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Abstract

The boundary element method (BEM) for two-dimensional linear viscoelasticity is applied to polymer fracture. The
time-dependence of stress intensity factors is assessed for various viscoelastic models as well as loading and support con-
ditions. Various representations of the energy release rate under isothermal conditions are adopted. Additional boundary
integral equations for the displacement gradient in the domain arc linked to algorithms for the evaluation of path-inde-
pendent J-integrals. The consistency of BEM predictions and their good agreement with other analytical results confirms
BEM as a valid modelling tool for viscoelastic fracture characterisation and failure assessment under complex geometric
and loading conditions.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The increasing use of polymers has prompted extensive research on their failure mechanisms. Polymer
fracture, in particular, has been the subject of many theoretical studies concerned with the identification
and determination of parameters governing crack initiation and growth. For a linear viscoelastic solid, the
time-dependent solutions for the stress and displacement fields near the tip of stationary crack can be pro-
duced by applying the elastic—viscoelastic correspondence principle [1]. The stress intensity factor K; and
the crack-opening displacement can be easily deduced from such solutions. When viscoelastic materials with
constant Poisson’s ratio are subjected to constant traction, Ky remains constant in time. Even in such cases
however, the energy release rate G is time-dependent in common with other properties, such as relaxation
modulus and creep compliance. Therefore, a critical strain energy release rate Ge(z) is considered as the cha-
racterising parameter for crack extension rather than the fracture toughness Kic [2]. Under certain conditions,
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Nomenclature

a half crack length

b cracked plate depth

C compliance function

¢ crack propagation velocity

E uni-axial relaxation modulus

e deviatoric strains

G energy release rate

H Heaviside step function

K mode [ stress intensity factor

k bulk relaxation function

i traction

Di applied traction

r, 0 polar co-ordinates with origin at crack tip
s Laplace transform parameter

Sy deviatoric stresses

t, T time

U, surface energy stored

w strain energy

w cracked plate length

u; displacement

o; applied displacement

X; Cartesian co-ordinates (i = 1, 2)

r cracked plate boundary

I, J-integral contour

I, traction-loaded plate boundary

r, displacement-loaded plate boundary
0y Kronecker delta

&jf strains

K 1 for plane stress, 1 — v* for plane strain
v shear relaxation function

v Poisson’s ratio

O stresses

ol non-singular part of near-tipstresses (mode 1)

cracked plate domain

the path-independent J-integral, defined by Rice [3] for elastic materials, is shown to be equivalent to the
energy release rate.

Although many theoretical and experimental studies on viscoelastic fracture behaviour can be found in the
literature [2,4-7], numerical applications in this area are relatively limited. The time-dependent aspects of frac-
ture in polymers are discussed in a review by Knauss [8]. Only a few papers reported the analysis of linear
viscoelastic fracture behaviour using numerical methods. Applications of the finite element method in this area
[9] have been mainly concerned with simulations of fracture behaviour in polymer matrix composites. Rela-
tively few attempts have been made to predict material parameters characterising fracture behaviour.

The application of the boundary element method (BEM) to polymer fracture has been even rarer. An early
such solution [10], based on the Laplace transform approach, predicted the crack-opening displacement of a
penny-shaped crack in a viscoelastic material characterised by a three-parameter Kelvin model. Two-dimen-
sional stress and displacement fields were later analysed in the neighbourhood of a crack filled with failed,
so-called craze material [11]. More recently, a direct, time-domain BEM formulation was applied to the
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evaluation of an expression for the strain energy release rate derived from a functional corresponding to the
potential energy in elasticity [12]. Further results have confirmed the effectiveness of both Laplace transform
and time-domain BEM in predicting time-dependent stress intensity factors and energy release rates under
constant loads [13].

The present BEM analysis attempts to provide a general theoretical framework for generating key fracture
parameters under any time-dependent loading. Linear viscoelasticity, the most commonly adopted model for
polymers, has been assumed. Various approaches for representing the energy release rate or crack extension
force under isothermal conditions have been adopted. Additional boundary integral equations have been
derived for the displacement gradient distributions in the solid domain leading to algorithms for the evalua-
tion of path-independent J-integrals. The developed analysis procedure includes an assessment of the crack
growth rate based on the knowledge of the critical energy release rate and an energy balance equation.

Computer codes for both Laplace transform and time-domain analyses under both plane stress and plane
strain conditions have been developed and applied initially to the prediction of near crack-tip stress and crack-
opening displacement time histories in centre-cracked specimens under tension in order to assess their relative
accuracy and efficiency. The time-dependence of stress intensity factors is assessed for various viscoelastic
models as well as loading and support conditions. Numerical results have also been obtained for the energy
release rate under constant strain and constant strain rate loading. Geometric and material input has been
linked to specimens from published reports of experimental investigations. BEM predictions are compared
with other analytical results; their consistency with theoretical expectations and experimental observations
is also examined.

2. Viscoelastic fracture mechanics

The analysis is applied to a plate with a straight central crack of length 2a as shown in Fig. 1, where Q and
I' represent the plate domain and boundary, respectively. The plate is subjected to quasi-static, time-depen-
dent combinations of edge displacement #;(¢) on I'y and traction p;(¢) on I'y with I', U I', = I'. Both geometry
and loading are assumed symmetric relative to the co-ordinate axes x; (i = 1,2), parallel and perpendicular to
the crack with origin at its centre. The loading results in crack opening mode I, and the crack tip is defined
according to Schapery [4], that is, accounting for a failure zone between crack surfaces. As pointed out in
the previous section, the material is assumed linear, isotropic, viscoelastic for which the constitupive relations

sy = 2u0es0) +2 [ ute -1 %L e |
O = 3k(l‘)bu(0) +3 /0 k(t _ T) abg{(‘[) de (2)
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Fig. 1. Schematic representation of a centre-cracked plate.
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apply, where o;; are the stresses, ¢; the strains, s;, e; represent the deviatoric stresses and strains, respectively
defined as

1
Sy = 04 — g“kk@/» ey = & — gﬁkk(su (3)

and 0 is the Kronecker delta. In Egs. (1) and (2), u(f) and k(7) are the shear and bulk relaxation functions,
respectively while repeated indices represent summation over their range. Adopting the notation

¢+ A = x dp = d()p(0) +/0.[¢<’f”f)@5iﬂdf

for the Stieltjes convolution of two functions ¢ and y, the constitutive relations (1) and (2) can be written

Sy =2uxey, ow =3k *ey.

2.1. Stress intensity factor

In the neighbourhood of the crack tip, the stress field is given, relative to a local polar frame of reference (r,
0), by the time-domain relations

Ki(t)

a;.(0), 4
V2 Y ) (4)
where Kj is the mode-I, time-dependent stress intensity factor for the cracked plate of Fig. 1 and 65./. are known
functions of 0. If the time-domain solution for the stress field is known, K can be directly calculated using

Ki(t) = hrr(} on(r,0,6)V2nr. _ (5)

O','j(r, 0‘, f) =

The stress intensity factor depends, in general, on both the loading and the viscoelastic properties [14]. In the
special case of separation of variables conditions, that is, for constant Poisson’s ratio, the stress field depends
only on the loading history, therefore, K can be obtained by applying the correspondence principle. The
Laplace transform of Eq. (4) yields the relations [15]

_ K; (s) N

gi;(r,0,8) = 6,,(0 6
close to the crack tip, where s is the Laplace transform parameter. It was shown [14] that, in the transformed
domain, a J-type, path-independent integral can be defined as

1 o
v = =Gy8;dxy — pr— ) 7
J /I'J (Zajsjcbcz pax1df> ‘ (7)

where I, is a contour surrounding the crack tip. The Laplace transform of the stress intensity factor K (s) is
related to J, by

Ki(s)
=K—" 8
Jy =K £ (8)
where K is equal to 1 or 1 — v2 for plane stress or plane strain, respectively and
- 9skfi _ 3k-2m
Es=sF=———, y=5V=—c—e—, 9
3k+ 1 203k + ) ©)

where E(t) is the uniaxial relaxation modulus and v(¢) the Poisson’s ratio.
2.2. Energy release rate

The crack is initially assumed to be stationary until time ¢ = ¢;, when it is forced to grow by a small amount
da in order to assess the corresponding rate of energy release. This crack extension is equivalent to the removal
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of the tension p»(x1,0,f) for a < x; <a+da and ¢ = 1. According to the principle of superposition, the
response of the plate with a crack length a + da can be obtained by adding to the original solution a new incre-
mental viscoelastic solution performed with tension p,(x1,0,¢) reversed, that is, applied as compression on the
extended crack surface, with boundary conditions () =0 on I',,p;(1) =0 on I', and effective moduli
Wt —ty) and k(t — t1).

Energy conservation requires [16,17]

) Su (') ) sa uy (1)
/pi%dF:E/ / piduidf+—/ dr/ pydus, (10)
r Oa Oa rJo da 0 0

where ¢/ = ¢ — t,. The left-hand side in Eq. (10) represents the rate of input energy while, on the right-hand
side, the first term is the rate of energy stored including energy dissipation and the second the energy release
rate at the crack tip due to the crack opening displacement 2u,(r,2'). Noting that the changes in energy are
associated with the incremental solution, Eq. (10) can lead directly to an estimate of the energy release rate
G(t), which is defined as

Ou; 0 oui oU.
= —dr - — dudln = — 1
G /rp, » dar % /1 /0 pdudl’ 2 (11)

where U is the surface energy stored. Thus, comparing Egs. (10) and (11) gives

GUS 2 da uy (")
G= da B —6—(1 A dl"/o p2du2. (12)
The evaluation of the integral
iz (1)
/0 poduy (13)

requires knowledge of the function p,(u»,t'), which is generally nonlinear since it depends on the loading
history. This can be built numerically for any given time ¢ by assuming a relation

ws(t') = Clr.0)pa(0) + / Clr,t — 7)dps, ()

where the compliance function C(r, t') depends implicitly on the viscoelastic properties of the material and can
be generated numerically for any » < da from the incremental solution with constant p, as the applied load.
Thus, the displacement at any intermediate time 7, due to a loading history from p,(0) to p(#), can be
obtained from Eq. (14) as

u(? ) = C(1)p,(0) + /Olk C(f —1)dp, (15)

yielding pairs of values for p(#), u(t,t;,) for a number of distinct times 7, in the interval from 0 to /. The
energy release rate can thus be calculated at any time ¢ from Eq. (12), which is valid for any linear viscoelastic
material under any loading history. This time-dependent G(a,f), obtained for ¢; = 0, corresponds to Williams’s
definition of parameter J for viscoelastic materials [17]. This notation is here reserved only for the J-integral.
At initiation, G reaches a critical value G¢, which is physically interpreted as the upper limit to the fracture
resistance of the material [17].

It is of interest to consider the value of G at r = ¢, that is, the time of crack extension, when the instanta-
neous response of the material to p,(#;) would be purely elastic characterised by the initial values of the
viscoelastic moduli. Then, Eq. (12) reduces to

Gla, t)oa = /O(apz(r,tl)uz(r, t)dr. (16)

The instantaneous energy release rate obtained from Eq. (16), which can be expressed as a function of 7,, is
consistent with parameter G as defined by Williams [17] for purely elastic processes.
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It is also evident from Eq. (16) that the problem of determining G(a,7;) is equivalent to that for an elastic
material under stresses ¢;(¢;), in equilibrium with the applied boundary loading #;(#,) and p;(1,), characterised
by a shear modulus x(0) and a bulk modulus &(0). Crack extension to « -+ da should have the same effect on
this state as the removal of py(t1). The stress and traction fields at 7 = t; are thus complemented by virtual elas-
tic displacements »® and strains alfj obtained for the real tractions p{z;) using the initial relaxation moduli as
the elastic constants. Thus, an alternative means of obtaining G(a, #;) is generated from Eq. (11) which is
reduced to

G(a,tl)éa:/ [),—(3u$df—%5/piu?d]". (17)
. R

I

2.3. J-integral

When the evaluation of the strain energy release rate G is based on energy changes from an instantaneously
elastic state, a correspondence can be established between the viscoelastic and a fictitious elastic problem. As
pointed out by Schapery [2], it would then be possible to identify a path-independent integral J(¢) which is
identical to G and obtained directly from an elastic solution consisting of the current stress field o,(7) as well
as suitably defined displacements u} and strains &5 fields. Then the path-independent integral is given by {3]

J :/ (Wdx, — pul,,dI), (18)
-

J

where

o
J0 ’

It is always pdssible to identify J(#,), corresponding to G(t;), when the resulting stress field o;(z,) is combined
with u® and 55 fields, determined from an elastic analysis under boundary traction pft;), using as material
constants the moduli pu(0) and k(0).

2.4. Crack propagation velocity

The crack will grow when G(a,r) is greater than a constant critical G¢ for the material. Then, for a crack

- extension da, the excess surface energy will be dissipated as viscoelastic deformation taking place within a time

increment d¢. The incremental solution should therefore be viscoelastic accounting for the time-dependence of
material properties within this interval. The equation of energy equilibrium is thus written [16]

St da
Geda =2 / dr/ (7, T)ipdr. (20)
Jo Jo

An iterative, trial-and-error process generates the value of ¢ for which Eq. (20) is satisfied. Then, the velocity
of crack propagation will be obtained as

da

3. Boundary element modelling

The viscoelastic analysis is performed here numerically using the boundary element method (BEM). There
are advantages in applying this method to fracture problems. It has been shown that critical parameters cha-
racterising fracture behaviour can be evaluated from known boundary displacements and tractions. If internal
variables are required, as in the case of J-integral calculations, these can be evaluated along any contour and
for any point density whatever the boundary element mesh. Particular attention is given to the boundary mod-
elling around the crack tip so that the stresses in this region are approximated with reasonable accuracy.
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BEM formulations of the linear viscoelastic problem [18] have been recently assessed for efficiency and
accuracy in the case of quasi-static loading [19]. Two established approaches, applied here to the analysis
of cracked plates, are briefly described next.

3.1. Laplace transform domain

The correspondence principle allows the transformation of a linear viscoelastic problem into an equivalent
elastic one governed by the boundary integral equation [19]

s = /1 (P51 5) — w(s)pi )] (22)

where #;, p; are respectively, the Laplace transforms of displacement and traction; uy;, py; are the fundamental
solutions of the corresponding elastic problem for displacements and tractions in which however, the elastic
constants have been replaced by material functions of s obtained by transforming the viscoelastic constitutive
Egs. (1) and (2); x; = 0.50; in the case of a smooth boundary. The Laplace transforms of any variable can be
evaluated at any number of internal domain points using integral equations similar to Eq. (22). The numerical
algorithm for implementing Eq. (22) is the same as that for the corresponding elastic problem, which has been
well documented in the literature. The time-dependent response has been determined by Schapery’s numerical
inversion method [20]. Complex viscoelastic models can be easily accommodated in the fundamental solutions,
which can be chosen to satisfy the traction-free conditions over the crack surface [21].

3.2. Time domain

Solutions can alternatively be obtained through time-domain BEM formulations derived from viscoelastic
reciprocity relations using fundamental solutions specific to the viscoelastic model used [22]. The boundary
integral equation takes the form [19]

Kiil; 1) = u’ >k dp —p* * dui dF7 23
7 r i i i

where the time-dependent fundamental solution uj(x — &,1), satisfying the field equations in an infinite do-
main, is due to body force

F* = 8,0(x — E)H(r), (24)

where 6(x — £) is the delta function and H(7) the Heaviside step function. Applying the correspondence prin-
ciple, u;}(x — &, 1) is obtained as the inverse transform of the fundamental solution of the Laplace transformed
problem divided by the transform space parameter s. Such an operation has been carried out in several special
cases involving standard linear solid (SLS) creep or relaxation models. A general procedure for deriving the
time-dependent fundamental solution was devised for shear and bulk relaxation functions in the form of
Prony series. Details of the respective numerical algorithms can be found in earlier publications [18,19].

3.3. Application to fracture problems

In BEM studies of linear elastic fracture behaviour, several different techniques were used in order to deal
with the stress singularity at the crack tip. In two dimensions, a cubic boundary element model was applied to
the surface geometry of an edge crack [23]. The same problem was solved using a modified fundamental solu-
tion, which accounted for a flat, traction-free crack [21]. This method however, cannot be extended to three-
dimensional problems. Modelling the singular field for point force acting at the crack tip and using an explicit
expression (valid near the tip) for this field, Aliabadi et al. [24] obviated the need for detailed modelling in the
vicinity of the crack tip.

The application of special techniques for modelling the stress singularity at the crack tip is avoided here by
adopting the constant or discontinuous linear element models. Effective BEM modelling is achieved through
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the use of very small such elements near the crack tip. For the constant element model, the node is taken at the
middle point of the element. For the discontinuous linear element model, the element has two internal nodes.

The stress intensity factor can be calculated either directly from the stress field near the tip or through the
calculation of the J — integral as usually done in FEM applications. From Eq. (18) it is easily seen that to cal-
culate the J-integral, the displacement gradients are required along the path I',. These gradients can be
obtained by differentiating the elastic equivalent to the boundary integral Eq. (23) with the source point in
the domain,

W = / (1 — )T (25)
i

The various numerical algorithms for both Laplace transform and time-domain analyses were implemented
through suites of FORTRAN programs specifically developed by the authors for that purpose.

3.4. Validation of elastic fracture analysis

Before applying the present BEM modelling of the fracture problem to a viscoelastic material, its effective-
ness and accuracy was examined through the analysis of a classical elastic problem with an established theo-
retical solution. This is the case of a rectangular plate with a central crack under nominally uniform tension in
the direction perpendicular to the crack surfaces. Due to the symmetry of the problem only the analysed quar-
ter of the plate is shown in Fig. 2. The numerical values used in this example are: plate width w = 11.3 mm,
crack half-length ¢ = 1 mm, plate half-depth » = 10 mm and p, = 10 MPa. The shear modulus z and the Pois-
son’s ratio v of the material were taken equal to 94.5 GPa and 0.1, respectively.

The constant element model with variable element length was used with the smaller elements located in the
neighbourhood of the crack tip. Various meshes were adopted in order to assess the effect of the number of the
elements and the element length on the accuracy of the results. It was noted that a smooth variation of element
length starting from the crack tip improves significantly the performance of the numerical algorithm. Also the
number of the elements was increased to a certain limit beyond which no significant improvement in accuracy
was achieved. This limit was linked to the more demanding requirement for accuracy and stability of the
J-integral. Fig. 3 shows the final optimum mesh of this problem consisting of 432 boundary elements. The
smallest element length was 0.0002 mm, which was the length of the two elements adjacent to the crack tip.

The theoretical values of Kj and J-integral for this problem are 17.7820 N/mm*? and 1.5057 J/m?, respec-
tively. A semi-circular integration path was adopted as shown in Fig. 2. The J-integral was evaluated for var-
ious positions of the path centre and values of the path radius, Stable values were obtained for a range of radii
confirming the path-independence of the integral. The most accurate results were found with paths centred at
x =1 mm, that is, at the crack tip. The average of these J-integral values was 1.5256 J/m?; this was taken as
the final numerical result, which is by 1.321% different from the theoretical J-integral value. A stress intensity
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Fig. 2. Typical geometry and loading of analysed plates.
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Fig. 3. Final boundary element mesh for the plate under constant tension.

factor of 18.0116 N/mm™? was found directly from the stress field through a limiting process according to
Eq. (5); this is by 1.291% greater than the theoretical solution. The stress intensity factor obtained from
the elastic equivalent to Eq. (8) was 17.8991 N/mm®?; this differs from the theoretical K by only 0.658%.
The adopted BEM modelling was thus shown to provide elastic fracture parameters with satisfactory accuracy

and could be used with confidence in the subsequent viscoelastic applications.
4. Results
4.1. Centre-cracked plate under constant tension

The geometry, the loading, the constraints as well as the mesh of the model were exactly the same as those
of the elastic problem described in the previous section. Under constant load, the plate deformation can be
described as creep. The material behaviour was characterised by a shear relaxation modulus

u(t) = 23.625 +70.875¢ %4 (GPa,s). (26)

Results were obtained by both the Laplace transform and direct time-domain boundary element formulations.
The inverse transforms were calculated using 30 distinct values of the transform parameter s, with s, = 0.001
and sp/s;=2fori=1,...,29. ‘

Initially, a constant Poisson’s ratio v = 0.1 was adopted. For such viscoelastic material behaviour, constant
traction p; generates a constant stress field. Hence, the stress intensity factor is also constant. This was con-
firmed by BEM results from both the time-domain formulation using Eq. (5) and that based on Egs. (7)
and (8) and the BEM output from the Laplace transform domain formulation, under both plane strain and
plane stress conditions. These stress intensity factors were found in excellent agreement with the analytical
solution, the maximum differences being less than 1.25%.

Under creep conditions and constant v, p; is also constant and Eq. (14) gives
uy(t') = C(r,1')p, (27)
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that is, a linear relationship between displacement and traction. As a result, Eq. (12) reduces to

da

Gla,t)éa = / P (r)ux(r,)dr; (28)
Jo
therefore, G(a,!) increases with 1. Eq. (28) implies correspondence with the behaviour of an elastic material
with moduli w(#') and K(¢') so that its left-hand side can be obtained from Eq. (11), which reduces in this
special case to

Gla,1)ba = % / Piou(£)dr (29)
Iy

thus providing the strain energy release rate at any time ¢ > f; during the viscoelastic response of the polymer.

A J(1) integral equivalent to G(¢) can also be defined in the case of a constant traction (creep) experiment
according to Eq. (18) with #® and 35 taken as the actual displacements and strains at time ¢. It is evident from
Eq. (16) that G(a,1,) is constant under creep conditions. This also true for J(1;) since, in this case, u® and ey are
simply the initial elastic displacements and strains.

BEM predictions of J(¢) with 7; =0, from both time-domain and Laplace transform formulations under
plane strain are plotted in Fig. 4 together with the corresponding analytical solution obtained by applying
the correspondence principle. It can be seen that the results are almost identical for any time 1. The same accu-
racy was achieved in the plane stress case. The energy release rate G was also calculated using both Egs. (28)
and (29) and found in very good agreement with the predicted J-integral.

The same problem was solved again but assuming that the material has a time-dependent Poisson’s ratio for
which the separation of variables conditions are not strictly applicable. Adopting instead a constant bulk
modulus k& of 86.625 GPa led to

V(1) = 0.375 — 0.275¢ 03 (30)

obtained from the second of Egs. (9) by Laplace transform inversion.

The boundary element formulation was first tested against the exact analytical solution for the crack-open-
ing displacement, which is obtained from the respective elastic solution via the application of the correspon-
dence principle. The BEM results under plane strain conditions, for a number of discrete times, were in
excellent agreement with the theoretical predictions as can be seen by referring to Fig. 5.

The stress intensity factor was then calculated by the time-domain BEM using the limited process indicated
by Eq. (5); it was also obtained from Egs. (7) and (8), which require BEM output from the Laplace transform
domain solution. The results, for plane strain conditions, are plotted in Fig. 6 together with an analytical solu-

~ Analytical Solution

J-Integral (N/m)
oy

o Laplace Transform BEM

0 5 160 15 20 25 30 35 40 45 50

Time (s)

Fig. 4. J-integral for the centre-cracked specimen with constant Poisson’s ratio under creep loading.
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Fig. 5. Crack-opening displacement for the centre-cracked specimen with time-dependent Poisson’s ratio under creep loading.
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Fig. 6. Stress intensity factor for the centre-cracked specimen with time-dependent Poisson’s ratio under creep loading.

tion based on the correspondence principle. The weak initial time-dependence of Ky obtained from the time-
domain BEM is due to the time-dependence of Poisson’s ratio. The other two methods of solution are based
on the assumption of constant K; under creep conditions; this explains the differences between their predic-
tions and the time-domain BEM result. The three analyses were repeated under plane stress conditions and
the differences between the corresponding steady-state K predictions were less than 1.5%. This better agree-
ment can be attributed to the weaker dependence of Ky on the Poisson’s ratio in the case of plane stress.

The J-integral was numerically evaluated by the same methods as those applied in the constant-v case. An
analytical solution was also obtained based on the correspondence principle. All three approaches entail a
theoretical error, therefore, the observed discrepancies in the results were expected and there was no basis
for meaningful comparison. As with the Kj results, these differences were considerably more severe in the case
of plane strain analysis.

4.2. Long strip with centre crack under constant strain

The analysis was applied to a strip, which had been subjected to a range of loads at various temperatures to
determine the corresponding crack propagation velocities [16]. The dimensions of the tested specimen were
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adopted, that is, depth 2b = 34.925 mm and length w = 254 mm. The thickness of the specimen was only
0.8 mm, therefore, plane stress conditions were applicable. The material was Solithane 50/50 for which the
experimentally determined relaxation modulus at 0 °C was provided. Fitting exponential series to these data
and assuming a constant Poisson’s ratio v = 0.5 for the material, the shear relaxation function

p(t) = 1.33516 + 11.58289¢ ™! + 30.48149¢ 7052 1 46 866026287624
+50.76678¢ 19553992 (MPa, s) (31)

was obtained. This corresponds to a glassy modulus £(0) =423 MPa and a rubbery modulus £(c0) = 4 MPa.
The rapid decay of the relaxation modulus represented by Eq. (31) is consistent with the material description
in Ref. [16]. A centre crack of length 2a = 60 mm was assumed. Due to the symmetry of the problem, only one
quarter of the strip was modelled as indicated in Figs. 2 and 3 using 154 ‘constant’ elements. The elements on
either side of the tip had a length of 0.002 mm. A constant displacement i, = 1.746 mm was applied at
y = 17.46 mm; this corresponds to a nominal strain of 0.1 in the direction normal to the crack.

In this relaxation test, no further external work is done on the solid as a consequence of crack extension
since dup = 0 and Eq. (17) yielding the energy release rate G(a,1,) is reduced to

Gla,t))da = —%/5pi1¢?df (32)
-

It is clear from Egs. (16) and (32) that G(a,t;) decreases under relaxation conditions. It is also evident from
Eq. (11) that no further strain and dissipated energy is stored, hence G(a, ') is constant for ¢ > ¢,.

The instantaneous elastic energy release rate G(¢1) was obtained using both Egs. (16) and (32) and a crack
growth éa = 0.002 mm, that is, the length of a single element. The energy release rate was calculated as the
work rate due to crack opening at the tip, Eq. (16); as the rate of potential energy loss, Eq. (32) and as the
path independent J-integral defined through Eq. (18). The numerical process begins with the viscoelastic
time-domain solution providing p,(t,) over I" and p,(t;) over da for any time 7,; these two sets of results become
inputs to two elastic analyses, the former with the original and the latter with the extended crack. The elastic
constants are the initial values of the relaxation moduli. The first of the two elastic analyses yields directly the
J-integral as well as u® over I'; the second yields &p; over I' and du, over da. Fig. 7 shows that the results
obtained by all three approaches are in excellent agreement, the maximum difference between predictions
being less than 0.5%. This is remarkable considering that the integration in Eq. (16) was performed over a
single element while the J-integral was evaluated by dividing the 5 mm-radius path into 18 segments.

4.3. Strip under constant strain rate

Again, due to the symmetry of the problem, only one quarter of the strip was modelled as indicated in Figs.
2 and 3. The boundary was divided into 131 elements with the minimum element length of 0.001 mm on either
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Fig. 7. Strain energy release rate for the specimen under constant strain.
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Fig. 8. Strain energy release rate for the specimen under constant strain rate,

side of the crack tip. The analysis was performed with a centre crack of half-length ¢ = 10.7 mm, under plane
stress conditions. The geometry was similar to that of Gutierrez-Lemini’s specimen [25], that is, with a width w
of 10.7 mm and a half-depth 5 of 19.2 mm. A Prony series was fitted to a given, rapidly decaying, tensile relax-
ation modulus, normalised with respect to E(co) [25]. Adopting a constant Poisson’s ratio of 0.496, led to the
shear relaxation modulus

(1) = 0.46789 + 1.28964e~ 9927 129346296 1 5 86873e347!17" (MPa, min) (33)

A displacement u,(¢) was applied to the side x, = b at the constant rate of 50 mm/min with a zero displace-
ment at ¢ = 0.

The rate of work at the crack tip was again calculated from Eq. (16) assuming a crack growth
6a = 0.002 mm, the integration was therefore performed over two elements. Since this model simulates a dis-
placement-controlled test, du} = 0 and G{(1,) could also be obtained using Eq. (32) with uR generated by elastic
analysis of the plate with the original crack and shear modulus u(0), subjected to the viscoelastic solution
pAt1). The same analysis generated s}} and ufl necessary for the evaluation of J(#) using Eq. (18). Comparing
the results from the three approaches shown in Fig. 8, the agreement between them can be considered
satisfactory.

5. Discussion

In the special case of constant tension and Poisson’s ratio v, the viscoelastic problem is greatly simplified
since it is equivalent to a sequence of elastic problems with the current relaxation moduli values as elastic con-
stants. Both time-dependent strain energy release rate G and J-integral account for energy dissipation and can
be obtained with high accuracy. If v is not constant, the stress intensity factor Ky should be calculated by the
time-domain approach, which takes into account its time-dependence. When the latter is ignored, the K, G
and J-integral values calculated by various methods are inconsistent and such discrepancies are more signi-
ficant in the case of plane strain.

Since the time-dependence of Ky under constant load is only due to the Poisson effect, it decays very quickly,
therefore, this parameter is not a reliable representation of the material’s fracture resistance. In contrast, the
time-dependence of the energy release rate G is clearly identified whatever the loading conditions. This is also
true for a properly defined J-integral in certain special cases. Therefore, the failure criterion in a viscoelastic
fracture problem should be linked to the critical values of such parameters, that is, Ge or Jc.

In the case of instantaneous crack extension, that is, in the absence of energy dissipation, the problem of
evaluating G or the J-integral reduces to an equivalent elastic one with the current viscoelastic solution for
boundary traction and the initial values of the relaxation functions as the essential input. The consistency
of the results obtained confirmed the validity of the adopted approaches but also the robustness of the
BEM modelling despite its apparent simplicity.
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When energy dissipation contributes to the energy release rate, the latter can only be determined as the
work done at the tip of the extended crack. Then the analysis process becomes computationally more demand-
ing since a second incremental viscoelastic solution, relying on the output of the first, is required for the deter-
mination of the rate of crack-opening displacement. This result can be used to evaluate also the crack
propagation velocity ¢ in the case of a non-stationary crack. It became obvious from the various modelling
data of the previous section that a fine tuning between element length at the crack tip and time step size Ar
in the BEM time-domain algorithm may be necessary to achieve a prediction of ¢ with satisfactory accuracy
and efficiency. This is because the former imposes a lower bound on the initial choice of da, while Az could be
orders of magnitude smaller than the duration 8¢ of the p,(r,f) time-history required for the integral on the
right-hand side of Eq. (20) to balance the left-hand side. The problem can be addressed by adopting a
time-step integration algorithm with variable Ar as indicated in Ref. [19]. The BEM time-domain algorithm
thus needs to be sufficiently versatile to cope with the high initial time gradients of the material input and still
provide both short and long term responses. Ideally, such numerical results should be obtained in parallel with
experimental measurements for comparison and validation purposes.

6. Conclusions

BEM was shown to be a versatile numerical tool for generating key fracture parameters based on various
formulations and analytical models. The agreement between BEM output obtained by various approaches was
found satisfactory confirming the reliability of the method. Another general observation from the numerical
results was that the results from time-domain BEM were more accurate than those obtained from the analysis
in the Laplace transform domain. The additional numerical error can be attributed to the Laplace transform
inversion required by the latter formulation. The time-domain formulation is also far more versatile in gen-
erating time-dependent energy release rates and for this reason it was exclusively used in the last two examples.

The presented formulation can be further adapted to the analysis of bi-material viscoelastic solids with
cracks along their interfaces. This would require more general modelling schemes, which are applicable to
problems with geometric, material or loading asymmetry. As with elastic fracture problems, a natural exten-
sion of the method would be towards including viscoelastic nonlinearity arising from the stress singularity at
the crack tip. Based on an earlier finite element modelling of this effect [26], the present BEM time-domain
formulation can be complemented with an irreducible domain integral depending on the volumetric strain.
This integral would be accounted for through an iterative scheme within each step of the incremental solution
process.
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