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A B S T R A C T

Is there a calibration algorithm beyond the dominant Bayesian sampling approach and sensitivity- 
based optimisation in model updating? Can a neural network serve not only as a surrogate model 
but also possess its own calibration capacity, independent of the Bayesian or optimisation 
framework? This work aims to address these questions by developing a unique data-driven 
approach for stochastic model updating and damage detection. Among a variety of models in 
deep learning, the class of deep generative model shares a similar objective, to estimate an un
known or intractable probability distribution from a small number of samples, with model 
updating. As a powerful flow-based deep generative model, a recently developed conditional 
Invertible Neural Network (cINN) architecture has been adopted in the task of model updating. 
Unlike the conventional approaches that employ the neural networks solely as a forward surro
gate, the cINN-based model updating is a framework that performs as a bidirectional network 
where the forward training and inverse calibration are integrated into a uniform structure. The 
cINN consists of two parts known as the conditional network and the invertible neural network 
(INN). Both networks are trained jointly in the forward direction and can operate inversely to 
offer rapid and accurate predictions by given observation data. The application of the cINN 
provides a more efficient and direct manner to solve model updating problems without calcu
lating the likelihood function in Bayesian inference. The cINN is embedded into a multilevel 
stochastic updating framework. Rather than directly calibrating physical parameters, this 
multilevel framework focuses on their statistical moments, e.g. mean and variance, referred to as 
hyperparameters. The hyperparameters are then utilised to determine the probability of damage 
(PoD), which provides a confidence level about the structural condition, facilitating stochastic 
damage detection. Two case studies are proposed to demonstrate the multilevel cINN-based 
stochastic updating and damage detection approach. The first involves a 3-degree-of-freedom 
spring-mass simulation model, while the second case study employs an experimental rig test
case with practical measurements, each under various damage scenarios.
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1. Introduction

As a process to identify damage occurrence for in-service engineering structures, Structural Health Monitoring (SHM) has become a 
crucial technique to ensure the safety, reliability, and serviceability of engineering infrastructures [1]. A well-developed SHM system 
tends to detect anomalies as early as possible and carry out timely repair and maintenance actions [2]. Damage detection has been 
investigated and conducted by various methods such as vibration-based testing [3], acoustic emission testing [4], computer-vision- 
based testing [5], and data-driven machine learning testing [6], etc. Among these various methods, the practice of model updating 
plays a crucial role in SHM since its remarkable ability to identify any changes of the structure parameters, or their uncertainty 
characteristics, given the available measurement data from the structures in-serve [7,8].

The model updating technique involves adjusting physical or non-physical parameters in the computational model to enhance its 
agreement with experimental results [9]. The typical model updating was carried out in the deterministic domain where the 
sensitivity-based method [10] was proved to be the most effective for solving deterministic model updating problems. However, due to 
the presence of hybrid uncertainties in both numerical models and physical experiments, it is necessary to extend beyond deterministic 
single-simulation-single-test scenarios to capture the variability in the simulation and experimental data [10,11]. Thus, the stochastic 
model updating technique is then developed to overcome these drawbacks [12,13]. The famous Bayesian model updating framework 
was proposed by Beck and Katafygiotis [14] as a fundamental tool for stochastic model updating and further developed by Beck and Au 
[15] by implementing the Markov Chain Monte Carlo (MCMC) algorithm in this framework.

The Bayesian inference is widely adopted as a powerful method to solve the inverse parameter calibration problem. It is derived by 
obtaining the posterior distribution of the uncertain model parameters based on prior knowledge (prior distribution) and the likeli
hood function, which describes the probability of the observation data given different values of the model parameters [16,17], with the 
aid of numerical sampling algorithms. The determination of the likelihood function is the most essential segment in the Bayesian model 
updating framework. Nevertheless, in many instances, the establishment of the likelihood function is always either computationally 
expensive due to the high-dimensional integral calculations and the quantification of hybrid uncertainties, or analytically intractable 
because of the complexity of the model. To address this computation challenge, the approximate Bayesian computation (ABC) is 
proposed, where the original likelihood definition is replaced by an approximate but effective function. The Bhattacharyya distance- 
based approximate likelihood function is proven to be viable with its remarkable ability to capture discrepancies between numerical 
simulations and experimental observations by calculating the overlap between two distributions [18,19]. Some sampling methods [20] 
such as MCMC and Transitional MCMC (TMCMC) [21] are also utilised to sample from the posterior distributions of calibrating pa
rameters to estimate their true value without evaluating the normalising factor (i.e., evidence) in the Bayes’ Theorem.

The damage detection technique was classified as a four-level paradigm [22] including (1) damage identification; (2) damage 
localisation; (3) damage severity assessment; and (4) remaining lifetime prediction. The Bayesian model updating-based damage 
detection methods can provide a promising function for the first three levels by estimating the posterior probability distribution for the 
structural parameters [23]. Although the ABC is already an effective tool for solving model updating problems, it still faces some 
problems like over-reliance on the accuracy of sampling methods and is time-consuming when handling some high-dimensional tasks 
that cannot fulfil the timeliness and accuracy required in SHM [24]. It is then the tendency to utilise data-driven techniques to facilitate 
model updating and damage detection. However, most existing data-driven approaches still focus on developing surrogates to replace 
the time-consuming finite element model. These approaches follow a similar style as the typical surrogate modelling approach but use 
various machine learning models, such as artificial neural networks (ANN) and Bayesian neural networks (BNN), to replace con
ventional response surface or Kriging models. Nevertheless, since the machine learning models still fall within the Bayesian updating 
interface, the computationally expensive likelihood evaluation is still unavoidable. Furthermore, conventional ANN or BNN models 
lose the physical significance of actual structural parameters, making them difficult to apply in physics-based structural health 
monitoring.

Apart from the conventional neural networks, a group of deep learning algorithms called deep generative models (e.g., Variational 
Autoencoders (VAEs) [25], Generative Adversarial Networks (GANs) [26], or Flow-based Models [27–29]) are widely used in various 
fields such as text analysis, image analysis, medical imaging, etc [30]. They also show the potential to solve inverse problems like 
model updating since they have the ability to generate new data or simulate possible results that can reflect the true data distribution of 
the real-world system. The recently developed conditional invertible neural network (cINN) [31,32] is a flow-based deep generative 
model developed with a unique invertible architecture, allowing for the integration of physical observations and posterior estimation. 
The technique introduces the potential to solve the above-mentioned challenges regarding the data-driven approach in stochastic 
model updating and damage detection.

The cINN was developed and successfully applied to solve guided image generation problems in the field of computer vision [31]. It 
was also implemented to address the inverse problems [33,34], damage detection problems [35], and wind turbine design [36] that 
demonstrate the potential of cINN in engineering. The architecture of cINN consists of an invertible neural network (INN) and a 
conditional network, where the conditional network is responsible for reducing a set of observations of variable size to a fixed-size 
vector of learned summary statistics. The INN is accountable for mapping input data to the latent space in the training phase and 
predicting the true posterior of model parameters given the summary statistics of the observed data as the condition in the inference 
phase.

The cINN function is a bijective model that establishes bidirectional mappings between a complex posterior distribution, the prior 
distribution, and the observations, directly bypassing the need for likelihood evaluation as required in Bayesian inference. This is 
achieved by jointly training the INN and the conditional network in the forward direction, using both model inputs and outputs as 
training data. The transformation from the complex, unknown probabilistic distribution to a simple distribution, referred to as the 
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latent distribution, is based on the Change of Variable Rule (CoVR). The cINN is trained by minimising the Kullback-Leibler (KL) 
divergence between the true target distribution and the learned posterior distribution. Once trained, the cINN can operate inversely by 
sampling from the latent distribution, conditioned on the observation data, to generate the corresponding input samples and derive the 
posterior distribution. The invertibility of the cINN is guaranteed by the special architecture of the Affine Coupling Layer (ACL) [28], 
which simplifies the execution of the CoVR by reducing the complexity of evaluating the Jacobian determinant.

The latent distribution plays a crucial role in cINNs, as it maps data from the model’s input space to the latent variable space, 
conditioned on additional information such as model outputs or practical observation data. In cINN-based model updating, the main 
objective is to infer input data based on practical observations. The conditional network, together with the INN, recovers the complex 
distribution of input parameters from sparse and noisy observation data. By conditioning the observed data, the latent distribution 
enables the model to produce a distribution over possible inputs, capturing the uncertainty and variability in the inverse mapping. The 
introduction of the latent distribution helps avoid a many-to-one relationship between input and observation data, where an element of 
input data is connected to a combination of observation data and latent space elements.

In this manuscript, we provide a detailed explanation of the structure of the ACL, followed by the design of two coupled ACL units, 
which together establish the invertible bijective mapping between the original distribution and the latent distribution. The principles 
behind the CoVR, as well as the method for evaluating the Jacobian determinant within the ACL architecture, are thoroughly dis
cussed. Additionally, a detailed explanation is provided on how to apply the cINN to typical model updating tasks. During the forward 
training phase, input parameter samples are drawn from a prior distribution, serving as the initial distribution to be transformed into a 
pre-selected latent distribution (commonly a standard Gaussian distribution). Simultaneously, model output samples are passed 
through the conditional network, ensuring that the transformation from the prior distribution to the latent distribution captures the 
necessary information from the numerical model. In the inverse inference phase, random samples are generated from the simple latent 
distribution. The corresponding input parameter samples are inferred by passing the available observation data through the condi
tional network to yield the posterior distribution.

The cINN-based forward training and inverse inference process integrates seamlessly into the stochastic model updating procedure, 
generating a posterior distribution of possible input parameters conditioned on the available observation data. The posterior distri
bution of structural parameters is subsequently applied in damage detection, where the Probability of Damage (PoD) is evaluated to 
assess the structural condition.

The rest of the paper is organised as follows. The fundamentals of stochastic model updating and the limitations of the Bayesian 
approach are presented in Section 2. The structure and the features of the cINN, and the framework of cINN-based model updating are 
introduced in Section 3. In Section 4, the process of cINN-based model updating for stochastic damage identification and the definition 
of probability of damage (PoD) are introduced in detail. Two case studies including a simulation-based 3-DOF spring-mass system and 
an experimental rig structure with controllable uncertainties are presented in Section 5 and Section 6 to demonstrate the effectiveness 
and capacity of the proposed approach. A comparison of the accuracy and efficiency of the cINN-based method with the sensitivity 
method and Bayesian method is demonstrated at the end of Section 5 & 6. Section 7 gives the conclusions and perspectives.

2. Stochastic model updating: Bayesian approach and its limitation

2.1. Numerical model, parameters, and uncertainties

The stochastic model updating problem generally involves a physical system that is modelled numerically by a function ysim = M(x)
whereby x represents the vector of the input parameters, ysim represents the simulation output features, and M( ⋅ ) stands for the 
simulator. The simulator can be performed as a sophisticated Finite Element (FE) model or a simplified mathematical function. 
Normally, this simulator may describe both static and dynamic situations and can be either linear or non-linear [20].

The mathematical relation between the experimental observation yobs and the numerical simulation ysim can be expressed as: 

yobs = ysim + ∊ = M(x) + ∊ (1) 

where ∊ represents the discrepancy between the numerical simulation and the experimental observation caused by the existence of 
uncertainty in both model parameters and measurements. The objective of stochastic model updating is to minimise the discrepancy so 
that the simulation results are in maximum agreement with the experimental measurements. Thus, the stochastic model updating is 
concluded as an inverse process that calibrates the uncertainty features (i.e. probabilistic distribution or interval) of input parameters 
by giving multiple observations. The Bayesian updating framework is a widely accepted approach for solving such problems.

2.2. Bayesian approach and its limitations

In the Bayesian multilevel model updating approach, the input parameters are totally determined by their probabilistic hyper
parameters, i.e., the statistical moments such as mean and standard deviation (θ = [μ, σ]). In this way, the hyperparameters together 
with the assumed distribution format are able to determine the model input parameters, where the input parameters are aleatory and 
the hyperparameters that have distinct but unknown values are epistemic.

The Bayesian inference has the advantage of integrating the prior information and observation data to obtain the posterior. In the 
Bayes’ formula: 
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P(θ|yobs) =
PL(yobs|θ) ⋅ Pθ

P(yobs)
(2) 

where P(θ) represents the prior distribution; PL
(
yobs

⃒
⃒θ
)

refers to the likelihood function of the parameters; P
(
yobs

)
represents the ev

idence (or normalising factor); P
(
θ|yobs

)
represents the posterior distribution. The prior distribution represents the initial hypothesis 

about the selected model parameters to be calibrated before any measurements. The likelihood function reflects the agreement be
tween the output from experimental measurements and numerical simulations. The evidence/normalisation factor in the Bayesian 
formula ensures that the posterior distribution integrates to 1. However, evaluating this normalisation factor is challenging, as the 
analytical form of the likelihood function is often difficult to obtain. To address this, popular techniques such as MCMC have been 
developed, allowing the estimation of posterior distributions without explicitly computing the normalisation factor. Instead, these 
methods rely on an iterative sampling process to approximate the posterior distribution efficiently. Consequently, the Eq. (2) can be 
simplified as: 

P(θ|yobs)∝PL(yobs|θ) ⋅ P(θ) (3) 

The definition of the likelihood function is significant in model updating because it contains information on both observation data and 
uncertain parameters to be calibrated. The likelihood can be calculated as Eq. (4) while considering nexp times of independent 
experimental observations. 

PL(yobs|θ) =
∏nexp

i=1
P
(
yi

obs|θ
)

(4) 

To obtain the precise estimation of the explicit distribution of each measurement, a large number of model evaluations are required. 
The approximate likelihood function was proposed to reduce the computation burden, alternatively, which is determined by various 
distance-based UQ metrics expressed as Eq. (5). 

PL(yobs|θ)∝exp

⎧
⎪⎨

⎪⎩
−

d
(

yexp, ysim

)2

ε2

⎫
⎪⎬

⎪⎭
(5) 

where d
(

yexp, ysim

)
represents the distance-based UQ metrics such as Euclidean, Mahalanobis, and Bhattacharyya distance [18,37].

Another challenge in the Bayesian framework is the evaluation of the normalising factor P
(
yobs

)
in Eq. (2). The evaluation of P

(
yobs

)

requires integrating over the likelihood function to ensure that the posterior distribution is a valid Probability Density Function (PDF), 
meaning the total integral of the posterior distribution equals one. Even when using an approximate likelihood function in Eq. (5) to 
replace the complex original definition, obtaining this integral remains difficult. To circumvent this issue, sampling-based techniques 
like MCMC and TMCMC are commonly used. These methods bypass the need to calculate the normalising factor by generating samples 
directly from the unknown posterior distribution. The posterior is then estimated using these obtained samples, effectively avoiding 
the challenging integral computation. A comprehensive tutorial on the multilevel Bayesian updating with the above random sampling 
algorithms is presented in Ref [9] for the reader’s further reference.

Even with the use of an approximate likelihood function and sampling methods like MCMC to handle the challenges of evaluating 
both the likelihood and the normalising factor, some significant issues remain. These methods often require a large number of model 
evaluations to achieve an accurate estimation of the likelihood function, and MCMC, in particular, can be computationally slow, 

Fig. 1. The architecture of the cINN-based model updating.

T. Wang et al.                                                                                                                                                                                                          Mechanical Systems and Signal Processing 232 (2025) 112743 

4 



especially when dealing with complex models or high-dimensional problems.

3. Model updating with conditional invertible neural networks (cINN)

Amongst various distinct deep generative models, cINN was adopted for model updating since it has a unique reversible structure, 
which allows for forward training and backward inference. The cINN-based model updating approach is capable of addressing the 
challenges mentioned above, offering a complete solution by entirely bypassing the need for likelihood evaluation and the normalising 
factor. The cINN framework directly generates posterior distributions through its bijective mapping mechanism, which allows for fast 
and accurate inference with fewer data requirements. By using the invertible neural network and conditional network architecture, 
cINN eliminates the need for complex sampling processes, providing a more efficient and direct alternative for stochastic model 
updating and damage detection.

3.1. Framework of cINN-based model updating

The cINN-based model updating framework is illustrated in Fig. 1, where the cINN is embedded into the bidirectional model 
updating process. This framework not only builds mappings from the input prior distribution to the latent space but also reverses this 
mapping to recover the posterior distribution of the input parameters, conditioned on the observation data. The cINN architecture 
combines an Invertible Neural Network (INN) with a conditional feed-forward network, both of which are trained jointly in an efficient 
manner.

In the forward training phase, the process starts by generating training data by sampling the input parameters from the prior 
distribution, which reflects initial assumptions or known distributions of the model parameters. These input samples are passed 
through the numerical model to generate the corresponding simulation outputs. The cINN’s Conditional Network is responsible for 
processing the simulation outputs and conditioning the transformation, ensuring that the generated latent space encodes not only the 
information of the input data but also the simulation data. The processed conditional data is then injected into the INN for building up 
mappings between the latent distribution, which is typically a standard Gaussian distribution, and the input data conditioned on the 
summarised simulation data, ysim. This forward training step is crucial as it trains the cINN to accurately capture and transform the 
complex distribution of input parameters into the latent space while retaining the information from the simulation outputs. The in
ternal structure of the cINN, including how the conditional network and INN collaborate to perform this transformation, will be 
detailed in the following sections.

Once the cINN has been trained and the latent distribution is learned, the framework moves into the inverse inference phase. In this 
phase, the goal is to use the observation data to infer the posterior distribution of the input parameters. In this step, random samples are 
generated from the latent distribution (now known to follow a standard Gaussian) and passed back through the INN, conditioned on 
the summarised observation data using the conditional network. This inverse mapping allows the model to recover the corresponding 
input parameters, which are now informed by both the prior assumptions and the new observation data. The result is a refined 
posterior distribution of the input parameters, which better reflects the observation data.

3.2. Internal structure of cINN and the change of variable rule

This subsection provides a detailed explanation of the internal structure of the cINN and describes how the bijective mapping is 
achieved through its special architecture. As shown in Fig. 1, the cINN consists of two key components: the Conditional Network and 
the Invertible Neural Network (INN). The INN serves as the core element responsible for constructing a bijective transformation be
tween the complex, irregular input distribution (prior or posterior), and a simplified latent distribution.

3.2.1. INN and the bijective mapping
The latent distribution plays a crucial role in cINNs, acting as a simplified representation of the input data. Typically modelled as a 

standard Gaussian distribution, the latent distribution is used to make the inverse process more tractable and computationally effi
cient. The transformation from input data to latent space allows for easier inference of the posterior distribution when conditioned on 
observation data. This latent space is where the complexities of the original input distribution are reduced, simplifying the learning and 
inference processes.

The transformation between the input distribution and the latent space is governed by the Change of Variable Rule (CoVR), a 
fundamental concept in probabilistic theory. CoVR is used to relate probability densities in one space to those in another when a 
transformation is applied. Specifically, it accounts for how the probability density changes as the variables are transformed, ensuring 
that the overall probability mass is preserved during the transformation. Mathematically, this involves the Jacobian determinant of the 
transformation, which adjusts for the changes in volume in the transformed space. The CoVR can be expressed in the following 
equation: 

Px(x) = PZ(Z) ⋅ det
(

∂f(x)
∂x

)

= PZ(f(x) ) ⋅ det
(

∂f(x)
∂x

)

(6) 

In this equation, x is the model input parameters, and Z is the latent variable. Px(x) and PZ(Z) are the PDF of x and Z, where Z is 
typically assumed to follow a simple standard Gaussian distribution. The function f(x) denotes the invertible transformation between x 
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and Z.

The transformation requires the calculation of the Jacobian determinant, det
(

∂f(x)
∂x

)

, which consists of the partial derivatives of the 

transformation function concerning the input parameters. To ensure a valid mapping between the input parameters and the latent 
variables, the transformation must be bijective, meaning that it is both invertible and unique. Additionally, the transformation must be 
computationally efficient in both the forward and inverse directions, with a tractable Jacobian that allows for the explicit computation 
of the posterior probability. To meet these requirements, a special architecture known as the Affine Coupling Layer (ACL) [32] was 
designed, as shown in Fig. 2.

3.2.1.1. Forward direction. In the forward direction, as shown in Fig. 2(a), the D-dimension input vector x is split into two parts 
randomly: x1 with d-dimension and x2 with (D − d)-dimension. This splitting allows for flexibility in applying transformations to only 
part of the input, while leaving the other part unchanged. Specifically, x1 remains unchanged throughout the forward process, so z1 =

x1.
On the other hand, x2 undergoes a transformation governed by two functions s1(x1) and t1(x1). These functions, typically repre

sented by standard feedforward networks, take x1 as input and output scaling and translation values for x2. These scaling function 
s1(x1) apply an element-wise scaling to x2 through the operation x2 ⊙ exp(s1(x1) ), where ⊙ denotes the element-wise multiplication. 
The use of the exponential function ensures that the transformation remains invertible, as the exponential is always positive, making it 
possible to later reverse the operation. Additionally, a translation function t1(x1) shifts x2 by adding t1(x1). Thus, the full trans
formation is given as 

z1 = x1
z2 = x2 ⊙ exp(s1(x1) ) + t1(x1)

(7) 

The scaling function s1( • ) and the translation function t1( • ), being neural networks, allow for a flexible and complex transformation 
that preserves the ability to reverse it. The outputs from the transformed latent variables, Z = [x1; z2], which can be passed to the next 
layer.

3.2.1.2. Inverse direction. In the inverse direction, depicted in Fig. 2(b), the latent variables z1 and z2 are used to recover the original 
input vector x. Since x1 was not altered in the forward transformation, it is directly retrieved from the latent variable as x1 = z1. 
However, recovering x2 requires reversing the scaling and translation transformations applied during the forward process. The inverse 
transformation first undoes the translation by subtracting t1(z1) from z2. Then, the element-wise scaling is reversed by multiplying by 
the reciprocal of the exponential of s1(z1), ensuring the scaling effect is undone. The full expression for recovering is: 

x1 = z1
x2 = (z2 − t1(z1) ) ⊙ exp( − s1(z1) )

(8) 

In addition, the special structure of the ACL enables an easy-to-compute Jacobian determinant, a critical component in the CoVR. The 
transformation’s Jacobian matrix, which contains the partial derivatives of the transformed variables with respect to the input var
iables, is essential for determining how the probability density changes during the transformation. In the ACL, since x1 remains un
changed and only x2 is modified by s1(x1), the Jacobian matrix becomes a simple diagonal matrix, where the non-zero elements are the 
exponential terms exp(s1(x1)), expressed as 

Fig. 2. The structure of the affine coupling layer (ACL).
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J =

⎡

⎢
⎣

I 0
∂z2

∂x1
diag(exp(s1(x1) ) )

⎤

⎥
⎦ (9) 

This makes the determinant of the Jacobian matrix easily computable as: 

det(J) = exp
(∑

s1(x1)
)

(10) 

This simplified computation allows for efficient calculation of the probability densities during both forward and inverse trans
formations, making the ACL architecture suitable for real-time inference and model updating tasks.

3.2.2. The conditional network within cINN
In the overall cINN-based framework, as shown in Fig. 3, the Conditional Network plays a crucial role in incorporating external 

information from the model outputs or observation data into the INN. This additional information, denoted by ysim (simulation data) 
and yobs (observation data), acts as a condition that modifies how the input parameters x are transformed into the latent variables Z, 
and vice versa.

The Conditional Network, represented by multiple layers in Fig. 3, takes the model’s simulation outputs or the real observation data 
as input. It processes this information through a series of neural network layers to extract relevant features that are used to condition 
the transformations performed by the INN. The extracted features encode the relationship between the input parameters and the latent 
variables, ensuring that the transformation from x to the latent variables Z (and back) captures the necessary dependencies between 
the model and the real-world data.

In practical stochastic model updating tasks, the Conditional Network ensures that the mapping between input parameters and 
latent data is adaptive and informed by both the simulation outputs and the real-world observations. The network’s ability to condition 
the transformation based on data from both sources enables it to address key challenges in model updating, such as dealing with sparse 
or noisy observation data and making the process robust to uncertainties. By incorporating the Conditional Network, the cINN 
framework is able to bridge the gap between the simulated model behaviour and the real-world observations, allowing for more 
accurate and efficient model updating. The combined effect of the INN’s invertibility and the Conditional Network’s conditioning 
capabilities makes the cINN particularly powerful in scenarios where traditional Bayesian or optimisation-based methods might 
struggle with computational inefficiencies or require large amounts of data.

A more detailed illustration of how the conditional network is combined with the ACL in each basic layer is shown in Fig. 4. It is 
observed that two ACLs are combined along permutation directions, with each set of ACLs linked to a single layer of the conditional 

Fig. 3. The connection between the conditional network and the INN.
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network. This basic unit is known as a conditional Affine Coupling Layer (cACL). Similar to the transformation of a single ACL 
explained in Sec 3.2.1, the forward training (with ysim) and inverse inferring (with yobs) of the cACL unit can be expressed as the 
following equations: 

z1 = x1 ⊙ exp(s2(z2, ysim) ) + t2(z2, ysim)

z2 = x2 ⊙ exp(s1(x1, ysim) ) + t1(x1, ysim)
(11) 

x1 = (z1 − t2(z2, yobs) ) ⊘ exp(s2(z2, yobs))

x2 = (z2 − t1(x1, yobs) ) ⊘ exp(s1(x1, yobs) )
(12) 

The cINN is constructed by stacking multiple N cACLs one after another, as illustrated in Fig. 3. The INN is parameterised by pa
rameters ϕ. Let Sφ( • ) denotes the conditional network with network parameters φ, it can learn the most meaningful summary in
formation (Sφ(y)) directly from the raw simulation/observation data y, rather than relying on limited hand-crafted summary statistics 
that may lose information. The parameters [ϕ,φ] represent the construction coefficients of the INN and the conditional network (e.g. 
connection weights, activation threshold, and scaling factors among layers), which are to be optimised during training. The objective 
of the training process is to find optimal values for parameters [ϕ,φ] so that the cINN is able to provide accurate predictions.

3.2.3. Training the cINN
In the process of training, the common but effective distribution matching training method is adopted. The estimated posterior 

distribution of the input parameter is computed as Eq. (13), according to the CoVR. 

P(x|ysim) = PZ(Z) ⋅
∏N

i=1

⃒
⃒
⃒
⃒det

(
∂fi(Zi− 1,Sφ(ysim) )

∂Zi− 1

) ⃒
⃒
⃒
⃒ (13) 

where N represents the number of cACLs; fi refers the i th cACL taking both the latent variable, Zi− 1 and the summarised training output 
data, Sφ

(
ysim

)
, as input. Therefore, the objective of the training is to maximise the matching between the original training sample 

distribution Px(xtrain) and the estimated posterior distribution P
(
x|ysim

)
, which can be quantified by minimising the Kullback-Leibler 

(KL) divergence between the two distributions. The loss function is then defined below. 

L = KL[Px(xtrain)‖P(x|ysim) ] (14) 

Subsequently, the objective function of this optimisation problem is written in Eq. (15). The optimised construction coefficients of 
the conditional network and the INN are obtained by solving the optimisation equation below, which refers to minimise the expec
tation of the KL-divergence between the estimated and the training distribution of the input parameters in the field of all conditional 
data. 

ϕ̂, φ̂ = argmin
ϕ,φ

EP(ysim)
{KL[Px(xtrain)‖P(x|ysim) ] } (15) 

The Eq. (15) can be further transformed into Eq. (16) regarding the calculation of KL-divergence. 

ϕ̂, φ̂ = argmin
ϕ,φ

EP(ysim)

{
EPx(xtrain)[logPx(xtrain) − logP(x|ysim) ]

}
(16) 

Because the original training sample distribution Px(xtrain) is generally independent of the estimated posterior distribution P
(
x|ysim

)
, 

the EPx(xtrain)[logPx(xtrain)] remains constant. The Eq. (16) is then rewritten as Eq. (17). 

Fig. 4. The structure of cACL.
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ϕ̂, φ̂ = argmax
ϕ,φ

EP(ysim)

{
EPx(xtrain)[logP(x|ysim) ]

}
(17) 

The logP
(
x|ysim

)
can be computed through taking the logarithm of Eq. (13). 

ϕ̂, φ̂ = argmax
ϕ,φ

∫∫

P(xtrain, ysim) ⋅ logP(x|ysim)dxtraindysim (18) 

= argmax
ϕ,φ

∫∫

P(xtrain, ysim)
(

logPZ

(
Z = fϕ,φ (x)

)
+ log

⃒
⃒detJϕ,φ

⃒
⃒
)

dxtraindysim (19) 

By adopting a standard Gaussian distribution as the latent distribution and a size of M training dataset {xm, ym},m = 1,2,⋯,M, the 
integral above can be computed as Eq. (20) below, where fϕ refers the cACLs with their construction coefficients ϕ,φ , and Jϕ,φ refers to 
the corresponding Jacobian matrix. The optimal values of the network’s construction coefficients are finally obtained. 

ϕ̂, φ̂ = argmin
ϕ, φ

1
M
∑M

m=1

⎛

⎜
⎝

⃒
⃒fϕ,φ

(
xm

train;Sφ(ym
sim)

) ⃒
⃒2

2
− log

⃒
⃒
⃒detJm

ϕ, φ

⃒
⃒
⃒

⎞

⎟
⎠ (20) 

4. Stochastic damage identification with cINN-based model updating

The damage detection framework presented in this paper is developed using a multilevel stochastic model updating approach. As 
shown in Fig. 5, the framework consists of two rounds of model updating, the evaluation of the Probability of Damage (PoD), and a 
final step involving stochastic detection of structural damage. The process begins with initial model updating, where a numerical 
model is established based on prior knowledge of the original, undamaged structure. The initial numerical model normally differs from 
the physical system and hence requires to be updated by incorporating experimental measurements. This step ensures that the updated 
initial model accurately represents the original state of the structure and serves as a baseline for subsequent comparisons.

Following the initial model updating, the structure is placed under arbitrary in-service conditions. These conditions may include 

Fig. 5. Flowchart of the stochastic damage detection process.

T. Wang et al.                                                                                                                                                                                                          Mechanical Systems and Signal Processing 232 (2025) 112743 

9 



loading scenarios, environmental effects, or possible degradation or damage to the structure. New experimental measurements are 
taken, reflecting the structure’s current state under these conditions. These data are then used to further update the numerical model, 
resulting in a subsequent updated model. This step allows for capturing any changes in the structure’s response that may have occurred 
due to damage or other factors. The updated model reflects the current state of the structure and provides the basis for detecting any 
significant deviations from the original condition.

To detect damage, the distribution of the structural parameters from both the initial and subsequent models is compared, and 
subsequently, the PoD can be evaluated. The PoD quantifies the likelihood that the structure has sustained damage based on the 
observed changes in its behaviour. This is a critical step, as it provides a probabilistic measure of the confidence in the damage 
detection process, accounting for uncertainties in both the measurements and the model predictions.

This paper defines PoD as the probability that a given structural parameter falls below a pre-set threshold, which indicates a 
degradation in its value. This threshold is determined based on the probabilistic distribution of the parameter in the undamaged 
(initial) state. The structural parameter, such as stiffness, is assumed to follow a specific probability distribution (typically a Gaussian 
distribution) with the mean and variance updated from the initial model updating process.

To explain this process, consider the example of a stiffness parameter in the undamaged condition. After the initial model updating, 
the stiffness is assumed to follow a Gaussian distribution k N

(
4.0,0.32), as shown in Fig. 6. Note that, even in the undamaged case, due 

to the inherent uncertainties in both the model and the experimental observations, it is unrealistic to say the PoD is zero. Instead, a low 
but non-zero probability is associated with the undamaged condition. In this framework, we define a threshold probability pthre to 
represent this “safe” state, and in this paper, we set this threshold probability to pthre = 5%. The damage threshold δ, corresponding to 
the threshold probability pthre, can hence be determined as 

δ = δ|pthre=0.05 = μud − 1.645σud (21) 

For the stiffness parameter example, as shown in Fig. 6, the 5 % threshold corresponds to a stiffness value of 3.5065, as calculated from 
the Gaussian distribution k N

(
4.0,0.32). In Fig. 6, the red vertical line indicates the location of this threshold. The area under the curve 

to the left of this threshold represents the 5 % chance of the parameter being below this value in the undamaged state.
When evaluating the structure’s condition after it has been subjected to arbitrary in-service conditions, the PoD is calculated by 

comparing the updated posterior distribution of the parameter with this predefined threshold. If the updated parameter distribution 
shifts significantly, such that a higher portion of the probability mass lies below the threshold, the PoD increases, indicating a greater 
likelihood of damage. Conversely, if the updated distribution remains close to the initial undamaged distribution, the PoD remains low, 
suggesting that the structure is likely still in a safe condition.

The PoD provides a probabilistic measure of the likelihood that a structural parameter has degraded beyond a critical threshold, 
taking into account the uncertainties in both the model and the observations. By defining this threshold based on the undamaged 
condition and calculating the shift in the posterior distribution, the PoD enables a quantitative assessment of structural health and the 
risk of damage.

5. Simulated case study: A 3-DOF mass-spring example

5.1. Problem description

In this study, a classic 3-degree-of-freedom spring-mass system (shown in Fig. 7) is introduced as the case study for stochastic 

Fig. 6. Schematic diagram of the probability of damage (PoD).
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damage detection by utilising the cINN-based model updating method introduced before. The corresponding mass and stiffness 
matrices are expressed in Eq. (22). All the springs in the system are assumed to follow Hooks’s law and the linear elasticity assumption. 
The three stiffness coefficients k4, k5, and k6 and the three masses m1, m2 and m3 are set to be constant variables, where k4 = k5 =

k6 = 5.0N/m, m1 = 0.7kg, m2 = 0.5kg, and m3 = 0.3kg. The other three stiffness coefficients k1, k2, and k3 are random variables with 
uncertainty to be calibrated in this example. The three natural frequencies f1, f2, and f3 are the quantity of interest whose uncertainties 
are driven by the uncertain parameters. 

M = diag(m1,m2,m3)

K =

⎡

⎢
⎢
⎣

k1 + k4 + k6 − k4 − k6

− k4 k2 + k4 + k5 − k5

− k6 − k5 k3 + k5 + k6

⎤

⎥
⎥
⎦ (22) 

Three scenarios of damage are simulated by various degrees of stiffness reduction at different locations among k1 − k3. In the first 
scenario, damage is located on k1 with a stiffness reduction of 10%; damages are located on both k2 and k3 with a stiffness reduction of 
10% and 20% separately in Scenario 2; all of the three stiffness are damaged in the 3rd scenario with a stiffness reduction of 10%, 10%, 
and 20% on k1, k2, and k3, respectively, as illustrated in Table. 1. The objective of this example is to assess whether the cINN-based 
approach can accurately detect and locate damage in the stiffness parameters through the model updating process, and if it can 
correctly predict the probability of damage (PoD) in the different damage scenarios. The performance of the cINN-based approach is 
compared with the sensitivity approach and the Bayesian approach at the end of this section.

5.2. Stochastic damage detection with cINN

In the stochastic damage detection with cINN-based multilevel model updating, the parameters to be calibrated are the means 
(μ1 − μ3) and standard deviations (σ1 − σ3) of the three stiffness parameters (k1 − k3). The target distributions of the stiffness parameters 
are Gaussian distributions with different means and variance values, the prior distribution of the parameters is assumed to be a uniform 
distribution, as illustrated in Table. 2. The model updating can provide the posterior distribution of the stiffness parameters, and the 
mean and standard deviation values can therefore be evaluated through the posterior samples. By comparing the posterior distribu
tions of the stiffness parameters under different statuses of the system (intact and arbitrarily damaged), damage identification and 
localisation can be achieved, and the PoD can then be calculated according to the process introduced in the section above.

In the training phase, the conditional network and the INN were trained jointly by adopting a maximum likelihood approach to 
calibrate the network’s construction coefficient. The definition of loss function is denoted in Section 3.2.2. The 1D CNN was chosen to 
serve as the conditional network, and the INN consists of 4 cACLs. The training dataset is generated by sampling a size of 10,000 
samples from the prior distribution and collecting the corresponding simulation outputs. After training, the networks are optimised 
automatically so that they can build a bijective mapping between the input and latent variables accurately. The coefficient of 
determination (R2) is employed to validate the accuracy of the training process. The training accuracy validation results are presented 
in Fig. 8, showing scatter plots of the trained cINN’s accuracy in estimating stiffness parameters. Each point in these plots represents a 
single sample from the training dataset, with the horizontal axis (“Ground truth”) indicating the true input parameter values used to 
generate the training data, and the vertical axis (“Estimated”) showing the corresponding predicted values by the trained cINN. The 

Fig. 7. 3-DOF spring-mass system.

Table 1 
Three scenarios of damage.

Scenario Position Severity

1 k1 − 10%
2 k2,k3 − 10%, − 20%
3 k1,k2,k3 − 10%, − 10%, − 20%
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close alignment of points along the diagonal reference line demonstrates that the cINN model has accurately captured the input–output 
relationship during training.

In the inference phase, the well-trained cINN can operate inversely to infer the distribution of input parameters by sampling 
randomly from the latent distribution with given observation data as the condition. Here, the observation data is synthetically 
generated using 50 random samples drawn from the target distribution of input parameters, as specified in Table 2. These 50 input 
parameter samples are then substituted into the analytical model, producing 50 corresponding samples of the natural frequencies. The 
histogram and fitted PDFs of these natural frequency samples are illustrated in Fig. 9.

There are 50 synthetic measurement frequency samples utilised in the model updating process, implying 500 samples of the 
stiffness parameters are obtained via the inverse application of the cINN architecture, where 10 samples are generated inversely based 
on a single measurement sample. The choice of generating 10 samples per measurement sample is case-dependent and lacks a 
standardised guideline. Generally, a larger number of generated samples is recommended when fewer observations are available, 
while fewer samples per observation are sufficient when numerous observations are present.

The PDFs of the stiffness parameter samples (denoted as “Posterior”) are estimated and illustrated in Fig. 10, alongside the target 
distributions. It is observed that the obtained posterior PDFs closely match the target distributions, indicating an effective calibrating 
process by the cINN-based model updating. Table 3 presents the hyperparameters (mean and standard deviation) of the stiffness 
parameter samples. It is noted that the error between the updated hyperparameters and their targets is minimal.

As previously mentioned, 3 different damage scenarios are simulated as different stiffness reductions at different places and the 

Table. 2 
Uncertain characteristics of the 3-DOF system for cINN-based stochastic damage detection.

Parameters Prior distribution Target distribution

k1 k1 U(3.0,7.0) k1 N (μ1 = 4.0,σ1 = 0.3)
k2 k2 U(3.0,7.0) k2 N (μ2 = 5.0,σ2 = 0.1)
k3 k3 U(3.0,7.0) k3 N (μ3 = 6.0,σ3 = 0.2)
k4 − k6m1 − m3 Constant variables do not need to be updated. 

k4 = k5 = k6 = 5N/m,m1 = 0.7kg,m2 = 0.5kg,m3 = 0.3kg

Fig. 8. Training accuracy validation.

Fig. 9. Histogram for the synthetic observation data (undamaged).
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corresponding natural frequencies under different damage scenarios are considered as the observation data. The histograms for the 
simulated natural frequencies under three damage scenarios are demonstrated in Fig. 11 below. The cINN-based model updating is 
carried out on each damage scenario and the model updating process is the same as described above. The obtained distributions of the 
stiffness parameters are shown in Fig. 12 with their mean and standard derivations listed in Table. 4. Similar to the model updating 
results of the undamaged case, it is observed that all three damaged scenarios have satisfied updating outcomes since the posterior 
PDFs fit with the target PDF well and their hyperparameters are close to the target values.

The posterior distributions of the stiffness parameters under different damage scenarios are presented in Fig. 13. The PoD can 
therefore be determined by calculating the integral of the Probability Density Function (PDF) for stiffness values below the pre-defined 
damage threshold δ. The threshold δ is defined following Eq. (21) with δ = μud − 1.645σud.

In the Damage Scenario 1 (Fig. 13(a)), where only k1 is damaged (as specified in Table 1), the predicted PDFs accurately reflect this 
scenario, showing a significant difference between the undamaged PDF and the damaged PDF for k1. In Damage Scenario 2(Fig. 13(b)), 
the damages in both k2 and k3 are detected, as evidenced by the clear shifts in their damaged PDFs compared to the undamaged case. 
Similarly, in Damage Scenario 3 (Fig. 13(c)), the damages in k1, k2 and k3 are all detected, with their respective damaged PDFs 
distinctly shifted from the undamaged PDFs. The predicted PoDs are calculated according to the predicted PDFs and the pre-set damage 
threshold and are listed in Table 4. It is observed that the predicted PoDs are similar to the target PoDs, implying that the proposed 
approach is capable of accurately predicting the actual damage situation.

Fig. 10. Posterior histogram and distributions of the stiffnesses compared with the prior and target distributions.

Table 3 
Mean and standard deviation of the stiffness parameters from the updated and target data.

Parameters Target value Updated result
Mean Std Mean Std

k1 μ1 = 4.0 σ1 = 0.3 μ1 = 4.083 σ1 = 0.314
k2 μ2 = 5.0 σ2 = 0.1 μ2 = 5.008 σ2 = 0.097
k3 μ3 = 6.0 σ3 = 0.2 μ3 = 5.987 σ3 = 0.188
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5.3. Comparison with sensitivity-based approach and Bayesian approach

The model updating results under undamaged scenarios derived from the sensitivity-based approach and Bayesian approach are 
provided for comparison with the proposed cINN updating. A total of 500 sets of synthetic observation data are adopted for the 
posterior estimation in the three methods. In the sensitivity-based approach, 500 sets of optimised input parameters are obtained based 
on the observation data for posterior approximation. In the Bayesian approach, the transitional Markov chain Monte Carlo (TMCMC) is 
adopted as the sampling method with a number of samples for 1000, and the likelihood function is defined based on the Bhattacharyya 

Fig. 11. Histogram for the synthetic observation data (damaged).
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distance.
The model updating results for all three methods are compared in Fig. 14 and Table. 5. All three methods can provide reliable 

updating results in this case with an acceptable error for both mean and standard deviation values. However, there are some differ
ences among these methods. The sensitivity-based approach contains a series of deterministic processes to produce a dataset, where the 
mean and standard deviation values are estimated. The Bayesian approach can provide the marginal of the hyperparameters that 
contain more comprehensive information about the posterior. The cINN-based approach is able to generate a posterior distribution 
based on each set of observation data, and the total posterior distribution is obtained according to all the observation data.

Fig. 12. Prior, posterior, and target distributions of stiffness parameters k1, k2, and k3 under 3 damage scenarios.
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The computational time required for the model updating process using different methods is summarised in Table 6. The sensitivity- 
based approach converges rapidly due to its deterministic nature. In contrast, the Bayesian approach takes significantly longer to reach 
convergence because of its reliance on sampling methods. The cINN-based approach requires more time for training compared to the 
sensitivity-based method, but it is considerably faster than the Bayesian sampling approach. Once trained, the cINN model can perform 
posterior estimation quickly in the inference phase. Overall, the cINN-based approach demonstrates a well-balanced performance, 
providing an effective trade-off between computational efficiency and prediction accuracy.

6. Experimental case study: A 3-DOF experimental rig

6.1. Problem description

This section uses the same 3-DOF experimental rig setup designed and utilised as a bench test for the model updating methods 
described in Ref [38], as shown in Fig. 15. In this setup, three masses are supported and connected to an anti-vibration table by three 
grounded plate-like springs, each consisting of two plates. The masses are interconnected by two coupling springs, each composed of 
two leaf springs joined by a rigid horizontal link. This link slides vertically to adjust the stiffness of the connection. The stiffnesses of the 
two coupling springs denoted as k12 and k23, vary with the positions of the two horizontal linkages, i.e. p12 and p23.

In the subsequent updating problem, the three messes m1,m2, and m3, along with the three ground springs kg1, kg2, and kg3, are 
treated as known constants. The positions of the two rigid linkages, p12 and p23, are considered as random variables following a pre- 
determined prior distribution. The nominal values and distribution characteristics of these variables are presented in Table. 7. 
Consequently, the stuffiness of the two coupling springs, k12 and k23, are also random variables governed by the distribution features of 
p12 and p23. It is essential to identify the functional relationship between these positional variables (p12 and p23) and the corresponding 
stiffness variables (k12 and k23). This relationship will be explored in the next section through a sensitivity analysis.

Once the masses and stuffiness are determined, the mass and stiffness matrices can be constructed using Eq. (23). The eigenvalue 
equation is then solved, allowing the natural frequencies of the system to be analytically obtained. These three natural frequencies 
serve as the output quantities of interest in the subsequent model updating and damage identification processes. 

M = diag(m1,m2,m3)

K =

⎡

⎢
⎢
⎣

2kg1 + k12 − k12 0

− k12 2kg2 + k12 + k23 − k23

0 − k23 2kg3 + k23

⎤

⎥
⎥
⎦

(23) 

As depicted in Fig. 15(b), the position variables, p12 and p23, follow a uniform distribution ranging from 0.02 m to 0.07 m. Initially, 
these positions were set at six evenly spaced intervals, resulting in 36 possible configurations (6-by-6). Subsequently, five additional 
intermediate positions were identified, creating 25 more configurations (5-by-5). This setup yielded a total of 61 configurations, and 
corresponding modal tests were conducted for each, resulting in 61 sets of experimental natural frequencies.

The observation data from these tests were categorised into two groups: ‘undamaged’ and ‘damaged’. Configurations where either 
rigid linkage was in the top position (i.e., p12 = 0.02m or p23 = 0.02m), indicating low stiffness in the coupling spring, were classified 
as ‘damaged’. All other configurations were considered ‘undamaged’. As a result, 50 sets of ‘undamaged’ data and 11 sets of ‘damaged’ 
data were obtained. Fig. 16 gives a clear view of how the 61 groups of observation data are measured and labelled.

The goal of this experimental case study is to determine whether the cINN-based model updating approach can accurately detect 
and locate damage by distinguishing between these ‘damaged’ and ‘undamaged’ cases. The model updating results obtained by using 
the sensitivity method, Bayesian method, and the cINN-based method with 61 groups of experimental measurements as targets are 
compared at the end of this section.

6.2. Global sensitivity analysis

A global sensitivity analysis (GSA) was performed to identify the input parameters with the greatest aleatory variability, using 
Sobol total-order sensitivity indices. This approach decomposes the contribution of each input to the variance of the outputs. The 
results, illustrated in the heatmap in Fig. 17, show that the first natural frequency (f1) is influenced by both position variables p12 and 

Table 4 
Target and predicted mean and standard deviation of the stiffness parameters, and PoD under 3 damage scenarios.

Scenarios Parameters Target value Target PoD Updated result Predicted PoD
Mean Std Mean Std

1 k1 μ1 = 3.6 σ1 = 0.3 37.76 % μ1 = 3.606 σ1 = 0.327 45.6%
2 k2 μ2 = 4.5 σ2 = 0.1 99.96 % μ2 = 4.511 σ2 = 0.091 100%

k3 μ3 = 4.8 σ3 = 0.2 99.99 % μ3 = 4.794 σ3 = 0.202 100%
3 k1 μ1 = 3.6 σ1 = 0.3 37.76 % μ1 = 3.581 σ1 = 0.275 54.6%

k2 μ2 = 4.5 σ2 = 0.1 99.96 % μ2 = 4.520 σ2 = 0.090 100%
k3 μ3 = 4.8 σ3 = 0.2 99.99 % μ3 = 4.826 σ3 = 0.171 100%
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Fig. 13. PoD evaluation based on updated PDFs of the stiffness from both undamaged case and damaged case (in the legend “k1-3_ud” indicates the 
undamaged case; “k1-3_d1-3” indicates the damaged case in different scenarios).
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p23, with p23 being the more dominant factor.
In contrast, the second and third natural frequencies (f2 and f3) are primarily influenced by a single parameter. Specifically, f2 is 

driven predominantly by p12, while f3 is largely affected by p23. The remaining parameters, including the ground spring constants (kg1,

kg2, and kg3) and mass variables (m1,m2, and m3), show minimal influence on the output variances, highlighting their lesser signifi
cance in this context.

Since the two eigenvalues, λ2 and λ3 are separately dependent on p12 and p23, the values of coupling stiffness, k12 and k23, may be 
determined by solving the system of characteristic equations in Eq. (24). 

{
|K − λ2M| = 0

|K − λ3M| = 0
(24) 

where λi =
(
2π ⋅ fi

)2 and fi, i = 2, 3 are the experimental data of the second and third frequencies. Thus, a correspondence between p12,

p23 and k12, k23 are obtained as the blue dots in the figure below. Based on the trends in the scatter distribution, an exponential function 
was selected as the fitting function, expressed as Eq. (25). Fitted curves are expressed in Eq. (26) and illustrated in Fig. 18 in the red 
line. 

k = A ⋅ eB⋅p + C (25) 

Fig. 14. Comparison for accuracy of model updating results from sensitivity, Bayesian, and cINN-based approaches.

Table 5 
Means and standard deviations derived by sensitivity, Bayesian, and cINN-based approach.

Parameters Updated result

Target value Sensitivity-based Bayesiana cINN-based

Mean Std Mean Std Mean Std Mean Std

k1 μ1 = 4.0 σ1 = 0.3 μ1 = 3.998 σ1 = 0.274 μ1 = 3.970 σ1 = 0.279 μ1 = 4.083 σ1 = 0.314
k2 μ2 = 5.0 σ2 = 0.1 μ2 = 4.999 σ2 = 0.099 μ2 = 4.998 σ2 = 0.101 μ2 = 5.008 σ2 = 0.097
k3 μ3 = 6.0 σ3 = 0.2 μ3 = 5.998 σ3 = 0.204 μ3 = 6.042 σ3 = 0.215 μ3 = 5.987 σ3 = 0.188

a Results extracted from the Most Probable Points (MPPs) of the Bayesian posterior distributions.

Table 6 
Comparison of time efficiency of sensitivity-based, Bayesian, 
and cINN-based approaches.

Approaches Time-consumeda

Sensitivity-based 1m35s
Bayesian 53m22s
cINN-based Train: 7m13s 

Inference: 12 s

a Computation conducted on a laptop equipped with an 
Intel(R) Core(TM) Ultra 135U processor.

T. Wang et al.                                                                                                                                                                                                          Mechanical Systems and Signal Processing 232 (2025) 112743 

18 



Fig. 15. 3-DOF experimental rig system [38].

Table 7 
Uncertain characteristics of the 3-DOF experimental rig system.

Parameters Prior distribution Target distribution

p12 Uniform distribution:U [0.0, 0.12] Uniform distribution: U [0.02,0.07].
p23 Uniform distribution:U [0.0, 0.12] Uniform distribution: U [0.02,0.07].
m1 − m3kg1 − kg3 Constant variables do not need to be updated. 

m1 = 1.52kg,m2 = 2.30kg,m3 = 1.08kg, kg1 = kg2 = kg3 = 2477N/m.

Fig. 16. Experimental dataset labelled with ‘undamaged’ and ‘damaged’.
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{
k12 = 221.75 ⋅ exp(31.64 ⋅ p12) + 855.75

k23 = 300.45 ⋅ exp(28.89 ⋅ p23) + 725.37
(26) 

6.3. Stochastic damage detection with cINN

Typically, traditional Bayesian model updating frameworks struggle when input parameters have varying levels of impact on the 
output features. This issue is particularly relevant in cases like the one revealed by the above sensitivity analysis, where the parameters 
p12 and p23 exhibit significantly different sensitivities across the three natural frequencies. To address this variability, parameters 
generally need to be updated in separate groups based on their impact, which can be a complex and challenging process. However, the 
cINN architecture offers an efficient solution to this challenge. The conditional network in the cINN is designed to provide learned data 
representations that are highly informative for the INN component. This capability allows the model to effectively capture and handle 
the varying sensitivities of different input parameters, thereby predicting the posterior distributions of the parameters with greater 
accuracy.

The training data is obtained by collecting the position parameters sampled randomly from the prior distribution as input and the 
corresponding natural frequencies generated from the simulator (numerical model) as conditional data. In the training phase, the 
conditional network is designed as a sequence of multiple Conv1D layers, and the INN consists of 4 cACLs. The validation results using 
the coefficient of determination (R2) is shown in Fig. 19.

Fig. 17. Sobol total indices of the 8 parameters.

Fig. 18. Fitted expression of stiffness k12 and k23 with p12 and p23.
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Model updating is initially conducted using the ’undamaged’ data as conditional inputs for the well-trained cINN model to generate 
the posterior distributions of the position parameters p12 and p23. For this process, 50 sets of ’undamaged’ observation data are used, 
resulting in the generation of 500 data points, with each observation data point producing 10 inversely generated data points. As 
illustrated in Fig. 20(a), the estimated posterior distributions for p12 and p23 closely align with the target distributions. This alignment 
indicates that the cINN model accurately captures the characteristics of the system in its ’undamaged’ state, thereby validating the 
effectiveness of the model calibration process.

Fig. 19. Training accuracy validation of 3-DOF experimental rig.

Fig. 20. Posterior distributions of p12 and p23 under ‘undamaged’ and ‘damaged’ scenario.

Table 8 
Target and predicted mean and standard deviation of p12 and p23, and PoD under’undamaged’ and ‘damaged’ scenario.

Scenarios Parameter Target value Target PoD Updated result Predicted PoD
Mean Std Mean Std

‘undamaged’ p12 μ12 = 0.0475 σ12 = 0.0116 5.0 % μ12 = 0.0503 σ12 = 0.0137 5.0%
p23 μ23 = 0.0475 σ23 = 0.0116 5.0 % μ23 = 0.0454 σ23 = 0.0147 5.0%

‘damaged’ p12 μ12 = 0.0336 σ12 = 0.0177 54.46 % μ12 = 0.0334 σ12 = 0.0166 56.36%
p23 μ23 = 0.0336 σ23 = 0.0177 54.46 % μ23 = 0.0337 σ23 = 0.0183 45.46%
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In the ‘damaged’ scenario, 11 sets of ‘damaged’ observation data serve as conditional inputs, leading to the generation of 110 data 
points for posterior estimation. Similar to the ‘undamaged’ case, each observation data point generates 10 data points inversely. As 
depicted in Fig. 20(b), the posterior distributions for both p12 and p23 peak distinctly at 0.02 m. This peak indicates a significant 
reduction in stiffness, which corresponds to a damaged state in the system. The ‘L’ shape on the scatter plot provides a clear view that 
either one of the two rigid links reaches the position p = 0.02m, the damage at the relative position is detected. The rest of the dis
tribution appears relatively uniform, suggesting less variability in the other potential values. This uniformity further emphasises the 
anomaly detected in the system.

Table. 8 provides a detailed comparison of the updated mean and standard deviation values for p12 and p23 against their target 
values under both scenarios. The results show that the updated values are in close agreement with the target values, indicating that the 
cINN model has effectively captured the true underlying distribution of the position parameters. This close fit is critical, as it validates 
the accuracy of the cINN-based model updating process, confirming that the model can accurately predict the system’s state based on 
the given observation data.

Furthermore, the Probability of Damage (PoD) is evaluated based on the posterior distributions of the stiffness parameters k12 and 
k23, as illustrated in Fig. 21. The PoD calculation uses a threshold, = μud − 1.645σud, where μud and σud are the mean and standard 
deviation of the ‘undamaged’ case. The threshold δ represents a critical value below which the system is considered damaged. In 
Fig. 21, the PDFs of k12 and k23 for both ‘undamaged’ and ‘damaged’ scenarios are shown. The PoD is determined by the area under the 
PDF curve to the left of the threshold δ. The observed significant differences in the PDFs between the ‘undamaged’ and ‘damaged’ 
cases, as well as the position of the threshold, clearly indicate the presence of damage. The PoD values provide a quantitative measure 
of the likelihood of damage, offering critical insights for structural health monitoring and maintenance decision-making.

6.4. Comparison with sensitivity-based approach and Bayesian approach

In this case, the sensitivity-based approach is carried out according to Ref [38] with the experimental dataset augmented by a 
further 500 natural frequencies sampled from the prior distribution. The Bayesian approach is carried out with TMCMC and Bhat
tacharyya distance-based likelihood function with all 61 sets of experimental measurement data as target. According to the GSA re
sults, the 2nd and 3rd natural frequency is dependent on p12 and p23, respectively, and the 1st natural frequency is dependent on both 
of the position parameters. Therefore, only the latter two order of natural frequencies are taken as the observation data while using 
sensitivity-based and Bayesian approach to perform model updating to ensure it is not ill-posed. For the cINN-based method, all three 
orders of natural frequencies are adopted as input of its conditional network directly. The results are compared in Fig. 22, Table. 9, and 
Table. 10, in the perspective of accuracy and efficiency.

Similar to the previous examples, all three methods yield relatively accurate model updating results. The sensitivity-based 
approach is the most time-efficient but does not provide a probabilistic representation of uncertainty. The cINN-based approach of
fers a strong balance between computational efficiency and UQ. Unlike the Bayesian method, which requires extensive sampling and is 
computationally expensive, the cINN-based approach directly obtains the posterior distribution through its invertible neural network 
structure, significantly reducing computation time while still capturing the probabilistic characteristics of the updated parameters. 
Once trained, the cINN model can infer posterior distributions quickly, making it a practical and scalable solution for stochastic model 
updating, particularly in real-time applications or cases with large-scale simulations.

Fig. 21. PoD evaluation based on the PDFs of stiffness under ‘damaged’ scenario (k_12/23_ud indicates the ‘undamaged’ scenario, k_12/23_d in
dicates the ‘damaged’ scenario).
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7. Conclusions

This paper demonstrates the potential of exploiting deep generative models to solve model updating problems by leveraging the 
conditional Invertible Neural Network (cINN) as a unique data-driven approach to model updating, providing an alternative to the 
dominant Bayesian sampling-based algorithms and sensitivity-based optimisation methods. Unlike the traditional Bayesian approach, 
which relies on evaluating complex and intractable likelihood functions, the cINN-based method bypasses this necessity while still 
producing the posterior distribution of the parameters through its own calibration capabilities.

The cINN’s advantages stem from two key features. First, its invertibility enables it to move beyond the role of a surrogate model 
typically embedded within Bayesian or optimisation frameworks. Instead, the cINN possesses its own calibration mechanism, achieved 
through a bijective mapping process. Second, the conditional network embedded within the cINN plays a crucial role in handling 
sparse and noisy observation data. This makes the cINN particularly well-suited for scenarios with limited observational data, ensuring 
robust model updating even under challenging data conditions.

In addition to its calibration capabilities, the cINN-based approach, as a probabilistic distribution transforming process, has natural 
advances in uncertainty analysis. The integration of cINN into a multilevel stochastic model updating framework allows for the 
evaluation of the Probability of Damage (PoD), providing a probabilistic measure of structural health. This enables more informed 
decision-making under uncertainty, which is critical in applications such as structural health monitoring and damage detection.

While the proposed cINN-based model updating approach demonstrates efficiency and probabilistic inference, several aspects 
require further investigation. In real-world SHM applications, environmental influences such as seasonal temperature variations and 

Fig. 22. Comparison for accuracy of model updating results from sensitivity-based, Bayesian, and cINN-based approaches.

Table 9 
Means and standard deviations derived by sensitivity-based, Bayesian, and cINN-based approach.

Parameter Updated result

Target value Sensitivity-based Bayesian cINN-based

Mean Std Mean Std Mean Std Mean Std

p12 μ1 = 0.045 σ1 = 0.0144 μ1 = 0.0442 σ1 = 0.0144 μ1 = 0.0487 σ1 = 0.0141 μ1 = 0.0473 σ1 = 0.0158
p23 μ2 = 0.045 σ2 = 0.0144 μ2 = 0.0449 σ2 = 0.0145 μ2 = 0.0466 σ2 = 0.0153 μ2 = 0.0453 σ2 = 0.0156

Table 10 
Comparison for time efficiency of sensitivity, Bayesian, and 
cINN-based approaches.

Approaches Time-consumeda

Sensitivity-based 1m17s
Bayesian 26m27s
cINN Train: 6m41s 

Inference: 8 s

a Computation conducted on a laptop equipped with an 
Intel(R) Core(TM) Ultra 135U processor.
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systematic measurement errors from different test engineers can introduce uncertainties that were not considered in this study. Future 
work should explore integrating compensation models to address these effects. Additionally, while cINN has the potential to handle 
high-dimensional problems, its scalability remains to be systematically evaluated, as the case studies in this paper involve only low- 
dimensional examples. Further research should investigate its performance in large-scale model updating scenarios where hundreds of 
parameters need calibration, ensuring its efficiency and stability in complex engineering applications.
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[32] S.T. Radev, U.K. Mertens, A. Voss, L. Ardizzone, U. Köthe, BayesFlow: learning complex stochastic models with invertible neural networks, IEEE Trans. Neural 

Networks Learn. Syst. 33 (2022) 1452–1466, https://doi.org/10.1109/TNNLS.2020.3042395.
[33] L. Ardizzone, J. Kruse, S. Wirkert, D. Rahner, E.W. Pellegrini, R.S. Klessen, L. Maier-Hein, C. Rother, U. Köthe, Analyzing Inverse Problems with Invertible 
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