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Abstract 12 

When picking up objects, we prefer stable grips with minimal torque by seeking grasp 13 

points that straddle the object’s center of mass (CoM). For homogeneous objects, the 14 

CoM is at the geometric center (GC), computable from shape cues. However, 15 

everyday objects often include components of different materials and densities. In this 16 

case, the CoM depends on the object’s geometry and the components’ densities.  17 

We asked how participants estimate the CoM of novel, two-part objects. Across 4 18 

experiments, participants used a precision grip to lift cylindrical objects comprised of 19 

steel and PVC in varying proportions (steel 3 times denser than PVC). In all 20 

experiments, initial grasps were close to objects’ GCs; neither every-day experience 21 

(metals are denser than PVC) nor pre-exposure to the stimulus materials in isolation 22 

moved first grasps away from the GC. Within a few trials, however, grasps shifted 23 

towards the CoM, reducing but not eliminating torque. Learning transferred across the 24 

stimulus set, i.e., observers learnt the materials’ densities (or their ratio) rather than 25 

learning each object’s CoM. In addition, there was a stable ‘under-reaching’ bias 26 

towards the grasping hand.  27 

An ‘inverted density’ stimulus set (PVC 3 x denser than steel) induced similarly fast 28 

learning, confirming that prior knowledge of materials has little effect on grasp point 29 

selection. When stimulus sets were covertly switched during an experiment, the 30 

unexpected force feedback caused even faster grasp adaptation.  31 

Torque minimisation is a strong driver of grasp point adaptation, but there is a 32 

surprising lack of transfer following pre-exposure to relevant materials.  33 

Keywords: Grasping behaviour, visuomotor learning, composite objects, novel 34 
materials, density estimation.  35 

 36 
  37 
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Plain language summary (max 1500 characters) 38 

Have you ever grabbed a jug of milk that you thought was full, but turned out to be empty?  The 39 

container moved upwards faster than you expected. Or you picked up an object by one end, only 40 

to find that the other end was much heavier, and you struggled not to drop it.  These events are 41 

quite rare, however. Usually, when we lift an object, we automatically grasp it in the correct 42 

way with the right amount of force to smoothly complete a task (e.g. adding milk to tea).  We 43 

ask: how do we manage this for unknown objects?  Specifically, how do we successfully grasp 44 

objects made of two parts, with one part much denser (steel) than the other (PVC)?  To select 45 

the best position to grip the object, so that it doesn’t tip, we need to use knowledge of these two 46 

materials: that steel is 3 x denser than PVC.  Surprisingly, our participants did not use their 47 

previous experience of these materials, when they were asked to lift novel objects. Instead, they 48 

acted as though steel and PVC were equally dense (i.e., had the same weight per cm3).  49 

However, after lifting one object, they quickly learnt to grasp other novel objects in a near-ideal 50 

manner, when those objects were also made of steel and PVC but had different shapes.  Our 51 

participants were just as fast to learn how to interact with ‘trick’ objects in which PVC was 52 

denser than steel.  When we encounter a new set of objects, we don’t trust our eyes to tell us 53 

about the objects’ materials; only feeling is believing.  54 

    55 
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Introduction 56 

Grasping objects is a complex task that we nonetheless efficiently execute hundreds 57 

of times a day with relative ease. Optimal grasping behaviour, i.e., where and how to 58 

grasp an object, is dictated by the characteristics of (i) the human body and hand (the 59 

plant), (ii) the object (the target), and (iii) the planned activity (the task). The human 60 

hand has 27 kinematic degrees of freedom (Lin et al., 2000), while the arm adds 61 

another 7 (Desmurget & Prablanc, 1997; Lemay & Crago, 1996). Relevant muscles 62 

must be activated, each within a specific range of forces that they are able to exert 63 

(Zajac, 1989). Object properties that affect grasping behaviour include size and weight 64 

(Gordon et al., 1991a, 1991b; Gordon et al., 1993), friction (Glowania et al., 2017; 65 

Johansson & Westling, 1984; Klein et al., 2021; Paulun et al., 2016; Wing & 66 

Lederman, 2009), shape (Nguyen, 1988), material properties such as density 67 

(Buckingham et al., 2009; Gordon et al., 1993) and thus the center of mass (Eastough 68 

& Edwards, 2007; Goodale et al., 1994; Lederman & Wing, 2003; Lukos et al., 2007). 69 

The purpose of the grasp (e.g., grasping a bottle to pour vs. to hand it to someone) also 70 

dictates the optimal grasp type and position (Ansuini et al., 2008; Friedman & Flash, 71 

2007).  72 

Broadly, investigations of grasping behaviour have focussed on (i) grasp trajectories 73 

and hand shaping (Harris & Wolpert, 1998; Hoff & Arbib, 1993; Rosenbaum et al., 74 

1999; Smeets & Brenner, 1999; Uno et al., 1989), (ii) grasp point selection (i.e., the 75 

locations at which the finger(s) and thumb make contact with the object, (Crajé et al., 76 

2011; Crajé et al., 2013; Klein et al., 2020; Kleinholdermann et al., 2013; Paulun et 77 

al., 2014), and/or (iii) the load and grip forces applied at those positions (Baugh et al., 78 

2012; Cole, 2008; Delhaye et al., 2024; Gordon et al., 1993; Loh et al., 2010; Salimi 79 

et al., 2003; Salimi et al., 2000). All three of these interact, e.g., when grasp points are 80 

constrained, this will generally affect grasping forces.  81 

Most of the above studies employed stimuli composed of a single material. However, 82 

everyday objects are often composed of different materials with different densities. 83 

This complicates the optimal selection of grasping positions when trying to minimize 84 

force/torque. Here we focus on grasp point selection and in particular how this is 85 

modulated by the mass distribution within objects comprised of different density 86 

materials such as polyvinyl chloride (PVC) and metal (see Fig. 1).  87 
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 88 

Figure 1: Centre of Mass (CoM) for a homogenous and a composite object. (A) 89 

homogenous (single material) object: the centre of mass and geometric centre (GC) 90 

are co-located and independent of density. A grasp axis through the CoM results in 91 

zero torque. (B) Composite (two-part) object: the centre of mass (red stars) depends 92 

on the log density ratio (LDR) of the metal and polyvinyl chloride (PVC) components. 93 

When the densities are equal (rSteel=rPVC; LDR=0) the CoM is equal to the GC. 94 

Increases or decreases in LDR move the CoM asymptotically towards the geometric 95 

centre of the heavier component at GCSteel, or GCPVC. Supplementary Information 96 

Section S1 gives equations for CoM, and Fig. S1A shows the relationship between 97 

LDR and CoM for all stimulus objects.  98 

 99 

Human grasp point selection can be understood using the logic of optimal control 100 

theory: a set of cost or penalty functions are minimized to estimate the optimal state 101 

(Diedrichsen et al., 2010; Shadmehr & Krakauer, 2008; Todorov, 2004; Todorov & 102 

Jordan, 2002). One of these costs is torque; an object will rotate under torque, unless 103 

sufficient (and costly) counteracting force is applied. This is particularly difficult 104 

under a pincer grip, when a single finger opposes the thumb, and torsional friction 105 

must be generated via increasing the grip force. When using a pincer grip, therefore, 106 

we prefer grasp points that are close to, or straddle the centre of mass (CoM) (Eastough 107 

& Edwards, 2007; Endo et al., 2011; Goodale et al., 1994; Lederman & Wing, 2003). 108 

For a purely vertical lift, however, grasp points can merely straddle a vertical axis 109 

through the CoM (e.g., holding a weight via a string). Torque does appear to be 110 

estimated before contact: subjects make anticipatory increases in the normal grip force 111 

in order to prevent rotation under torque (Wing & Lederman, 1998). 112 

Whilst it is clear that torque minimisation is a factor in grasp point selection, little is 113 

known about how density information is inferred or learnt in order to select 114 
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appropriate grasp locations around the CoM, particularly within composite objects. 115 

Many graspable objects are composed of different materials (e.g., tools such as 116 

hammers, knives, and axes). For such composite objects, the CoM depends on the 117 

relative densities of the components in addition to the object geometry (Fig. 1).  118 

Here we focus on how we learn and apply information about material densities within 119 

two-part composite objects in order to minimise torque. Participants were required to 120 

lift and move cylindrical objects comprised of steel and PVC in varying proportions, 121 

using a precision grip. Specifically, we ask: (i) do visual density cues guide grasp 122 

points before any force feedback occurs (i.e., the mass and torque experienced on 123 

lifting), (ii) how do prior expectations of material densities combine with recent 124 

visual-haptic experience to determine grasp points, and (iii) does information about 125 

material densities generalise across objects composed of these materials with different 126 

3D geometries? 127 

This article is published as part of a special issue in the journal Multisensory Research 128 

honouring the life and work of Vincent Hayward, who passed away in May 2023. 129 

Vincent Hayward's work on haptic shape perception has significantly advanced our 130 

understanding of touch-based interactions with objects and inspired us to pursue the 131 

current line of research. Vincent was the first to point out the importance of tactile 132 

(force field) and proprioceptive (positional) interactions for haptic shape perception 133 

(Robles-De-La-Torre & Hayward, 2001).  He also emphasized that both the pattern of 134 

local skin deformation and the change in local surface orientation are essential cues 135 

for haptic shape (Dostmohamed & Hayward, 2005; Wijntjes et al., 2009). Vincent 136 

highlighted the importance of considering mechanisms operating on different scales, 137 

to understand haptic shape perception, from microscopic texture cues to macroscopic 138 

surface orientation cues, focussing on haptic invariants and the use of prior knowledge 139 

for disambiguating haptic shape (Hayward, 2008; Moscatelli et al., 2016; Moscatelli 140 

et al., 2015; Ziat et al., 2010). He also showed that prior expectations of density 141 

differentially affect perception and action in the size-weight and size-inertia illusions 142 

(Platkiewicz & Hayward, 2014). Vincent also explored the role of different cues in 143 

haptic material perception such as friction, roughness, compliance and temperature 144 

(André et al., 2011; Wang & Hayward, 2010; Wiertlewski et al., 2011). This work led 145 
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us (WJA and MOE) to write a grant proposal together with Vincent back in 2016, 146 

which was the starting point for the current work.  147 

To preview the key findings of the current paper: participants initially grasp all objects 148 

close to their geometric centre (GC), but then quickly (within a few lifts) adjust their 149 

grasp positions for bipartite objects towards their centre of mass. In other words, they 150 

quickly learn density information and apply it to the full stimulus set, rather than 151 

learning the CoM for individual objects (Expt. 1). In Experiments 2 and 3 we show 152 

that when material densities change unexpectedly, observers are similarly fast (in fact 153 

even faster) to learn the new density relationship (Expt. 2). This fast adaptation to new 154 

object properties occurs whether the two materials’ relative densities are in line with 155 

prior assumptions (steel denser than PVC) or reversed (PVC heavier than steel: Expts. 156 

2 & 3). Surprisingly, prior experience with the object’s two separate components does 157 

little to guide initial grasping locations of composite objects. Our data suggest that 158 

torque minimisation is a strong predictor of grasp point selection, even when no 159 

explicit instruction is given to prevent object rotation. However, we also find two 160 

stable biases: asymptotic grasp locations remain biased towards the geometric centre 161 

(Expts. 1-4), and there is a bias for under-reaching, i.e. for grasp locations to be biased 162 

toward the initial position of the grasping hand (Expts. 1-4).  163 

 164 

General Methods: Stimuli 165 

To manipulate the mass distribution of compound objects we created two (visually 166 

identical) sets of stimuli, each consisting of nine, 32cm long hollow cylinders 167 

(diameter	2cm). They were made of steel and/or PVC in proportions linearly ranging 168 

from 0 to 1, including a PVC only and a steel only object. In the first set, which 169 

followed a natural density ratio, the steel portion was 3 times denser than the PVC 170 

(total stimulus mass: 68g - 204g). In the second set, this relationship was reversed: the 171 

density of PVC was 3 times denser than the steel side. This was achieved by inserting 172 

a slightly shorter metal cylinder inside the PVC section (total stimulus mass: 164g - 173 

492g). The friction and compliance of the materials were similar (a sample of 174 

colleagues could not distinguish the two materials from touch alone, when mass 175 

information was unavailable, and objects were at skin temperature). Given the salient 176 
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visual differences between the materials, however, any difference in the tactile 177 

properties, following object contact, was redundant.  178 

 179 
 180 
Figure 2: Stimuli and experimental set-up. (A) Stimulus objects: horizontal black markers 181 
show the CoM for the Natural Density set; red markers show the CoM for the Inverted Density 182 
set; black horizontal dotted line shows the GCs. (B) Experimental setup: the participant stood 183 
in front of the grasp platform. Before each trial, the experimenter placed the object on the 184 
transparent base with its right side touching the marker. The participant used their dominant 185 
hand to lift the object with a precision pincer grip and place it on the stand. (C) The grasp 186 
position was determined by identifying the axis (blue) connecting the mid-points of the two 187 
contact areas (yellow). The grasp point is the centre of this axis.   188 

 189 

General Methods: Setup & Procedure  190 

Participants stood facing a small platform within comfortable reaching distance (Fig. 191 

2B). The platform had a transparent top onto which the stimuli were placed and a 192 

camera (Apeman A77 Action Camera) under this platform recorded finger positions. 193 

Although the participants were not aware of the camera’s position, they were informed 194 

that their hand movements would be recorded. After lifting, participants placed the 195 

stimulus on a small stand in front of the platform. If the object’s center of mass was 196 

not within the width of the stand, the objects would tip over once placed, and this 197 

happened frequently during initial trials. Consequently, participants were implicitly 198 
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encouraged to grasp at, or at least estimate, each object’s center of mass. Each trial 199 

consisted of a lift followed by the object’s placement on the stand.  200 

Participants were instructed to grasp the object with two fingers using a precision 201 

pincer grip, to lift it in one single fluid motion, before placing it on the stand. Neither 202 

the centre of mass, nor where to place the fingers on the object were mentioned. Before 203 

starting the experimental trials, 5 practice trials were completed with dummy objects 204 

(cylindrical shapes, made from a homogeneous PVC material, different from the PVC 205 

in the main experiment) so that the participants became familiar with the task. 206 

Each trial began by the experimenter placing a stimulus object in the center of the 207 

grasp platform, 55 cm in front of the participant (see Fig. 2B). This was done using 208 

two hands so that the participant could not gain any density / CoM information by 209 

watching the experimenter. Trial order was independently randomised for each subject 210 

and the orientation of each object (steel part to the left or right) was assigned randomly. 211 

Grasp positions (distance from steel end, as defined in Fig. 2A) were determined by 212 

identifying the centre of the contact regions of index finger and thumb with the object, 213 

and finding the center of the grasp axis between the two (see Fig. 2C). Note that 214 

determining the extent of the contact regions was aided by video, which showed 215 

deformation of the fingertips.  216 

General Methods: Participants 217 

Twenty participants completed Experiments 1-3, with 17 participants in Experiment 218 

4 (all non-overlapping groups). All participants provided their gender by self-report.  219 

Experiment 1: 16 females, 4 males, mean age ± 1SD: 27 ± 7 years; Experiment 2 (A 220 

and B): 11 females, 9 males; 24.75 ± 5.6 years; Experiment 3 (A and B): 19 females, 221 

1 male, 24.95 ± 5.6 years; Experiment 4: 7 females, 10 male, 25.7 ± 3.4 years. All 222 

participants had normal or corrected-to-normal vision and no reported motor deficits. 223 

In Experiments 1-3, all were right-handed and performed the task with the dominant 224 

hand. Experiment 4 included 10 right and 7 left-handers, who performed trials with 225 

each hand. Written consent was obtained before the experiment. The experimental 226 

procedures were approved by the University of Ulm ethics committee (application nr. 227 

245/20). Data and analysis code can be downloaded here: 228 

https://doi.org/10.5258/SOTON/D3407. 229 
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 230 
 231 
Experiment 1: Natural density materials and prior exposure.  232 
 233 

Experiment 1 employed the Natural Density stimulus set. Before the experiment, 234 

participants were asked to lift and briefly explore (approximately 15 seconds) two 235 

homogenous cylinders of uniform density: one made of steel and the other of PVC. 236 

These were 16cm long (i.e., half the length of the main stimuli). This provided 237 

participants with information about the two materials’ densities. Participants then 238 

completed 45 trials (9 objects x 5 lifts per object) presented in pseudorandom order 239 

(object order was randomised within each repetition) in a single session, lasting 240 

approximately 30 minutes. 241 

Data from Experiment 1 are shown in Fig. 3. Figure 3A displays all grasp points per 242 

object, pooled over participants, superimposed on a stimuli schematic. It is apparent 243 

that grasp positions on each observer’s first trial (red dots: one per participant) are 244 

close to the objects' GC (dashed black line), whereas those on the final trial (green 245 

dots) are closer to the true centres of mass of the composite objects (blue lines). (Due 246 

to randomisation of stimulus order, it just so happened that objects 1, 4 and 8 were 247 

never presented first and objects 4 and 7 were never presented last in this Experiment). 248 

The learning trajectory is shown in Figs 3B and C. Figure 3B shows the mean raw 249 

data (red stars) and the model fit (black line – see description below) for all composite 250 

objects (i.e. objects 2-8). For plotting, data (and model fits) have been converted to 251 

normalised grasp location: 252 

Normalised grasp location = (Grasp location – GC) / (CoM – GC)  (1) 253 

A normalised grasp location of 0 corresponds to the geometric centre, and a value of 254 

1 corresponds to the objects' centre of mass. This conversion allows us to aggregate / 255 

compare grasping data across objects on a common scale. Data from objects 1 & 9 are 256 

excluded from these analyses as the grasping locations for these homogenous objects 257 

should be independent of the underlying assumed densities of the two materials. It is 258 

apparent that participants are grasping close the GC within the first few trials, and that 259 

learning asymptotes at positions that are roughly 80% toward the centre of mass. Note 260 

that observers cannot be learning where to grasp in world-centred coordinates because 261 

objects were presented in two different orientations.  262 
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  263 

Figure 3: Experiment 1 Results. (A) Grasp positions pooled across participants. Red 264 

spots show the first grasp, i.e. trial = 1, green spots show the last grasp, and 265 

intermediate grasp points are shown according to the colour continuum. Centre of 266 

mass for each object is shown by a blue bar, with the geometric centre given by a 267 

dashed black line. (B) Raw data averaged across observers (N=20) with error bars 268 

showing ±1SE (red). The average fitted model (translated to equivalent normalising 269 

grasping location) is shown in black, with the shaded region representing ±1SE. (C) 270 

The underlying exponential learning of log density ratio for each observer (grey 271 

lines, one per observer) and their average (black line).  272 

 273 
 274 

Modelling  275 

It is clear from Fig. 3B that observers do not learn the CoM independently for each 276 

object. Instead, information gleaned on the first trial(s) is used to guide grasping closer 277 

to the CoM of novel objects from trial 2 onwards. Thus, observers must be learning 278 

something common to all objects - the ratio of the two components’ densities - which, 279 

alongside visually-defined geometric information (i.e. the extent and location of the 280 

two components), determines the CoM for all objects. We take the log of the density 281 

ratio, as this has the same magnitude irrespective of which component is used as the 282 

denominator, and when the density relationship is reversed in Experiments 2 & 3. The 283 
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log density ratio can be estimated following a single lift, using the mass and torque 284 

experienced for the selected grasp position, alongside the object geometry. Note that 285 

torque plus geometry gives only the difference between the two components’ densities 286 

(not the ratio), and is thus not enough to determine the CoM, without object mass (see 287 

Supplementary Information, Section S2 for equations). To model the learning 288 

trajectory, we assume that observers (likely implicitly) update their estimates of the 289 

log density ratio: LDR = ln (rSteel / rPVC) according to an exponential function 290 

(Cochrane & Green, 2021; Heathcote et al., 2000; Stratton et al., 2007)  291 

𝐿𝐷𝑅, = .𝐿𝐷𝑅,!"#$" − 𝐿𝐷𝑅,%&'0𝑒($" + 𝐿𝐷𝑅,%&'                                (2) 292 

where 𝐿𝐷𝑅,!"#$" is the initial estimate of log density ratio, 𝐿𝐷𝑅,%&' is the asymptotic 293 

estimate of log density ratio after learning, r is the learning rate and t is the number of 294 

preceding trials (i.e. trial number -1). 295 

The model assumes that before each grasp, the CoM for the newly encountered object 296 

is determined by the current estimated log density ratio, 𝐿𝐷𝑅,, alongside the new 297 

object’s geometry. Grasp locations are perturbed from this CoM location by random 298 

noise from a Gaussian distribution. The model fit to each observer’s data had three 299 

free parameters: 𝐿𝐷𝑅%&', r and sN, the standard deviation of the response noise. 300 

𝐿𝐷𝑅!"#$" was fixed as 0, i.e. an initial assumption of equal density of the two 301 

components. The model was fit to each observer’s data independently, using gradient 302 

descent (fminsearch, Matlab, (The MathWorks, 2023)) to find the parameters that 303 

maximised the likelihood of the data. We evaluated alternative models, e.g. those that 304 

included 𝐿𝐷𝑅!"#$" as a free parameter and / or noise in the estimate of 𝐿𝐷𝑅, or 305 

exponential learning of the raw (rather than log) density ratio, but these were rejected 306 

following model comparisons (see Supplementary Information, Section S3). 307 

Figure 3C shows the exponential learning curves fitted to individual observers’ data 308 

in Experiment 1 with the mean across observers in black. Observers’ initial grasps 309 

were not significantly different from the GC (mean initial grasp = 15.4cm, GC=16cm, 310 

one sample t-test: t19 = -1.4241, p= 0.17). Somewhat surprisingly, this suggests that 311 

observers’ exploration of the two component materials before the main experiment 312 

did not guide their grasping on trial 1. It is also apparent that there is a great deal of 313 

individual variation in the amount of learning: some participants display near-perfect 314 
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adaptation, as signified by 𝐿𝐷𝑅	close to the true log density ratio of 1.1, i.e., ln(3), 315 

corresponding to normalised grasping locations of ~1. Other participants show very 316 

little adaptation – their estimated log density ratio rose only slightly above 0, i.e., 317 

grasping positions stayed around the objects’ geometric centres.  318 

Figure 3B shows the exponential model fit, after converting 𝐿𝐷𝑅	to the corresponding 319 

estimated CoM, and from this to normalised grasping location. This conversion allows 320 

us to visualise the model alongside the grasping data for all objects. The relationship 321 

between log density ratio and normalised grasping position is slightly different for 322 

each object, resulting in a model fit that it not a smooth curve in this space (see 323 

Supplementary Information, Fig. S1). 324 

Learning is, on average, fast, with a mean learning rate of 1.17, corresponding to a 325 

52% shift towards the asymptotic log density ratio, on average, per trial. However, 326 

learning is also incomplete; on average, participants asymptote at grasping positions 327 

between the GC and CoM, corresponding to an average LDR of 0.88, compared to the 328 

true value of 1.1.  329 

Interim Discussion 330 

In Experiment 1, participants initially grasped objects close to their GC. This is 331 

somewhat surprising, given that they had prior experience of the two materials’ 332 

densities in isolation, and given previous findings that participants use visual density 333 

cues to explicitly estimate the CoM of composite objects similar to ours (Crajé et al., 334 

2013; Paulun et al., 2019). On subsequent trials, participants did quicky adjust their 335 

grasp towards the CoM, reducing torque. This is in broad agreement with previous 336 

findings, that participants prefer grasp positions that reduce torque (Klein et al., 2020; 337 

Kleinholdermann et al., 2013; Lukos et al., 2007).  338 

In Experiment 1, the component densities were consistent with participants’ every-339 

day experience of similar materials (i.e. PVC is generally ‘lighter’, i.e. less dense than 340 

metal) and also consistent with the properties of the component parts that they 341 

explored before the main experiment. In Experiments 2 & 3 we explore what happens 342 

when objects are encountered that differ from long-term and/or recent prior 343 

experience.  344 
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 345 

Experiment 2: Natural and inverted density relationships 346 

Experiment 2 had two parts. Part A was identical to Experiment 1, with the exception 347 

that participants were not given the opportunity to explore the two component 348 

materials before the main task. This allowed us to identify whether the pre-exposure 349 

in Experiment 1 had any effect on grasping behaviour. As before, Part A employed 350 

the Natural Density stimulus set and participants completed 45 trials (5 repetitions x 351 

9 objects, in pseudorandom order).  352 

After Part A, participants left the room for a short break, during which, unbeknownst 353 

to them, the stimuli were switched to the Inverted Density set for Part B. This switch 354 

allowed us to explore how easily participants can adapt to new material properties, 355 

and moreover, whether learning is slower or less complete when these new materials 356 

are at odds with long-term prior experience.  357 

The results of Experiment 2 are shown in Fig. 4A for Part A (left column) and Part B 358 

(right column). In Part A, grasping is initially near the geometric centre of the objects, 359 

before gradually shifting towards the centre of mass (corresponding to a log density 360 

ratio close to the true value of 1.1). In fact, grasp positions were significantly different 361 

from the GC on trial 1 (mean = 14.7cm, t19=-3.1778, p<0.01 for t-test against GC) but 362 

were closer to the GC on trial 2 (mean = 15.1cm, t19= -1.2061, p=0.24), suggesting the 363 

initial difference could be an anomaly. We note that, as in Experiment 1, model fits 364 

were not improved by fitting 𝜌!"#$" as a free parameter, rather than fixing it to reflect 365 

equal density, i.e., to predict grasping at the GC (see Supplementary Information, 366 

Section S3).  367 

 368 
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 369 

Figure 4: Experiment 2 Results. (A) Grasp positions pooled across participants in 370 
Part A (left) and Part B (right). Red spots show the first grasp, i.e., green spots show 371 
the last grasp, and intermediate grasp points are shown according to the colour 372 
continuum. The true centre of mass for each object is shown by the blue bars. (B) Raw 373 
data averaged across observers (N=20) with error bars showing ±1SE (red). The 374 
average fitted model (translated to normalising grasping location) is shown in black, 375 
with the shaded region representing ±1SE. (C) The underlying exponential learning 376 
of log density ratio for each observer (grey lines) and their average (black line).  377 

 378 

Comparison with Fig. 3 reveals that learning was slower on average in Experiment 2A 379 

than in Experiment 1, suggesting that although pre-exposure in Experiment 1 did not 380 
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seem to affect the initial grasp, it may have expedited subsequent learning. Statistical 381 

comparisons between experiments are presented below in section ‘Experiment 382 

comparisons’.  383 

Participants were unaware of the stimulus switch before Part B, and this is evident in 384 

the data: there is clear carry-over from Part A of the learnt density relationship. The 385 

initial normalised grasp locations in Part B are well below 0 (mean = -0.62, one-sample 386 

t-test against 0: t19= 2.5577, p<0.05, see Fig. 4B), and the initial grasp points (red dots) 387 

sit below the GC in Fig. 4A, right column. These initial grasping positions are well 388 

predicted by the model in which 𝐿𝐷𝑅!"#$" is assigned as the fitted LDR from the final 389 

trial of Part A; allowing 𝐿𝐷𝑅!"#$" to be fit as a free parameter did not significantly 390 

improve the model fit (see Supplementary Information: Section S3). Verbal debrief 391 

after the experiment confirmed that participants were unaware of the switch and were 392 

surprised by the object properties on the first trial of Part B. We had hypothesised that 393 

learning may be slower in Part B, after the density relationship of the PVC and metal 394 

components was reversed. However, the opposite was observed – participants were 395 

very fast to adapt to the new stimuli to minimise torque (see Fig. 6 and below for 396 

cross-experiment comparisons).  397 

 398 

Experiment 3: Inverted and then Natural Density relationships 399 

Experiment 3 was identical to Experiment 2 except that the Inverted Density stimulus 400 

set was used in Part A, and then (secretly) swapped for the Natural Density stimulus 401 

set in Part B. This manipulation allowed us to explore the interaction of long-held 402 

assumptions with recent experience. If long-term experience significantly affects 403 

grasp planning, learning should be slower in 3A than in 2A (given the unnatural 404 

density relationship in 3A), but faster in 3B than 2B, when the stimuli revert to natural 405 

densities. (Different participants completed Expts 1, 2 and 3). 406 

Figure 5 shows the results of Experiment 3. The pattern of learning is broadly similar 407 

to that for Experiment 2: in Part A, observers gradually shift their grasping positions 408 

from near the GC towards the CoM, but with incomplete adaptation, on average. 409 

Following the switch of stimuli (Part B) there is substantial carry-over of learning 410 

from Part A, which is followed by rapid adaptation to the new relative densities, i.e. 411 
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the new CoM positions. As in Experiments 1 & 2 there is substantial inter-subject 412 

variability, with some participants showing little adaptation to reduce torque.  413 

 414 
 415 

Figure 5: Experiment 3 Results, identical format to Fig. 4.  416 
 417 
 418 

Experiment comparisons 419 

We can directly compare the learning rates and extent of adaptation (i.e., the final 420 

fitted log density ratio / the true log density ratio) across Experiments 1-3, as shown 421 

in Fig. 6. The left-hand plot shows that learning rates varied substantially across 422 

experiments. To correct the skewed distributions, learning rates were log-transformed 423 

before ANOVAs and post-hoc comparisons. Learning differed significantly across 424 
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Expts 1, 2A and 3A (F2,57=6.06, p<0.01; Bonferroni corrected post-hoc Expt. 1 vs 3A: 425 

p<0.01, see Supplementary Information S4). Thus, there is evidence that the short-426 

term pre-exposure in Experiment 1 lead to faster learning, as learning was faster in 427 

Experiment 1 than 2A (but not significantly so) and significantly faster in Experiment 428 

1 than 3A (despite 3A employing the Inverted Density stimulus set).  429 

 430 

              431 
Figure 6: Learning rates (left) and the extent of adaptation (right) for Experiments 432 

1-3. The dashed line shows full adaptation, i.e., final estimated log density ratio 433 

equal to the true value. Shaded pink areas show experimental conditions involving 434 

the Inverted Density ratio stimulus set.  435 

 436 

There is no evidence that long-term experience, i.e. that PVC is generally less dense 437 

than metal, had an impact on learning rate; there was little difference in learning rates 438 

between 2A and 3A, or between 2B and 3B (2 Factor ANOVA, part (A vs. B) x expt. 439 

(2 vs. 3), ns effect of expt: F1,38=0.94, p=0.34, ns interaction expt. x part: F1,38=2.1, 440 

p=0.15). Interestingly, learning was significantly faster following the surreptitious 441 

change of stimulus set between 2A and 2B and between 3A and 3B (Bs significantly 442 

faster than As: F1,38=48.6, p<0.001). As noted above, participants were surprised 443 

following their first interaction with the new set of stimuli, and it is possible that this 444 

awareness of a stimulus change caused more rapid learning, akin to the ‘oops’ effect 445 

described in a different visual-haptic learning paradigm (Adams et al., 2010).  446 

We can compare object-level adaptation of grasping position across experiments. 447 

Figure 7 shows the mean grasping position per object within different time windows. 448 

Because trial order was independently randomised for each subject, only a small 449 

number of participants lifted each object on each trial (average = 2.8). Given the large 450 
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inter-observer variability (in addition to within-observer noise), we pool data across a 451 

4-trial window to reveal per-object grasping trajectories. Data are noisy (in part 452 

because a different subset of participants is represented by each data point), but it is 453 

nonetheless clear that participants are already learning object-specific grasping 454 

positions in early trials. Shaded green areas show windows where the grasping pattern 455 

across objects within the trial window was significantly correlated (p<0.05) with the 456 

asymptotic grasping locations (i.e., averaged across trials 15-35) for the same subset 457 

of participants. These asymptotic grasping positions (averaged across all observers) 458 

are shown on the right-hand side of each plot.  459 

 460 
Figure 7: Grasping trajectories for individual bipartite objects 2-8. Each subplot 461 
shows a different experiment. Each trial window pools data across subjects and 462 
across 4 trials: window 1 = trials 1 to 4, window 2 = trials 2 to 5, etc.. Each line 463 
colour shows a different object, and the horizontal dashed line shows the GC. Green 464 
shaded regions show epochs where there is a significant correlation (p<0.05) 465 
between the grasping positions in the current epoch and the asymptotic grasp points 466 
(defined as the average grasping position per object across the last 20 trials for the 467 
same subset of observers). These asymptotic grasping positions (averaged across all 468 
observers, “Asym.”) are shown to the right of each plot. Error bars are ±1SE across 469 
observations.  470 
 471 
 472 

In Experiment 1, grasp positions on trial 1 did not differ from the geometric centre. 473 

However, Fig. 7 shows that differentiated grasp positions emerged very early – 474 

within the first 5 trials – i.e., before any stimuli had been repeated. This suggests that 475 
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participants were almost immediately estimating the CoM across objects by 476 

combining density information with object geometry. In Experiments 2 & 3, the 477 

object-by-object grasping pattern is detected later (trial window 8 and 6, 478 

respectively). This might reflect greater response noise due to uncertainty in the 479 

learnt density relationship, or some early generalised learning, e.g. metal side is 480 

denser (Expt. 2), or the PVC side is denser (Expt. 3), within the first few trials. The 481 

slightly earlier emergence of a differential grasping pattern in Experiment 1 is in 482 

broad agreement with the evidence from learning rates (Fig. 6); pre-exposure to the 483 

stimulus materials seems to have facilitated learning after trial 1. Participants 484 

seemingly used trial 1 (consciously or unconsciously) to determine whether 485 

information gleaned from the homogenous pre-exposure objects was valid.  486 

 487 

An object-by-object grasping pattern emerged very early – within the first 4 trials – 488 

in Experiment 2B (slightly later in 3B). Although the absolute CoM positions were 489 

very different for the ‘Normal’ and ‘Inverted’ set of stimuli, the pattern across 490 

objects was partially correlated. Thus, it is possible that this pattern partially 491 

transferred from Part A to Part B. Alternatively, as mentioned above, the large / 492 

unexpected force-feedback following the stimulus switch may have triggered fast 493 

adaptation to the new material densities.  494 

 495 

In all experiments, participants failed (on average) to show complete adaptation; see 496 

Fig. 6B: data sit below the dashed line at 1. In other words, participants did shift 497 

their grasping towards the CoM, but not completely, and thus continued to 498 

experience systematic torque. This ‘undershoot’ was significant for Experiment 1 499 

(t19= -2.16 , p<0.05), Experiment 2a (t19=-2.26, p<0.05) and Experiment 3b (t19=-500 

2.20, p<0.05).  Our stimuli were fairly light (Natural Density set: 68-204g, Inverted 501 

set: 164-492g) and thus it is possible that we would have seen more complete 502 

adaptation with heavier objects (producing higher torque when grasping away from 503 

the CoM). Alternatively, decreasing friction (e.g. by adding a lubricant) may 504 

enhance adaptation by increasing the effects of torque. Previous authors have 505 

suggested that, since torque varies little with grasp position for lighter objects, it 506 

becomes a weaker predictor of contact point selection (Klein et al., 2020; 507 

Kleinholdermann et al., 2013). By this logic, we should have seen more complete 508 

adaptation with the heavier, Inverted Density set but this was not observed.  509 
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 510 

By comparing grasp positions for the two stimulus orientations (orientation 1: metal 511 

part on the left; orientation 2: metal part on righthand side) we can see that this 512 

manipulation modulates observers’ underestimation of the true CoM (Fig. 8). Object 513 

orientation systematically affected the grasping position, shown here in object-514 

centred co-ordinates; 2 factor ANOVAs (object x orientation) for each experiment 515 

confirmed that this orientation effect was significant (p<0.01 for Experiments 1, 2A, 516 

3A, 3B, p<0.05 for Experiment 2B, see Supplementary Information S5). This 517 

translates to a bias in world-centred co-ordinates such that grasping was biased 518 

towards the object’s right-hand end, i.e. an apparent bias to under-reach, which could 519 

be a strategy to minimise energy expenditure (Huang et al., 2012; Kleinholdermann 520 

et al., 2013). All participants in Experiments 1-3 were right-handed and performed 521 

all trials with their right hand.  522 

 523 

Figure 8: Effect of object orientation. Each subplot shows a different experiment. 524 

Blue and red show grasp positions (distance from metal end for objects 2-8; distance 525 

from left-hand end for objects 1, 9) for the different object orientations, for each 526 

object. The true CoM is shown in black. Horizontal dashed lines give the geometric 527 
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centre. Bottom right plot shows results of Experiment 4, plotted according to object 528 

orientation, and the hand used for grasping (RH, LH).  529 

Experiment 4: Control experiment to examine hand-related biases 530 

To test our interpretation of the bias shown in Fig. 8a-e, we conducted a fourth 531 

experiment that involved a mixture of right and left-handed participants, and a subset 532 

of the Natural Density stimulus set (objects 3, 5 & 7). These participants performed 533 

half of the trials with their left hand and half with their right hand, for a total of 60 534 

trials (3 objects x 2 orientations x 2 hands x 5 repetitions). Left- and right-handed 535 

grasping trials were blocked, with trial and block order randomised across 536 

participants. The results are shown in Fig. 8f. It is clear that the same pattern of bias 537 

is seen under right-handed grasping (solid lines, blue above red), whereas the bias 538 

pattern reverses when the same observers use their left hand (dashed lines). A 3 539 

factor ANOVA (object x orientation x hand) confirmed a significant interaction 540 

between object orientation and grasping hand (F1,16=30.8, p<0.001). This pattern of 541 

bias is consistent with our hypothesis, that participants systematically ‘under-reach’; 542 

objects are grasped closer to their left-hand end when grasping is done with the left 543 

hand. As in the main experiments, we can also see evidence of incomplete adaptation 544 

to the true density ratio; grasping is between the CoM and the geometric centre 545 

(dashed horizontal line). 546 

 547 

General Discussion 548 

We conducted four experiments in which participants picked up cylindrical objects 549 

made of varying proportions of steel and PVC, using a precision pincer grip, and 550 

placed them on a stand. As grasp point selection was unconstrained, we were able to 551 

observe the changes in grasp location over trials to infer how participants use visuo-552 

haptic cues along with prior knowledge to adapt their grasping behaviour. Across all 553 

experiments, participants’ initial grasps were close to the objects’ geometric centres 554 

(GC) and over trials, grasp positions moved closer to the objects' center of mass 555 

(CoM). Participants did not apply prior knowledge of material densities on the first 556 

grasp but quickly learned it through iteration. This learning transferred to other objects 557 

within the stimulus set that had different proportions of the two materials.  558 
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How are initial grasp points selected?  559 

Participants initially grasped the objects close to the GC, apparently guided by visual 560 

cues to object size and shape, under the assumption that the two components have 561 

equal density. Indeed, it has previously been suggested that grasping at the GC may 562 

be a default strategy when the CoM is unknown (Lukos et al., 2007). However, our 563 

participants had access to material density cues that could have allowed them to 564 

achieve more accurate estimation of the CoM: visual material cues (all experiments), 565 

and in Experiment 1 observers also explored the individual materials before the 566 

experimental trials.  567 

If lifelong experience with familiar materials was exploited when grasping novel 568 

composite objects, participants’ initial grasps should have been biased away from the 569 

GC towards the true CoM, i.e. towards the apparently denser (metal) side of the object. 570 

Previous work, with similar bipartite objects, shows that participants do use such 571 

material density priors cues to guide CoM estimates when the CoM is explicitly 572 

estimated (Crajé et al., 2013; Lee-Miller et al., 2016; Paulun et al., 2019). Why does 573 

this not translate to grasping behaviour? In Crajé et al. (2013), grasping position was 574 

constrained, but grasping forces were measured. On initial trials, participants did not 575 

modulate anticipatory grip forces (i.e. to create a compensatory moment) to counteract 576 

expected torque in bipartite objects. In contrast, for homogenous objects, anticipatory 577 

grip forces were modulated by the object’s total expected weight (given the apparent 578 

material), consistent with previous studies of the material weight illusion (see below). 579 

In Lee-Miller et al. (2016), grasping was also constrained to a vertical handle above 580 

the bulk of the object (an inverted T shape), but the grasping surface was vertically 581 

extended. Participants introduced a small vertical offset between finger and thumb on 582 

trial 1 but used a much larger offset by trial 10. (But note that participants were 583 

explicitly instructed to avoid object roll in this study).  584 

The only effect of prior experience that we observed was the faster learning rates of 585 

Experiment 1, after participants explored homogenous cylindrical objects with the 586 

same materials as the subsequent objects. This suggests that recent experience of the 587 

material densities may facilitate subsequent speed of grasp point adaptation.  588 
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Our study reveals that the dichotomy between explicit estimates of CoM and initial 589 

grasping behaviour persists even in a more naturalistic, unconstrained grasping task. 590 

Why would such a dichotomy arise? There have been suggestions of a broader 591 

neurophysiological perception-action disconnect (Goodale & Milner, 1992). 592 

However, a more ecological account might assume that the two tasks involve very 593 

different costs: There is no error cost in the explicit estimation task. In a grasping task, 594 

however, there is a potential cost of instability / object roll (and possible drop) if the 595 

visual density cues turn out to be misleading (see below).  596 

 597 

Contrast with homogenous objects (e.g., the material-weight illusion).  598 

As noted above, participants do scale anticipatory grip forces according to the apparent 599 

material of an object (Crajé et al., 2013). Indeed, this has been proposed to explain the 600 

material-weight illusion (MWI). The MWI occurs when subjects lift two equal-sized 601 

objects made of apparently different materials (e.g., wood and brass) that in fact have 602 

equal weight. Upon lifting, the heavy-looking object is perceived as lighter than the 603 

lighter-looking object (Buckingham et al., 2009; Ellis & Lederman, 1999; Seashore, 604 

1899). One explanation is that, because greater grip and load forces are applied to the 605 

heavier-looking object, it is lifted faster and more easily than anticipated. However, 606 

note that, as in the size-weight illusion (Flanagan & Beltzner, 2000), the illusion 607 

persists after force adaptation (Buckingham et al., 2009), although see Harris et al. 608 

(2024). Learning a new size-weight relationship (an inverted illusion) after density 609 

manipulations follows a much slower learning trajectory (days or weeks) compared to 610 

the rapid adaptation of grip forces within a few trials (Flanagan et al., 2008). 611 

 612 

Learning trajectory 613 

Previous studies have shown that, within a session of many trials, actors use grasp 614 

points that reduce torque (Klein et al., 2020; Kleinholdermann et al., 2013; Lukos et 615 

al., 2007) and adjust their grasping forces to counteract torque (Crajé et al., 2013). 616 

However, these studies did not reveal how quickly grasp point adaptation occurs. We 617 

show that the majority of learning occurs following the very first trial, on experiencing 618 
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the mass and torque of a stimulus, and that this fast learning occurs without explicit 619 

instruction to eliminate object rotation. Studies in other domains have shown evidence 620 

of perceptual priors that form over lifelong experience but remain adaptable in 621 

response to long-term visual-haptic learning (Adams et al., 2004; Champion & 622 

Adams, 2007; Flanagan et al., 2008; Kerrigan & Adams, 2013). Kording et al. (2007) 623 

and Burge et al. (2008) suggested that states considered (perhaps implicitly) to be 624 

probabilistically transient or short-term should be easily adapted, while states which 625 

are likely more stable over time should be slower to adapt. Alternatively, priors may 626 

be updated / over-ruled only within a particular environmental context (Kerrigan & 627 

Adams, 2013). 628 

Our study suggests that density priors are easily adaptable, broadly in line with fast 629 

adaptation of grasp and load forces in the MWI (Buckingham et al., 2009). In fact, we 630 

failed to see faster learning in our Natural Density condition than the Inverted one, 631 

suggesting very little influence of visually-derived density priors. One possible reason 632 

for the rapid updating of material density priors may be the high degree of uncertainty 633 

(i.e. a weak correlation) in the relationship between the look of an object and its 634 

density distribution: objects may be only coated with the material visible on the 635 

outside, such that they are primarily composed of a more or less dense material, or 636 

they might be hollow. Uncertainty in this appearance-density distribution relationship 637 

may be increased in multi-material objects such as those used in this experiment. One 638 

reason the material-weight-illusion is much weaker than the size-weight-illusion 639 

(Buckingham, 2014) may be the high uncertainty between the look of the material and 640 

its weight compared to its size-weight relationship; the size-weight illusion may, in 641 

part, relate to an assumption that similar-looking objects that are presented side-by-642 

side will have the same size-weight relationship (although see Pisu et al. (2024) for 643 

discussion of different SWI models).  644 

The fast learning that we observe, particularly in Experiment 1, also indicates that 645 

observers are applying material density information from one object to determine the 646 

CoM of others in the set. It remains somewhat puzzling that pre-exposure to the two 647 

materials within homogenous objects in Experiment 1 did not transfer to the initial 648 

grasp location for the stimulus objects – participants apparently did not initially trust 649 
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that the materials were the same. It is worth noting that Crajé et al. (2013) also found 650 

that pre-exposure to object components failed to modulate initial grasping forces.  651 

 652 

Is torque the only cost function at play? 653 

When selecting a grasping posture and position, various cost functions, in addition to 654 

torque minimisation are at play. These include (i) force closure: the grasping surfaces 655 

should be (close to) parallel, with gripping forces directed towards each other, 656 

although this can be relaxed when friction is greater (Blake et al., 1992; Chen & 657 

Burdick, 1993; Iberall et al., 1986; Nguyen, 1986) (ii) biomechanical comfort, which 658 

promotes the natural grasp axis (Lederman & Wing, 2003) and the natural grasp 659 

aperture (Cesari & Newell, 1999), (iii) end state comfort (Rosenbaum et al., 1999) and 660 

(iv) minimal grasping movement, i.e. a preference for grasp locations closer to the 661 

grasping hand (Kleinholdermann et al., 2013).  662 

Kleinholdermann et al. (2013) and Klein et al. (2020) have shown that torque 663 

minimisation is combined with these other constraints to guide grasp point selection. 664 

In the present study, we would expect participants’ asymptotic grasp positions to be 665 

at the CoM, on average, if torque were the only cost function involved. However, this 666 

was not observed; two small but stable biases were observed. A bias towards the GC 667 

was evident in all experiments (see Fig. 6b). Such biases have previously been 668 

described as a “symmetry prior” (Lukos et al., 2007). Another possibility is that 669 

observers do not fully adapt their estimates of material density to the true values, 670 

instead ‘holding on’ to the assumption that the two materials’ densities are (or may 671 

revert to) being more similar, akin to regression to the mean in conditions of 672 

uncertainty. In fact, there was substantial inter-observer variation in the extent of 673 

adaptation, with some participants continuing to grasp near to the GC, on average. 674 

In addition, we saw a bias in which grasp positions were closer to the grasping hand. 675 

Similar biases have been observed previously (Huang et al., 2012; Klein et al., 2020; 676 

Kleinholdermann et al., 2013; Paulun et al., 2016) and may reflect a trade-off between 677 

reducing torque and reducing the size of the arm movement (and thus energy 678 

expended) to grasp the object. Logically, this trade-off should depend on object 679 

weight, because lighter objects produce less torque. We might, therefore, expect a 680 
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smaller grasping undershoot for the heavier (greater torque) Inverted Density set, but 681 

this was not observed.  682 

Kleinholdermann et al. (2013) found that torque minimisation played a significant but 683 

very small role in grasp point selection, when competing with other factors (force 684 

closure, natural grasping axis) in a set of relatively light (38-89g) objects. Similarly, 685 

Klein et al. (2020) found that torque was not minimised via grasping position in a set 686 

of lighter objects (97g). They did find an effect of torque for heavier objects (716g) 687 

but the increase in weight was confounded with an additional instruction to keep 688 

objects level. Paulun et al. (2016) found that the magnitude of grasping undershoot is 689 

correlated with object mass in homogenous cylinders, suggesting a trade-off between 690 

different costs. We did not, however, see the same difference between our 691 

homogenous objects of steel and PVC (i.e., objects 1 and 9).  692 

Paulun et al. (2014) have suggested that the cause / benefit of under-reaching may not 693 

be cutting energy costs, but the maximisation of object visibility (i.e. minimising 694 

occlusion by the hand). With our relatively wide stimuli, and absence of grasping 695 

positions near the stimulus ends, maximising visibility is unlikely to explain our 696 

observed pattern of orientation-related bias. Another possibility is that, in the presence 697 

of uncertainty about the true CoM, the ‘undershoot’ may reflect a strategy to limit 698 

object rotation: if the true CoM is away from the hand, the object’s rotation will be 699 

blocked by the palm.  700 

Overall, it seems likely that torque minimisation drives grasping position, but in 701 

competition with other costs and constraints. However, it is less clear to what extent 702 

this trade-off is modulated by object weight, or weight distribution.  703 

 704 

Conclusion 705 

Human grasping behaviour suggests that we place little trust in visual cues to predict 706 

material density; initial grasps of a newly encountered set of objects reflect an 707 

assumption of equal density which manifests as a preference for grasping objects at 708 

their geometric centres. On the other hand, there appears to be a strong expectation 709 

that within a set of objects, material densities will be consistent: generalised learning 710 
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occurs rapidly. Upon encountering evidence (mass, torque from a single lift) that the 711 

object set has changed, adaptation is expedited, and previous experiences are 712 

disregarded. Torque minimisation is clearly a strong driver of in the choice of grasp 713 

location. However, stable biases away from the centre of mass suggest that other cost 714 

functions are also influential in selecting the optimal grasping points.  715 
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Supplementary Information for “Grasping New Material Densities”.  965 
      966 
  967 
S1. Relationships between log density ratio, centre of mass, object mass and 968 
torque. 969 
 970 
The object’s CoM depends on the geometric centres of the two components (𝐺𝐶)"%%* ,971 
𝐺𝐶+,-), the density of the two materials (𝜌)"%%* , 𝜌+,-) and their volumes 972 
(𝑉𝑜𝑙)"%%* , 𝑉𝑜𝑙+,-): 973 
 974 

𝐶𝑜𝑀 =
𝐺𝐶)"%%* × 𝑉𝑜𝑙)"%%* × 𝜌)"%%* + 𝐺𝐶+,- × 𝑉𝑜𝑙+,- × 𝜌+,-

𝑉𝑜𝑙)"%%* × 𝜌)"%%* +	𝑉𝑜𝑙+,- × 𝜌+,-
 975 

 976 
 977 
More simply, the CoM can be determined from the ratio of the two densities, i.e. let 978 
𝜌)"%%* = 𝑘 × 𝜌+,-  979 
 980 

𝐶𝑜𝑀 =
𝐺𝐶)"%%* × 𝑉𝑜𝑙)"%%* × 𝑘	 × 𝜌+,- 	+ 	𝐺𝐶+,- × 𝑉𝑜𝑙+,- × 𝜌+,-

𝑉𝑜𝑙)"%%* × 𝑘 × 𝜌+,- 	+ 	𝑉𝑜𝑙+,- × 𝜌+,-
 981 

 982 

𝐶𝑜𝑀 =
𝐺𝐶)"%%* × 𝑉𝑜𝑙)"%%* × 𝑘	 +	𝐺𝐶+,- ×	𝑉𝑜𝑙+,-

𝑉𝑜𝑙)"%%* × 𝑘	 +		𝑉𝑜𝑙+,-
 983 

 984 
 985 
Similarly, only the ratio of the two volumes (or the ratio of the two lengths, given 986 
that length µ volume for cylinders) is required to determine the CoM.  Let  987 
𝐿𝑒𝑛𝑔𝑡ℎ)"%%* = 𝑙 × 𝐿𝑒𝑛𝑔𝑡ℎ+,- , then 988 
 989 

𝐶𝑜𝑀 =	
𝐺𝐶)"%%* × 𝐿𝑒𝑛𝑔𝑡ℎ+,- × 𝑙 × 𝑘	 +	𝐺𝐶+,- ×	𝐿𝑒𝑛𝑔𝑡ℎ+,-

𝐿𝑒𝑛𝑔𝑡ℎ+,- × 𝑙 × 𝑘	 +		𝐿𝑒𝑛𝑔𝑡ℎ+,-
 990 

 991 

𝐶𝑜𝑀 =
𝐺𝐶)"%%* × 𝑙 × 𝑘	 +	𝐺𝐶+,-

𝑙 × 𝑘	 + 	1  992 
 993 
As the LDR increases or decreases, the object’s CoM asymptotes to the GC of one of 994 
the two components: 995 
 996 

𝐴𝑠	𝐿𝐷𝑅 → ∞,			𝑘 → 	∞,			𝐶𝑜𝑀 →
𝐺𝐶!"##$ × 𝑙 × 𝑘

𝑙 × 𝑘
= 𝐺𝐶!"##$ 997 

 998 
𝐴𝑠	𝐿𝐷𝑅 → −∞,			𝑘 → 	0,			𝐶𝑜𝑀 →

𝐺𝐶%&'
1

= 𝐺𝐶%&' 999 
 1000 
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 1001 
Figure S1. Log density ratio and centre of mass. (A) Relationship between the log 1002 
density ratio and each object’s centre of mass, in cm.  (B) Natural Density stimuli: 1003 
the relationship between log density ratio and the CoM, in units of normalised 1004 
location. (C) Inverted Density stimulus set. The normalised location metric allows us 1005 
to combine grasping data from different objects within a common scale.  1006 
 1007 
 1008 
S2. Estimation of material densities (or their ratio) from the forces experienced 1009 
on lifting the object.  1010 
 1011 
The torque, t, experienced on lifting a stimulus object depends on the grasp position 1012 
(Grasp), the geometric centres of the two components, their volume, and density: 1013 
 1014 
𝜏 = (𝐺𝐶)"%%* − 𝐺𝑟𝑎𝑠𝑝) × 𝑉𝑜𝑙)"%%* × 𝜌𝑆𝑡𝑒𝑒𝑙 +	(𝐺𝐶+,- − 𝐺𝑟𝑎𝑠𝑝) × 𝑉𝑜𝑙+,- × 𝜌𝑃𝑉𝐶 1015 

 1016 
The total object mass depends on the volume and density of the two parts: 1017 
 1018 

𝑀𝑎𝑠𝑠 = 	𝑉𝑜𝑙)"%%* × 𝜌𝑆𝑡𝑒𝑒𝑙 + 𝑉𝑜𝑙+,- × 𝜌𝑃𝑉𝐶 1019 
 1020 
Rearranging these equations gives: 1021 

𝜌%&' = 7𝑀𝑎𝑠𝑠 −
𝜏

(𝐺𝐶!"##$ − 𝐺𝑟𝑎𝑠𝑝)
= /𝑉𝑜𝑙𝑃𝑉𝐶 × ?1 −

(𝐺𝐶%&' − 𝐺𝑟𝑎𝑠𝑝)
(𝐺𝐶!"##$ − 𝐺𝑟𝑎𝑠𝑝)

@ 1022 

 1023 
𝜌!"##$ = (𝑀𝑎𝑠𝑠 − 𝜌%&' × 𝑉𝑜𝑙%&')/𝑉𝑜𝑙!"##$ 1024 

 1025 
Note that if 𝐿𝑒𝑛𝑔𝑡ℎ!"##$ 	𝑎𝑛𝑑	𝐿𝑒𝑛𝑔𝑡ℎ%&' are substituted for 𝑉𝑜𝑙!"##$ 	𝑎𝑛𝑑		𝑉𝑜𝑙%&', the 1026 
ratio of the two densities will remain correct.  1027 
 1028 
S3: Model details 1029 
 1030 
Fitted parameters: means and (std) for the preferred model (Model 1).  Subsequent 1031 
columns show the parameters of alternative models (p1-p4) and how these compare 1032 
to the preferred model.  1033 
 1034 
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 1035 
 1036 
Table S1. Model parameters and comparisons. Model 1 is the preferred model, 1037 
presented in the manuscript. The fitted parameters (those maximising the log 1038 
likelihood of the data) are presented for each experiment part. Alternative models 1039 
are presented in terms of the free parameters and the learning space, i.e., whether 1040 
learning of density ratio followed exponential trajectory in log space, i.e. log(rsteel 1041 
/rPVC) or linear space (shaded columns). For each alternative mod, N subs preferred 1042 
gives the number of subjects (of 20) for which the alternative model was preferred. 1043 
For models of equal complexity (e.g. 1 vs 1_lin), this is simply a comparison of log 1044 
likelihoods. For models of different complexity, the comparison was made via F 1045 
ratio tests.  N subs preferred is given either for (i) Expts. 1, 2A, 2B, 3A and 3B or (ii) 1046 
only for Expts. 1, 2A and 3A.  *Note that there was little difference in log likelihood 1047 
between model 1 and model 1_lin: less than 1% for all subjects.   1048 
 1049 
S4. Post-hoc comparisons for learning rate, following ANOVA, as shown in Fig. 1050 
6A 1051 

Group 1 Group 2 
Mean 
Difference Upper CI Lower CI p-value 

Expt 1 Expt 2a 0.6363 -0.2484 1.5211 0.274 
Expt 1 Expt 2b -0.4577 -1.3425 0.427 0.6045 
Expt 1 Expt 3a 1.1439 0.2591 2.0287 0.0046 
Expt 1 Expt 3b -0.5307 -1.4154 0.3541 0.4585 
Expt 2a Expt 2b -1.0941 -1.9788 -0.2093 0.0076 
Expt 2a Expt 3a 0.5076 -0.3772 1.3923 0.5041 
Expt 2a Expt 3b -1.167 -2.0518 -0.2823 0.0036 
Expt 2b Expt 3a 1.6016 0.7169 2.4864 0 
Expt 2b Expt 3b -0.073 -0.9577 0.8118 0.9994 
Expt 3a Expt 3b -1.6746 -2.5593 -0.7898 0 

 1052 
S5.  ANOVA details for orientation effect, as shown in Fig. 8  1053 
Separate 2 factor repeated measures ANOVAs (object x orientation) per experiment 1054 
show significant effects of both object and orientation on grasping position within 1055 
each experiment.  1056 

Model 1_lin 2 2_lin 3 3_lin 4 4_lin
Exp1 Exp 2A Exp 2B Exp 3A Exp 3B

LDRstart 0 0 0 0 0 0 p1 p1

LDRend p1
0.88 
(0.44)

0.81 
(0.56)

-0.8 
(0.55)

-0.93 
(0.65)

0.90 
(0.40) p1 p1 p1 p1 p1 p2 p2

rA p2
1.17 
(1.31)

0.44 
(0.34)

1.46 
(1.15)

0.36 
(0.44)

1.50 
(1.04) p2 p2 p2 p2 p2 p3 p3

sN p3
1.58 
(0.39)

1.70 
(0.80)

1.78 
(0.63)

1.60 
(0.47)

1.68 
(0.55) p3 p3 p3 0 0 p4 p4

sLDR 0 0 p4 p4 p3 p3 0 0
Log 
likelihood

133.9  
(11.2)

135.1 
(15.3)

136.9 
(15.6)

133.6 
(14.2)

136.1 
(14.2)

Learning 
space log linear log linear log linear log linear
N subs 
preferred

6, 9, 5, 
13, 7* 0, 1, 0 0, 0, 0 5, 6, 2 5, 4, 1

3, 5, 7, 
1, 5

5, 2, 4, 
5, 5

vs. model 1 1 1_lin 1 1_lin 1 1_lin

1
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Expt. 1: Effects of object: F6,266=13.0, p<0.001 and orientation: F1,266=7.2, p<0.01  1057 
Expt. 2A: Effects of object: F6,266=5.5, p<0.001 and orientation: F1,266=7.6, p<0.01  1058 
Expt. 2B: Effects of object: F6,266=6.0, p<0.001 and orientation: F1,266=5.71, p<0.05  1059 
Expt. 3A: Effects of object: F6,266=3.7, p<0.01 and orientation: F1,266=19.4, p<0.001  1060 
Expt. 3B: Effects of object: F6,266=8.8, p<0.001 and orientation: F1,266=8.3, p<0.01  1061 
 1062 
 1063 
 1064 
 1065 
 1066 
 1067 


