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A B S T R A C T

In dynamical systems, it is advantageous to identify regions of flow which can exhibit maximal influence on
nearby behaviour. Hyperbolic Lagrangian Coherent Structures have been introduced to obtain two-dimensional
surfaces which maximise repulsion or attraction in three-dimensional dynamical systems with arbitrary time-
dependence. However, the numerical method to compute them requires obtaining derivatives associated with
the system, often performed through the approximation of divided differences, which can lead to significant
numerical error and numerical noise. In this paper, we introduce a novel method for the numerical calculation
of hyperbolic Lagrangian Coherent Structures using Differential Algebra called DA-LCS. As a form of automatic
forward differentiation, it allows direct computation of the Taylor expansion of the flow, its derivatives, and
the eigenvectors of the associated strain tensor, with all derivatives obtained algebraically and to machine
precision. It does so without a priori information about the system, such as variational equations or explicit
derivatives. We demonstrate that this can provide significant improvements in the accuracy of the Lagrangian
Coherent Structures identified compared to finite-differencing methods in a series of test cases drawn from
the literature. We also show how DA-LCS uncovers additional dynamical behaviour in a real-world example
drawn from astrodynamics.
1. Introduction

In dynamical systems, it is often useful to identify surfaces which
separate or maximally influence regions of qualitatively different flow.
For time-independent systems, one often determines the geometric
location of the invariant manifolds, which partition phase space and are
found by studying the system’s behaviour over infinite time scales [1].
However, in time-aperiodic flows, such infinite-time behaviour is not
always well defined. Instead, the behaviour of these systems is typically
studied over fixed time-scales chosen to match some practical period of
interest [2,3].

To overcome this problem, several methods for identifying anal-
ogous structures to the invariant manifolds in temporally aperiodic
systems have been suggested. For example, one may study a number of
heuristic flow diagnostics [4,5], such as the Finite-Time Lyapunov ex-
ponent (FTLE) which quantifies the separation between two trajectories
which start out infinitesimally close. However, many of these methods
are only effective for simple flows and are dependent on the reference
frame [2]. Being heuristic, they also often lack a proper theoretical
foundation as to exactly what they are indicating.

Lagrangian Coherent Structures (LCS) have been proposed to solve
this problem [6]. A particular type of LCS, the hyperbolic LCS, is locally
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the most repelling or attracting surface in a given region of flow, and
plays an analogous role to the stable and unstable manifolds. Several
equivalent definitions of LCS have arisen in the literature (for a review,
see [7]).

A global, objective approach to the practical construction of La-
grangian Coherent Structures based on their variational theory was
presented in [8]. The authors provide both the theoretical underpinning
and a practical algorithm to directly construct LCS as parameterised
surfaces by growing material surfaces which impose locally extreme de-
formation on nearby sets of initial conditions. These surfaces are shown
to be necessarily orthogonal to certain eigendirections of the Cauchy–
Green strain tensor, 𝐶𝑇

𝑡0
, and further satisfy a certain criterion involving

the curl of the eigenvectors of 𝐶𝑇
𝑡0

to ensure the surface is maximally
repelling or attracting. This approach is valid for three-dimensional
flows with general time-dependence and over arbitrarily-chosen time
periods of observation.

However, there are several computational complexities associated
with computing LCS using this approach [2], such as the need to
account for degenerate points and orientational discontinuities in the
eigenvector field of 𝐶𝑇

𝑡0
. More importantly, the eigenvectors of 𝐶𝑇

𝑡0
must

be computed precisely, yet are very sensitive to numerical errors. These
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errors are particularly troublesome near regions of intense attraction or
repulsion, since large errors in 𝐶𝑇

𝑡0
can quickly accumulate, yet these

are also the exact regions where one would expect a hyperbolic LCS.
The approximation of the derivatives of a flow using finite differencing
is often used [2,9–11], but this method is particularly sensitive to the
grid size chosen, which must be carefully selected to account for flow
behaviour over different spatial scales, which is generally difficult to
determine a priori and often selected through trial-and-error. Other
such methods for approximating derivatives exist, such as the use of
variational equations, where one manually derives and implements a
set of adjoint differential equations that are propagated along with
a reference trajectory [12]. While this approach yields derivatives as
accurate as the propagation along the reference trajectory, it requires
the derivation, implementation and integration of 𝑛2 additional equa-
tions for the first derivatives of a 𝑛 dimensional flow, and another
𝑛2(𝑛 + 1)∕2 equations for the second flow derivatives. An alternative
Eulerian approach for approximating 𝐶𝑇

𝑡0
without the need for divided

differences was presented in [13] by the solution of a set of partial
differential equations (PDEs). However, this does not extend to the
computation of the derivatives of the eigenvectors of 𝐶𝑇

𝑡0
and in some

cases the Eulerian approach via the solution of PDEs may be more
computationally expensive than the equivalent Lagrangian approach.

Separately, Differential Algebra (DA) was originally introduced to
compute high-order transfer maps for particle accelerator systems [14].
This approach constructs a Taylor series representation of an arbitrary
map in a dynamical system, and has since seen widespread use in the
study of non-linearities [15–17], the management of uncertainties [18–
21], and as a form of automatic differentiation [22] in a wide variety of
fields. Unlike other numerical methods such as divided differences, the
derivatives found using DA are accurate to machine precision, and since
it is a form of automatic differentiation there is no need to derive or
implement any additional equations beyond the system itself. However,
unlike standard automatic differentiation packages, we have additional
access to a Taylor expansion about the reference point, which can
be manipulated directly including by partial derivative operators (see
Section 3.2), as suggested by the name Differential Algebra [18].

In this paper we introduce DA-LCS, which uses DA to improve the
numerical method presented in [8] for determining hyperbolic LCS.
Firstly, in Section 3.1 we briefly review how polynomial expansions
of arbitrary flows of an ordinary differential equation (ODE) can be
calculated, with applications to obtaining flow derivatives of arbitrary
systems to machine precision. Next, in Section 3.2 we introduce a
novel use of DA to construct algebraic expansions of the leading eigen-
vector of a matrix of polynomials. Both of these techniques are then
combined to form the DA-LCS algorithm for computing LCS in three-
dimensional flows. In Section 5, we demonstrate that this method works
well in reproducing results for commonly-used ‘toy’ problems from the
literature. Lastly, in Section 6 we present the application of DA-LCS
to a more complex system from astrodynamics where the traditional
method of divided differences fails to produce usable results in the
literature [24,25].

2. Mathematical background and notation

We study the behaviour of a dynamical system

𝒙̇ = 𝑓 (𝒙, 𝑡) ,𝒙 ∈ 𝐷 ⊂ R𝑛, 𝑡 ∈
[

𝑡0, 𝑡0 + 𝑇
]

(1)

where 𝑓 is a smooth vector field considered over some time 𝑇 starting
at time 𝑡0. Denoting a trajectory of the dynamical system starting at
position 𝒙0 at time 𝑡0 as 𝒙

(

𝑡0, 𝒙0; 𝑇
)

, the flow map of Eq. (1) is given
by

𝑭 𝑇
𝑡0
∶

{

𝐷 → 𝐷
𝒙0 ↦ 𝒙

(

𝑡0, 𝒙0; 𝑇
) (2)

which is assumed to be at least 𝑘-times continuously differentiable. The
𝑇

2

Jacobian of this flow map, ∇𝑭 𝑡0
, defines the right Cauchy–Green Strain
Fig. 1. Comparison between the field of real numbers R and function space 𝐶𝑘, and
their respective computer representations.
Source: The subfigures are taken from [23].

Tensor (CGST) 𝐶𝑇
𝑡0

, which describes the local deformation of the flow
at the end of a given trajectory.

𝐶𝑇
𝑡0
=
(

∇𝑭 𝑇
𝑡0

)⊤ (

∇𝑭 𝑇
𝑡0

)

(3)

with ⊤ denoting the matrix transpose. 𝐶𝑇
𝑡0

is positive-definite and sym-
metric, with real eigenvalues 𝜆1 ≤ 𝜆2 ≤ ⋯ ≤ 𝜆𝑛 and associated real
eigenvectors 𝜻1, 𝜻2,… , 𝜻𝑛.

The dominant eigenvalue 𝜆𝑛 can be used to calculate the finite-time
Lyapunov exponent (FTLE), a measure of maximum separation of two
particles advected forward under Eq. (1) that start out infinitesimally
close to each other:

𝜎𝑇𝑡0 = 1
2
log 𝜆𝑛
𝑇

. (4)

Many previous studies have leveraged the FTLE field as a heuristic
indication of separation in the flow. While the FTLE has been shown to
be insufficient to indicate LCS alone [26], the FTLE is a commonly-used
metric and is thus used in this paper to preliminarily highlight system
behaviour.

3. Differential algebra

In the following, we give a very brief introduction to Differential
Algebra. For a more comprehensive treatment, the reader is referred to
the literature [27].

Differential Algebra can be used as a tool to compute the derivatives
of functions within a computer environment [27,28]. Similar to how
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Fig. 2. Relative error across all polynomial orders in successive applications of
[

𝐶𝑇
𝑡0

]

to an initial guess containing only the floating-point dominant eigenvector at the expansion
point as the constant part. Higher expansion orders (black) can all be seen converging at around the expected convergence rate 𝜆𝑛∕𝜆𝑛−1 (dashed red) towards the floating-point
floor.
computers represent the field of real numbers as floating-point num-
bers, DA allows the representation and manipulation of functions in a
computer [29].

Consider two real numbers 𝑎 and 𝑏 ∈ R. The approximation to 𝑎
and 𝑏 in a computational environment is their floating-point represen-
tation 𝑎̄, 𝑏̄ ∈ F, which essentially stores a set number of digits of its
binary expansion. Any operation defined in R, □, has a corresponding
operation in F, ⊠, defined such that the result is another floating-point
approximation of the operation on the real numbers 𝑎 and 𝑏, i.e. 𝑎̄ × 𝑏̄
commutes with the floating-point representation of 𝑎 × 𝑏, 𝑎 × 𝑏.

Similarly, now consider two functions, 𝑐 and 𝑑, which are suffi-
ciently smooth, 𝑘−differentiable functions of 𝑛 variables: 𝑐, 𝑑 ∶ R𝑛 → R.
In the DA framework, a computer operates on the multivariate Taylor
expansion of 𝑐 and 𝑑, [𝑐] and [𝑑], with corresponding operations to
those defined in the real function space, such that the operation of
[𝑐] ⋅ [𝑑] commutes with the DA representation of the product [𝑐 ⋅ 𝑑].

An example to demonstrate how real numbers are approximated in
a computer environment is provided in Fig. 1(a) for the evaluation of
the expression 1∕ (𝑥 + 1) for 𝑥 = 2 in F and R. In Fig. 1(a), we begin
with 𝑥 = 2, perform the operation +1 to obtain 3, and then perform
the operation 1∕ to compute the final expression. In R, we obtain the
solution 1∕3, and in F we obtain the solution 0.333… up to the limit of
precision of the type. The final result of the evaluation in floating-point
arithmetic is an approximation of the real computation.

Analogously, in Fig. 1(b) we evaluate the expression 1∕ (1 + 𝑥) in
the space 𝐶𝑘 (0) of real functions, and a DA representation of expansion
order 2. We begin with the function 𝑐 (𝑥) = 𝑥, and perform the operation
+1 followed by the operation 1∕, yielding 1∕ (𝑥 + 1) in the real function
space, and 1 − 𝑥 + 𝑥2 in the DA arithmetic. The result of the DA
arithmetic is the Taylor expansion of 1∕ (𝑥 + 1) which represents the
function exactly at 𝑥 = 0, and approximates the function locally near
𝑥 = 0 with an error of 

(

𝑥3
)

. The coefficients of the expansion are
computed automatically without any further input from the user.

Differential Algebra comprises the full set of elementary operations
to efficiently operate on multivariate expansions, including operations
for common intrinsic functions such as division, square roots, trigono-
metric functions, and exponentials, as well as operations for differen-
tiation and integration. An important application of DA widely used
in both the literature and this paper is the high-order expansion of the
solution of an ODE as a function of the initial conditions [19,21], which
is discussed in more detail in Section 3.1. In this paper, we use the
Differential Algebra Computational Engine [22] (DACE) to operate on
polynomial expansions (‘DA objects’ or ‘DAs’).
3

3.1. Flow expansions to arbitrary order using differential algebra

A key advantage of using DA is that the derivatives of flows with
respect to the initial conditions can be obtained automatically and
without any further effort from the user, beyond implementing the
system’s governing equations and the numerical integration scheme in
DA arithmetic.

To illustrate this concept of flow expansion, suppose we solve the
following initial value problem (IVP) numerically using a forward
Euler scheme, the simplest of the Runge–Kutta family of numerical
integrators
{

𝒙̇ = 𝑓 (𝒙, 𝑡)
𝒙
(

𝑡𝑖
)

= 𝒙𝑖.
(5)

A single step in this scheme is given explicitly by

𝒙𝑖 = 𝒙𝑖−1 + 𝛥𝑡𝑓
(

𝒙𝑖−1
)

(6)

which can be expressed as a function of the initial condition 𝒙0,

𝒙𝑓 = 𝒙0 +
𝑛
∑

𝑖=0
𝛥𝑡 𝑓

(

𝒙0 + 𝑖 ⋅ 𝛥𝑡
)

(7)

i.e. the initial condition is simply a sequence of operations on the
initial condition, which is true for any numerical integrator of the
Runge–Kutta family.

If we set 𝒙0 to be a DA representation of the initial condition by
substituting the initial value with the DA identity,

[

𝒙
(

𝑡0
)]

= 𝒙
(

𝑡0
)

+
𝛿𝒙, then 𝒙𝑓 becomes a DA representation of the final condition as a
function of the initial condition,

[

𝒙𝑓
]

. Differentiating the polynomial
thus yields the derivatives of the final condition with respect to the
initial condition completely algebraically.

As mentioned, the numerical integrator must support DA operations.
Using Boost C++, which has operator overloading to operate on any
type, this is relatively straightforward and its 7th/8th order Dormand–
Prince method is used in this paper. However, care must be taken when
calculating norms for error estimation in the integrator when using DA.
Evaluating the usual 𝐿2 norm of a vector |𝒙| =

√

∑𝑛
𝑖=0 𝑥

2
𝑖 in DA yields

another DA object representing a polynomial. As there is no ordering
on the space of polynomials, this cannot be directly compared to some
tolerance. Instead, we have to define the norm of a DA object which
maps it into the non-negative real numbers. In this application, the
norm of a DA object is taken to be the largest absolute value of any
coefficient of the expansion in any order. Considering all orders in the
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norm allows the usual step-size control algorithms of embedded Runge–
Kutta methods to control the error in all orders of the expansion, rather
than just the constant part.

3.2. Polynomial expansions of leading eigenvectors of 𝐶𝑇
𝑡0

to arbitrary order

Since derivatives of polynomials are straightforward to compute,
we can apply the partial derivative operator to differentiate the 𝑗−th
variable of an expansion, 𝜕𝑗 , making it particularly easy to assemble an
expansion of 𝐶𝑇

𝑡0
. This means we can directly evaluate the Jacobian as

[

∇𝑭 𝑇
𝑡0

]

𝑖𝑗
= 𝜕𝑗 [𝒙]𝑇𝑡0 , 𝑖 (8)

from which a polynomial expansion of 𝐶𝑇
𝑡0

can be assembled
[

𝐶𝑇
𝑡0

]

=
[

∇𝑭 𝑇
𝑡0

]⊤ [

∇𝑭 𝑇
𝑡0

]

. (9)

Note that the constant part of
[

𝐶𝑇
𝑡0

]

is the CGST at the expansion
point accurate to machine precision, that is it is the same as would
be approximated with divided differences. The remaining higher order
terms represent an expansion of the CGST in the neighbourhood around
the expansion point.

To compute the LCS, the derivatives of the leading eigenvector of
the Cauchy–Green strain tensor with respect to position are required.
While divided differences can in principle again be used to obtain
these derivatives, the method is susceptible to numerical noise and it is
difficult to determine the most appropriate grid sizes to use. Moreover,
eigenvectors are only defined up to a sign, and thus care must be taken
when taking the derivatives that nearby eigenvectors have ‘smooth’
changes in orientation.

Instead, we use a novel application of DA to obtain an expansion
of the leading eigenvector of a matrix of DAs, which then can once
again be differentiated directly in DA. We simply use power (von Mises)
iteration [30] performed in DA, which is a well-established algorithm
in standard floating-point operations [31].

Power iteration performs the repeated evaluation of an arbitrary
starting vector 𝒃0 through a matrix 𝐴 to obtain an approximation to
its dominant unit eigenvector 𝒃 through the recurrence relation

𝒃𝑚+1 =
𝐴𝒃𝑚

‖𝐴𝒃𝑚‖
(10)

here ‖ ⋅ ‖ represents a vector norm, here taken to be the 𝐿2 norm,
nd 𝑚 is the number of iterations. The vector 𝒃 will converge provided
hat the starting vector 𝒃0 has a nonzero component in the direction
f the dominant eigenvector, and 𝐴 has a unique largest eigenvalue
y absolute value. The theoretical convergence rate of the method
etween successive iterations is the ratio of the dominant eigenvalue
o the second dominant eigenvalue. Practically, the recurrence relation
s iterated until the stopping condition ‖𝒃𝑚+1 − 𝒃𝑚‖ ≤ 𝜀 is valid, where
> 0 is a pre-set tolerance and the norm is again taken to be an 𝐿2

orm.
To convert this algorithm to DA, let 𝐴 now be a DA matrix with DA

bjects in each entry, [𝐴]. Iterating it on a DA vector [𝒃0] will yield a
A vector [𝒃] corresponding to the dominant eigenvector of [𝐴] with a
olynomial expansion in each entry, that is it is the recurrence relation

[𝒃]𝑚+1 =
[𝐴] [𝒃]𝑚

‖ [𝐴] [𝒃]𝑚 ‖

. (11)

ote that here the norm in the denominator is simply a DA evalua-
ion of the 𝐿2 (Euclidean) norm [|𝒙|] =

√

∑𝑛
𝑖=0 [𝑥]

2
𝑖 . We generalise

the stopping condition from floating-point computation such that we
iterate until there is no relative change in any order in any entry of
(

[𝒃]𝑚+1 − [𝒃]𝑚
)

above a pre-set tolerance 𝜀 > 0. We set 𝜀 to be 10−12 in
his paper.

To speed up convergence, and because eigenvector solvers for
4

loating-point computations are readily available and highly efficient, p
we set the initial guess for
[

𝒃0
]

to have a constant part equal to the
dominant eigenvector of the constant part of [𝐴], since we know by
construction that this will be the constant part of the expansion of the
dominant eigenvector.

An example of the convergence of this method is illustrated in
Fig. 2, which shows the maximum relative change of coefficients in
[𝒃] separated by their expansion order over repeated application of
[

𝐶𝑇
𝑡0

]

to the initial guess of the dominant eigenvector of a trajectory in
the periodic ABC flow (Section 5.2). The theoretically expected rate of
convergence 𝜆𝑛∕𝜆𝑛−1 can clearly be seen in the plot as a dashed red line.
All orders converge at approximately the expected rate and the floating-
point portion of the expression converges instantly as it was already set
to the double-precision representation of the leading eigenvector.

Once the eigenvector
[

𝜻𝑛
]

is expanded to at least first order, the
url ∇× 𝜻𝑛 of the eigenvector field, which is used in the LCS construc-
ion (Section 4), can be computed by simply applying the DA partial
erivative operator 𝜕𝑗 again.

To obtain the value of ∇ × 𝜻𝑛 at the expansion point, the flow map
𝑇
𝑡0

must be computed at least to order 2. This is because one derivative
s taken in the construction of 𝐶𝑇

𝑡0
(Section 3.1), and another is then

aken in ∇ × 𝜻𝑛, both of which reduce the order of the expansion by
ne.

. Lagrangian coherent structures

In this Section we give the method for computing hyperbolic LCS
n three-dimensional systems. We begin by formally reviewing their
athematical construction following [8] and highlight how this is

mplemented algorithmically and practically following the literature
8,26,32]. We then highlight how DA is used to enhance the algorithm
n DA-LCS.

The full, three-dimensional hyperbolic LCS, which is the locally
aximally repelling or attracting surface over a given time interval
𝑡0, 𝑡0 + 𝑇

]

, is constructed from its intersections with a family of hyper-
lanes . These intersections are called reduced strainlines or reduced
tretchlines. Interpolating between these intersections yields the full,
hree-dimensional structure of the LCS. In the following, we high-
ight the construction of the repelling LCS, whose structure is derived
rom the dominant eigenvector 𝜻3 and whose intersections with  are
he reduced strainlines. A similar procedure applies to 𝜻1 (reduced
tretchlines) to obtain attracting LCS.

Mathematically, at any point 𝒔 on a hyperplane, we define the
educed strainline that passes through that point from the definition of
he repelling LCS as being necessarily orthogonal to 𝜻3 and of course
ying within the hyperplane. This is true for any point on the strainline,
llowing their parameterisation to be described by the ODE
′ = 𝒏̂ × 𝜻3 (12)

here 𝒏̂ is the unit normal to the surface at 𝒔. Points with zero helicity
𝜻3 lie on surfaces which are maximisers of repulsion

𝜻3 = ⟨∇ × 𝜻3, 𝜻3⟩, (13)

here ⟨⋅, ⋅⟩ is the inner product. Reduced strainlines which begin from
oints with zero helicity are thus the intersection of the LCS with that
yperplane. The strainlines forming part of the LCS on each hyperplane
re then interpolated to produce the full 3D structure of the LCS.

Practically, Algorithm 1 is used to solve for the two quantities above
ollowing the literature [8,26,32]. We first sample points 𝒔 on each
yperplane in  on a uniformly-spaced grid and compute the derivative
f the flow map ∇𝑭 𝑇

𝑡0
and thus 𝐶𝑇

𝑡0
at each point (Lines 3 and 4). The

ominant eigenvector of 𝐶𝑇
𝑡0

, 𝜻3, and its curl, ∇ × 𝜻3, is obtained and
hen used to compute the helicity (Lines 5 and 6).

Numerically, the selection of zero-helicity initial conditions for the
trainline ODE in Eq. (12) is relaxed by allowing them to begin from

oints where the helicity 𝐻𝜻3 is below some tolerance 𝛼 > 0 (Line 7).



Journal of Computational Science 65 (2022) 101883J. Tyler and A. Wittig

𝑥

The ODE in Eq. (12) is then rewritten in discretised form and solved
numerically as

𝒔′𝑖 = sign
(

𝜻 𝑖, 3 ⋅ 𝜻 𝑖−1, 3
)

𝒏̂ × 𝜻 𝑖, 3 (14)

where 𝒔𝑖 is the 𝑖−th point on the strainline 𝐿 and the term sign
(

𝜻 𝑖, 3⋅
𝜻 𝑖−1, 3

)

is introduced to enforce continuity in the vector field by select-
ing the direction most closely aligned with the previous tangent vector.
Since the eigenvector is only defined up to the sign, we integrate the
strainline in both directions corresponding to ±𝜻3 to capture the entire
strainline structure. The numerical integration of the ODE along the
strainline continues until the sum of the helicity at each 𝒔𝑖 divided by
the number of steps performed (𝑖) rises above 𝛼 (Line 10).
Algorithm 1: High-level algorithm for computing three-dimensional
LCS
Input: , 𝛼, 𝛿, 𝑡0, 𝑇
1: for hyperplane 𝑆 in  do
2: for point 𝒔 on hyperplane 𝑆 do
3: Compute ∇𝑭 𝑇

𝑡0
at 𝒔

4: 𝐶𝑇
𝑡0
←

(

∇𝑭 𝑇
𝑡0

)⊤ (

∇𝑭 𝑇
𝑡0

)

5: 𝜻3 ← dominant eigenvector of 𝐶𝑇
𝑡0

6: 𝐻𝜻3 ← ⟨∇ × 𝜻3, 𝜻3⟩
7: if 𝐻𝜻3 ≤ 𝛼 then
8: 𝐿 ← new strainline starting at 𝒔
9: while average of 𝐻𝜻3 along 𝐿 ≤ 𝛼 do

10: Extend 𝐿 via ODE (12)
11: end while
12: Add 𝐿 to set of strainlines on 𝑆, 𝑆
13: end if
14: end for
15: Filter 𝑆 for duplicate strainlines 𝐿 using distance metric and

threshold 𝛿
16: end for
17: Interpolate strainlines in 𝑆 and 𝑆′ for all adjacent hyperplanes

𝑆 and 𝑆′ in 

The trajectories obtained through the strainline ODE are segments
of strainlines forming the LCS. However, since different initial points
can belong to the same strainline, the trajectories often overlap. They
must, therefore, be filtered to provide a single, continuous curve. Given
a suitable metric 𝑑𝐹 of how close two strainline segments are, the
shorter of the two strainlines is discarded whenever 𝑑𝐹 is below some
threshold 𝛿 > 0 (Line 15).

We now highlight our additions to the algorithm in DA-LCS. In
previous literature, divided differences was used to numerically approx-
imate ∇𝑭 𝑇

𝑡0
in Line 3, and the quantity ∇ × 𝜻3 in Line 5 [2,9–11]. This

can lead to significant numerical error, particularly when computing
the second derivative required for ∇×𝜻3. Divided differences can either
be applied on the same grid on which points are sampled, or on a
finer grid used solely for the purpose of approximating the deriva-
tives. In DA-LCS, we use the technique of flow expansion described
in Section 3.1 to compute ∇𝑭 𝑇

𝑡0
as an expansion at each grid point

and around each grid point. This provides an automatic representation
of this quantity accurate to machine precision, and without the need
to alter grid sizes through trial and error. It thus also provides 𝐶𝑇

𝑡0
and 𝜻3 in Lines 4 and 5 to high accuracy for use in the strainline
ODE. To improve the numerically-challenging computation of ∇ × 𝜻3,
we compute Line 6 to machine precision using the power iteration
described in Section 3.2, and again without the need to alter grid sizes
through trial-and-error.

In [8], the distance metric used was the Hausdorff distance, a
measure of similarity between two curves. While the Fréchet distance
is recognised as a better measure of similarity than the Hausdorff
distance in trajectory clustering problems [33,34], we find we obtain
qualitatively better strainlines when retaining the Hausdorff distance. It
5

Fig. 3. Poincaré section (return map) for the steady ABC flow on the 𝑧 = 0 plane;
generated using a 15 × 15 grid of initial points with integration time 𝑇 = 1500.

is defined as follows: given two curves 𝐴 and 𝐵, the Hausdorff filtering
distance 𝑑𝐹 between 𝐴 and 𝐵 is defined such that

𝑑𝐹 = max
{

max
𝑥∈𝐴

(

min
𝑦∈𝐵

𝑑𝐸 (𝑥, 𝑦)
)

, max
𝑥∈𝐵

(

min
𝑦∈𝐴

𝑑𝐸 (𝑥, 𝑦)
)}

(15)

where 𝑑𝐸 is the Euclidean distance. As per other investigations into
computing LCS [32], we also enforce a minimum strainline length of 𝛿;
the rationale behind this is given in Section 5.1.

5. Arnold–Beltrami–Childress flows

To show that DA-LCS reproduces the results from the literature, we
now apply the standard approach of divided differences and the DA-LCS
method to several variations of the Arnold–Beltrami–Childress (ABC)
flow, as studied in [8]. For each example, we present the equations
of motion, the FTLE field using DA-LCS, and the relative error of
the application of the approximation of divided differences to the
FTLE field, using DA-LCS as the baseline. We also present the helicity
field and the resulting strainlines. The results obtained using divided
differences each use the manually-determined optimal grid size for each
application that produces the qualitatively ‘best’ results, to allow for
a fair comparison. Grid sizes between 0.1 and 5 times the nominal
grid size were analysed. No such adjustments are needed when using
DA-LCS.

5.1. Steady Arnold–Beltrami–Childress flow

We first consider the steady Arnold–Beltrami–Childress flow, using
the problem parameters and reference planes presented in [8]. The ABC
flow is an exact solution to Euler’s equation, and its equations of motion
in Cartesian coordinates are

̇ = 𝐴 sin 𝑧 + 𝐶 cos 𝑦 (16)
𝑦̇ = 𝐵 sin 𝑥 + 𝐴 cos 𝑧 (17)
𝑧̇ = 𝐶 sin 𝑦 + 𝐵 cos 𝑥 (18)

with parameter values 𝐴 =
√

3, 𝐵 =
√

2, 𝐶 = 1.0. To illustrate the
behaviour of this system, the Poincaré section in the 𝑥–𝑦 plane is shown
in Fig. 3, computed from a regular 15 × 15 grid of initial points and an
integration time of 𝑇 = 1500.

For the LCS computation, matching previous literature the set of
reference planes are taken to be

 = { 𝑥 , 𝑦 , 𝑧 ∈ 0, 2𝜋 3 ∶ 𝑧 ∈ {0, 0.005, 0.01… , 0.1}},
( ) [ ]
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Fig. 4. Finite-time Lyapunov fields for the steady ABC flow from 𝑡 = 0 to 𝑇 = 3 using DA-LCS and divided differences. The relative error is below 3 × 10−5, suggesting that
computing the FTLE using divided differences is not a major source of error in this example.
Fig. 5. Helicity fields for the steady ABC flow from 𝑡0 = 0 to 𝑇 = 3 using DA-LCS and divided differences. Qualitatively both strongly agree, showing that DA-LCS is working.
However, the relative error on the ridges indicating very low helicity is of the order of 100, making the identification of seed points more robust with DA-LCS.
that is the 𝑥–𝑦 plane evenly spaced along the 𝑧 axis. However, within
each plane we alter the grid size used. [8] use a 500 × 500 grid on
6

which to compute the underlying helicity field, and then sample seed
points for the ODE in Eq. (12) on a reduced grid of 600 × 10. While
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Fig. 6. Final, filtered strainlines for the steady ABC flow on the 𝑧 = 0 plane computed
using DA-LCS. The structure is formed of approximately 53 strainline segments.

Table 1
Core time required to compute the LCS on one reference plane for the steady ABC
flow using divided differences and DA-LCS on Intel Xeon E5-2670 processors. While
DA-LCS is slower to determine the initial 𝐻𝜻3 field, it is quicker at the integration
of a representative set of strainlines and can grow much longer strainlines with the
same number of evaluations of Eq. (12) as divided differences. Importantly, divided
differences requires significant grid size tuning, which may make the time required to
determine 𝐻𝜻3 slower overall when used practically.

Method Time to compute
𝐻𝜻3 field [s]

Time to compute
100 strainlines [s]

Average function
evaluations per unit
length

Divided differences 224.902 4684.689 7498.171
DA-LCS 611.360 1108.571 78.392

the authors acknowledge that sampling every point on a dense grid is
numerically inefficient, to simplify analysis, ensure we capture all of
the flow’s behaviour, and to work off of the assumption of no a priori
knowledge we perform all stages of the analysis on a 1000 × 1000 grid
defined for each hyperplane in . In practice, additional information
about the system may be available to search more efficiently for LCS
seed points, such as searching on a fixed line or only in a certain region
of flow.

The system defined by Eqs. (16)–(18) is integrated forward for 3
non-dimensional time units using the DA-compatible numerical inte-
grator introduced previously, with an integration tolerance of 10−13. A
helicity tolerance of 𝛼 = 10−4 is applied to determine seed points and
terminate the numerical integration. A minimum distance of 𝑑𝐹 = 0.04
is used in the strainline segment filtering. These parameters are chosen
from visual examination of the helicity field and resulting strainline
structure for all of the examples in this paper.

The FTLE field on the 𝑧 = 0 plane for this flow, computed using
DA-LCS, is shown in Fig. 4(a). We show the relative error between
the use of DA-LCS and the use of divided differences on the manually-
determined ‘optimal’ grid-size in Fig. 4(b). The relative error is very
low throughout the field, which suggests that the computation of 𝐶3

0
and its dominant eigenvalue agrees across the two methods.

In the DA-LCS and divided difference helicity fields on the 𝑧 = 0
plane, shown in Figs. 5(a) and 5(b) respectively, some first differences
can be seen. The quantitative differences are highlighted in a plot of
the relative error between them in Fig. 5(c). While the two methods
qualitatively agree on the structure of the field, the DA-LCS method
produces smoother peaks and ridges in the field for the primary features
in the flow. This is particularly visible on the main ridge in the bottom
right corner around 𝑋 = 4 and 𝑌 = 1. This makes the identification of
seed points in the flow more straightforward.
7

The resulting strainlines on the 𝑧 = 0 plane for this flow are shown
in Fig. 6, and follow the expected structure from the helicity field pre-
sented in Fig. 5(a) using 53 strainline segments. We note the existence
of several ‘loops’ in the helicity field, particularly in the left-hand side of
the field. The strainline segments at these points often grow transverse
to the ridges at certain points, and do not track along the ridge as
would be expected. This behaviour is also present when computing
LCS with divided differences. These small strainline segments are not
present in [8] due to being missed by the largely reduced 600 × 10 grid
resolution used there. This explains their omission from the literature,
and we do not investigate this issue further here, although we note the
existence of similar structure in [35].

The ‘spiky’ nature of these loops, found partially as a result of our
dense sampling of initial conditions, also means that those strainline
segments that do grow are of exceedingly small length rather than
being a continuous, low-helicity structure, as numerical integration of
the strainline ODE is terminated immediately upon leaving the ‘tip’ of
the spike. Ensuring we capture only strainlines which form part of a
larger structure that exerts maximal influence on nearby flow, as per
the definition of an LCS, motivates the use of a minimum strainline
length equal to the filtering distance. In practice, one may wish to
only filter the subset of longest strainlines, or only those with minimal
average helicity. The use of a reduced grid, or a more sophisticated
search strategy for low-helicity points, would also avoid the inclusion
of such spurious points.

We now discuss the computational and numerical performance of
DA-LCS, using the steady ABC flow as an example. The total time to
compute the full LCS on 48 2.0 GHz Intel Xeon E5-2670 processors is
given in Table 1, broken down by the time required to obtain the initial
𝐻𝜻3 field and then a representative set of 100 strainlines. The set of 100
strainlines is chosen to be the 100 points with lowest 𝐻𝜻3 , integrated
until the running average of helicity rises above 10 times the initial
value. Visual inspection of the initial conditions confirms that the seed
points are sufficiently ‘close’ in both divided differences and DA-LCS
that they are assumed to represent the same behaviour.

We find that DA-LCS is slower than divided differences for comput-
ing the initial helicity field since two orders are computed, requiring
more CPU instructions per operation, and because fewer optimisations
can be made by the compiler compared to native double-precision
types. However, since DA-LCS requires no tuning of grid size, this
computational deficit is eliminated as soon as more than two trial
computations of the LCS using divided differences has to be performed
to obtain the ‘optimal’ grid size in every dimension. Moreover, owing
to better numerical performance, the strainline integration is approxi-
mately four times faster using DA-LCS than using divided differences,
since the integrator can take larger steps than with divided differences
while still controlling the error in the integration of Eq. (12). We
also find that the strainlines obtained with DA-LCS are on average 10
times longer than when using divided differences for the representative
set here; this may mean that more sophisticated search methods for
identifying seed points, such as the method of searching on a fixed line
mentioned earlier, would be more feasible in DA-LCS. Both improve-
ments in strainline integration are due to the elimination of numerical
noise introduced by divided differences, which is not present in DA.

5.2. Periodic Arnold–Beltrami–Childress flow

We now consider a time-periodic version of the Arnold–Beltrami–
Childress flow with equations of motion

𝑥̇ = (𝐴 + 0.1 sin 𝑡) sin 𝑧 + 𝐶 cos 𝑦 (19)
𝑦̇ = 𝐵 sin 𝑥 + (𝐴 + 0.1 sin 𝑡) cos 𝑧 (20)
𝑧̇ = 𝐶 sin 𝑦 + 𝐵 cos 𝑥. (21)

The hyperplanes  and grids are the same as in the case of the

steady ABC flow, but now with integration times 𝑡0 = 0 and 𝑇 = 4 to
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Fig. 7. Finite-time Lyapunov exponent fields for the periodic ABC flow from 𝑡0 = 0 to 𝑇 = 4.0, obtained using DA-LCS and divided differences. Again, the relative error between
divided differences and DA-LCS is small, suggesting divided differences on the correct auxiliary grid in this case accurately approximates the FTLE field.
Fig. 8. Helicity fields for the periodic ABC flow computed using DA-LCS and divided differences from 𝑡0 = 0 to 𝑇 = 4.0. Here the DA-LCS helicity field already shows a qualitative
difference in smoothness over divided differences. This is confirmed by the relative error which in this example exceeds 104 on the ridges.
again match the literature exactly. A helicity tolerance of 𝛼 = 5 × 10−5

is used, with a distance threshold 𝑑 = 0.04.
8

𝐹

Mirroring the analysis in the steady case, the FTLE fields for both
DA-LCS and the relative error in the FTLE between DA-LCS and divided
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𝑥

Fig. 9. Final strainlines for the periodic ABC flow on the 𝑧 = 0 plane computed
using DA-LCS, after filtering. The strainline structure is composed of approximately
50 strainline segments.

differences are shown in Figs. 7(a) and 7(b), respectively. Again, there
is little qualitative and quantitative difference between the two fields.
The differences in smoothness in the helicity fields are, however, more
pronounced between Figs. 8(a) and 8(b), with the relative difference
between them presented in Fig. 8(c). The main wishbone-like structure
is particularly ‘spiky’ when using divided differences. With DA-LCS,
there is a smooth, well-defined ridge of consistently low helicity for
the algorithm to detect with much lower numerical noise; in fact, our
helicity threshold is approximately two orders of magnitude lower than
used in the literature but recovers qualitatively similar structures.

Finally, the strainlines on the 𝑧 = 0 plane for this system computed
using DA-LCS are shown in Fig. 9. Approximately 50 strainline segments
determine the full strainline structure on the 𝑧 = 0 plane for this
example.

5.3. Chaotically-forced Arnold–Beltrami–Childress flow

Following [8], we now demonstrate that DA-LCS is robust under
perturbations from a chaotic forcing function 𝑔 (𝑡). The motion is forced
by a chaotic Duffing oscillator, with equations of motion given by

̇ = (𝐴 + 0.1 sin 𝑡) sin 𝑧 + 𝐶 cos 𝑦 (22)
𝑦̇ = 𝐵 sin 𝑥 + (𝐴 + 0.1𝑔 (𝑡)) cos 𝑧 (23)
𝑧̇ = 𝐶 sin 𝑦 + 𝐵 cos 𝑥 (24)

where 𝑔 (𝑡) is the 𝑥−coordinate of the solution to the Duffing equation

𝑥̈ = −𝛿𝑥̇ − 𝛽𝑥 − 𝛼𝑥3 + 𝛾 cos (𝜔𝑡) . (25)

with parameters 𝛼 = 1, 𝛽 = −1, 𝛾 = 0.3, 𝛿 = 0.2, 𝜔 = 1.
The computational grid is again the same as for the previous

test cases involving the ABC flow, including the hyperplanes  =
{(𝑥 , 𝑦 , 𝑧) ∈ [0, 2𝜋]3 ∶ 𝑧 = 𝑠1}, 𝑠1 = 0.0, 0.005, 0.01,… , 0.1, but a longer
integration time of 𝑇 = 5 is used to match the literature. Again, a
helicity tolerance of 𝛼 = 5 × 10−5 is used with a filtering distance of
𝑑𝐹 = 0.07.

The FTLE fields computed using DA-LCS and the relative error
compared to divided differences are again shown in Fig. 10(a) and
Fig. 10(b), respectively. Some differences in the FTLE are beginning to
emerge in portions of the main wishbone-like structure. The helicity
fields for DA-LCS and divided differences are shown in Figs. 11(a)
and 11(b), respectively, which now exhibits a significant difference
compared to the two previous cases (Fig. 11(c)). Using DA-LCS, we are
able to resolve a relatively smooth ridge of low helicity, whereas the use
of divided differences leads to noticeable numerical noise throughout
the field as well as an overall much higher helicity.
9

Fig. 10. Finite-time Lyapunov exponent field for the chaotically-forced ABC flow and
an integration time from 𝑡0 = 0 to 𝑇 = 5.0. Differences are beginning to become visible
on the ‘ends’ of the main wishbone-like structure when using divided differences due
to the spiky FTLE values when using divided differences.

The strainlines for this system on the 𝑧 = 0 plane computed using
DA-LCS are presented in Fig. 12. A total of 57 strainline segments give
the full structure on the 𝑧 = 0 plane.

6. The elliptic-restricted three-body problem

We now demonstrate the numerical out-performance of DA-LCS
compared to standard approaches on a test problem from astrody-
namics. The system presented in this Section is the Elliptic-Restricted
Three-body Problem (ER3BP), which studies the motion of a small mass
𝑚3 under the motion of two far larger masses 𝑚1 and 𝑚2 such that
𝑚1 ⩾ 𝑚2 ≫ 𝑚3. The system is parameterised by the mass parameter
𝜇 = 𝑚2∕(𝑚1 + 𝑚2).

In an inertial coordinate system, 𝑚2 and 𝑚1 orbit their centre of
mass on an ellipse of fixed eccentricity 𝑒𝑝, which is the second system
parameter. The angle of 𝑚2 with respect to the +𝑥-axis of the inertial
coordinate system is the true anomaly 𝜈.

For the special case of 𝑒𝑝 = 0, one recovers an autonomous dynami-
cal system for which fixed points and invariant manifolds exist [12]; for
the more general 𝑒𝑝 > 0, such structures become difficult to determine.
LCS have thus been suggested to analyse the behaviour for the cases
of 𝑒𝑝 > 0. In this example, we analyse the interesting dynamical
phenomena around 𝑚2. For small differences in initial position and ve-
locity, orbits can vary from being bound entirely around 𝑚2, being only
temporarily captured around 𝑚2, or escaping entirely [36]. Profiling
these regions is of high importance in the design of space missions [37].
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Fig. 11. Helicity fields for the chaotically-forced ABC flow from 𝑡0 = 0 to 𝑇 = 5.0. DA-LCS produces visibly better-defined ridges, helping with robustly identifying seed points.
However, the relative errors are very high due to the spiky nature of the ridges in both DA-LCS and divided differences.
Fig. 12. Final strainline structure on the 𝑧 = 0 plane for the chaotically-forced ABC flow
computed using DA-LCS. The structure is formed of 57 individual strainline segments.

Since the ER3BP lives in a phase space defined in R6, but the
algorithm above functions for a CGST that is 3 × 3 in dimension
and represents a system with three-dimensional dynamics, we embed
a three-dimensional submanifold in the six-dimensional phase space
10
Fig. 13. The parameterisation of the space around 𝑚2 using spherical coordinates
relative to the inertial coordinate frame. By careful choice of the ranges of 𝜌, 𝜙 and 𝜃,
the reference hyperplanes can encapsulate regions of ‘interesting’ dynamics about 𝑚2.

on which we compute the LCS. We parameterise the manifold in the

three spatial directions to represent position around 𝑚2 using spherical

coordinates 𝜳 = 𝜌, 𝜙, 𝜃 (Fig. 13). We complete the embedding by
( )
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uniquely associating a velocity 𝒗 with each point in space to complete
the full phase space.

Given the Cartesian position 𝒙 = (𝑥, 𝑦, 𝑧)⊤ corresponding to 𝜳

𝑥 = 𝜌 cos𝜙 sin 𝜃 (26)
𝑦 = 𝜌 sin𝜙 sin 𝜃 (27)
𝑧 = 𝜌 cos 𝜃 (28)

the velocity at this point 𝒗 (𝒙) is chosen to be

𝒗 (𝒙) =

√

G𝑚2
(1 + 𝑒)
𝜌3
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, (29)

where the problem parameters G𝑚2 and 𝑒 are the gravitational pa-
rameter of 𝑚2 and an orbital eccentricity, respectively. Conceptually,
this fixes the velocity direction tangential to a cylinder around the
𝑧-axis, while the magnitude corresponds to a Keplerian orbit of eccen-
tricity 𝑒 around 𝑚2. Together, this choice of velocity vector reveals the
‘dynamically interesting’ behaviour introduced previously.

Rather than using the inertial coordinate system about 𝑚2 to prop-
agate the initial condition, it is beneficial to use a rotating-pulsating
Cartesian coordinate system centred on the barycentre of 𝑚1 and 𝑚2. In
this system, 𝑚1 and 𝑚2 are fixed, and the true anomaly 𝜈 replaces time
as the independent variable. The transformation of the initial condition
into this coordinate system is shown in Appendix B. In this system the
equations of motion are given by

𝑥′′ = 2𝑦′ + 𝜕𝛺
𝜕𝑥

(30)

𝑦′′ = −2𝑥′ + 𝜕𝛺
𝜕𝑦

(31)

𝑧′′ = 𝜕𝛺
𝜕𝑧

(32)

where

𝛺 = 1
1 + 𝑒𝑝 cos 𝜈

[ 1
2
(

𝑥2 + 𝑦2 − 𝑧2𝑒𝑝 cos 𝜈
)

+
𝜇
𝑟1

+
1 − 𝜇
𝑟2

]

(33)

and

𝑟1 =
√

(𝑥 − 𝜇)2 + 𝑦2 + 𝑧2 (34)

𝑟2 =
√

(𝑥 + 1 − 𝜇)2 + 𝑦2 + 𝑧2. (35)

After propagation under the equations of motion, the transformation
into the rotating coordinate system is inverted, and the final position
is projected back into spherical coordinates. Another advantage of
DA-LCS is that, provided the intermediate transformations are coded
as DA operations, the derivatives of this process are computed fully
automatically and there is no need to derive further equations for the
coordinate transformations.

For this example, we choose 𝑚1 to be the Sun and 𝑚2 to be Mars,
with the system parameters as given in Table 2. The set of reference
hyperplanes is defined as

 =
{

𝜳 ∈
[

𝑟, 𝑟𝑠
]

× [0, 2𝜋] ×
[

5◦, 15◦,… , 175◦
]}

.

The variables 𝑟 and 𝑟𝑠 here are the radius and the Hill sphere of
Mars, respectively; the latter is the maximum distance from Mars at
which it still dominates gravitational attraction. Together, the reference
planes enclose the ‘dynamically interesting’ region around 𝑚2. The
initial integration time is set equal to 𝑡0 = 𝜈0 = 0 and the final time
is 𝑇 = 𝜈 = 2𝜋. The helicity tolerance 𝛼 used is 4 × 10−6.

6.1. Results

The FTLE fields computed using DA-LCS and divided differences on
the 𝜃 = 115◦ plane are presented in Figs. 14(a) and 14(b), respectively.
The structure found using DA-LCS agrees with what would be expected
from previous literature, with the structures in the two ‘arms’ being
11
Fig. 14. Finite-time Lyapunov exponent field for the Elliptic-Restricted Three-body
Problem on the 𝜃 = 115◦ plane from 𝑡0 = 𝜈0 = 0 to 𝑇 = 𝜈 = 2𝜋. While the structure
is qualitatively similar, the ridges in the FTLE field are much more well-defined with
DA-LCS.

Table 2
Parameter values used in the ER3BP investigation where 𝑚1 is arbitrarily chosen to be
the Sun and 𝑚2 arbitrarily chosen to be Mars. All values are given in non-dimensional
units and valid at 𝜈 = 2𝑛𝜋, 𝑛 ∈ Z.

Parameter Description Value

𝑒𝑝 Eccentricity of the orbit of 𝑚2 about 𝑚1 0.0935
𝜇 Mass parameter 3.227154 × 10−7

𝑒 Eccentricity of the orbit of 𝑚3 about 𝑚2 0.9
G𝑚2 Standard gravitational parameter of 𝑚2 1.50499 × 10−14

𝑟 Planetary radius of 𝑚2 1.641 × 10−5

𝑟𝑠 Hill sphere of 𝑚2 0.00513

consistent with the transition between orbits that escape and are per-
manently or temporarily captured about 𝑚2 [36]. Similar performance,
albeit with poorer definition of the FTLE ridges, can be obtained using
divided differences after tuning the grid sizes used to generate the
derivatives. We note that the ER3BP does admit variational equations
that can be integrated with the equations of motion which may improve
the quality of the derivatives used to compute 𝐶𝑇

𝑡0
.

Importantly, these variational equations cannot be used to compute
∇× 𝜻3, which must still be approximated using divided differences and
appear to produce the majority of the error for this test case. This is
to be expected, as the estimation of second derivatives using divided
differences is numerically difficult. Fig. 15(a) presents the helicity field
on the 𝜃 = 115◦ plane for the ER3BP computed using DA-LCS, which
like the FTLE field highlights the ‘arms’ as being influential portions
of flow. Qualitative inspection of the trajectories in this region reveals
the low-helicity portions of the field to separate regions of different



Journal of Computational Science 65 (2022) 101883J. Tyler and A. Wittig
Fig. 15. − log𝐻𝜻3 for the Elliptic-Restricted Three-body Problem on the 𝜃 = 115◦ plane
from 𝑡0 = 𝜈0 = 0 to 𝑇 = 𝜈 = 2𝜋. No defined regions of low helicity are visible when
using divided differences, whereas with DA-LCS we can readily identify low helicity
regions to identify seed points.

Fig. 16. Strainlines on the 𝜃 = 115◦ plane for the Elliptic-Restricted Three-Body
Problem computed using DA-LCS. We are unable to generate any strainlines when
using divided differences, but with DA-LCS we can deduce the structure of the LCS
readily and with only 8 strainlines.

dynamical behaviour. However, using divided differences to compute
the helicity, given in Fig. 15(b), produces no meaningful insight into
the helicity field even after tuning the grid sizes used; the numerical
noise in the determination of the helicity reveals no distinct ridges
12
along which the numerical integration can begin, and the accuracy of
the eigenvectors of 𝐶𝑇

𝑡0
when using divided differences yields strainlines

that do not follow the expected structure in previous attempts at this
topic [24,25], even after extensive tuning of the grid size used. This
numerical improvement comes completely automatically, without the
need to tune grid sizes and functions without any a priori knowledge.

The final strainlines for this flow computed using DA-LCS on the
𝜃 = 115◦ plane are shown in Fig. 16, and largely follow from the helicity
field given earlier. We were not able to generate any meaningful strain-
lines using divided differences due to the poor numerical resolution
of the eigenvectors and the related helicity field. A representative
rendering of the full 3D LCS for this test case is shown in Fig. 17.

7. Conclusion

This paper has introduced DA-LCS, an improved numerical method
for determining hyperbolic Lagrangian Coherent Structures in time-
dependent dynamical systems. We showed how Differential Algebra can
be used to directly construct high-order Taylor expansions of the flow,
its derivatives and a field of leading eigenvectors of the flow’s strain
tensor, accurate to machine precision. We have shown that with this
information we can construct a highly-accurate LCS based solely on
the underlying dynamics of the system, even in highly complex flows.
We demonstrated the effectiveness of the method through applications
to common variations of the Arnold–Beltrami–Childress flow from the
literature, as well as introducing a new and particularly challeng-
ing test problem from astrodynamics where the classical methods fail
to produce usable results. DA-LCS also constructs the LCS automat-
ically and without any a priori information, requiring no additional
implementation beyond the dynamics of the system.
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Appendix A. Pseudocode for the full DA-LCS algorithm

This Appendix introduces Algorithm 2, a detailed algorithmic pseu-
docode for the full DA-LCS numerical method to aid reproducibility. As
in the main text, bold quantities refer to vectors and the notation [⋅] is
used to denote a polynomial expansion using the quantity inside the
square brackets as the reference point for the expansion.
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Fig. 17. A set of representative renders of the 3D LCS for the ER3BP test case. The left figure is the full 3D LCS over all hyperplanes in . On the right is a zoomed-in portion
of the centre of the LCS, with the right half removed to highlight the internal structure.
Fig. B.18. Schematic of the inertial frame (subscript 𝐼 ) and the rotating-pulsating frame
(subscript ER3BP) for use in Appendix B. The transformation between the inertial and
rotating-pulsating frame is a composite translation, rotation and normalisation.

Appendix B. Transformation into the rotating-pulsating frame of
the elliptic-restricted three-body problem

As previously introduced, the Elliptic-Restricted Three-body Prob-
lem (ER3BP) models the motion of a small object 𝑚3 under the influence
of two far larger masses 𝑚1 and 𝑚2, such that 𝑚1 ⩾ 𝑚2 ≫ 𝑚3. The object
𝑚3 is sufficiently small compared to 𝑚1 and 𝑚2 that it is considered
massless. The system is parameterised by the mass parameter 𝜇 =
𝑚2∕

(

𝑚1 + 𝑚2
)

, and in an inertial coordinate system 𝑚1 and 𝑚2 orbit
their centre of mass on an ellipse with fixed eccentricity 𝑒𝑝.

In Section 6, we chose the parameterisation of the sub-manifold to
represent initial position around 𝑚2 in the inertial frame using spherical
coordinates, and the embedding to represent the initial velocity of the
point in the inertial frame. This was done to simplify the problem
set-up and more easily define the regions of ‘interesting’ dynamical
behaviour. However, in the literature [38] the ER3BP is integrated
in a rotating coordinate system where 𝑚1 and 𝑚2 are fixed on the 𝑥-
axis at −𝜇, 0, 0 and 1 − 𝜇, 0, 0 , respectively, and the distance between
13

( ) ( )
them is normalised to unity. In this frame, the independent variable in
the motion of 𝑚3 is the true anomaly 𝜈. To simplify the test case, the
transformation that follows is valid only for values of 𝜈 that are scalar
multiples of 2𝜋; for an in-depth derivation of the general case of this
transformation, the reader is directed to [38].

With reference to Fig. B.18, the transformation of the position from
the 𝑚2-centred inertial frame to the rotating-pulsating frame is formed
of a translation to move the centre of the system to the centre of mass
of 𝑚1 and 𝑚2, a rotation to align the +𝑥 axis to the line joining 𝑚1 and
𝑚2, and a scaling to normalise the distance between 𝑚1 and 𝑚2 to unity.

We perform the translation first. Define the Cartesian position of 𝑚3
about 𝑚2 in the inertial frame as 𝒙𝑚2

, such that the translated position
around the barycentre (centre of mass) of 𝑚1 and 𝑚2, 𝒙BC, is

𝒙BC = 𝒙𝑚2
+ 𝑑 (1 − 𝜇)

⎛

⎜

⎜

⎜

⎝

cos 𝜈

sin 𝜈

0

⎞

⎟

⎟

⎟

⎠

(B.1)

where 𝑑 is the full distance between 𝑚1 and 𝑚2, and (1 − 𝜇) gives the
proportion of the distance 𝑑 between 𝑚2 and the centre of mass. The
distance 𝑑 can be retrieved from the orbit equation (more generally
known as the ellipse equation)

𝑑 (𝜈) =
𝑎
(

1 − 𝑒2𝑝
)

1 + 𝑒𝑝 cos 𝜈
(B.2)

with 𝑎 the semi-major axis of 𝑚2 about 𝑚1. For the case of 𝑚1 being the
Sun and 𝑚2 being Mars studied in this paper, at scalar multiples of 2𝜋
the semi-major axis 𝑎 = 1.10314.

The coordinate axes must now be rotated such that 𝑚1 and 𝑚2 lie
on the +𝑥-axis. This is a clockwise rotation about +𝑧 of an angle 𝜈. We
apply the standard Euler rotation matrix to 𝒙BC to find its equivalent
state in the rotated coordinate system 𝒙rot

𝒙rot = 𝑅𝑧 (𝜈)𝒙BC =

⎛

⎜

⎜

⎜

cos 𝜈 sin 𝜈 0

− sin 𝜈 cos 𝜈 0

⎞

⎟

⎟

⎟

𝒙BC. (B.3)
⎝
0 0 1

⎠
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Algorithm 2 The DA-LCS numerical method
Input: , 𝛼, 𝛿, 𝑡0, 𝑇 , 𝑓
1: for hyperplanes 𝑆 in  do
2: for points 𝒙0 on hyperplane 𝑆 do
3:

[

𝒙0
]

← 𝒙0 + 𝛿𝒙 {Supplement initial condition with DA identity
to at least 2nd order}

4: [𝒙] ← Integration of
[

𝒙0
]

under 𝑓 from 𝑡0 to 𝑡0 + 𝑇 {Flow
expansion}

5:
[

∇𝑭 𝑇
𝑡0

]

← 𝜕𝑗 [𝒙]𝑖 {Performed algebraically using DA}

6:
[

𝐶𝑇
𝑡0

]

←
([

∇𝑭 𝑇
𝑡0

])⊤ ([

∇𝑭 𝑇
𝑡0

])

7: 𝐶𝑇
𝑡0
← constant part of

[

𝐶𝑇
𝑡0

]

8: 𝜻3 ← dominant eigenvector of 𝐶𝑇
𝑡0

{Using standard floating-
point techniques}

9:
[

𝜻3
]

← DA power law performed on
[

𝐶𝑇
𝑡0

]

with initial guess 𝜻3

10:
[

𝐻𝜻3

]

← ⟨∇ ×
[

𝜻3
]

,
[

𝜻3
]

⟩

11: 𝐻𝜻3 ← constant part of
[

𝐻𝜻3

]

12: if 𝐻𝜻3 ≤ 𝛼 then
13: Append 𝒙0 and 𝐻𝜻3 to 
14: end if
15: end for
16: Create set of strainlines on hyperplane 
17: for low-helicity points 𝒙0 and stored 𝐻𝜻3 , 0 in  do
18: 𝑛 ← 1 {Number of steps}
19:

∑

𝐻𝜻3 ← 𝐻𝜻3 , 0 {Running total}
20: 𝐻̄𝜻3 ←

∑

𝐻𝜻3∕𝑛 {Running average}
21: 𝒔0 ← 𝒙0
22: Add 𝒔0 to time-history of strainline 𝐿
23: while 𝐻̄𝜻3 ≤ 𝛼 do
24: 𝒔𝑛 ← evaluation of strainline ODE with 𝒔𝑛−1 {𝜻3 computed

following Lines 3–8}
25: 𝑛 ← 𝑛 + 1
26:

∑

𝐻𝜻3 ←
∑

𝐻𝜻3 + 𝐻𝜻3 , 𝑛 {𝐻𝜻3 , 𝑛 computed following Lines
3–11}

27: 𝐻̄𝜻3 ←
∑

𝐻𝜻3∕𝑛
28: Append 𝒔𝑛 to 𝐿
29: end while
30: Append 𝐿 to 
31: end for
32: Filter  for duplicate strainlines using Hausdorff distance and

threshold 𝛿
33: end for
34: Interpolate between 𝑆 on hyperplanes 𝑆 in  to produce full LCS

structure

Finally, the distance between 𝑚1 and 𝑚2 is normalised to 1 by scaling
he length unit of the system by 𝑑. This yields the final ER3BP position

ER3BP

ER3BP =
𝒙rot
𝑑

. (B.4)

The composite transformation can be combined into a single equation
for brevity:

𝒙ER3BP =
𝑅𝑧 (𝜈)
𝑑 (𝜈)

⎛

⎜

⎜

⎜

⎝

𝒙𝑚2
+ 𝑑 (1 − 𝜇)

⎛

⎜

⎜

⎜

⎝

cos 𝜈

sin 𝜈

0

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

(B.5)

=
𝑅𝑧 (𝜈)
𝑑 (𝜈)

𝒙𝑚2
+ (1 − 𝜇)

⎛

⎜

⎜

⎜

1

0

⎞

⎟

⎟

⎟

. (B.6)
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0
⎠

The equation above completes the transformation of the position from
the inertial coordinate system around 𝑚2 to the rotating coordinate
ystem of the ER3BP. However, integrating the ER3BP equations of
otion also requires the initial velocity of 𝑚3 with respect to 𝜈 in

the rotating coordinate system. Thus, the velocity in the inertial frame
about 𝑚2 with respect to time given by the embedding introduced in
the main text, 𝒗, must also be transformed into the ER3BP coordinate
frame.

To do this, Eq. (B.6) is differentiated with respect to the true
anomaly 𝜈, which is the independent variable in the ER3BP. In the
following, □′ denotes derivatives with respect to 𝜈 (as in the ER3BP
coordinate system), and □̇ denotes derivatives with respect to time
(the inertial coordinate system.) Via the chain rule, the derivative
of Eq. (B.6) is

𝒙′ER3BP =
𝑅𝑧 (𝜈)′

𝑑 (𝜈)
𝒙𝑚2

+
𝑅𝑧 (𝜈)
𝑑 (𝜈)

𝒙′𝑚2
(B.7)

since the quantity (1∕𝑑 (𝜈))′ is zero in the case of 𝜈 being a scalar
ultiple of 2𝜋. The quantity 𝑅𝑧 (𝜈)′ is trivial to infer from its use
reviously

′
𝑧 (𝜈) =

⎛

⎜

⎜

⎜

⎝

− sin 𝜈 cos 𝜈 0

− cos 𝜈 − sin 𝜈 0

0 0 0

⎞

⎟

⎟

⎟

⎠

. (B.8)

The velocity with respect to time in the inertial frame 𝒗 represents 𝒙̇𝑚2
.

To obtain 𝒙′𝑚2
, we use

d𝒙𝑚2

d𝜈 =
d𝒙𝑚2

d𝑡
d𝑡
d𝜈 = 𝒗∕𝜈̇ (B.9)

where 𝜈̇ is given by considering the angular momentum of 𝑚2 about 𝑚1

𝜈̇ =
G𝑚

1
2
1
(

1 + 𝑒𝑝
)2

𝑎
3
2
(

1 − 𝑒2𝑝
)

3
2

(B.10)

which completes the transformation of a position in the inertial frame
about 𝑚2 to the rotating coordinate system of the ER3BP for use in
Section 6.

Since we are computing the LCS on a submanifold that repre-
sents the spatial dimensions about 𝑚2, the inverse transformation need
only consider the position. Eq. (B.6) is inverted to give 𝒙𝑚2

and then
converted back into spherical coordinates for use in computing the LCS.

References

[1] J.D. Meiss, Symplectic maps, variational principles, and transport, Rev. Modern
Phys. 64 (3) (1992) 795–848, http://dx.doi.org/10.1103/RevModPhys.64.795.

[2] G. Haller, Lagrangian coherent structures, Annu. Rev. Fluid Mech. (August 2014)
(2015) 1–19, http://dx.doi.org/10.1063/1.2740025.

[3] F. Lekien, S.D. Ross, The computation of finite-time Lyapunov exponents on
unstructured meshes and for non-Euclidean manifolds, Chaos 20 (1) (2010)
017505, http://dx.doi.org/10.1063/1.3278516, URL http://aip.scitation.org/doi/
10.1063/1.3278516.

[4] G. Boffetta, G. Lacorata, G. Redaelli, A. Vulpiani, Detecting barriers to transport:
A review of different techniques, Physica D 159 (1–2) (2001) 58–70, http:
//dx.doi.org/10.1016/S0167-2789(01)00330-X.

[5] A.M. Mancho, S. Wiggins, J. Curbelo, C. Mendoza, Lagrangian descriptors: A
method for revealing phase space structures of general time dependent dynamical
systems, Commun. Nonlinear Sci. Numer. Simul. 18 (12) (2013) 3530–3557,
http://dx.doi.org/10.1016/j.cnsns.2013.05.002.

[6] G. Haller, G. Yuan, Lagrangian coherent structures and mixing in two-
dimensional turbulence, Physica D 147 (3–4) (2000) 352–370, http://dx.doi.org/
10.1016/S0167-2789(00)00142-1.

[7] A. Hadjighasem, M. Farazmand, D. Blazevski, G. Froyland, G. Haller, A Critical
Comparison of Lagrangian Methods for Coherent Structure Detection, 2017,
April.

[8] D. Blazevski, G. Haller, Hyperbolic and elliptic transport barriers in three-
dimensional unsteady flows, Physica D 273–274 (2014) 46–62, http://dx.doi.
org/10.1016/j.physd.2014.01.007.

http://dx.doi.org/10.1103/RevModPhys.64.795
http://dx.doi.org/10.1063/1.2740025
http://dx.doi.org/10.1063/1.3278516
http://aip.scitation.org/doi/10.1063/1.3278516
http://aip.scitation.org/doi/10.1063/1.3278516
http://aip.scitation.org/doi/10.1063/1.3278516
http://dx.doi.org/10.1016/S0167-2789(01)00330-X
http://dx.doi.org/10.1016/S0167-2789(01)00330-X
http://dx.doi.org/10.1016/S0167-2789(01)00330-X
http://dx.doi.org/10.1016/j.cnsns.2013.05.002
http://dx.doi.org/10.1016/S0167-2789(00)00142-1
http://dx.doi.org/10.1016/S0167-2789(00)00142-1
http://dx.doi.org/10.1016/S0167-2789(00)00142-1
http://refhub.elsevier.com/S1877-7503(22)00242-3/sb7
http://refhub.elsevier.com/S1877-7503(22)00242-3/sb7
http://refhub.elsevier.com/S1877-7503(22)00242-3/sb7
http://refhub.elsevier.com/S1877-7503(22)00242-3/sb7
http://refhub.elsevier.com/S1877-7503(22)00242-3/sb7
http://dx.doi.org/10.1016/j.physd.2014.01.007
http://dx.doi.org/10.1016/j.physd.2014.01.007
http://dx.doi.org/10.1016/j.physd.2014.01.007


Journal of Computational Science 65 (2022) 101883J. Tyler and A. Wittig
[9] M. Farazmand, D. Blazevski, G. Haller, Shearless transport barriers in unsteady
two-dimensional flows and maps, Physica D 278–279 (2014) 44–57, http://dx.
doi.org/10.1016/j.physd.2014.03.008.

[10] C.R. Short, D. Blazevski, K.C. Howell, G. Haller, Stretching in phase space and
applications in general nonautonomous multi-body problems, Celestial Mech.
Dynam. Astronom. 122 (3) (2015) 213–238, http://dx.doi.org/10.1007/s10569-
015-9617-4.

[11] Q. Qingyu, L. Mingpei, X. Ming, Lagrangian Coherent Structures in the Planar
Parabolic/Hyperbolic Restricted Three-Body Problem, Mon. Not. R. Astron. Soc.
(2020) http://dx.doi.org/10.1093/mnras/staa199.

[12] W.S. Koon, M.W. Lo, J.E. Marsden, S.D. Ross, Dynamical Systems, the Three-
Body Problem and Space Mission Design, Marsden Books, 2008, URL http:
//www.gg.caltech.edu/~mwl/publications/papers/dynamicalThreeBody.pdf.

[13] S. Leung Shingyu, An Eulerian approach for computing the finite time Lyapunov
exponent, J. Comput. Phys. 230 (9) (2011) 3500–3524, http://dx.doi.org/10.
1016/j.jcp.2011.01.046, URL https://www.sciencedirect.com/science/article/pii/
S0021999111000799.

[14] M. Berz, The method of power series tracking for the mathematical description
of beam dynamics, Nucl. Instrum. Methods Phys. Res. A 258 (3) (1987)
431–436, http://dx.doi.org/10.1016/0168-9002(87)90927-2, URL https://www.
sciencedirect.com/science/article/pii/0168900287909272.

[15] K. Makino, M. Berz, Remainder Differential Algebras and their Applications, in:
Computational Differentiation: Techniques, Applications, and Tools, 1996, pp.
63–74.

[16] K. Makino, Rigorous Analysis of Nonlinear Motion in Particle Accelerators (Ph.D.
thesis), (2) Michigan State University, 1998, URL http://www.bt.pa.msu.edu/
pub/papers/makinophd/makinophd.ps.

[17] G. Di Mauro, M. Schlotterer, S. Theil, M. Lavagna, Nonlinear Control for
Proximity Operations Based on Differential Algebra, J. Guid. Control Dyn. 38
(11) (2015) 2173–2187, http://dx.doi.org/10.2514/1.g000842.

[18] A. Wittig, P. Di Lizia, R. Armellin, F.B. Zazzera, K. Makino, M. Berzş, An auto-
matic domain splitting technique to propagate uncertainties in highly nonlinear
orbital dynamics, Adv. Astronaut. Sci. 152 (2014) 1923–1941.

[19] A. Wittig, P. Di Lizia, R. Armellin, K. Makino, F. Bernelli-Zazzera, M. Berz,
Propagation of large uncertainty sets in orbital dynamics by automatic domain
splitting, Celestial Mech. Dynam. Astronom. 122 (3) (2015) 239–261, http://
dx.doi.org/10.1007/s10569-015-9618-3, URL http://link.springer.com/10.1007/
s10569-015-9618-3.

[20] M. Massari, P. Di Lizia, M. Rasotto, Nonlinear Uncertainty Propagation in
Astrodynamics Using Differential Algebra and Graphics Processing Units, J.
Aerosp. Inf. Syst. 14 (9) (2017) 493–503, http://dx.doi.org/10.2514/1.i010535.

[21] R. Armellin, P. Di Lizia, F. Bernelli-Zazzera, M. Berz, Asteroid close encounters
characterization using differential algebra: The case of Apophis, Celestial Mech.
Dynam. Astronom. 107 (4) (2010) 451–470, http://dx.doi.org/10.1007/s10569-
010-9283-5.

[22] M. Massari, P. Di Lizia, F. Cavenago, A. Wittig, Differential Algebra Software
Library with Automatic Code Generation for Space Embedded Applications, no.
January, 2018, http://dx.doi.org/10.2514/6.2018-0398.

[23] A. Wittig, Rigorous High-Precision Enclosures of Fixed Points and their Invariant
Manifolds (Ph.D. thesis), Michigan State University, 2012, p. 158.

[24] X. Ros Roca, Computation of Lagrangian Coherent Structures with Application
to Weak Stability Boundaries (M.Sc. thesis), 2015.

[25] A.S. Parkash, Application of Lagrangian Coherent Structures to the Computation
and Understanding of Ballistic Capture Trajectories (M.Sc. thesis), 2019.

[26] G. Haller, A variational theory of hyperbolic Lagrangian Coherent Struc-
tures, Physica D 240 (7) (2011) 574–598, http://dx.doi.org/10.1016/
j.physd.2010.11.010, URL https://www.sciencedirect.com/science/article/pii/
S0167278910003143.

[27] M. Berz, Modern Map Methods in Particle Beam Physics, in: Advances in Imaging
and Electron Physics, vol. 108, 1999, pp. 1–318, URL http://bt.pa.msu.edu/cgi-
bin/display.pl?name=AIEP108book.
15
[28] F. Cavenago, P. Di Lizia, M. Massari, A. Wittig, On-board DA-based state estima-
tion algorithm for spacecraft relative navigation, in: 7th European Conference
for Aeronautics and Space Sciences, EUCASS, 2017, pp. 1–14, http://dx.doi.
org/10.13009/EUCASS2017-607, URL https://www.eucass.eu/doi/EUCASS2017-
607.pdf.

[29] A. Wittig, C. Colombo, R. Armellin, Long-term density evolution through semi-
analytical and differential algebra techniques, Celestial Mech. Dynam. Astronom.
128 (4) (2017) 435–452.

[30] E.V. Haynsworth, A.S. Householder, The Theory of Matrices in Numerical
Analysis, Amer. Math. Monthly 73 (10) (1966) http://dx.doi.org/10.2307/
2314680.

[31] R.H. Chan, Y. Qiu, G. Yin, Iterative Methods for Eigenvalues/Eigenvectors, in:
Encyclopedia of Social Network Analysis and Mining, 2018, http://dx.doi.org/
10.1007/978-1-4939-7131-2_148.

[32] M. Farazmand, G. Haller, Computing Lagrangian coherent structures from their
variational theory, Chaos 22 (1) (2012) http://dx.doi.org/10.1063/1.3690153.

[33] T. Devogele, M. Esnault, L. Etienne, F. Lardy, Optimized Discrete Fréchet
Distance between trajectories, in: BigSpatial 2017 - Proceedings of the 6th ACM
SIGSPATIAL International Workshop on Analytics for Big Geospatial Data, no.
November, 2017, pp. 11–19, http://dx.doi.org/10.1145/3150919.3150924.

[34] A. Driemel, A. Krivosija, C. Sohler, Clustering time series under the Fréchet
distance, in: Proceedings of the Annual ACM-SIAM Symposium on Discrete Algo-
rithms, Vol. 2, 2016, pp. 766–785, http://dx.doi.org/10.1137/1.9781611974331.
ch55.

[35] K.L. Palmerius, M. Cooper, A. Ynnerman, Flow field visualization using vector
field perpendicular surfaces, in: Proceedings - SCCG 2009: 25th Spring Con-
ference on Computer Graphics, 2009, pp. 27–34, http://dx.doi.org/10.1145/
1980462.1980471.

[36] Z.F. Luo, F. Topputo, Analysis of ballistic capture in Sun-planet models, Adv.
Space Res. (2015) http://dx.doi.org/10.1016/j.asr.2015.05.042.

[37] E. Belbruno, Lunar capture orbits, a method of constructing earth moon tra-
jectories and the lunar CAS mission, in: 19th International Electric Propulsion
Conference, 1987, 1987, http://dx.doi.org/10.2514/6.1987-1054.

[38] V. Szebehely, W. Jefferys, Theory of Orbits: The Restricted Problem of Three
Bodies, 36, (4) 1968, p. 375, http://dx.doi.org/10.1119/1.1974535,

Jack Tyler is a final-year Ph.D. Candidate in the Astro-
nautics Research Group at the University of Southampton,
funded by the EPSRC Centre for Doctoral Training in
Next-Generation Computational Modelling. He obtained a
Bachelor’s of Engineering in Aeronautics and Astronautics
in 2018, also from Southampton. His research interests
encompass the application of high-performance computing
and modern numerical methods to dynamical systems, with
a particular focus on spaceflight problems.

Dr. Alexander Wittig is an Associate Professor in Astronau-
tics at the University of Southampton. After receiving his
dual Ph.D. in Mathematics and Physics from Michigan State
University, he worked as an experienced researcher in the
AstroNet-II Marie-Curie network at Politecnico di Milano,
and as a research fellow in the Advanced Concepts Team at
the European Space Agency.

His research focuses on the study of complex, non-
linear dynamical systems through the application of modern
numerical methods, such as high-order differential algebra
techniques and high performance computing, together with
mathematical concepts from modern dynamical systems
theory.

http://dx.doi.org/10.1016/j.physd.2014.03.008
http://dx.doi.org/10.1016/j.physd.2014.03.008
http://dx.doi.org/10.1016/j.physd.2014.03.008
http://dx.doi.org/10.1007/s10569-015-9617-4
http://dx.doi.org/10.1007/s10569-015-9617-4
http://dx.doi.org/10.1007/s10569-015-9617-4
http://dx.doi.org/10.1093/mnras/staa199
http://www.gg.caltech.edu/~mwl/publications/papers/dynamicalThreeBody.pdf
http://www.gg.caltech.edu/~mwl/publications/papers/dynamicalThreeBody.pdf
http://www.gg.caltech.edu/~mwl/publications/papers/dynamicalThreeBody.pdf
http://dx.doi.org/10.1016/j.jcp.2011.01.046
http://dx.doi.org/10.1016/j.jcp.2011.01.046
http://dx.doi.org/10.1016/j.jcp.2011.01.046
https://www.sciencedirect.com/science/article/pii/S0021999111000799
https://www.sciencedirect.com/science/article/pii/S0021999111000799
https://www.sciencedirect.com/science/article/pii/S0021999111000799
http://dx.doi.org/10.1016/0168-9002(87)90927-2
https://www.sciencedirect.com/science/article/pii/0168900287909272
https://www.sciencedirect.com/science/article/pii/0168900287909272
https://www.sciencedirect.com/science/article/pii/0168900287909272
http://refhub.elsevier.com/S1877-7503(22)00242-3/sb15
http://refhub.elsevier.com/S1877-7503(22)00242-3/sb15
http://refhub.elsevier.com/S1877-7503(22)00242-3/sb15
http://refhub.elsevier.com/S1877-7503(22)00242-3/sb15
http://refhub.elsevier.com/S1877-7503(22)00242-3/sb15
http://www.bt.pa.msu.edu/pub/papers/makinophd/makinophd.ps
http://www.bt.pa.msu.edu/pub/papers/makinophd/makinophd.ps
http://www.bt.pa.msu.edu/pub/papers/makinophd/makinophd.ps
http://dx.doi.org/10.2514/1.g000842
http://refhub.elsevier.com/S1877-7503(22)00242-3/sb18
http://refhub.elsevier.com/S1877-7503(22)00242-3/sb18
http://refhub.elsevier.com/S1877-7503(22)00242-3/sb18
http://refhub.elsevier.com/S1877-7503(22)00242-3/sb18
http://refhub.elsevier.com/S1877-7503(22)00242-3/sb18
http://dx.doi.org/10.1007/s10569-015-9618-3
http://dx.doi.org/10.1007/s10569-015-9618-3
http://dx.doi.org/10.1007/s10569-015-9618-3
http://link.springer.com/10.1007/s10569-015-9618-3
http://link.springer.com/10.1007/s10569-015-9618-3
http://link.springer.com/10.1007/s10569-015-9618-3
http://dx.doi.org/10.2514/1.i010535
http://dx.doi.org/10.1007/s10569-010-9283-5
http://dx.doi.org/10.1007/s10569-010-9283-5
http://dx.doi.org/10.1007/s10569-010-9283-5
http://dx.doi.org/10.2514/6.2018-0398
http://refhub.elsevier.com/S1877-7503(22)00242-3/sb23
http://refhub.elsevier.com/S1877-7503(22)00242-3/sb23
http://refhub.elsevier.com/S1877-7503(22)00242-3/sb23
http://refhub.elsevier.com/S1877-7503(22)00242-3/sb24
http://refhub.elsevier.com/S1877-7503(22)00242-3/sb24
http://refhub.elsevier.com/S1877-7503(22)00242-3/sb24
http://refhub.elsevier.com/S1877-7503(22)00242-3/sb25
http://refhub.elsevier.com/S1877-7503(22)00242-3/sb25
http://refhub.elsevier.com/S1877-7503(22)00242-3/sb25
http://dx.doi.org/10.1016/j.physd.2010.11.010
http://dx.doi.org/10.1016/j.physd.2010.11.010
http://dx.doi.org/10.1016/j.physd.2010.11.010
https://www.sciencedirect.com/science/article/pii/S0167278910003143
https://www.sciencedirect.com/science/article/pii/S0167278910003143
https://www.sciencedirect.com/science/article/pii/S0167278910003143
http://bt.pa.msu.edu/cgi-bin/display.pl?name=AIEP108book
http://bt.pa.msu.edu/cgi-bin/display.pl?name=AIEP108book
http://bt.pa.msu.edu/cgi-bin/display.pl?name=AIEP108book
http://dx.doi.org/10.13009/EUCASS2017-607
http://dx.doi.org/10.13009/EUCASS2017-607
http://dx.doi.org/10.13009/EUCASS2017-607
https://www.eucass.eu/doi/EUCASS2017-607.pdf
https://www.eucass.eu/doi/EUCASS2017-607.pdf
https://www.eucass.eu/doi/EUCASS2017-607.pdf
http://refhub.elsevier.com/S1877-7503(22)00242-3/sb29
http://refhub.elsevier.com/S1877-7503(22)00242-3/sb29
http://refhub.elsevier.com/S1877-7503(22)00242-3/sb29
http://refhub.elsevier.com/S1877-7503(22)00242-3/sb29
http://refhub.elsevier.com/S1877-7503(22)00242-3/sb29
http://dx.doi.org/10.2307/2314680
http://dx.doi.org/10.2307/2314680
http://dx.doi.org/10.2307/2314680
http://dx.doi.org/10.1007/978-1-4939-7131-2_148
http://dx.doi.org/10.1007/978-1-4939-7131-2_148
http://dx.doi.org/10.1007/978-1-4939-7131-2_148
http://dx.doi.org/10.1063/1.3690153
http://dx.doi.org/10.1145/3150919.3150924
http://dx.doi.org/10.1137/1.9781611974331.ch55
http://dx.doi.org/10.1137/1.9781611974331.ch55
http://dx.doi.org/10.1137/1.9781611974331.ch55
http://dx.doi.org/10.1145/1980462.1980471
http://dx.doi.org/10.1145/1980462.1980471
http://dx.doi.org/10.1145/1980462.1980471
http://dx.doi.org/10.1016/j.asr.2015.05.042
http://dx.doi.org/10.2514/6.1987-1054
http://dx.doi.org/10.1119/1.1974535

	An improved numerical method for hyperbolic Lagrangian Coherent Structures using Differential Algebra
	Introduction
	Mathematical background and notation
	Differential Algebra
	Flow expansions to arbitrary order using Differential Algebra 
	Polynomial expansions of leading eigenvectors of CTt0 to arbitrary order

	Lagrangian Coherent Structures
	Arnold–Beltrami–Childress Flows
	Steady Arnold–Beltrami–Childress flow
	Periodic Arnold–Beltrami–Childress Flow
	Chaotically-forced Arnold–Beltrami–Childress flow

	The Elliptic-Restricted Three-Body Problem
	Results

	Conclusion
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	Appendix A. Pseudocode for the full DA-LCS algorithm
	Appendix B. Transformation into the rotating-pulsating frame of the Elliptic-Restricted Three-body Problem
	References


