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We present a unified model of quarks and leptons with modular S3 flavour symmetry, where the

two lightest family masses are naturally suppressed via a Pati-Salam version of the type I seesaw

mechanism, mediated through heavier vector-like fermions. Majorana neutrino masses are further

suppressed through a double seesaw mechanism. The viable parameter space has a preferred range of

the modulus field with Im(τ) ∼ 2, leading to successful fermion masses and mixing. The prediction

for neutrinoless double beta decay is partly within the reach of the nEXO experiment. In particular,

the Dirac CP violating neutrino oscillation phase is predicted to lie in the range δνCP ∼ 260o − 360o.

I. INTRODUCTION

Despite its remarkable agreement with experimental data, the current theory of strong and electroweak interactions

- the standard model (SM) of particle physics - lacks an underlying mechanism to explain the strong hierarchy in the

masses of elementary charged fermions. Additionally, the different mixing patterns in the quark and lepton sectors

remain unexplained within the SM. The theory also fails to account for several issues, such as the tiny masses of active

neutrinos and the origin of parity violation in the electroweak interaction, whose basic V-A nature is introduced by

hand in the formulation of the Standard Model. This has motivated the development of several new physics models

that aim to explain some or all of these unresolved issues.

Recently, the use of modular symmetries in extensions of the SM as a way of explaining the observed pattern of SM

fermion masses and mixing angles has received a lot of attention from the theoretical particle physics community. See,
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for instance, [1–17]. Models based on discrete flavor symmetry, along with modular symmetry do not include flavon

fields in the particle spectrum excepting the modulus τ , thus making the scalar sector of these theories more minimal

than that of models not having modular symmetries. When the complex modulus τ acquires a non-vanishing vacuum

expectation value (vev), the flavor symmetry is spontaneously broken. Theories with modular flavor symmetries do

not require the implementation of a mechanism responsible for the vacuum alignment, they need instead a mechanism

to determine the modulus τ , which however we shall not address here. However, in modular flavor models, the Yukawa

couplings depend on the modular forms, which are holomorphic functions of τ [1], which may thus be determined

phenomenologically. For example, such models have been proposed with Pati-Salam unification together with A4

modular symmetry [15]. The lightness of the first two families is not fully addressed in many such approaches, and to

remedy this the weighton mechanism has been proposed [18], together with other strategies [2]. Here we shall follow

a different path, motivated by the type I seesaw mechanism [19–24], in order to explain the smallness of the first and

second family masses.

In this paper, in order to address the SM fermion flavor puzzle and to provide dynamical origin of the parity violation

of the electroweak interactions, we propose a minimal modular model based on the smallest quark-lepton unified

symmetry, the Pati-Salam SU (4)C × SU (2)L × SU (2)R gauge group [25], and the smallest modular symmetry, S3.

The modular S3 is perfect for implementing a two-family seesaw mechanism, since it admits doublet representations.

The masses of the third family of SM charged fermion arise from renormalisable Yukawa interactions involving a

colourless scalar bi-doublet as well as a bi-doublet scalar in the adjoint representation of SU (4)C . The Dirac masses of

the first and second families (including neutrinos) arise from a generalised version of the type I seesaw mechanism, but

applied to both charged and neutral Dirac masses [26–30]. In our proposed model, the tiny active Majorana neutrino

masses then arise from a double seesaw mechanism. The model is shown to describe all quark and lepton (including

neutrino) masses and mixing angles, in terms of high energy mass scales, together with complex dimensionless Yukawa

coefficients which are all of order unity, and a single complex modulus field τ with Im(τ) ∼ 2.

In Section II we present the details of the model, followed by a numerical study of the input parameters leading to

viable observables in Section III. Section IV sumarises our findings. A review of modular flavour symmetry can be

found in Appendix A.

II. THE MODEL

We propose an extended Pati-Salam theory where the SU (4)C ×SU (2)L×SU (2)R gauge symmetry is supplemented

by an S3 modular symmetry. The masses of the third-generation SM charged fermions arise from Yukawa interac-

tions involving the scalar bi-doublets Φ and Σ, which transform as singlet and adjoint representations of SU(4)C ,

respectively.

The field content is enlarged by the inclusion of heavy vector-like fermions and right-handed Majorana neutrinos,

required for the implementation of the tree level two family seesaw mechanism that yields the masses of the first and

second generation of SM charged fermions as well as the Double Seesaw mechanism that produces the tiny masses of

the light active neutrinos. Specifically, we have vector-like fermions Ψn and Ψc
n (n = 1, 2) transforming as (4,1,2)

and
(
4,1,2

)
, respectively, under the Pati-Salam group. The vector-like fermions Ψn and Ψc

n (n = 1, 2) are the seesaw

messengers which mix with the SM fermionic multiplet fields Fi and F c
i (i = 1, 2, 3), also transforming as (4,1,2) and(

4,1,2
)
, respectively, under the Pati-Salam group. Such mixings between SM fermions and the seesaw messengers

occurs thanks to the Yukawa interactions involving the singlet scalar fields σn (n = 1, 2) as well as the SU (4)C adjoint

scalars Ξ1 and Ξ2. Besides that, we include three Majorana neutrinos, Si (i = 1, 2, 3), which are singlets under the

SU(4)C ⊗ SU (2)L ⊗ SU (2)R group, in order to implement the double seesaw mechanism for the generation of light

active neutrino masses. The full symmetry G of our model features the following spontaneous breaking pattern:
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SU (4)C SU (2)L SU (2)R S3 k

F = (F1, F2) 4 2 1 2 0

F3 4 2 1 1′ −1

F c
1 4 1 2 1 1

F c
2 4 1 2 1′ −1

F c
3 4 1 2 1′ 1

Ψ1 4 1 2 1′ −2

Ψ2 4 1 2 1′ −4

Ψc
1 4 1 2 1′ 2

Ψc
2 4 1 2 1′ 4

Sc = (Sc
1, S

c
2) 1 1 1 2 1

Sc
3 1 1 1 1′ 1

Φ 1 2 2 1 0

χR 4 1 2 1 2

Σ 15 2 2 1 0

σ1 1 1 1 1 7

σ2 1 1 1 1 5

Ξ1 15 1 1 1 7

Ξ2 15 1 1 1 5

Y
(4)
1 (τ) 1 1 1 1 4

Y
(6)
1 (τ) 1 1 1 1 6

Y
(2)
2 (τ) 1 1 1 2 2

Y
(4)
2 (τ) 1 1 1 2 4

Y
(6)
2 (τ) 1 1 1 2 6

Table I: The transformation properties of the scalar and fermionic fields, as well as those of the Yukawa couplings, under the

Pati-Salam gauge group and S3 modular symmetry, where the modular weights of the fields are labelled by k.

G = SU(4)C ⊗ SU (2)L ⊗ SU (2)R ⊗ S3

⇓ ΛPS

SU(3)C ⊗ SU (2)L ⊗ SU (2)R ⊗ U (1)B−L

⇓ vR

SU(3)C ⊗ SU (2)L ⊗ U (1)Y

⇓ v

SU(3)C ⊗ U (1)Q (1)

where v = 246 GeV and it is assumed that the Pati-Salam gauge symmetry is broken at the scale ΛPS ∼> 106 GeV,

which arises from the experimental bound on the branching ratio for the rare meson decays K0
L → µ±e∓ mediated

by the vector leptoquarks, as indicated in Refs. [31, 32]. The SU (4)C × SU (2)L × SU (2)R Pati-Salam symmetry is

spontaneously broken down to the SU(3)C ⊗ SU (2)L ⊗ SU (2)R ⊗ U (1)B−L gauge group by the vevs of the scalar

multiplets Ξ1 and Ξ2 which transform as the adjoint representation of the Pati-Salam gauge group. The second stage

of symmetry breaking is triggered by the vev of the scalar multiplet χR that transforms as a
(
4,1,2

)
under the
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Pati-Salam group. The scalars χR, Φ and Σ develop vevs of the form

⟨χR⟩ =
1√
2

(
0 0 0 vR

0 0 0 0

)
, ⟨Φ⟩ = 1√

2

(
v1 0

0 v2

)
, ⟨Σ⟩ = 1√

2

(
vΣ1T

15 04×4

04×4 vΣ2
T 15

)
, (2)

with T 15 = 1
2
√
6
diag (1, 1, 1,−3).

The SM fermions can be written in component form as follows:

Fi =

(
ui ui ui νi

di di di li

)T

, F c
i =

(
uc
i uc

i uc
i νci

dci dci dci lci

)
, i = 1, 2, 3. (3)

Similarly, the heavy vector-like fermionic multiplets Ψn and Ψc
n (n = 1, 2) containing the two family seesaw messengers

are expressed as follows:

Ψn =

(
Un Un Un Nn

Dn Dn Dn En

)T

, Ψc
n =

(
U c
n U c

n U c
n N c

n

Dc
n Dc

n Dc
n Ec

n

)
, n = 1, 2. (4)

The transformation properties of the scalar and fermionic fields, as well as those of the Yukawa couplings, under the

Pati-Salam gauge group and S3 modular symmetry are given in Table-I. With this particle content and symmetries,

the Yukawa superpotential compatible with the S3 modular symmetry is:

−W = y1Y
(2)
2 (τ)FΦΨc

1 + y2Y
(4)
2 (τ)FΦΨc

2 + y3F3ΦF
c
3

+z1Y
(6)
1′ Ψ1σ1F

c
1 + z2Y

(4)
1 (τ)Ψ1σ1F

c
2 + z3Y

(4)
1 (τ)Ψ1σ2F

c
3 + z4Ψ2σ2F

c
2 + z5Y

(4)
1 (τ)Ψ2σ1F

c
3

+w1Y
(6)
1′ Ψ1Ξ1F

c
1 + w2Y

(4)
1 (τ)Ψ1Ξ1F

c
2 + w3Y

(4)
1 (τ)Ψ1Ξ2F

c
3 + w4Ψ2Ξ2F

c
2 + w5Y

(4)
1 (τ)Ψ2Ξ1F

c
3

+x1Y
(2)
2 (τ)FΣΨc

1 + x2Y
(4)
2 (τ)FΣΨc

2 + x3F3ΣF
c
3 +mΨ1Ψ1Ψ

c
1 +mΨ2Ψ2Ψ

c
2

+γ1Y
(4)
2 (τ)F c

1χRS
c + γ2Y

(2)
2 (τ)F c

2χRS
c + γ3Y

(4)
2 (τ)F c

3χRS
c

+γ4Y
(4)
1 (τ)F c

3χRS
c
3 +M1Y

(2)
2 (τ) (ScSc)2 +M2Y

(2)
2 (τ) (ScSc

3) + h.c.. (5)

The flavour structure of the superpotential is replicated with Φ, Σ having the same S3 assignments (being distinguished

by the gauge group), and the same holds for the pairs σ1, Ξ1 and for σ2, Ξ2. The two pairs are distinct as σ1, Ξ1

have modular weight k = 5 whereas σ2, Ξ2 have modular weight k = 7. This structure is also visible in the diagrams

in Fig.1. The structure of the diagrams is similar to the diagram of the seesaw mechanism. In particular, the first

two families of all the charged fermions obtain their masses via seesaw mechanism mediated by the heavy vector-like

fermions Ψ1 and Ψ2, whereas the third families obtain their masses via their Yukawa couplings to Φ and Σ. The

neutrinos also obtain Dirac masses in a similar way, which is further extended to Double Seesaw by the inclusion of

the singlet fields Sc
i .

Due to the difference in modular weights, the superpotential terms are such that the effective Yukawa terms arise

with the respective modular forms, leading to the following mass terms for charged fermions and neutrinos:

(
ui Uk

)( M
(u)
c M

(u)
a

M
(u)
b MU

)(
uc
j

U c
k

)
,

(
di Dk

)( M
(d)
c M

(d)
a

M
(d)
b MD

)(
dcj
Dc

k

)
, (6)

(
ei Ek

)( M
(e)
c M

(e)
a

M
(e)
b ME

)(
ecj
Ec

k

)
,

(
νi Nk

)( M
(ν)
c M

(ν)
a

M
(ν)
b MN

)(
νcj
N c

k

)
, (7)

where the heavy vector-like seesaw mediator mass matrices are,

MU = MD = ME = MN =

(
mΨ1 0

0 mΨ2

)
. (8)
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×
mΨ1

× ×

F F c
1Ψc

1 Ψ1

Φ,Σ

Y
(2)
2

σ1,Ξ1

Y
(6)
1′ ×

mΨ1

× ×

F F c
2Ψc

1 Ψ1

Φ,Σ

Y
(2)
2

σ1,Ξ1

Y
(4)
1

×
mΨ1

× ×

F F c
3Ψc

1 Ψ1

Φ,Σ

Y
(2)
2

σ2,Ξ2

Y
(4)
1 ×

mΨ2

× ×

F F c
2Ψc

2 Ψ2

Φ,Σ

Y
(4)
2

σ2,Ξ2

×
mΨ2

× ×

F F c
3Ψc

2 Ψ2

Φ,Σ

Y
(4)
2

σ1,Ξ1

Y
(4)
1

×

F3 F c
3

Φ,Σ

Figure 1: Feynman diagrams corresponding to the generation of the masses of the charged fermions as well as for the Dirac

neutrino submatrix. The charged fermions of the first and second generations get their masses via seesaw-like diagrams mediated

by ψ1 and ψ2, whereas those of the third generation get their masses through their Yukawa couplings to Φ and Σ fields.

The 3× 3 sub-matrices M
(u,d,e,ν)
c in Eqs. 6 and 7 have only the (3, 3) element as non-zero and are given as(

M (u)
c

)
ij

=
1√
2
(y3v1 + x3vΣ1

) δi3δj3,
(
M (d)

c

)
ij
=

1√
2
(y3v2 + x3vΣ2

) δi3δj3, (9)(
M (e)

c

)
ij

=
1√
2
(y3v2 − 3x3vΣ2

) δi3δj3, (M (ν)
c )ij =

1√
2
(y3v1 − 3x3vΣ1

) δi3δj3, (10)

and these correspond to the masses of the third families of fermions generated from their Yukawa couplings to Φ and

Σ. The remaining sub-matrices appearing in the quark sector are given as,

M (u)
a =

1√
2

 (y1v1 + x1vΣ1)Y
(2)
2,2 (τ) (y2v1 + x2vΣ1)Y

(4)
2,2 (τ)

− (y1v1 + x1vΣ1)Y
(2)
2,1 (τ) − (y2v1 + x2vΣ1)Y

(4)
2,1 (τ)

0 0

 , (11)

M
(u)
b =

1√
2

(
Y

(6)
1′ (z1vσ1 + w1vΞ1) Y

(4)
1 (τ) (z2vσ1 + w2vΞ1) Y

(4)
1 (τ) (z3vσ2 + w3vΞ2)

0 z4vσ2 + w4vΞ2 Y
(4)
1 (τ) (z5vσ1 + w5vΞ1)

)
= M

(d)
b , (12)

M (d)
a =

1√
2

 (y1v2 + x1vΣ2)Y
(2)
2,2 (τ) (y2v2 + x2vΣ2)Y

(4)
2,2 (τ)

− (y1v2 + x1vΣ2
)Y

(2)
2,1 (τ) − (y2v2 + x2vΣ2

)Y
(4)
2,1 (τ)

0 0

 , (13)

whereas those in the lepton sector are given as,

M (e)
a =

1√
2

 (y1v2 − 3x1vΣ2
)Y

(2)
2,2 (τ) (y2v2 − 3x2vΣ2

)Y
(4)
2,2 (τ)

− (y1v2 − 3x1vΣ2
)Y

(2)
2,1 (τ) − (y2v2 − 3x2vΣ2

)Y
(4)
2,1 (τ)

0 0

 , (14)
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M
(e)
b =

1√
2

(
Y

(6)
1′ (z1vσ1 − 3w1vΞ1) Y

(4)
1 (τ) (z2vσ1

− 3w2vΞ1
) Y

(4)
1 (τ) (z3vσ2

− 3w3vΞ2
)

0 z4vσ2
− 3w4vΞ2

Y
(4)
1 (τ) (z5vσ1

− 3w5vΞ1
)

)
= M

(ν)
b , (15)

M (ν)
a =

1√
2

 (y1v1 − 3x1vΣ1
)Y

(2)
2,2 (τ) (y2v1 − 3x2vΣ1

)Y
(4)
2,2 (τ)

− (y1v1 − 3x1vΣ1
)Y

(2)
2,1 (τ) − (y2v1 − 3x2vΣ1

)Y
(4)
2,1 (τ)

0 0

 . (16)

Thus, once we integrate out the heavy vector like fermions Ψ1 and Ψ2, the masses for the first and second generation

of the SM charged fermions are obtained via Seesaw mechanism, which also yields the Dirac neutrino sub-matrix,

M̃ν . The resulting effective low energy 3× 3 mass matrices for the SM charged fermions as well as the Dirac neutrino

matrix are:

M̃u = M (u)
c −M (u)

a M−1
U M

(u)
b , M̃d = M (d)

c −M (d)
a M−1

D M
(d)
b , (17)

M̃e = M (e)
c −M (e)

a M−1
E M

(e)
b , M̃ν = M (ν)

c −M (ν)
a M−1

N M
(ν)
b . (18)

As mentioned before, our model also contains extra singlet fermions Sc
i that couple to the right handed neutrinos νc

(last two lines in Eq.5). Thus the resultant neutral fermion mass terms (after integrating out the Ψ fields) can be

written as,

1

2

(
ν νc Sc

) 03×3 M̃ν 03×3

M̃T
ν 03×3 MR

03×3 MT
R MS


 ν

νc

Sc

+ h.c.. (19)

In the above equation, all the sub-matrices are 3×3 with the Dirac mass matrix M̃ν determined by Eq. 18, while MR

and MS are given as

MR =

 γ1Y
(4)
2,1 (τ) γ1Y

(4)
2,2 (τ) 0

−γ2Y
(2)
2,2 (τ) γ2Y

(2)
2,1 (τ) 0

−γ3Y
(4)
2,2 (τ) γ3Y

(4)
2,1 (τ) γ4Y

(4)
1 (τ)

 vR√
2
, MS =

 −M1Y
(2)
2,1 (τ) M1Y

(2)
2,2 (τ) −M2Y

(2)
2,2 (τ)

M1Y
(2)
2,2 (τ) M1Y

(2)
2,1 (τ) M2Y

(2)
2,1 (τ)

−M2Y
(2)
2,2 (τ) M2Y

(2)
2,1 (τ) 0

 . (20)

In the limit MS ≫ MR ≫ M̃ν , the mass matrix in Eq.19 corresponds to the double seesaw[33], 1 according to which,

once the heavy fields νc and Sc are integrated out, the mass matrix for the light active neutrinos reads:

Mν = M̃νM
−1
R MSM

−1
R M̃T

ν . (21)

III. NUMERICAL ANALYSIS

In this section, we present the results of the numerical analysis conducted to evaluate the viability of the model in

explaining the observed fermion masses and mixing. We vary all input parameters, including Yukawa couplings, vevs

and masses, and minimize the function χ2, which is defined as

χ2 =
∑
i

(
Oicalc −Oiexp

Oiexp

)2

, (22)

to determine the best fit parameters that reproduce the observed fermion masses and mixing.

1 For a seesaw review see e.g. [34].
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Input

Parameters Best fit value for NH of light neutrinos

τ −0.03224 + i 1.86682

mΨ1 ,mΨ2 (GeV) 2.38× 1012, 8.71× 1012

v1, v2 (GeV) 245.62150, 3.95665

vΣ1 , vΣ2 (GeV) 8.37732, 10.01214

vσ1 , vσ2 (GeV) 6.12× 1012, 4.64× 1012

vΞ1 , vΞ2 (GeV) 7.90× 1012, 3.53× 1012

vR (GeV) 1.23× 1011

M1,M2 (GeV) 1.0× 1012, 6.20× 108

x1, x2, x3 3.53382 ei 2.23402, 2.93598 ei 3.85910, 0.20033 ei 2.15046

y1, y2, y3 0.27120 ei 5.93154, 0.46397 ei 5.47007, 0.98750 ei 2.24996

w1, w2, w3, w4, w5 0.75168 ei 0.96442, 0.20136 ei 2.04578, 1.37663 ei 5.91647, 0.23368 ei 0.86247, 2.62639 ei 5.87924

z1, z2, z3, z4, z5 2.37549 ei 0.67600, 0.25164 ei 1.45687, 2.46850 ei 4.02943, 0.32353 ei 0.15040, 3.54392 ei 6.12983

γ1, γ2, γ3, γ4 0.20302 ei 3.09154, 1.99746 ei 6.05522, 3.42165 ei 0.22612, 1.96501 ei 5.93289

Mheavy neutrinos (GeV) 6.06521× 105, 2.49460× 109, 2.64148× 109, 3.95307× 109,

1.25075× 1011, 1.28998× 1011

Low energy mass matrices, masses and mixing parameters

M̃u (GeV)

−0.00018ei(−2.57621) −0.01312ei2.50106 0.00174ei1.43459

0.00428ei0.66665 −0.19406ei2.37489 −0.06547ei(−2.04282)

0.00000ei0.00000 0.00000ei0.00000 −108.38236ei2.24928


M̃d (GeV)

0.00016ei(−0.36728) 0.00339ei0.98476 −0.00459ei(−2.87477)

−0.00409ei2.87558 −0.00659ei1.86300 0.15841ei0.40887

0.00000ei0.00000 0.00000ei0.00000 −2.51228ei2.21622


mu,mc,mt (GeV) 0.00054, 0.2670, 172.69001

md,ms,mb (GeV) 0.00120, 0.0240, 4.180

sq12, s
q
23, s

q
13, δ

q
CP 0.2250, 0.04182, 0.00370, 65.6750◦

M̃e (GeV)

 0.00011ei0.67714 −0.00335ei1.79184 0.02874ei(−0.74991)

−0.00261ei(−2.36319) −0.10577ei(−2.70883) −0.64387ei2.36816

0.00000ei0.00000 0.00000ei0.00000 0.59512ei(−1.17142)


Mν (eV)

 0.00013ei0.26925 0.00065ei(−1.25936) 0.00314ei0.96134

0.00065ei(−1.25936) −0.02407ei2.14357 0.01431ei(−0.64736)

0.00314ei0.96134 0.01431ei(−0.64736) 0.00000ei0.00000


me,mµ,mτ (GeV) 0.00048, 0.10155, 1.77686

mν1(eV), ∆m2
sol, ∆m2

atm(eV2) 0.00276, 7.49× 10−5, 0.00251

sν12, s
ν
23, s

ν
13 0.55497, 0.68557, 0.14883

δνCP , α
M , βM 323.53560◦, 194.46228◦, 297.46063◦

Table II: Sample best fit input parameters for NH of active neutrinos along with the corresponding values of the calculated

fermion masses and mixing parameters. The χ2 value for the given point is 6.30442 × 10−15. The low-energy mass matrices

for the up and down type quarks, charged leptons, and active light neutrinos as well as the masses of the heavy neutrinos

in addition to the ones coming from Ψ1,2 are also given. For the PMNS matrix, the Majorana phase matrix is defined as

P = diagonal (1, eiα
M/2, eiβ

M/2).

In Eq.22, Oicalc represents the model prediction, while Oiexp denotes the experimental best fit value. The summation

is performed over the masses of charged fermions [35, 36], the CKM mixing angles, the CKM CP phase, the PMNS

mixing angles, and the mass-squared differences of light neutrinos [37, 38]. While fitting the charged fermion masses,

the masses of the first two generations are fitted at 1012GeV [35], as they arise from the seesaw mechanism, while

those of the third generation are taken at the electroweak scale [36]. In addition, the constraint from cosmological
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observations on the sum of the active light neutrino masses, Σmi ≤ 0.12 eV [39], as well as the 3σ bound on the

CP phase of the PMNS matrix [37, 38], are imposed as extra conditions. In our fit, the absolute values of the

Yukawa couplings are taken to be within the range [0.2,
√
4π], whereas their phases are varied in the range [0, 2π]. An

important result is that the model only fits the Normal Ordering (NO) of the active light neutrino masses, whereas

the Inverted Ordering (IO) is disfavored.

In Table II, we present a set of sample best fit parameters that reproduce the correct fermion masses and mixing

along with the corresponding values of the calculated fermion masses and mixing parameters. The low-energy mass

matrices for the up- and down-type quarks, charged leptons, and active light neutrinos are also given in this table.

One can see that the rows of the charged fermion mass matrices satisfy a natural hierarchy as a consequence of the

modular symmetry with two family seesaw, which in turn explains the observed fermion mass hierarchy.

Figure 2: The values of the real and imaginary components of the modular field τ that give χ2 <= 5× 10−4 in our numerical

scan. The fundamental domain for τ
(
− 1

2
≤ Re[τ ] ≤ 1

2
, |τ | ≤ 1

)
is shown by the gray-shaded region. The left panel is for

fixed vevs and mass scales whereas they are varied in the right panel. See text for details.

In Fig.2, we show the values of the real and imaginary components of the modular field τ that give χ2 <= 5× 10−4

in our numerical scan. In the left panel, the masses of the seesaw mediators and the vevs are fixed according to the

values provided in Table II, while the absolute values of the Yukawa couplings are varied within the range [0.2,
√
4π],

with their phases taking any value within [0, 2π]. In the right panel, both the mediator masses and the vevs are

also varied freely in addition to the Yukawa couplings. The fundamental domain of τ ,
(
− 1

2 ≤ Re[τ ] ≤ 1
2 , |τ | ≥ 1

)
is

shown by the gray-shaded region. From the figure, one can see that the imaginary part of τ (τ I) is more restricted

than the real part (τR). This is because the magnitudes of the entries of the fermion mass matrices are more sensitive

to τ I than to τR. This can be seen for instance, by taking the (1, 1) entry of M̃u to the leading order in the q -

expansion of the modular forms,

(M̃u)11 ≈ −9e−6πτI+2iπτR
(
e4πτI − 16e2π(τI+iτR) + 576e4iπτR

)
(vΣ1x1 + v1y1) (vΞ1w1 + vΣ1z1)

128M1
, (23)

from which we can see that τR always contribute to the phases of the individual terms in the expansion. The same

goes for all the mass terms. This is the reason why τ I is restricted to be in the range ∼ [1.8, 2] for the case of fixed

mass scales and vevs (left panel of Fig.2) as the fermion masses and mixing are more sensitive to τ I . The variation

in the mass scales and the vevs can relax this bound because the variation in the absolute values of the mass terms

due to τ I can be compensated by taking different vevs and/or mass scales.
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Figure 3: Predictions for the effective Majorana mass (mee) governing 0νββ. The region within the solid gray lines represents

the standard predictions for mee assuming the active light neutrinos follow the normal hierarchy. The left and right panels

correspond to the cases with fixed and varying mass scales, respectively, as in Fig. 2. The region above the purple band is

excluded by the KamlAND-Zen experimental bound, while the green band corresponds to the projected sensitivity of the nEXO

experiment.

Fig.3 shows the predictions for the effective Majorana mass (mee) that governs 0νββ. Note that we have shown only

the contributions due to the three active light neutrinos since the mixing of the heavy neutrinos with the active light

neutrinos is strongly suppressed, making their contribution to 0νββ negligible. The region within the solid gray lines

represents the standard predictions for mee, with the assumption that the active light neutrinos follow the normal

hierarchy and no modular symmetry. The red/blue points indicate the predictions from our model. As in Fig.2,

the masses of the seesaw mediators and the vevs are fixed according to the values provided in Table II in the left

panel, while the magnitude and phase of the Yukawa couplings are varied within the ranges [0.2,
√
4π] and [0, 2π],

respectively. In the right panel, both the mediator masses and the vevs are allowed to vary freely in addition to the

Yukawa couplings. The region above the purple band is excluded by the experimental bound from KamlAND-Zen [40],

while the green band corresponds to the projected sensitivity of the nEXO experiment [41]. The widths of these bands

are due to the uncertainty in the values of the nuclear matrix elements. One interesting feature that we can see from

this figure is that the model predicts a lower bound on the mass of the lightest active neutrino. This is around 0.0025

eV for the case of fixed mass scales while it becomes ∼ 10−4 eV in the general case. A small part of the predicted

parameter space lies within the nEXO reach.

Fig.4 shows the correlations of the Dirac CP phase δνCP and one of the Majorana phases, α, to the lightest neutrino

mass m1. As before, the left and right panels correspond to the cases with fixed and varying mass scales, respectively.

It is interesting to see that for the case of fixed scales, there exists a strong correlation between m1 and δνCP as well

as α, in particular for the case of fixed mass scales. Moreover, the Dirac CP violating neutrino oscillation phase is

found to lie in the range δνCP ∼ 260o − 360o.

IV. CONCLUSIONS

We have proposed a model based on the smallest quark-lepton unified symmetry, the Pati-Salam gauge group and

the smallest modular symmetry, S3. The masses of the third family of SM charged fermion arise from renormalisable

Yukawa interactions involving a colourless scalar bi-doublet as well as a bi-doublet scalar in the adjoint representation

of SU (4)C . The first and second family masses are naturally suppressed due to a Pati-Salam version of the type
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I seesaw mechanism for neutrinos, but here mediated through heavier vector-like Pati-Salam fermions. Due to the

Pati-Salam symmetry, the same mechanism also suppresses first and second family Dirac neutrino masses, but in

the neutrino sector there are additional fields leading to tiny active Majorana neutrino masses via a Double Seesaw

mechanism.

The diagrams responsible for the effective Yukawa operators are similar to those of the type I seesaw mechanism for

neutrinos, with two insertions of vacuum expectation values, where one of them breaks electroweak symmetry, and

one does not. The three Pati-Salam families are essentially distinguished by whether they couple to heavier vector-like

fermions (the first two families) or not (third family), and this is controlled by their S3 assignments. The modular S3

is perfect for implementing such a two-family seesaw mechanism, since it admits doublet representations for the first

two families, and a singlet representation for the third family.

The model is shown to describe all quark and lepton (including neutrino) masses and mixing angles, in terms of high

energy mass scales, together with complex dimensionless Yukawa coefficients which are all of order unity, and a single

complex modulus field τ with Im(τ) ∼ 2. It provides a good fit to neutrino data, assuming a normal ordering of

neutrino masses, while the inverted ordering is disfavoured. The associated prediction for neutrinoless double beta

decay is partly within the reach of the nEXO experiment. In particular, the Dirac CP violating neutrino oscillation

phase is predicted to lie in the range δνCP ∼ 260o − 360o.
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Figure 4: Correlations of the Dirac CP phase δνCP and the Majorana phase α to the lightest neutrino mass m1. The left and

right panels correspond to the cases with fixed and varying mass scales, respectively, as in the previous figures.
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Appendix A: Modular flavor symmetry

In this appendix, we provide a concise review of the main features of modular flavor symmetry. The full modular

group Γ ∼= SL(2,Z) corresponds to the group of two-dimensional matrices with integral entries and unit determinant,

Γ =

{(
a b

c d

)∣∣∣a, b, c, d ∈ Z, ad− bc = 1

}
. (A1)

The modular group is an infinite group that can be generated by two elements, conventionally denoted as:

S =

(
0 1

−1 0

)
, T =

(
1 1

0 1

)
, (A2)

which fulfill the relations:

S4 = (ST )3 = 1, S2T = TS2 . (A3)

The modular symmetry is ubiquitous in string compactifications and corresponds to the geometrical symmetry of the

extra compact space. In simple toroidal compactification, the two-dimensional torus T 2 is described as the quotient

T 2 = C/Λω1,ω2 , where C stands for the whole complex plane C and Λω1,ω2 = {mω1 + nω2,m, n ∈ Z} denotes a

two-dimensional lattice with the basis vectors ω1 and ω2. The lattice is left invariant under a change in lattice basis

vectors only and if only (
ω1

ω2

)
→
(
ω′
1

ω′
2

)
=

(
a b

c d

)(
ω1

ω2

)
,

(
a b

c d

)
∈ Γ . (A4)

The torus is characterized by the complex modulus τ = ω1/ω2 up to rotation and scale transformations, without loss

of generality we can limit τ to the upper half of the complex plane with Im(τ) > 0. The two tori related by modular

transformations would be identical, i.e.

τ
γ−→ τ ′ =

ω′
1

ω′
2

=
aτ + b

cτ + d
≡ γτ, Im(τ) > 0, γ =

(
a b

c d

)
. (A5)

Thus the action of the generators S and T , corresponding to modular inversion and translation respectively, take the

form:

τ
S−→ −1

τ
, τ

T−→ τ + 1 . (A6)
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Notice that γ ∈ Γ and −γ ∈ Γ define the same transformation of τ . Making use of the modular transformations, it is

always possible to restrict τ to the fundamental domain defined as follows:

D =

{
τ
∣∣∣ Im(τ) > 0, |Re(τ)| ≤ 1

2
, |τ | ≥ 1

}
.

Any value of τ in the upper-half plane can be mapped into the fundamental domain D by performing an appropriate

modular transformation, but no two points inside the fundamental domain D are related under the modular group.

Consequently, the fundamental domain D is a representative set of the physically inequivalent modulus. Notice that

the left boundary of D with Re(τ) = −1/2 is related to the right boundary of Re(τ) = 1/2 by the T transformation,

and the S transformation maps the left unit arc τ = eiθ(π/2 ≤ θ ≤ 2π/3) on the boundary is related to the right unit

arc τ = eiθ(π/3 ≤ θ ≤ π/2) by the S transformation.

The modular symmetry provides an origin of the discrete flavor symmetry through the quotient,

ΓN = Γ/± Γ(N), Γ′
N = Γ/Γ(N) , (A7)

where ΓN and Γ′
N are the inhomogeneous and homogeneous finite modular groups respectively, and Γ(N) is the

principal normal subgroup of level N ,

Γ(N) =

{(
a b

c d

)
∈ Γ,

(
a b

c d

)
=

(
1 0

0 1

)
(mod N)

}
, (A8)

which implies TN ∈ Γ(N). The inhomogeneous finite modular groups ΓN for N = 2, 3, 4, 5 are isomorphic to the

permutation groups S3, A4, S4 and A5 respectively [1, 42], and Γ′
N is the double cover of ΓN [6].

In the framework of N = 1 global supersymmetry, the modulus τ is a chiral supermultiplet and its scalar component

is restricted to the upper half of the complex plane, and the action takes the form

S =

∫
d4xd2θd2θ̄K(τ , τ̄ ; ΦI , Φ̄I) +

[∫
d4xd2θW(τ ,ΦI) + h.c.

]
, (A9)

where the Kähler potential K(τ , τ̄ ; ΦI , Φ̄I) is a real gauge-invariant function of the chiral superfields τ , ΦI and their

conjugates, the superpotential W(τ ,ΦI) is a holomorphic gauge invariant function of the chiral superfields τ , ΦI .

Under the action of γ ∈ Γ, the superfield ΦI have the following non-linear transformation:

ΦI
γ−→ (cτ + d)−kIρI(γ)ΦI , (A10)

where the weight kI is an integer and ρI is a unitary representation of the finite modular group ΓN or Γ′
N . The Kähler

potential is assumed to take the following minimal form

K(τ , τ̄ ; ΦI , Φ̄I) = −h log(−iτ + iτ̄) +
∑
I

Φ̄IΦI

(−iτ + iτ̄)kI
, (A11)

which is invariant up to Kähler transformations. It yields the kinetic terms of for the scalar components of τ and ΦI

after the modulus acquire a vev.

In the concerning to the superpotential W(τ ,ΦI), it can be expressed as follows

W(τ ,ΦI) =
∑
n

YI1...In(τ)ΦI1 . . .ΦIn . (A12)

Modular invariance of W requires that YI1...In(τ) should be a modular form of weight kY and level N transforming

in the representation ρY of ΓN (or Γ′
N ), i.e.,

YI1...In(τ)
γ−→ YI1...In(γτ) = (cτ + d)kY ρY (γ)YI1...In(τ) . (A13)
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The modular weights and the representations should fullfill the following conditions

kY = kI1 + . . .+ kIn , ρY ⊗ ρI1 ⊗ . . .⊗ ρIn ⊃ 1 , (A14)

where 1 denotes the trivial singlet of ΓN (or Γ′
N ).

In the present work, we shall concerned with the inhomogeneous finite modular group S3. The group Γ2
∼= S3 is

the permutation group of order 3 with 6 elements, which can be expressed in terms of the two S and T generators

satisfying the following relations [43]:

S2 = T 2 = (ST )3 = 1 . (A15)

The six elements of Γ2
∼= S3 can be grouped into three conjugacy classes

1C1 = {1} , 3C2 = {S, T, TST}, 2C3 = {ST, TS} , (A16)

where nCk stands for the conjugacy class of k elements of order n. The irreducible representations of the finite modular

S3 group are two singlets 1 and 1′, and one doublet 2. Here we work in the basis of diagonal matrix representation for

the T generator. The representation matrices for the S and T generators in the three S3 irreducible representations

take the form:

1 : ρ1(S) = 1, ρ1(T ) = 1 ,

1′ : ρ1′(S) = −1, ρ1′(T ) = −1 ,

2 : ρ2(S) = −1

2

(
1

√
3√

3 −1

)
, ρ2(T ) =

(
1 0

0 −1

)
. (A17)

The tensor product rules between the S3 irreducible representations are given by:

1⊗ 1′ = 1′, 1a ⊗ 2 = 2, 2⊗ 2 = 1⊕ 1′ ⊕ 2 , (A18)

where a, b = 0, 1 and we denote 10 ≡ 1 and 11 ≡ 1′. Regarding the product of the singlet 1′ with a doublet, we have

1′ ⊗ 2 = 2 ∼ θ

(
φ2

−φ1

)
. (A19)

Whereas the tensor product rule of two S3 doublets takes the form:

2⊗ 2 = 1⊕ 1′ ⊕ 2, with


1 = θ1φ1 + θ2φ2 ,

1′ = θ1φ2 − θ2φ1 ,

2 =

(
θ2φ2 − θ1φ1

θ1φ2 + θ2φ1

)
.

In the finite modular S3 group, there are two linearly independent modular forms of the lowest non-trivial weight 2,

which can be accommodated into a S3 doublet 2 of S3 and the doublet is given by:

Y
(2)
2 =

(
Y1(τ)

Y2(τ)

)
. (A20)

where the modular forms Y1(τ) and Y2(τ) take the form [44]:

Y1(τ) =
i

4π

[
η′(τ/2)

η(τ/2)
+

η′((τ + 1)/2)

η((τ + 1)/2)
− 8

η′(2τ)

η(2τ)

]
,

Y2(τ) =

√
3i

4π

[
η′(τ/2)

η(τ/2)
− η′((τ + 1)/2)

η((τ + 1)/2)

]
, (A21)
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Furthermore, η(τ) is the Dedekind function which is defined as follows:

η(τ) = q1/24
∞∏

n=1

(1− qn) , q ≡ e2πiτ . (A22)

Then, the modular forms Y1,2(τ) can be expressed as follows [45]:

Y1(τ) = 1/8 + 3q + 3q2 + 12q3 + 3q4 + 18q5 + 12q6 + 24q7 + 3q8 + 39q9 + 18q10 · · · ,
Y2(τ) =

√
3q1/2(1 + 4q + 6q2 + 8q3 + 13q4 + 12q5 + 14q6 + 24q7 + 18q8 + 20q9 · · · ). (A23)

The modular multiplets of level N = 2 up to weight 8 are given by:

Y
(4)
1 =

(
Y

(2)
2 Y

(2)
2

)
1
= (Y

(2)
2,1 )

2 + (Y
(2)
2,2 )

2 , Y
(4)
2 =

(
Y

(2)
2 Y

(2)
2

)
2
=

(
(Y

(2)
2,2 )

2 − (Y
(2)
2,1 )

2

2Y
(2)
2,1 Y

(2)
2,2

)
,

Y
(6)
1 =

(
Y

(2)
2 Y

(4)
2

)
1
= Y

(2)
2,1 Y

(4)
2,1 + Y

(2)
2,2 Y

(4)
2,2 , Y

(6)
1′ =

(
Y

(2)
2 Y

(4)
2

)
1′

= Y
(2)
2,1 Y

(4)
2,2 − Y

(2)
2,2 Y

(4)
2,1 ,

Y
(6)
2 =

(
Y

(2)
2 Y

(4)
1

)
2
=

(
Y

(2)
2,1 Y

(4)
1

Y
(2)
2,2 Y

(4)
1

)
, Y

(8)
1 =

(
Y

(4)
1 Y

(4)
1

)
1
= (Y

(4)
1 )2 ,

Y
(8)
2a =

(
Y

(4)
1 Y

(4)
2

)
2
=

(
Y

(4)
1 Y

(4)
2,1

Y
(4)
1 Y

(4)
2,2

)
, Y

(8)
2b =

(
Y

(4)
2 Y

(4)
2

)
2
=

(
(Y

(4)
2,2 )

2 − (Y
(4)
2,1 )

2

2Y
(4)
2,1 Y

(4)
2,2

)
.

(A24)
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