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ABSTRACT

Nearly a hundred progenitor-less, thin stellar streams have been discovered in the Milky Way, thanks to Gaia and related surveys.
Most streams are believed to have formed from star clusters and it was recently proposed that extended star clusters — rich in
stellar-mass black holes (BHs) — are efficient in creating streams. To better understand the nature of stream progenitors, we
quantify the differences between streams originating from star clusters with and without BHs using direct N-body models and
a new model for the density profiles of streams based on time-dependent escape rates from clusters: the Quantifying Stream
Growth (QSG) model. QSG facilitates the rapid exploration of parameter space and provides an analytic framework to understand
the impact of different star cluster properties and escape conditions on the structure of streams. Using these models it is found
that, compared to streams from BH-free clusters on the same orbit, streams of BH-rich clusters: (1) are approximately 5 times
more massive; (2) have a peak density 3 times closer to the cluster 1 Gyr post-evaporation (for orbits of Galactocentric radius
2 10 kpc), and (3) have narrower peaks and more extended wings in their density profiles. We discuss other observable stream
properties that are affected by the presence of BHs in their progenitor cluster, namely the width of the stream, its radial offset
from the orbit, and the properties of the gap at the progenitor’s location. Our results provide a step towards using stellar streams
to constrain the BH content of evaporated (globular) star clusters.

Key words: stars: black holes — globular clusters: general — Galaxy: halo— Galaxy: kinematics and dynamics — Galaxy: struc-

ture — galaxies: star clusters: general.

1 INTRODUCTION

Stellar streams are the debris of evaporated star clusters (for example
Odenkirchen et al. 2001; Grillmair & Dionatos 2006) and accreted
dwarf galaxies (for example Ibata, Gilmore & Irwin 1994) and are
found in both the inner (Ibata, Malhan & Martin 2019) and outer
halo (for example Belokurov et al. 2006; Newberg et al. 2010; Shipp
et al. 2018) of the Milky Way (MW) as well as in other galaxies
(for example Ibata et al. 2001; Martinez-Delgado et al. 2010, 2023).
In recent years, there has been a significant uptick in the discovery
rate of streams in the MW halo (see the review by Bonaca & Price-
Whelan 2025), thanks to the advent of the European Space Agency
(ESA) Gaia space telescope (for example Malhan, Ibata & Martin
2018; Ibata et al. 2019) and deep, wide-area photometric surveys (for
example Koposov et al. 2014; Bernard et al. 2016; Shipp et al. 2018).
Streams are powerful tools in studies of the MW: their shapes provide
important constraints on the gravitational potential of the MW (for
example Lynden-Bell & Lynden-Bell 1995; Koposov, Rix & Hogg
2010; Kiipperetal. 2015; Bovy et al. 2016; Erkal et al. 2019; Koposov
et al. 2023) and their chemistry and orbits help to reconstruct the
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assembly history of the MW (for example Bonacaetal. 2021; Lietal.
2022).

The precise astrometric data provided by Gaia have tightly
constrained the orbits of the observed globular clusters (GCs) and
stellar streams (for example Li et al. 2022; Bonaca & Price-Whelan
2025). For streams originating from star clusters, the orbit combined
with the Galactic potential provides constraints on the mass-loss
history of the progenitor cluster (Baumgardt & Makino 2003,
hereafter BMO03; Gieles & Gnedin 2023, hereafter GG23; Chen et al.
2025).

The narrow width and low velocity dispersion of the GD-1 stream
(Koposov et al. 2010) and the chemistry of its stars (Balbinot,
Cabrera-Ziri & Lardo 2022) argue for a star cluster origin. However,
de Boer, Erkal & Gieles (2020) noted that the initial stellar mass in
the GD-1 stream is about 5 times larger than the estimated maximum
mass of a star cluster that can evaporate on that orbit, based on
N-body calculations of Roche-filling star clusters evaporating in a
Galactic tidal field (BMO03). Curiously, some GCs with much closer
pericentric passages than the GD-1 stream have no noticeable tidal
tails associated with them (Kuzma, Da Costa & Mackey 2018). This
suggests that, in addition to the time spent on that orbit, an orbit-
independent parameter is required to explain the variation in mass-
loss rates of GCs.
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Figure 1. The mass of the streams from Patrick et al. (2022), that are believed
to have had GC progenitors which have now evaporated, as a function of the
Galactocentric radius of the equivalent circular orbit with the same average
mass-loss rate, Reff (BMO3). In addition, we include Jet (Ferguson et al.
2022), C-19 (Martin et al. 2022), and Phlegethon (Ibata et al. 2018) (denoted
by the diamond markers) which are also believed to have GC progenitors.
The blue hatched region denotes the area of parameter space that can be
populated by GCs without BHs that can evaporate within 10 Gyr. The orange
hatched region denotes the area of parameter space that can be populated
by GCs with BHs that can evaporate within 10 Gyr and the dashed (solid)
orange line marks the median (maximum) mass of a GC with BHs and an
evaporation time of 10 Gyr (see the text for details). The error bars do not
take into account the possibility of unobserved low density extensions to the
streams and therefore these data points should be regarded as lower bounds
on the progenitor mass.

Gieles et al. (2021, hereafter G21) showed that the additional
parameter is most likely the dynamical effect of stellar-mass black
holes (BHs) in the progenitor star cluster. N-body models of tidally
limited star clusters with different initial masses (Pavlik et al. 2018)
and densities (G21; Wang et al. 2024) retain a different fraction of
BHs and therefore evolve to have different BH populations today
(Breen & Heggie 2013), impacting the mass-loss of the cluster
(Banerjee & Kroupa 2011; Giersz et al. 2019). G21 build upon
this to show that the stream associated with the halo GC Palomar
5 (hereafter Pal 5) — just like the GD-1 stream — also contains more
mass than can be explained by the models of the evaporation of star
clusters without BHs (BM03). Because this is the most prominent
stream with a known progenitor, G21 attempted to reproduce the
observed properties of both the cluster and the stream with N-body
simulations. They found that both the peculiar, large half-light radius
of reir >~ 20 pc of Pal 5, as well as the mass in the stream can only
be reproduced if the cluster contains a BH population, constituting
a fraction of fgy =~ 0.2 of the total present-day cluster mass. From
these models, G21 found that both the mass in the tails as well as rq
correlate with fgy and concluded that BH-rich GCs are the likely
progenitors of cold streams. The higher mass-loss rate of GCs with
BHs also helps to explain the shape of the GC mass function and the
distribution of nitrogen-rich stars in the inner halo that are believed
to originate from GCs (GG23).

In addition to GD-1 and the Pal 5 stream, there are more streams
with masses above the maximum masses of clusters without BHs that
can evaporate on their orbits. Fig. 1 displays the masses of the streams
included in Patrick, Koposov & Walker (2022) that are believed to
have had GC progenitors which have now evaporated as a function
of the Galactocentric radius of their equivalent circular orbits with

BH streams 455

the same average mass-loss rate (Rt = R,(1 + &), where R, is the
Galactocentric radius at pericentre and ¢ is the orbital eccentricity;
BMO03). In addition, we include Jet, C-19, and Phlegethon streams
which are believed to have GC progenitors. The orbital parameters
used to calculate R.g for the streams in Patrick et al. (2022) were
obtained from Li et al. (2022) for all streams except GD-1 and Pal
5 which used the values from Bonaca et al. (2020) and Kiipper
etal. (2015), respectively. The mass estimates and orbital parameters
for Jet, C-19, and Phlegethon were taken from Ferguson et al.
(2022), Martin et al. (2022), and Ibata et al. (2018), respectively.
The lines show model predictions (GG23) for the initial mass,
after stellar evolution, of GCs with an evaporation time of 10 Gyr
without BHs (blue) and with BHs (orange). In Appendix A, we
provide details on how these limiting masses were derived from
the GG23 model. The ‘wBH’ lines correspond to clusters that have
BHs during their entire evolution, and ‘noBH’ lines are for models
that either quickly ejected BHs early in the evolution because of a
short initial relaxation time (low GC mass/high density), or never
had BHs.

Apart from Ophiuchus and Phlegethon, which lie well below the
noBH line, and Phoenix which lies just below the noBH line, every
other stream’s mass exceeds the noBH limit. Patrick et al. (2022)
calculate the mass of the stream by generating a new simulated stellar
population from the fitted colour—-magnitude diagram, allowing the
mass estimate to account for unobserved low mass stars. Yet, these
masses are likely lower limits because Patrick et al. (2022) did not
include features offset from the stream track (such as the spur of
GD-1), nor corrections for stars outside of their defined ends of the
streams which are difficult to pick out from the background. This
implies that their mass estimates are lower limits of the initial stellar
mass of the streams’ progenitor GCs. A particularly stark example
is that of GD-1, for which Patrick et al. (2022) determine the stream
mass tobe ~ 5 x 10 M, whereas Boer et al. (2020) estimate a total
mass of ~ 10* M, (after stellar evolution mass loss). In addition,
it is important to note that the mass estimate of C-19 in Martin
et al. (2022) is a lower limit as it is expected that the stream extends
beyond the observed range. This comparison confirms that most
streams evaporated faster than what is expected from models of GCs
without BHs, calling for stream formation models that include the
effect of BHs.

Most stream modelling efforts to date have focused on the shape
and features such as epicyclic overdensities (for example Bovy 2014;
Sanders 2014; Fardal, Huang & Weinberg 2015; Kiipper et al. 2015)
and could therefore adopt a constant escape rate. However, it is
well understood that the mass-loss rate is not constant, instead
the magnitude of the mass-loss rate decreases as the progenitor
evaporates for noBH GCs (Fukushige & Heggie 2000; Baumgardt
2001; BMO03; Lamers, Baumgardt & Gieles 2010), while it increases
for wBH GCs (Banerjee & Kroupa 2011; Giersz et al. 2019; G21),
and there is yet to be a study of the dependence of a stream’s
morphology on the progenitor’s mass-loss rate. Motivated by this, the
suggestions that BH-rich clusters are the progenitors of (most of the)
cold stellar streams (G21) and that wBH streams should exhibit a gap
at the progenitor’s position post-evaporation (Boer et al. 2020), and
also by the availability of more luminosity-based mass estimates and
corresponding density profiles of streams (for example Boer et al.
2020; Patrick et al. 2022), we here present a model for streams based
on a time-dependent mass-loss history of their progenitor clusters.
To parametrize this new model, we use direct N-body simulations
of star clusters evaporating in a Galactic tidal field with and without
BHs, to shed light on the nature of stream progenitors by investigating
whether the structure of a stream can be used to discriminate between
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Table 1. The initial conditions and the evaporation
time of the N-body simulations used in this work.

Value att =0 noBH-Nbody wBH-Nbody
R (kpc) 20 20

Ve (kms ~1) 220 220

Moy Mg) 2596 18175

N 4600 28500
h,0 (pc) 3.49 5.96

tey (Gyr) 7.79 8.36

BH-rich and BH-free progenitors and identify features which display
a dependence on the retained BH population.

This paper is organized as follows: in Section 2, we introduce
the N-body simulations and the model for the density profiles of
streams with time-dependent mass-loss histories. In Section 3, we
discuss the impact of a BH population in the progenitor cluster on
stream properties and the discussion and conclusions are presented
in Sections 4 and 5, respectively.

2 A MODEL FOR STREAMS FROM
TIME-DEPENDENT MASS-LOSS RATES

In this section, we present a model for streams forming from clusters
on circular orbits with time-dependent mass-loss rates. We first
present two N-body models of clusters with and without BHs in
Section 2.1 and then describe the (semi-)analytic model for the stream
density profile in Sections 2.2-2.4. In Section 2.5, we compare the
stream model to the N-body simulations.

2.1 N-body simulations

To quantify the effect of a BH population on the resulting stream,
we run N-body models of two clusters on the same orbit, where
one model contains BHs (‘wBH-Nbody’) and the other cluster
does not (‘noBH-Nbody’), the key parameters of these models are
summarized in Table 1. We run both simulations with PETAR! (Wang
et al. 2020), which includes the effect of stellar and binary evolution
(Hurley, Pols & Tout 2000; Hurley, Tout & Pols 2002) with the
recent updates for massive star winds and BH masses from Banerjee
et al. (2020). We adopt the rapid supernova mechanism by Fryer
et al. (2012), for which 60 per cent (70 per cent) by number (mass)
of the BHs do not receive a natal kick due to fall back, for the
adopted stellar initial mass function (IMF) (Kroupa 2001; in the range
0.1 — 100 My,) and metallicity (Z = 1073, that is, [Fe/H] ~ —1.1).
For the noBH-Nbody model we prevent the formation of BHs by
truncating the IMF at 20 Mg. We adopt a ‘GD-1 like’ orbit: a
circular orbit at a Galactocentric radius of R = 20 kpc in a singular
isothermal sphere (SIS) using the GALPY library (Bovy 2015).2

The initial positions and velocities of the stars are drawn from
a Plummer model (Plummer 1911) truncated at 20 times the half-
mass radius (r,). We define the initial ry,, 74,0, in units of the half-
mass radius of a Roche-filling cluster (ry¢), for which we adopt the
value from Hénon (1961) of ry ¢ = 0.15r;, where ry is the Jacobi
radius. For the SIS, ry 0 = [GMo/(22%)]"°, where My is the initial
mass of the cluster and Q2 = V./R is the angular frequency of the
orbit. Because clusters expand as a result of stellar mass loss, we

Thttps://github.com/lwang-astro/PeTar
2We use GALPY’s pseudo-isothermal sphere with circular velocity of V. =
220km s~ at large radii and a core radius of 1 pc.
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Figure 2. The evolution of the total cluster mass (top), its mass-loss rate
(middle), and the mass of the black hole population (bottom) of the two N-
body models discussed in Section 2.1 (noBH-Nbody in blue and wBH-Nbody
in orange), with the contributions from stellar mass loss and evaporation in
the tidal field shown separately. The overplotted black dashed lines are M ()
(equation 2) and M(z) (equation 3), with 7o, = 8.2 Gyr and n = 0.36; M; =
1.66 x 10°> Mg (noBH) and y = —0.94; M; = 1.03 x 10* Mg, (wBH). In the
bottom panel the overplotted dashed line corresponds to Mgy = 150 Mg,
the total mass of the retained BH population used in the wBH-QSG
models.

start with r, o < ry ¢. For the noBH-Nbody cluster, we adopt r, g =
0.7rn ¢ and for the wBH-Nbody cluster we adopt a slightly smaller
radius of r, o = 0.6ry ¢, because this cluster expands more due to
the dynamical effect of the BHs following stellar mass loss. What
remains to be decided is the initial number of stars (N) of both
models. We find values for N by iteration, such that both models
evaporate approximately at an age of 8 Gyr, where we define the
evaporation time (#.,) as the time at which the cluster reaches 0.5
per cent of the initial cluster mass. Our initial estimates are guided
by the analytic expressions for M and M(t) of GG23 for clusters
with different BH contents. After a few iterations of N-body models
with different N we settled on N = 4600 for the noBH-Nbody model
and N = 28500 for the wBH-Nbody model, where the difference is
due to the higher mass-loss rate of a GC with BHs. The evolution
of the total cluster mass, the mass-loss rate, and the mass of the BH
population of both models is shown in Fig. 2. In the next section, we
discuss the resulting streams as well as a generative model for the
stream that we base on the mass evolution of these N-body models.
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2.2 Mass-loss rate

In this section, we develop a semi-analytic model for the streams from
clusters with and without BHs and benchmark the results against the
N-body models from Section 2.1.

We only model the mass-loss due to evaporation, that is, we do
not include mass-loss by stellar evolution, which dominates in the
early evolution of the GCs. As can be seen in Fig. 2, stellar evolution
dominates the mass-loss of the N-body models until ~ 1 Gyr. As
demonstrated by GG23, the mass-loss rate due to evaporation is well
described by a power-law dependence on M of the form

M (M |
(l_n)lev (Ml) ' ()

where M is the cluster mass, M; < M, is the remaining mass
after most stellar evolution mass loss has occurred, and f., is the
evaporation time, defined here as the time it takes for the mass to
reach 0.005M,. From integrating equation (1), we obtain the GC
mass evolution in time

t 1/(1=n)
M(t) = M; (1 - —) ) (2)

ev

M=—-AM"=—

By substituting this expression for M(¢) into equation (1), or by
taking its derivative with respect to time, we find an expression for

M)
M N
(1= ey <1 N T) ' )

The mass dependence of M is encapsulated in the parameter 7,
where the mass evolution of noBH clusters is well described by
n >~ 1/3 (BM03) and for wBH clusters, —1 < n < —1/3 (GG23).
The above expressions are simplified versions of M () and M(t)
expressions recently presented in GG23.3 These authors showed with
N-body models that clusters with lower initial densities retain more
of their BHs, and have a smaller (that is, more negative) n. For n < 0,
the (absolute) mass-loss rate increases as the progenitor evaporates,
which is the result of the increasing fraction of mass in BHs. GG23
also show that the constant of proportionality A (which is inversely
proportional to #.,) in equation (1) depends on 1, My, and the strength
of the tidal field.

The dependence of n on the mass of the BH population, Mgy, is
because there exists a critical fgy for tidally limited GCs (few per
cent) at which the stellar mass-loss rate equals the BH mass-loss rate
and therefore fpy remains constant (Breen & Heggie 2013). If fgy >
fBH, orit then fpy increases which leads to an accelerating mass-loss
rate (n < 0) and a BH-dominated cluster (Banerjee & Kroupa 2011;
Gierszetal. 2019; G21). On the other hand, if fgu < fBu. cric then fau
decreases, leading to a decelerating mass-loss rate (7 > 0; Fukushige
& Heggie 2000; Baumgardt 2001; BMO03; Lamers et al. 2010). It is
important to note that a GC without BHs with a low initial density
can have a similar high mass-loss rate as a wBH GC with the same
mass, but G21 shows that this area of parameter space is extremely
small and as such we consider an accelerating mass-loss rate to be
the result of a retained stellar-mass BH population.

Rather than using the full expressions from GG23, we here stick
to the simpler expressions from above and find the values of M;
and 7 that are needed to describe the two N-body models. The
mass and mass-loss history for the N-body models and the analytic
approximations are displayed in the top two panels of Fig. 2. M; and

M(t) = —

3They define M o« M'~Y, such that our 7 relates to their y as n = 1 — y.
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n are determined by a least-squares fit to the mass evolution (M (¢))
and the mass-loss rate (M(z)), excluding the contribution by stellar
evolution. We set an upper bound for M; of the total stellar mass in
the N-body model post-evaporation. For the noBH model, we then
find M; >~ 0.64M, >~ 1.66 x 10°> Mg, and 5 >~ 0.36. A similar mass
dependence of the mass-loss rate was found previously in models
of clusters without BHs (BMO03; Lamers et al. 2010). For the wBH
model, we find M; >~ 0.56M, ~ 1.03 x 10* My* and n >~ —0.94.
This negative n causes mass loss to accelerate as the progenitor
evaporates, as found here (see orange lines in top and middle panels
of Fig. 2) and also in other models of evaporating clusters with BHs
(Giersz et al. 2019; Wang 2020; GG23).

We plot the resulting analytic expressions for M(¢) and M(t) in
Fig. 2. These expressions ensure that a GC will evaporate at a chosen
tey (informed by N-body simulations), which is key when examining
the growth of the gap that forms at the progenitor’s position post-
evaporation.

2.3 The Quantifying Stream Growth (QSG) model

To investigate the differences in streams resulting from the noBH and
wBH clusters, a model of the growth of streams is required. Here,
we introduce a new model that follows the formalism of Erkal &
Belokurov (2015). It adopts a reference frame that is centred on the
cluster and co-rotates with the orbit, where the x-axis points towards
the galactic anticentre, the y-axis points along the orbit, and the z-
axis is along the angular momentum vector of the orbit, perpendicular
to the orbital plane. We restrict ourselves to a cluster on a circular
orbit, with galactocentric radius R and circular velocity V., within
a spherical potential. Stars are then assumed to escape through the
Lagrange points, offset from the centre of the cluster along x by
a distance =+ f. rj(M(t)), where f. is a dimensionless constant of
order unity to be determined, and they are released with some initial
velocity offset Av = (Avy, Avy, Av,). In this model the velocity
offset in the y-direction (Av,) is related to the escape radius by e,
a dimensionless free parameter of order unity, such that Av, is the
random component of the velocity (in the galactocentric reference
frame € = 1 means that escapers have on average the progenitors
angular velocity, whereas € = 0 corresponds to escapers having on
average the progenitors orbital velocity). The equations of motion for
stars that have escaped the progenitor are derived in Appendix B and it
is important to note that these equations ignore the progenitor’s mass
as they are intended to describe the stripped stars’ motion when the
cluster potential experienced by the escapers is negligible compared
to the galactic potential. The time-dependent angle from the centre
of the potential of the ejected particle (relative to the progenitor) is
given by

2
by =" = (Avy Fto vc> -
2

R R

2 Sery

— S0P -2-207
1 4Av, |
5Ty sin (y 2t)

C

1 2Awv,
2 Ve

sin (y 2t)

(1 —cos(yQ1)), 4)

“Despite the fact that the IMF was truncated at different upper masses
(100Mg for wBH and 20 Mg for noBH), the ratio M;/My is similar in
both cases because the fraction of the initial mass above 20 M that ends up
in BHs is ~ 0.45, that is, only slightly lower than the remaining mass fraction
of the IMF below 20 M.
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where

2 R®

y =3+W6R<I>(R), )
C

is the ratio of epicyclic frequency to the angular frequency, ®(R) is
the spherical galactic potential, ¢ is the time since escape, and the
negative sign in front of the equation means that stars ejected from
the outer (inner) Lagrange point fall behind (move ahead) of the
progenitor, as expected.

The radial offset (that is, the displacement from the progenitor’s
orbital track in the direction of the galactic anticentre) as a function
of time is given by

2R [ Av, fehs
Ar(t) = ferycos(y Q) + — =+ ({1 +e)
y? Ve R

x (1 — cos(y Q) + %M, (6)
Ve Y
where we note that Ar(t = 0) = Ax(t = 0). The velocity in the z
direction simply tilts the orbital plane of the escaping star (Erkal,
Sanders & Belokurov 2016) and the resulting motion perpendicular
to the progenitor’s orbital plane is given by

Az(t) = A R Vct 7
(1) = UZVCSIH(;)' @)

The density at a point along the stream is the product of the mass-
loss rate and the ¢; distribution of that mass integrated from the start
of stripping up until the observation time. This can be expressed in
terms of the velocity distribution and used to map the density along
the stream, p(¢y, t), at all times

y> (" R . s
(g1, 1) = /—I/|M(z)|P(Avy(¢1,t))dt, ®)

b=y Jo 1=

where P(Av,(¢1, 1)) is the probability of the offset velocity required
for a star to be at position ¢; at a given time. This equation sums up all
possible stripping events up to the observation time and scales their
contribution by the velocity distribution. By assuming a Gaussian
distribution of offset velocities, the probability of a particular value
is

1 _i(auwy?
Pav) = ———c (%) ©)
’ 202

where o is the velocity dispersion of a Plummer model (Plummer
1911) at the escape radius,

)7 -1/4

1+<fe”>] . (10)
a

To get the ratio f.rj/a we assume that the cluster fills the Roche

radius, that is, ry/ry 2~ 0.15 (Hénon 1961) and we note that ry, ~

1.305 a for Plummer’s model. As demonstrated by equation (4), there

is a deterministic relation between ¢, ¢, and Av,, from which a time-

dependent expression for Av, is found by ignoring the oscillatory
terms in equation (4) to obtain the average motion of a star

GM
o=1/—

6a

4 — 2
$i() = -~
Y

(Avy+(1 +e>f;”vc> % (n

and rearranging for Av,

2
14 (blR ferJ
— 4+
=7 +(+e) R

Avy (¢, 1) = — Ve. (12)
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By switching variables to T = (+ — ¢)~! an expression that can be
easily numerically evaluated is obtained,

)/2

4—y2

Ij‘

p(g1, 1) = / ?IM(T)IP(Avy(tﬁn,T))dT- 13)
T

Equation (13) can then be evaluated at regular intervals of ¢, at
any point in time, before or after the progenitor has evaporated,
to gain the one-dimensional density profile of the resulting stream.
Hereafter, this (semi-)analytic model to quantify the stream growth is
referred to as the QSG-AN (Quantifying Stream Growth—ANalytic)
model. The model has two dimensionless parameters, € and f, that
we will determine through a comparison to the N-body models in
Section 2.5. € and f, relate the mean velocity of escapers to the
escape radius and set the escape radius, respectively. From this, and
equation (11), it is clear that there is some degeneracy between
them as both affect the mean drift velocity of escapers (that is, the
location of the centre of the Av, distribution). However, f. is the
sole free parameter dictating the velocity dispersion in addition to the
cluster mass. Throughout this work, we use the analytic mass-loss
rate from Section 2.2 as this gives us the smoothed case for a cluster
with the given initial conditions removing the stochastic noise of
dynamical ejections. However, one could also use the mass-loss rate
from numerical N-body simulations so long as it is corrected for the
mass-loss due to stellar evolution.

2.4 Particle spray method

QSG-AN does not capture all elements of a stream’s structure, not
only because it does not include the epicyclic overdensities due to the
use of equation (11) which ignores the oscillatory terms, but because
it only describes the one-dimensional density profile and therefore
offers no insight in the stream offset from the orbit, nor the width.
To describe these additional features of a stream we employ a Monte
Carlo model using equations (4), (6), and (7) for motion along the
stream, radially to the stream and perpendicular to the progenitor’s
orbital plane, respectively, we refer to the resulting particle spray
model as QSG-PS (Quantifying Stream Growth—Particle Spray).
In QSG-PS a population of stars is generated, their escape times
are calculated from equation (3) and their f.ry are calculated at
their escape times using the mass of the cluster (equation 2). Their
velocity offset in each direction (Av,, Avy, Av;) is sampled from
a Gaussian distribution centred on zero with a width equal to the
velocity dispersion given by equation (10). Then, at any point in
time prior- or post-evaporation those stars that have escaped the
cluster can be selected and their positions calculated from equations
(4), (6), and (7).

2.5 Comparison to N-body

To compare to the N-body models of Section 2.1, we adopt an SIS
potential for the galaxy with V., =220 kms~! as in the N-body
models. We create stream models without BHs and with BHs, using
both QSG-AN and QSG-PS, which we refer to as noBH-QSG and
wBH-QSG, respectively. The models parameters are listed in Table 2.
For all models, we adopt circular orbits at R = 20 kpc about the SIS
potential. The analytic M () and M (t) for these choices of parameters
are shown in Fig. 2 by the black dashed lines. In the QSG-PS model,
m, = 0.36 M, stars® are used such that the noBH-QSG has N =

5 Approximately the mean stellar mass for an old stellar population with a
Kroupa IMF.
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Figure 3. A comparison of the QSG-PS (green solid) and QSG-AN (blue dashed) models with the N-body simulations (orange) for the noBH model (left) and
wBH model (right) at 4 times. From top to bottom these times are 0.5, 1, 2, and 4 Gyr after the progenitor has evaporated. The vertical dashed lines denote the
50th and 90th percentile by mass. As the QSG models predict the total mass distribution of a stream, the density profile of the N-body streams includes the
contribution of white dwarfs and low-mass stars to provide a fair comparison. Due to the differing M; and 5, 0.5 Gyr post-evaporation (top row) the peak linear
density is over an order of magnitude greater in the wBH model than in the noBH model and remains a factor of ~ 5 greater 4 Gyr post-evaporation (bottom
row). It is also seen that the 90th percentile is over twice the 50th percentile for the wBH model, whereas it is less than twice the 50th percentile in the noBH

model.

Table 2. The parameters used in the noBH-QSG and
wBH-QSG models.

noBH-QSG wBH-QSG
Potential SIS SIS
R (kpc) 20 20
Ve (kms™1) 220 220
M; Mp) 1664 10310
n 0.36 —-0.94
tey (Gyr) 8.2 8.2
Mgy Mp) 0 150
N 4622 28 638

4622 and wBH-QSG-PS model has N = 28638, comparable to the
N-body simulations. We approximate the mass in the BH population
as a constant, Mgy = 150 M, which is a reasonable approximation
for Mpy(t) in the N-body simulation during the final 1 Gyr, in which
the BHs have the strongest influence on the escape conditions of the
stars (an increased Mpy would lead to greater differences between
the wBH and noBH cases).

We find the values for the two model parameters € and f. by
comparing the distribution of stars in the ¢; and Ar directions in the
QSG-PS models and the density profile of the QSG-AN models to
those of the N-body models. The resulting QSG-AN density profiles
and QSG-PS streams are in very good agreement with the N-body
simulations for € >~ 0.57 and f, ~ 1.5, as can be seen in Fig. 3
(QSG-AN) and Figs 4 and 5 (QSG-PS). It is these values that are
used throughout the rest of this work in both QSG-AN and QSG-PS
models and in both wBH and noBH cases. We stress that this is
an effective model and as such one should not read too much into
the meaning of €. Instead € should be regarded as a parameter that
can be obtained from a comparison to N-body models. However,

for completeness, we note that € < 1 does indicate prograde in an
inertial frame (retrograde in a co-rotating frame).

As seenin Fig. 3, both QSG-AN and QSG-PS are able to reproduce
accurate linear density profiles for streams with and without BHs.
However, after the progenitor has evaporated the density profile does
deviate somewhat within the gap® at ¢; = 0. This is due to the
idealized nature of our model assuming that even the final stars
follow our prescription for the escape conditions. Despite this, they
capture important features such as the peak of the density profile,
size, and shape of the wings, and the size of the gap remarkably well
for such a simple model.

AsisseeninFig. 4, QSG-PS is able to reproduce the structure of the
stream in the ¢ - Ar plane well in both wBH and noBH cases and both
prior and post-evaporation. In particular, it captures well the length,
width, offset from the progenitor’s orbital track, and mass distribution
along the stream. However, due to the simplifying assumptions and
the idealized nature of the escape conditions there are some aspects
where it diverges. In particular, because we assume a constant Mgy
in the WBH-QSG-PS model there are fewer stars within the gap than
in the wBH-Nbody model. In addition, during the final stages of
evaporation we still assume that the stars follow our prescription for
the escape conditions which may not be true and this manifests as
the stream being very narrow near the progenitor’s position post-
evaporation, whereas the N-body models have a greater spread in
Ar near to the progenitor. This disparity is particularly noticeable
in the wBH, 4 Gyr (bottom, right) panel of Fig. 4. We see that this
disparity between QSG-PS and N-body models is greatly reduced
in the noBH models (see the bottom, left panel of Fig. 4), implying

6We refer to the region between the two peaks centred at ¢ = 0 as ‘the gap’,
even though there are stars in this region.

MNRAS 538, 454469 (2025)
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the grey dashed line.

the need for a study of the escape conditions of stars in wBH GCs
during the final stages of evaporation.

As seenin Fig. 5, QSG-PS does not fare as well in the ¢;-Az plane.
The simplistic nature of the QSG-PS model does not reproduce the
diffuse nature of the stream in the ¢; — Az plane. Instead, QSG-PS
produces a much sharper overdensity at the orbital plane, Az = 0,

MNRAS 538, 454-469 (2025)

which resembles a combination of a narrow and broad Gaussian. This
is seen in other particle spray codes as well (for example Gibbons,
Belokurov & Evans 2014).

Throughout this work, we compare the QSG models to the total
stream in the N-body simulations (inclusive of white dwarfs and low-
mass stars, which are not visible in observations) to facilitate a fair
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comparison. However, if one were to omit these objects to obtain the
visible stream, then we note that the shape of the linear density profile
is approximately unchanged and is just offset in normalization. This
is because low-mass stars are preferentially lost as the GC evolves
towards energy equipartition and the white dwarfs are mainly lost at
late times, with the two processes approximately balancing along the
length of the stream.

The simple, fast, flexible nature of the QSG models makes them
invaluable tools to explore the impact of the progenitor’s properties
on the structure of the resulting stream. With further refinement of
the prescription of escape conditions to produce even more realistic
streams, the QSG models have a wide range of application including
constraining the possible parameter space of stream progenitors. In
the next section, we discuss the properties of the wBH and noBH
streams in detail.

3 THE IMPACT OF A RETAINED BLACK HOLE
POPULATION

From the models discussed in the previous section, we find that there
are four main aspects of the stream’s structure that differ due to the
retained BH population: (1) the mass in the stream/inferred mass-loss
rate; (2) the growth rate/stream length; (3) the shape of the central
gap after the progenitor has evaporated; and (4) the width and offset
of the stream near the progenitor in the radial direction from the
progenitor’s orbital track soon after the progenitor has evaporated.
The first three are because of differences in the mass-loss rate and the
fourth property is sensitive to the retained mass of the BH population.
Below, we discuss all four properties guided by the results from the
models from the previous section.

In this work, we consider only noBH and wBH streams of equal
evaporation time, and as a result, they have differing initial masses.
We posit that this is the most pertinent case to discuss because most
observed GC streams have no progenitor (., < 10 Gyr) and have not
yet fully phase mixed into the halo (r — f., < few Gyr), suggesting
that there is a modest range of evaporation times, that is of order a
few Gyr. The alternate case of streams with the same initial mass,
which is discussed in Appendix C, displays significant differences
in stream length and density due to the differing evaporation times.
Furthermore, in Appendix D we briefly discuss the unphysical case
of streams with the same initial mass and evaporation time, for
completeness.

3.1 Mass in the stream

The top panel of Fig. 6 displays the cumulative mass in the
stream as a function of angular displacement from the progenitor’s
position for the noBH-Nbody and wBH-Nbody models at 4 times
since evaporation (¢ — t., = 0, 1, 2, 4 Gyr). These are compared to
the initial mass of the noBH-Nbody model after stellar evolution
(M; = 1.66 x 10° My,). It is observed that the wBH-Nbody model
significantly exceeds the total mass of the noBH-Nbody model by
|¢p1| ~ 1°att — to, = 0 Gyr and by |¢| ~ 10° att — ., = 4 Gyr. In
addition, Fig. 6 compares the cumulative mass in the stream to the
mass, after stellar evolution, of a noBH GC that can evaporate on
the same orbit within a Hubble time (M; ~ 3.6 x 10° M) which is
denoted by the dashed grey line. At — f., = 0 Gyr the wBH stream
exceeds this upper limit within ~ 2.5° of the centre of the stream,
and within |¢;| ~ 15° att — t.y, = 4 Gyr. This demonstrates that we
only need to observe a modest portion of a stream, if the orbit is well
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Figure 6. Top: the cumulative mass as a function of the angular displacement
from the progenitor along the stream for the noBH-Nbody (blue) and wBH-
Nbody (orange) models at 4 times since evaporation (shown by the different
line styles). The overplotted grey dotted and dashed lines denote the M; of the
noBH-QSG stream and the maximum A; of a noBH GC that can evaporate
within a Hubble time, respectively. Bottom: the cumulative mass fraction
as a function of the fraction of the half stream length, where we define the
stream length as twice the mass weighted 98th percentile of the stellar |¢ |
coordinates.

constrained, to deduce whether the density profile is consistent with
the noBH case.

It is not just the total mass in the stream that differs but also
the distribution of this mass (Figs 3 and 6). As one would expect
from the mass dependencies of the mass-loss rates of the wBH and
noBH cases, the same fraction of the stream’s mass is concentrated
within a smaller fraction of the stream length in the wBH case than
the noBH case. In the noBH-Nbody model the ¢; coordinate of the
90th percentile by mass is less than twice that of the 50th percentile,
whereas in the wBH-Nbody model the ¢; coordinate of the 90th
percentile is over twice that of the 50th percentile.

Since the gap grows after evaporation in both models, the enclosed
mass at some distance of the wBH-Nbody model will eventually drop
below M; of the noBH-Nbody model. However, even at ¢ — t., =
4 Gyr the mass within 10° of the progenitor of the wBH-Nbody model
exceeds the theoretical maximum for a BH-free GC on this orbit; this
is owed not only to the greater initial mass of the wBH-Nbody model,
but to the accelerating mass-loss rate resulting in the same fraction
of the mass being concentrated closer to the progenitor’s position as
seen in Fig. 3.

In addition, the work of GG23 allows us to estimate the maximum
expected density of a stream from a noBH progenitor on the same
orbit with the same evaporation time (f,, = 8.2 Gyr) from p M /.
Taking the initial mass from Section 2.2 (M; = 1.66 x 10° M)
and the maximum mass-loss rate of this cluster on this orbit (M ~
—0.3 My /Myr, from equation 1 of GG23), we then need the mean
drift velocity of a typical star, v. This is found by differentiating
equation (11) with respect to time

]/2

. 4 —
i R=- 2

(M ra ol vc) , (14)
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obtaining’ a mean drift velocity of o ~ 0.8 pc Myr~!. Dividing this
mass-loss rate by the mean drift velocity and then by two, to account
for mass escaping into the leading and trailing tail, gives an expected
maximum density of p ~ 64 Mg deg™' of a noBH stream on the
same orbit. This density is ~ 1.2 times the maximum density in the
top-left panel of Fig. 3, which is due to the fact that for the noBH
model the maximum density in the tails occurs approximately when
stripping begins. The wBH streams density exceeds this value out to
|¢1] ~ 30° for all panels of Fig. 3, except t — ., = 4 Gyr where the
central gap dips below it. This shows that the peak linear density is
another useful metric in assessing the nature of the progenitor after
it has evaporated and the centre of the stream is uncertain.

3.2 Growth rate

The average growth rate of a stream can be approximated from
equation (14) by considering a typical star that has the velocity
offset equal to the mean of the Gaussian distribution upon escape
(Avy = Av, = 0). This shows that the average speed at which a
star moves along the stream is determined by r; at the time of
release, with an adjustment to account for the offset velocity. This
also shows that only the velocity in the y-direction leads to the bulk
motion along the stream, whereas the velocity offsets in the x and
z directions give rise to oscillations. For a circular orbit about an
SIS potential this gives that a typical star travels along the stream
with an average speed of (1 + €)f.r;€2. In the simplest scenario,
taking € and f, both to be unity, this agrees with Kiipper, Macleod
& Heggie (2008), showing that it is solely dependent on the mass
of the progenitor, the progenitor’s orbit, and the Galactic potential
(through y, as seen in equation 14). Therefore, the wBH stream
will grow approximately 1.8(M; ygu/Mi non)'/> > 3.3 times faster
as the noBH stream, which can be clearly seen in Fig. 3.

Due to the low density at the extremes of the stellar streams,
uncertainties arise in formally defining the stream length, as well as
resolving the ends of the streams from the background. Therefore, it is
more pertinent to look at the peak of the linear density profile, which
is the region that is most likely to be resolved in observations. The
position of the peak of the linear density profile as a fraction of the
stream length is determined by the mass-loss rate of the progenitor,
while the ¢, coordinate is dictated by both the mass-loss rate and the
mass of the progenitor cluster at the time that the stars that compose
the peak escaped.

When tidal stripping begins, the peak of the linear density profile
is at the progenitor’s location (¢; = 0) for both wBH and noBH
GCs. During the final stages of evaporation, the decelerating mass-
loss rate of a noBH GC and differential streaming counterbalance
one another to result in a linear density profile that is flat along
approximately half the length of the tails, before declining to the
end of the tails. However, for a wBH progenitor, the accelerating
mass-loss rate and differential streaming compound one another to
increase the magnitude of the density gradient along the stream, with
the mass concentrated near the progenitor’s position. Hence, in both
noBH and wBH cases, the peak of the linear density profile is located
at ¢; = 0 just before the progenitor has fully evaporated.

Once the progenitor has evaporated, the propagation of stars
away from the progenitor’s position, and the velocity distribution

"Note that the same expression can be obtained by differentiating and time
averaging equation (4) over an integer number of epicycles and for a typical
star (Avy = 0) this is the same expression as was derived in Kiipper et al.
(2010)if fo =€ =1.
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Figure 7. Left: a comparison of the position of the peak of the linear density
profile as a function of time since evaporation. Right: the position of the peak
normalized by half the stream length (that is, the distance from the centre of
the stream, where ¢; = 0, to the 98th percentile by mass of |¢;|) as a function
of time since evaporation.

of these stars leads to differential streaming occurring both at the
extremes of the stream and at the centre of the stream (¢, = 0).
In the noBH case, this results in the peak of the linear density
profile rapidly shifting along the tail until a quasi-equilibrium is
reached approximately halfway from ¢; = 0 to the end of the stream,
resulting in the formation of a gap. From this point forward, the
peak remains approximately halfway from the centre of the stream
to the end, asymptotically approaching ¢;(pmax)/(0.5L) — 0.6 as
t — tey = 00, where L is the stream length. Meanwhile, the stream
is growing, resulting in the peak propagating at a near-constant rate,
and differential streaming leads to the peak widening and flattening.
This process can be seen in Fig. 7, in which we see that at t — 7., the
peak is at ¢; = 0°, but at t — ., = 0.1 Gyr it is located at ¢; = 8.5°
and, as seen in Fig. 3, at r — ., =4 Gyr the peak is located at
¢ = 16.5° which is half the distance from the centre of the stream
to the end.

In the wBH case, the propagation of stars away from the progen-
itor’s position also results in the density peak, which was located
at the progenitor’s position at evaporation, propagating along the
stream. Differential streaming not only causes the peak to widen and
flatten, as in the noBH case, but for it to move along the length of the
stream. As the peak moves to a greater fraction of the stream length,
asymptotically approaching ¢ (pmax)/(0.5L) — 0.6 ast — t., — o0
(similar to what we found for the noBH case), the average velocity
of the stars that compose the peak increases due to the greater cluster
mass when they escaped, leading to the rate at which the peak
propagates increasing. This process can be seen in Fig. 7, in which we
see thatatt — z,, = 0 Gyrthe peakisat¢; = 0°,att — t., = 2 Gyrit
is located at ¢; = 5° = 0.05L, att — t., = 4 Gyr the peak is located
at¢; = 10.4° = 0.08L, and at r — £, = 8 Gyr the peak is located at
¢ =23.3°=0.15L.

As seen in the left-hand panel of Fig. 7, for all noBH and wBH
streams of equal evaporation time, there will exist a point at which
the ¢, coordinate of the position of the peak for the noBH and
wBH streams will coincide. The time since evaporation at which this
intersection happens is dependent on the initial mass, orbit, the choice
of free parameters ( f. and €), and n (with a more positive 1 resulting
in a peak further along the stream and a more negative n resulting in a
peak closer to the progenitor’s position post-evaporation). However,
for the noBH-QSG and wBH-QSG models this occurs at t — f,, ~
8.5 Gyr (thatis, ~ 6.7 Gyr in the future, if we assume the GC to were
accreted 10 Gyr ago). As seen in the right-hand panel of Fig. 7, the
position of the peak of the linear density profile as a fraction of the
stream length is approximately 4 times greater in the noBH case than
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Figure 8. A plot of the impact of  on the shape of the central gap at
¢1 = 0 when t — tey, = 2 Gyr for GCs with #., = 8.2 Gyr. The limiting cases
are noBH-QSG (blue) where n = 0.36 and wBH-QSG (orange) where n =
—0.94. Left: Mgy = 0 for all n. Right: Mpg =0 for n > 0 and Mgy =
—0.0155nM; for n < 0 such that Mgy ~ 150 My for wBH-QSG where
n = —0.94 and My = 32 Mg forthe case of n = —1/3 and M; = 6257 M.

the wBH case, and remains approximately twice that of the wBH
case att — o, = 8 Gyr.

3.3 Central gap

The shape of the density profile of the gap from the progenitor’s
position at the centre to the peak of the linear density profile has an
asymmetric ‘S’-shape, as seen in Figs 3 and 8. We define the shape of
the linear density profile of the gap as the shape of the linear density
profile from the centre to the peak of the linear density profile where
¢, and p are normalized by the values of the peak (that is, p/Omax
and ¢; /¢1(omax))- The shape of this curve is primarily dictated by the
mass-loss rate of the progenitor but it has a secondary dependence
on the mass of the retained BH population.

The left panel of Fig. 8 displays the shape of the gap for streams
of equal 7., with differing values of n and all have Mgy = 0.
The decelerating mass-loss rate of a noBH progenitor, as well as
differential streaming, results in the density increasing from ¢; = 0
sharply and gently rounding off to the peak. The resulting shape is
reminiscent of a function of the form y = {/x or an incomplete beta
function® witha ~ 1, b > 1. With increasing time since evaporation
the widening and flattening of the peak leads to a gentler increase
from ¢; = 0, replicated by an incomplete beta function where
a ~ 1 and b is decreasing with time. Whereas, because the wBH
progenitor’s mass-loss rate was increasing as it evaporated, the
shape of the linear density profile of the gap is dominated by the
mass-loss just prior to evaporation, resulting in a more symmetrical
shape that is reminiscent of the Gaussian profile one would expect
from a single burst of mass-loss, or an incomplete beta function
with a ~ b > 1. With time since evaporation the shape of the linear
density profile of the gap of a wBH stream remains approximately
constant.

The retained BH population has a secondary impact on the shape
of the gap. As a noBH cluster approaches evaporation, the cluster
mass tends to zero, leading to the Jacobi radius and, therefore,
the mean velocity of the escaping stars to also tend to zero. This
leads to mass being distributed throughout the gap and the linear
density profile starting to increase from ¢; = 0. However, for a
wBH progenitor approaching evaporation, the cluster mass tends
to the mass of the retained BH population and, therefore, the average

8Incomplete beta function of the form:
Ii(a,b) =T(a + b)/[T(@T®)] [y17'1 — )P~ dr.
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velocity of the final stars is given by equation (14) for ry(M = Mgy).
In the wBH-QSG models rj >~ 14 pc at t —t,, =0 Gyr, such
that the final star escapes at a radial distance of 21 pc from
the centre of the cluster and, according to equation (14), has an
average speed along the stream of ~ 0.4 kms~! with respect to the
progenitor assuming it has a velocity offset equal to the mean of
the velocity distribution. In the wBH-Nbody model at evaporation,
the average radial distance of stars within 50 pc of the progenitor’s
position is ~ 15.7 pc, such that according to equation (14) (taking
€ = f. = 1 for simplicity) these stars will have an average velocity
of ~ 0.35kms~!. This results in a gap with a flat bottom that expands
with time since evaporation, as the final stars are better able to
keep pace with the peak, and a shape reminiscent of a translated
sigmoid function or an incomplete beta function with @ > b > 1.
With increasing Mpy, the more extensive the flat section of the
linear density profile as the final stars have, on average, a higher
velocity. This is an artifact that cannot be reproduced by a noBH
stream because it is directly caused by the mass of the retained BH
population.

Within QSG, the rate at which the gap expands or, due to our
definition of the gap, equivalently the rate at which the density peaks
propagate, can be well approximated from equation (14) evaluated
for the total stellar mass and BH mass contained within the gap, My,
which we have defined as the region |¢;| < ¢ (0max)- This assumes
that the peak of the linear density profile/end of the gap propagates
with the mean velocity of the stars that compose that section of the
stream and so we observe the rate at which the gap expands, vggp, to
have a dependence on the orbit and galactic potential, as well as the
mass contained within the gap, of the form

vgap X QM. (15)

For a noBH stream, the gap expands at near constant vg,, (Fig. 7),
because M,,, is near constant post-evaporation. However, fora wBH
stream, M,,, is time varying, leading to v,,, increasing with time
since evaporation, because the density peak moves to a greater
fraction of the stream length post-evaporation. This variation in
Vgap 1s only significant briefly after evaporation due to the weak
dependence on Mg, such that in wBH-QSG vg,;, can be considered
approximately constant for ¢ — f, =2 3 Gyr, as demonstrated in
Fig. 7.

When comparing the linear density profile of the gap of our
idealized model to the N-body models (as in Fig. 3) we observe
that, while the noBH-Nbody and noBH-QSG models are in good
agreement and have a similar amount of mass retained within the gap,
the centre of the gap in the wBH case is not devoid of mass as the QSG
model predicts. Instead, as seen particularly in the t — ., = 4 Gyr
(bottom-left) panel of Fig. 3, the density peaks are not as sharp in
wBH-Nbody as predicted by wBH-QSG because more stars exist
within the region which wBH-QSG predicts to have no stars. This
suggests that the motion of the final stars to escape the progenitor
GC are no longer well approximated by the QSG equations of
motion and perhaps that the assumption of a constant Mgy may
be insufficient. This can be understood from the fact that during
the final stages of evaporation the low-mass cluster is dominated
of stars with energies well above the critical energy for escape (so-
called ‘potential escapers’; Fukushige & Heggie 2000), which have
average distances from the cluster centre of ~ 0.5r; (Claydon, Gieles
& Zocchi 2017) from which they are able to escape because of their
high energy. This breaks the explicit assumption of the QSG model
that all stars escape through the Lagrange points.
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3.4 Stream width and radial offset

To gain a sense of how the width and radial offset of a stream depend
on the progenitor’s properties, these quantities can be estimated from
Ar. As the typical star escapes with Av, = Av, = 0, equation (6)
reduces to

Ar = fory |cos(y Q1) + %(1 + ) (1 —cos(y Q)| . (16)

The radial offset of the stream from the progenitor’s orbital track can
be approximated as the average radial displacement of a typical star
over time

=20+ ofn (7
14

The width of the stream in the radial direction, w,, can be approxi-
mated as twice a typical star’s mean displacement from Ar,

__ 412
w, = 2(|Ar — Ar]) = p= {F(l +¢€)— 1} fery. (18)

For a progenitor on a circular orbit about an SIS potential these
simply become Ar = (1 + €) fory, w, = 47 '€ f.ry. This shows that
the width and radial offset are dependent on the escape radius. Note
that these expressions are the same as can be obtained from the
equations of motion of Kiipper et al. (2008) if ¢ = f, = 1.

For the assumptions we have made of a circular orbit about a
spherical potential, Erkal et al. (2016) demonstrate that the width
perpendicular to the orbital plane of the progenitor is determined by
the spread in the stars orbital planes

o
w, a (19)
where o is the velocity dispersion at the escape radius given by
equation (10).

From equation (17), it is clear that our model predicts that the final
stars in the wBH case should escape from ~ 21 pc due to the retained
BH population, whereas in the noBH case, as the final stars escape
ry tends to zero. This separation of 42 pc between the centres of the
tails should be detectable in direct observations. This offset which is
present only in the wBH case, not the noBH case, is a feature that is
solely due to the mass of the retained BH population.

When comparing the wBH-QSG and wBH-Nbody models dis-
tributions in the x — y plane (see Fig. 4), we observe that the
wBH-Nbody does not display such a clearly defined offset between
the streams. This can be understood due to potential escapers no
longer necessarily escaping through the Lagrange points. In addition,
Claydon et al. (2017) demonstrated that the velocity dispersion at the
Jacobi radius is better fit by a o oc M>/?* relation than the o oc M'/3
relation of a Plummer model that we assume here, leading to a
factor of two increase in the velocity dispersion at M ~ 10> M. All
these factors contribute to the diffuse nature of the central portion
of the stream. Nevertheless, as seen in the ¢ — t.,, = 4 Gyr (bottom)
panels of Fig. 4, the width of the stream in the central few degrees is
wider in the wBH-Nbody model than the noBH-Nbody model even
accounting for the differing initial masses, and this is owed to the
mass of the retained BH population. However, real stellar streams do
not exist in isolation, as our N-body models do. Perturbations from
dark-matter subhalo (DMSH) flybys, disc shocks, or encounters with
other GCs and dwarf galaxies can cause variations in the structure
of the stream. Under the right circumstances, these could potentially
cause a similar effect increasing the width in the central region.

Comparing the distributions in the y — z plane, for the noBH-
Nbody model, we observe that post-evaporation the width in the
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z-direction, w,, decreases significantly (by a factor of 2 at t — t., =
4 Gyr) from the location of the peak of the linear density profile to the
centre. As can be seen from equation (19), this is due to the decreasing
cluster mass leading to the reduction in the velocity dispersion and,
therefore, as you move to the centre the stream there is a smaller
distribution of orbital planes. However, in the wBH-Nbody model
we see that the width in the z-direction is more uniform along the
length of the stream and w, at the centre is ~ 0.9 times w, at the
peak of the linear density profile in the ¢ — z,, = 4 Gyr snapshot.
This effect is due to the differing mass-loss rates.

4 DISCUSSION

The first three stream properties discussed in Sections 3.1, 3.2, and
3.3 formally depend on the mass-loss rate and not directly on the
BHs, meaning that alternative scenarios that lead to similar mass-
loss histories (such as a low initial cluster density; G21) might
result in similar stream properties. This means that finding such tail
properties is a necessary, but not sufficient, condition for the presence
of BHs. However, G21 show that the region in parameter space (low
initial density and high initial mass) of clusters without BHs that
have similarly high mass-loss rate is extremely small and this ‘fine-
tuning’ problem makes the BH hypothesis a more likely scenario.
We therefore conclude that if the tails suggest that the progenitor
had a high mass-loss rate, the most likely interpretation is that the
progenitor was rich in BHs.

One of the advantages of the QSG models that we present here
is the speed at which they can generate realistic streams/density
profiles, taking less than 0.01 s for as single snapshot of wBH-QSG-
AN/PS (including generating the initial conditions for QSG-PS).
The speed of these models allows for quick exploration of parameter
space compared to N-body models. These models are not just limited
to investigating the impact of mass-loss rate on stream structure.
The QSG models could potentially be used in conjunction with the
equations of motion from Erkal & Belokurov (2015) for stars after
a DMSH flyby to quickly narrow down the parameter space of the
DMSH from the properties of the gap left behind.

The QSG-PS and QSG-AN models are able to quickly produce
realistic streams and density profiles prior- or post-evaporation for
both the noBH and wBH cases, as seen in Figs 3, 4, and 5. There
are, however, a few aspects of the streams structure that QSG-PS
does not capture well. Namely, the distribution in the ¢;—Az plane
and the distribution of central stars near the progenitor cluster post-
evaporation which both require the implementation of more realistic
escape conditions. Further refinement with the implementation of
a more realistic velocity distribution of escapers such as that of
Claydon et al. (2017), a time varying Mgy, and a refined prescription
of escape conditions following a study of stars escaping wBH GCs
during the final stages of evaporation (which may call for a time
varying f.) would greatly reduce these discrepancies making the
insights gleaned from these models more reliable and impactful.

Our model is only valid for streams on circular orbits, but those
on low eccentricity orbits can be approximated using a circular
orbit of equal period with radius Rt and minimizing the effect of
the periodic stretching and compression due to the eccentricity by
multiplying ¢; by R(#)*/R3. For a Kepler orbit Ry is the semimajor
axis and this approximation is within 1 per cent (10 per cent) of
the azimuthal period for orbits with eccentricities below ~ 0.25
(0.75) in an SIS. The expected orbit-averaged mass-loss rate for
eccentric orbits can be calculated using an equivalent circular orbit
with the same mass-loss rate (see BM03), which does not include any
enhancement/reduction in mass-loss at peri-/apo-galacticon. This is
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important as GCs typically exist on eccentric orbits (Odenkirchen
etal. 1997; van den Bosch et al. 1999) and through this methodology
not only can we project streams on to circular orbits to compare to
the QSG models, but we can project the QSG models on to eccentric
orbits allowing us to escape the confines of the circular orbit case.

The easiest approach to extend the model to eccentric orbits is with
the QSG-PS model. The model parameters € and f.r; may need to
be redetermined and may depend on eccentricity and/or the Galactic
potential. A model for eccentric orbit can be deployed to directly
infer the model parameters 1, M; from stream density profiles such
as the ones presented in Patrick et al. (2022). Other improvements
include the preferential escape of low-mass stars and variations in the
stellar mass function which when combined with deep photometry
of streams can provide additional constraints on the IMF of GCs in
addition to IMF constraints from mass modelling of GCs (Baumgardt
et al. 2023; Dickson et al. 2023, 2024).

5 CONCLUSIONS

In this work, we present a semi-analytical model of stream formation
from star clusters on circular orbits and with time-dependent mass-
loss rates and demonstrate that it produces streams that are in good
agreement with N-body simulations of streams. The model has three
free parameters that we determine from the comparison with the N-
body models: (i) the mass dependency of the mass-loss rate, 7, (ii)
the mean distance of escape, f.rj, and (iii) the relation between the
escape radius and the centre of the velocity distribution, €. The best-
fitting values are found to be € >~ 0.57 and f, =~ 1.5 for both values of
n, our choice of initial mass, and Galactic orbit. We then compare the
structure of streams resulting from progenitors that retain a stellar-
mass black hole population (WBH) and those that do not (noBH).
Retention of a stellar-mass BH population leads to streams that are
more massive, have a peak closer to the progenitor location, have a
narrower peak, and are more radially offset from the orbit. This is
because wBH streams have approximately 5 times the mass of the
equivalent noBH stream as the result of their accelerating mass-loss
rate. It is also found that the shape of the central gap in the linear
density profile is dependent on the mass-loss rate, and thereby the
retained BH population.

We also show that the limit on the mass of a noBH GC that can
evaporate in a given time on a given orbit (BM03; GG23) can be
used to show that five of the seven streams (that are believed to
have originated from GCs) included in Patrick et al. (2022) have a
mass that exceeds the initial mass of a noBH GC on an equivalent
circular orbit that can evaporate in 10 Gyr (see Fig. 1). Not only does
the orbit place a limit upon the mass in the stream, but also on the
linear density, such that you do not necessarily need to observe the
whole stream to find the mass within to be inconsistent with a noBH
progenitor. This opens a new avenue to use the plethora of stellar
streams without progenitors to learn about the black hole content of
their evaporated progenitors.

ACKNOWLEDGEMENTS

The authors thank Long Wang for discussions and help with
PETAR and Vasily Belokurov for helpful discussions. DR ac-
knowledges support from the University of Southampton via
the Mayflower studentship, the Erasmus+ programme of the
European Union, and thanks the ICCUB, where most of
the work was conducted, for their hospitality. MG acknowl-
edges support from the Ministry of Science and Innovation

BH streams 465

(EUR2020-112157, PID2021-125485NB-C22, CEX2019-000918-
M funded by MCIN/AEI/10.13039/501100011033) and from
AGAUR (SGR-2021-01069). DE acknowledges funding through
ARCDP210100855.

DATA AVAILABILITY

The data underlying this article will be shared on reasonable request
to the corresponding authors.

REFERENCES

Balbinot E., Cabrera-Ziri 1., Lardo C., 2022, MNRAS, 515, 5802

Banerjee S., Kroupa P, 2011, ApJ, 741, L12

Banerjee S., Belczynski K., Fryer C. L., Berczik P., Hurley J. R., Spurzem
R., Wang L., 2020, A&A, 639, A4l

Baumgardt H., 2001, MNRAS, 325, 1323

Baumgardt H., Makino J., 2003, MNRAS, 340, 227

Baumgardt H., Hénault-Brunet V., Dickson N., Sollima A., 2023, MNRAS,
521, 3991

Belokurov V. et al., 2006, ApJ, 642, L137

Bernard E. J. et al., 2016, MNRAS, 463, 1759

Bonaca A., Price-Whelan A. M., 2025, New A Rev., 100, 101713

Bonaca A. et al., 2020, ApJ, 892, L37

Bonaca A. et al., 2021, ApJ, 909, L26

Bovy J., 2014, ApJ, 795, 95

Bovy J., 2015, ApJS, 216, 29

Bovy J., Bahmanyar A., Fritz T. K., Kallivayalil N., 2016, ApJ, 833, 31

Breen P. G., Heggie D. C., 2013, MNRAS, 432, 2779

Chen Y., Valluri M., Gnedin O. Y., Ash N., 2025, ApJS, 276, 32

Claydon 1., Gieles M., Zocchi A., 2017, MNRAS, 466, 3937

de Boer T. J. L., Erkal D., Gieles M., 2020, MNRAS, 494, 5315

Dickson N., Hénault-Brunet V., Baumgardt H., Gieles M., Smith P. J., 2023,
MNRAS, 522, 5320

Dickson N., Smith P. J., Hénault-Brunet V., Gieles M., Baumgardt H., 2024,
MNRAS, 529, 331

Erkal D., Belokurov V., 2015, MNRAS, 450, 1136

Erkal D., Sanders J. L., Belokurov V., 2016, MNRAS, 461, 1590

Erkal D. et al., 2019, MNRAS, 487, 2685

Fardal M. A., Huang S., Weinberg M. D., 2015, MNRAS, 452, 301

Ferguson P. S. et al., 2022, AJ, 163, 18

Fryer C. L., Belczynski K., Wiktorowicz G., Dominik M., Kalogera V., Holz
D.E., 2012, ApJ, 749,91

Fukushige T., Heggie D. C., 2000, MNRAS, 318, 753

Gibbons S. L. J., Belokurov V., Evans N. W., 2014, MINRAS, 445, 3788

Gieles M., Gnedin O. Y., 2023, MNRAS, 522, 5340 (GG23)

Gieles M., Erkal D., Antonini F., Balbinot E., Pefiarrubia J., 2021, Nat.
Astron., 5, 957 (G21)

Giersz M., Askar A., Wang L., Hypki A., Leveque A., Spurzem R., 2019,
MNRAS, 487, 2412

Grillmair C. J., Dionatos O., 2006, ApJ, 643, L17

Hénon M., 1961, Ann. Astrophys., 24, 369

Hurley J. R., Pols O. R., Tout C. A., 2000, MNRAS, 315, 543

Hurley J. R., Tout C. A., Pols O. R., 2002, MNRAS, 329, 897

Ibata R. A., Gilmore G., Irwin M. J., 1994, Nature, 370, 194

Ibata R., Irwin M., Lewis G., Ferguson A. M. N., Tanvir N., 2001, Nature,
412,49

Ibata R. A., Malhan K., Martin N. F,, Starkenburg E., 2018, ApJ, 865, 85

Ibata R. A., Malhan K., Martin N. F,, 2019, ApJ, 872, 152

Koposov S. E., Rix H.-W., Hogg D. W., 2010, ApJ, 712, 260

Koposov S. E., Irwin M., Belokurov V., Gonzalez-Solares E., Yoldas A. K.,
Lewis J., Metcalfe N., Shanks T., 2014, MNRAS, 442, L85

Koposov S. E. et al., 2023, MNRAS, 521, 4936

Kroupa P., 2001, MNRAS, 322, 231

Kiipper A. H., Macleod A., Heggie D. C., 2008, MNRAS, 387, 1248

Kiipper A. H. W., Kroupa P., Baumgardt H., Heggie D. C., 2010, MNRAS,
401, 105

MNRAS 538, 454-469 (2025)

Gz0z Aeyy Lz uo Jasn uojdweyinog 1o Alsiaaiun Aq 6886208/7St/L/8ES/3101e/SBIUW/ WO dNo"olWapeoe.//:sdny WwoJl papeojumoq


http://dx.doi.org/10.1093/mnras/stac1953
http://dx.doi.org/10.1088/2041-8205/741/1/L12
http://dx.doi.org/10.1051/0004-6361/201935332
http://dx.doi.org/10.1046/j.1365-8711.2001.04272.x
http://dx.doi.org/10.1046/j.1365-8711.2003.06286.x
http://dx.doi.org/10.1093/mnras/stad631
http://dx.doi.org/10.1086/504797
http://dx.doi.org/10.1093/mnras/stw2134
http://dx.doi.org/10.1016/j.newar.2024.101713
http://dx.doi.org/10.3847/2041-8213/ab800c
http://dx.doi.org/10.3847/2041-8213/abeaa9
http://dx.doi.org/10.1088/0004-637X/795/1/95
http://dx.doi.org/10.1088/0067-0049/216/2/29
http://dx.doi.org/10.3847/1538-4357/833/1/31
http://dx.doi.org/10.1093/mnras/stt628
http://dx.doi.org/10.3847/1538-4365/ad9904
http://dx.doi.org/10.1093/mnras/stw3309
http://dx.doi.org/10.1093/mnras/staa917
http://dx.doi.org/10.1093/mnras/stad1254
http://dx.doi.org/10.1093/mnras/stae470
http://dx.doi.org/10.1093/mnras/stv655
http://dx.doi.org/10.1093/mnras/stw1400
http://dx.doi.org/10.1093/mnras/stz1371
http://dx.doi.org/10.1093/mnras/stv1198
http://dx.doi.org/10.3847/1538-3881/ac3492
http://dx.doi.org/10.1088/0004-637x/749/1/91
http://dx.doi.org/10.1046/j.1365-8711.2000.03811.x
http://dx.doi.org/10.1093/mnras/stu1986
http://dx.doi.org/10.1093/mnras/stad1287
http://dx.doi.org/10.1038/s41550-021-01392-2
http://dx.doi.org/10.1093/mnras/stz1460
http://dx.doi.org/10.1086/505111
http://dx.doi.org/10.1046/j.1365-8711.2000.03426.x
http://dx.doi.org/10.1046/j.1365-8711.2002.05038.x
http://dx.doi.org/10.1038/370194a0
http://dx.doi.org/10.1038/35083506
http://dx.doi.org/10.3847/1538-4357/aadba3
http://dx.doi.org/10.3847/1538-4357/ab0080
http://dx.doi.org/10.1088/0004-637X/712/1/260
http://dx.doi.org/10.1093/mnrasl/slu060
http://dx.doi.org/10.1093/mnras/stad551
http://dx.doi.org/10.1046/j.1365-8711.2001.04022.x
http://dx.doi.org/10.1111/j.1365-2966.2008.13323.x
http://dx.doi.org/10.1111/j.1365-2966.2009.15690.x

466  D. Roberts et al.

Kiipper A. H. W., Balbinot E., Bonaca A., Johnston K. V., Hogg D. W.,
Kroupa P, Santiago B. X., 2015, ApJ, 803, 80

Kuzma P. B., Da Costa G. S., Mackey A. D., 2018, MNRAS, 473, 2881

Lamers H. J. G. L. M., Baumgardt H., Gieles M., 2010, MNRAS, 409, 305

LiT. S. etal., 2022, ApJ, 928, 30

Lynden-Bell D., Lynden-Bell R. M., 1995, MNRAS, 275, 429

Malhan K., Ibata R. A., Martin N. F., 2018, MNRAS, 481, 3442

Martin N. F. et al., 2022, Nature, 601, 45

Martinez-Delgado D. et al., 2010, AJ, 140, 962

Martinez-Delgado D. et al., 2023, A&A, 671, Al141

Newberg H. J., Willett B. A., Yanny B., Xu Y., 2010, ApJ, 711, 32

Odenkirchen M., Brosche P., Geffert M., Tucholke H. J., 1997, New Astron.,
2,477

Odenkirchen M. et al., 2001, ApJ, 548, L165

Patrick J. M., Koposov S. E., Walker M. G., 2022, MNRAS, 514, 1757

Pavlik V., Jefdbkova T., Kroupa P., Baumgardt H., 2018, A&A, 617, A69

Plummer H. C., 1911, MNRAS, 71, 460

Sanders J. L., 2014, MNRAS, 443, 423

Shipp N. et al., 2018, ApJ, 862, 114

van den Bosch F. C., Lewis G. F,, Lake G., Stadel J., 1999, ApJ, 515, 50

Wang L., 2020, MNRAS, 491, 2413

Wang L., Iwasawa M., Nitadori K., Makino J., 2020, MNRAS, 497, 536

Wang L., Gieles M., Baumgardt H., Li C., Pang X., Tang B., 2024, MNRAS,
527, 7495

APPENDIX A: CLUSTER MASS EVOLUTION
WITH AND WITHOUT BHS

We use the expression for the evaporation time for clusters with
different amounts of BHs of GG23 (their equation 6)
M
oy X ———. (A1)
Y Mier24iq

This equation has four parameters: (i) x sets the relation between
the evaporation time and the initial mass (after stellar evolution),
which is fixed to x = 2/3; (ii) y sets the evolution of the escape rate
which depends on the BH content: constant for y = 1, accelerating
for y > 1 (WBH) or decelerating for y < 1 (noBH); (iii) My
is the mass-loss rate at fixed reference mass (2 x 10° My), and
(iv) Q4g is a measure of the strength of the tidal field, which
we take to be that of an SIS, Q24 = v/2V. / Rer, Where V. is the
circular velocity. For the three cases shown in Fig. 1 these are
(y, Meet) = (2/3, —30Mg Myr~') for ‘noBH’ (approximately the
BMO3 results and the parameters as used in GG23’s model without
BHs, see their equation 1), (4/3, —45 Mg Myr™!) for ‘wBH median’
(the parameters as used in GG23’s model which accounts for the
effect of BHs, see their equation 21), and (2, —95Mg Myr™!) for
‘wBH max’ which corresponds to GG23’s lowest density N-body
models where the effect of BHs on the mass-loss rate is maximal.
Throughout this paper, we use noBH to refer to GCs that at some
point early in their evolution reach fgy < fgu.qit, causing all BHs
to be dynamically ejected, leading to GCs evolving similarly to GCs
that are initially BH free (Breen & Heggie 2013). We use wBH to
refer to GCs that have fgy > fpu.cric and will eventually become BH
dominated ( fgg — 1; Banerjee & Kroupa 2011). Breen & Heggie
(2013) found fpp crit = 0.1 for their two component models, whereas
GG23 found a lower value of fgy e ~ 0.025 from their N-body
models. This has implications for GCs, as star clusters of metallicity
Z ~0.0001 — 0.001 ([Fe/H] ~ —2.1 to — 1.1) are expected to
have an initial BH fraction of fgu ¢ ~ 0.05 (see Banerjee et al. 2020
their fig. 7, GG23 their fig. 4), meaning that dense clusters eject all
their BHs early on, while lower density clusters can keep BHs until
today.
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APPENDIX B: DERIVING THE EQUATION OF
MOTION

Here, a derivation of the equations of motion of escaped stars
in the cluster centred frame from Section 2.3 is presented. Using
the common substitution # = 1/R and expanding the equations of
motion at leading order gives

dzAu 2 A.Uv fer.l
Au= -2 - , Bl
gz A M0<Vc+R ®D
where 0 is the azimuthal angle about the Galactic centre and
R2
yi=3+ W’(ﬁﬁb. (B2)
C

The corresponding initial conditions of u are given by Au(0) =
— fory/R? and 09 Au(0) = —uAv,/ V.. Giving a solution to equation
(B1) of

2 Av,
Au = —f;? cos(y6) — % [TUL} + f;rj} [1 — cos(y6)]
_ ugAvy sin(yG). B3)
Ve Y
Switching back from u to R
2R [ A
AR = f.rycos(y0) — — i + Jers [1 —cos(y)]
y2 | V. R
_ RAv, sin(y@). (B4)
Ve 14
Using conservation of angular momentum
L. = R%, (B5)

6 can be expressed as

9=E 1 Avy+ferj 4—]/2
R Ve R y?

222 2 A,
-2 (fe” 4 _22Y% ) cos(y6) — 2

R y? 2 Ve

Av, sin(y0)
Ve oy ]
(B6)

Integrating over ¢, and approximating 0 as V.z/R at leading order,
the angular displacement relative to the progenitor can be expressed
as

d1(t, Av,, Avy) = —

4—y2 (Auy +M) Vet

y? V. R ) R

2 2080\ . (yVi
Sl (O Z)f e ) INRY (A
Y R Ve R

2Av, 1 —cos (L&L
_ Ux ( R ) (B7)
Ve v?

This expression gives the angular displacement of a particle from
the progenitor as a function of time and the escape conditions. Since
the Lagrange points move at the same angular rate as the progenitor
(for a circular orbit), the mean velocity at the Lagrange point can be
related to the radial offset through a free parameter €

Av, fehy Av,

— € +
Ve R Ve

; (B8)

where Av, is now the random component of the velocity with a mean
of zero. € = 1 for a constant angular rate. Rewriting Ar and ¢,
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4 —
P Pt (Avy f )%
2 fe . Ve
—F(y —2—2¢) sin (y fl)

n 1 4Av, Ve
— sin ( y —
P Ve "R
1 2Av,
5 1 — cos y—t (B9)
Y
Avx SIH()’¢1)

Ar(t) = ferycos(y ¢1) + f )
Ve )

where we have changed AR to Ar to s1gnify that, in the context
of this work, we are considering it as the displacement from the
progenitor’s orbital track in a cluster centred frame rather than the
change in galactocentric radius in the galactocentric frame, of course
the two are equivalent in this model restricted to circular orbits.

x (1 —cos(ypn) + —— (B10)

APPENDIX C: STREAMS OF EQUAL INITIAL
MASS

Here, we present figures the same as Figs 3 and 4 but for wBH
and noBH streams of equal initial mass. These models are referred
to as noBH-QSG-C and wBH-QSG-C and the parameters used are
listed in Table C1. For these, we calculate the evaporation times from
equation 6 of GG23 and we assume a moderate value for n (—0.33)
and Mgy (50 Mg) in the wBH case. Previously when comparing
to the N-body model we used m, = 0.36 Mg, to try and mimic the
results, however, here we use m, = 0.01 Mg to be able to observe
all the substructure that is encapsulated within the model, we stress
that this does not alter the results of the model in any way, it simply
allows for a higher resolution plot.

Fig. C1 displays the linear density profile of the noBH-QSG-
C and wBH-QSG-C streams which have the same initial mass.
We see that, despite the streams having the same initial mass, the
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Table C1. The parameters used in the noBH-QSG-C

and wBH-QSG-C models. These models have equal

initial mass and the evaporation time is calculated

from equation 6 of GG23.

Equal M; noBH-QSG-C wBH-QSG-C
Potential SIS SIS

R (kpc) 20 20

Ve (kms™1) 220 220

M; Mp) 3000 3000

n 0.33 —0.33

tey (Gyr) 12.0 4.0
Mgy Mop) 0 50

resulting differing evaporation times lead to clear differences in the
streams that make them easily differentiable. The wBH stream is
approximately one third the length of the noBH stream and has a
maximum density over 4 times the maximum density of the noBH
stream 0.5 Gyr after evaporation. Even at 4 Gyr after evaporation,
the wBH stream is approximately half the length and has a maximum
density twice that of the noBH stream. These peak densities of wBH-
QSG-C are above the theoretical maximum density of the noBH-
QSG-C model of ~ 63 Mg deg™! and remains above this value up
tot — tey ~ 8 Gyr.

Fig. C2 displays the mass distribution in the x — y plane and as
expected from equations (17) and (18) these streams have the same
average width and radial offset due them having the same initial mass.
However, due to the differing mass-dependencies of the mass-loss
rate, within the central portion of the stream, the wBH stream will be
wider at the same fraction of the stream length. This is because the
accelerating mass-loss rate ensures that the cluster mass will have
been greater when these stars were released. However, this is a minor
effect due to the weak mass dependency and, therefore, is unlikely
to be useful in determining the nature of an observed stream.

In this scenario the key metrics to differentiate between a wBH and
anoBH stream are the stream length and the location and magnitude
of the peak of the linear density profile.

noBH
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Figure C1. The linear density profiles for the noBH-QSG-C (left) and wBH-QSG-C (right) streams which have the same initial masses on the same orbits.
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Figure C2. A plot of the density distribution of the noBH-QSG-C (left) and wBH-QSG-C (right) in the x — y plane at t — foy = —2, 0, 4 Gyr (from top to

bottom).

APPENDIX D: STREAMS OF EQUAL INITIAL
MASS AND EVAPORATION TIME

Here, for completeness, we present unphysical models of noBH-
QSG-D and wBH-QSG-D streams with the same M; and t,,. The
parameters used for noBH-QSG-D and wBH-QSG-D are listed in
Table D1. We stress that it is unphysical to have a wBH stream and a
noBH stream of equal mass and evaporation time, where the noBH
GChasn ~ 1/3.

G21, demonstrated that it is possible to have a noBH GC with
a mass-loss rate akin to a wBH GC. However, the high-mass and
low initial density required occupy a very small area of parameter
space leading to the ‘fine-tuning’ problem described in G21. In this
case, the noBH progenitor would have an accelerating mass-loss rate
(n < —1/3 rather than the canonical noBH value of n ~ 1/3) and
the only difference between the two streams would be the width of
the stream at ¢; ~ O at t ~ fey.

noBH wBH
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Figure D1. The linear density profiles for the noBH-QSG-D (left) and wBH-QSG-D (right) streams which have the same initial mass and evaporation time, as

well as being on the same orbits.
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Figure D2. A plot of the density distribution of the noBH-QSG-D (left) and wBH-QSG-D (right) in the x — y plane at t — foy, = —2, 0, 4 Gyr (from top to

bottom).

Fig. D1 displays the linear density profile of the streams of equal
initial mass and evaporation time. It is observed that, due to the mass
dependency of the mass-loss rate, the maximum density of the wBH-
QSG-D is over 1.5 times the density of the noBH-QSG-D stream at
t —tey = 0.5 Gyr, and that the mass is concentrated closer to the
progenitor. Fig. D1 demonstrates the differing gap morphologies
that result from the differing mass-loss rates and the mass of the
retained BH population. With time since evaporation the density
profiles become more alike, such that at 4 Gyr after evaporation they
resemble one another, with a rounded shape and similar maximum
densities. However, the position of the peak of the linear density
profile, both the ¢, coordinate and as a fraction of the stream length,
are different with the noBH peak’s position being approximately
twice that of the wBH stream.

The mass distribution of the noBH-QSG-D and wBH-QSG-D
streams in the x — y plane is displayed in Fig. D2. We observe
that, as in the linear density profile, the mass is concentrated closer
to the progenitor’s position in the wBH case than in the noBH case.
In addition, due to the differing mass-loss rates, we observe that near
the centre of the stream, the wBH stream is wider and more offset

© 2025 The Author(s).

than the noBH stream because when the stars that composed this
section of the stream escaped the progenitor GC the cluster mass
was higher. However, due to the weak dependence of the width and
radial offset (cc M'/3), this difference is relatively small.

Table D1. The parameters used in the noBH-QSG-D and wBH-QSG-D
models. These unphysical models have equal initial masses and evaporation
times.

Equal M; and fey noBH-QSG-D wBH-QSG-D
Potential SIS SIS

R (kpc) 20 20

Ve (km s 220 220

M; Mgp) 3000 3000

n 0.33 —0.33

tey (Gyr) 4.0 4.0
Mgy Mp) 0 50
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