with time-dependent mass- 
oss rates and demonstrate that it produces streams that are in good
greement with N -body simulations of streams. The model has three 
ree parameters that we determine from the comparison with the N -
ody models: (i) the mass dependency of the mass-loss rate, η, (ii)
he mean distance of escape, f e r J , and (iii) the relation between the
scape radius and the centre of the velocity distribution, ε. The best-
tting values are found to be ε � 0 . 57 and f e � 1 . 5 for both values of
, our choice of initial mass, and Galactic orbit. We then compare the
tructure of streams resulting from progenitors that retain a stellar- 
ass black hole population (wBH) and those that do not (noBH).
etention of a stellar-mass BH population leads to streams that are 
ore massiv e, hav e a peak closer to the progenitor location, hav e a

arrower peak, and are more radially offset from the orbit. This is
ecause wBH streams have approximately 5 times the mass of the 
qui v alent noBH stream as the result of their accelerating mass-loss
ate. It is also found that the shape of the central gap in the linear
ensity profile is dependent on the mass-loss rate, and thereby the 
etained BH population. 

We also show that the limit on the mass of a noBH GC that can
 v aporate in a given time on a given orbit ( BM03 ; GG23 ) can be
sed to show that five of the seven streams (that are believed to
ave originated from GCs) included in Patrick et al. ( 2022 ) have a
ass that exceeds the initial mass of a noBH GC on an equi v alent

ircular orbit that can e v aporate in 10 Gyr (see Fig. 1 ). Not only does
he orbit place a limit upon the mass in the stream, but also on the
inear density, such that you do not necessarily need to observe the
hole stream to find the mass within to be inconsistent with a noBH
rogenitor. This opens a new avenue to use the plethora of stellar
treams without progenitors to learn about the black hole content of
heir e v aporated progenitors. 
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PPENDIX  A :  CLUSTER  MASS  E VO L U T I O N  

ITH  A N D  W I T H O U T  B H S  

e use the expression for the e v aporation time for clusters with
ifferent amounts of BHs of GG23 (their equation 6) 

 ev ∝ 

M 

x 
i 

y Ṁ ref �tid 
. (A1) 

his equation has four parameters: (i) x sets the relation between
he e v aporation time and the initial mass (after stellar e volution),
hich is fixed to x = 2 / 3; (ii) y sets the evolution of the escape rate
hich depends on the BH content: constant for y = 1, accelerating

or y > 1 (wBH) or decelerating for y < 1 (noBH); (iii) Ṁ ref 

s the mass-loss rate at fixed reference mass (2 × 10 5 M �), and
iv) �tid is a measure of the strength of the tidal field, which
e take to be that of an SIS, �tid = 

√ 

2 V c /R eff , where V c is the
ircular v elocity. F or the three cases shown in Fig. 1 these are
 y, Ṁ ref ) = (2 / 3 , −30 M � Myr −1 ) for ‘noBH’ (approximately the
M03 results and the parameters as used in GG23 ’s model without
Hs, see their equation 1), (4 / 3 , −45 M � Myr −1 ) for ‘wBH median’

the parameters as used in GG23 ’s model which accounts for the
ffect of BHs, see their equation 21), and (2 , −95 M � Myr −1 ) for
wBH max’ which corresponds to GG23 ’s lowest density N -body
odels where the effect of BHs on the mass-loss rate is maximal.
hroughout this paper, we use noBH to refer to GCs that at some
oint early in their evolution reach f BH < f BH , crit , causing all BHs
o be dynamically ejected, leading to GCs evolving similarly to GCs
hat are initially BH free (Breen & Heggie 2013 ). We use wBH to
efer to GCs that have f BH > f BH , crit and will eventually become BH
ominated ( f BH → 1; Banerjee & Kroupa 2011 ). Breen & Heggie
 2013 ) found f BH , crit = 0 . 1 for their two component models, whereas
G23 found a lo wer v alue of f BH , crit ∼ 0 . 025 from their N -body
odels. This has implications for GCs, as star clusters of metallicity
 ∼ 0 . 0001 − 0 . 001 ( [Fe / H] ∼ −2 . 1 to − 1 . 1) are expected to
ave an initial BH fraction of f BH , 0 ∼ 0 . 05 (see Banerjee et al. 2020
heir fig. 7, GG23 their fig. 4), meaning that dense clusters eject all
heir BHs early on, while lower density clusters can keep BHs until
oday. 
NRAS 538, 454–469 (2025) 
PPENDI X  B:  D E R I V I N G  T H E  EQUATI ON  O F  

OT I O N  

ere, a deri v ation of the equations of motion of escaped stars
n the cluster centred frame from Section 2.3 is presented. Using
he common substitution u = 1 /R and expanding the equations of

otion at leading order gives 

d 2 �u 

d θ2 
+ γ 2 �u = −2 u 0 

(
�v y 

V c 
+ 

f e r J 

R 

)
, (B1) 

here θ is the azimuthal angle about the Galactic centre and 

2 = 3 + 

R 

2 

V 

2 
c 

∂ 2 R 
. (B2) 

he corresponding initial conditions of u are given by �u (0) =
f e r J /R 

2 and ∂ θ�u (0) = −u�v x /V c . Giving a solution to equation
 B1 ) of 

u = −f e r J 

R 

2 
cos ( γ θ ) − 2 u 0 

γ 2 

[
�v y 

V c 
+ 

f e r J 

R 

]
[ 1 − cos ( γ θ ) ] 

−u 0 �v x 

V c 

sin ( γ θ ) 

γ
. (B3) 

witching back from u to R 

R = f e r J cos ( γ θ ) − 2 R 

γ 2 

[
�v y 

V c 
+ 

f e r J 

R 

]
[ 1 − cos ( γ θ ) ] 

−R�v x 

V c 

sin ( γ θ ) 

γ
. (B4) 

sing conservation of angular momentum 

 z = R 

2 θ̇ , (B5) 

˙ can be expressed as 

˙ = 

V c 

R 

[
1 −

(
�v y 

V c 
+ 

f e r J 

R 

)(
4 − γ 2 

γ 2 

)

−2 

(
f e r J 

R 

γ 2 − 2 

γ 2 
− 2 

γ 2 

�v y 

V c 

)
cos ( γ θ ) − 2 

�v x 

V c 

sin ( γ θ ) 

γ

]
. 

(B6) 

nte grating o v er t , and approximating θ as V c t /R at leading order,
he angular displacement relative to the progenitor can be expressed
s 

1 ( t, �v x , �v y ) = −4 − γ 2 

γ 2 

(
�v y 

V c 
+ 

f e r J 

R 

)
V c t 

R 

− 2 

γ 3 

(
( γ 2 − 2) 

f e r J 

R 

− 2 �v y 

V c 

)
sin 

(
γV c t 

R 

)

−2 �v x 

V c 

1 − cos 
(

γV c t 

R 

)
γ 2 

. (B7) 

his expression gives the angular displacement of a particle from
he progenitor as a function of time and the escape conditions. Since
he Lagrange points mo v e at the same angular rate as the progenitor
for a circular orbit), the mean velocity at the Lagrange point can be
elated to the radial offset through a free parameter ε

�v y 

V c 
→ ε

f e r J 

R 

+ 

�v y 

V c 
, (B8) 

here �v y is now the random component of the velocity with a mean
f zero. ε = 1 for a constant angular rate. Rewriting �r and φ1 
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Table C1. The parameters used in the noBH-QSG-C 

and wBH-QSG-C models. These models have equal 
initial mass and the e v aporation time is calculated 
from equation 6 of GG23 . 

Equal M i noBH-QSG-C wBH-QSG-C 

Potential SIS SIS 
R (kpc) 20 20 
V c (km s −1 ) 220 220 
M i (M �) 3000 3000 
η 0.33 −0.33 
t ev (Gyr) 12.0 4.0 
M BH (M �) 0 50 
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1 ( t) = −4 − γ 2 

γ 2 

(
�v y + (1 + ε) 

f e r J 

R 

V c 

)
t 

R 

− 2 

γ 3 
( γ 2 − 2 − 2 ε) 

f e r J 

R 

sin 

(
γ

V c 

R 

t 

)

+ 

1 

γ 3 

4 �v y 

V c 
sin 

(
γ

V c 

R 

t 

)

− 1 

γ 2 

2 �v x 

V c 

(
1 − cos 

(
γ

V c 

R 

t 

))
, (B9) 

r( t) = f e r J cos ( γφ1 ) + 

2 R 

γ 2 

(
�v y 

V c 
+ (1 + ε) 

f e r J 

R 

)

× ( 1 − cos ( γφ1 ) ) + 

R�v x 

V c 

sin ( γφ1 ) 

γ
, (B10) 

here we have changed �R to �r to signify that, in the context
f this work, we are considering it as the displacement from the
rogenitor’s orbital track in a cluster centred frame rather than the 
hange in galactocentric radius in the galactocentric frame, of course 
he two are equi v alent in this model restricted to circular orbits. 

PPEN D IX  C :  STREAMS  O F  EQUA L  INIT I AL  

ASS  

ere, we present figures the same as Figs 3 and 4 but for wBH
nd noBH streams of equal initial mass. These models are referred 
o as noBH-QSG-C and wBH-QSG-C and the parameters used are 
isted in Table C1 . For these, we calculate the e v aporation times from
quation 6 of GG23 and we assume a moderate value for η ( −0 . 33)
nd M BH (50 M �) in the wBH case. Previously when comparing
o the N -body model we used m ∗ = 0 . 36 M � to try and mimic the
esults, ho we ver, here we use m ∗ = 0 . 01 M � to be able to observe
ll the substructure that is encapsulated within the model, we stress
hat this does not alter the results of the model in any way, it simply
llows for a higher resolution plot. 

Fig. C1 displays the linear density profile of the noBH-QSG- 
 and wBH-QSG-C streams which have the same initial mass. 
e see that, despite the streams having the same initial mass, the
Figure C1. The linear density profiles for the noBH-QSG-C (left) and wBH-QSG
esulting differing evaporation times lead to clear differences in the 
treams that make them easily differentiable. The wBH stream is 
pproximately one third the length of the noBH stream and has a
aximum density o v er 4 times the maximum density of the noBH

tream 0 . 5 Gyr after e v aporation. Even at 4 Gyr after e v aporation,
he wBH stream is approximately half the length and has a maximum
ensity twice that of the noBH stream. These peak densities of wBH-
SG-C are abo v e the theoretical maximum density of the noBH-
SG-C model of ∼ 63 M � deg −1 and remains abo v e this value up

o t − t ev ∼ 8 Gyr . 
Fig. C2 displays the mass distribution in the x − y plane and as

xpected from equations ( 17 ) and ( 18 ) these streams have the same
verage width and radial offset due them having the same initial mass. 
o we ver, due to the differing mass-dependencies of the mass-loss

ate, within the central portion of the stream, the wBH stream will be
ider at the same fraction of the stream length. This is because the

ccelerating mass-loss rate ensures that the cluster mass will have 
een greater when these stars were released. Ho we ver, this is a minor
ffect due to the weak mass dependency and, therefore, is unlikely
o be useful in determining the nature of an observed stream. 

In this scenario the key metrics to differentiate between a wBH and
 noBH stream are the stream length and the location and magnitude
f the peak of the linear density profile. 
MNRAS 538, 454–469 (2025) 

-C (right) streams which have the same initial masses on the same orbits. 
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M

Figure C2. A plot of the density distribution of the noBH-QSG-C (left) and wBH-QSG-C (right) in the x − y plane at t − t ev = −2 , 0 , 4 Gyr (from top to 
bottom). 
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PPENDIX  D :  STREAMS  O F  EQUA L  INITIAL  

ASS  A N D  E VA P O R AT I O N  TIME  

ere, for completeness, we present unphysical models of noBH-
SG-D and wBH-QSG-D streams with the same M i and t ev . The
arameters used for noBH-QSG-D and wBH-QSG-D are listed in
 able D1 . W e stress that it is unphysical to have a wBH stream and a
oBH stream of equal mass and e v aporation time, where the noBH
C has η ∼ 1 / 3. 
NRAS 538, 454–469 (2025) 

igure D1. The linear density profiles for the noBH-QSG-D (left) and wBH-QSG
ell as being on the same orbits. 
G21 , demonstrated that it is possible to have a noBH GC with
 mass-loss rate akin to a wBH GC. Ho we ver, the high-mass and
ow initial density required occupy a very small area of parameter
pace leading to the ‘fine-tuning’ problem described in G21 . In this
ase, the noBH progenitor would have an accelerating mass-loss rate
 η � −1 / 3 rather than the canonical noBH value of η ∼ 1 / 3) and
he only difference between the two streams would be the width of
he stream at φ1 ∼ 0 at t ∼ t ev . 
-D (right) streams which have the same initial mass and e v aporation time, as 
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Figure D2. A plot of the density distribution of the noBH-QSG-D (left) and wBH-QSG-D (right) in the x − y plane at t − t ev = −2 , 0 , 4 Gyr (from top to 
bottom). 
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Fig. D1 displays the linear density profile of the streams of equal
nitial mass and e v aporation time. It is observed that, due to the mass
ependency of the mass-loss rate, the maximum density of the wBH-
SG-D is o v er 1.5 times the density of the noBH-QSG-D stream at

 − t ev = 0 . 5 Gyr , and that the mass is concentrated closer to the
rogenitor. Fig. D1 demonstrates the differing gap morphologies 
hat result from the differing mass-loss rates and the mass of the
etained BH population. With time since e v aporation the density 
rofiles become more alike, such that at 4 Gyr after e v aporation they
esemble one another, with a rounded shape and similar maximum 

ensities. Ho we ver, the position of the peak of the linear density
rofile, both the φ1 coordinate and as a fraction of the stream length,
re different with the noBH peak’s position being approximately 
wice that of the wBH stream. 

The mass distribution of the noBH-QSG-D and wBH-QSG-D 

treams in the x − y plane is displayed in Fig. D2 . We observe
hat, as in the linear density profile, the mass is concentrated closer
o the progenitor’s position in the wBH case than in the noBH case.
n addition, due to the differing mass-loss rates, we observe that near
he centre of the stream, the wBH stream is wider and more offset
2025 The Author(s). 
ublished by Oxford University Press on behalf of Royal Astronomical Society. This is an Open
 https://cr eativecommons.or g/licenses/by/4.0/), which permits unrestricted reuse, distribution, and rep
han the noBH stream because when the stars that composed this
ection of the stream escaped the progenitor GC the cluster mass
as higher. Ho we ver, due to the weak dependence of the width and

adial offset ( ∝ M 

1 / 3 ), this difference is relatively small. 

able D1. The parameters used in the noBH-QSG-D and wBH-QSG-D 

odels. These unphysical models have equal initial masses and e v aporation
imes. 

qual M i and t ev noBH-QSG-D wBH-QSG-D 

otential SIS SIS 
 (kpc) 20 20 
 c (km s −1 ) 220 220 
 i (M �) 3000 3000 

0.33 −0.33 
 ev (Gyr) 4.0 4.0 
 BH (M �) 0 50 
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