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Abstract

We examine the liquidity provision premium in cryptocurrency markets using the re-

turns from the short reversal strategy. We show that returns from liquidity provision

can be predicted using the volatility index, realized variance, risk aversion, crash risk,

tail risk, and innovations of Tether liquidity. We also find that an increase in the liq-

uidity provision premium is associated with a decline in liquidity, trading volume, and

transaction count, as well as more withdrawals, higher fees, and greater impermanent

loss on Uniswap. This suggests potential competition between centralized and decen-

tralized exchanges. Further, the liquidity provision premium of stock markets in the US,

Canada, and the UK positively predicts the premium of cryptocurrency markets (effect

of a common shock), while that of stock markets in China and Japan negatively predicts

the premium of cryptocurrency markets (effect of substitution).



1 Introduction

Considerable focus has been placed on the volatility, speculation, lack of regulations, novel

microstructure, and leverage of cryptocurrency markets (Makarov and Schoar, 2020; Sockin

and Xiong, 2023); however, the dynamics of liquidity provision remain unclear. The mi-

crostructure of cryptocurrency markets fundamentally differs from that of the traditional

financial markets owing to the underlying blockchain technology, which provides reduced

trading costs, transparency, efficiency, and speed in addition to its improved ownership trace-

ability (Yermack, 2017). Market-maker, high-frequency, and algorithmic traders operating in

centralized exchanges (CEXs) are all identified as liquidity providers (Çötelioğlu et al., 2021).

Moreover, automated market makers (AMMs) can provide liquidity through decentralized

exchanges (DEXs) such as Uniswap (Malamud and Rostek, 2017; Lehar and Parlour, 2021;

Aoyagi and Ito, 2022). Further, compared with traditional financial markets, cryptocurrency

markets are less regulated, experience greater microstructure noise and reduced market depth,

and are more susceptible to market manipulation (Dimpfl and Peter, 2021; Harris et al., 2024).

This may make them more exposed to liquidity risk (Griffin and Shams, 2020).1

Given these distinctive features, we examine whether uncertainty affects the returns on

the liquidity provision of cryptocurrencies. We measure the liquidity provision premium of

cryptocurrencies as the returns on the reversal strategy following Nagel (2012). Specifically,

1For example, regulatory and policy changes that limit or prohibit cryptocurrency trading expose investors
to liquidity risk.
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using over 100 high-frequency cryptocurrencies from 2017 to 2022, we find empirical evidence

that the spot volatility (SPOTVOL) and left tail (LTV) index (Andersen et al., 2024), realized

variance (RV) of equally-weighted cryptocurrency market returns, investor risk aversion (RA)

of Bekaert et al. (2022) and Bekaert and Hoerova (2016), crash risk (NCSKEW), tail risk

(Tail), and Tether liquidity (DVINNOV
Tether ) are key factors in predicting the reversal strategy.

This suggests that market makers are compensated for providing liquidity during market

turmoil. Our results are consistent with the findings of Nagel (2012) based on US equity

markets.

Next, we examine the effect of impermanent loss (IL), fees, changes in liquidity, trading

volume, transaction count, and withdrawals from Uniswap on the liquidity provision premiums

in cryptocurrency markets. Uniswap is one of the largest decentralized exchanges that uses

automated liquidity pools of tokens locked into smart contracts on the Ethereum blockchain

(Capponi and Jia, 2021; Han et al., 2021). A unique characteristic of Uniswap is that it

enables its users to become liquidity providers by adding tokens to these pools of tokens.

Our analysis reveals that improvements in liquidity, trading volume, and transaction count

on Uniswap lower the liquidity provision premium in centralized cryptocurrency markets.

This implies that greater liquidity on Uniswap reduces the compensation needed for liquidity

provision in centralized markets. Conversely, more withdrawals, higher fees, and greater IL on

Uniswap result in a higher liquidity provision premium in centralized markets. This indicates

that more withdrawals and higher costs on Uniswap elevate the compensation required for

liquidity provision in centralized markets. Overall, our findings indicate potential competition
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between centralized and decentralized exchanges, with decentralized exchanges potentially

being used for trading traditional assets (Barbon and Ranaldo, 2021; Aoyagi and Ito, 2022).

Prior research has documented the diversification benefits of cryptocurrencies in interna-

tional financial markets (Briere et al., 2015; Dyhrberg, 2016; Bouri et al., 2017; Anyfantaki

et al., 2021). Hackethal et al. (2022) have highlighted the potential co-movement between

the cryptocurrency and global stock markets and shown that cryptocurrency investors typi-

cally purchase stocks with high media sentiment and tend to place greater emphasis on riskier

stocks after investing in cryptocurrencies. Therefore, we investigate whether liquidity pro-

vision varies between cryptocurrency and global stock markets. We show that the liquidity

provision premium of stock markets in the US and Canada positively predicts the premium

of cryptocurrency markets, while the premium in China and Japan negatively predicts the

premium of cryptocurrency markets. This suggests common shocks for market makers in

the cryptocurrency market and the US and Canada stock markets. However, the Chinese

and Japanese stock markets seem to act as substitutes for cryptocurrency markets from the

perspective of market makers. Overall, our results show the interconnectedness of liquidity

provisions among market makers across both cryptocurrency and traditional stock markets.

We conduct several robustness tests and find that our results are consistent throughout.

For instance, we examine the predictability of key variables by (1) considering the time-varying

risk exposure; (2) controlling for liquidity supply; (3) controlling for the network effect2;

(4) accounting for the cryptocurrency factor model including market, size, and momentum

2Recent studies (Sauer, 2015; Bakos and Halaburda, 2018; Catalini and Gans, 2018; Li and Mann, 2018;
Pagnotta and Buraschi, 2018; Biais et al., 2020; Howell et al., 2020; Sockin and Xiong, 2020; Cong et al., 2021)
have highlighted the importance of the network effect in cryptocurrency.
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(Liu et al., 2022); (5) controlling for Bitcoin futures contracts; and (6) using high-frequency

predictors.

Our study makes several incremental contributions to the literature. First, it contributes

to the microstructure literature on cryptocurrencies. Aoyagi (2020), Han et al. (2021), Lehar

and Parlour (2021), and Aoyagi and Ito (2022) have examined liquidity provision in decen-

tralized exchanges. Yermack (2017) has argued that blockchain allows market makers to

identify informed trading, which helps improve market efficiency. Moreover, Easley et al.

(2019) have highlighted the role of structural constraints as microstructure properties in user

engagement in cryptocurrencies. This study further contributes to the literature by highlight-

ing the importance of time-varying and predictive features of liquidity provision premiums in

cryptocurrency markets. More importantly, it provides novel evidence of Uniswap’s influence

on the liquidity provision premium in cryptocurrency markets, suggesting potential competi-

tion between centralized and decentralized exchanges. Thus, this study extends the works of

Capponi and Jia (2021), Han et al. (2021), and Lehar and Parlour (2021).

Second, this study contributes to the literature on the cryptocurrency exposure to common

risk factors, by demonstrating that returns from liquidity provision in the cryptocurrency

market are exposed to common uncertainty index; see, for instance, the work of Bianchi

(2020) and Liu and Tsyvinski (2021). Finally, it extends the works of Griffin and Shams

(2020) and Alexander et al. (2021), by showing the impact of Tether liquidity on the profits

of cryptocurrency market makers.
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Our study is fundamentally different from that of Bianchi et al. (2022), which analyzes

the association between the returns of a short-term reversal strategy and de-trended trading

volume using a daily cryptocurrency pairs dataset. Bianchi et al. formulated a reversal

strategy by lagged returns and volume following Jegadeesh (1990), Lehmann (1990), Lo and

MacKinlay (1990), and Jegadeesh and Titman (1995) and showed that the joint effect of

previous returns and volume helps predict cryptocurrency returns. However, following Nagel

(2012), our paper goes beyond their findings by extending the equity market’s reversal strategy

and examining whether uncertainty measures predict the cryptocurrency liquidity provision

premiums. Unlike equity markets, cryptocurrency markets have small market values, are

fragmented owing to undiversified ownership, and operate across various platforms (Makarov

and Schoar, 2021). Given the unique market microstructure of cryptocurrency markets, our

work provides novel out-of-sample evidence for liquidity provision theories.

Our study has important implications. Our findings that SPOTVOL, LTV, RV, RA,

NCSKEW, Tail, and DVINNOV
TETHER predict cryptocurrency liquidity provision premiums offer

valuable insights for liquidity providers such as Coinbase (which became a publicly traded

firm on April 14, 2021), which are key players in liquidity provision in cryptocurrencies. Our

results could also have implications for policymakers that could help monitor or regulate

cryptocurrency liquidity provision. Firms in Asia, such as BitMEX, allow investors to use

up to 100-to-1 leverage in trading cryptocurrencies. Given their high volatility, liquidity

provision is critical, particularly during market sell-offs.3 An increasing number of funds have

3See https://www.cnbc.com/2021/05/25/bitcoin-crashes-driven-by-big-margin-bets-new-crypto-
banking.html for context.
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a growing proclivity toward risk exposure with cryptocurrency.4 Ben-Rephael (2017) found

that mutual funds consume liquidity during market downturns, thereby exacerbating market

conditions. Our study shows that a liquidity provision premium is positively related to market

downturns, which might help funds to manage liquidity to improve their shortfalls in poor

market conditions.

The remainder of the paper is organized as follows. In Section 2, we describe the data and

methodology. Section 3 presents the empirical analyses and main findings. Finally, Section 4

concludes the paper.

2 Data and Methodology

We obtain data on the 5-minute cryptocurrency price, market capitalization, and trading

volume from Coinpaprika.com for the period between January 1, 2017 and December 31, 2022.

Based on market capitalization, we pre-select 1,174 cryptocurrencies out of the approximately

9,000 listed as active on Coinpaprika.com but only include those available on the market since

January 1, 2017, which results in 176 cryptocurrencies. We further exclude 54 cryptocurrencies

with more than 20% of their observations missing, with 122 cryptocurrencies left. In our

sample, 20 cryptocurrencies have 10-20% of missing values, 40 cryptocurrencies have 1-10%,

and the remaining 62 have less than 1%. We fill in the missing observations using the forward-

fill method.5 Specifically, if the price is not available for a particular timestamp, we assume

4See Cathie Wood’s Ark Invest, a Bitcoin exchange-traded fund, at
https://fortune.com/2021/06/29/bitcoin-etf-cathie-wood-crypto-btc-ark-invest-arkb/

5The forward-fill method assumes that the price from the previous period holds until a new observation
appears. In untabulated results, we also conduct our main test using data without forward filling. Our main
findings remain robust.
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that no trading took place within that timeframe; thus, the price remains at the level set at

the last available timestamp.

The cryptocurrency return is the difference between the price at t and that at t−1, divided

by the price at t−1. We exclude observations with less than one million US dollars in market

capitalization, following Liu et al. (2022), and returns greater than 1000%.6 We collect data on

daily stock returns from the Center for Research in Security Prices (CRSP), Refinitiv Eikon,

and China Stock Market & Accounting Research (CSMAR). The US sample contains NYSE,

AMEX, and NASDAQ ordinary common stocks with a CRSP share code of 10 or 11.

The variable of interest in our study is the profits of the market makers who provide

liquidity. Following Nagel (2012), we estimate the liquidity provision premium as in Eq. (1):

LR
t = −

(1
2

N∑
i=1

∣∣Ri,t−1 −Rm,t−1

∣∣ )−1
N∑
i=1

(Ri,t−1 −Rm,t−1)Ri,t, (1)

where Ri,t−1 is the cryptocurrency i return at time t − 1, and Rm,t−1 = 1
N

∑N
i=1Ri,t−1 is the

equally-weighted cryptocurrency market return at time t−1. For example, when the liquidity

premium (LR
t ) is estimated at 10:05am, Ri,t−1 is at 10:00am.

ωR
i,t = −

(
1
2

∑N
i=1

∣∣Ri,t−1 −Rm,t−1

∣∣ )−1∑N
i=1(Ri,t−1−Rm,t−1) is the portfolio weight for cryp-

tocurrency i at time t. Past returns (Ri,t−1 − Rm,t−1) are used as a proxy for the inventory

positions of market makers. Market makers earn a positive liquidity premium in case of a

return reversal from time t − 1 to time t. The scaling factor used in Eq. (1) implies the re-

6The results are qualitatively similar with returns winsorized at 1% and 99%.
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turn per dollar of capital invested in the 50% margin on both long and short position trading

strategies. Eq. (1) shows the return on a one-dollar investment.

The short-run return reversals of winners and losers mimic the immediacy of market mak-

ers. Intuitively, a strategy that buys cryptocurrencies whose prices decrease (losers) and shorts

cryptocurrencies whose prices increase (winners) in the previous trading days resembles the

order imbalance of market makers; that is, market makers provide liquidity to the public

by trading in the opposite direction when cryptocurrency prices change. Specifically, market

makers sell when investors buy with price increases, and buy when investors sell with price

decreases.

While the S&P 500 Volatility Index (VIX) plays an important role in the liquidity provision

returns in the US stock market, recent studies (Andersen et al., 2015, 2024) show that the

predictive power of VIX for returns stems primarily from its tail component. When this

component is removed, the forecasting ability of VIX becomes insignificant, suggesting that

tail risk is a crucial factor in asset pricing. Additionally, the tail component provides a more

robust and timely warning of volatile market conditions compared to the VIX. Following their

work, we use the spot volatility (SPOTVOL) and left tail volatility (LTV), which are the

two factors decomposed from VIX, to examine the impact of volatility on liquidity provision

premium in the cryptocurrency market.7 We also use the daily realized variance (RV) of

equally-weighted cryptocurrency market returns to measure uncertainty, where RV is the sum

7We thank Viktor Todorov for sharing with us the spot volatility (SPOTVOL) and left tail volatility (LTV) data.
Prior studies have highlighted the role of volatility in liquidity (Gromb and Vayanos, 2002; Vayanos, 2004; Brunnermeier
and Pedersen, 2009; Nagel, 2012).
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of the squared 5-minute equally-weighted cryptocurrency market returns in a day (Andersen

et al., 2001; Barndorff-Nielsen and Shephard, 2002; Hansen and Lunde, 2006).

Further, the VIX index differs from RV as VIX captures both the underlying return dis-

tribution (e.g., crash probabilities), and investor risk aversion (Bekaert and Hoerova, 2016;

Bekaert et al., 2022). Risk aversion leads to a desire for protection against potential losses,

resulting in relatively higher prices for out-of-the-money put options compared to call options.

These elevated put option prices contribute to the consistent presence of a positive variance

risk premium (i.e., the difference between the squared VIX index and actual conditional return

variance). Thus, we also examine how risk aversion influences the liquidity provision premium

of cryptocurrencies. Specifically, we use the daily time-varying aggregate risk aversion (RA)

measure of Bekaert et al. (2022) estimated from observable financial information. RA captures

the time-varying relative risk aversion of a representative agent in a generalized habit model

and preference shocks (Campbell and Cochrane, 1999; Bekaert and Engstrom, 2017).8

Following Chen et al. (2001), we calculate the cryptocurrency market crash risk (NCSKEW)

on day d as

NCSKEWd = − n(n− 1)3/2
∑

RM
3
d

(n− 1)(n− 2)(
∑

RM
2
d)

3/2
, (2)

where n = 365 days, and RM is the equally-weighted cryptocurrency market returns.

Eq. (2) indicates that cryptocurrencies with high NCSKEW are more likely to crash as

their distribution is more left-skewed than that of cryptocurrencies with low NCSKEW. The

8Bekaert et al. (2024) examine the role of risk aversion in the global financial markets.
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third moment is scaled so that cryptocurrencies with different variances are more comparable.

Earlier studies (Bates, 1991) have also shown that skewness helps capture crash risk.

Following Kelly and Jiang (2014), we compute the time-varying cryptocurrency return

tails (λd) based on the power law estimate of Hill (1975) using the cross-sectional daily return

on day d as

λHill
d =

1

Kd

Kd∑
k=1

ln
Rk,d

ud

, (3)

where Rk,d is the kth daily return that falls below an extreme value threshold ud over the last

30 days; Kd is the total number of observations below ud over the last 30 days, and ud is the

fifth percentile of the cross-sectional returns over the last 30 days. ud captures the end of the

distribution center and the beginning of the tail and reflects an appropriate extreme bin of

distribution where returns lower than the bin threshold follow tail distribution. Eq. (3) uses

broad information on tail risk from the cross-section of cryptocurrency returns to alleviate the

challenge that tail events rarely occur for an individual asset.

We also examine the effect of Tether liquidity on the premium of liquidity provision.

Specifically, we use the trading volume measure of Brennan et al. (1998), DV , defined as

the trading volume averaged in a day. Owing to the persistence of liquidity (Pástor and

Stambaugh, 2003), in our tests, we use innovation in DV (DVINNOV
d ), as estimated from the

regression

DVd = α0 + α1DVd−1 +DV INNOV
d , (4)
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where DVd is the trading volume of Tether in day d. The residuals (DVINNOV
d ) capture the

liquidity shocks, which tend to coincide with periods of liquidity crisis (Acharya and Pedersen,

2005).

Table 1 provides summary statistics for the main variables used in the empirical analysis.

As seen in Panel A, the cryptocurrency reversal strategy has a mean of 0.720% and a standard

deviation of 4.526% per five-minute interval, respectively. The reversal strategy is positively

skewed, which indicates that the strategy incurs substantial gains during certain periods.

SPOTVOL, LTV, RV, RA, NCSKEW, Tail, and DVINNOV
TETHER have mean values of 12.263,

10.189, 0.231, 3.025, 0.014, 0.399, 0.136, and 0.544, respectively. Notably, the skewness of RV

is 14.857, potentially indicating a heightened likelihood of extreme cryptocurrency volatility

events, consistent with the literature (Makarov and Schoar, 2020; Sockin and Xiong, 2023).

Panel B of Table 1 reports the correlations. LTV, RV, crash risk, tail risk, and DVINNOV
TETHER

exhibit positive associations with the liquidity provision premium in cryptocurrency markets.

Additionally, SPOTVOL and LTV, two components of VIX, show a strong positive correlation

with crash risk and tail risk, consistent with Bekaert and Hoerova (2016) and Bekaert et al.

(2022), who highlight the importance of VIX in capturing crash probabilities.

[Table 1 about here]
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3 Empirical Results

3.1 Out-of-sample tests

In this subsection, we examine the out-of-sample forecast power of SPOTVOL, LTV, RV,

RA, NCSKEW, Tail, and DVINNOV
TETHER in predicting the liquidity provision premium of cryp-

tocurrencies. In-sample predictions may overstate the reliability of predictors (Welch and

Goyal, 2008). However, out-of-sample tests help further support predictability as they are

less prone to in-sample data mining or biased standard errors. We conduct the out-of-sample

test to exclude any variables with no significant predictability. Specifically, assuming that the

out-of-sample forecast evaluation begins at time t, we use all available data up to time t− h

to estimate the necessary predictive regression parameters to produce the first out-of-sample

forecast at time t. Next, we use a recursive forecast procedure for each future time until T −h,

where T is the sample period.

Our out-of-sample tests follow Welch and Goyal (2008), Rapach et al. (2010), and Rapach

and Zhou (2013). Specifically, we use the following equation (5):

Lt,t+h = α + βXt + ϵt,t+h, (5)

where Lt,t+h = 1
h
(Lt+1 + · · ·+Lt+h), Lt is the returns from the reversal strategy in cryptocur-

rency markets at time t, and Xt is a predictor variable including SPOTVOL, LTV, RV, RA,

NCSKEW, Tail, or DVINNOV
TETHER.
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The time (t + 1) out-of-sample returns forecast of a reversal strategy in cryptocurrency

markets is

L̂t,t+h = α̂ + β̂Xt, (6)

where α̂ and β̂ are the ordinary least-squares (OLS) estimates based on data from the begin-

ning of the sample through to time t. We compare the forecasts based on Eq. (5) with the

historical average forecast, which is the average returns of a reversal strategy in cryptocur-

rency markets from the beginning of the sample through to time t. Following Welch and Goyal

(2008), we assume that the returns are unpredictable and use the historical average forecast

as the out-of-sample benchmark. Welch and Goyal (2008) show that an individual predictor

generally fails to outperform historical average forecasts.

Moreover, we estimate the out-of-sample R2
OOS statistic following Campbell and Thompson

(2008), as

R2
OOS = 1−

∑T−h
t−m(Lt,t+h − L̂t,t+h)∑T−h
t−m(Lt,t+h − L̄t,t+h)

, (7)

where Lt,t+h is the actual returns of a reversal strategy in cryptocurrency markets; L̂t,t+h is

the estimated returns of a reversal strategy based on the results of Eq. (5), and L̄t,t+h is the

historical average benchmark.

We specifically compare the reduction in mean squared forecast error (MSFE) at the h-time

horizon. This comparison is between a predictive regression forecast of the liquidity provision
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premium based on the predictor variable and the prevailing mean benchmark forecast. The

statistical significance is based on the Clark and West (2007) test of the null hypothesis

that the prevailing MSFE is less than or equal to the predictive regression MSFE against

the alternative hypothesis that the prevailing MSFE is greater than the predictive regression

MSFE. The R2
OOS shows the extent to which a forecast variable would have been helpful for

investors if used in “real-time” over certain sample periods.

Table 2 reports the results of the out-of-sample tests. Our predictors, namely SPOTVOL,

LTV, RV, crash risk, tail risk, and Tether liquidity shocks, all have positive R2
OOS. Further,

the Clark and West (2007) test results are statistically significant for all h-time horizons.

This suggests that the predictive regression forecasts based on these four predictors gener-

ate a smaller MSFE and outperform the benchmark. Overall, SPOTVOL, LTV, RV, RA,

NCSKEW, Tail, and DVINNOV
TETHER predict the liquidity provision premium in cryptocurrency

markets under the out-of-sample tests; therefore, we do not exclude any variables from the

following analyses.

[Table 2 about here]

3.2 Return predictability of liquidity provision

Our main predictive model is

LR
t = a+ bXt + cCRM,t + et, (8)
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where X includes SPOTVOL, LTV, RV, RA, NCSKEW, Tail, and DVINNOV
TETHER. Following

Nagel (2012), we lag these by five days. While the liquidity provision premium (LR) is

measured at a 5-min frequency, other variables (e.g., SPOTVOL, LTV, RV, RA, NCSKEW,

Tail, and DVINNOV
TETHER) are measured on a daily basis only. For example, LR at any time

t on day d is regressed against SPOTVOL, LTV, RV, RA, NCSKEW, Tail, or DV INNOV

measured on day d− 5 (i.e., lagged by five days). Following Hameed et al. (2010), we control

for the cumulative equally-weighted cryptocurrency market returns (CRM,t) as the premium

of the short-term reversal strategy is related to market returns; CRM is also lagged by five

days. To facilitate the interpretation of our results, we standardize SPOTVOL, LTV, RV,

RA, NCSKEW, Tail, DVINNOV
TETHER, and CRM so that they all have a mean of 0 and a standard

deviation of 1.

Table 3 reports the main results of Eq. (8). Model 1 includes SPOTVOL, LTV, and

RV as predictors. In Models 2 through 5, we progressively add RA, NCSKEW, Tail, and

DVINNOV TETHER to the predictor set, respectively. We find that SPOTVOL, LTV, RV,

RA, NCSKEW, Tail, and DVINNOV
TETHER exhibit significant predictive power for the liquidity

provision premium in cryptocurrency markets. Specifically, in Model 5, which includes all

predictors, a one standard deviation increase these predictors is associated with a decrease

of 0.260% and an increase of 0.100%, 0.056%, 0.085%, 0.031%, 0.019%, and 0.187% in the

liquidity provision premium, respectively. These results suggest that the compensation earned

by liquidity providers in cryptocurrency markets can be predicted by uncertainty, proxied by

SPOTVOL, LTV, RV, RA, NCSKEW, Tail, and DVINNOV
TETHER.
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The contrasting effects of SPOTVOL and LTV on the liquidity provision premium in

cryptocurrency markets may arise from their tendency to move in opposite directions during

certain periods.9 For instance, Andersen et al. (2024) show that SPOTVOL has surged sharply

in recent years, while the tail risk premium has declined relative to short-term volatility. The

role of SPOTVOL and LTV, the two factors decomposed from VIX, in predicting the liquidity

provision premium in cryptocurrency markets is similar to what was shown in the US stock

market by Nagel (2012). The predictive power of these variables remains significant after

controlling for the equally-weighted cryptocurrency market returns as shown in Models 1, 2, 3,

4, and 5 in Table 3. Overall, our main results indicate that a decrease in the ability of market

makers to provide liquidity, as signaled by an increase in the liquidity provision premium,

significantly contributes to the decline in liquidity during times of heightened uncertainty

in cryptocurrency markets. This result is consistent with theories of liquidity provision by

financially constrained intermediaries (Gromb and Vayanos, 2002; Brunnermeier and Pedersen,

2009). Additionally, the profitability of reversal strategies in cryptocurrency markets during

periods of market turmoil lends further support to Nagel (2012).

[Table 3 about here]

We also conduct the Diebold and Mariano (2002) and West (1996) test (DMW) with an

autocovariance adjustment. We find that all models have better forecasting performance than

the historical average liquidity provision premium. Specifically, the statistic of the DMW test

9In untabulated results, we also observe contrasting effects of SPOTVOL and LTV on the liquidity provi-
sion premium in the US stock market.
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under the loss function of mean squared error is -9.62 (p = 0.00), -9.89 (p = 0.00), -10.56

(p = 0.00), -11.04 (p = 0.00), and -11.78 (p = 0.00) for Models 1, 2, 3, 4, and 5, respectively.

3.3 Robustness tests

In this subsection, we conduct several robustness tests. The reversal strategy of Eq. (1)

can have time-varying risks from exposure to common factors (Nagel, 2012). To take into

account the time-varying risk exposure, we use the following regression, as in Nagel (2012):

LR
t = α + β1RM,t + β2(RM,t × sgn(RM,t−1)) + β3sgn(RM,t−1) + et, (9)

where RM,t is the equally-weighted cryptocurrency market returns. The time-varying risk

exposure is βt−1 = β1 + β2sgn(RM,t−1). The hedged returns of the reversal strategy are

LR
t − βt−1RM,t.

Second, liquidity supply factors contribute to the strength of the reversal strategy (Ho

and Stoll, 1981; Nagel, 2012; Hendershott and Menkveld, 2014). Following this strand of

the literature, we control for idiosyncratic risk. In the spirit of Nagel (2012), we calculate

idiosyncratic risk as the cross-sectional standard deviation of cryptocurrency returns.

Third, the literature shows that cryptocurrencies rely heavily on network effects, with

their value and utility strengthening as more individuals and entities join the network.10 It

is therefore easier for users to find transaction counterparties on platforms with more users.

Cryptocurrency returns are associated with network growth (Liu and Tsyvinski, 2021). Fol-

10See, e.g., (Bakos and Halaburda, 2018; Catalini and Gans, 2018; Li and Mann, 2018; Pagnotta and Buraschi,
2018; Biais et al., 2020; Howell et al., 2020; Sockin and Xiong, 2020; Cong et al., 2021).
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lowing this strand of the literature, we control for the network effect to test the robustness of

our results; specifically, we use the growth rate of Bitcoin addresses as a proxy for the network

effect.11

Fourth, we control for the cryptocurrency factor model including market, size, and mo-

mentum following the study of Liu et al. (2022).12

Fifth, Bitcoin futures contracts were introduced by the Chicago Board Options Exchange

(CBOE) on December 10, 2017 and the Chicago Mercantile Exchange (CME) on December 18,

2017. These allow institutional investors to trade Bitcoin futures on the major US exchanges

(Corbet et al., 2018; Köchling et al., 2019; Hung et al., 2021; Alexander et al., 2023). Following

this literature, we examine the effect of Bitcoin futures volumes on the liquidity provision of

cryptocurrency.13

Finally, while the liquidity provision premium is estimated at a 5-minute frequency, our

predictors, namely VIX, RV, crash risk, tail risk, and Tether liquidity, are measured at a

daily frequency. To examine the robustness of our tests, we use 5-minute measures of these

predictors; specifically, we use the 5-minute price of the Proshares Short VIX Short-Term

Futures ETF as a proxy for VIX (Bialkowski et al., 2016; Bordonado et al., 2017).14 We

construct the 5-minute RV, crash risk, tail risk, and Tether liquidity measures using the rolling

estimates over the previous week, in a similar way to their corresponding daily measures.15

11We obtain the address data from https://www.blockchain.com/.
12We obtain the cryptocurrency market, size, and momentum factors from Liu et al. (2022). We thank Yukun Liu

for sharing their cryptocurrency market, size, and momentum factors with us.
13We use the innovation of Bitcoin futures volumes due to the persistence of liquidity (Pástor and Stambaugh,

2003).
14We obtain the 5-minute price of the Proshares Short VIX Short-Term Futures ETF from Refinitiv Datascope.
15Prior studies (Liu et al., 2022) have used weekly intervals to analyze cryptocurrency markets.
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Table 4 report the results of these robustness tests across various panels, each controlling

for different factors that could impact liquidity provision in cryptocurrency markets. Specifi-

cally, Panels A through F incorporate risk-adjusted returns, liquidity supply, network effects,

cryptocurrency risk factors, Bitcoin futures, and high-frequency predictors, respectively. The

findings remain consistent with our baseline regressions, confirming that these predictors sig-

nificantly forecast returns on a reversal strategy related to liquidity provision in cryptocurrency

markets.

For example, after accounting for time-varying risks from exposure to common factors, a

one standard deviation increase in SPOTVOL, LTV, RV, RA, NCSKEW, Tail, and DVINNOV
TETHER

leads to a decrease of 0.259% and an increase of 0.010%, 0.056%, 0.083%, 0.032%, 0.018%, and

0.187%, respectively, in the liquidity provision premium after controlling for equally-weighted

cryptocurrency market returns, as presented in Model 5 of Panel A. Thus, these predictors

can predict the risk-adjusted premium from liquidity provision in cryptocurrency markets.

Overall, the robustness tests suggest that, after considering various factors that might affect

liquidity provision, a reduction in liquidity supply, as indicated by an increase in liquidity

provision premium, plays a substantial role in the drying up of liquidity observed during

periods of volatility in cryptocurrency markets.

[Table 4 about here]
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3.4 Liquidity Change in Uniswap

Decentralized finance (DeFi) has grown remarkably since 2020 (Harvey et al., 2021). De-

centralized exchanges are one of the most substantial innovations in DeFi, and Uniswap is one

of the largest decentralized exchanges (Capponi and Jia, 2021; Han et al., 2021). In contrast

to the centralized exchanges based on order books, Uniswap uses automated market maker

(AMM) smart contracts on the Ethereum blockchain, and individuals (agents) contribute to

the liquidity on the platform by depositing an equal value of two different assets into a liquid-

ity pool; this action facilitates trading for those assets on the platform. By passively adding

asset pairs to the existing liquidity pool, anyone can supply liquidity to the exchange (Lehar

and Parlour, 2021). Following Capponi and Jia (2021) and Han et al. (2021), we use the

Uniswap V2 liquidity data.16

Specifically, we examine the impact of impermanent loss (IL), fees, changes in liquidity,

trading volume, transaction count, and withdrawals from Uniswap on the liquidity provision

premiums in cryptocurrency markets. Uniswap uses a constant product formula to determine

market and transaction prices based on the available reserves of a pair (e.g., x tokens of X and

y tokens of Y).17 This implies that regardless of the number of tokens added to or removed

from a pair’s reserves, the product of the reserves must remain constant; specifically, trades

must not alter the product (k) of a pair’s reserves (x and y).

16We obtain the data from the Graph’s Uniswap V2 Subgraph. The Graph is an indexing protocol to retrieve data
from blockchains such as Ethereum. Uniswap V2, which enables any ERC 20 token pairs to be traded, started on May
18, 2020. ERC-20, which stands for Ethereum Request for Comment 20, is a widely used standard for creating and
deploying fungible tokens on the Ethereum blockchain.

17Wrapped Ether (WETH), the ERC-20 representation of Ether (ETH), is the most commonly traded
token in Uniswap V2 pools.
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Liquidity provision in Uniswap entails a trade-off between potential profits and the risk

of adverse selection. While liquidity providers profit from transaction fees generated by swap

trading volumes, they also face the risk of impermanent loss (IL) due to permanent price

changes. IL occurs when holding tokens directly proves more profitable than investing them

in a liquidity pool (Loesch et al., 2021). Following Heimbach et al. (2021), Barbon and Ranaldo

(2021), and Khakhar and Chen (2022), we measure IL as

IL =
2
√
∆P

∆P + 1
− 1, (10)

where ∆P = Pt

Pt−1
is the price change from t − 1 to t. Pt =

yt
xt

for a liquidity pool containing

x tokens of X and y tokens of Y.18

Traders on Uniswap also incur costs (gas fees), which determine the order execution pri-

orities on the Ethereum blockchain. Validators process orders based on these gas fees, giving

priority to those with higher fees (Capponi et al., 2022). Following Barbon and Ranaldo

(2021) and Lehar and Parlour (2021), we measure the gas fees of a swap as the product of

the quantity of gas required to execute a swap transaction (Γ = 110000 gas units) and the

average gas price on a given day. Gas fees vary depending on market events (Lehar and Par-

lour, 2021). Further, Capponi et al. (2022) show that trades with high gas fees carry more

private information, which may result in losses for liquidity providers on Uniswap (Barbon

and Ranaldo, 2021).

18IL, fees, and withdraws are calculated using the WETH and USDC pair, which is the pool with the
largest total volume (Lehar and Parlour, 2021).
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Table 5 reports the results of Uniswap’s influence on liquidity provision premiums in the

cryptocurrency markets. Positive changes in liquidity, trading volume, and transaction count

on Uniswap reduce the liquidity provision premium in centralized cryptocurrency markets;

this suggests that increased liquidity on Uniswap decreases the compensation required for

liquidity provision in centralized markets. Conversely, increased withdrawals, higher fees, and

greater IL on Uniswap lead to a higher liquidity provision premium in centralized markets.

This indicates that more withdrawals and higher costs on Uniswap raise the compensation

required for liquidity provision in centralized markets. Overall, our findings suggest potential

competition between centralized and decentralized exchanges, with the likelihood of decentral-

ized exchanges being used for trading traditional assets (Barbon and Ranaldo, 2021; Aoyagi

and Ito, 2022).

[Table 5 about here]

3.5 The liquidity provision premium of stock markets

Cryptocurrencies can provide diversification benefits in international asset allocation (Briere

et al., 2015; Dyhrberg, 2016; Bouri et al., 2017; Anyfantaki et al., 2021). Further, Hackethal

et al. (2022) show that cryptocurrency investors tend to invest in stocks with high media

sentiment, and that their propensity towards riskier stocks increases after their investment in

cryptocurrency. Given this potential co-movement between cryptocurrency and global stock

markets, we examine the impact of liquidity provision premiums in various stock markets,
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namely those in the US, Canada, China, and Japan, on the liquidity provision premiums in

cryptocurrency markets.

The results reported in Table 6 shows that the liquidity provision premium of stock mar-

kets in the US and Canada positively predicts the premium of cryptocurrency markets. This

indicates that the inventory of the market makers in the US and Canada is subject to common

shocks that influence the liquidity provisions provided by the market makers in these coun-

tries (Bekaert et al., 2007; Karolyi et al., 2012). This positive co-movement reflects a shared

global liquidity demand, where market makers adjust their positions in response to common

shocks. Conversely, the premium in China and Japan negatively predicts that of cryptocur-

rency markets; thus, the Chinese and Japanese stock markets and cryptocurrency markets

are considered by market makers to be substitutes.19 The substitute relationship could be

linked to local regulatory stances or investor preferences that differentiate these markets from

those in the US and Cananda (Aggarwal et al., 1989; Pan et al., 2016; Arora, 2020; Borri

and Shakhnov, 2020; Titman et al., 2022; Hussain and Su, 2024). Our finding highlights the

unique role of regional market characteristics in shaping liquidity flows across traditional and

cryptocurrency assets.

Previous studies suggest that liquidity dynamics in major financial markets often extend

to alternative asset classes, particularly cryptocurrencies that are viewed as potential diver-

sification tools in international portfolios (Anyfantaki et al., 2021). Our results align with

these findings, highlighting a systematic interaction between global and cryptocurrency mar-

19In untabulated results, we obtain similar results for the contemporaneous relation of the liquidity provi-
sions for cryptocurrency and stock markets. We thank our anonymous referee for suggesting this.
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kets driven by shared liquidity risks (Bekaert et al., 2007). Overall, our findings emphasize

the interconnectedness of the liquidity provision across cryptocurrency and traditional stock

markets.

[Table 6 about here]

3.6 Cross-sectional variation

In this subsection, we examine the liquidity provision premium of cryptocurrency markets

across different cryptocurrency market capitalization groups. Risky assets have higher mar-

gin requirements (Brunnermeier and Pedersen, 2009). In case of adverse shocks in financial

markets, market makers experience funding constraints and are thus more likely to provide

liquidity to assets with lower volatility. Avramov et al. (2006) demonstrate that the returns

from reversal strategies exhibit more significant effects in low liquidity stocks than in high

liquidity ones. In sum, owing to the “flight to quality” phenomenon, market makers prefer to

provide liquidity to more liquid assets with lower volatility (Sadka, 2011; Nagel, 2012).

Following this strand of the literature, we examine the cross-sectional variation in liquid-

ity provision premiums across different cryptocurrency market capitalization categories. Liu

et al. (2022) show that cryptocurrency market returns tend to move together with leading

cryptocurrencies (e.g., Bitcoin, Ethereum, and Ripple). Additionally, while the liquidity pro-

vision premium involves short positions, short selling may be impractical or restricted for

small cryptocurrencies. Specifically, we define cryptocurrencies below the 30% of market cap-

italization as “small-MV ”, and those above the 70% of market capitalization as “large-MV ”.
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Table 7 reports the estimation results based on size using market capitalization as subsam-

ples. In Panel A, the influence of SPOTVOL, LTV, RV, RA, NCSKEW, Tail, and DVINNOV
TETHER

on the liquidity provision premium of cryptocurrencies is highly significant for the small-MV

subsample. In contrast, SPOTVOL, LTV, RV, and NCSKEW turn out to be insignificance in

Model 10 (Panel B the large-MV subsample). Moreover, RA and NCSKEW in Model 8, as

well as Tail in Models 9 and 10 reverse their signs. This suggests that the influence of these

factors on liquidity provision premium varies across the two subsamples. This result is consis-

tent with (Avramov et al., 2006; Brunnermeier and Pedersen, 2009; Nagel, 2012). Specifically,

while these factors positively influence returns on cryptocurrencies with a smaller marketcap,

they have a negative impact on those with a larger marketcap, indicating a potential differ-

ence in market dynamics based on cryptocurrency market value. Overall, our results highlight

how market capitalization moderates the relationship between the effects of key predictors on

liquidity provision premium in cryptocurrency markets.

[Table 7 about here]

3.7 Permanent or transitory effect

In this subsection, we investigate whether the effect of predictors on the liquidity provision

premium of cryptocurrencies is permanent or transitory. Specifically, we run the following

regression:

LR
t,t+h = ah + bhXt + cCRM,t + et,t+h, (11)
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where LR
t,t+h is the cumulative liquidity provision premium of cryptocurrencies from t to t+h.

If the predictors’ effect is persistent, the response coefficient bh remains constant across horizon

h. Conversely, if it is temporary, bh should diminish to zero.

Panels A, B, C, and D of Appendix Table A.1 report the results for the full sample.

Across Models 5, 10, 15, and 20, the impact of SPOTVOL, LTV, RV, RA, NCSKEW, Tail,

and DVINNOV
TETHER on the liquidity provision premium of cryptocurrencies tends to increases as

the time horizon lengthens. For example, the coefficient of RV is 0.114, 0.176, 0.382, and

0.904 at h = 2, h = 3, h = 6, and h = 12, respectively. This pattern suggests that the effects

of these predictors on the liquidity provision premium persist over time, indicating they are

more likely to be permanent than transitory.

[Appendix Table A.1 about here]

Following Hodrick (1992) and Ang and Bekaert (2007), we account for the overlap in

liquidity provision over the h period. Our results, presented in Appendix Table A.2, remain

consistent when using Hodrick (1992) standard errors, further supporting our findings.

[Appendix Table A.2 about here]

We also examine whether the predictors have a permanent or transitory effect on the

liquidity provision premium of cryptocurrencies across different cryptocurrency market cap-

italization groups. Panels E, F, G, and H of Appendix Table A.1 report the results for the

small-MV subsample, while Panels I, J, K, and L present the results for the large-MV sub-

sample. In models where we control for all predictors, we generally observe an increase in
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coefficient magnitude across both small and large cryptocurrencies as the time horizon ex-

tends. However, RV becomes insignificant for large cryptocurrencies in models 45, 50, 55, and

60, while NCSKEW and Tail flip signs between small (models 25, 30, and 35) and large cryp-

tocurrencies (models 45, 50, and 55). The positive coefficients for smaller cryptocurrencies

suggest that liquidity providers receive higher compensation for bearing risks associated with

smaller assets during periods of heightened volatility, uncertainty, and risk aversion. This is

likely due to the risk management constraints associated with fluctuations in financial interme-

diaries’ risk appetite, as well as the funding or liquidity constraints prevalent in these smaller

markets (Brunnermeier and Pedersen, 2009; Adrian and Shin, 2010; Nagel, 2012). Conversely,

the negative coefficients of NCSKEW and Tail for large cryptocurrencies in Panels I, J, K and

L may reflect a reduced liquidity provision premium, possibly due to the stability associated

with larger assets.

To illustrate these findings, Figure 1 plots the coefficients and 95% confidence intervals of

the cryptocurrency liquidity provision premium forecast based on the model with all predictors

at various horizons. The figure provides a visual comparison over different horizons and size

groups as in Panels A (full sample), B (small-MV ), and C (large-MV ). The increase in

magnitude of regression coefficients associated with longer horizons corroborates the trend

shown in Appendix Table A.1, highlighting a more pronounced impact of predictors over

longer periods. For small cryptocurrencies’ size, the increase in positive coefficients across

LTV, RV, RA, NCSKEW, Tail, and DVINNOV
TETHER suggests a consistent pattern of enhanced

liquidity provision premium in response to heightened uncertainty as the forecast time horizon
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extends, despite exceptions for NCSKEW at the 6- and 12-horizons and Tail at the 12-horizon.

In contrast, RV appears to be insignificant, while NCSKEW and Tail negatively impact the

liquidity provision premium for large cryptocurrencies. This divergence highlights the role of

market capitalization in shaping liquidity provision dynamics.

[Figure 1 about here]

3.8 Sharpe ratio

An increase in return volatility is likely to raise the premium from liquidity provision,

though it may not improve the Sharpe Ratio unless market makers face elevated participation

costs or greater risk aversion (Grossman and Miller, 1988). Following their work, we examine,

in this subsection, the impact of predictors on the Sharpe ratio of the reversal strategy from

liquidity provision in cryptocurrency markets. The Sharpe ratio captures market makers’

premium per unit of risk. Specifically, we use the full heterogeneous autoregressive model

(HARQ-F), which allows RV to vary with realized quarticity (RQ), following Bollerslev et al.

(2016).

RVt = β0 + (β1 + β1QRQ
1/2
t−1)RVt−1 + (β2 + β2QRQ

1/2
t−1|t−7)RVt−1|t−7

+ (β3 + β3QRQ
1/2
t−1|t−30)RVt−1|t−30 + ut. (12)
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The HARQ-F model captures greater average persistence and generates forecasts that

more closely match unconditional volatility, especially when the lagged realized volatility is

less informative, compared to the standard HAR model.20 We then use the fitted RV (R̂V )

from Eq. (12) to examine the effect of various predictors on the Sharpe ratio of liquidity

provision.

LR
t√
R̂V t

= a+ bXt + et, (13)

where Xt includes SPOTVOL, LTV, RV, RA, NCSKEW, Tail, and DVINNOV
TETHER. This specifi-

cation accounts for the volatility persistence and enables a more accurate estimation of Sharpe

ratios.

Table 8 reports the results of Eq. (13). The predictors, namely SPOTVOL, LTV, RV, RA,

NCSKEW, Tail, and DVINNOV
TETHER, show significant predictive power for the Sharpe ratio of the

reversal strategy in cryptocurrency market liquidity provision. Specifically, in Model 5, which

includes all predictors, a one standard deviation increase in these predictors is associated with

changes of -5.403%, 2.166%, 0.962%, 1.590%, 0.830%, 0.932%, and 3.531% in the Sharpe ratio

of liquidity provision, respectively. This result highlights that these variables are significant

determinants of the Sharpe ratio for liquidity providers in cryptocurrency markets, suggesting

that funding constraints act as significant barriers to liquidity provision (Gromb and Vayanos,

2002; Brunnermeier and Pedersen, 2009).

20Prior studies (Chen and Ghysels, 2011; Bekaert and Hoerova, 2014) show that RV-based models, which
capture the importance of persistence, outperform GARCH-related models in volatility forecasting.
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Overall, our results show that the liquidity provision premium, as well as the associated risk

premium earned by liquidity providers, co-moves with SPOTVOL, LTV, RV, RA, NCSKEW,

Tail, and DVINNOV
TETHER. The observed comovement of the liquidity provision premium and the

Sharpe ratio with uncertainty measures is consistent with Nagel (2012).

[Table 8 about here]

3.9 TVP-VAR analysis

Based on a preliminary analysis using Structural Vector Autoregression (SVAR) methodol-

ogy, we find that the coefficients and significance of the Impulse Response Functions vary over

time. Consequently, we adopt the Time-Varying Parameter Vector Autoregression (TVP-

VAR) methodology (Primiceri, 2005). This approach was further extended by Koop and

Korobilis (2013) to incorporate a more computationally efficient estimation method using

forgetting factors, compared to the traditional reliance on MCMC simulation.

Beyond standard macroeconomic applications (Cogley and Sargent, 2005; Prieto et al.,

2016), the TVP-VAR framework has been used to investigate the relationship between stock

market liquidity and macro-financial factors (Ellington et al., 2017; Ellington, 2018; Ellington

and Milas, 2021). In the cryptocurrency market context, TVP-VAR is commonly employed to

assess intra-market connectedness or its linkages with other financial markets (Naeem et al.,

2022; Huang et al., 2023; Zieba, 2024), and liquidity spillovers (Nekhili et al., 2023), using the

methodology proposed by Antonakakis et al. (2020).
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The primary distinction between the TVP-VAR and SVAR methodologies lies in the for-

mer’s assumption of time-varying model coefficients and a dynamic variance-covariance matrix

of residuals. Accordingly, the reduced-form TVP-VAR model can be defined as:

Yt = β0,t + β1,tYt−1 + ...+ βp,tYt−p + ϵt ≡ X
′

tθt + ϵt (14)

where Yt is a vector of M endogenous variables, p is the number of lags, and

Xt = (IM
⊗

(1, Y
′
t−1, ..., Y

′
t−p)) is a Kronecker product containing lagged values of Yt and a

constant. The residuals ϵt follow ϵt ∼ N(0, ωt), where ωt is a time-varying variance-covariance

matrix. The θt matrix, which collects the time-varying parameters, is an (M × Mp) ma-

trix defined as θt = (β
′
0,t, ..., β

′
p,t)

′
. The parameter θt is assumed to evolve as a random

walk, θt = θt−1 + νt, where νt ∼ N(0, Qt). Following the literature (Ellington, 2018), we

use a specification with M = 4 and p = 2, so that Y = [LR, SPOTV OL,LTV, Z], where

Z ∈ {RV,RA,NCSKEW,Tail,DV INNOV
TETHER, CRM} represents one of the other predictors.

We set the forgetting factors to α = 0.99, δ = 0.99, a decay factor κ = 0.96, and the de-

gree of shrinkage γ = 0.1 (Koop and Korobilis, 2013, 2014; Antonakakis et al., 2020). As

TVP-VAR is a Bayesian method requiring prior assumptions, we employ a Minnesota prior

(Litterman, 1986; Koop and Korobilis, 2013). Consistent with the main analysis, we stan-

dardize SPOTVOL, LTV, RV, RA, NCSKEW, Tail, DVINNOV
TETHER, and CRM so that they all

have a mean of 0 and a standard deviation of 1.21

21The results remain similar when these variables are lagged by five days.
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In other words, each model is structured as a four-variable system comprising two VIX

components (SPOTVOL and LTV), one additional predictor (Z), and the liquidity provision

premium (LR). Our analysis focuses specifically on the coefficients in the LR equation (15),

as these are central to predicting the liquidity provision premium:

Lt
R = βLR

1 LR
t−1 + βS

1 SPOTV OLt−1 + βLTV
1 LTVt−1 + βZ

1 Zt−1

+βLR
2 LR

t−2 + βS
2 SPOTV OLt−2 + βLTV

2 LTVt−2 + βZ
2 Zt−2 + ϵt (15)

The estimation of the coefficients βLR
1 , βLR

2 , βS
1 , β

S
2 , β

LTV
1 , and βLTV

2 across models with

different Z yields consistent results, as expected. Therefore, we report these coefficients only

for the model where Z = NCSKEW and provide the coefficients βZ
1 and βZ

2 for each model

with a different Z.

Next, we assess the forecast accuracy of the models using two metrics: MSFE (Mean

Squared Forecast Error) and MDA (Mean Directional Accuracy). The analysis of time-varying

coefficients, which incorporates the first two lags of each variable, reveals a symmetric evolu-

tion in the coefficients for the first and second lags (Figure 2). Specifically, these coefficients

experience sharp increases at the beginning of the sample period, coinciding with the cryp-

tocurrency market bubble of 2017–2018. After this bubble, the coefficients stabilize, only to

exhibit pronounced increases again towards the end of the period, aligning with the bubble

observed at the end of 2021 and the start of 2022. This dynamic is particularly evident for

the coefficients of SPOTVOL, LTV, NCSKEW, Tail, RA, and CRM .
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Based on these findings, we divide the forecasting accuracy analysis into three two-year

sub-periods: (1) 2017–2018, (2) 2019–2020, and (3) 2021–2022. The models’ forecasting

accuracy is then compared across these sub-periods and with the estimates for the entire time

frame.

[Figure 2 about here]

Table 9 presents the MSFE and MDA results in Panels A and B, respectively. Panel A

shows that, over the entire sample period, the TVP-VAR model delivers comparable MSFE

across all four-variable models with varying Z. When examining individual sub-periods, how-

ever, forecasting accuracy, as measured by MSFE, declines significantly in the second sub-

period for models where Z represents NCSKEW, Tail, RV, or CRM . Additionally, models

with RA and DVINNOV
TETHER as Z display lower overall MSFE for the entire period compared to

their sub-period MSFEs, except in the first sub-period when Z is NCSKEW.

The MDA results, however, yield slightly different insights. While overall MDA values

remain consistent across models and periods, there are two exceptions: models with RA

and DVINNOV
TETHER as Z show significantly lower MDA values in the first sub-period. In all other

cases, the MDA consistently exceeds 0.84, indicating a high level of directional accuracy across

models and sample periods.

[Table 9 about here]
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4 Conclusion

When uncertainties haunt the economy, liquidity is squeezed. In this study, we examine

whether uncertainty measures can predict the returns of liquidity provision in cryptocurrency

markets. We show that spot volatility, left tail volatility, realized volatility, risk aversion, crash

risk, tail risk, and Tether liquidity shocks can predict liquidity provision premiums using both

in-sample and out-of-sample tests. Specifically, market makers require high returns to provide

liquidity to cryptocurrency markets during periods of high left tail volatility, realized volatility,

risk aversion, crash risk, tail risk, or Tether liquidity shocks.

Further, improvements in liquidity, trading volume, and transaction count on Uniswap

reduce the liquidity provision premium in centralized cryptocurrency markets, while more

withdrawals, higher fees, and greater IL on Uniswap lead to a higher liquidity provision

premium in centralized markets. This suggests potential competition between centralized

and decentralized exchanges.

Finally, the liquidity provision premium in the stock markets of the US and Canada pos-

itively predicts the premium in cryptocurrency markets. Conversely, in China and Japan,

the premium in the stock markets negatively predicts that in cryptocurrency markets; this

suggests that market makers experience common shocks in cryptocurrency markets and the

US and Canada stock markets. However, market makers in the Chinese and Japanese stock

markets view cryptocurrency markets as a substitute. Overall, our study highlights the in-
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terconnectedness of market makers’ liquidity provision across cryptocurrency and traditional

stock markets.

Our work has some implications for both liquidity providers for cryptocurrency and policy-

makers. Considering the rapid expansion of both centralized and decentralized cryptocurrency

exchanges (Dimpfl and Peter, 2021; Lehar and Parlour, 2021), the returns from liquidity pro-

vision hold significant importance within these exchanges. Moreover, our study shows that

spot volatility, left tail volatility, realized volatility, risk aversion, crash risk, tail risk, and

Tether liquidity shocks help predict liquidity provision premiums. Our results for Tether in-

novations provide further support for the results of Griffin and Shams (2020) as we show the

influence of Tether-related movements on the liquidity provision mechanism in a wider scope

of cryptocurrency markets beyond Bitcoin. Furthermore, as policymakers have expressed

concerns about the volatility of cryptocurrency markets, they may find our work helpful in

effectively monitoring the liquidity provisions in cryptocurrency markets. By understanding

the impact of spot volatility, left tail volatility, realized volatility, risk aversion, crash risk,

tail risk, and Tether liquidity shocks on liquidity provision premiums, policymakers can make

more informed decisions and ultimately promote greater stability in cryptocurrency markets.
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Table 1 Descriptive statistics

This table reports descriptive statistics and correlations for the following variables:

L: Liquidity provision premium of cryptocurrencies;

SPOTVOL: spot volatility;

LTV: left tail volatility;

RV: realized variance;

RA: risk aversion;

Tail: tail risk;

NCSKEW: crash risk;

DVINNOV
TETHER: Tether liquidity;

CR M : cumulative equally-weighted cryptocurrency market returns.

Panel A reports the summary statistics. Panel B reports the correlations. The liquidity provision premium is at a
5-minute frequency, while the other variables are at a daily frequency.

Panel A: Descriptive statistics

L SPOTVOL LTV RV (104) RA NCSKEW Tail DVINNOV
Tether CR M

Mean 0.720 12.263 10.189 0.231 3.025 0.014 0.399 0.136 0.544

Stdev 4.526 8.207 3.528 0.839 1.132 1.050 0.068 0.000 0.865

P25 0.003 6.738 7.406 0.040 2.610 -0.584 0.352 0.136 0.039

Median 0.198 9.694 9.250 0.081 2.755 -0.159 0.400 0.136 0.320

P75 0.623 15.687 12.397 0.172 3.162 0.468 0.445 0.137 0.716

Skewness 18.471 2.431 1.261 14.857 11.437 0.319 0.174 5.160 2.629

Kurtosis 1791.357 13.219 5.238 299.604 184.342 2.579 3.424 71.537 12.780

Panel B: Correlation

L SPOTVOL LTV RV (104) RA NCSKEW Tail DVINNOV
Tether CR M

SPOTVOL -0.012 1.000

LTV 0.020 0.590 1.000

RV 0.019 0.021 0.040 1.000

RA -0.001 0.749 0.495 0.027 1.000

NCSKEW 0.008 0.537 0.502 -0.000 0.397 1.000

Tail 0.005 0.303 0.132 0.047 0.363 0.461 1.000

DVINNOV
TETHER 0.044 0.196 0.358 0.140 0.123 0.166 0.138 1.000

CR M -0.008 -0.318 -0.190 -0.009 -0.150 -0.311 0.039 -0.054 1.000
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Table 2 Out of sample R2 statistics

The table reports the proportional reduction in mean squared forecast error (MSFE) at different h-horizons. We
conduct a predictive regression forecast of the log returns of a reversal strategy in the cryptocurrency markets using
the predictor variable in the first column compared to the prevailing mean benchmark forecast. Statistical significance
is based on the Clark and West (2007) statistic (CW-stat) to test the null hypothesis that the prevailing mean MSFE
is less than or equal to the predictive regression MSFE, against the alternative hypothesis that the prevailing mean
MSFE is greater than the predictive regression MSFE. The predictor variable includes spot volatility (SPOTVOL),
left tail volatility (LTV), realized variance (RV), risk aversion (RA), crash risk (NCSKEW), tail risk (Tail), or Tether
liquidity (DVINNOV

TETHER).

h = 2 h = 3 h = 6 h = 12

R2OS CW -stat R2OS CW -stat R2OS CW -stat R2OS CW -stat

SPOTVOL 1.335 53.023 2.615 59.916 4.446 54.955 3.226 32.632

LTV 1.392 49.890 2.680 56.821 4.485 52.317 3.141 31.565

RV 1.382 47.203 2.670 55.325 4.497 52.409 3.205 32.451

RA 1.275 53.089 2.531 60.261 4.314 55.666 3.073 33.704

CRASH 1.236 52.834 2.475 61.303 4.224 57.871 2.964 35.581

TAIL 1.236 52.834 2.475 61.303 4.224 57.871 2.964 35.581

DVINNOV
TETHER 1.614 48.841 2.904 54.638 4.616 49.822 3.259 29.449
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Table 3 Predicting the liquidity provision premium of cryptocurrencies

The table reports the results of regressing the cryptocurrency liquidity provision premium against spot volatility
(SPOTVOL), left tail volatility (LTV), realized variance (RV), risk aversion (RA), crash risk (NCSKEW), tail risk (Tail),
or Tether liquidity (DVINNOV

TETHER) using OLS regressions. The predictors, namely SPOTVOL, LTV, RV, RA, NCSKEW,
Tail, and DVINNOV

TETHER, are lagged by five days. The control variable, cumulative equally-weighted cryptocurrency market
returns (CRM ), is lagged by five days. The numbers in parentheses are t-statistics based on Newey and West (1987)
standard errors with six lags. ∗∗∗, ∗∗, and ∗ denote significance at the 1%, 5%, and 10% levels, respectively.

Model 1 Model 2 Model 3 Model 4 Model 5

SPOTVOL -0.184∗∗∗ -0.235∗∗∗ -0.249∗∗∗ -0.249∗∗∗ -0.260∗∗∗

(-20.79) (-21.42) (-23.10) (-23.18) (-23.87)

LTV 0.183∗∗∗ 0.177∗∗∗ 0.166∗∗∗ 0.177∗∗∗ 0.100∗∗∗

(19.04) (18.58) (15.84) (17.16) (10.55)

RV 0.081∗∗∗ 0.080∗∗∗ 0.081∗∗∗ 0.079∗∗∗ 0.056∗∗∗

(9.80) (9.74) (9.83) (9.52) (7.15)

RA 0.070∗∗∗ 0.070∗∗∗ 0.056∗∗∗ 0.085∗∗∗

(11.13) (11.31) (8.93) (13.02)

NCSKEW 0.040∗∗∗ 0.015∗∗ 0.031∗∗∗

(5.77) (2.05) (4.53)

Tail 0.048∗∗∗ 0.019∗∗∗

(7.13) (2.69)

DVINNOV
TETHER 0.187∗∗∗

(16.44)

RM -0.060∗∗∗ -0.067∗∗∗ -0.061∗∗∗ -0.071∗∗∗ -0.068∗∗∗

(-12.66) (-13.70) (-11.87) (-13.89) (-13.50)

Constant 0.721∗∗∗ 0.721∗∗∗ 0.720∗∗∗ 0.720∗∗∗ 0.721∗∗∗

(100.81) (100.83) (100.78) (100.77) (101.03)

Observations 629542 629542 629542 629542 629255

Adj-R2 (%) 0.173 0.183 0.188 0.195 0.337
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Table 4 Robustness tests

The table reports the results of regressing the cryptocurrency liquidity provision premium against spot volatility
(SPOTVOL), left tail volatility (LTV), realized variance (RV), risk aversion (RA), crash risk (NCSKEW), tail risk
(Tail), or Tether liquidity (DVINNOV

TETHER) using OLS regressions. In Panel A, we use the risk-adjusted premium of
cryptocurrency liquidity provision. In Panel B, we control for liquidity supply proxied by idiosyncratic risk. We
calculate idiosyncratic risk (IVOL) as the cross-sectional standard deviation of cryptocurrency returns. In Panel C, we
control for the network effect proxied by the growth rate of the unique addresses (AddressG). In Panel D, we control
for the cryptocurrency factors, including the cryptocurrency market (CMKT), size (CSIZE), and momentum (CMOM)
factors. In Panel E, we control for the volume of futures contracts proxied by the innovations of Bitcoin futures volumes
(VolumeINNOV

Futures). In Panel F, we use the 5-minute price of Proshares Short VIX Short-Term Futures ETF as a proxy
for VIX. We construct the 5-minute RV, crash risk, tail risk, and Tether liquidity measures using the rolling estimates
over the previous week, similar to their corresponding daily measures. The predictors, namely SPOTVOL, LTV, RV,
RA, NCSKEW, Tail, and DVINNOV

TETHER, are lagged by five days. The control variables, cumulative equally-weighted
cryptocurrency market returns (CRM ), IVOL, AddressG, CMKT, CSIZE, CMOM, and VolumeINNOV

Futures , are lagged by
five days. The numbers in parentheses are t-statistics based on Newey and West (1987) standard errors with six lags.
∗∗∗, ∗∗, and ∗ denote significance at the 1%, 5%, and 10% levels, respectively.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 1 Model 2 Model 3 Model 4 Model 5

Panel A: risk-adjusted premium Panel B: liquidity supply

SPOTVOL -0.184∗∗∗ -0.234∗∗∗ -0.247∗∗∗ -0.247∗∗∗ -0.259∗∗∗ -0.183∗∗∗ -0.234∗∗∗ -0.247∗∗∗ -0.247∗∗∗ -0.262∗∗∗

(-20.79) (-21.47) (-23.19) (-23.27) (-23.95) (-20.57) (-21.11) (-22.64) (-22.70) (-23.56)
LTV 0.182∗∗∗ 0.177∗∗∗ 0.166∗∗∗ 0.177∗∗∗ 0.100∗∗∗ 0.181∗∗∗ 0.176∗∗∗ 0.165∗∗∗ 0.176∗∗∗ 0.101∗∗∗

(19.03) (18.59) (15.82) (17.12) (10.54) (18.88) (18.50) (15.89) (17.17) (10.61)
RV 0.081∗∗∗ 0.080∗∗∗ 0.081∗∗∗ 0.079∗∗∗ 0.056∗∗∗ 0.081∗∗∗ 0.080∗∗∗ 0.081∗∗∗ 0.078∗∗∗ 0.057∗∗∗

(9.81) (9.76) (9.85) (9.54) (7.16) (9.90) (9.87) (9.96) (9.64) (7.32)
RA 0.068∗∗∗ 0.069∗∗∗ 0.054∗∗∗ 0.083∗∗∗ 0.069∗∗∗ 0.069∗∗∗ 0.055∗∗∗ 0.086∗∗∗

(11.07) (11.26) (8.86) (12.99) (10.72) (10.90) (8.60) (12.81)
NCSKEW 0.040∗∗∗ 0.015∗∗ 0.032∗∗∗ 0.040∗∗∗ 0.014∗ 0.032∗∗∗

(5.75) (2.07) (4.56) (5.66) (1.96) (4.58)
Tail 0.048∗∗∗ 0.018∗∗∗ 0.048∗∗∗ 0.018∗∗∗

(7.16) (2.65) (7.15) (2.63)
DVINNOV

TETHER 0.187∗∗∗ 0.188∗∗∗

(16.50) (16.60)
IVOL 0.013∗∗ 0.010 0.008 0.009 -0.009

(2.07) (1.50) (1.26) (1.43) (-1.39)
CRM -0.062∗∗∗ -0.069∗∗∗ -0.063∗∗∗ -0.072∗∗∗ -0.070∗∗∗ -0.065∗∗∗ -0.071∗∗∗ -0.064∗∗∗ -0.074∗∗∗ -0.065∗∗∗

(-12.81) (-13.80) (-12.09) (-14.08) (-13.69) (-12.11) (-13.01) (-11.01) (-13.08) (-11.70)
Constant 0.718∗∗∗ 0.718∗∗∗ 0.718∗∗∗ 0.718∗∗∗ 0.718∗∗∗ 0.721∗∗∗ 0.721∗∗∗ 0.720∗∗∗ 0.720∗∗∗ 0.721∗∗∗

(100.42) (100.44) (100.38) (100.37) (100.62) (100.23) (100.25) (100.20) (100.20) (100.46)
Observations 629542 629542 629542 629542 629255 629542 629542 629542 629542 629255
Adj-R2 (%) 0.173 0.183 0.188 0.195 0.337 0.173 0.183 0.188 0.195 0.337
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Table 4 (continued)

Model 1 Model 2 Model 3 Model 4 Model 5 Model 1 Model 2 Model 3 Model 4 Model 5

Panel C: network effect Panel D: cryptocurrency factors

SPOTVOL -0.184∗∗∗ -0.235∗∗∗ -0.248∗∗∗ -0.248∗∗∗ -0.260∗∗∗ -0.190∗∗∗ -0.243∗∗∗ -0.257∗∗∗ -0.260∗∗∗ -0.271∗∗∗

(-20.79) (-21.52) (-23.27) (-23.34) (-24.00) (-20.87) (-21.78) (-23.53) (-23.82) (-24.45)
LTV 0.182∗∗∗ 0.176∗∗∗ 0.165∗∗∗ 0.177∗∗∗ 0.099∗∗∗ 0.189∗∗∗ 0.183∗∗∗ 0.171∗∗∗ 0.189∗∗∗ 0.111∗∗∗

(19.05) (18.60) (15.88) (17.26) (10.58) (19.29) (18.84) (16.27) (17.74) (11.41)
RV 0.081∗∗∗ 0.080∗∗∗ 0.081∗∗∗ 0.078∗∗∗ 0.056∗∗∗ 0.081∗∗∗ 0.080∗∗∗ 0.081∗∗∗ 0.077∗∗∗ 0.055∗∗∗

(9.82) (9.77) (9.86) (9.54) (7.16) (9.88) (9.83) (9.91) (9.45) (7.06)
RA 0.070∗∗∗ 0.070∗∗∗ 0.055∗∗∗ 0.084∗∗∗ 0.072∗∗∗ 0.073∗∗∗ 0.052∗∗∗ 0.080∗∗∗

(11.13) (11.31) (8.82) (12.84) (11.32) (11.49) (8.35) (12.42)
NCSKEW 0.040∗∗∗ 0.014∗∗ 0.031∗∗∗ 0.042∗∗∗ 0.008 0.026∗∗∗

(5.80) (1.98) (4.45) (6.29) (1.07) (3.69)
Tail 0.049∗∗∗ 0.020∗∗∗ 0.068∗∗∗ 0.039∗∗∗

(7.22) (2.82) (10.19) (5.72)
DVINNOV

TETHER 0.187∗∗∗ 0.186∗∗∗

(16.68) (16.82)
CRM -0.059∗∗∗ -0.066∗∗∗ -0.060∗∗∗ -0.070∗∗∗ -0.068∗∗∗ -0.091∗∗∗ -0.100∗∗∗ -0.091∗∗∗ -0.108∗∗∗ -0.097∗∗∗

(-12.31) (-13.32) (-11.56) (-13.63) (-13.24) (-12.44) (-13.27) (-11.82) (-13.69) (-12.41)
AddressG -0.023∗∗∗ -0.023∗∗∗ -0.023∗∗∗ -0.024∗∗∗ -0.024∗∗∗

(-2.85) (-2.85) (-2.86) (-3.04) (-3.05)
CMKT -0.005 -0.003 -0.007 -0.018∗∗∗ -0.027∗∗∗

(-0.71) (-0.39) (-1.08) (-2.64) (-3.90)
CSIZE 0.056∗∗∗ 0.059∗∗∗ 0.059∗∗∗ 0.073∗∗∗ 0.066∗∗∗

(7.36) (7.62) (7.69) (9.30) (8.46)
CMOM 0.007∗ 0.008∗ 0.006 0.006 -0.000

(1.73) (1.89) (1.40) (1.40) (-0.11)
Constant 0.720∗∗∗ 0.721∗∗∗ 0.720∗∗∗ 0.720∗∗∗ 0.721∗∗∗ 0.720∗∗∗ 0.720∗∗∗ 0.720∗∗∗ 0.720∗∗∗ 0.721∗∗∗

(100.48) (100.50) (100.45) (100.45) (100.70) (101.34) (101.37) (101.30) (101.31) (101.58)
Observations 629542 629542 629542 629542 629255 629542 629542 629542 629542 629255
Adj-R2 (%) 0.175 0.185 0.190 0.198 0.339 0.184 0.194 0.200 0.213 0.353

Panel E: volume of futures contracts Panel F: high-frequency control variables

SPOTVOL -0.184∗∗∗ -0.235∗∗∗ -0.248∗∗∗ -0.248∗∗∗ -0.259∗∗∗

(-20.72) (-21.50) (-23.24) (-23.31) (-23.95)
LTV 0.183∗∗∗ 0.177∗∗∗ 0.166∗∗∗ 0.178∗∗∗ 0.099∗∗∗

(19.15) (18.69) (15.91) (17.26) (10.47)
VIX 0.053∗∗∗ 0.065∗∗∗ 0.051∗∗∗ 0.033∗∗∗

(19.25) (21.62) (16.44) (11.02)
RV 0.081∗∗∗ 0.080∗∗∗ 0.081∗∗∗ 0.079∗∗∗ 0.058∗∗∗ 0.063∗∗∗ 0.061∗∗∗ 0.052∗∗∗ 0.041∗∗∗

(9.90) (9.82) (9.95) (9.65) (7.46) (5.23) (5.01) (4.38) (3.42)
RA 0.070∗∗∗ 0.070∗∗∗ 0.055∗∗∗ 0.082∗∗∗

(11.52) (11.69) (9.11) (13.15)
NCSKEW 0.041∗∗∗ 0.015∗∗ 0.036∗∗∗ 0.135∗∗∗ 0.133∗∗∗ 0.130∗∗∗

(5.59) (2.07) (4.98) (10.97) (10.87) (10.75)
Tail 0.048∗∗∗ 0.019∗∗∗ 0.105∗∗∗ 0.092∗∗∗

(7.04) (2.77) (15.07) (13.26)
DVINNOV

TETHER 0.191∗∗∗ 0.118∗∗∗

(16.73) (12.23)
CRM -0.060∗∗∗ -0.067∗∗∗ -0.061∗∗∗ -0.071∗∗∗ -0.069∗∗∗ 0.147∗∗∗ 0.133∗∗∗ 0.131∗∗∗ 0.126∗∗∗

(-12.05) (-13.04) (-11.53) (-13.53) (-13.27) (7.52) (6.58) (6.46) (6.27)
VolumeINNOV

Futures -0.002 0.001 -0.003 -0.005 -0.030∗∗∗

(-0.25) (0.14) (-0.45) (-0.68) (-4.19)
Constant 0.721∗∗∗ 0.721∗∗∗ 0.720∗∗∗ 0.720∗∗∗ 0.721∗∗∗ 0.721∗∗∗ 0.721∗∗∗ 0.720∗∗∗ 0.720∗∗∗

(100.47) (100.49) (100.43) (100.43) (100.69) (90.76) (90.96) (91.14) (91.25)
Observations 629542 629542 629542 629542 629255 628385 628385 625243 625241
Adj-R2 (%) 0.173 0.183 0.187 0.195 0.341 0.163 0.249 0.299 0.363
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Table 5 Predicting the liquidity provision premium of cryptocurrencies using the liquidity
change in Uniswap

The table reports the results of regressing the cryptocurrency liquidity provision premium against the impact of
impermanent loss (IL), fees, changes in liquidity, trading volume, transaction count, and withdrawals on Uniswap V2
using OLS regressions. The predictor, namely the liquidity change in Uniswap, is lagged by five days. The control
variables, namely spot volatility (SPOTVOL), left tail volatility (LTV), realized variance (RV), risk aversion (RA),
crash risk (NCSKEW), tail risk (Tail), innovations of Tether liquidity (DVINNOV

TETHER), and the cumulative equally-
weighted cryptocurrency market returns (CRM ), are lagged by five days. The numbers in parentheses are t-statistics
based on Newey and West (1987) standard errors with six lags. ∗∗∗, ∗∗, and ∗ denote significance at the 1%, 5%, and
10% levels, respectively.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Liquidity -0.034∗∗∗

(-5.37)

Volume -0.080∗∗∗

(-2.88)

Transaction count -0.132∗∗∗

(-7.05)

withdrawals 0.024∗∗∗

(3.75)

Impermanent Loss 0.027∗∗∗

(4.86)

Fees 0.043∗

(1.80)

Constant 8.872∗ 10.072∗∗ 3.350 9.714∗∗ 8.691∗ 11.912∗∗

(1.81) (2.05) (0.66) (1.98) (1.76) (2.55)

Controls Yes Yes Yes Yes Yes Yes

Observations 277920 276768 276768 276480 276768 278208

Adjusted R2 (%) 0.539 0.539 0.581 0.549 0.550 0.538
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Table 6 Predicting the liquidity provision premium of cryptocurrencies using the liquidity
provision premium of stock markets

The table reports the results of regressing the cryptocurrency liquidity provision premium against the liquidity provision
premium of stock markets using OLS regressions. The control variables, namely spot volatility (SPOTVOL), left tail
volatility (LTV), realized variance (RV), risk aversion (RA), crash risk (NCSKEW), tail risk (Tail), innovations of
Tether liquidity (DVINNOV

TETHER), and cumulative equally-weighted cryptocurrency market returns (CRM ), are lagged
by five days. The liquidity provision premiums of the stock markets are based on the US, Canada, the UK, China,
and Japan (LUS

Stock, L
Canada
Stock , LUK

Stock, L
China
Stock , and LJapan

Stock ). LUS
Stock is estimated from a sample from CRSP US stocks.

LCanada
Stock is estimated from a sample from the Standard and Poor’s Toronto Stock Exchange Composite Index. LUK

Stock

is estimated from a sample from the FTSE 100 Index. LChina
Stock is estimated from a sample from the CSMAR Chinese

stocks. LJapan
Stock is estimated from a sample from the Tokyo Stock Exchange. The liquidity provision premium of stock

markets is lagged by five days. The numbers in parentheses are t-statistics based on Newey and West (1987) standard
errors with six lags. ∗∗∗, ∗∗, and ∗ denote significance at the 1%, 5%, and 10% levels, respectively.

LUS
Stock -0.012∗∗∗

(-2.58)

LCanada
Stock -0.064∗∗∗

(-10.32)

LChina
Stock 0.114∗∗∗

(16.25)

LJapan
Stock 0.011∗

(1.66)

CRM -0.062∗∗∗

(-12.38)

Constant 0.721∗∗∗

(101.33)

Controls Yes

Observations 629255

Adj-R2 (%) 0.411
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Table 7 Predicting cryptocurrency liquidity provision premium: size subsamples

The table reports the results of the forecast of cryptocurrency liquidity provision premium on spot volatility
(SPOTVOL), left tail volatility (LTV), realized variance (RV), risk aversion (RA), crash risk (NCSKEW), tail risk
(Tail), and Tether liquidity (DVINNOV

TETHER) using OLS regressions. The predictors, namely SPOTVOL, LTV, RV, RA,
NCSKEW, Tail, and DVINNOV

TETHER, are lagged by five days. The control variable, cumulative equally-weighted cryp-
tocurrency market returns (CRM ), is lagged by five days. We divide the sample into two groups based on their market
capitalization (MV ). We define cryptocurrencies below the 30% of market capitalization as “small-MV ”, and those
above the 70% of market capitalization as “large-MV ”. The numbers in parentheses are t-statistics based on Newey
and West (1987) standard errors with six lags. ∗∗∗, ∗∗, and ∗ denote significance at the 1%, 5%, and 10% levels,
respectively.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10

Panel A: Small-MV subsample Panel B: Large-MV subsample

SPOTVOL -0.144∗∗∗ -0.190∗∗∗ -0.203∗∗∗ -0.202∗∗∗ -0.207∗∗∗ -0.006∗ -0.004 0.000 0.000 -0.001

(-18.42) (-19.63) (-21.98) (-22.04) (-21.94) (-1.79) (-0.97) (0.07) (0.06) (-0.17)

LTV 0.102∗∗∗ 0.097∗∗∗ 0.086∗∗∗ 0.097∗∗∗ 0.067∗∗∗ 0.006∗∗ 0.006∗∗ 0.009∗∗∗ 0.005∗ -0.001

(12.94) (12.43) (10.09) (11.42) (8.99) (2.17) (2.25) (3.05) (1.85) (-0.35)

RV 0.229∗∗∗ 0.228∗∗∗ 0.231∗∗∗ 0.232∗∗∗ 0.226∗∗∗ 0.000 0.000 0.000 0.001 0.000

(9.89) (9.85) (9.93) (9.98) (9.71) (0.35) (0.35) (0.31) (0.80) (0.14)

RA 0.063∗∗∗ 0.063∗∗∗ 0.049∗∗∗ 0.061∗∗∗ -0.003 -0.003∗ 0.003∗ 0.005∗∗∗

(10.23) (10.39) (7.69) (8.92) (-1.64) (-1.76) (1.67) (2.76)

NCSKEW 0.037∗∗∗ 0.013∗∗∗ 0.020∗∗∗ -0.012∗∗∗ -0.002 -0.001

(7.77) (2.60) (4.15) (-6.15) (-1.06) (-0.53)

Tail 0.046∗∗∗ 0.034∗∗∗ -0.018∗∗∗ -0.020∗∗∗

(8.84) (6.06) (-5.00) (-5.52)

DVINNOV
TETHER 0.073∗∗∗ 0.014∗∗∗

(9.98) (3.62)

CRM -0.043∗∗∗ -0.050∗∗∗ -0.044∗∗∗ -0.053∗∗∗ -0.052∗∗∗ 0.015∗∗∗ 0.015∗∗∗ 0.013∗∗∗ 0.017∗∗∗ 0.017∗∗∗

(-10.34) (-11.45) (-9.75) (-12.34) (-12.14) (7.07) (6.96) (5.75) (6.81) (6.95)

Constant 0.454∗∗∗ 0.454∗∗∗ 0.454∗∗∗ 0.454∗∗∗ 0.454∗∗∗ 0.056∗∗∗ 0.056∗∗∗ 0.056∗∗∗ 0.056∗∗∗ 0.056∗∗∗

(78.11) (78.13) (78.05) (78.10) (78.12) (21.17) (21.17) (21.17) (21.14) (21.12)

Observations 629568 629568 629568 629568 629280 629568 629568 629568 629568 629280

Adj-R2 (%) 0.660 0.676 0.684 0.697 0.740 0.006 0.006 0.008 0.013 0.016
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Table 8 Predicting the liquidity provision Sharpe ratio of cryptocurrencies

The table reports the results of regressing the cryptocurrency liquidity provision Sharpe ratio against spot volatility
(SPOTVOL), left tail volatility (LTV), realized variance (RV), risk aversion (RA), crash risk (NCSKEW), tail risk
(Tail), and Tether liquidity (DVINNOV

TETHER) using OLS regressions. The predictors, namely SPOTVOL, LTV, RV,
RA, NCSKEW, Tail, and DVINNOV

TETHER, are lagged by five days. The control variable, cumulative equally-weighted
cryptocurrency market returns (CRM ), is lagged by five days. The numbers in parentheses are t-statistics based on
Newey and West (1987) standard errors with six lags. ∗∗∗, ∗∗, and ∗ denote significance at the 1%, 5%, and 10% levels,
respectively.

Model 1 Model 2 Model 3 Model 4 Model 5

SPOTVOL -3.670∗∗∗ -4.749∗∗∗ -5.183∗∗∗ -5.180∗∗∗ -5.403∗∗∗

(-18.18) (-18.93) (-20.90) (-20.97) (-21.52)

LTV 3.751∗∗∗ 3.632∗∗∗ 3.264∗∗∗ 3.629∗∗∗ 2.166∗∗∗

(16.57) (16.12) (13.18) (14.83) (9.81)

RV 1.447∗∗∗ 1.433∗∗∗ 1.458∗∗∗ 1.383∗∗∗ 0.962∗∗∗

(8.67) (8.61) (8.75) (8.30) (5.94)

RA 1.473∗∗∗ 1.492∗∗∗ 1.039∗∗∗ 1.590∗∗∗

(10.59) (10.83) (7.71) (11.37)

NCSKEW 1.308∗∗∗ 0.518∗∗∗ 0.830∗∗∗

(7.73) (2.88) (4.81)

Tail 1.484∗∗∗ 0.932∗∗∗

(9.18) (5.67)

DVINNOV
TETHER 3.531∗∗∗

(14.15)

CRM -1.104∗∗∗ -1.248∗∗∗ -1.048∗∗∗ -1.348∗∗∗ -1.307∗∗∗

(-8.90) (-9.80) (-8.07) (-10.22) (-9.91)

Constant 15.914∗∗∗ 15.915∗∗∗ 15.910∗∗∗ 15.914∗∗∗ 15.918∗∗∗

(95.35) (95.36) (95.32) (95.29) (95.41)

Observations 629542 629542 629542 629542 629255

Adj-R2(%) 0.141 0.150 0.161 0.176 0.282
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Table 9 Accuracy of the forecast using the TVP-VAR model

The table reports the forecast accuracy metrics from a recursive forecast using a 4-variable TVP-VAR model as
specified in Eq. (15), where Zt represents one of the following: realized variance (RV), risk aversion (RA), crash risk
(NCSKEW), tail risk (Tail), Tether liquidity (DVINNOV

TETHER), or cumulative equally-weighted cryptocurrency market
returns (CRM ). The forecast is performed over the full sample period (2017/01/01 - 2022/12/31), sub-period 1
(2017/01/01 - 2018/12/31), sub-period 2 (2019/01/01 - 2020/12/31), and sub-period 3 (2021/01/01 - 2022/12/31).
Panel A reports the Mean Squared Forecast Error (MSFE), and Panel B reports the Mean Directional Accuracy
(MDA).

Panel A: Mean Squared Forecast Error

Z Entire Period Sub-period 1 Sub-period 2 Sub-period 3

NCSKEW 0.00058 0.00057 0.00155 0.00093

Tail 0.00054 0.00072 0.00094 0.00083

RA 0.00058 0.00429 0.00127 0.00078

RV 0.00057 0.00064 0.00095 0.00070

DVINNOV
TETHER 0.00061 0.04334 0.00114 0.00149

CRM 0.00048 0.00084 0.00100 0.00075

Panel B: Mean Directional Accuracy

Z Entire Period Sub-period 1 Sub-period 2 Sub-period 3

NCSKEW 0.88797 0.88981 0.85440 0.85970

Tail 0.88249 0.84573 0.88599 0.87070

RA 0.87060 0.71212 0.88187 0.85695

RV 0.87883 0.84848 0.87912 0.88171

DVINNOV
TETHER 0.87334 0.60193 0.86538 0.84732

CRM 0.88797 0.87741 0.88187 0.85282
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(a) Panel A: full sample

(b) Panel B: small-MV subsample

(c) Panel C: large-MV subsample

Fig. 1. Predicting cryptocurrency liquidity provision premium at the h-horizon These figures plot

the coefficients and 95% confidence intervals of the forecast of cryptocurrency liquidity provision premium (LR
t,t+h) on

spot volatility (SPOTVOL), left tail volatility (LTV), realized variance (RV), risk aversion (RA), crash risk (NCSKEW),

tail risk (Tail), and Tether liquidity (DVINNOV
TETHER) using OLS regressions at the h-horizon. LR

t,t+h is the cumulative

liquidity provision premium of cryptocurrencies from t to t + h. The predictors, namely SPOTVOL, LTV, RV, RA,

NCSKEW, Tail, and DVINNOV
TETHER, are lagged by five days. The control variable, cumulative equally-weighted cryp-

tocurrency market returns (CRM ), is lagged by five days. We divide the sample into two groups based on their market

capitalization (MV ). We define cryptocurrencies below the 30% of market capitalization as “small-MV ”, and those

above the 70% of market capitalization as “large-MV ”. Confidence intervals are based on Newey and West (1987)

standard errors with six lags.
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Fig. 2. TVP-VAR coefficients for the LR
t equation in the TVP-VAR model These figures plot the

coefficients of the equation for LR
t in the TVP-VAR model, estimated with different Zt. The first row presents the

coefficients of liquidity premium (LR
t ), spot volatility (SPOTVOL), and left tail volatility (LTV) estimated in the model

where Zt = NCSKEW . This model is shown as an example because these coefficients are nearly identical across all
models with different Zt. The second and third rows show the coefficients for various Zt variables, including crash risk
(NCSKEW), tail risk (Tail), risk aversion (RA), realized variance (RV), Tether liquidity (DVINNOV

TETHER), and cumulative
equally-weighted cryptocurrency market returns (CRM ).
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Table A.1 Predicting cryptocurrency liquidity provision premium at the h-horizon

The table reports the results of the forecast of cryptocurrency liquidity provision premium (LR
t,t+h) on spot volatility

(SPOTVOL), left tail volatility (LTV), realized variance (RV), risk aversion (RA), crash risk (NCSKEW), tail risk
(Tail), and Tether liquidity (DVINNOV

TETHER) using OLS regressions at the h-horizon. LR
t,t+h is the cumulative liquidity

provision premium of cryptocurrencies from t to t+ h. The predictors, namely SPOTVOL, LTV, RV, RA, NCSKEW,
Tail, and DVINNOV

TETHER, are lagged by five days. The control variable, cumulative equally-weighted cryptocurrency
market returns (CRM ), is lagged by five days. Panels A, B, C, and D present the results for the full sample. Panels
E, F, G, and H present the results for the Small-MV subsample. Panels E, F, G, and H present the results for
the Large-MV subsample. We divide the sample into two groups based on their market capitalization (MV ). We
define cryptocurrencies below the 30% of market capitalization as “small-MV ”, and those above the 70% of market
capitalization as “large-MV ”. The numbers in parentheses are t-statistics based on Newey and West (1987) standard
errors with six lags. ∗∗∗, ∗∗, and ∗ denote significance at the 1%, 5%, and 10% levels, respectively.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10

Panel A: h = 2 Panel B: h = 3

SPOTVOL -0.399∗∗∗ -0.505∗∗∗ -0.529∗∗∗ -0.529∗∗∗ -0.555∗∗∗ -0.630∗∗∗ -0.799∗∗∗ -0.833∗∗∗ -0.833∗∗∗ -0.874∗∗∗

(-22.04) (-22.70) (-24.48) (-24.57) (-25.30) (-22.01) (-22.74) (-24.59) (-24.68) (-25.37)
LTV 0.393∗∗∗ 0.381∗∗∗ 0.362∗∗∗ 0.388∗∗∗ 0.217∗∗∗ 0.612∗∗∗ 0.593∗∗∗ 0.565∗∗∗ 0.605∗∗∗ 0.338∗∗∗

(20.51) (20.06) (17.19) (18.76) (11.51) (20.10) (19.66) (16.86) (18.46) (11.34)
RV 0.168∗∗∗ 0.167∗∗∗ 0.168∗∗∗ 0.163∗∗∗ 0.114∗∗∗ 0.261∗∗∗ 0.259∗∗∗ 0.261∗∗∗ 0.252∗∗∗ 0.176∗∗∗

(9.92) (9.87) (9.95) (9.61) (7.07) (10.07) (10.01) (10.09) (9.75) (7.15)
RA 0.145∗∗∗ 0.146∗∗∗ 0.114∗∗∗ 0.178∗∗∗ 0.231∗∗∗ 0.232∗∗∗ 0.182∗∗∗ 0.283∗∗∗

(11.85) (12.03) (9.30) (13.71) (12.26) (12.43) (9.68) (14.07)
NCSKEW 0.070∗∗∗ 0.014 0.050∗∗∗ 0.102∗∗∗ 0.015 0.072∗∗∗

(5.12) (1.01) (3.75) (4.80) (0.72) (3.52)
Tail 0.106∗∗∗ 0.042∗∗∗ 0.163∗∗∗ 0.063∗∗∗

(7.81) (2.93) (7.64) (2.79)
DVINNOV

Tether 0.411∗∗∗ 0.644∗∗∗

(17.98) (18.22)
CRM -0.131∗∗∗ -0.145∗∗∗ -0.134∗∗∗ -0.155∗∗∗ -0.151∗∗∗ -0.209∗∗∗ -0.231∗∗∗ -0.216∗∗∗ -0.249∗∗∗ -0.241∗∗∗

(-13.51) (-14.51) (-12.86) (-15.16) (-14.72) (-14.03) (-15.01) (-13.37) (-15.72) (-15.29)
Constant 1.483∗∗∗ 1.483∗∗∗ 1.483∗∗∗ 1.483∗∗∗ 1.483∗∗∗ 2.265∗∗∗ 2.266∗∗∗ 2.265∗∗∗ 2.266∗∗∗ 2.266∗∗∗

(102.42) (102.44) (102.38) (102.39) (102.71) (99.01) (99.03) (98.98) (98.99) (99.29)
Observations 629472 629472 629472 629472 629185 629437 629437 629437 629437 629150
Adj-R2 (%) 0.351 0.370 0.377 0.393 0.695 0.456 0.481 0.489 0.509 0.903

Model 11 Model 12 Model 13 Model 14 Model 15 Model 16 Model 17 Model 18 Model 19 Model 20

Panel C: h = 6 Panel D: h = 12

SPOTVOL -1.501∗∗∗ -1.904∗∗∗ -1.962∗∗∗ -1.961∗∗∗ -2.056∗∗∗ -4.544∗∗∗ -5.811∗∗∗ -5.882∗∗∗ -5.880∗∗∗ -6.151∗∗∗

(-21.37) (-22.20) (-24.15) (-24.23) (-24.78) (-18.02) (-18.83) (-20.49) (-20.53) (-20.82)
LTV 1.381∗∗∗ 1.336∗∗∗ 1.288∗∗∗ 1.377∗∗∗ 0.758∗∗∗ 3.660∗∗∗ 3.520∗∗∗ 3.460∗∗∗ 3.707∗∗∗ 1.940∗∗∗

(18.24) (17.82) (15.30) (16.93) (10.43) (12.91) (12.52) (10.77) (12.23) (7.29)
RV 0.580∗∗∗ 0.575∗∗∗ 0.578∗∗∗ 0.560∗∗∗ 0.382∗∗∗ 1.476∗∗∗ 1.460∗∗∗ 1.464∗∗∗ 1.412∗∗∗ 0.904∗∗∗

(10.32) (10.26) (10.33) (9.97) (7.22) (10.15) (10.08) (10.16) (9.68) (6.64)
RA 0.551∗∗∗ 0.554∗∗∗ 0.443∗∗∗ 0.676∗∗∗ 1.729∗∗∗ 1.733∗∗∗ 1.426∗∗∗ 2.092∗∗∗

(13.35) (13.50) (10.65) (14.80) (13.95) (14.02) (11.28) (14.23)
NCSKEW 0.174∗∗∗ -0.020 0.112∗∗ 0.213 -0.323∗∗ 0.050

(3.58) (-0.43) (2.52) (1.29) (-2.36) (0.39)
Tail 0.363∗∗∗ 0.130∗∗ 1.006∗∗∗ 0.340∗

(7.00) (2.38) (5.41) (1.73)
DVINNOV

Tether 1.495∗∗∗ 4.270∗∗∗

(18.58) (17.67)
CRM -0.510∗∗∗ -0.564∗∗∗ -0.537∗∗∗ -0.611∗∗∗ -0.594∗∗∗ -1.666∗∗∗ -1.836∗∗∗ -1.803∗∗∗ -2.007∗∗∗ -1.958∗∗∗

(-14.98) (-15.83) (-14.41) (-16.83) (-16.44) (-15.24) (-15.72) (-14.85) (-17.13) (-16.88)
Constant 4.823∗∗∗ 4.823∗∗∗ 4.822∗∗∗ 4.823∗∗∗ 4.825∗∗∗ 11.489∗∗∗ 11.489∗∗∗ 11.489∗∗∗ 11.491∗∗∗ 11.499∗∗∗

(86.14) (86.16) (86.13) (86.13) (86.35) (55.33) (55.34) (55.35) (55.34) (55.42)
Observations 629332 629332 629332 629332 629045 629122 629122 629122 629122 628835
Adj-R2(%) 0.585 0.620 0.625 0.650 1.162 0.392 0.421 0.422 0.437 0.786
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Table A.1 (continued)

Model 21 Model 22 Model 23 Model 24 Model 25 Model 26 Model 27 Model 28 Model 29 Model 30

Panel E: Small-MV subsample h = 2 Panel F: Small-MV subsample h = 3

SPOTVOL -0.314∗∗∗ -0.411∗∗∗ -0.433∗∗∗ -0.433∗∗∗ -0.444∗∗∗ -0.514∗∗∗ -0.668∗∗∗ -0.698∗∗∗ -0.697∗∗∗ -0.716∗∗∗

(-17.98) (-19.11) (-21.35) (-21.39) (-21.26) (-17.44) (-18.42) (-20.49) (-20.52) (-20.38)
LTV 0.225∗∗∗ 0.215∗∗∗ 0.195∗∗∗ 0.217∗∗∗ 0.149∗∗∗ 0.376∗∗∗ 0.359∗∗∗ 0.333∗∗∗ 0.365∗∗∗ 0.250∗∗∗

(13.18) (12.72) (10.57) (11.75) (9.37) (13.35) (12.94) (10.97) (12.04) (9.79)
RV 0.501∗∗∗ 0.499∗∗∗ 0.503∗∗∗ 0.505∗∗∗ 0.493∗∗∗ 0.814∗∗∗ 0.811∗∗∗ 0.816∗∗∗ 0.820∗∗∗ 0.799∗∗∗

(9.61) (9.56) (9.63) (9.67) (9.41) (9.39) (9.35) (9.40) (9.44) (9.17)
RA 0.132∗∗∗ 0.133∗∗∗ 0.106∗∗∗ 0.132∗∗∗ 0.211∗∗∗ 0.212∗∗∗ 0.171∗∗∗ 0.216∗∗∗

(10.53) (10.68) (7.98) (9.23) (10.83) (10.98) (8.24) (9.46)
NCSKEW 0.068∗∗∗ 0.020∗∗ 0.035∗∗∗ 0.090∗∗∗ 0.021 0.046∗∗∗

(6.96) (2.01) (3.70) (5.98) (1.32) (3.12)
Tail 0.090∗∗∗ 0.062∗∗∗ 0.132∗∗∗ 0.085∗∗∗

(7.94) (5.09) (7.04) (4.19)
DVINNOV

Tether 0.165∗∗∗ 0.277∗∗∗

(10.39) (10.61)
CRM -0.097∗∗∗ -0.110∗∗∗ -0.100∗∗∗ -0.118∗∗∗ -0.115∗∗∗ -0.162∗∗∗ -0.183∗∗∗ -0.169∗∗∗ -0.196∗∗∗ -0.191∗∗∗

(-10.75) (-11.78) (-10.21) (-12.77) (-12.58) (-10.92) (-11.86) (-10.42) (-13.00) (-12.83)
Constant 0.931∗∗∗ 0.931∗∗∗ 0.931∗∗∗ 0.931∗∗∗ 0.931∗∗∗ 1.433∗∗∗ 1.433∗∗∗ 1.433∗∗∗ 1.433∗∗∗ 1.434∗∗∗

(73.23) (73.25) (73.16) (73.21) (73.24) (67.67) (67.68) (67.60) (67.65) (67.67)
Observations 629564 629564 629564 629564 629276 629562 629562 629562 629562 629274
Adj-R2 (%) 1.043 1.067 1.075 1.092 1.164 1.214 1.240 1.247 1.262 1.351

Model 31 Model 32 Model 33 Model 34 Model 35 Model 36 Model 37 Model 38 Model 39 Model 40

Panel G: Small-MV subsample h = 6 Panel H: Small-MV subsample h = 12

SPOTVOL -1.352∗∗∗ -1.725∗∗∗ -1.755∗∗∗ -1.753∗∗∗ -1.807∗∗∗ -5.270∗∗∗ -6.553∗∗∗ -6.375∗∗∗ -6.373∗∗∗ -6.597∗∗∗

(-15.60) (-16.14) (-17.64) (-17.65) (-17.52) (-10.57) (-10.52) (-11.01) (-11.01) (-10.96)
LTV 1.043∗∗∗ 1.002∗∗∗ 0.977∗∗∗ 1.036∗∗∗ 0.714∗∗∗ 4.394∗∗∗ 4.254∗∗∗ 4.409∗∗∗ 4.491∗∗∗ 3.136∗∗∗

(13.07) (12.82) (11.42) (12.09) (10.31) (9.90) (9.85) (9.38) (9.44) (8.63)
RV 2.058∗∗∗ 2.050∗∗∗ 2.055∗∗∗ 2.062∗∗∗ 2.003∗∗∗ 6.959∗∗∗ 6.930∗∗∗ 6.900∗∗∗ 6.909∗∗∗ 6.662∗∗∗

(8.72) (8.69) (8.71) (8.73) (8.47) (6.51) (6.48) (6.46) (6.46) (6.22)
RA 0.509∗∗∗ 0.510∗∗∗ 0.435∗∗∗ 0.559∗∗∗ 1.747∗∗∗ 1.740∗∗∗ 1.636∗∗∗ 2.159∗∗∗

(11.17) (11.28) (8.63) (9.71) (8.62) (8.62) (7.28) (7.85)
NCSKEW 0.090∗∗ -0.040 0.033 -0.545∗∗∗ -0.724∗∗∗ -0.421∗∗∗

(2.56) (-1.06) (0.93) (-3.67) (-4.30) (-2.82)
Tail 0.245∗∗∗ 0.114∗∗ 0.338 -0.214

(5.00) (2.13) (1.59) (-0.92)
DVINNOV

Tether 0.776∗∗∗ 3.267∗∗∗

(10.77) (8.68)
RM -0.440∗∗∗ -0.489∗∗∗ -0.476∗∗∗ -0.525∗∗∗ -0.513∗∗∗ -1.751∗∗∗ -1.922∗∗∗ -2.004∗∗∗ -2.073∗∗∗ -2.021∗∗∗

(-11.28) (-11.99) (-10.89) (-13.22) (-13.10) (-9.79) (-10.04) (-9.56) (-10.71) (-10.68)
Constant 3.124∗∗∗ 3.125∗∗∗ 3.124∗∗∗ 3.125∗∗∗ 3.125∗∗∗ 8.099∗∗∗ 8.099∗∗∗ 8.101∗∗∗ 8.102∗∗∗ 8.104∗∗∗

(52.48) (52.49) (52.42) (52.46) (52.47) (25.40) (25.40) (25.37) (25.38) (25.38)
Observations 629556 629556 629556 629556 629268 629544 629544 629544 629544 629256
Adj-R2 (%) 1.313 1.338 1.339 1.348 1.463 0.638 0.649 0.650 0.651 0.730
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Table A.1 (continued)

Model 41 Model 42 Model 43 Model 44 Model 45 Model 46 Model 47 Model 48 Model 49 Model 50

Panel I: Large-MV subsample h = 2 Panel J: Large-MV subsample h = 3

SPOTVOL -0.037∗∗∗ -0.041∗∗∗ -0.031∗∗∗ -0.031∗∗∗ -0.034∗∗∗ -0.055∗∗∗ -0.061∗∗∗ -0.047∗∗∗ -0.047∗∗∗ -0.051∗∗∗

(-9.74) (-9.12) (-7.10) (-7.11) (-7.52) (-9.97) (-9.34) (-7.28) (-7.29) (-7.70)
LTV 0.021∗∗∗ 0.021∗∗∗ 0.029∗∗∗ 0.024∗∗∗ 0.004 0.032∗∗∗ 0.031∗∗∗ 0.043∗∗∗ 0.036∗∗∗ 0.007∗

(6.49) (6.38) (7.80) (6.29) (1.60) (6.62) (6.51) (7.96) (6.44) (1.69)
RV 0.004∗∗ 0.004∗∗ 0.004∗∗ 0.004∗∗∗ 0.001 0.006∗∗ 0.006∗∗ 0.005∗∗ 0.006∗∗∗ 0.002

(2.45) (2.44) (2.37) (2.84) (0.92) (2.50) (2.49) (2.41) (2.90) (0.92)
RA 0.005∗∗ 0.005∗∗ 0.011∗∗∗ 0.018∗∗∗ 0.008∗∗ 0.007∗∗ 0.016∗∗∗ 0.027∗∗∗

(2.48) (2.28) (4.98) (7.81) (2.51) (2.30) (5.08) (7.97)
NCSKEW -0.028∗∗∗ -0.018∗∗∗ -0.014∗∗∗ -0.043∗∗∗ -0.027∗∗∗ -0.021∗∗∗

(-11.20) (-6.05) (-5.14) (-11.51) (-6.26) (-5.33)
Tail -0.019∗∗∗ -0.027∗∗∗ -0.029∗∗∗ -0.040∗∗∗

(-8.35) (-11.39) (-8.56) (-11.66)
DVINNOV

Tether 0.046∗∗∗ 0.070∗∗∗

(7.93) (8.08)
CRM 0.010∗∗∗ 0.009∗∗∗ 0.005∗∗ 0.009∗∗∗ 0.010∗∗∗ 0.015∗∗∗ 0.014∗∗∗ 0.008∗∗ 0.014∗∗∗ 0.014∗∗∗

(4.44) (4.16) (2.12) (3.66) (3.95) (4.52) (4.24) (2.14) (3.71) (4.02)
Constant 0.143∗∗∗ 0.143∗∗∗ 0.143∗∗∗ 0.143∗∗∗ 0.143∗∗∗ 0.214∗∗∗ 0.214∗∗∗ 0.214∗∗∗ 0.214∗∗∗ 0.214∗∗∗

(57.44) (57.44) (57.37) (57.33) (57.36) (58.70) (58.71) (58.63) (58.60) (58.62)
Observations 629466 629466 629466 629466 629178 629416 629416 629416 629416 629128
Adj-R2 (%) 0.059 0.060 0.086 0.099 0.194 0.087 0.087 0.126 0.145 0.283

Model 51 Model 52 Model 53 Model 54 Model 55 Model 56 Model 57 Model 58 Model 59 Model 60

Panel K: Large-MV subsample h = 6 Panel L: Large-MV subsample h = 12

SPOTVOL -0.111∗∗∗ -0.123∗∗∗ -0.094∗∗∗ -0.094∗∗∗ -0.103∗∗∗ -0.226∗∗∗ -0.249∗∗∗ -0.190∗∗∗ -0.190∗∗∗ -0.208∗∗∗

(-10.76) (-10.11) (-7.91) (-7.91) (-8.35) (-12.83) (-12.12) (-9.52) (-9.53) (-10.03)
LTV 0.065∗∗∗ 0.064∗∗∗ 0.088∗∗∗ 0.074∗∗∗ 0.015∗ 0.134∗∗∗ 0.132∗∗∗ 0.182∗∗∗ 0.154∗∗∗ 0.032∗∗

(7.13) (7.02) (8.57) (6.97) (1.93) (8.42) (8.29) (10.12) (8.30) (2.39)
RV 0.011∗∗∗ 0.011∗∗∗ 0.011∗∗∗ 0.013∗∗∗ 0.004 0.021∗∗∗ 0.021∗∗∗ 0.020∗∗∗ 0.025∗∗∗ 0.007

(2.72) (2.71) (2.62) (3.15) (0.97) (3.18) (3.16) (3.07) (3.70) (1.00)
RA 0.016∗∗∗ 0.014∗∗ 0.032∗∗∗ 0.054∗∗∗ 0.031∗∗∗ 0.028∗∗∗ 0.063∗∗∗ 0.109∗∗∗

(2.71) (2.49) (5.52) (8.67) (3.28) (3.00) (6.69) (10.53)
NCSKEW -0.087∗∗∗ -0.056∗∗∗ -0.043∗∗∗ -0.178∗∗∗ -0.117∗∗∗ -0.090∗∗∗

(-12.60) (-6.92) (-5.95) (-15.18) (-8.50) (-7.40)
Tail -0.058∗∗∗ -0.081∗∗∗ -0.116∗∗∗ -0.162∗∗∗

(-9.19) (-12.54) (-10.78) (-14.77)
DVINNOV

Tether 0.141∗∗∗ 0.290∗∗∗

(8.64) (10.07)
CRM 0.030∗∗∗ 0.028∗∗∗ 0.015∗∗ 0.027∗∗∗ 0.028∗∗∗ 0.059∗∗∗ 0.056∗∗∗ 0.029∗∗ 0.053∗∗∗ 0.056∗∗∗

(4.81) (4.51) (2.24) (3.92) (4.25) (5.60) (5.26) (2.55) (4.50) (4.91)
Constant 0.431∗∗∗ 0.431∗∗∗ 0.431∗∗∗ 0.431∗∗∗ 0.431∗∗∗ 0.869∗∗∗ 0.869∗∗∗ 0.870∗∗∗ 0.870∗∗∗ 0.870∗∗∗

(63.22) (63.22) (63.14) (63.11) (63.15) (74.38) (74.38) (74.31) (74.27) (74.36)
Observations 629274 629274 629274 629274 628986 629031 629031 629031 629031 628743
Adj-R2 (%) 0.162 0.164 0.238 0.273 0.534 0.288 0.290 0.426 0.486 0.963
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Table A.2 Predicting cryptocurrency liquidity provision premium with Hodrick (1992) stan-
dard errors

The table reports the results of the forecast of cryptocurrency liquidity provision premium (LR
t,t+h) on spot volatility

(SPOTVOL), left tail volatility (LTV), realized variance (RV), risk aversion (RA), crash risk (NCSKEW), tail risk
(Tail), and Tether liquidity (DVINNOV

TETHER) using OLS regressions at the h-horizon. LR
t,t+h is the cumulative liquidity

provision premium of cryptocurrencies from t to t+ h. The predictors, namely SPOTVOL, LTV, RV, RA, NCSKEW,
Tail, and DVINNOV

TETHER, are lagged by five days. The control variable, cumulative equally-weighted cryptocurrency
market returns (CRM ), is lagged by five days. The numbers in parentheses are t-statistics based on Hodrick (1992)
standard errors. ∗∗∗, ∗∗, and ∗ denote significance at the 1%, 5%, and 10% levels, respectively.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10

Panel A: h = 1 Panel B: h = 2

SPOTVOL -0.184∗∗∗ -0.235∗∗∗ -0.249∗∗∗ -0.248∗∗∗ -0.260∗∗∗ -0.388∗∗∗ -0.496∗∗∗ -0.521∗∗∗ -0.521∗∗∗ -0.546∗∗∗

(-27.07) (-27.66) (-29.03) (-29.04) (-30.03) (-28.54) (-29.15) (-30.45) (-30.46) (-31.5)
LTV 0.183∗∗∗ 0.177∗∗∗ 0.166∗∗∗ 0.177∗∗∗ 0.100∗∗∗ 0.379∗∗∗ 0.367∗∗∗ 0.346∗∗∗ 0.370∗∗∗ 0.207∗∗∗

(25.15) (24.49) (21.16) (22.65) (13.83) (26.12) (25.43) (22.07) (23.6) (14.31)
RV 0.081∗∗∗ 0.08∗∗∗ 0.081∗∗∗ 0.078∗∗∗ 0.056∗∗∗ 0.167∗∗∗ 0.166∗∗∗ 0.167∗∗∗ 0.162∗∗∗ 0.115∗∗∗

(12.75) (12.66) (12.79) (12.37) (8.91) (13.23) (13.13) (13.26) (12.83) (9.19)
RA 0.070∗∗∗ 0.070∗∗∗ 0.056∗∗∗ 0.085∗∗∗ 0.146∗∗∗ 0.147∗∗∗ 0.118∗∗∗ 0.179∗∗∗

(13.8) (13.9) (10.83) (16.12) (14.52) (14.61) (11.47) (17.04)
NCSKEW 0.040∗∗∗ 0.015∗∗ 0.031∗∗∗ 0.078∗∗∗ 0.025∗∗ 0.060∗∗∗

(6.79) (2.36) (5.2) (6.54) (2.04) (5.01)
Tail 0.048∗∗∗ 0.019∗∗∗ 0.098∗∗∗ 0.037∗∗∗

(9.05) (3.47) (9.24) (3.38)
DVINNOV

TETHER 0.187∗∗∗ 0.393∗∗∗

(22.61) (23.76)
CRM -0.060∗∗∗ -0.067∗∗∗ -0.061∗∗∗ -0.071∗∗∗ -0.068∗∗∗ -0.129∗∗∗ -0.143∗∗∗ -0.131∗∗∗ -0.151∗∗∗ -0.146∗∗∗

(-15.12) (-16.52) (-14.4) (-16.86) (-16.38) (-16.13) (-17.6) (-15.49) (-18.0) (-17.51)
Constant 0.721∗∗∗ 0.721∗∗∗ 0.72∗∗∗ 0.72∗∗∗ 0.721∗∗∗ 1.466∗∗∗ 1.466∗∗∗ 1.466∗∗∗ 1.466∗∗∗ 1.466∗∗∗

(126.4) (126.41) (126.34) (126.31) (126.32) (128.59) (128.59) (128.52) (128.49) (128.51)
Observations 629541 629541 629541 629541 629254 629540 629540 629540 629540 629253
Adj-R2 (%) 0.172 0.182 0.187 0.194 0.337 0.309 0.327 0.334 0.347 0.604

Model 11 Model 12 Model 13 Model 14 Model 15 Model 16 Model 17 Model 18 Model 19 Model 20

Panel C: h = 3 Panel D: h = 6

SPOTVOL -0.615∗∗∗ -0.787∗∗∗ -0.826∗∗∗ -0.826∗∗∗ -0.865∗∗∗ -1.478∗∗∗ -1.896∗∗∗ -1.965∗∗∗ -1.965∗∗∗ -2.056∗∗∗

(-30.15) (-30.87) (-32.15) (-32.17) (-33.26) (-36.22) (-37.17) (-38.26) (-38.28) (-39.56)
LTV 0.595∗∗∗ 0.576∗∗∗ 0.543∗∗∗ 0.580∗∗∗ 0.323∗∗∗ 1.349∗∗∗ 1.303∗∗∗ 1.244∗∗∗ 1.326∗∗∗ 0.723∗∗∗

(27.29) (26.55) (23.11) (24.69) (14.92) (30.92) (30.01) (26.44) (28.16) (16.66)
RV 0.262∗∗∗ 0.259∗∗∗ 0.262∗∗∗ 0.254∗∗∗ 0.108∗∗∗ 0.594∗∗∗ 0.588∗∗∗ 0.592∗∗∗ 0.576∗∗∗ 0.402∗∗∗

(13.82) (13.72) (13.84) (13.4) (9.57) (15.81) (15.68) (15.8) (15.31) (10.78)
RA 0.235∗∗∗ 0.236∗∗∗ 0.190∗∗∗ 0.287∗∗∗ 0.570∗∗∗ 0.573∗∗∗ 0.472∗∗∗ 0.699∗∗∗

(15.53) (15.62) (12.37) (18.21) (18.81) (18.89) (15.32) (22.15)
NCSKEW 0.116∗∗∗ 0.036∗ 0.090∗∗∗ 0.210∗∗∗ 0.033 0.162∗∗∗

(6.52) (1.9) (5.0) (5.87) (0.88) (4.47)
Tail 0.152∗∗∗ 0.055∗∗∗ 0.331∗∗∗ 0.104∗∗∗

(9.53) (3.38) (10.41) (3.21)
DVINNOV

TETHER 0.620∗∗∗ 1.455∗∗∗

(24.97) (29.3)
CRM -0.206∗∗∗ -0.229∗∗∗ -0.211∗∗∗ -0.242∗∗∗ -0.235∗∗∗ -0.517∗∗∗ -0.573∗∗∗ -0.541∗∗∗ -0.608∗∗∗ -0.591∗∗∗

(-17.23) (-18.8) (-16.64) (-19.24) (-18.72) (-21.65) (-23.54) (-21.33) (-24.2) (-23.59)
Constant 2.244∗∗∗ 2.244∗∗∗ 2.244∗∗∗ 2.244∗∗∗ 2.245∗∗∗ 4.803∗∗∗ 4.803∗∗∗ 4.803∗∗∗ 4.803∗∗∗ 4.805∗∗∗

(131.22) (131.23) (131.16) (131.12) (131.14) (140.45) (140.45) (140.38) (140.34) (140.37)
Observations 629539 629539 629539 629539 629252 629536 629536 629536 629536 629249
Adj-R2 (%) 0.358 0.380 0.388 0.402 0.701 0.379 0.404 0.409 0.422 0.743
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Table A.2 (continued)

Model 21 Model 22 Model 23 Model 24 Model 25

Panel D: h = 12

SPOTVOL -4.562∗∗∗ -5.899∗∗∗ -6.009∗∗∗ -6.007∗∗∗ -6.274∗∗∗

(-55.89) (-57.85) (-58.51) (-58.54) (-60.36)
LTV 3.488∗∗∗ 3.340∗∗∗ 3.247∗∗∗ 3.470∗∗∗ 1.712∗∗∗

(39.93) (38.42) (34.47) (36.81) (19.7)
RV 1.584∗∗∗ 1.568∗∗∗ 1.574∗∗∗ 1.528∗∗∗ 1.022∗∗∗

(21.06) (20.85) (20.95) (20.29) (13.67)
RA 1.825∗∗∗ 1.830∗∗∗ 1.554∗∗∗ 2.216∗∗∗

(30.12) (30.15) (25.21) (35.09)
NCSKEW 0.330∗∗∗ -0.152∗∗ 0.221∗∗∗

(4.62) (-2.02) (3.06)
Tail 0.904∗∗∗ 0.242∗∗∗

(14.22) (3.74)
DVINNOV

TETHER 4.242∗∗∗

(42.79)
CRM -1.782∗∗∗ -1.962∗∗∗ -1.911∗∗∗ -2.094∗∗∗ -2.045∗∗∗

(-37.31) (-40.29) (-37.67) (-41.67) (-40.81)
Constant 11.634∗∗∗ 11.634∗∗∗ 11.633∗∗∗ 11.635∗∗∗ 11.640∗∗∗

(170.08) (170.1) (170.01) (169.97) (170.03)
Observations 629530 629530 629530 629530 629243
Adj-R2 (%) 0.220 0.238 0.238 0.245 0.436
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