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Abstract— Biological fliers’ remarkable manoeuvrability and
robust flight control are aided by information from dense
arrays of distributed flow sensors on their wings. Bio-inspired
fixed-wing uncrewed aerial vehicles (UAVs) with a “flight-by-
feel” control approach could mimic these abilities, allowing
safe operation in cluttered urban areas. Existing work has
focused on longitudinal parameter estimation and control at
low angles of attack. This wind-tunnel study estimates both
the longitudinal and lateral-directional aerodynamic states of
a bio-inspired distributed pressure sensing UAV at angles of
attack and sideslip up to 25° and 45°. Four span-wise strips of
pressure sensors were found to show strong, location dependent
variation with angle of sideslip across all angles of attack,
indicating that distributed pressure sensing arrays can encode
lateral-directional flow information. This was supported by
the use of the pressure signals in estimator algorithms, which
showed angle of sideslip estimation was possible with both
a linear partial-least-squares regression-based estimator and
a non-linear feed-forward artificial neural network estimator.
The non-linear estimator could predict angle of sideslip with
a lower error than the linear estimator, with a root-mean-
square error (RMSE) of 0.70° for the former compared to
1.23° for the latter. They both showed good estimation of angle
of attack, even in the post-stall regime, with an RMSE of 0.58°
for the linear estimator and 0.54° for the non-linear estimator.
These results show that pressure-based distributed sensing can
capture a complete aerodynamic picture of a UAV, unlocking
the potential of a ‘“flight-by-feel” control system informed by
the aerodynamic states of the vehicle across a wide range of
aerodynamic conditions.

I. INTRODUCTION

Applications of fixed-wing uncrewed aerial vehicles
(UAVs) such as ecological monitoring and last-mile cargo
delivery require long-range, low-level flight [1]. This is a
challenging flight regime which requires high manoeuvrabil-
ity [2], both to navigate cluttered urban environments and to
cope with gusty, turbulent conditions caused by the proximity
to terrain [3]. Control challenges are heightened due to the
large proportion of the turbulence in these environments that
has a length scale similar to that of a small fixed-wing UAYV,
causing contrary flow disturbances on either wing which lead
to lateral-directional perturbations in roll and yaw [4].

Conventional UAVs use an inertial measurement unit and
magnetometer to measure the acceleration, rotational rate,
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and orientation of the UAV’s centre of mass [5], which
is typically referenced against supplemental airspeed and
position data from a pitot-static tube and a global navigation
satellite system (GNSS) receiver [6]. This sensing architec-
ture enables autonomous flight control when coupled with a
flight dynamics and aerodynamics model of the associated
UAV. However, control effectiveness is limited by the lack of
aerodynamic state (angle of attack, &, and angle of sideslip,
B) information, which usually forces the model to assume
linear aerodynamics (low o« and B) [7]. This limits the
flight envelope of the UAV, generally preventing autonomous
dynamic manoeuvres that exploit non-linear aerodynamics,
such as sharp heading changes [8]. The lack of local aerody-
namic state information also impedes the response to local
flow perturbations caused by turbulent conditions; the control
system can only respond to the bulk disturbance of the UAV’s
centre of mass [4]. Coupled with a small UAV’s low inertia,
this results in poor trajectory control in many fixed-wing
UAVs, limiting their use in space-restricted environments [9].

In contrast, biological fliers such as insects, birds and bats
exhibit precise control and high manoeuvrability, while flying
in similarly challenging environments [10]. They employ a
“sensor-rich” [11] control architecture which features many
flow sensors distributed around their bodies. Bats’ wings
are covered in flow-sensitive hairs [12], hypothesised to act
as airflow direction indicators, providing warnings of flow
separation and stall during sharp manoeuvres [12]. Similarly,
birds have thousands of Herbst corpuscles distributed on
their wings and body [13] which have been shown to
be sensitive to changes in airflow [14]. They are highly
sensitive to specific vibration ranges [13], which is thought
to allow detection of flow separation [14], contributing to the
detection of high angle of attack and stall.

Biological sensing has inspired a growing field of “flight-
by-feel” [15] research, which aims to equip UAVs with
distributed sensing systems to provide local flow information.
This could allow UAVs to exploit a larger, non-linear flight
envelope, by allowing the detection of local flow separation
and stall [16]; it could allow for more rapid detection of and
response to gusts [17]; and it could produce UAVs that are
robust to sensor dropout and damage [18].

The literature to date has made use of many distributed
sensor types, including artificial hair sensors [19], strain
sensors [20], and a variety of pressure sensor types [21]-
[23]. The data generated by these sensor networks can then
be used towards flight control in different ways. Early work
by Yeo et al. [22] discretised the tailplane of a UAV into
sections centred around a differential pressure sensor, then



directly calculated the resulting aerodynamic loads. A more
common approach is to use the distributed data to estimate
aerodynamic states and loads, through both linear and non-
linear means [19], [20]. These estimates can then be used
in control, such as the pitch control based on o estimation
achieved by Wood et al. [18]. An alternative control strategy
is to input the distributed data into artificial neural network
based end-to-end flight controllers. Haughn et al. [24] used
this technique to effectively reduce the impact of generated
gusts in a pitching aerofoil experiment, while Guerra-Langan
et al. [25] used reinforcement learning to control the lift
coefficient of a single degree of freedom wind tunnel model.

The present work uses distributed pressure sensors for
aerodynamic state estimation. There is some evidence that
distributed pressure sensors encode more flow information
than other sensor types, such as strain sensors. It has been
found that pressure sensors alone can give an almost as
accurate angle of attack prediction as a combination of
pressure and strain sensors, and can be an order of magnitude
more accurate than strain sensors alone [20]. It has also been
found that distributed pressure sensors could act as a local
stall warning mechanism [2], an ability that has not been
demonstrated using strain sensors.

Most of the existing literature has focused solely on the es-
timation or control of longitudinal parameters (such as pitch,
lift, drag, and o). Additionally, very little work has attempted
to estimate aerodynamic states under non-linear conditions.
Li et al. [21] calibrated an iterative robust regression model
to estimate both o and B, but only considered maximum
angles of oo = 15° and 8 = 10°. Araujo-Estrada & Windsor
[20] estimated & successfully between —15° < o < 20°,
and noted that the root-mean-square-error (RMSE) between
actual and estimated « increased substantially above o =
10°. No work has yet estimated angle of sideslip beyond 10°
using flow sensor arrays. The ability to estimate 3, as well
as lateral loads, could be crucial to allow a full distributed-
sensing based flight controller to exploit advantages such
as an expanded flight envelope. Levin et al. [8] recorded
sideslip angles up to = £30° during a pre-programmed
space-minimised 180° heading change - such a manoeuvre
would be a useful obstacle avoidance ability for safe UAV
flight in congested areas.

To this end, this work investigates whether a UAV with
bio-inspired distributed pressure sensors across its wings
(Fig. 1) can estimate its aerodynamic angles (¢ and 3) across
a wide spectrum of linear and non-linear flight conditions,
up to a = 25°,8 = 45°. The results of both a partial-least-
squares (PLS) based linear estimator and an artificial neural
network (ANN) estimator are presented.

The rest of this paper is organised as follows. Section
IT introduces the experimental and data analysis methods
employed. Section III displays the impact of high angles of
sideslip and attack on recorded distributed pressure sensor
and force balance readings, while Section IV presents the
aerodynamic state estimation process and results. Section V
discusses the significance of the findings and suggests future
related work. Finally, Section VI summarises the work.

Fig. 1: UAV mounted to wind tunnel overhead balance.

II. METHODS

A. Bio-Inspired Distributed Sensing UAV

The featured bio-inspired distributed sensing UAV is a
modified foam-based model aircraft - the Ripmax WOT4
Foam-E Mk2+. The wing has a rectangular planform of
chord length ¢ =0.25m and span b = 1.205m. The propeller,
motor and landing gear were removed for these wind tunnel
tests, but the rest of the fuselage and the empennage were
left unmodified, with functional control surfaces. The aircraft
was mounted upside down to the wind tunnel struts with a
bracket that replaced the landing gear. Bolts also clamped the
bracket to the wing, to reduce vibrations. The configuration
mounted in the wind tunnel is shown in Fig. 1.

The UAV features a bespoke aerofoil with a measured
t/c = 18.5%. A semi-span wing with the same aerofoil
was experimentally characterised in previous work [20]. The
aerofoil was thick enough to allow simple integration of
the distributed pressure sensing array into the wing, which
comprised of four 3D-printed chord-wise strips of pressure
ports bonded to an aluminium spar inserted into the foam.
Fig. 2a shows the planform of the wing, highlighting the
location of these pressure-sensing strips.

Each inboard strip was instrumented with seven pressure
sensors, while each outboard strip was populated with eight
sensors. The pressure ports were in the same locations for
each wing, and were chosen based on prior experiments
with the semi-span wing [20], from which an indication of
the most information-rich pressure port locations had been
gathered. The chord-wise distribution of pressure sensors
around the aerofoil is shown in Figs. 2b and 2c. Only the
sensors that successfully recorded data in at least one strip
are shown; a total of four sensors failed. The total number
of usable sensors was therefore 26.

Analogue differential pressure sensors (Sensirion SDP36)
were chosen to record pressure data, at 200Hz. They were
attached to custom PCBs inside the wing. The analogue
signals were digitised and processed by a micro-controller
unit (MCU) in each wing, before a fuselage-mounted MCU
synchronised and communicated these to the control PC over
Universal Serial Bus (USB). A summary of the instrumenta-
tion and data acquisition configuration is shown in Fig. 2a.
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Fig. 2: Pressure sensing configuration: (a) span-wise pressure port strip locations and instrumentation, (b) inboard strip
chord-wise sensor placements (red, N.B. sensor BO1 did not record for the right wing), and (c¢) outboard strip chord-wise
sensor placements (green, N.B. sensor BO3 did not record for the right wing).

B. Wind Tunnel Testing Apparatus and Methodology

The R.J. Mitchell Wind Tunnel at the University of
Southampton was used for the tests. The tunnel features a
working section of 3.5m by 2.4m, with a turbulence intensity
of 0.2%. The UAV was attached to a 6-component overhead
balance, set into a turntable allowing for yaw and pitch move-
ments. Before testing, a laser inclinometer was used to equate
the tunnel’s pitch angle with the UAV’s angle of attack, and
the overhead balance was calibrated. During testing, an au-
tomated script was used to move between each experimental
angle set-point at each wind-speed (10m/s,14m/s,16m/s).
The UAV was taken to each set-point, paused for 5 seconds,
then held still while a 15-second time history of loads and
pressure data was collected at each point. An experimental
test matrix detailing the chosen test angle combinations is
shown in Fig. 3. The density of & readings was reduced for
—4° < a0 < 10°, as data from previous work [20] suggested
that this region was expected to follow a predictable linear
lift-curve slope. This work focuses on the effects of high
aerodynamic angles, so a dense dataset in these regions was
prioritised given wind tunnel time constraints. The reduced
range of angles tested for the 16m/s wind-speed (due to wing
loading concerns) is highlighted, along with the extremes of
the estimator training datasets (see Section IV).

C. Loads Data Calibration & Corrections

The wind tunnel loads data were measured using the
wind tunnel reference frame point (1300mm from the tunnel
ceiling). This meant that the moments were measured in the

wind-axis frame, which in turn included virtual moments
from the forces. Different orientations led to a shift in the
location of the centre of gravity (CG) with respect to the
reference point. To account for this shift, the moments were
recorded with no wind across various angles. From these data
points, an equation of a plane was approximated using least
squares regression. The selected plane was sinusoidal since
the position of CG varied like a simple harmonic pendulum.
This plane was then used to remove the contribution of
weight on the moments measured during wind tunnel testing.
Refer to Appendix A for more details.

The forces acting on the balance and struts were also
accounted for when correcting the loads data. The forces
were measured by collecting loads data for just the struts at
the three different wind speeds, with varying a and 3. The
pitching moment coefficient of the struts was calculated by
using the wing’s area, to allow for equal comparison with the
raw data. A sinusoidal plane was generated, due to the struts’
circular motion with varying orientations. The reference
point was shifted from the wind tunnel reference point to
the quarter mean aerodynamic chord of the UAV to verify
the pitching moment from the tail. Similar procedures were
undertaken for rolling and yawing moments. The measured
forces were then corrected by removing the struts’ force
contributions. Finally, the forces were rotated, since the
forces were measured with respect to the balance turntable’s
rotation rather than the wind direction.
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Fig. 3: Experimental test matrix showing the angle combi-
nations chosen for testing, for all speeds (blue) and for all
except 16m/s (orange). Filled points were manually selected
to be part of the estimators’ training dataset (see Section IV).

D. Pressure Signals Processing

Time histories of each pressure sensor were recorded at
each experimental condition; many of these were found
to contain a number of large outlier values. No dominant
frequencies were found in the time histories that could
have suggested an aerodynamic explanation, such as vortex
shedding. However, it was noted that anomalies of similar
magnitudes occurred across sensors on opposite sides of
the sensing array within the same sample time, before an
aerodynamic effect could have propagated. The outliers were
therefore most likely electrical in nature, and were removed if
they were further than three median absolute values from the
median. This is a robust statistic to use for anomaly removal,
as it is insensitive to outliers [26]. After this process, which
removed a mean of 15.9% of the data points collected from
each time history, the pressure sensor time histories fit a
Gaussian distribution. Median, mean, and standard deviation
values were then obtained for each sensor at each condition,
and normalised into coefficients of pressure, C,, as follows:

Pi— P
Cpi="" (1)
Where p.. and g.. represent the freestream static pressure and
dynamic pressure respectively. The C,, values were corrected
with a small offset, obtained by calculating the maximum
of a 2nd order polynomial fitted to the C, values from the
leading edge pressure port of each sensor strip at § =0°, @ =
(—4°,0°,4°,8°). The maximum of this polynomial represents
the stagnation point experienced by the leading edge of a
cambered aerofoil at a low negative angle of attack. By
definition, the coefficient of pressure at the stagnation point
is equal to unity (as ¢ = p — P); so the difference, if any,
between the maximum of this polynomial and unity can be
used to correct the coefficients of pressure. This procedure
was performed separately for each sensor strip, with a mean
correction of just 0.1 - likely explainable by the level of
accuracy of the freestream static pressure measurement.

ITII. RESULTS FOR HIGH AERODYNAMIC ANGLES

High angles of sideslip lead to considerable changes in
aerodynamic loads and the received pressure signals, as
demonstrated in Fig. 4. The lift and drag of the UAV at
different angles of attack (at 8 = 0°) are characterised in Fig.
4a. The gentle stall is noteworthy and seems to be a char-
acteristic feature of the wing section, likely exacerbated by
the relatively low Reynolds number. The lateral-directional
loads are shown in Fig. 4b. The rolling and yawing moments
exhibited a linear correlation between the angle of sideslip
and the moment coefficients. The side force increases linearly
with 3, but decreases non-linearly over the post-stall ¢ range.
This agrees with previous observations [27], and is likely due
to stall-induced boundary layer separation.

The pressure sensing data shows considerable variation
with increasing o and f3. Fig. 4c shows the pressure signal of
the leading edge sensor in each span-wise strip against angle
of attack, for B =0°. A linear relationship is observed be-
tween 4° < a < 10°; above this, individual pressure sensors
diverge considerably through the stall. Fig. 4d shows the re-
sponse of the same leading edge pressure signals to the angle
of sideslip, at o = 8°. All of the leading edge sensors show
broadly linear variation with sideslip angle; however, the
inboard sensors experience a much more significant change
than the outboard sensors. The left wing sensors, which were
pointing upstream at high angles of sideslip, experience a
decrease in coefficient of pressure with increasing sideslip,
while the right wing sensors - pointing downstream and
at least partly shielded by the fuselage - experienced an
increase in coefficient of pressure, correlating to a lower
relative flow velocity. These observations demonstrate how
much information can be encoded by even a few pressure
sensors. These observations were coherent across all speeds
measured, where the coefficients of forces and pressures
had only small variations because of the low variations in
Reynolds number.

IV. AERODYNAMIC STATE ESTIMATION

As discussed in Section III, pressure signals respond in
an almost linear manner to increasing angle of attack before
stall occurs. For this reason, previous work in [20] used a
linear estimator to predict angle of attack response. It was
found to perform well until stall, beyond which the error
increased. The work in [20] also employed an artificial neural
network (ANN) as a type of non-linear estimator, and found
that this could predict angle of attack well, even after stall.
A robust iterative regression non-linear estimator as used
in [21] was also found to predict low angles of attack and
sideslip well. It was decided for the present work to compare
the performance of both a linear and non-linear estimator
across the entire range of angles of attack and sideslip, as
the impact of estimator choice on higher sideslip angles had
not been previously shown.

A. Fartial Least Squares Linear Estimator

The chosen linear estimator was based on partial least
squares (PLS) regression. This technique was chosen because
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it is well suited for regression problems with a large number
of correlated predictors of the response variables (such as a
set of pressure signals responding to aerodynamic states). It
finds the linear combinations of predictors (known as com-
ponents) that are most covariant with the response variable
(i.e., the predictors most sensitive to changes in the response)
[28]. The output of the regression is a vector of weights, B,
which can be multiplied by the matrix of predictors, X, to
produce an estimation of the response variables, ¥ as follows:

(2)

To produce the final aerodynamic angles estimator, PLS
regression was performed (using the plsregress function
in MATLAB Release 2024b) separately for training data
collected at each speed, to obtain three weights vectors. To
estimate an aerodynamic angle, the speed is used to lookup
the correct weights vector, before (2) is used to obtain the
estimate. Most UAVs are equipped with a pitot-static tube,
so reliance on airspeed for the estimation is not impractical.
However, it is also possible to predict airspeed with dis-
tributed pressure sensing data, as shown in [20], meaning
angle estimation would still be possible with pressure sensing
alone.

PLS regression calculates a specified number of com-

Y=XB

ponents to perform the regression. For this work, 16 PLS
components were chosen, as this value was sufficient to
explain 99.7% of the variance in the data at each speed,
and was still quick to compute. A convergence study was
then performed to determine what ratio of the available data
should be used for training as opposed to testing. The study
was carried out by training the estimator with between 15%
and 100% of the available data. Each training dataset was
selected by first ensuring the extremes of the wind tunnel
test matrix were captured (selected values are highlighted
in Fig. 3) before randomly selecting further points from
the remaining data. The extreme values were selected for
training due to an expectation of complex behaviour at the
highest angles, and to prevent the estimators from having to
extrapolate a relationship over an angle range they weren’t
trained on. It was found that, for the PLS-based estimator,
RMSE convergence occurred for ¢ estimation with only
30% of the dataset used for training (and 70% for testing).
Estimation of 3 required a 50% training to 50% testing split
to converge. However, for the final results a 70% training to
30% testing split was used to estimate both angles, to ensure
fair comparison with the non-linear estimator which required
this increased level of training data.



B. Artificial Neural Network Nonlinear Estimator

A feed-forward artificial neural network (ANN) was cho-
sen as the non-linear estimator, as this technique had shown
good estimation results for both distributed hair sensors [19]
and pressure sensors [20], [23]. The structure of an ANN
consists of layers of interconnected artificial neurons, with
each neuron placing a non-linear activation function over
a linear mapping of its inputs. Feed-forward ANNs are
universal approximators, mapping complex relations between
input features and outputs [29], such as the relationship
between pressure signals and aerodynamic angles.

ANN estimators have tunable hyperparameters, including
the number of neurons per layer, the number of hidden layers,
and the activation function of each neuron. The estimator
for this work was selected by exploring the estimation
performances of many ANNs tuned from a known baseline.
The successful estimators used in [20] served as the starting
point, then the number of layers in the network, the layer
width and the neurons’ activation function were methodically
changed until a small network with reasonable performance
was found. The selected ANN featured an input layer of 26
neurons (one per functional sensor reading), 3 hidden layers
in a (25,15,9) configuration, and an output layer with one
neuron per estimated angle. It used the ReLU (rectified linear
unit) activation function for all layers.

The loss function used to train the model was the mean-
squared-error (MSE) between the actual and predicted an-
gles. The model was implemented and trained with the fitrnet
function in MATLAB Release 2024b, which uses the limited-
memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) algo-
rithm [30] to minimise the loss function. The training to
testing data ratio used was the same 70% to 30% split that
was used for the PLS-based estimator; an identical dataset
of observation points was used to ensure fair comparison.

The chosen ANN was selected to balance network size
and relative accuracy; a more thorough investigation of ANN
architectures was out of scope for this work. To ensure
this relative accuracy had been achieved, a large number of
ANN sizes were trialled by using a Bayesian optimisation
algorithm (built-in to fitrnet) for hyperparameter tuning. This
process explored a wide range of ANN sizes, but only
resulted in minor estimation improvements (= 0.1° RMSE)
over the chosen model, at the expense of a much larger
network (in the region of hundreds of neurons). Therefore,
the chosen network represents a sensible compromise be-
tween network size and estimation performance. Future work
could investigate different ANN architectures and training
techniques, either to maximise estimation accuracy or for
use in real-time force estimations, as demonstrated in [31].

C. Estimator Results & Error Analysis

The final RMSE values between estimated and actual
responses are presented in Table 1. Both estimators provide
similar results for o estimation (RMSE =~ 0.55°). In contrast,
the non-linear ANN estimator outperforms the linear esti-
mator for  estimation, with almost half the RMSE value.
However, the PLS-based estimator’s overall level of error is

still small in comparison to the range of sideslips tested, and
could be suitably accurate for use in a control system.

A comparison of the o and 3 estimators’ error distribu-
tions across all angle combinations, shown in Fig. 5, provides
more insight into the results. Estimation errors in « (Fig.
5a and Fig. 5b) were consistently small for the PLS-based
estimator, across the ranges of o and 3. By contrast, the
ANN estimator had a relatively high spread of « errors
in the region —6° < a < 8° (RMSE = 0.82° compared to
the linear estimator’s RMSE = 0.52°), but outperformed the
linear estimator in the range o > 10°, with RMSE = 0.33°
compared to 0.61°. The possible causes of this result are
discussed in Section V. The ANN also showed reducing o
estimation accuracy with increasing 3, unlike the PLS-based
estimator.

The B estimation errors (Fig. 5¢ and Fig. 5d) were much
more consistent across the full range of both o and 3; neither
estimator had a significantly higher spread in any region. The
ANN outperformed the PLS-based estimator, with a smaller
error distribution corresponding to the much lower RMSE.
The annotations in Fig. 5 represent the test points with the
largest magnitude « estimation error (Figs. 5a and 5b) and
B estimation error (Figs. 5c¢ and 5d), for each estimator type;
these are discussed in Section V.

V. DISCUSSION

Bio-inspired distributed pressure sensing has been success-
fully used for longitudinal state estimation and control [18],
[20], but little work on lateral control has been performed.
This work has investigated the potential for pressure-based
lateral state estimation and control - even in the complex
post-stall, high sideslip aerodynamic regime - through wind
tunnel tests of a UAV with a bio-inspired pressure sensing
array distributed across several span-wise locations.

The wind tunnel tests have shown that the UAV experi-
ences significant increases in yawing and rolling moments
with increasing sideslip angle, and simultaneous strong vari-
ation in pressure signals. It is already known that distributed
pressure signals can contain information about complex
longitudinal behaviours, such as hysteresis during dynamic
pitching [20]. This work suggests that a large amount of lat-
eral flow-state information is also encoded into the pressure
signals from distributed arrays.

Further evidence of this can be seen in the distinct re-
sponses that pressure signals at different span-wise locations
have to the same angles of sideslip. As shown in Fig. 4d,
the inboard sensors have stronger reactions to 8 than the
outboard sensors, highlighting flow effects such as fuselage-
wing interaction at high angles of sideslip. The importance of
span-wise distributed sensors was also discussed by Groves-

TABLE I: Estimator RMSE Results.

o RMSE (°) | B RMSE (°)
PLS 0.580 1.228
ANN 0.542 0.700
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Fig. 5: Estimator error distribution comparisons: (a) o estimation errors distributed across o, (b) o estimation errors
distributed across 8, (¢) B estimation errors distributed across ¢, and (d) 3 estimation errors distributed across 3. The
shaded areas signify the range in estimation errors for the testing dataset, while the markers show the individual errors for
each combination of angles tested. The annotations correspond to the angle combinations with the largest a and 8 estimation

error magnitudes, coloured by estimator type.

Raines et al. in [2], where the angle at which non-linear
pressure characteristics were observed (corresponding to the
stall angle) varied with the span-wise location of the sensor.
This characteristic was suggested to be useful as a stall early-
warning system.

This work has also shown that the estimation of angle
of sideslip is possible from pressure signals, even up to an
extreme of a = 25°, 3 = 45°. Furthermore, this estimation
is possible to a reasonable degree of accuracy even with a
linear estimator. This is a significant result that unlocks the
potential of a 6 degree-of-freedom pressure-based “flight-by-
feel” control system. Computationally cheap estimators, such
as PLS-based regression, are key for allowing the real-time
estimation required for a control system, especially on power
and weight limited flight hardware.

There is also likely scope for improvement to the accuracy
of estimation. Li et al. [21] achieved more accurate 3 esti-
mation (exclusively for § < 10°) using a non-linear iterative
robust regression model; they achieved a mean absolute
error in B estimation of just 0.25°, compared to a mean
absolute error of 0.53° achieved by the ANN estimator for
the same range in this work. By contrast, their o estimation
error agreed well with the present study, differing by less

than 0.03°. The ANN estimator employed by Araujo-Estrada
& Windsor in [20], however, was more accurate, with an
overall ¢ estimation RMSE of just 0.15° (over a range of
—15° < o <€ 20°) compared to the present study’s 0.54°.
The higher RMSE found here was largely due to the under-
performance of the ANN estimator at low angles of attack,
visible in Fig. Sa.

The relative under-performance of the ANN at a esti-
mation in the —6° < a < 8° region (RMSE = 0.82°) is
noteworthy, as this pre-stall region generally results in simple
linear pressure variation with ¢. The under-performance here
could be a sign of one of the weaknesses of the ANN
estimation approach - its requirement for a large observation
dataset. The region where the ANN performed most poorly
is the sparsest region of the test matrix (see Fig. 3). It is
possible that the ANN did not have sufficient granularity in
this region to completely capture the relationship between
the pressure signals and angle of attack, especially when
this relationship was complicated by a high angle of sideslip,
as annotated in Fig. 5a; the largest o estimation error was
produced at the maximum tested f3.

The annotations in Fig. 5 show that the largest estimation
errors for each angle generally occurred when the other



angle was at or near its maximum value. This highlights
the complex aerodynamic effects occurring at high B (such
as fuselage interaction effects) and at post-stall o (stall
effects). It is possible these respective effects interfere with
the pressure signals in a way that complicates their relation-
ship to angle changes, reducing the accuracy of estimation,
especially for an estimator with limited training data. The
ANN’s B estimation error was also slightly higher in the
—6° < o0 < 8° region than at higher values of «, supporting
the theory that lack of training data may have influenced
the ANN’s estimation performance. In contrast, the ANN
estimator employed in [20] had very good performance at
low angles, but also had access to a much larger training
dataset.

Additionally, the loss function used to train the ANN was
the mean-squared-error between the training dataset and the
associated predictions (see Section IV-B); it is possible that,
due to the higher test-point density in the stall/post-stall
range, the loss function unintentionally weighted the ANN
towards better representation in this range to the detriment
of the linear region. This is a limitation that could be further
explored by trialling different training techniques.

Although influenced by this apparent lack of data for
the a < 10° range, it is also noteworthy that the overall
RMSE for o estimation was very similar between the linear
and non-linear estimator. This is contradictory to the result
found in [20], in which the non-linear estimator substantially
outperformed the linear estimator in the post-stall region.
This may be partly explained by the gentle stall experienced
by the chosen wing at these Reynolds numbers; as seen
in Fig. 4a, no sudden losses of lift were experienced at
stall. It is likely that a sharper stall would result in more
complex correlations of the pressure signals in response to
o, which could reduce the effectiveness of a PLS-based
estimator: the work in [20] included dynamic experiments
at higher Reynolds numbers, which would be more likely
to cause sharper stalling effects. Investigation of distributed
pressure sensing arrays on a wing section with harsher
stalling characteristics could confirm this.

Overall, this work has extended the distributed pressure
sensing state of the art by demonstrating that good pre-
dictions of both a and B are possible, even well after
stall. This unlocks the possibility of a robust model-based
controller informed by pressure sensing signals. The results
show that a linear estimation approach is suitable for use in
control for both & and B3, though 8 estimation shows greater
improvements from the use of a non-linear estimator than c.
The results have also shown the value of a pressure sensing
array across multiple span-wise locations, as a tool to encode
a large amount of flow information in both longitudinal and
lateral directions.

Future work could take three avenues. Firstly, the existing
dataset could be investigated as a means to predict not only
the aerodynamic states but also the associated aerodynamic
loads, expanding the work in [20] to include lateral loads.
Secondly, the importance of specific sensor placements,
especially in the span-wise direction, could be studied; it has

been seen from these results, for example, that the inboard
sensors are more sensitive to changes in 8 than the outboard
ones. Lastly, the control surfaces on the distributed sensing
UAV could be deployed in wind tunnel tests to assess their
impact on the estimation of aerodynamic states and loads.
This is an important aspect that must be understood before
a distributed sensing-based flight controller can be built.

VI. CONCLUSIONS

Wind tunnel tests were carried out on a bio-inspired
distributed sensing UAV at high angles of attack and sideslip.
Aerodynamic loads and distributed pressure sensing mea-
surements from four span-wise sensor strips were acquired
for each experimental condition. The high spatial resolution
of the pressure data captured significant information about
the aerodynamic state of the vehicle, demonstrating for the
first time accurate estimation of both longitudinal and lateral-
directional aerodynamic angles even in the complex post-stall
flow regime, up to @ =25° and B = 45°. The linear PLS-
based estimator’s performance was comparably strong to the
ANN estimator for angle of attack estimation, possibly due
to the gentle stalls that are characteristic of the wing section.
However, the ANN performed markedly better than the PLS-
based estimator for angle of sideslip predictions, suggesting
non-linear behaviour as angle of sideslip increases. This work
has demonstrated that pressure-based distributed sensing
provides accurate estimates of both longitudinal and lateral-
directional aerodynamic states. These could inform a robust
“flight-by-feel” controller, unlocking greater manoeuvrability
and gust rejection for fixed-wing UAVs. This is particularly
desirable for applications that require flight through cluttered
urban areas, such as last-mile cargo delivery.
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APPENDIX

Measured loads are given by:

Fm = FAem + Flnertial + FSlrul (Al)

Note that we are only interested in Fj.,,. To remove effects
from the other two components, we carried out the following
calibration tests:

1) Fiperiar Was removed prior to each data collection by

2)

balance calibration with the attached UAV.

To identify Fs;.r, we measured the forces acting only
on the struts throughout the range of the « and
B for the three wind speeds. The forces were then
characterised using (A.4).

Similarly, the measured moments are given by:

The
1)

2)

3)

My, = Mpero + Mlnertial + MStrut + MVirtual (Az)

following procedure was carried out to extract the My,,:

Mineriqr Was identified by measuring the moments for
varying o and 8 with no wind. (A.4) was applied to
characterise the data.

Mg removal followed a similar procedure as Fgypyy,
where the moments were measured alongside the
forces.

Myiyuq refers to lift and drag contributions to the
moments due to their measurement in the wind tunnel
reference frame. This was characterised as follows:

C-x—Cy-y

Myiruar = (A3)

c
where x and y are sinusoidal functions of @, and refer
to the vertical and horizontal distance from the quarter
chord to the wind tunnel reference point.

Generic equation used for plane approximation during
correction:

Y = A-sin(@0+ p1) +B-sin(@f + p2) (A.4)

where @, p,A and B are regression-estimated coefficients.



