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We present a unified model of quarks and leptons with modular Ss flavour symmetry, where the
two lightest family masses are naturally suppressed via a Pati-Salam version of the type I seesaw
mechanism, mediated through heavier vector-like fermions. Majorana neutrino masses are further
suppressed through a double seesaw mechanism. The viable parameter space has a preferred range of
the modulus field with Im(7) ~ 2, leading to successful fermion masses and mixing. The prediction
for neutrinoless double beta decay is partly within the reach of the nEXO experiment. In particular,

the Dirac CP violating neutrino oscillation phase is predicted to lie in the range d¢p ~ 260° — 360°.

I. INTRODUCTION

Despite its remarkable agreement with experimental data, the current theory of strong and electroweak interactions
- the standard model (SM) of particle physics - lacks an underlying mechanism to explain the strong hierarchy in the
masses of elementary charged fermions. Additionally, the different mixing patterns in the quark and lepton sectors
remain unexplained within the SM. The theory also fails to account for several issues, such as the tiny masses of active
neutrinos and the origin of parity violation in the electroweak interaction, whose basic V-A nature is introduced by
hand in the formulation of the Standard Model. This has motivated the development of several new physics models
that aim to explain some or all of these unresolved issues.

Recently, the use of modular symmetries in extensions of the SM as a way of explaining the observed pattern of SM
fermion masses and mixing angles has received a lot of attention from the theoretical particle physics community. See,
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for instance, [1-17]. Models based on discrete flavor symmetry, along with modular symmetry do not include flavon
fields in the particle spectrum excepting the modulus 7, thus making the scalar sector of these theories more minimal
than that of models not having modular symmetries. When the complex modulus 7 acquires a non-vanishing vacuum
expectation value (vev), the flavor symmetry is spontaneously broken. Theories with modular flavor symmetries do
not require the implementation of a mechanism responsible for the vacuum alignment, they need instead a mechanism
to determine the modulus 7, which however we shall not address here. However, in modular flavor models, the Yukawa
couplings depend on the modular forms, which are holomorphic functions of 7 [1], which may thus be determined
phenomenologically. For example, such models have been proposed with Pati-Salam unification together with Ay
modular symmetry [15]. The lightness of the first two families is not fully addressed in many such approaches, and to
remedy this the weighton mechanism has been proposed [18], together with other strategies [2]. Here we shall follow
a different path, motivated by the type I seesaw mechanism [19-24], in order to explain the smallness of the first and
second family masses.

In this paper, in order to address the SM fermion flavor puzzle and to provide dynamical origin of the parity violation
of the electroweak interactions, we propose a minimal modular model based on the smallest quark-lepton unified
symmetry, the Pati-Salam SU (4), x SU (2), x SU (2) gauge group [25], and the smallest modular symmetry, Ss.
The modular S5 is perfect for implementing a two-family seesaw mechanism, since it admits doublet representations.
The masses of the third family of SM charged fermion arise from renormalisable Yukawa interactions involving a
colourless scalar bi-doublet as well as a bi-doublet scalar in the adjoint representation of SU (4).. The Dirac masses of
the first and second families (including neutrinos) arise from a generalised version of the type I seesaw mechanism, but
applied to both charged and neutral Dirac masses [26-30]. In our proposed model, the tiny active Majorana neutrino
masses then arise from a double seesaw mechanism. The model is shown to describe all quark and lepton (including
neutrino) masses and mixing angles, in terms of high energy mass scales, together with complex dimensionless Yukawa
coefficients which are all of order unity, and a single complex modulus field 7 with Im(7) ~ 2.

In Section II we present the details of the model, followed by a numerical study of the input parameters leading to
viable observables in Section III. Section IV sumarises our findings. A review of modular flavour symmetry can be
found in Appendix A.

II. THE MODEL

We propose an extended Pati-Salam theory where the SU (4), x SU (2), x SU (2) ; gauge symmetry is supplemented
by an S3 modular symmetry. The masses of the third-generation SM charged fermions arise from Yukawa interac-
tions involving the scalar bi-doublets ® and X, which transform as singlet and adjoint representations of SU(4)¢,
respectively.

The field content is enlarged by the inclusion of heavy vector-like fermions and right-handed Majorana neutrinos,
required for the implementation of the tree level two family seesaw mechanism that yields the masses of the first and
second generation of SM charged fermions as well as the Double Seesaw mechanism that produces the tiny masses of
the light active neutrinos. Specifically, we have vector-like fermions ¥,, and ¥¢ (n = 1,2) transforming as (4,1, 2)
and (Z, 1,5), respectively, under the Pati-Salam group. The vector-like fermions ¥,, and ¥¢ (n = 1,2) are the seesaw
messengers which mix with the SM fermionic multiplet fields F; and Ff (i = 1,2, 3), also transforming as (4, 1,2) and
(Z, 1,5)7 respectively, under the Pati-Salam group. Such mixings between SM fermions and the seesaw messengers
occurs thanks to the Yukawa interactions involving the singlet scalar fields o, (n = 1,2) as well as the SU (4) adjoint
scalars Z; and Z,. Besides that, we include three Majorana neutrinos, S; (i = 1,2,3), which are singlets under the
SU(4)c ® SU (2), ® SU (2) group, in order to implement the double seesaw mechanism for the generation of light
active neutrino masses. The full symmetry G of our model features the following spontaneous breaking pattern:



SU (4). [ SU(2), | SU (2),, | S5
F=(F,F)]| 4 2 1 |20
Fs 4 2 1 |11
Fy 4 1 2 1|1
Fy 4 1 2 1 |-1
Fy 4 1 2 1|1
0, 4 1 2 [1]-2
v, 4 1 2 [1]-4
¢ 4 1 2 1| 2
w5 4 1 2 1| 4
5°=(55,85) 1 1 1 |21
S5 1 1 1 |11
o 1 2 2 |10
Xr 1 1 2 |[1]2
b 15 2 2 |10
o1 1 1 1 17
oo 1 1 1 1]5
= 15 1 1 17
=, 15 1 1 1]5
vi¥ (1) 1 1 1 14
Y9 (r) 1 1 1 1|6
v (1) 1 1 1 2| 2
viY (1) 1 1 1 2| 4
Y39 (1) 1 1 1 2|6

Table I: The transformation properties of the scalar and fermionic fields, as well as those of the Yukawa couplings, under the

Pati-Salam gauge group and S3 modular symmetry, where the modular weights of the fields are labelled by k.

G = SUM)e ® SU(2), ® SU (2) ® S5
I} Aps

SUB)c®@SU (2),®SU(2),@U (1)g_,.
Jvr

SUB)c®SU(2), U (1)y
Jv
SUB)e®U (1), (1)

where v = 246 GeV and it is assumed that the Pati-Salam gauge symmetry is broken at the scale Apgs > 105 GeV,
which arises from the experimental bound on the branching ratio for the rare meson decays K — p*eT mediated
by the vector leptoquarks, as indicated in Refs. [31, 32]. The SU (4), x SU (2), x SU (2), Pati-Salam symmetry is
spontaneously broken down to the SU(3)c ® SU (2), ® SU (2), ® U (1) 5_, gauge group by the vevs of the scalar
multiplets Z; and Z5 which transform as the adjoint representation of the Pati-Salam gauge group. The second stage
of symmetry breaking is triggered by the wev of the scalar multiplet xp that transforms as a (Z, 1, 2) under the



Pati-Salam group. The scalars xp, ® and ¥ develop vewvs of the form

1 (000 g 1 (w0 1 (e, TV Oua
<XR>_\/§<000 0>7 <(I)>_\/§<O 1)2>’ <E>_\@< O4><4 UZ2T15>7 (2)

with 71 = ﬁdiag(l, 1,1,-3).

NG
The SM fermions can be written in component form as follows:
T c (& (& (&
F = Up Ui Ui Vj 7 Fe = Uy Uy U Yy ’ i=1,2,3. (3)
di d; d; 1; di di di 17

Similarly, the heavy vector-like fermionic multiplets ¥,, and ¥¢ (n = 1,2) containing the two family seesaw messengers
are expressed as follows:

T

U, U, U, Ny , c ye Ue Ne¢

T, = U , v = Un Un Un Na , n=12. (4)
D, D, D, E, D¢ D¢ D¢ E°

The transformation properties of the scalar and fermionic fields, as well as those of the Yukawa couplings, under the
Pati-Salam gauge group and S3 modular symmetry are given in Table-I. With this particle content and symmetries,
the Yukawa superpotential compatible with the S3 modular symmetry is:

W = Vi (1) FOUS + oYY (1) FOUS + 43 F3®FS
2V OU 00 FF 4 20V (1) U101 FS + 23Y\ Y (1) U100 FS + 24Ua02F§ + 25V (7) U0y FE
+ur VIOU B FE 4 wo Y (1) U1 FS + ws YV (7) U1 FS + waUa o FS + ws VY (7) WyE, Fe
01V (1) FSUS + 2,3 Y (1) FSWS + 23 F3SFS + mg, Uy U6 + myg, Uy U5
1, Yo (1) FExpS® + 7Y (7) F§xpS° +75Ya " (1) F§xS°
+y, YA (7) F§x S5+ MiYy) (7) (8°5°), + MaYy? (7) (S°S5) + hec.. (5)

The flavour structure of the superpotential is replicated with ®, 3 having the same S3 assignments (being distinguished
by the gauge group), and the same holds for the pairs 1, 21 and for o3, Z5. The two pairs are distinct as o1, =
have modular weight £ = 5 whereas o5, =5 have modular weight k = 7. This structure is also visible in the diagrams
in Fig.1. The structure of the diagrams is similar to the diagram of the seesaw mechanism. In particular, the first
two families of all the charged fermions obtain their masses via seesaw mechanism mediated by the heavy vector-like
fermions ¥, and Wy, whereas the third families obtain their masses via their Yukawa couplings to ® and . The
neutrinos also obtain Dirac masses in a similar way, which is further extended to Double Seesaw by the inclusion of
the singlet fields SY.

Due to the difference in modular weights, the superpotential terms are such that the effective Yukawa terms arise
with the respective modular forms, leading to the following mass terms for charged fermions and neutrinos:

MO M (o MO MO\ (s
( u; Uk ) (w) A ( d; Dy ) (d) e | (6)
M, My Ug M," Mp Dg
MO M\ [ e M M (v
( ei b ) (e) S ( vi Ni ) () ] (7)
M Mg )\ Eg M My )\ Nf
where the heavy vector-like seesaw mediator mass matrices are,

MU:MD:ME:MN:<m‘I’1 0 ) (8)
0 my,
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Figure 1: Feynman diagrams corresponding to the generation of the masses of the charged fermions as well as for the Dirac
neutrino submatrix. The charged fermions of the first and second generations get their masses via seesaw-like diagrams mediated

by 1, and 1,, whereas those of the third generation get their masses through their Yukawa couplings to ® and ¥ fields.

The 3 x 3 sub-matrices M{“**") in Eqs. 6 and 7 have only the (3,3) element as non-zero and are given as

u 1 1

(Mc( ))” =7 (ysv1 + z3vs, ) 03653, (Mc(d))ij =5 (ysva + x3vs, ) dizdjs, (9)
e 1 . 1

(Mf ))Z_j — ﬁ (ysva — 3z3vs,) 0,303, (Mc( ))ij = \—@ (ysv1 — 3w3vs,) 0303, (10)

and these correspond to the masses of the third families of fermions generated from their Yukawa couplings to ¢ and
Y.. The remaining sub-matrices appearing in the quark sector are given as,

(y101 + 210s,) Yo (7)) (yo01 + 2o0s,) Ya g (7)

u 1
M = | = o+ mws) Y3l (1) = (evn +220m) V) ()| (1)
0 0
6 4 4
e = L[N Grvn tunez) Y0 Gove, wnez) B0 Gove Fwnem) ) _ o)
V2 0 240Vg, + Wyvs, Yl( ) (1) (2505, + wsvg,)
L ozt aes) Y33 (1) (gavr o+ wavn,) 33 (1)
M = 7 — (y1v2 + 2105,) Y3} (1) — (y2v2 + 220s,) Y37 (1) | (13)

0 0

whereas those in the lepton sector are given as,

(Y102 — 3x10s,) Yoy (1) (y2v2 — 3w205,) Ya g (7)

M) = 7 — (y1v2 — 3a1vs,) Yo7 (1) — (y2v2 — 3zavs,) Va1 (1) | (14)
0 0
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M© — 1 Yl(,ﬁ) (#1045, — 3wyvz,) Y1(4) (1) (2204, — Bwavs,) Y1(4) (1) (2300, — 3wsv=,) YO (15)
b V2 0 24V5, — 3WavE, Y1(4) (1) (2505, — Bwsvz,) b

L o =3ees ) Y33 (1) (vavn — 3w, ) V33 (7)

M) = 7 — (yrv1 — Bxyvs,) Yo (1) — (yov1 — 3wavs,) Yo (1) | - (16)
0 0

Thus, once we integrate out the heavy vector like fermions ¥; and W, the masses for the first and second generation
of the SM charged fermions are obtained via Seesaw mechanism, which also yields the Dirac neutrino sub-matrix,
M,,. The resulting effective low energy 3 x 3 mass matrices for the SM charged fermions as well as the Dirac neutrino

matrix are:
My = M = M Mg M My =MD — MO M5 MO (17)
M, = M) — MO Mz M M, = M®) — M» My M (18)

As mentioned before, our model also contains extra singlet fermions S§ that couple to the right handed neutrinos v¢
(last two lines in Eq.5). Thus the resultant neutral fermion mass terms (after integrating out the ¥ fields) can be

written as,
1 0353 M, 033 v
5 (v e 5o )| MI 0ses Ma || 0o | hce (19)
Osxg ME Mg S¢

In the above equation, all the sub-matrices are 3 x 3 with the Dirac mass matrix M,, determined by Eq. 18, while Mg

and Mg are given as

W) g0 —MYp? (1) MiY33 (r) — MY (1)
Mp= | =¥ @) w0 [ Me= | M3 () Mgy MY e | (20)
4) 4 2 2
—15Y35 (1) Y33 (1) 7Y (7) ~MoY33 (7) Moy (7)

In the limit Mg > Mp > My, the mass matrix in Eq.19 corresponds to the double seesaw([33], ! according to which,
once the heavy fields v¢ and S¢ are integrated out, the mass matrix for the light active neutrinos reads:

M, = M, Mz*MsMz M. (21)

III. NUMERICAL ANALYSIS

In this section, we present the results of the numerical analysis conducted to evaluate the viability of the model in
explaining the observed fermion masses and mixing. We vary all input parameters, including Yukawa couplings, vevs

and masses, and minimize the function x2, which is defined as

Oicne = Oiy \°
oy (B’ -

- 7,
i exp

to determine the best fit parameters that reproduce the observed fermion masses and mixing.

! For a seesaw review see e.g. [34].



Input
Parameters Best fit value for NH of light neutrinos
T —0.03224 + i 1.86682
me,, my, (GeV) 2.38 x 10'2, 8.71 x 10'?
v1,v2 (GeV) 245.62150, 3.95665
vs,,vs, (GeV) 8.37732, 10.01214
Vo, Voy (GEV) 6.12 x 10'2, 4.64 x 10'?
vz, , vz, (GeV) 7.90 x 10'2, 3.53 x 10'2
vr (GeV) 1.23 x 10!
My, M (GeV) 1.0 x 10'%, 6.20 x 10®
T1, T2, T3 3.53382 ¢ 2:23102 9 93598 ¢! 385910 () 20033 ¢! 215046
Y1, Y2, Y3 0.27120 €' 593154 (0.46397 e’ 547007 (0.98750 ¢! 2-24996
w1, W2, W3, W4, Ws 0.75168 ' 0-95442 1 (0.20136 e’ 2-04°78  1.37663 ' 5-91647, 0.23368 ' 0-86247 262639 ¢ 587924
21, %2, 23, %4, %5 2.37549 ¢ 067600 9 25164 ef 145687 9 46850 ! 402943 (.32353 ¢! 015040 3 54392 ¢f 6-12983
VisVar Yar Va 0.20302 ¢* 3.091547 1.99746 ¢ 6.05522’ 3.42165 €° 0.226127 1.96501 et 293289
Mhcavy neutrinos (GeV) 6.06521 x 10°, 2.49460 x 10°, 2.64148 x 10°, 3.95307 x 107,

1.25075 x 10, 1.28998 x 10!

Low energy mass matrices, masses and mixing parameters

—0.00018¢%(—2:57621) _(j 01312¢2-50106 0.00174¢iL-43459
M, (GeV) 0.00428¢70-66665 () 19406237489 _(). 06547 el (—2-04282)

0.00000¢0-00000 0.00000e0-00000  _108.38236¢2-24928
0.00016¢'(~%-3672%)  0,00339¢"*9%476  —0.00459¢" (257477

My (GeV) —0.00409¢72575%8 _(.00659¢'1-56300  (.15841¢70-40887
0.00000e0-90000 0 00000000000 _2 51928221622
Moy Me, My (GeV) 0.00054, 0.2670, 172.69001
ma, ms, mp (GeV) 0.00120, 0.0240, 4.180
595,595,505, 0L 0 0.2250, 0.04182, 0.00370, 65.6750°
0.00011¢%0-67714 —0.00335¢i1:79184 () 02874¢¢(—0-74991)
M, (GeV) —0.00261¢*(72:36319)  _( 105776 (—2:70883)  _() 64387¢2-30816
0.00000¢ ™70 0.00000€7-09000 () 59512¢%(~1-17142)
0.00013¢"-2%%5  0.00065¢"(~125936)  0.00314¢"-2%134
M, (eV) 0.00065¢(~125936)  _( 0240767214357 0.01431¢'(~0-64736)
0.0031461096134 0.014316i(_0‘64736) 0.0000061.0‘00000
Me, My, mr (GeV) 0.00048, 0.10155, 1.77686
mu, (eV), Am2,, Am2,,,(eV?) 0.00276, 7.49 x 1075, 0.00251
12, 853, 813 0.55497, 0.68557, 0.14883
8%p, oM M 323.53560°, 194.46228°, 297.46063°

Table II: Sample best fit input parameters for NH of active neutrinos along with the corresponding values of the calculated
fermion masses and mixing parameters. The x? value for the given point is 6.30442 x 107'5. The low-energy mass matrices
for the up and down type quarks, charged leptons, and active light neutrinos as well as the masses of the heavy neutrinos
in addition to the ones coming from W, are also given. For the PMNS matrix, the Majorana phase matrix is defined as
P = diagonal (1, eiD‘M/Q7 ei5M/2).

In Eq.22, O;_,,, represents the model prediction, while O;__ denotes the experimental best fit value. The summation
is performed over the masses of charged fermions [35, 36], the CKM mixing angles, the CKM CP phase, the PMNS

mixing angles, and the mass-squared differences of light neutrinos [37, 38]. While fitting the charged fermion masses,

iexp

the masses of the first two generations are fitted at 1012GeV [35], as they arise from the seesaw mechanism, while
those of the third generation are taken at the electroweak scale [36]. In addition, the constraint from cosmological



observations on the sum of the active light neutrino masses, ¥m; < 0.12 eV [39], as well as the 30 bound on the
CP phase of the PMNS matrix [37, 38|, are imposed as extra conditions. In our fit, the absolute values of the
Yukawa couplings are taken to be within the range [0.2, v/47], whereas their phases are varied in the range [0, 27]. An
important result is that the model only fits the Normal Ordering (NO) of the active light neutrino masses, whereas
the Inverted Ordering (I10) is disfavored.

In Table II, we present a set of sample best fit parameters that reproduce the correct fermion masses and mixing
along with the corresponding values of the calculated fermion masses and mixing parameters. The low-energy mass
matrices for the up- and down-type quarks, charged leptons, and active light neutrinos are also given in this table.
One can see that the rows of the charged fermion mass matrices satisfy a natural hierarchy as a consequence of the
modular symmetry with two family seesaw, which in turn explains the observed fermion mass hierarchy.

4 : : _ 4 : :
3t - 3t —
£ 2[ PR ISR . £2r ]
1t 1} |
0 - : 0 : :
-1.0 -0.5 0.0 0.5 1.0 410 -0.5 0.0 0.5 1.0
Re[r1] Re[r]

Figure 2: The values of the real and imaginary components of the modular field 7 that give x> <=5 x 10~ in our numerical
scan. The fundamental domain for 7 (—3 < Re[r] < 1, |7| < 1) is shown by the gray-shaded region. The left panel is for

fixed vevs and mass scales whereas they are varied in the right panel. See text for details.

In Fig.2, we show the values of the real and imaginary components of the modular field 7 that give x? <=5 x 1074
in our numerical scan. In the left panel, the masses of the seesaw mediators and the vevs are fixed according to the
values provided in Table II, while the absolute values of the Yukawa couplings are varied within the range [0.2, v/47],
with their phases taking any value within [0,27]. In the right panel, both the mediator masses and the vevs are
also varied freely in addition to the Yukawa couplings. The fundamental domain of 7, (=3 < Re[r] < %, || >1) is
shown by the gray-shaded region. From the figure, one can see that the imaginary part of 7 (7) is more restricted
than the real part (7). This is because the magnitudes of the entries of the fermion mass matrices are more sensitive
to 77 than to 7. This can be seen for instance, by taking the (1,1) entry of Mu to the leading order in the q -

expansion of the modular forms,

(M/ ) B _96767TTI+21‘7I'TR (6471'7'1 o 16627T(‘r]+i‘r3) + 57664i7TTR) (Uillxl +,U1y1) (UElwl + UElzl)
u)11l ~ 128M1 )

(23)

from which we can see that 7r always contribute to the phases of the individual terms in the expansion. The same
goes for all the mass terms. This is the reason why 77 is restricted to be in the range ~ [1.8,2] for the case of fixed
mass scales and vevs (left panel of Fig.2) as the fermion masses and mixing are more sensitive to 7;7. The variation
in the mass scales and the vevs can relax this bound because the variation in the absolute values of the mass terms

due to 77 can be compensated by taking different vevs and/or mass scales.
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Figure 3: Predictions for the effective Majorana mass (me.) governing OvS3. The region within the solid gray lines represents
the standard predictions for m.. assuming the active light neutrinos follow the normal hierarchy. The left and right panels
correspond to the cases with fixed and varying mass scales, respectively, as in Fig. 2. The region above the purple band is
excluded by the KamlAND-Zen experimental bound, while the green band corresponds to the projected sensitivity of the nEXO

experiment.

Fig.3 shows the predictions for the effective Majorana mass (m..) that governs Ov33. Note that we have shown only
the contributions due to the three active light neutrinos since the mixing of the heavy neutrinos with the active light
neutrinos is strongly suppressed, making their contribution to Ov /38 negligible. The region within the solid gray lines
represents the standard predictions for me., with the assumption that the active light neutrinos follow the normal
hierarchy and no modular symmetry. The red/blue points indicate the predictions from our model. As in Fig.2,
the masses of the seesaw mediators and the vevs are fixed according to the values provided in Table IT in the left
panel, while the magnitude and phase of the Yukawa couplings are varied within the ranges [0.2, V47| and [0, 27],
respectively. In the right panel, both the mediator masses and the vevs are allowed to vary freely in addition to the
Yukawa couplings. The region above the purple band is excluded by the experimental bound from KamlAND-Zen [40],
while the green band corresponds to the projected sensitivity of the nEXO experiment [41]. The widths of these bands
are due to the uncertainty in the values of the nuclear matrix elements. One interesting feature that we can see from
this figure is that the model predicts a lower bound on the mass of the lightest active neutrino. This is around 0.0025
eV for the case of fixed mass scales while it becomes ~ 107 eV in the general case. A small part of the predicted
parameter space lies within the nEXO reach.

Fig.4 shows the correlations of the Dirac CP phase §5p and one of the Majorana phases, «, to the lightest neutrino
mass mq. As before, the left and right panels correspond to the cases with fixed and varying mass scales, respectively.
It is interesting to see that for the case of fixed scales, there exists a strong correlation between m; and 0¢p as well
as «, in particular for the case of fixed mass scales. Moreover, the Dirac CP violating neutrino oscillation phase is
found to lie in the range d¢p ~ 260° — 360°.

IV. CONCLUSIONS

We have proposed a model based on the smallest quark-lepton unified symmetry, the Pati-Salam gauge group and
the smallest modular symmetry, S3. The masses of the third family of SM charged fermion arise from renormalisable
Yukawa interactions involving a colourless scalar bi-doublet as well as a bi-doublet scalar in the adjoint representation
of SU (4). The first and second family masses are naturally suppressed due to a Pati-Salam version of the type
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I seesaw mechanism for neutrinos, but here mediated through heavier vector-like Pati-Salam fermions. Due to the
Pati-Salam symmetry, the same mechanism also suppresses first and second family Dirac neutrino masses, but in
the neutrino sector there are additional fields leading to tiny active Majorana neutrino masses via a Double Seesaw

mechanism.

The diagrams responsible for the effective Yukawa operators are similar to those of the type I seesaw mechanism for
neutrinos, with two insertions of vacuum expectation values, where one of them breaks electroweak symmetry, and
one does not. The three Pati-Salam families are essentially distinguished by whether they couple to heavier vector-like
fermions (the first two families) or not (third family), and this is controlled by their Ss assignments. The modular S;
is perfect for implementing such a two-family seesaw mechanism, since it admits doublet representations for the first

two families, and a singlet representation for the third family.

The model is shown to describe all quark and lepton (including neutrino) masses and mixing angles, in terms of high
energy mass scales, together with complex dimensionless Yukawa coefficients which are all of order unity, and a single
complex modulus field 7 with Im(7) ~ 2. It provides a good fit to neutrino data, assuming a normal ordering of
neutrino masses, while the inverted ordering is disfavoured. The associated prediction for neutrinoless double beta
decay is partly within the reach of the nEXO experiment. In particular, the Dirac CP violating neutrino oscillation

phase is predicted to lie in the range d¢p ~ 260° — 360°.
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Figure 4: Correlations of the Dirac CP phase 05 p and the Majorana phase « to the lightest neutrino mass mi. The left and

right panels correspond to the cases with fixed and varying mass scales, respectively, as in the previous figures.



11

Acknowledgments

A.E.C.H is supported by ANID-Chile FONDECYT 1210378, ANID-Chile FONDECYT 1241855, ANID PIA/APOYO
AFB230003 and ANID- Programa Milenio - code ICN2019_044. V.K.N. is supported by ANID-Chile Fondecyt Post-
doctoral grant 3220005. IdMV acknowledges funding from Fundagdo para a Ciéncia e a Tecnologia (FCT) through
the projects CFTP-FCT Unit UIDB/FIS/00777/2020 and UIDP/FIS/00777/2020, CERN/FIS-PAR/0019/2021,
CERN/FIS-PAR/0002/2021, 2024.02004 CERN, which are partially funded through POCTI (FEDER), COMPETE,
QREN and EU. A.E.C.H. thanks the Instituto Superior Técnico, Universidade de Lisboa for hospitality, where part
of this work was done. S.F.K. acknowledges the STFC Consolidated Grant ST/X000583/1 and the European Union’s
Horizon 2020 Research and Innovation programme under the Marie Sklodowska-Curie grant agreement HIDDeN
European ITN project (H2020-MSCA-ITN-2019//860881-HIDDeN).

Appendix A: Modular flavor symmetry

In this appendix, we provide a concise review of the main features of modular flavor symmetry. The full modular
group I' = SI.(2,Z) corresponds to the group of two-dimensional matrices with integral entries and unit determinant,

{ )

The modular group is an infinite group that can be generated by two elements, conventionally denoted as:
0 1 1 1
S = , T = , (A2)
-1 0 0 1

St =(ST)® =1, S*T =T82%. (A3)

a,b,c,d €7, adbcl}. (A1)

which fulfill the relations:

The modular symmetry is ubiquitous in string compactifications and corresponds to the geometrical symmetry of the
extra compact space. In simple toroidal compactification, the two-dimensional torus 7?2 is described as the quotient
T? = C/Ay, w,, where C stands for the whole complex plane C and A, o, = {mwi + nwa,m,n € Z} denotes a
two-dimensional lattice with the basis vectors wy and wy. The lattice is left invariant under a change in lattice basis

w1 Wiy fa b\ [w: a b
@) )= ) € o

The torus is characterized by the complex modulus 7 = wy /we up to rotation and scale transformations, without loss

vectors only and if only

of generality we can limit 7 to the upper half of the complex plane with Im(7) > 0. The two tori related by modular
transformations would be identical, i.e.
, wi ar+b

Tl>7' :7/:
wy cr+d

=7, Im(r)>0, ~v= <j 2) . (A5)

Thus the action of the generators S and T, corresponding to modular inversion and translation respectively, take the

form:

1
T I (A6)
T
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Notice that v € " and —v € I" define the same transformation of 7. Making use of the modular transformations, it is
always possible to restrict 7 to the fundamental domain defined as follows:

1
D= {T‘Im(T) > 0, |Re(7)| < 3 || > 1} .

Any value of 7 in the upper-half plane can be mapped into the fundamental domain D by performing an appropriate
modular transformation, but no two points inside the fundamental domain D are related under the modular group.
Consequently, the fundamental domain D is a representative set of the physically inequivalent modulus. Notice that
the left boundary of D with Re(r) = —1/2 is related to the right boundary of Re(7) = 1/2 by the T transformation,
and the S transformation maps the left unit arc 7 = ¢*?(7/2 < @ < 27/3) on the boundary is related to the right unit
arc 7 = e'%(1/3 < 6 < 7/2) by the S transformation.

The modular symmetry provides an origin of the discrete flavor symmetry through the quotient,

where I'y and I'y are the inhomogeneous and homogeneous finite modular groups respectively, and I'(N) is the
principal normal subgroup of level N,

I'(N) = {(Z Z) €T, <Z Z) - ((1) ?) (mod N)} , (AS)

which implies TV € T'(N). The inhomogeneous finite modular groups I'y for N = 2,3,4,5 are isomorphic to the
permutation groups Ss, A4, S4 and As respectively [1, 42], and I'}y is the double cover of I'y [6].

In the framework of N' = 1 global supersymmetry, the modulus 7 is a chiral supermultiplet and its scalar component
is restricted to the upper half of the complex plane, and the action takes the form

S = /d4xd29d2@IC(T,?; o7, 0;) + [/ d*zd?0 W(r,®;) + h.c.| , (A9)

where the Kahler potential (7, 7; @y, ) 1) is a real gauge-invariant function of the chiral superfields 7, ®; and their
conjugates, the superpotential W(r, ®;) is a holomorphic gauge invariant function of the chiral superfields 7, ®;.
Under the action of v € T', the superfield ®; have the following non-linear transformation:

;5 (cr+d) M p(1)®r, (A10)

where the weight k7 is an integer and p; is a unitary representation of the finite modular group I'y or I'y,. The Kéhler
potential is assumed to take the following minimal form

K(r,7:@7,®5) = —hlog(—it +i7) + | ( 0o (Al1)
I

—iT + 17k

which is invariant up to Kéahler transformations. It yields the kinetic terms of for the scalar components of 7 and ®;
after the modulus acquire a vev.

In the concerning to the superpotential W(r, @), it can be expressed as follows

W(r, &) =Y Yi,..1,(1)®r, ... Py, . (A12)

Modular invariance of W requires that Y7, 1, (7) should be a modular form of weight ky and level N transforming
in the representation py- of I'y (or I'y), i.e.,

Yi,.1,(7) 2 Y0, (07) = (7 + &) py (1) Y1,..1,,(7) - (A13)
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The modular weights and the representations should fullfill the following conditions

ky =kr, +...+ kg, , py @p, ®@...Q0p; D1, (A14)

where 1 denotes the trivial singlet of I'y (or I'y).

In the present work, we shall concerned with the inhomogeneous finite modular group S3. The group I's = S5 is
the permutation group of order 3 with 6 elements, which can be expressed in terms of the two S and T generators
satisfying the following relations [43]:

S?=T?=(ST)*=1. (A15)
The six elements of I'y = S3 can be grouped into three conjugacy classes
1C, ={1}, 3Cy={S,T,7TST}, 2C5={ST, TS}, (A16)

where nCY, stands for the conjugacy class of k elements of order n. The irreducible representations of the finite modular
S3 group are two singlets 1 and 1/, and one doublet 2. Here we work in the basis of diagonal matrix representation for
the T generator. The representation matrices for the S and T generators in the three S3 irreducible representations
take the form:

1: p(S)=1  p(7)=1,
1 pp(8)=-1, p1(T) = -1,

2 p2<s>—;<j§ f) p2<T>—<(1) _“1>. (A17)

The tensor product rules between the S3 irreducible representations are given by:
11 =1/, 122 =2, 22=101 @2, (A18)
where a,b = 0,1 and we denote 1° = 1 and 1! = 1’. Regarding the product of the singlet 1’ with a doublet, we have
’ _ P2
1'®2=2 ~10 . (A19)
—¥
Whereas the tensor product rule of two S3 doublets takes the form:

1 :6141014_02%027

1 =010, — 0
202=101 02, with P2 U2

9 — (92902—914?1)

0199 + 0204

In the finite modular S3 group, there are two linearly independent modular forms of the lowest non-trivial weight 2,
which can be accommodated into a S3 doublet 2 of S3 and the doublet is given by:

vy? = (223) : (A20)

where the modular forms Y7 (7) and Y3(7) take the form [44]:
A [n'/2)  n'((r+1)/2)  n'(21)
i [n(7/2) D/ 877(27)} :

VB[ (1))
B =4 [n(T/Z) 77((T+1)/2)]’ (A21)

Yl(T) =
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Furthermore, n(7) is the Dedekind function which is defined as follows:
o .
) =¢*J[-q¢), q=e. (A22)
n=1

Then, the modular forms Y7 2(7) can be expressed as follows [45]:

Yi(r) = 1/8+4 3¢+ 3¢% +12¢° + 3¢* + 18¢° 4 12¢° + 24¢" + 3¢® + 39¢° +18¢'°-- -,
Ya(r) = V3¢Y2(1 +4q + 6¢% + 8¢° + 13¢* +12¢° + 14¢° + 24¢" + 18¢% +20¢° - - -). (A23)

The modular multiplets of level N = 2 up to weight 8 are given by:

(2)\2 (2)\2
@ _ (v @) _ 122 (2)\2 @ _ (v@v@) _ [ Y22)"—(Y37)
Yy = (Yz Y, )1 = (Yz,l) + (Yz,z) ) Yy = (Yz Y, )2 = 2Y2(21)Y2(22) )

6 2 4 2 4 2 4 6 2 4 2 4 2 4
VO = (Vv = YD + Vi, v = () = Vi) —viavey
(2)-(4) (A24)
6 _ (v@y @) _ [ Yz Y1 ®) _ (v @Y _ y@)2
Y, *(Yz Yy )2* Y2(22)Y1(4) ) Yy *(Yl Yy )1*(Y1 )%
4 4 4 4
Y(8>:(Y(4>Y<4>) _ (Y Y(s);(y<4>y<4>> (-
2a 12 ), Y1(4)Y2(:“2) ) 2b 2 ‘2 ), 2Yz(,41)yz(§
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