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Abstract. While detection of suspicious or erroneous CPU behaviour
can be achieved by generic mechanisms such as memory safe proces-
sors, recovering safely from the resulting exceptions is an application
specific problem. The challenge is to ensure that a complex closed sys-
tem including controller and its environment remain in a safe state while
undertaking abnormal state changes in the controller as part of its ex-
ception recovery process. Handling exceptional error events is a complex
task requiring insight and domain expertise to ensure that a process is
designed to recover from abnormal conditions and return the system to a
safe state. Exception handling relies on a notion of transactions in order
to identify how the system can be systematically returned to a consis-
tent state. Formal methods can address this complexity, by supporting
the analysis of transactions and exception handling at the abstract de-
sign stages utilising mathematical modelling and proofs. Event-B is a
state-based formal method for modelling and verifying the consistency
of discrete systems, however it lacks explicit support for analysing the
handling of exceptions. UML-B is a diagrammatic front-end for Event-B
modelling which allows models to be constructed using class diagrams
and state-machines. In this paper, we use UML-B state machines to sup-
port the modelling of normal behaviour, with a notion of consistency
and augment this with a technique for modelling ’transactions’ which
may either complete to reach a consistent state or encounter exceptional
errors that have to return the system to a consistent state despite the
non-completion of the transaction. We also discuss an implementation of
the modelled exception handling in the ‘C’ programming language as a
first stage towards automatic code generation of exception handlers.
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1 Introduction

Our work is influenced by considering implementations on capability hardware
which provides hardware level protection against incorrect memory access [18].
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Capability hardware blocks unauthorised memory access at runtime, raising
hardware exceptions that should be handled by application code. Unauthorised
memory access might be caused by unintentional coding errors, such as out of
bounds array access, or malicious attacks, such as buffer overflow exploitation.
In principle, code that is developed formally will be free from incorrect memory
access. However, we assume the applications we develop will operate in soft-
ware environments where vulnerabilities remain, e.g., through use of untrusted
libraries.

Mechanisms for detecting exceptional erroneous behaviour are often generic
since they flag unusual activity in the underlying low-level machinery. An exam-
ple is the CHERI [18] memory safe capability approach which is implemented
within general purpose electronic computing devices. In contrast, the design of
a suitable recovery response to the detected exception is usually application, or
at least domain, specific. In some cases a safe response might be to halt, but this
could play into the hands of a malicious attacker by providing an easy vector to
achieve denial of service attacks. In many cases it is not safe for a critical service
to halt. Therefore we believe that generic memory protection mechanisms like
CHERI are only useful if they are complimented by tools and techniques for ap-
plication engineers to design and implement safe recovery strategies that allow
the system to continue its service as much as possible.

We already use formal modelling tools to support the rigorous analysis of
systems ensuring that they meet important (e.g. safety and security) properties.
In HDSEC1 we have adapted these formal analysis tools to show how they can
be used to design and analyse exception recovery responses and verify that they
recover the system to a condition that satisfies the important system properties.
We focus on designing a safe recovery after an exception and abstract away from
the mechanisms that detect the exception.

We have also implemented the modelled system in order to demonstrate the
recovery responses in a real system running on a CHERI Morello PC. The imple-
mentation is a demonstrator that also contains a simulation of the environment
and the user interfaces. The code is seeded to allow a capability exception to be
detected so that the recovery can be demonstrated.

Programming languages provide a framework for detection, notification and
handling of exceptions. Exception handling is a complex and error-prone activ-
ity, and systematic reasoning is needed to identify and characterise exceptions.
Formal analysis of the exceptional control flow provides a means to validate the
design of the exception handling recovery [6]. However, support for exceptions in
formal methods is less mature. This paper proposes an approach to systematic
reasoning about exception handling at the design level using the UML-B and
Event-B formal method.

Event-B [4] is a formal method to model and verify correctness of safety/se-
curity critical systems. While exception handling can be modelled within the ex-
isting features of the Event-B toolkit, there is no explicit support for it. We use
UML-B [16] and Event-B to visualise and verify the normal expected behaviour

1 https://hd-sec.github.io/

https://hd-sec.github.io/
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of a system and then add support for handling exceptions in safety/security
systems from the design level to the implementation. The encoding of statema-
chine states provides a) a mechanism for detecting where the exception occurred
and hence choosing the appropriate recovery, and b) for going into a suitable
recovery state. We propose extensions to the UML-B statemachine notation to
facilitate the automatic deduction of which transitions represent exception re-
covery and how system variables should be rolled back during a recovery. The
Event-B (generated by UML-B) already has sufficient features to express the
recovery behaviour and does not need to be extended.

We illustrate our approach using a Smart Ballot System (SBB) [2], an in-
tegral part of some modern voting systems. Earlier research work [8] presented
a correct-by-construction secure SBB system using Event-B. Our proposed ap-
proach can address the robustness of SBB against exceptions in [8].

This work follows on from previous work presented at ABZ2024 [13]. We have
revised the way that we model and verify exception recovery so that it is better
integrated with the UML-B development of normal behaviour and is modelled
using statemachine transitions. We have introduced a notion of transactions and
model these with superstates. This enables us to formally verify that exception
recovery correctly rolls back any partially completed transaction behaviour. We
have also added a demonstration implementation which runs on a Cheri Morello
memory safe PC.

The paper is structured as follows. Section 2 introduces POSIX signals,
Event-B and the SBB case study. Our proposed approach is described using
the case study, firstly by modelling the normal behaviour in Section 3, then by
adding a concept of transactions in Section 4 and finally by adding the excep-
tion recovery in Section 5. Section 6 summarises an overview of the complete
approach, Section 7 describes the implementation of the case study on a Cheri
Morello machine as a demonstration. In Section 8, we review existing literature
and research, highlighting key methodologies, findings, and gaps that our study
aims to address. Finally Section 9 discusses our plans for the next steps and
Section 10 summarises related works and concludes.

2 Background

Signals are a mechanism for asynchronous event notification used in Unix-based
(POSIX-compliant) operating systems. Signals are used by the kernal to inter-
rupt (e.g. suspend, terminate or kill) a process. When an event occurs, the op-
erating system interrupts the target process’ normal flow of execution to handle
the signal. If the process has registered a signal handler, that routine is executed.
Otherwise, the default signal handler is executed. The CHERI-BSD operating
system [1] running on Morello hardware adds a new signal SIGPROT which is
used to notify the active process that the Morello hardware has detected a mem-
ory protection error. In our example case study, we also use the standard signal
SIGALRM, which is used to notify that a timeout set by a process has expired.
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Event-B [4] is a refinement-based formal method for system development.
The mathematical language of Event-B is based on set theory and first order
logic. An Event-B model consists of two parts: contexts for static data and
machines for dynamic behaviour. Contexts contain carrier sets, constants, and
axioms that constrain the carrier sets and constants. Machines contain variables,
invariant predicates that constrain the variables, and events. In Event-B, a ma-
chine corresponds to a transition system where variables represent the states and
events specify the transitions. An event comprises a guard denoting its enabling-
condition and an action describing how the variables are modified when the event
is executed. Event-B is supported by the Rodin tool set [5], an extensible open
source toolkit which includes facilities for modelling, verifying the consistency of
models using theorem proving and model checking techniques. In this paper we
make extensive use of the UML-B plug-in [17] which provides a diagrammatic
modelling notation for Event-B in the form of state machines and class diagrams
that automatically generate Event-B models.

SBB (Smart Ballot Box) [2] is a computerised system to automate election
voting. The SBB system inspects a ballot paper by detecting a barcode and
decrypting it to evaluate whether the ballot is valid. If the ballot is valid, then a
vote can be cast, spoiled or cancelled by the user and the ballot paper is sorted
accordingly into the storage boxes. If the ballot is not valid, the SBB rejects the
paper. The key function of the SBB is to ensure that only valid ballot documents
are included in the ballot boxes.

3 Modelling normal-behaviour and verifying safety
invariants

Utilising UML-B, we model the SBB normal behaviour (without exceptions)
as a state-machine. 2. The normal-behaviour SBB case, presented in Figure 1,
starts in the Waiting state and, in the case of accepting the ballot, progresses through
the following sequence of states: Waiting, BarcodeReading, BarcodeProcessing, UserS-
election, PrepareAccepting, Accepting, Waiting. There are several functional variables
(not shown in the state-machine diagram) which are manipulated by actions of the
transitions. They are

– paper count - a count of the papers input to the roller (incremented by the tran-
sition ROLLER paper in),

– accepted count - a count of the papers categorized as accepted by the roller (in-
cremented by the transition ROLLER accept paper),

– spoilt count - a count of the papers categorized as spoilt by the roller (incremented
by the transition ROLLER spoil paper),

– rejected count - a count of the papers categorized as rejected by the roller (incre-
mented by the transition ROLLER reject paper),

2 The example models described in this paper are available here: https://tinyurl.
com/ABZ2025-SnSaHo. The Rodin and UML-B formal modelling tools used, are avail-
able as a bundled installation package via https://www.uml-b.org/Downloads.

html.

https://tinyurl.com/ABZ2025-SnSaHo
https://tinyurl.com/ABZ2025-SnSaHo
https://www.uml-b.org/Downloads.html
https://www.uml-b.org/Downloads.html
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Fig. 1. State Machine, normal-behaviour SBB

– cast count - a count of the votes cast by the user (incremented by the transition
USER cast),

The Waiting state contains two desired safety properties that are expected to hold
when the SBB has completed the processing of any papers and is in the Waiting state:

– The count of votes cast by the user (cast count) should be the same as the count
of papers categorized as accepted by the roller (paper count).

– The count of papers input to the roller should be the same as the sum of papers
categorized as accepted, spoilt or rejected by the roller.

In general a system, may have important properties that are expected to hold
whenever the system is quiescent but that are temporarily violated while the system
is engaged in active processing. We refer to properties that are expected to hold in
quiescent states as quiescent invariants and states that are not quiescent as active
states. Active states may contain intermediate invariants that describe the expected
progress during the activity. In fact, intermediate invariant properties are needed in
the active states to help the provers prove the quiescent invariants are re-established.
This is because the prover considers one transition at a time and attempts to infer
the invariants of the post-state (e.g. the desired quiescent invariants) from the known
pre-state (e.g. intermediate invariants) as well as any guards of the transition. Hence,
since the prover cannot ‘see’ back up the sequence of transitions, we have to provide
this sight via the intermediate invariants in the active states. Once this is done, the
proofs are automatically discharged by the Rodin provers. Notice how the intermediate
invariants document where the counts are out of step and by how much. For example in
the Accepting state, cast count is one ahead of the accepted count because it has been
incremented by the transition User cast, but the Roller has yet to finish categorizing
the paper as accepted.

In order to encode the state machines in Event-B, the UML-B tools automatically
generate sets, constants and axioms in a newly generated context component. The SBB
states are an enumeration of a carrier set where each state (Waiting, BarcodeReading,
...), is specified as a constant and the set of states, SBB STATES, are specified as
an axiom using carrier sets. The enumeration is then specified as a partition via the
following axiom:

@axm1: partition(SBB STATES, {Waiting}, {BarcodeReading},{BarcodeProcessing},
{UserSelection}, {Accepting}, {Spoiling}, {Rejecting}, {PrepareRejecting}, {PrepareSpoiling},
{PrepareAccepting})
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The dynamic behaviour of the state machine (Figure 1), is generated as part of the
containing machine component. Each event that represents a transition, checks, within
its guards, that the current state of the SBB is the transition source state, and changes
the state to the transition target state, within its actions. For example:

event BR reading succeeds
when

@grd1: SBB =BarcodeReading
<other guards about the functional vars>

then
@act1: SBB :=BarcodeProcessing
<other actions on the functional vars>

end

4 Identifying and adding transactions

In Section 3 we saw how the verification of the quiescent (safety) invariants led us
to introduce intermediate invariants that document where (i.e. in which states) the
functional variables are out of step (i.e. do not satisfy the quiescent invariants). We
could think of these states, and the transitions that are involved in passing through
them, as a process or transaction which must be completed to bring the system back to
a safe state. In this section, we show how we identify such transactions and represent
them in the model.

4.1 Adding transactions to the state-machine model

In UML-B we can arrange state-machine states hierarchically by nesting a state-
machine within a superstate. We use this superstate structure here to represent the
transactions. We introduce a transaction superstate to contain all the states that have
a similar same intermediate invariant. Some of the contained states may have other
intermediate invariants that differ within them.

For example in Figure 1 all of the states, BarcodeReading, BarcodeProcessing,
UserSelection, PrepareAccepting, Accepting, PrepareSpoiling, Spoiling, PrepareReject-
ing and Rejecting have the same invariant:
paper count = accepted count+rejected count+spoilt count+1
because a paper has been fed in to the roller but since its processing is not complete,
none of the accepted, rejected or spoilt counts has been increased yet. Hence this group
of states form a transaction and we wrap them in a superstate Paper in transaction. A
useful feature of superstates is that they can contain invariants that apply throughout
all of their contained sub-states. Therefore we can move the intermediate invariant that
we used to identify the transaction up to the superstate and remove all the repetitions
of it in the sub-states.

The modified model is shown in Figure 2
Notice that another intermediate invariant: accepted count+1 = cast count iden-

tifies a transaction consisting of the states Prepare Accepting and Accepting (but not
the other sub-states of the previous transaction). Hence we have a nested transaction
and can introduce a further transaction superstate Cast count transaction to contain
those two sub-states and move the transaction intermediate invariant into it.

As soon as we re-generate the Event-B for the UML-B model, the automatic provers
re-prove the model and verify that the quiescent invariants are still satisfied. The
changes are superficial notational ones which do not change the semantic.
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Fig. 2. State Machine, SBB with transactions

4.2 Adding rollback caching to transactions

Our model so far only deals with successful outcomes of transactions (even if it is a
successful rejection response by the controller). However, the aim of identifying trans-
actions is to consider failure cases where the transaction does not complete, which, by
definition, leaves the system in an invalid condition requiring some recovery process.
There are several possible approaches to recovering a safe and valid condition:

1. design specific compensation actions for each recovery (rollback is V = G(V ′),
where V ′ is the state of the variables V that may be altered in the transaction and
G is the transformation that had completed before the exception occurred),

2. modify temporary copies of the variables and only commit their values to the real
system variables when the transaction completes (no rollback is needed, but there
is a pre-transaction action V ′ = V to make temporary copies of V and there is a
commit action V = V T where V T is the value of the temporary copies of V ),

3. save the values of system variables before the transaction and revert them if the
transaction does not complete. (Rollback is V = V ′ and there is a pre-transaction
action V ′ = V to make temporary copies of V ),

We discount the first approach since it is difficult to know how much of the trans-
formation G had completed. There is not much to choose between the second and third
approaches. We have chosen to adopt the last approach so that the normal behaviour
uses the actual variables.

We first add a duplicate set of rollback variables to the Event-B machine for all
the variables that are altered during transactions. We then add entry actions to all the
transaction superstates to save the entry values of the variables that will be modified
by the transaction, in the rollback variables. We then add intermediate invariants to
the transaction superstate to confirm that the values in the rollback variables, satisfy
the quiescent invariant. That is, we make a copy of the quiescent invariants and replace
the variables with the rollback variables used by that transaction.

For example, in SBB, we add the invariant:
paper in rollback = accepted count + rejected count + spoilt count
to Paper in transaction and cast count rollback = accepted count to the Cast count transaction.



8 C.F.Snook et al.

These will be needed in the next step to prove that exceptions establish the quiescent
invariants when they use the rollback variables to restore the values of variables that
have been changed in the transaction.

This process of adding rollback variables is done for each of the transactions, in-
cluding nested ones. Note that the rollback variable should be used by the lowest
level transaction possible. For example, in the SBB model, cast count is saved as roll-
back cast count by Cast count transaction, not by Paper in transaction.

5 Adding exception handling to transactions

Having prepared by identifying transactions and their associated rollback requirements,
in the next step we identify where exceptions could occur and how the system should
recover from them. The model should be analysed state by state to identify negative
outcomes that could prevent the activities within the state from completing success-
fully. Since the model abstracts away from the details of these state activities, iden-
tification of exceptions is a subjective assessment of the concepts represented by the
state. As we are interested in the memory safety provided by Cheri hardware, we might
consider certain states to be particularly untrusted (whether malicious or accidental).
We may also wish to consider failures due to external system components such as user
mis-actions and machinery failures. For example, Table 1 outlines the potential excep-
tions and their recovery strategy in the SBB system: The first exception is a memory

Exception Recovery

memory capability violation in
barcode software library

if occasional, reject the ballot, if
persistent, external maintenance

user does not enter selection within
timeout

reject the ballot

roller does not complete within
timeout

external maintenance

Table 1. Exceptions handled by the SBB system

capability violation in the barcode processing software. This could be due to a simple
software error or it could be due to a security attack via virus software which is trying
to use memory accesses to create an attack vector. We could react by disabling the
service immediately to ensure that the SBB does not record invalid results. However,
this could play into the hands of an attacker trying to create denial of service attack.
Therefore, we decided to adopt a two-phase recovery strategy. For occasional excep-
tions, the paper is rejected and the user can try again. It is the best we can do since
the paper cannot be processed without a barcode. If several exceptions are detected
consecutively, then the service is aborted and the system awaits external intervention.

The second exception is a timeout on the user choosing either to cast, spoil or
cancel their vote. In this case the recovery strategy is to default to rejecting the paper.
The third exception is a breakdown in the roller machinery that sorts the physical
papers into their respective categories. If the roller does not complete within a timeout,
it is assumed that manual maintenance will be required to fix the roller machinery.
(Note that we are not interested in quantifying intervals of time; only in an ordinal
arrangement of events and therefore, we do not need to model the tick of a clock).

Figure 3 shows the UML-B model with exception handling transitions added. The
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Fig. 3. State Machine, SBB with exception handling

first exception can occur either in the BarcodeReading or BarcodeProcessing states
and can result in two different exception handlers. If an exception counter (which is
not shown in the diagram) is below a threshold, exception handler1a recovers to the
PrepareRejecting state. This does not leave the transaction Paper in transaction so
does not need to use the rollback mechanism. However, the exception count is incre-
mented as part of the exception handling. If the exception count reaches the threshold
the exception is handled by exception handler1b which exits the Paper in transaction
and recovers to the Maintenance state. In this case the paper count is rolled back by
the action paper count := paper count rollback which is attached to the transition
exception handler1b. The second exception can occur in the state UserSelection and
is handled by the transition exception handler2 which recovers to PrepareRejecting
without any rollback actions. The third exception can occur in Accepting, Spoiling or
Rejecting and always recovers to Maintenance with the same paper in rollback action
as the first exception. However, in the case where it occurs in Accepting, the excep-
tion also exits the nested Cast count transaction and therefore must also roll back the
cast count via an action cast count := cast count rollback which is attached to the
transition exception handler3a. (Note that, in Event-B, conditional actions are only
possible using different guarded events for each condition hence the need for separate
transitions for exception handler3a and exception handler3b).

6 Overview of Method of modelling transactions and
exceptions in UML-B

The generic technique for modelling transactions and exceptions and analysing their
recovery using UML-B state-machines and Event-B verification is summarised in this
section.

– Model the normal behaviour as a UML-B state-machine.

• Construct a UML-B state-machine to model the control modes (states) and
mode changes (transitions) of the system .
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• In the containing machine, add additional variables involved in the functional-
ity. The variables may be used to control (guard) the firing of transitions and
be altered when transitions fire (actions).

• Add quiescent invariants to the states to express desired safety properties
about the expected values of the variables in particular quiescent states3.

• Verify the model using the Rodin provers, adding intermediate invariants to
states in order to achieve the proofs.

– Identify and represent any transactions in the model.

• Where intermediate invariants indicate that variables are out of step in a
sequence of states (i.e. are different from the quiescent invariants) a superstate
should be introduced to represent the transaction.

• The sequence of states containing the intermediate invariants is then contained
in a nested state-machine within the transaction superstate.

• The transition that enters the parent transaction superstate will contain an
action that alters the variable that is out of step (i.e. introduces the difference
from the quiescent invariant).

• The intermediate invariants expressing the difference from the quiescent invari-
ant are replaced by a single intermediate invariant in the parent transaction
superstate.

• Transactions may be nested within other transactions where a variable is
changed in a sub-transaction.

• Check that the model still verifies using the Rodin provers. The changes are
superficial/structural so should not affect the validity of the proofs.

– Add rollback caching of variables to support the transactions.

• In the containing machine, add rollback variables to store the entry state of
all of the ancillary variables that are altered during the transaction.

• Add entry actions to the transaction superstate to cache the value of the vari-
ables that will be changed by the transaction, in their corresponding rollback
variables.

• Add intermediate invariants to the transaction superstate to confirm that the
quiescent invariants, with variables replaced by rollback variables, obey the
quiescent properties. These will be needed in the next step to prove that excep-
tions re-establish the quiescent invariants when they use the rollback variables
to restore the values of variables that have been changed in the transaction.

• Check that the model still verifies using the Rodin provers. The proofs should
be straightforward.

– Add exception handling to the model.

• Consider each state in turn and identify any potential exceptions that could
occur in that states actions.

• Add transitions to represent exceptions that can occur from states within the
transaction.

• Their target (recovery) states can be within the transaction or external to the
transaction.

• Junctions can be used when the same exception handler can handle an excep-
tion occurring in several source states.

3 We refer to these invariants as safety properties, however, we use safety in a very
broad way to represent any properties the modeller would like to remain true in this
model
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• Junctions can also be used to model alternative exception handlers (with dif-
ferent recovery target states) of the same exception. In this case, guards on
the final segments of the transition, can be used to distinguish the cases and
they can have different rollback actions.

• For exceptions that exit a transaction, add actions to the transition to roll
back the variables that have been changed (i.e. v := rv where rv is the rollback
variable for variable v).

• Exceptions must add rollback actions for each of the nested transaction super-
states that are exited.

• Verify the model using the Rodin provers.

7 Demonstration Implementation

We have implemented the modelled system in order to demonstrate recovery responses
from an exception signal in a real system running on a CHERI Morello PC. The imple-
mentation is a demonstrator that also contains a simulation of the SBB environment
(the roller machine) and the user interfaces. An invalid memory access is seeded in
the barcode processing simulation so that a SIGPROT signal can be induced as part
of the demonstration. The user simulation asks the tester to supply the expected user
responses and if this is delayed sufficiently, a SIGALRM is induced for demonstration
purposes. Although this is just a demonstrator program, we can envision the controller
code, including the exception handling, being generated automatically from the UML-B
model.

The processing of a state-machine state and firing of transitions, is wrapped in a
conditional sigsetjmp which acts as a kind of ‘try’ (see Figure 4 for SBB example).

do forever {
try {

set alarm timeout for the new state
repeat until the SBB state changes

progress the environment
progress the statemachine }

//any exception handler will return to here }

The function that progresses the statemachine selects the case based on the current
statemachine state and tests to see whether it has the necessary conditions to fire
any of its outgoing transitions. The conditions may involve trigger events from the
environment, user inputs, internal system variables or may be always true (i.e. the
next transition fires immediately).

switch state
case STATE1:

if can fire TRANSITION1
fire TRANSITION1

else if can fire TRANSITION2
fire TRANSITION2

etc.
case STATE2:

fire TRANSITION3
etc.
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When fired, transition functions take any transition actions such as changing system
variables and then update the statemachine state to the new (target) state. If the source
state has any exit actions or the target state has any entry actions, these are also added
as transition actions.

Fig. 4. Code for the main SBB state-machine execution showing ‘sigsetjmp’

Fig. 5. Code for setting up the exception handler using ‘sigaction’

If there is an exception (which could be any POSIX signal but we use SIGPROT
and SIGALRM as examples) the exception handler will be called to intervene with
any roll back actions and change the state to the appropriate recovery action. The
exxception handler then exits, using a siglongjmp, to the end of the main sigsetjmp
(try) conditional block. This is also where main loop ends up after a normal transition
in order to enter a new state. Therefore the exception handler sets up the next state
variables to enter the designated recovery state depending on the exception that was
raised and the state that was executing when the exception occurred.

The exception handling is set up at intialisation using sigaction which is a facility
built in to POSIX signals library for this purpose. The sigaction assigns our exception
handler to the handled signals. (See Figure 5). Note that we use a single exception han-
dler routine for both signals. The different exception transitions of the UML-B model
map to different condition branches within the handler. (Event-B does not support
conditional execution within an event).

The exception handler, shown in Figure 6, contains a switch case for each type of
signal that is handled and each case contains conditional branches for the state(s) that
the signal has a defined recovery. The choice of recovery state can also be conditional
for a particular signal source state combination and recovery may or may not require
rolling back system variables.
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Fig. 6. Code for the common exception handler
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switch signal type
case SIGNAL 1:

if current state = STATE1
if condition for recovery 1

change current state to recovery state 1
//possibly no rollback is needed for some recovery states

if condition for recovery 2
change current state to recovery state 2
rollback system variables to saved pre−transaction values

case SIGNAL 2: ... etc. ...
exit to end of main try block (using siglongjmp)

Of course the signal could occur in a state for which we did not model a recovery. In
this case the signal is ignored. The recovery for a particular signal and state may also
depend on further conditions. For example exception 1 depends on a count and takes
a different recovery of the exception occurs several times (which may be a persistent
attack). Each branch sets the appropriate recovery state in the state machine control
data structure and also rolls back any variables that were part of a transaction where
the recovery leaves that transaction. The handler exits via a siglongjmp which will
return to the end of the sigsetjmp used in the amihn process (Figure4).

To demonstrate the code and signal handling we have executed it on a CHERI
morello PC. The code for the barcode reading and processing states is ‘seeded’ with an
invalid memory access (using a data value as a pointer) so that a SIGPROT exception
can be generated. SIGALRM timeouts are easily simulated by not responding to the
user interface simulation code. The console output provided by the demonstration
program provides a record of the occurrence of exceptions.

8 Related Work

This section reviews relevant research on memory safety in capability-based hardware,
exception handling and fault recovery mechanisms, the application of formal methods
in safety-critical systems, and recent advances in code generation for safe exception
handling.

Memory Safety and Capability-Based Hardware: Capability-based architec-
tures have shown promise in enhancing memory safety and preventing unauthorized
access at the hardware level. The CHERI (Capability Hardware Enhanced RISC In-
structions) architecture is a notable approach that provides fine-grained memory safety
guarantees by embedding capabilities into processor instructions. Watson et al. [19]
present CHERI as a hybrid capability-system architecture that allows scalable com-
partmentalization, enhancing the security of software through pointer integrity and
memory access control. Further refinements to CHERI’s instruction set, as detailed in
the technical report by Sewell et al. [14], enable efficient enforcement of memory safety
in complex, high-assurance systems. These foundational works provide a hardware-
level basis for secure exception handling, which our approach extends by focusing on
application-specific recovery mechanisms and maintaining system consistency after ex-
ceptions.

Exception Handling and Fault Recovery in Safety-Critical Systems: Ex-
ception handling is essential for robust system behaviour in safety-critical applications,
where maintaining a safe state during abnormal conditions is paramount. Julliand
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and Perrouin [9] discuss the complexities of exception handling in formal methods,
emphasizing the challenges of fault tolerance when designing for systems that must
adhere to stringent safety standards. This work underscores the importance of do-
main expertise in designing tailored recovery mechanisms that respond effectively to
error events. Unlike general-purpose error handling, safety-critical applications require
a transactional approach to return systems to a consistent state, even under excep-
tional conditions. Our work builds on this by incorporating formal methods to model
transactional behavior that can systematically manage exceptions in a capability-based
hardware environment.

Formal Methods for Exception Handling and Safety Assurance: Formal
methods, particularly Event-B, have proven valuable in the verification of safety-critical
systems by enabling mathematical rigor in system design and error detection. However,
traditional Event-B lacks explicit support for exception handling and fault recovery.
Snook and Butler’s [15] UML-B framework extends Event-B with UML-like state ma-
chines, allowing high-level modeling of system behavior while maintaining consistency
in the presence of exceptions. Abdallah et al. [3] further adapt Event-B for handling ex-
ceptions, proposing a model for safe exception handling that ensures safety-critical sys-
tems can reliably transition to safe states. Our approach builds on these advancements
by using UML-B to model system consistency and integrating exception-handling trans-
actions that respond to non-completions and error states, contributing to the formal
analysis of capability-based hardware systems.

Transactional Models and Consistency Recovery: Maintaining a consistent
system state is crucial for safe exception handling in transactional models, particu-
larly in distributed and embedded systems. Lamport’s [10] classic work on distributed
systems provides a foundational understanding of time and event ordering, which un-
derpins transactional recovery in complex systems. Lynch and Tuttle [11] introduce the
input/output automata model, highlighting the importance of input/output synchro-
nization for achieving reliable consistency in safety-critical applications. These foun-
dational models inform our approach by providing a theoretical basis for handling
transactions and error states within closed systems, which we implement in our UML-
B framework to manage exception recovery effectively.

Automatic Code Generation for Safe Exception Handling: Finally, trans-
lating formal models into executable code is a significant step toward implementing
safe exception handling in practice. Abrial [4] outlines techniques for generating code
from Event-B models, which can facilitate a direct path from formal design to appli-
cation. Dalvandi [7] proposes SEB-CG tool for extensible automatic code generation
from Scheduled Event-B (SEB), an extension of Event-B that augments models with
control structures, to executable code in a target language. Mendes and Bensalem [12]
extend this to safety-critical applications, demonstrating that automated code genera-
tion can preserve the integrity of exception-handling logic across various system states.
Our work contributes to this body of research by developing an implementation of our
UML-B model in C, with the goal of enabling future automatic code generation for
exception handlers in CHERI-based systems.

Summary: The existing literature demonstrates the feasibility of using formal
methods for exception handling in safety-critical systems, though there remains a gap
in capability-specific recovery models that address the unique needs of memory-safe
hardware like CHERI. By leveraging UML-B state machines and transactional recovery
modeling, our approach advances the formal analysis of exception handling mechanisms
tailored for capability-based systems, ultimately contributing to safer, more reliable
embedded applications.
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9 Future Work

We intend to develop a code generation tool that will convert our UML-B models into
C code with the exception handling functions automatically produced and populated
based on the transaction and exception transition detail in the models. In previous
work we have developed more general Event-B to C code generation tools based on our
Eclipse/Rodin plug-in tool framework. These tools can be extended to be more specific
to UML-B state-machines with exception handling. We would also like to develop
better tool support for the modelling proposed here. For example, special features
within UML-B to model transaction states and exception transitions would make the
modelling easier as well as providing better support for the code generation.

The methods discussed here assume the use of POSIX signals and associated Unix-
based exception-handling infrastructure. The target hardware for the case study was
a CHERI Morello PC running a variant of the BSD operation system. We would also
like to support embedded systems which run on smaller real-time operating systems.
We are now investigating a new case study using the Sonata development board which
is based on an FPGA implementation of the Cheriot processor running CheriRTOS.
A significant difference is that the POSIX signal infrastructure is not present in such
systems and the exception handling concepts are closer to hardware device level.

So far we have not considered compartmentalisation in our methods. Cheri com-
partments enhance the memory-safe capabilities of the hardware providing better de-
tection of suspicious behaviours. Compartmentalisation may require further modelling
features/techniques and improved code generation. Compartments also provide the ba-
sis of a hierarchical unwinding of un-handled exceptions (analagous to unwinding of
the call stack in some typical exception handling languages). We imagine this could be
modelled using hiearchical statemachines.

10 Conclusions

Whereas the focus in hardware design is on generic mechanisms for detecting unusual
potentially erroneous or suspicious behavior, the design of safe exception handling af-
ter the detection, is application or domain specific and therefore generic solutions are
unattainable. Application engineers need supporting methods and tools to help them
design and verify that recovery mechanisms do not violate the safety or security of
the system. We provide a formal model-based analysis approach to achieve this by first
modelling and verifying the system in the absence of exceptions and then adding the ex-
ceptional behaviour and appropriate recovery mechanisms. The modelling approach is
based on discovering transactions which then suggest the necessary rollback of variables
that were involved in the transaction. Usually we promote the use of safety-preserving
refinement to incrementally develop the details of a system. However, a limitation of
the approach is that exceptions cannot be added as a refinement stage and instead
must be seen as a second stage within a single refinement. However, the first and sec-
ond stages are a relatively simple/methodical progression of the same refinement level
and therefore the consequences in terms of verifiability are not excessive. Furthermore,
the detail of the system can be expanded as several refinements that each contain
the two-stage approach. We have also demonstrated that an implementation can be
derived from the formal models. While this is handwritten for now, it would be rel-
atively straightforward to write a tool to automatically generate the code using our
Eclipse-based code generation frameworks.
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