Developing safe exception recovery mechanisms
for CHERI capability hardware using UML-B
formal analysis

Colin Snookl0000-0002-0210-0983] * Agiely Salehi Fathabadil0000—0002-0508—3066]
Thai Son Hoangl0000-0003-4095-0732] 'R}ert, Thorburn!0000-0001-5888—-7036]
Michael Butlerl0000-0003-4642-5373] T conardo Aniellol0000-0003—2886-8445]
Vladimiro Sassonel0000—0002-6432—1482]

School of Electronics and Computer Science (ECS), University of Southampton,
Southampton, U.K.
{cfs, a.salehi-fathabadi, t.s.hoang, robert.thorburn, m.j.butler,
1l.aniello, vsassone}@soton. ac.uk

Abstract. While detection of suspicious or erroneous CPU behaviour
can be achieved by generic mechanisms such as memory-safe processors,
recovering safely from the resulting exceptions is an application-specific
problem. The challenge is to ensure that a complex closed system in-
cluding the controller and its environment remain in a safe state while
undertaking abnormal state changes in the controller as part of its ex-
ception recovery process. Handling exceptional error events is a complex
task that requires insight and domain expertise to ensure that a process
is designed to recover from abnormal conditions and return the system
to a safe state. Exception handling relies on a notion of transactions in
order to identify how the system can be systematically returned to a con-
sistent state. Formal methods can address this complexity, by supporting
the analysis of transactions and exception handling at the abstract de-
sign stages utilising mathematical modelling and proofs. Event-B is a
state-based formal method for modelling and verifying the consistency
of discrete systems; however, it lacks explicit support for analysing the
handling of exceptions. UML-B is a diagrammatic front-end for Event-B
modelling which allows models to be constructed using class diagrams
and state machines. In this paper, we use UML-B state machines to sup-
port the modelling of normal behaviour, with a notion of consistency
and augment this with a technique for modelling ’transactions’ which
may either complete to reach a consistent state or encounter exceptional
errors that have to return the system to a consistent state despite the
non-completion of the transaction. We also discuss an implementation of
the modelled exception handling in the ‘C’ programming language as a
first stage towards automatic code generation of exception handlers.

Keywords: Exception handling - Formal methods - Event-B - UML-B

2 C.F.Snook et al.

1 Introduction

Our work is influenced by considering implementations on capability hardware
which provides hardware-level protection against incorrect memory access [17].
Capability hardware blocks unauthorised memory access at runtime, raising
hardware exceptions that should be handled by application code. Unauthorised
memory access might be caused by unintentional coding errors, such as out of
bounds array access, or malicious attacks, such as buffer overflow exploitation.
In principle, code that is developed formally will be free from incorrect memory
access. However, we assume the applications we develop will operate in soft-
ware environments where vulnerabilities remain, e.g., through use of untrusted
libraries.

Mechanisms for detecting exceptional erroneous behaviour are often generic
since they flag unusual activity in the underlying low-level machinery. An ex-
ample is the CHERI memory safe capability approach which is implemented
within general purpose electronic computing devices. In contrast, the design of a
suitable recovery response to the detected exception is usually application spe-
cific, or at least domain specific. In some cases a safe response might be to halt,
but this could play into the hands of a malicious attacker by providing an easy
vector to achieve denial of service attacks. In many cases, it is not safe for a
critical service to halt. Therefore, we believe that generic memory protection
mechanisms such as CHERI are only useful if they are complemented by tools
and techniques for application engineers to design and implement safe recovery
strategies that allow the system to continue its service as much as possible.

We already use formal modelling tools to support the rigorous analysis of
systems, ensuring that they meet important (e.g., safety and security) properties.
In the HDSEC project' we have adapted these formal analysis tools to show how
they can be used to design and analyse exception recovery responses and verify
that they recover the system to a condition that satisfies the important system
properties. We focus on designing a safe recovery after an exception and abstract
away from the mechanisms that detect the exception.

We have also implemented the modelled system in order to demonstrate the
recovery responses in a real system running on a CHERI Morello PC?. The imple-
mentation is a demonstrator that also contains a simulation of the environment
and the user interfaces. The code is seeded to allow a capability exception to be
detected so that the recovery can be demonstrated.

Programming languages provide a framework for detection, notification and
handling of exceptions. Exception handling is a complex and error-prone activ-
ity, and systematic reasoning is needed to identify and characterise exceptions.
Formal analysis of the exceptional control flow provides a means to validate the
design of the exception handling recovery [4]. However, support for exceptions in
formal methods is less mature. This paper proposes an approach to systematic

! https://hd-sec.github.io/
2 yww.cl.cam.ac.uk/research/security/ctsrd/cheri/cheri-morello.html

https://hd-sec.github.io/
www.cl.cam.ac.uk/research/security/ctsrd/cheri/cheri-morello.html

Developing safe exception recovery mechanisms... 3

reasoning about exception handling at the design level using the UML-B and
Event-B formal method.

Event-B [2] is a formal method to model and verify correctness of safety /se-
curity critical systems. While exception handling can be modelled within the ex-
isting features of the Event-B toolkit, there is no explicit support for it. We use
UML-B [14] and Event-B to visualise and verify the normal expected behaviour
of a system and then add support for handling exceptions in safety/security
systems from the design level to the implementation. The encoding of state ma-
chine states provides (i) a mechanism for detecting where the exception occurred
and hence choosing the appropriate recovery, and (ii) for going into a suitable
recovery state. We propose extensions to the UML-B state machine notation
to facilitate the automatic deduction of which transitions represent exception
recovery and how system variables should be rolled back during a recovery. The
Event-B model generated by UML-B already has sufficient features to express
the recovery behaviour and does not need to be extended.

We illustrate our approach using a Smart Ballot System (SBB) [7], an in-
tegral part of some modern voting systems. Earlier research work [6] presented
a correct-by-construction secure SBB system using Event-B. Our proposed ap-
proach can address the robustness of SBB against exceptions in [6].

This work follows on from previous work presented at ABZ2024 [12]. We have
revised the way that we model and verify exception recovery so that it is better
integrated with the UML-B development of normal behaviour and is modelled
using state machine transitions. We have introduced a notion of transactions
and model these with superstates. This enables us to formally verify that excep-
tion recovery correctly rolls back any partially completed transaction behaviour.
We have also added a demonstration implementation which runs on a CHERI
Morello memory-safe PC.

The paper is structured as follows. Section 2 introduces the CHERI architech-
ture, POSIX signals, Event-B and the SBB case study. Our proposed approach
is described using the case study, firstly by modelling the normal behaviour in
Section 3, then by adding a concept of transactions in Section 4 and finally by
adding the exception recovery in Section 5. Section 6 summarises an overview
of the complete approach, Section 7 describes the implementation of the case
study on a Cheri Morello machine as a demonstration. In Section 8, we review
existing literature and research, highlighting key methodologies, findings, and
gaps that our study aims to address. Finally Section 9 discusses our plans for
the next steps and Section 10 summarises related works and concludes.

2 Background

Memory Safety and Capability-Based Hardware: Capability-based ar-
chitectures have shown promise in enhancing memory safety and preventing
unauthorized access at the hardware level. The CHERI (Capability Hardware
Enhanced RISC Instructions) architecture is a notable approach that provides
fine-grained memory safety guarantees by embedding capabilities into processor

4 C.F.Snook et al.

instructions. Watson et al. [17] present CHERI as a hybrid capability-system
architecture that allows scalable compartmentalization, enhancing the security
of software through pointer integrity and memory access control. Further refine-
ments to CHERI’s instruction set, as detailed in the technical report by Sewell et
al. [13], enable efficient enforcement of memory safety in complex, high-assurance
systems. These foundational works provide a hardware-level basis for secure ex-
ception handling, which our approach extends by focusing on application-specific
recovery mechanisms and maintaining system consistency after exceptions.

Signals are a mechanism for asynchronous event notification used in Unix-
based (POSIX-compliant) operating systems. Signals are used by the kernel to
interrupt (e.g. suspend, terminate or kill) a process. When an event occurs,
the operating system interrupts the target process’ normal flow of execution to
handle the signal. If the process has registered a signal handler, that routine is
executed. Otherwise, the default signal handler is executed. The CHERI-BSD
operating system [16] running on Morello hardware adds a new signal SIGPROT
which is used to notify the active process that the Morello hardware has detected
a memory protection error. In our example case study, we also use the standard
signal SIGALRM, which is used to notify that a timeout set by a process has
expired.

Event-B [2] is a refinement-based formal method for system development.
The mathematical language of Event-B is based on set theory and first order
logic. An Event-B model consists of two parts: contexts for static data and
machines for dynamic behaviour. Contexts contain carrier sets, constants, and
axioms that constrain the carrier sets and constants. Machines contain variables,
invariant predicates that constrain the variables, and events. In Event-B, a ma-
chine corresponds to a transition system where variables represent the states and
events specify the transitions. An event comprises a guard denoting its enabling-
condition and an action describing how the variables are modified when the event
is executed. Event-B is supported by the Rodin tool set [3], an extensible open
source toolkit which includes facilities for modelling, verifying the consistency of
models using theorem proving and model checking techniques. In this paper we
make extensive use of the UML-B plug-in [15] which provides a diagrammatic
modelling notation for Event-B in the form of state machines and class diagrams
that automatically generate Event-B models. The diagrammatic models relate
to an Event-B machine and generate or contribute to parts of it. For example,
a state machine will automatically generate the Event-B data elements (sets,
constants, axioms, variables, and invariants) to implement the states. Transi-
tions contribute further guards and actions representing their state change, to
the events that they elaborate.

SBB (Smart Ballot Box) [7] is a computerised system to automate election
voting. The SBB system inspects a ballot paper by detecting a barcode and
decrypting it to evaluate whether the ballot is valid. If the ballot is valid, then a
vote can be cast, spoiled or cancelled by the user and the ballot paper is sorted
accordingly into the storage boxes. If the ballot is not valid, the SBB rejects the

Developing safe exception recovery mechanisms... 5

paper. The key function of the SBB is to ensure that only valid ballot documents
are included in the ballot boxes.

3 Modelling normal-behaviour and verifying safety
invariants

Utilising UML-B, we model the SBB normal behaviour (without exceptions) as
a state-machine®. The normal-behaviour SBB case, presented in Figure 1 on
the following page, starts in the Waiting state and, in the case of accepting the
ballot, progresses through the following sequence of states: Waiting, BarcodeReading,
BarcodeProcessing, UserSelection, PrepareAccepting, Accepting, Waiting. There are
several functional variables (not shown in the state-machine diagram) which are ma-
nipulated by actions of the transitions. They are

— paper_count - a count of the papers input to the roller (incremented by the tran-
sition ROLLER _paper_in),

— accepted_count - a count of the papers categorized as accepted by the roller (in-
cremented by the transition ROLLER_accept_paper),

— spoilt_count - a count of the papers categorized as spoilt by the roller (incremented
by the transition ROLLER _spoil_paper),

— rejected_count - a count of the papers categorized as rejected by the roller (incre-
mented by the transition ROLLER _reject_paper),

— cast_count - a count of the votes cast by the user (incremented by the transition
USER_cast),

The Waiting state contains two desired safety properties that are expected to hold
when the SBB has completed the processing of any papers and is in the Waiting state:

— The count of votes cast by the user (cast_count) should be the same as the count
of papers categorized as accepted by the roller (paper_count).

— The count of papers input to the roller should be the same as the sum of papers
categorized as accepted, spoilt or rejected by the roller.

In general, a system may have important properties that are expected to hold
whenever the system is quiescent, but that are temporarily violated while the system
is engaged in active processing. We refer to properties that are expected to hold in
quiescent states as quiescent invariants and states that are not quiescent as active
states. Active states may contain intermediate invariants that describe the expected
progress during the activity. In fact, intermediate invariant properties are needed in
the active states to help the provers prove the quiescent invariants are re-established.
This is because the prover considers one transition at a time and attempts to infer
the invariants of the post-state (e.g. the desired quiescent invariants) from the known
pre-state (e.g. intermediate invariants) as well as any guards of the transition. Hence,
since the prover cannot ‘see’ back up the sequence of transitions, we have to provide
this sight via the intermediate invariants in the active states. Once this is done, the
proofs are automatically discharged by the Rodin provers. Notice how the intermediate
invariants document where the counts are out of step and by how much. For example in

3 The example models described in this paper are available here: https://doi.org/
10.5258/S0TON/D3452.

https://doi.org/10.5258/SOTON/D3452
https://doi.org/10.5258/SOTON/D3452

6 C.F.Snook et al.

Walting scheduled_
- accepted_count = cast_count - accepted_count = cast_count
<~ paper_count = accepted_count + rejected_count + spoilt_count </~ paper_count = accepted_count + rejected_count + spoilt_count
finish_r
INITIALISATION
ROLLER_paper_in
ROLLER_accept_paper l

FMC-E\ME

]
|
< accepted_count+1 = cast_count
<~ paper_count = accepted_count + rejected_count + spoilt_count +1

- accepted_count = cast_count
- paper_count = accepted_count + rejected_count + spoilt_count +1

ROLLER_start_aceepting

[]
| |

BR_readig_succeeds
ROLLER_spail_paper

barcode.sesding_a
{ B e e e Yo J arcode.readng_tas

- paper_count = accepted_count + rejected_count + spailt_count +1

[SEDH\I\E

5

] (T)
l - accepted_count = cast_count J

barcade_invalid [|
- accepted_count = cast_count
>~ paper_count = accepted_count + rejected_count + spoilt_count +1

- paper_count = accepted_count + rejected_count + spoilt_count +1

ROLLER_start_spoiling

PrapareSpailin]
ROLLER_reject_paper | | user_cast bareqde_valid barcode_illegitimate
<~ accapted_count = cast_count
- paper_count = accepted_count + rejected_count + spoilt_count +1

=)
| user_spoll [)

- accepted_count = cast_count |
& o < accepted_count = cast_count
<~ paper_count = accepted_count + rejected_count + spoilt_count +1 USER_cancel

4 paper_count = accepted_count + rejected_count + spailt_count +1

ROLLER_start_rgjecting

- accepted_count = cast_count
<> paper_count = accepted_count + rejected_count + spoilt_count +1

Fig. 1. State Machine, normal-behaviour SBB

the Accepting state, cast_count is one ahead of the accepted_count because it has been
incremented by the transition User_cast, but the Roller has yet to finish categorizing
the paper as accepted.

The UML-B tools automatically generate sets, constants and axioms in a newly
generated context component in order to represent the UML-B state machines us-
ing Event-B syntax. The SBB states are an enumeration of a carrier set where each
state (Waiting, BarcodeReading, ...), is specified as a constant and the set of states,
SBB_STATES, are specified as an axiom using carrier sets. The enumeration is then
specified as a partition via the following axiom:

©axml: partition(SBB_STATES, {Waiting}, {BarcodeReading},{BarcodeProcessing},
{UserSelection}, {Accepting}, {Spoiling}, {Rejecting}, {PrepareRejecting}, {PrepareSpoiling},
{PrepareAccepting})

The dynamic behaviour of the state machine (Figure 1), is generated as part of the
containing machine component. Each event that represents a transition, checks, within
its guards, that the current state of the SBB is the transition source state, and changes
the state to the transition target state, within its actions. For example:

event BR_reading_succeeds
when

@©grdl: SBB =BarcodeReading

<other guards about the functional vars>
then

Qactl: SBB :=BarcodeProcessing

<other actions on the functional vars>
end

Developing safe exception recovery mechanisms... 7

4 Identifying and adding transactions

In Section 3, we saw how the verification of the quiescent (safety) invariants led us
to introduce intermediate invariants that document where (i.e., in which states) the
functional variables are out of step (i.e., do not satisfy the quiescent invariants). We
could think of these states and the transitions that are involved in passing through
them as a process or transaction which must be completed to bring the system back to
a safe state. In this section, we show how we identify such transactions and represent
them in the model.

4.1 Adding transactions to the state machine model

In UML-B we can arrange state machine states hierarchically by nesting a state machine
within a superstate. We use this superstate structure here to represent the transactions.
We introduce a transaction superstate to contain all the states that have a similar
same intermediate invariant. Some of the contained states may have other intermediate
invariants that differ within them.

For example in Figure 1, all of the states, i.e., BarcodeReading, BarcodeProcessing,
UserSelection, PrepareAccepting, Accepting, PrepareSpoiling, Spoiling, PrepareReject-
ing and Rejecting, have the same invariant:

paper_count = accepted_count + rejected_count + spoilt_count + 1.

This is because a paper has been fed in to the roller but since its processing is not
complete, none of the accepted, rejected or spoilt counts has been increased yet.
Hence this group of states form a transaction and we wrap them in a superstate Pa-
per_in_transaction. A useful feature of superstates is that they can contain invariants
that apply throughout all of their contained sub-states. Therefore we can move the
intermediate invariant that we used to identify the transaction up to the superstate
and remove all the repetitions of it in the sub-states.
The modified model is shown in Figure 2.

(Waiting W‘

e

- accepted_count = cast_count

- accepted_count = cast_count
i~ paper_count = accepted_count + rejected_count + spoit_count

- paper_count = accepted_count + rejected_count + spoift_count

INITIALISATION

ROLLER_paper_in
Paper_in_transaction
BarcodeReading
Cast_count_transaction
- accepted_count = cast_count
(Fesemivs) (PrepareAceepting
ROLLER_ac¢ept_papgr I Ew,veadin‘n;succeeds
— I l barcode_ilegitmate
(BarcodeProcessing
<~ acoepted_count+1 = cast_count

< accepted_count = cast_count

ROLLER.spoil_papef
< accepted_count = cast_count ROLLER start_spoiing ["3"ccapted_count = cast_count

Rejecting

barcode_invalid

barcode_reading_fals|

USER _cast

\ i]

PrepareRejecting) USER_spoil f |

- . USER_cancel - accepted_count = cast_count
- accopted_count = cast count

ROLLER_refect_pape|

ROLLER_start_rejecting

< accepted_count = cast_count

- paper_count = accepted_count + rejected_count + spoilt_count +1

Fig. 2. State Machine, SBB with transactions

8 C.F.Snook et al.

Notice that another intermediate invariant: accepted_count+1 = cast_count iden-
tifies a transaction consisting of the states Prepare_Accepting and Accepting (but not
the other sub-states of the previous transaction). Hence we have a nested transaction
and can introduce a further transaction superstate Cast_count_transaction to contain
those two sub-states and move the transaction intermediate invariant into it.

As soon as we re-generate the Event-B for the UML-B model, the automatic provers
re-prove the model and verify that the quiescent invariants are still satisfied. The
changes are superficial notational ones which do not change the semantic.

4.2 Adding rollback caching to transactions

Our model so far only deals with successful outcomes of transactions (even if it is a
successful rejection response by the controller). However, the aim of identifying trans-
actions is to consider failure cases where the transaction does not complete, which, by
definition, leaves the system in an invalid condition requiring some recovery process.
There are several possible approaches to recovering a safe and valid condition:

1. design specific compensation actions for each recovery (rollback is V = G(V'),
where V' is the state of the variables V that may be altered in the transaction and
G is the transformation that had completed before the exception occurred),

2. modify temporary copies of the variables and only commit their values to the real
system variables when the transaction completes (no rollback is needed, but there
is a pre-transaction action V' = V to make temporary copies of V and there is a
commit action V' = V7 where V7 is the value of the temporary copies of V),

3. save the values of system variables before the transaction and revert them if the
transaction does not complete. (Rollback is V = V' and there is a pre-transaction
action V' = V to make temporary copies of V),

We discount the first approach since it is difficult to know how much of the trans-
formation G had completed. There is not much to choose between the second and third
approaches. We have chosen to adopt the last approach so that the normal behaviour
uses the actual variables.

We first add a duplicate set of rollback variables to the Event-B machine for all
the variables that are altered during transactions. We then add entry actions to all the
transaction superstates to save the entry values of the variables that will be modified
by the transaction, in the rollback variables. We then add intermediate invariants to
the transaction superstate to confirm that the values in the rollback variables, satisfy
the quiescent invariant. That is, we make a copy of the quiescent invariants and replace
the variables with the rollback variables used by that transaction.

For example, in SBB, we add the invariant:

paper_in_rollback = accepted_count + rejected_count + spoilt_count
to Paper_in_transaction, and
cast_count_rollback = accepted_count

to the Cast_count_transaction. These will be needed in the next step to prove that
exceptions establish the quiescent invariants when they use the rollback variables to
restore the values of variables that have been changed in the transaction.

This process of adding rollback variables is done for each of the transactions, in-
cluding nested ones. Note that the rollback variable should be used by the lowest
level transaction possible. For example, in the SBB model, cast_count is saved as roll-
back_cast_count by Cast_count_transaction, not by Paper_in_transaction.

Developing safe exception recovery mechanisms... 9
5 Adding exception handling to transactions

Having prepared by identifying transactions and their associated rollback requirements,
in the next step we identify where exceptions could occur and how the system should
recover from them. The model should be analysed state by state to identify negative
outcomes that could prevent the activities within the state from completing success-
fully. Since the model abstracts away from the details of these state activities, iden-
tification of exceptions is a subjective assessment of the concepts represented by the
state. As we are interested in the memory safety provided by CHERI hardware, we
might consider certain states to be particularly untrusted (whether malicious or acci-
dental). We may also wish to consider failures due to external system components such
as user mis-actions and machinery failures. For example, Table 1 outlines the potential
exceptions and their recovery strategy in the SBB system:

Exception Recovery

memory capability violation in | if occasional, reject the ballot, if
barcode software library persistent, external maintenance

user does not enter selection within

. j h 11
timeout reject the ballot

roller does not complete within

. external maintenance
timeout

Table 1. Exceptions handled by the SBB system

The first exception is a memory capability violation in the barcode processing
software. This could be due to a simple software error or it could be due to a security
attack via virus software which is trying to use memory accesses to create an attack
vector. We could react by disabling the service immediately to ensure that the SBB
does not record invalid results. However, this could play into the hands of an attacker
trying to create denial of service attack. Therefore, we decided to adopt a two-phase
recovery strategy. For occasional exceptions, the paper is rejected and the user can try
again. It is the best we can do since the paper cannot be processed without a barcode.
If several exceptions are detected consecutively, then the service is aborted and the
system awaits external intervention.

The second exception is a timeout on the user choosing either to cast, spoil or
cancel their vote. In this case the recovery strategy is to default to rejecting the paper.
The third exception is a breakdown in the roller machinery that sorts the physical
papers into their respective categories. If the roller does not complete within a timeout,
it is assumed that manual maintenance will be required to fix the roller machinery.
(Note that we are not interested in quantifying intervals of time; only in an ordinal
arrangement of events and therefore, we do not need to model the tick of a clock).

Figure 3 shows the UML-B model with exception handling transitions added.

The first exception can occur either in the BarcodeReading or BarcodeProcessing
states and can result in two different exception handlers. If an exception counter (which
is not shown in the diagram) is below a threshold, exception_handlerla recovers to the
PrepareRejecting state. This does not leave the transaction Paper_in_transaction so

10 C.F.Snook et al.

Waiting] Maintenance]
{ scheduled_maintenance |

<~ accepted_count = cast_count <~ accepted_count = cast_count

S T TIPS —
- paper_count = accepted_count + rejected_count + spoift_count finish_maintenance <~ paper_count = accepted_count + rejected_count + spailt_count
i
INW\ALISA"ION
ROLLER_paper_in
exception_handler3a exception_handler3b excepuon!hand\erm ‘
Paper_in_transaction
Cast_count_transaction ROLLEJ paper.in__| \‘

- accepted_count = cast_count

BR_reading_succeeds

ROLLER_accept_gaper

PropareAccepting)| USER_cast
= (i) = l

barcode_ilegitimate

BarcodeProcessing

< accepted_count+1 = cast_count

<~ cast_count_rollback = accepted_count <~ accepted_count = cast_count

_ exception_hang)ér1al
(Spoiling) (PrepareSpoiling) parceditald
ROLLER_spoil_paper [) barcode_invalid
Y - ROLLER.start_spoiing barcode_reading_fails
USER _cast
(PrepareReiesting) USER_spoil ¢ g)
ROLLER_reject_paper !
| USER_cancel

< accepted_count = cast_count

|
P = ROLLER_start_reectin
- accepted_count = cast_count OLLER start rejecting | | e g S gt

)<—__exception_handler2.

- paper_count = accepted_count + rejected_count + spoilt_count +1

<~ paper_count_rollback = accepted_count + rejected_count + spoilt_count

Fig. 3. State Machine, SBB with exception handling

does not need to use the rollback mechanism. However, the exception count is incre-
mented as part of the exception handling. If the exception count reaches the threshold
the exception is handled by exception_handlerlb which exits the Paper_in_transaction
and recovers to the Maintenance state. In this case the paper_count is rolled back by
the action paper_count := paper_count_rollback which is attached to the transition
exception_handlerlb. The second exception can occur in the state UserSelection and
is handled by the transition exception_handler2 which recovers to PrepareRejecting
without any rollback actions. The third exception can occur in Accepting, Spoiling or
Rejecting and always recovers to Maintenance with the same paper_in rollback action
as the first exception. However, in the case where it occurs in Accepting, the excep-
tion also exits the nested Cast_count_transaction and therefore must also roll back the
cast_count via an action cast_count := cast_count_rollback which is attached to the
transition exception_handler3a. (Note that, in Event-B, conditional actions are only
possible using different guarded events for each condition hence the need for separate
transitions for exception_handler3a and exception_handler3b).

6 Overview of the method of modelling transactions and
exceptions in UML-B

The generic technique for modelling transactions and exceptions and analysing their
recovery using UML-B state-machines and Event-B verification is summarised in this
section.

1. Model the normal behaviour as a UML-B state-machine.
— Construct a UML-B state-machine to model the control modes (states) and
mode changes (transitions) of the system.
— In the containing machine, add additional variables involved in the functional-
ity. The variables may be used to control (guard) the firing of transitions and
be altered when transitions fire (actions).

Developing safe exception recovery mechanisms... 11

— Add quiescent invariants to the states to express desired safety properties
about the expected values of the variables in particular quiescent states®.

— Verify the model using the Rodin provers, adding intermediate invariants to
states in order to achieve the proofs.

2. Identify and represent any transactions in the model.

— Where intermediate invariants indicate that variables are out of step in a
sequence of states (i.e. are different from the quiescent invariants) a superstate
should be introduced to represent the transaction.

— The sequence of states containing the intermediate invariants is then contained
in a nested state-machine within the transaction superstate.

— The transition that enters the parent transaction superstate will contain an
action that alters the variable that is out of step (i.e. introduces the difference
from the quiescent invariant).

— The intermediate invariants expressing the difference from the quiescent invari-
ant are replaced by a single intermediate invariant in the parent transaction
superstate.

— Transactions may be nested within other transactions where a variable is
changed in a sub-transaction.

— Check that the model can still be verified by the Rodin provers. The changes
are superficial /structural so should not affect the validity of the proofs.

3. Add rollback caching of variables to support the transactions.

— In the containing machine, add rollback variables to store the entry state of
all of the ancillary variables that are altered during the transaction.

— Add entry actions to the transaction superstate to cache the value of the vari-
ables that will be changed by the transaction, in their corresponding rollback
variables.

— Add intermediate invariants to the transaction superstate to confirm that the
quiescent invariants, with variables replaced by rollback variables, obey the
quiescent properties. These will be needed in the next step to prove that excep-
tions re-establish the quiescent invariants when they use the rollback variables
to restore the values of variables that have been changed in the transaction.

— Check that the model can still be verified by the Rodin provers. The proofs
should be straightforward.

4. Add exception handling to the model.

— Consider each state in turn and identify any potential exceptions that could
occur in that states actions.

— Add transitions to represent exceptions that can occur from states within the
transaction.

— Their target (recovery) states can be within the transaction or external to the
transaction.

— Junctions can be used to merge transitions when the same exception handler
can handle an exception occurring in several source states. (The transition can
fire from either of the source states)

— Junctions can also be used to split a transition into several outcomes and hence
model alternative exception handlers (with different recovery target states) of
the same exception. In this case, guards on the final segments of the transi-
tion, can be used to distinguish the cases and they can have different rollback
actions.

4 We refer to these invariants as safety properties, however, we use safety in a very
broad way to represent any properties the modeller would like to remain true in this
model.

12 C.F.Snook et al.

— For exceptions that exit a transaction, add actions to the transition to roll
back the variables that have been changed (i.e. v := rv where rv is the rollback
variable for variable v).

— Exceptions must add rollback actions for each of the nested transaction super-
states that are exited.

— Verify the model using the Rodin provers.

7 Demonstration Implementation

We have implemented the modelled system in order to demonstrate recovery responses
from an exception signal in a real system running on a CHERI Morello PC. The imple-
mentation is a demonstrator that also contains a simulation of the SBB environment
(the roller machine) and the user interfaces. An invalid memory access is seeded in
the barcode processing simulation so that a SIGPROT signal can be induced as part
of the demonstration. The user simulation asks the tester to supply the expected user
responses and if this is delayed sufficiently, a SIGALRM is induced for demonstration
purposes. Although this is just a demonstrator program, we can envision the controller
code, including the exception handling, being generated automatically from the UML-B
model. In the following we use pseudo-code to illustrate the generic abstract structure
of the envisioned automatically generated code.

The processing of a state-machine state and firing of transitions, is wrapped in a
conditional sigsetjmp which acts as a kind of ‘try’. The following pseudocode shows
the generic structure of the controller code where ‘try’ is implemented with sigsetjmp.

do forever {
try {
set alarm timeout for the new state
repeat until the statemachine state changes
progress the environment
progress the statemachine }
//any exception handler will return to here}

The hand-constructed C code for the SBB example corresponding to the pseu-
docode above is in Figure 4 on the next page.

The function that progresses the statemachine selects the case based on the current
statemachine state and tests to see whether it has the necessary conditions to fire
any of its outgoing transitions. The conditions may involve trigger events from the
environment, user inputs, internal system variables or may be always true (i.e. the
next transition fires immediately).

switch state
case STATE1:
if can fire TRANSITION1
fire TRANSITION1
else if can fire TRANSITION2
fire TRANSITION2
etc.
case STATE2:
fire TRANSITION3
etc.

Developing safe exception recovery mechanisms... 13

void SBB_statemachine(){
bool changedState=false;
while (true){
if (sigsetjmp(SBB_abort_step,true) ==0) { // TRY
if (sbb_control.state==SBB_Null){
printf(“Something went wrong! SBB_state is Null\n");
}else{
alarm(getAlarm()); //set the timeout for the current state
changedState = false;
printCurrentState();

do {
ROLLER_step(); //progress the roller simulation
changedState = SBB_checkState(); //see if we can change the state
} while (!changedState); //repeat until can change state

} //SBB_abort_step - exit point for handled exceptions
sbb_control.trigger = NULL_TRIGGER;

Fig. 4. Code for the main SBB state-machine execution showing ‘sigsetjmp’

When fired, transition functions take any transition actions such as changing system
variables and then update the statemachine state to the new (target) state. If the source
state has any exit actions or the target state has any entry actions, these are also added
as transition actions.

If there is an exception (which could be any POSIX signal but we use SIGPROT
and SIGALRM as examples) the exception handler will be called to intervene with
any roll back actions and change the state to the appropriate recovery action. The
exception handler then exits (using a siglongjmp), to the end of the main try (sigsetjmp)
conditional block. This is also where main loop ends up after a normal transition in
order to enter a new state. Therefore the exception handler sets up the next state
variables to enter the designated recovery state depending on the exception that was
raised and the state that was executing when the exception occurred.

The exception handling is set up at intialisation using sigaction which is a facility
built in to POSIX signals library for this purpose. The sigaction assigns our exception
handler to the handled signals (see Figure 5).

void SBB_setup_exception_handling(){
//set up mask to only allow further interrupts
//from exceptions other than the ones we handle
sigemptyset (&SBB_sa.sa_mask);
sigaddset (&5SBB_sa.sa_mask, SIGPROT);
sigaddset (&SBB_sa.sa_mask, SIGALRM);
//assign the exception handler routine
SBB_sa.sa_handler = (void *)SBB_Handler;
//assign the sigaction to SIGALRM and SIGPROT
sigaction(SIGALRM, &SBB_sa, &SBB_SIGALRM_oldsa);
sigaction(SIGPROT, &SBB_sa, &SBB_SIGPROT_oldsa);

Fig. 5. Code for setting up the exception handler using ‘sigaction’

Note that we use a single exception handler routine for both signals. The different
exception transitions of the UML-B model map to different condition branches within
the handler. (Event-B does not support conditional execution within an event).

14 C.F.Snook et al.

The exception handler, (see SBB example in Figure 6 on the facing page), contains
a switch case for each type of signal that is handled and each case contains conditional
branches for the state(s) that the signal has a defined recovery. The choice of recov-
ery state can also be conditional for a particular signal source state combination and
recovery may or may not require rolling back system variables.

switch signal type
case SIGNAL 1:
if current state = STATE1
if condition for recovery 1
change current state to recovery state 1
//possibly no rollback is needed for some recovery states
if condition for recovery 2
change current state to recovery state 2
rollback system variables to saved pre—transaction values
case SIGNAL 2: ... etc. ...
exit to end of main try block (using siglongjmp)

Of course the signal could occur in a state for which we did not model a recovery.
In this case the signal is ignored. The recovery for a particular signal and state may
also depend on further conditions. For example, exception 1 of the SBB depends on a
count and takes a different recovery of the exception occurs several times (which may
be a persistent attack). Each branch sets the appropriate recovery state in the state
machine control data structure and also rolls back any variables that were part of a
transaction where the recovery leaves that transaction.

To demonstrate the code and signal handling we have executed it on a CHERI
Morello PC. The code for the barcode reading and processing states is ‘seeded’ with an
invalid memory access (using a data value as a pointer) so that a SIGPROT exception
can be generated. SIGALRM timeouts are easily simulated by not responding to the
user interface simulation code. The console output provided by the demonstration
program provides a record of the occurrence of exceptions.

8 Related Work

This section reviews relevant research on exception handling and fault recovery mecha-
nisms, the application of formal methods in safety-critical systems, and recent advances
in code generation for safe exception handling.

Exception Handling and Fault Recovery in Safety-Critical Systems. Exception
handling is essential for robust system behaviour in safety-critical applications, where
maintaining a safe state during abnormal conditions is paramount. Julliand and Per-
rouin [8] discuss the complexities of exception handling in formal methods, emphasising
the challenges of fault tolerance when designing for systems that must adhere to strin-
gent safety standards. This work underscores the importance of domain expertise in
designing tailored recovery mechanisms that respond effectively to error events. Unlike
general-purpose error handling, safety-critical applications require a transactional ap-
proach to return systems to a consistent state, even under exceptional conditions. Our
work builds on this by incorporating formal methods to model transactional behaviour
that can systematically manage exceptions in a capability-based hardware environment.

Developing safe exception recovery mechanisms... 15

void SBB_Handler(int sigtype, siginfo_t %info, void %context) {
printf("\n>>SBB Handler - sigtype: %d while in state ", sigtype);
printCurrentState();
record_exception(info);
switch (sigtype) {

case SIGPROT: //capability wiolation
i sbb_control.paper_in_state == SBB_BarcodeReading ||
sbb_control.paper_in_state == SBB_BarcodeProcessing) {

//Exception 1 has conditional recovery targets

if (sbb_control.attack_count<ATTACK_LIM){ //Exceptieonla
printf(“>>> attack counter < attack limit\n");
sbb_control.state = SBB_Paper_in;
sbb_control.paper_in_state = SBB_PrepareRejecting;
sbb_control.attack_count++;
printf(">>> inc attack counter to %d\n", sbb_control.attack_count);

}else if (sbb_control.attack_count>=ATTACK_LIM){ //Exceptionlb
printf(">>> attack limit EXCEEDED\n");
sbb_control.state = SBB Maintenance;
sbb_control.paper_in_state = SBB_Paper_in_Null;
sbb_control.attack_count = @;
printf(">>> reset attack counter to %d\n", sbb_control.attack_count);
//roll back paper count as exiting transaction Paper_in
sbb_data.papers = sbb_rollback.papers;
printf(">>> rolled back papers to %d\n", sbb_data.papers);

telse{

printf(">>> no handling defined for this signal-state-condition... ignoringin");

}else{
printf(">>> no handling defined for this signal-state... ignoring\n");

break;

case SIGALRM: Jitimeout

if (sbb_control.paper_in_state == SBB UserSelection){ //Exception2
sbb_control.state = SBB_Paper_in;
sbb_control.paper_in_state = SBB_PrepareRejecting;

//Exception 3 has 2 different cases due to Accepting being within a nested transaction

}else if (sbb_control.cast_count_state == SBB_Accepting){ //Exception3a
sbb_control.state = SBB_Maintenance;
sbb_control.paper_in_state = SBB_Paper_in_Null;
sbb_control.cast_count_state = SBB_Cast_count_Null;
//roll back paper count as exiting transaction Paper_in
sbb_data.papers = sbb_rollback.papers;
//roll back cast count as exiting transaction Cast_count
printf(">>> rolled back papersto %d\n", sbb_data.papers);
sbb_data.cast = sbb_rollback.cast;
printf(">>> rolled back cast to %d\n", sbb_data.cast);

}else if (sbb_control.paper_in_state == SBB Spoiling ||

sbb_control.paper_in_state == SBB_Rejecting){ //Exception3b

sbb_control.state = SBB Maintenance;
sbb_control.paper_in_state = SBB_Paper_in_Null;
//roll back paper count as exiting transaction Paper_in
sbb_data.papers = sbb_rollback.papers;
printf(">>> rolled back papers to %d\n", sbb_data.papers);

Yelse{
printf(">>> no handling defined for this signal-state... ignoring\n");

break;
default:

printf(">>> no handling defined for this signal... ignering\n");
return;

//Conso’le message about state change

printf(">>> recover to: ");

printCurrentState();

printf(">>> aborting the step that caused the exceptionin");

//jump back to the 'catch' clause (end of sigsetjmp condition)
siglongjmp(SBB_abort_step, 1);

Fig. 6. Code for the common exception handler

Formal Methods for Exception Handling and Safety Assurance. Formal methods,
particularly Event-B, have proven valuable in the verification of safety-critical systems
by enabling mathematical rigour in system design and error detection. However, tradi-
tional Event-B lacks explicit support for exception handling and fault recovery. Snook
and Butler’s [14] UML-B framework extends Event-B with UML-like state machines,
allowing high-level modelling of system behaviour while maintaining consistency in the
presence of exceptions. Abdallah et al. [1] further adapt Event-B for handling excep-
tions, proposing a model for safe exception handling that ensures safety-critical systems

16 C.F.Snook et al.

can reliably transition to safe states. Our approach builds on these advancements by
using UML-B to model system consistency and integrating exception-handling trans-
actions that respond to non-completions and error states, contributing to the formal
analysis of capability-based hardware systems.

Transactional Models and Consistency Recovery. Maintaining a consistent system
state is crucial for safe exception handling in transactional models, particularly in dis-
tributed and embedded systems. Lamport’s [9] classic work on distributed systems
provides a foundational understanding of time and event ordering, which underpins
transactional recovery in complex systems. Lynch and Tuttle [10] introduce the in-
put/output automata model, highlighting the importance of input/output synchroniza-
tion for achieving reliable consistency in safety-critical applications. These foundational
models inform our approach by providing a theoretical basis for handling transactions
and error states within closed systems, which we implement in our UML-B framework
to manage exception recovery effectively.

Automatic Code Generation for Safe Exception Handling. Finally, translating for-
mal models into executable code is a significant step toward implementing safe ex-
ception handling in practice. Abrial [2] outlines techniques for generating code from
Event-B models, which can facilitate a direct path from formal design to application.
Dalvandi [5] proposes SEB-CG tool for extensible automatic code generation from
Scheduled Event-B (SEB), an extension of Event-B that augments models with con-
trol structures, to executable code in a target language. Mendes and Bensalem [11]
extend this to safety-critical applications, demonstrating that automated code genera-
tion can preserve the integrity of exception-handling logic across various system states.
Our work contributes to this body of research by developing an implementation of our
UML-B model in C, with the goal of enabling future automatic code generation for
exception handlers in CHERI-based systems.

Summary. The existing literature demonstrates the feasibility of using formal meth-
ods for exception handling in safety-critical systems, though there remains a gap in
capability-specific recovery models that address the unique needs of memory-safe hard-
ware like CHERI. By leveraging UML-B state machines and transactional recovery
modelling, our approach advances the formal analysis of exception handling mech-
anisms tailored for capability-based systems, ultimately contributing to safer, more
reliable embedded applications.

9 Future Work

We intend to develop a code generation tool that will convert our UML-B models into
C code with the exception handling functions automatically produced and populated
based on the transaction and exception transition detail in the models. In previous
work we have developed more general Event-B to C code generation tools based on our
Eclipse/Rodin plug-in tool framework. These tools can be extended to be more specific
to UML-B state-machines with exception handling. We would also like to develop
better tool support for the modelling proposed here. For example, special features
within UML-B to model transaction states and exception transitions would make the
modelling easier as well as providing better support for the code generation.

Developing safe exception recovery mechanisms... 17

The methods discussed here assume the use of POSIX signals and associated Unix-
based exception-handling infrastructure. The target hardware for the case study was
a CHERI Morello PC running a variant of the BSD operation system. We would also
like to support embedded systems which run on smaller real-time operating systems.
We are now investigating a new case study using the Sonata development board which
is based on an FPGA implementation of the CHERIoT processor running CheriRTOS.
A significant difference is that the POSIX signal infrastructure is not present in such
systems and the exception handling concepts are closer to hardware device level.

So far we have not considered compartmentalisation in our methods. CHERI com-
partments enhance the memory-safe capabilities of the hardware providing better de-
tection of suspicious behaviours. Compartmentalisation may require further modelling
features/techniques and improved code generation. Compartments also provide the ba-
sis of a hierarchical unwinding of un-handled exceptions (analogous to unwinding of the
call stack in some typical exception handling languages). We imagine that this could
be modelled using hierarchical statemachines.

10 Conclusions

Whereas the focus in hardware design is on generic mechanisms for detecting unusual
potentially erroneous or suspicious behavior, the design of safe exception handling af-
ter the detection, is application or domain specific and therefore generic solutions are
unattainable. Application engineers need supporting methods and tools to help them
design and verify that recovery mechanisms do not violate the safety or security of
the system. We provide a formal model-based analysis approach to achieve this by first
modelling and verifying the system in the absence of exceptions and then adding the ex-
ceptional behaviour and appropriate recovery mechanisms. The modelling approach is
based on discovering transactions which then suggest the necessary rollback of variables
that were involved in the transaction. Usually we promote the use of safety-preserving
refinement to incrementally develop the details of a system. However, a limitation of
the approach is that exceptions cannot be added as a refinement stage and instead
must be seen as a second stage within a single refinement. However, the first and sec-
ond stages are a relatively simple/methodical progression of the same refinement level
and therefore the consequences in terms of verifiability are not excessive. Furthermore,
the detail of the system can be expanded as several refinements that each contain
the two-stage approach. We have also demonstrated that an implementation can be
derived from the formal models. While this is handwritten for now, it would be rel-
atively straightforward to write a tool to automatically generate the code using our
Eclipse-based code generation frameworks.

Acknowledgement:
This work is supported by HD-Sec project, which was funded by the Digital Security
by Design (DSbD) Programme delivered by UKRI to support the DSbD ecosystem.

References

1. Abdallah, A., et al.: A formal model for safe exception handling in safety-critical
systems using Event-B. International Journal of Critical Computer-Based Systems
7(1), 64-85 (2017)

18

10.

11.

12.

13.

14.

15.

16.

17.

C.F.Snook et al.

. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge

University Press (2010)

Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in Event-B. International journal on
software tools for technology transfer 12(6), 447-466 (2010)

Brito, P.H.S., de Lemos, R., Rubira, C.M.F., Martins, E.: Architecting fault toler-
ance with exception handling: Verification and validation. J. Comput. Sci. Technol.
24(2), 212-237 (2009)

Dalvandi, M., Butler, M.J., Fathabadi, A.S.: SEB-CG: Code Generation Tool with
Algorithmic Refinement Support for Event-B. In: FM 2019 International Work-
shops, Revised Selected Papers, Part I. Lecture Notes in Computer Science, vol.
12232, pp. 19-29. Springer (2019)

Dghaym, D., Hoang, T.S., Butler, M.J., Hu, R., Aniello, L., Sassone, V.: Verify-
ing system-level security of a smart ballot box. In: Raschke, A., Méry, D. (eds.)
Rigorous State-Based Methods - 8th International Conference, ABZ 2021, Ulm,
Germany, June 9-11, 2021, Proceedings. Lecture Notes in Computer Science, vol.
12709, pp. 34-49. Springer (2021)

Galois and Free & Fair: The BESSPIN Voting System. https://github.com/
GaloisInc/BESSPIN-Voting-System-Demonstrator-2019, accessed: 2024-02-07
Julliand, J., Perrouin, G.: Exception handling and fault tolerance in formal meth-
ods: From theory to practice. Formal Aspects of Computing 27(3), 497-509 (2015)
Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM 21(7), 558-565 (1978)

Lynch, N.A., Tuttle, M.R.: An introduction to input/output automata. CWI Quar-
terly 2(3), 219-246 (1989)

Mendes, M., Bensalem, S.: Automatic code generation for safety-critical applica-
tions. IEEE Transactions on Software Engineering 42(7), 650-666 (2016)

Salehi Fathabadi, A., Snook, C., Hoang, T.S., Thorburn, R., Butler, M., Aniello,
L., Sassone, V.: Designing exception handling using Event-B. In: Bonfanti, S.,
Gargantini, A., Leuschel, M., Riccobene, E., Scandurra, P. (eds.) Rigorous State-
Based Methods. pp. 270-277. Springer Nature Switzerland, Cham (2024)

Sewell, P., et al.: CHERI instruction-set architecture. Technical report, University
of Cambridge (2019)

Snook, C.F., Butler, M.J.: UML-B: formal modeling and design aided by UML.
ACM Trans. Softw. Eng. Methodol. 15(1), 92-122 (2006)

Snook, C.F., Butler, M.J.: UML-B: A Plug-in for the Event-B Tool Set. In: Bérger,
E., Butler, M.J., Bowen, J.P., Boca, P. (eds.) Abstract State Machines, B and Z,
First International Conference, ABZ 2008, London, UK, September 16-18, 2008.
Proceedings. Lecture Notes in Computer Science, vol. 5238, p. 344. Springer (2008)
SRI International and the University of Cambridge: CheriBSD website. https:
//www.cheribsd.org/, accessed: 2025-02-20

Watson, R.N.M., Woodruff, J., Neumann, P.G., Moore, S.W., Anderson, J., Chis-
nall, D., Dave, N.H., Davis, B., Gudka, K., Laurie, B., Murdoch, S.J., Norton,
R.M., Roe, M., Son, S.D., Vadera, M.: CHERI: A hybrid capability-system archi-
tecture for scalable software compartmentalization. In: 2015 IEEE Symposium on
Security and Privacy, SP 2015, San Jose, CA, USA. pp. 20-37. IEEE Computer
Society (2015)

https://github.com/GaloisInc/BESSPIN-Voting-System-Demonstrator-2019
https://github.com/GaloisInc/BESSPIN-Voting-System-Demonstrator-2019
https://www.cheribsd.org/
https://www.cheribsd.org/

	Developing safe exception recovery mechanisms for CHERI capability hardware using UML-B formal analysis

