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ABSTRACT

We present a study of the weak lensing inferred matter profiles ∆Σ(R) of 698 South Pole Telescope (SPT) thermal Sunyaev-Zel’dovich effect (tSZE)
selected and MCMF optically confirmed galaxy clusters in the redshift range 0.25 < z < 0.94 that have associated weak gravitational lensing shear
profiles from the Dark Energy Survey (DES). Rescaling these profiles to account for the mass dependent size and the redshift dependent density
produces average rescaled matter profiles ∆Σ(R/R200c)/(ρcritR200c) with a lower dispersion than the unscaled ∆Σ(R) versions, indicating a significant
degree of self-similarity. Galaxy clusters from hydrodynamical simulations also exhibit matter profiles that suggest a high degree of self-similarity,
with RMS variation among the average rescaled matter profiles with redshift and mass falling by a factor of approximately six and 23, respectively,
compared to the unscaled average matter profiles. We employed this regularity in a new Bayesian method for weak lensing mass calibration that
employs the so-called cluster mass posterior P(M200c|ζ̂, λ̂, z), which describes the individual cluster masses given their tSZE (ζ̂) and optical (λ̂,
z) observables. This method enables simultaneous constraints on richness λ-mass and tSZE detection significance ζ-mass relations using average
rescaled cluster matter profiles. We validated the method using realistic mock datasets and present observable-mass relation constraints for the
SPT×DES sample, where we constrained the amplitude, mass trend, redshift trend, and intrinsic scatter. Our observable-mass relation results are
in agreement with the mass calibration derived from the recent cosmological analysis of the SPT×DES data based on a cluster-by-cluster lensing
calibration. Our new mass calibration technique offers a higher efficiency when compared to the single cluster calibration technique. We present
new validation tests of the observable-mass relation that indicate the underlying power-law form and scatter are adequate to describe the real
cluster sample but that also suggest a redshift variation in the intrinsic scatter of the λ-mass relation may offer a better description. In addition,
the average rescaled matter profiles offer high signal-to-noise ratio (S/N) constraints on the shape of real cluster matter profiles, which are in good
agreement with available hydrodynamical ΛCDM simulations. This high S/N profile contains information about baryon feedback, the collisional
nature of dark matter, and potential deviations from general relativity.
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1. Introduction

Galaxy clusters constitute the most massive collapsed halos
in the Universe. Studying their abundance as a function
of redshift and mass provides insights into structure for-
mation history and therefore serves as a powerful tool for
constraining cosmological models (e.g., White et al. 1993;
Haiman et al. 2001; Vikhlinin et al. 2009; Mantz et al. 2010;
Planck Collaboration XIII 2016; Chiu et al. 2023; Bocquet et al.
2024a). The ability to accurately measure cluster masses
plays an important role in cluster cosmological studies, as it
enables constraints on the rate of cosmic structure growth,
the dark energy equation of state, and other cosmologi-
cal parameters, such as the amplitude of matter fluctua-
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tions and the matter density parameter. The development
of robust weak lensing (WL) and cosmic microwave back-
ground (CMB) lensing has informed mass calibration tech-
niques (Becker & Kravtsov 2011; von der Linden et al. 2014;
Dietrich et al. 2019; Zubeldia & Challinor 2019; Grandis et al.
2021; Bocquet et al. 2024b), and the availability of associated
high quality WL datasets from, for example, the Hyper Suprime-
Cam Subaru Strategic Program (HSC-SSP), the Dark Energy
Survey (DES), and the Kilo-Degree Survey (KiDS) have set
the stage for progress in constraining the standard ΛCDM
and wCDM parameters (Costanzi et al. 2019; Abbott et al.
2020; Costanzi et al. 2021; To et al. 2021; Chiu et al. 2023;
Bocquet et al. 2024a; Ghirardini et al. 2024) as well as model
extensions, including the modification of general relativity and
interacting dark matter (e.g., Mantz et al. 2014; Cataneo et al.
2015; Vogt et al. 2024; Mazoun et al. 2024).
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These same WL datasets can be employed to study the mat-
ter distribution within galaxy clusters. A challenge is that in the
existing WL datasets based on large photometric surveys, the
matter profiles of individual clusters often have a low signal-to-
noise ratio (S/N). Combining WL matter profiles from multiple
galaxy clusters provides a way to improve the S/N and reduce the
intrinsic variations in the matter distribution from cluster to clus-
ter that arise from their different formation histories. Previous
works have employed WL measurements of multiple clusters to
constrain cluster masses by combining tangential shear profiles
or projected matter profiles of clusters (Oguri & Takada 2011;
Umetsu et al. 2016; McClintock et al. 2018; Bellagamba et al.
2019; Giocoli et al. 2021; Lesci et al. 2022). A challenge in this
approach is that there are systematic variations in the projected
matter profiles of galaxy clusters with cluster mass and redshift.
An average WL matter profile therefore reflects the character-
istics of the cluster sample, and it depends sensitively on the
distribution of the sample in mass and redshift. This approach
also requires careful modeling of the spatial distribution and
masking of the WL source galaxies on a cluster-by-cluster
basis to enable accurate modeling of the multi-cluster matter
profile.

If the systematic variations of the matter profiles with mass
and redshift can be accurately characterized, then they can also
be scaled out, enabling average matter profiles of high S/N that
are largely independent of the characteristics of the cluster sam-
ple from which they are constructed. In particular, if cluster mat-
ter profiles are approximately self-similar in nature – that is, they
exhibit similar shapes that vary systematically with mass and
redshift – then these systematic trends can be easily removed.
In this limit, the need to accurately model the spatial distribution
and masking of WL source galaxies is also no longer required.

Approximate self-similarity is a generic prediction of grav-
itational structure formation (Kaiser 1986). In N-body simu-
lations, cluster halos are well described by so-called Navarro,
Frenk, and White (NFW) models (Navarro et al. 1997) that
exhibit weak trends in concentration or shape with mass and
redshift. In hydrodynamical simulations, self-similar behavior
has been seen in cluster gas profiles (Lau et al. 2015) and
pressure profiles (Nelson et al. 2014). Observationally, approx-
imate self-similarity has been demonstrated in the intracluster
medium (ICM) density, pressure profiles, and temperature pro-
files (Vikhlinin et al. 2006; Arnaud et al. 2010; Baldi et al. 2012;
McDonald et al. 2014), whereas WL studies of cluster matter
profiles have tended to focus on whether the NFW model is a
good description of the real matter profiles (e.g., Umetsu et al.
2014; Niikura et al. 2015). In particular, Umetsu et al. (2014)
studied average matter profiles and found the NFW profile
to be an excellent description of real clusters. In contrast,
Niikura et al. (2015) analyzed scaled average matter profiles by
rescaling with the scale radius of the NFW profile and with the
critical density of the Universe and found evidence of a single
underlying or universal cluster matter profile.

In this analysis, we use hydrodynamic structure formation
simulations and direct WL observations of cluster samples to
examine cluster matter profiles, which reveal the remarkable
consistency and approximate self-similarity of the simulated and
real matter profiles. We exploit this self-similarity to study high
S/N cluster matter profiles and then employ them to perform
a calibration of observable-mass relations. This mass calibra-
tion approach offers a computationally more efficient technique
to analyze large cluster WL datasets compared to a cluster-by-
cluster approach (Bocquet et al. 2019, 2024b) without loss of
information.

The paper is organized as follows. We present the simulated
and observed dataset in Sect. 2. The self-similarity of galaxy
cluster matter profiles is explored in Sect. 3. The mass calibration
method along with the likelihood calculation and the hydrody-
namical model is discussed in Sect. 4. In Sect. 5, we validate the
analysis method using mock data and present the results using
the South Pole Telescope (SPT) clusters and DES-WL data. We
conclude with a summary and outlook in Sect. 6. Throughout
the paper, we employ a flat ΛCDM cosmology with parameters
Ωm = 0.3 and h = 0.7. All uncertainties are quoted at the 68%
credible interval unless otherwise specified.

2. Data

In this section, we first describe the data used in our work: (1)
the SPT cluster catalogs and (2) DES (Year 3, hereafter Y3)
WL and photometric redshift measurements. Then we summa-
rize the simulation datasets from Magneticum and IllustrisTNG,
which are used to explore the impact of baryons on cluster matter
profiles.

2.1. South Pole Telescope cluster catalogs

We use a combination of three thermal Sunyaev-Zel’dovich
effect (tSZE) selected cluster catalogs that have been extracted
from surveys carried out by the South Pole Telescope
(Carlstrom et al. 2011) collaboration: SPT-SZ (Bleem et al.
2015; Klein et al. 2024), SPTpol ECS (Bleem et al. 2020) and
SPTpol-500d (Bleem et al. 2024). The SPT-SZ survey covers
2500 deg2, and the SPTpol ECS survey spans 2770 deg2 in
the southern sky, while the SPTpol-500d survey pushes to a
greater depth within a 500 deg2 patch inside the SPT-SZ survey.
Galaxy cluster candidates are selected from the mm-wave maps
at 90 and 150 GHz using a matched filter technique (Melin et al.
2006), which employs galaxy cluster tSZE models with a range
of angular scales (Vanderlinde et al. 2010). Only cluster candi-
dates at redshifts z > 0.25 are considered, because clusters at
lower redshifts are larger in angular extent and therefore more
strongly impacted by the matched filtering, which is designed
to remove atmospheric noise as well as increased noise con-
tributions from the primary CMB. At low redshift the angu-
lar scales filtered out overlap with the scales important for the
galaxy cluster tSZE, strongly impacting the candidate detection
significance and thereby complicating its use as a cluster halo
mass proxy. Additionally, we only analyze clusters with a red-
shift z < 0.95 due to the depth and systematics of the DES WL
sample described below.

These cluster candidates are then studied using the Multi-
Component Matched Filter cluster confirmation tool (MCMF;
Klein et al. 2018). This processing results in a cluster catalog
that includes measurements of optical richnesses λ̂, sky positions
and redshifts. The measured optical richness allows for efficient
removal of contaminants from the tSZE candidate list by evalu-
ating the likelihood of each candidate being a random superpo-
sition of a physically unassociated optical system with a tSZE
noise fluctuation (Klein et al. 2024). The exclusion threshold
corresponds to an observed richness threshold that varies with
redshift λ̂min(z) (Klein et al. 2019) and has been determined by
analyzing the richness distributions along random lines of sight
within the survey. The final MCMF-confirmed cluster catalogs
have a constant contamination fraction at all redshifts.

The selection threshold in the tSZE detection significance
is ζ̂ > 4.25 for SPTpol-500d, ζ̂ > 4.5 for SPT-SZ and ζ̂ > 5
for SPTpol ECS, while the MCMF selection threshold λ̂min(z)
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is adjusted to maintain a contamination fraction of <2% in the
final MCMF-confirmed cluster lists from both surveys. Figure 1
shows the distribution of observed richness and tSZE detection
significance as a function of redshift for the MCMF confirmed
SPT sample we study here.

2.2. DES Y3 lensing

The Dark Energy Survey is a photometric survey in five broad-
band filters (grizY) which covers an area of ∼5000 deg2 in the
southern sky. The survey was conducted using the Dark Energy
Camera (DECam; Flaugher et al. 2015) at the 4m Blanco tele-
scope at the Cerro Tololo Inter-American Observatory (CTIO) in
Chile. In this work, we use WL data from the first three years of
DES observations (DES Y3), which cover the entire 5000 deg2

survey footprint.
The DES Y3 shape catalog (Gatti et al. 2021) is con-

structed from the r, i, z-bands using the Metacalibration
pipeline (Huff & Mandelbaum 2017; Sheldon & Huff 2017).
Other DES Y3 works contain detailed information on the Point-
Spread Function modeling (Jarvis et al. 2021), the photomet-
ric dataset (Sevilla-Noarbe et al. 2021), and image simulations
(MacCrann et al. 2022). After all source selection cuts, the shear
catalog consists of roughly 100 million galaxies over an area of
4143 deg2. The typical source density is 5 to 6 arcmin−2, depend-
ing on the selection choices of a specific analysis.

Our work follows the selection of lensing source galaxies in
four tomographic bins (Fig. 2 shows the three tomographic bins
used in our analysis) as employed in the DES 3 × 2pt analy-
sis (Abbott et al. 2022). The selection is defined and calibrated
in Myles et al. (2021) and Gatti et al. (2022), where source
redshifts are estimated using Self-Organizing Maps Photo-z
(SOMPZ). The final calibration accounts for the (potentially cor-
related) systematic uncertainties in source redshifts and shear
measurements. For each tomographic source bin, the mean red-
shift distribution is provided, and the systematic uncertainties
are captured using 1000 realizations of the source redshift dis-
tribution. The amplitude of the source redshift distribution is
scaled by a factor 1 + m to account for the multiplicative shear
bias m. In addition to the tomographic bins and SOMPZ, we
used Directional Neighbourhood Fitting (dnf; De Vicente et al.
2016) galaxy photo-z estimates when determining the expected
fraction of the lensing source galaxy population in each tomo-
graphic bin that is contributed by member galaxies from a
particular cluster of interest – the so-called cluster member con-
tamination.

2.3. Hydrodynamical simulations

In this work, we use the Magneticum Pathfinder suite of
cosmological hydrodynamical simulations (Hirschmann et al.
2014; Teklu et al. 2015; Beck et al. 2016; Bocquet et al. 2016;
Dolag et al. 2017). We use Box1, which has a box size of
896 h−1 Mpc on a side with 2 × 15263 particles and the parti-
cle mass 1.3 × 1010 h−1M� for dark matter particles, and 2.6 ×
109 h−1M� for gas particles. The simulation is run with cosmo-
logical parameters (Ωm = 0.272, Ωb = 0.0457, H0 = 70.4,
ns = 0.963, σ8 = 0.809), which correspond to the WMAP7
constraints for a spatially flat ΛCDM model (Komatsu et al.
2011). From this simulation, we use snapshots at five redshifts
zsnap = 0.01, 0.25, 0.47, 0.78, 0.96.

In addition, we also use the data from IllustrisTNG300-
1 (Pillepich et al. 2018; Marinacci et al. 2018; Springel et al.
2018; Nelson et al. 2018; Naiman et al. 2018; Nelson et al.
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Fig. 1. Distribution of observed tSZE detection significance ζ̂ and rich-
ness λ̂ as a function of redshift for the 698 galaxy clusters in the SPT
sample that overlap the DES region. The solid line in the top figure
shows the detection threshold for the three survey regions. In the bottom
figure, the colored lines correspond to the λ̂min(z) detection threshold for
each survey.
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Fig. 2. Dark Energy Survey Y3 lensing source redshift distribution for
tomographic bins 2 through 4 that are used in this analysis. The solid
line represents the mean and the shaded region depicts the 2σ uncer-
tainties on the redshift distributions.

2019). These include 2 × 25003 resolution elements for a box
size of 205 h−1 Mpc on a side. The cosmology corresponds to
the Planck2015 constraints for a spatially flat ΛCDM cosmology
(Planck Collaboration XIII 2016): Ωm = 0.3089, Ωb = 0.0486,
σ8 = 0.8159, ns = 0.9667, and h = 0.6774. We use snapshots
correponding to redshift zsnap ∈ {0.01, 0.24, 0.42, 0.64, 0.95}.
From these simulation snapshots, we then extract halos with
M200c > 3 × 1013 h−1 M�. Shear maps are generated follow-
ing Grandis et al. (2021) in a cylinder with a projection depth
of 20 h−1 Mpc.
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3. Self-similarity in cluster matter profiles

Gravitational lensing is the phenomenon through which photon
geodesics are perturbed by gravitational potentials. For a distant
galaxy, this causes a distortion in the observed image relative to
its true shape (Schneider 2006). In this work, we are interested in
WL, where distortions in source galaxy images induced by inter-
vening matter along the line of sight are small. In this regime,
the WL signal must be extracted through statistical correlations
of source galaxies. The observable of interest in this context is
the reduced shear, which is defined as

g =
γ

1 − κ
, (1)

where γ is the WL shear and κ is the WL convergence (for
detailed discussion see Schneider 2006). The ensemble averaged
source ellipticity, e, and the shear response, Rγ, are related to the
reduced shear as

〈g〉 = 〈Rγ〉
−1〈e〉. (2)

The term Rγ is the average response of the measured elliptic-
ity to a shear. Due to instrumental and atmospheric effects and
noise this shear response typically is less than one. The tangen-
tial reduced shear profile induced by an object with a projected
mass distribution Σ(R) is related to the critical surface mass den-
sity Σcrit by

∆Σ(R) = Σcrit γt(R) = 〈Σ(< R)〉 − Σ(R), (3)

where Σcrit depends on the geometry of the source-lens system
and is defined as

Σcrit(zs, zl) =
c2

4πG
Ds

DlDls
, (4)

where zs and zl are the source and lens redshifts, respectively, and
Ds,Dl,Dls are the angular diameter distances to the source, lens,
and between the source-lens pair. When zs ≤ zl, Σ−1

crit is defined
to be zero.

Analogous to Eq. (3), we introduce an observed quantity

∆Σreduced(R) = Σcrit gt(R). (5)

In this paper, we use the excess surface mass density as defined
in the above equation but refer to it as ∆Σ(R). We note that,
although Σ(R) is the more fundamental quantity, we use ∆Σ(R)
(calculated using Eq. (5)) in our work because it can be directly
measured through WL. For convenience we refer to ∆Σ(R) sim-
ply as the cluster matter profile.

For a given source redshift distribution P(zs), we can com-
pute the average lensing efficiency for a given lens as

Σ−1
crit(zl) =

∫
dzsP(zs)Σ−1

crit(zs, zl). (6)

From Eq. (3) we can see that the differential surface mass
density at a given projected radius R can be expressed as the
difference between the mean enclosed surface mass density and
the surface mass density Σ at that projected radius, which is
expressed as follows

Σ(R) =

∫ ∞

−∞

dχρ
(√

R2 + χ2
)
, (7)

〈Σ(<R)〉 =
2

R2

∫ R

0
dR′R′Σ(R′). (8)

where ρ(r) is the density distribution of the halo and χ is the
comoving distance along the line of sight. For the shear sig-
nal induced by a halo of mass M, the average excess three-
dimensional matter density is given by

ρ(r) = ρmξhm(r|M), (9)

where ρm = Ωm,0ρcrit,0(1 + z)3 is the mean matter density of the
universe and ξhm(r|M) is the halo-matter correlation function at
the halo redshift. At a small radius, ξhm(r|M) is dominated by
the cluster density profile, and this region is called the “one-
halo” region. At a larger radius, most of the contribution comes
from correlated structures around the halo, and it is therefore
referred to as the “two-halo” region. In this work, we examine
both regions but focus on the one-halo region for the cluster mass
calibration.

There is a strong theoretical expectation that, barring the
impact of baryonic effects, the one-halo region of a halo should
be described by the NFW model Navarro et al. (1996, 1997).
In this model, the cluster matter profile within the radius r200c,
which encloses a region with a mean density that is 200 times
the critical density ρcrit is well described as

ρ(r) = δsρcrit

 r
cr200c

1 +

(
r

cr200c

)2−1

, (10)

where δs is a characteristic overdensity depending on c, which is
the halo concentration parameter. Such a halo characterized by
r200c has a mass that can be expressed as

M200c = 200ρcrit(z)
4π
3

r3
200c. (11)

This underlying density profile implies a particular projected ∆Σ
matter profile (Bartelmann 1996), whose amplitude scales with
the extent of the cluster along the line of sight (i.e., r200c) and
depends on the critical density, which varies with redshift as
ρcrit = 3H2(z)/8πG, where H(z) is the Hubble parameter at red-
shift z and G is the Gravitational constant. For the projected pro-
files discussed below, we rename r200c to be R200c, corresponding
to the projected distance equal to the 3D radius that encloses the
mass M200c.

Within simulations the halo shapes vary from cluster to clus-
ter due to formation history differences, and systematic trends
in concentration with mass and redshift have been identified
(Bhattacharya et al. 2013; Covone et al. 2014). But in the limit
that the systematic variation in c with mass and redshift is small,
the average projected matter profiles would have the same shape
in the space of R/R200c. The amplitudes of these projected matter
profiles would scale as R200cρcrit. This suggests a rescaled pro-
jected matter profile, ∆̃Σ, that would allow for easy exploration
of departures from self-similarity:

∆̃Σ

(
R

R200c
, z

)
=

∆Σ
(

R
R200c

, z
)

R200cρcrit(z)
. (12)

We note here that for any given R∆, where ∆ represents the over-
density with respect to the critical or mean background densities,
one can create a rescaled profile ∆̃Σ. If one chooses mean back-
ground density 〈ρ(z)〉, which corresponds to a scale radius of
R200m rather than R200c, the rescaling in amplitude would have to
be adjusted to follow the correct redshift evolution of the mean
background density 〈ρ(z)〉 = Ωmρcrit(z = 0) (1 + z)3.

Finally, because observationally determined cluster centers
are not perfect tracers of the true halo center, one must consider
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Fig. 3. Average cluster matter profiles ∆Σ(R) in the Magneticum simulation at five redshifts (color-coded on left) for the same halo-mass bin,
14.65 < log(M200c/M�) < 14.85, and for three mass and redshift bins (color and line-type coded on right). The dependence of the matter profiles
on cluster mass and redshift is clearly visible. The thickness of the lines represents the 68% credible region in the average matter profiles.

also the impact that this mis-centering will have on the observed
matter profile. When considering a mis-centering radius Rmis the
azimuthal average of the surface mass density can be expressed
as

Σ(R,Rmis) =
1

2π

∫ 2π

0
dθ Σ

(√
R2 + R2

mis − 2RRmiscosθ
)
. (13)

Generally speaking, the mis-centering effects when using opti-
cal centers (MCMF adopts the brightest cluster galaxy (BCG)
position or the center of mass of the red galaxy distribution if
the BCG is significantly offset from that; Klein et al. 2024) or
X-ray or even tSZE centers, the impact of mis-centering has only
a minor impact outside the inner core region of the cluster. We
return to this issue in Sect. 4.4.1.

3.1. Average matter profiles: Hydrodynamical simulations

To enable our study of the average cluster matter profiles, we
extracted cluster ∆Σ profiles following the method described in
Grandis et al. (2021) for each redshift for both the IllustrisTNG
and Magneticum simulations. In total, we extracted 903, 852,
780, 684, and 528 cluster matter profiles at redshifts of 0.01,
0.25, 0.47, 0.78, and 0.96 respectively. In the absence of mea-
surement uncertainties, we constructed average ∆Σ profiles for
further study using

∆Σ(R j) =
1
N

∑
i

∆Σi(R j), (14)

where the sum is over the N clusters i in the sample and R j is the
radial binning adopted for the cluster matter profiles.

3.1.1. ∆Σ(R) dependence on mass and redshift

To start, we compute the average matter profiles within each
of the five redshifts. We compare the average matter profiles
∆Σ(R) at different redshifts using the Magneticum sample in the
left panel of Fig. 3. To ensure we are seeing only trends with
redshift, we average a narrow range of cluster mass (14.65 <
log(M/M�) < 14.85) for all of the redshifts. The average cluster
matter profiles show a significant dependence on redshift.

In the right panel of Fig. 3 we plot average matter profiles
∆Σ(R) at three redshifts of 0.25, 0.47, and 0.78. Each redshift
bin is divided into three mass bins (14.30 < log(M/M�) < 14.45,
14.45 < log(M/M�) < 14.65 and 14.65 < log(M/M�) < 14.85).
Profiles show a significant dependence on halo mass for all three
redshifts. Higher mass clusters have higher amplitude ∆Σ(R)
when compared to the low mass clusters for a given redshift,
due chiefly to the increased extent of the cluster along the line
of sight. Figure 3 makes clear that averaging cluster matter pro-
files in this way will therefore lead to results that are sensitive
to the distribution of the cluster sample in redshift and mass (as
well as the spatial distribution and masking of the source galax-
ies), which complicates the interpretation and characterization of
such mean matter profiles.

3.1.2. Evidence for self-similarity in mass and redshift

Motivated by the results from the previous section and the behav-
ior of NFW profiles derived from N-body simulations, we used
the same simulated clusters to explore a rescaled matter profile
∆̃Σ(R/R200c) (see Eq. (12)). This profile would be identical for
all samples of clusters if the population were truly self-similar.

To determine the average ∆̃Σ profiles we combine the indi-
vidual cluster matter profiles ∆̃Σi as

∆̃Σ

(
R

R200c

)
j
=

1
N

∑
i

∆̃Σi

(
R

R200c

)
j
, (15)

where the summation i is over the N clusters in the sample, and
j denotes the radial bin in units of R/R200c.

In the left panel of Fig. 4 we show average rescaled cluster
matter profiles ∆̃Σ (R/R200c) at five redshifts: 0.01, 0.25, 0.47,
0.78 and 0.96. We average all the clusters for a given redshift
and then analyze the redshift trend. The profiles show very small
variations and little change in amplitude with redshift as seen in
the bottom left panel. This is in contrast to the behavior observed
in Fig. 3 where we show ∆Σ(R). The average matter profiles line
up for all redshifts from R/R200c ≈ 0.6 to R/R200c ≈ 1 with some
small, remaining redshift trend at low and high R/R200c.

Similarly, in the right panel of Fig. 4 we combine all the
redshift samples and divide them into three mass bins (14.30 <
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Fig. 4. Average cluster matter profiles in the Magneticum simulation rescaled as in Eq. (12) to ∆̃Σ(R/R200c). In the left plot, we average all the
clusters (14.3 < log(M200c/M�) < 15) for a given redshift and analyze the redshift trend. In the right plot, we average clusters over all redshift
ranges (0.01 ≤ z ≤ 0.96) within a mass bin and analyze the mass trends. In both panels, the bottom plot shows the deviation of average profiles
with respect to the mean of all the profiles. The rescaling dramatically reduces systematic trends in mass and redshift, highlighting the degree of
self-similarity in the matter profiles even when baryonic components are included. The thickness of the lines in the upper panels represents the
68% credible region in the average matter profiles.

log(M/M�) < 14.45, 14.45 < log(M/M�) < 14.65 and
14.65 < log(M/M�) < 14.85) to study the mass trends in aver-
age ∆̃Σ (R/R200c). The profiles show remarkably small variation.
This is an indication that even when hydrodynamical effects are
included, simulated galaxy clusters over this range of mass and
redshift have matter profiles that exhibit strikingly similar shape.
As discussed in Sect. 3, the lack of variation in shape is an
indication of the self-similarity of cluster matter profiles along
dimensions of mass and redshift.

3.1.3. Variations in average matter profiles

In this section we aim to quantify the degree of variation we
see in cluster matter profiles. For this, we calculate the frac-
tional scatter in the average matter profiles as a function of red-
shift and mass. We also compare this to the fractional scatter
values obtained when averaging profiles in physical space. The
fractional scatter is given by σ∆Σ/ < ∆Σ >, where σ∆Σ is the
standard deviation of the sample and 〈∆Σ〉 is the mean of the
sample.

We used the Magneticum simulation, which has a larger vol-
ume and therefore contains many more halos in comparison to
IllustrisTNG. This allows us to measure a higher SNR through
averaging profiles, which in turn enables us to better quantify
the intrinsic scatter in the average matter profiles. We ignore the
uncertainty on the average matter profiles when calculating the
fractional scatter with redshift and mass, because the uncertainty
is much smaller than the scatter.

Starting with the ∆Σ(R) profiles, we first divide each redshift
bin into four mass bins. We calculate the fractional scatter as
a function of redshift in a given mass bin and then report the

average value of fractional scatter as a function of redshift of four
mass bins as a function of radius in the left panel (blue curve) of
Fig. 5. The scatter ranges from ≈7% to ≈19% with an average
of ≈17%. Similarly, when analyzing the fractional scatter as a
function of mass, we compute the scatter at each redshift bin and
report the mean value for five redshift bins. The orange curve
in the left panel of Fig. 5 shows the mean scatter values as a
function of radius R with an average of ≈26%.

Moving to the average rescaled matter profiles ∆̃Σ (R/R200c),
we average all of the clusters for a given redshift and then report
the fractional scatter among the five redshift bins. The blue curve
in the right panel of Fig. 5 shows the fractional scatter as a func-
tion of redshift. The value varies from ≈0.8% to ≈5% with an
average value of ≈2.6% and the minimum value is achieved
around ≈0.9R/R200c. The scatter in ∆̃Σ (R/R200c) is reduced by a
factor of 6 in comparison to the scatter obtained in ∆Σ(R). Simi-
larly, when analyzing the fractional scatter as a function of mass,
we divide each redshift into four mass bins and stack all of the
clusters with different redshifts in a given mass bin. The orange
curve in Fig. 5 shows the trend of the fractional scatter as a func-
tion of mass with scaled radius with an average value of ≈1.1%,
which is 23 times smaller relative to the scatter with mass in
∆Σ(R).

3.2. Average matter profiles: Observations

In this section we examine the matter profiles of the 698 SPT
tSZE-selected clusters using the WL data from DES in phys-
ical and rescaled space. Given the cosmological parameters p
(Table 1), the average ∆Σ estimator for the cluster ensemble in a
radial bin R j is a triple sum over clusters k, lensing source galaxy
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Fig. 5. Fractional variation in the average matter profiles versus radius shown for ∆Σ(R) on the left and for average rescaled matter profiles
∆̃Σ(R/R200c) on the right. We track the scatter due to redshift variations in blue and mass variations in orange. The average rescaled matter profiles
exhibit approximately six and 23 times less variation on average with redshift and mass, respectively, within the one-halo region.

Table 1. Observable-mass relation and cosmology parameter priors.

Parameter Description Prior

tSZE detection significance ζ-mass relation
ln ζ0 Amplitude U(0.01, 1.5)
ζM Mass trend U(0.5, 3)
ζz Redshift trend U(−5, 5)
σln ζ Intrinsic scatter U(0.01, 0.5)
Optical richness λ-mass relation
λ0 Amplitude U(10, 70)
λM Mass trend U(0.2, 2)
λz Redshift trend U(−5, 5)
σln λ Intrinsic scatter U(0.01, 0.5)
MWL − M200c relation
ln MWL0 Amplitude of bias 0
σln MWL0,1

Error on amplitude N(0, 1)
σln MWL0,2

Error on amplitude N(0, 1)
MWLM Mass trend of bias N(1.000, 0.0062)
lnσ2

ln WL0
(z0) Amplitude of scatter N(−3.11, 0.04)

lnσ2
ln WL0

(z1) Amplitude of scatter N(−3.07, 0.05)
lnσ2

ln WL0
(z2) Amplitude of scatter N(−2.84, 0.06)

lnσ2
ln WL0

(z3) Amplitude of scatter N(−1.94, 0.10)
σ2

ln WLM
Mass trend of scatter N(−0.23, 0.042)

Cosmology
Ωm Matter density N(0.315, 0.007)
log10 As Amplitude of P(k) Fixed to −8.696
H0 Hubble parameter Fixed to 70
Ωb,0 Baryon density Fixed to 0.0493
ns Scalar spectral index Fixed to 0.96
w0, wa EoS parameters Fixed to −1, 0∑

mν Sum of neutrino masses Fixed to 0.06
Ωk,0 Curvature density Fixed to 0

tomographic bins b, and individual lensing source galaxies i as

∆Σ(R j|p) =

∑
k,b,i

Σcrit,k,bwk,bW
s
k,b,iet,k,b,i

(1− fcl,k,b)∑
k,b,i wk,bW

s
k,b,i(Rγt,i + Rsel)

. (16)

Here, Ws
k,b,i is the scaled source weight, and wk,b is the tomo-

graphic bin weight

Ws
k,b,i = ws

i

(
1 − fcl,k,b

Σcrit,k,b

)2

wk,b = Σ−1
crit,k,b, (17)

where the ws
i represent individual source weights (defined as

the inverse variance in the measured ellipticity). Following
Bocquet et al. (2024b), we employed only the tomographic bins
2 to 4 in this analysis. Additionally, we note that we only use
the tomographic bins for which the median source redshift is
larger than the cluster redshift. Σcrit,k,b is the critical surface den-
sity, which depends on cluster redshift and source galaxy redshift
distribution, calculated as in Eq. (6). The ellipticity of a source
galaxy i from a tomographic bin b and lying in the background
of a cluster k is et,k,b,i, and Rγt,i is the shear response for galaxy
i, which is needed to scale the ellipticity to the reduced shear.
Additionally, the selection response Rsel accounts for the fact that
lensing sources are selected based on their (intrinsically) sheared
observations. We use Rsel = −0.0026 for optical centers as mea-
sured previously for this sample (Bocquet et al. 2024b). We also
scale the ellipticity with a factor of 1/(1 − fcl,k,b) to correct the
profiles for the cluster member contamination, which is mea-
sured separately for each tomographic bin (see the discussion in
Sect. 4.4).

The corresponding uncertainty in ∆Σ for a radial bin R j in
the average cluster matter profile is calculated as

σ2
∆Σ(R j|p) =

∑
k,b,i

(
Σcrit,k,bwk,bW

s
k,b,iσeff,b

(1− fcl,k,b)

)2

(
∑

k,b,i wk,bW
s
k,b,i)

2 . (18)

Here σ2
eff,b is the effective shape variance for sources in a given

tomographic bin, and all other elements are as described in
Eq. (16).

Similarly, after accounting for the rescaling described in
Eq. (12) and given the cosmological parameters p and the clus-
ter mass M200c or equivalently the cluster radius R200c, the
inverse variance weighted average ∆̃Σ estimator in a radial bin
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Fig. 6. SPT cluster average matter profiles ∆Σ(R) for three redshift bins in a given richness bin. In the right panel we show the average matter
profiles ∆Σ(R) for different richness bins in a given redshift bin. The color bands encode the 68% credible region for each profile. The profiles
show variation with redshift and richness that is consistent with that shown in Fig. 3 for the simulated clusters in redshift and mass.

(R/R200c) j is given by

∆̃Σ

(
R

R200c

∣∣∣∣∣M200c, p
)

j
=

∑
k,b,i

Σcrit,k,bwk,bW̃
s
k,b,iet,k,b,i

ρcritk R200ck (1− fcl,k,b)∑
k,b,i wk,bW̃

s
k,b,i(Rγt,i + Rsel)

, (19)

where W̃s
k,b,i is the re-scaled source weight corresponding to ∆̃Σ,

which is defined as

W̃s
k,b,i = ws

i

(
ρcritkR200ck (1− fcl,k,b)

Σcrit,k,b

)2

, (20)

and the corresponding uncertainty is given by

σ2
∆̃Σ

(
R

R200c

∣∣∣∣∣M200c, p
)

j
=

∑
k,b,i

(
Σcrit,k,bwk,bW̃

s
k,b,iσeffb

ρcrit,kR200ck (1− fcl,k,b )

)2

(
∑

k,b,i wk,bW̃
s
k,b,i)

2
. (21)

The mean estimated scaled radius of a given radial bin j is cal-
culated from the equation(

R
R200c

∣∣∣∣∣M200c, p
)

j
=

∑
k,b,i wk,bW̃

s
k,b,iRk,b,i/R200ck∑

k,b,i wk,bW̃
s
k,b,i

, (22)

where Rk,b,i is the projected separation of ellpiticity i in tomo-
graphic bin b from the center of cluster k. A similar expression
for the mean radius R j within a bin pertains, but without the
1/R200c scaling.

In the left panel of Fig. 6, we show the average cluster
matter profile ∆Σ(R), in three redshift bins (for a richness bin,
30 < λ̂ < 90 containing 426 clusters), and in the right panel, we
show the average cluster matter profiles in three richness bins
(for a redshift bin, 0.25 < z < 0.40 containing 123 clusters).
While the measurement uncertainties are significant in this sam-
ple (color bands represent 68% credible regions), it is still pos-
sible to discern variations among the presented average matter
profiles.

To study the average ∆̃Σ (R/R200c) profiles, we need a robust
value of R200c for each cluster, which then implies we need good
mass constraints for each system (Eq. (11)). For this purpose,
we adopt the observable-mass relation (ζ-mass and λ-mass – see

discussion in Sect. 4.1) posteriors from Bocquet et al. (2024a),
where the mass calibration constraints were obtained using the
same DES WL data as part of the cosmological cluster abun-
dance analysis of the sample (Bocquet et al. 2024b). We used the
full sample while analyzing clusters in redshift or richness bins.
The average rescaled cluster matter profiles exhibit less evidence
for variation than the ∆Σ(R) profiles in Fig. 7. In other words,
the tSZE selected clusters show indications of self-similarity
with redshift and richness similar to those presented above for
the clusters from hydrodynamical simulations with redshift and
mass.

This simplicity in the average rescaled matter profiles
∆̃Σ (R/R200c) of the simulated and observed galaxy cluster pop-
ulation offers some advantages. It allows us to combine large
ensembles of clusters with a wide halo mass and redshift range,
creating higher SNR cluster matter profiles, which can be used to
test different models of structure formation. Moreover, the mod-
eling of average cluster matter profiles ∆̃Σ (R/R200c) for observed
cluster samples becomes more straightforward, because the final
average profile is insensitive to the redshift and mass distribution
of the cluster sample (and to the spatial distribution and masking
of the source galaxies). We employ this simplicity in matter pro-
files in Sect. 4, where we present a new method of galaxy cluster
mass calibration that exploits the approximate self-similarity of
galaxy clusters.

4. Mass calibration method

Measurements of the WL signal induced by foreground galaxy
clusters can be used to robustly estimate the cluster mass. How-
ever, because the S/N of the WL signal is low for individual
clusters, it is practical to perform mass calibration using the lens-
ing signal averaged over many clusters (e.g., Umetsu et al. 2014,
2016; Okabe et al. 2010, 2013). Because the average rescaled
matter profiles ∆̃Σ (R/R200c) are particularly simple to model,
they offer the possibility to improve upon previous average mat-
ter profile based WL mass calibration methods.

The method presented below involves (1) building an ensem-
ble of average rescaled matter profiles – one for each bin in clus-
ter observable, (2) extracting a likelihood of these matter profiles
given a model profile and then (3) iterating with a Markov Chain
Monte Carlo method to characterize the posteriors of the model
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Fig. 7. Average rescaled SPT cluster matter profiles ∆̃Σ (R/R200c) constructed using the mass calibration posteriors from Bocquet et al. (2024a).
In the left panel, we show ∆̃Σ (R/R200c) profiles for three redshift bins, and in the right panel we show ∆̃Σ (R/R200c) profiles for different richness
bins. The average rescaled matter profiles show regularity similar to that seen in Fig. 4 for the cluster simulations.

parameters that describe the galaxy cluster observable-mass rela-
tions discussed in Sect. 4.1. The mean posteriors describe the
parameters for which the observed and model average matter
profiles are consistent over the full range of cluster observ-
ables. The average matter profile model is discussed in Sect. 4.2,
and the mass calibration likelihood is presented in Sect. 4.3.
A discussion of the systematic effects and their correction then
appears in Sect. 4.4.

4.1. Observable-mass relations

In our analysis, each confirmed cluster has four associated
observable quantities. These include the tSZE detection signif-
icance ζ̂, the MCMF obtained richness λ̂ and redshift z and
the WL mass MWL that is derived using the WL shear and
photometric redshift measurements of the background, lensed
source galaxies. The WL masses are measured using aver-
age matter profiles ∆̃Σ (R/R200c), and these masses are used to
constrain the so-called cluster observable–mass relations (e.g.,
Mohr & Evrard 1997; Mohr et al. 1999; Finoguenov et al. 2001;
Chiu et al. 2016a, 2018; Bulbul et al. 2019) that describe the red-
shift dependent statistical binding between the observables (i.e.,
detection significance, richness and WL mass) and the underly-
ing halo mass, which for this analysis we take to be M200c.

4.1.1. tSZE detection significance ζ̂

As described in an early SPT analysis (Vanderlinde et al. 2010),
the tSZE detection significance or signal-to-noise ratio ζ̂ is
related to the unbiased significance ζ as

P(ζ̂ |ζ) = N

(√
ζ2 + 3, 1

)
, (23)

where N denotes a Gaussian distribution. This relationship
accounts for the maximization bias in ζ̂ caused during the cluster
matched filter candidate selection (Melin et al. 2006), which has
three free parameters (cluster sky location and cluster model fil-
ter scale). The normal distribution models the impact of the unit
noise in the appropriately rescaled mm-wave maps. The mean
unbiased detection significance is modeled as a power-law rela-

tion in mass and redshift:

〈ln ζ |M200c, z〉 = ln ζ0 + ζM ln
(

M200c

Mpiv

)
+ ζz ln

(
E(z)

E(zpiv)

)
, (24)

where ln ζ0 is the normalization, ζM is the mass trend, ζz is
the redshift trend, E(z) is the dimensionless Hubble parameter,
Mpiv = 3 × 1014h−1 M� is the pivot mass and zpiv = 0.6 is the
pivot redshift, which are chosen to reflect the median mass and
redshift of our confirmed cluster sample. To account for the vari-
able depth of the SPT survey fields, we rescaled the amplitude
ζ0 on a field-by-field basis

ζ0,i = γiζ0, (25)

where γi is obtained from simulated maps (Bleem et al. 2015,
2020, 2024). This approach allows us to combine the full SPT
cluster sample when empirically modeling the ζ-mass relation.
We model the intrinsic scatter in ζ at fixed mass and redshift as
log-normal σlnζ . This single scatter parameter has been shown
to be sufficient to model the SPT tSZE-selected cluster sample
ζ-mass relation (Bocquet et al. 2019, 2024a). We return to this
question with new validation tools in Sect. 5.2.1.

4.1.2. Cluster richness λ̂

The observed cluster richness λ̂ is related to the intrinsic richness
λ as

P(λ̂|λ) = N
(
λ,
√
λ
)
, (26)

which models the Poisson sampling noise in the limit of a normal
distribution where the dispersion is σ =

√
λ. The mean intrinsic

richness is modeled as a power law in mass and redshift

〈ln λ|M200c, z〉 = ln λ0 + λM ln
(

M200c

Mpiv

)
+ λz ln

(
1 + z

1 + zpiv

)
, (27)

where λ0 is the normalization, λM is the mass trend, λz is the red-
shift trend and, as above, Mpiv = 3 × 1014h−1 M� and zpiv = 0.6.
The intrinsic scatter of the intrinsic richness λ at fixed mass and
redshift is modeled as a log-normal distribution with the param-
eter σln λ. This scatter is the same for all redshifts and masses,
which has been shown to be adequate for modeling the λ-
mass relation of the SPT selected cluster sample (Bocquet et al.
2024a). We return to this question also with new validation tools
in Sect. 5.2.1.
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4.1.3. Weak lensing mass MWL

In addition to the ζ-mass and λ-mass relations, we also include
a mapping between the so-called WL mass MWL, which is the
mass one would infer by fitting a model profile to an individual
cluster matter profile, and the halo mass M200c. This follows the
approach adopted in previous work (Becker & Kravtsov 2011;
Dietrich et al. 2019; Grandis et al. 2021; Bocquet et al. 2024b)
and is a mechanism for incorporating corrections for system-
atic biases that may arise from the interpretation of the aver-
age matter profiles and for marginalizing over the remaining sys-
tematic uncertainties in those bias corrections. For example, the
uncertainties associated with hydrodynamical simulations and
the subgrid physics they incorporate can be modeled with this
MWL-mass relation, incorporating an effective systematic floor
in the accuracy of the final, calibrated masses. We characterize
this relation as〈
ln

(
MWL

Mpiv

)〉
= ln MWL0 + MWLM ln

(
M200c

Mpiv

)
+ MWLz ln

(
1 + z

1 + zpiv

)
, (28)

where ln MWL0 is the logarithmic bias at M200c = Mpiv and MWLM

and MWLz are the mass and redshift trends, respectively, of this
bias. For symmetry with the other observable-mass relations,
we explicitly include the redshift trend parametrization, whereas
in previous analyses (see Bocquet et al. 2024b) the relation has
been defined at specific redshifts where the required simulation
outputs are available.

The WL mass MWL estimated from individual clusters
exhibits a mass dependent log-normal scatter σln WL about the
mean relation, which we model as

lnσ2
ln WL = lnσ2

ln WL0
+ σ2

ln WLM
ln

(
M200c

Mpiv

)
+ σ2

ln WLz
ln

(
1 + z

1 + zpiv

)
, (29)

where lnσ2
ln WL0

is the logarithm of the variance of MWL around
M200c at Mpiv and zpiv and σ2

ln WLM
and σ2

ln WLz
are the mass

and redshift trends, respectively, of this variance. For an aver-
age rescaled matter profile that is produced using N clusters, the
effective scatter of the extracted MWL about the true mass would
scale down as 1/

√
N, reducing the stochasticity associated with

the estimate of the underlying halo mass and reducing the impor-
tance of possible correlations between the scatter in MWL and
other observables.

The parameter posteriors on these relations are extracted
through a MWL calibration exercise carried out on hydrody-
namical simulations of clusters output over a range of redshifts
(Grandis et al. 2021). This calibration exercise employs a model
profile or set of model profiles as discussed in the next section
and characterizes the biases and scatter associated with that
model. In addition, systematic uncertainties on photometric red-
shifts, the multiplicative shear bias, the cluster member con-
tamination model and the cluster mis-centering model are also
incorporated into the posteriors on these parameters, making it
straightforward to marginalize over all critical systematic uncer-
tainties in the mass calibration analysis. We return to this in
Sect. 4.4.

4.2. Average rescaled matter profile model ∆̃Σmod

We used the IllustrisTNG and the Magneticum simulations at
five redshifts between 0 to 1 (as described in the Sect. 2.3)
to create an average WL model for use in mass calibration.
Because there is little variation in the average rescaled matter
profiles ∆̃Σ (R/R200c) with mass and redshift, we could adopt
a single average matter profile at all redshifts and masses for
the model used in mass calibration. We could then correct for
the small biases introduced by this assumption of perfect self-
similarity using the MWL-mass relations (Eq. (28) and (29)).
However, an examination of the average matter profiles pre-
sented in Fig. 4 provides clear evidence for small departures
from self-similarity with redshift, while showing no convinc-
ing evidence of departures from self-similarity in mass. There-
fore, we adopted a model ∆̃Σ (R/R200c) profile that varies with
redshift, while assuming perfect self-similarity in mass. This
approach sets the mean logarithmic bias ln MWL0 in the MWL-
mass relation to zero over all masses and redshifts.

To construct an average WL model that represents the typ-
ical behavior across both sets of simulations, we select the
same number of simulated clusters from both the Magneticum
and IllustrisTNG simulations. Since the subgrid physics differ
between the two, the average matter profiles may differ. Given
that IllustrisTNG has fewer halos, we randomly choose an equal
number of halos from Magneticum. Specifically, we select 301,
284, 260, 228, and 176 halos corresponding to the redshifts 0.01,
0.25, 0.47, 0.78, and 0.96, respectively.

For each halo, we extracted three mis-centered cluster mat-
ter profiles (using the method described in Grandis et al. 2021)
and average all of the clusters at a given redshift from both
simulations. We follow the mis-centering distribution model as
described in Sect. 4.4.1. Because mis-centering depends on the
richness of the cluster, we assign each halo a richness value
using the richness-mass relation (Eq. (27)) using the parameters
obtained in a previous cluster cosmology analysis (Chiu et al.
2023). These individual ∆Σ(R) profiles are then rescaled into
∆̃Σ (R/R200c) profiles and averaged following Eq. (15).

Given that the two sets of simulations do not have outputs at
exactly the same redshifts (e.g., 0.42 versus 0.47 and 0.64 versus
0.78), we quantified the differences in the average ∆̃Σ (R/R200c)
profiles at these redshifts, verifying that this induces a negligible
uncertainty. This is achieved by interpolating the profiles from
both simulations as a function of redshift separately and compar-
ing for each simulation the differences in the profiles at both the
redshifts, and finding them to be very small (percentage error of
≈ 0.4 %, see Fig. A.1). We therefore adopted the mean value of
the redshift (in case the redshifts are different) while combining
the profiles from both simulations. The combined profiles are
then interpolated as a function of redshift to capture the slight
differences we see with redshift in the average ∆̃Σ (R/R200c) pro-
files.

Once an average rescaled matter profile model has been cho-
sen, it is used to characterize the bias and scatter in the MWL
estimates with respect to the true underlying halo masses, deter-
mining posteriors of the parameters in Eqs. (28) and (29). As
part of this calibration process, uncertainties on the other crucial
systematics (uncorrelated large-scale structure covariance, clus-
ter mis-centering, cluster member contamination of the source
galaxy sample, and hydrodynamical uncertainties on the model)
are also included. We note that our model uses Eq. (3) to calcu-
late ∆Σ, while we use Eq. (5) to calculate the observed profiles.
This introduces a 1% bias in our modeling; however, given that
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our analysis is dominated by statistical uncertainties, this has no
significant impact on our conclusions.

4.3. Mass calibration likelihood

In this section we present the mass calibration likelihood that we
employ with the average rescaled matter profile ∆̃Σ (R/R200c).
The lowest level observational constraint from weak gravita-
tional lensing is a tangential reduced shear profile (Eq. (1)) con-
structed for each of a series of tomographic bins within which the
shear galaxy sample is organized. A complication with using the
tangential shear profiles (see, e.g., Bocquet et al. 2024b), is that
the profiles from the different bins have amplitudes that depend
on Σcrit, which in turn depends on the redshift distributions of the
background galaxies (Eq. (4)). The matter profile ∆Σ(R) (Eq. (3))
is simpler in that the profiles for each tomographic bin are all
estimators of the same underlying projected matter density of
the cluster (see, e.g., McClintock et al. 2018). The observable
we adopt here ∆̃Σ (R/R200c) (Eq. (12)) offers additional simplic-
ity, because this profile is approximately the same for all clusters,
independent of their mass and redshift. However, the matter pro-
file ∆Σ(R) and rescaled matter profile ∆̃Σ (R/R200c) are no longer
pure observables. They both have dependences on cosmologi-
cal parameters that impact the distance-redshift relation, and the
rescaled matter profile also has dependences on the masses and
redshifts of the constituent clusters. This dependence has to be
considered within the likelihood, as outlined in the next subsec-
tion.

4.3.1. Likelihood of the rescaled matter profile

The lensing likelihood for an average rescaled matter profile is
given by a product of the independent Gaussian probabilities
of obtaining the observed matter profile given the model within
each radial bin. Because the rescaled matter profile ∆̃Σ (R/R200c)
depends on cosmological parameters and the masses and radii
of the constituent clusters, the likelihood has to be altered to
account for these dependencies. The likelihood transformation
for a data vector tθ which is some function of a data vector y
(independent of model parameters) and model parameters θ is
given by (Severini 2004)

P(tθ|θ)dθ −→ P(tθ|θ)
∣∣∣∣∣∂tθ
∂µ

∣∣∣∣∣dµ. (30)

Here, µ denotes a function of data y that has the same dimension
as tθ and is independent of the model parameters θ. In the case
where µ cannot be expressed with the same dimension as tθ, the
likelihood transformation is then given by

P(tθ|θ)dθ −→ P(tθ|θ)
∣∣∣∣∣∂tθ
∂µ

(
∂tθ
∂µ

)T∣∣∣∣∣1/2dµ. (31)

Using Eq. (31), we can write the transformed Gaussian
likelihood (lensing likelihood) for a rescaled matter profile
∆̃Σ (M200c, p) (given by Eq. (19)) with j radial bins as

P(∆̃Σ (M200c, z, p) |∆̃Σmod, z) =
∏

j

PG, j

∣∣∣∣∣∂∆̃Σ j

∂et, j

(∂∆̃Σ j

∂et, j

)T∣∣∣∣∣1/2,
(32)

where ∆̃Σmod is the model profile and the second factor in the
above equation is the transformation calculation for all the radial

bins, et, j = [e1
t , e

2
t , e

3
t . . . e

n
t ] is the vector containing the n source

ellipticities in a given radial bin j and PG, j is the Gaussian like-
lihood for that bin

PG, j =

(√
2πσ

∆̃Σ, j

)−1
exp

[
−

1
2

( ∆̃Σ j − ∆̃Σmod,j

σ
∆̃Σ, j

)2]
, (33)

where σ
∆̃Σ, j is the rescaled shape noise as described in Eq. (21).

The likelihood transformation is a one-dimensional partial
derivative matrix with length n and is given by

∂∆̃Σ j

∂et, j
=

[
∂∆̃Σ j

∂e1
t, j

,
∂∆̃Σ j

∂e2
t, j

, . . . ,
∂∆̃Σ j

∂en
t, j

]
. (34)

The transformation factor can then be expressed as∣∣∣∣∣∂∆̃Σ j

∂et, j

(∂∆̃Σ j

∂et, j

)T ∣∣∣∣∣1/2 =

( (
∂∆̃Σ j

∂e1
t, j

)2
+

(
∂∆̃Σ j

∂e2
t, j

)2
+ ...

+

(
∂∆̃Σ j

∂en
t, j

)2
)1/2

, (35)

where we just compute the derivative of Eq. (19) with respect to
the measured ellipticities.

4.3.2. Likelihood of single cluster rescaled matter profile

The intrinsic scatter in the observable mass relations, the
measurement noise on the observables, and the posteriors of
the observable-mass relation parameters and the cosmological
parameters all contribute to create the posterior mass distribu-
tion P(M|ζ̂, λ̂, z, p) for a given cluster. Even in the limit of per-
fect knowledge of the observable-mass relation and cosmolog-
ical parameters, this posterior distribution has some character-
istic width determined by the mass trends in each observable
together with the sources of scatter mentioned above. Moreover,
even in the case of a perfect match between the observed and
model rescaled matter profiles, the resulting WL mass estimate
is a biased and scattered estimator of the true halo mass M200c as
described by the MWL-halo mass relations (Eq. (28) and (29)).

The cluster mass uncertainty represented by this mass poste-
rior and any biases and scatter in the WL mass estimate have to
be accounted for. Therefore, the single cluster lensing likelihood
for cluster k with the WL mass posterior Pk(MWL|ζ̂, λ̂, z, p) and
rescaled matter profile ∆̃Σk is written as

P(∆̃Σk |∆̃Σmod, z) =

∫
dMWLPk(MWL|ζ̂, λ̂, z, p)

P(∆̃Σk(MWL)|∆̃Σmod, z), (36)

where we are explicit with subscript k to emphasize that this
expression represents a weighted likelihood for a single cluster.
We note that the MWL dependence of ∆̃Σk is due to the cluster
radius (Eq. (12)), which is mass dependent as in Eq. (11).

We calculate the mass posterior using three observables ζ̂,
λ̂ and z (we neglect the cluster photometric redshift uncertainty
because it is too small relative to other sources of scatter to be
important). According to Bayes’ theorem, the expression for the
mass posterior of a cluster that accounts for intrinsic and mea-
surement scatter in the observables is

P(MWL|ζ̂, λ̂, z, p) =#
dMdλdζP(λ̂|λ)P(ζ̂ |ζ)P(ζ, λ,MWL|M, z, p)P(M|z, p)

P(λ̂, ζ̂ |z, p)
, (37)
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where the measurement noise is represented by P(λ̂|λ) and
P(ζ̂ |ζ), the intrinsic scatter and any bias in the observable about
mass by P(ζ, λ,MWL|M, z, p), P(M|z, p) is the halo mass function
factor which allows us to account for Eddington bias due to the
selection, and P(λ̂, ζ̂ |z, p) is just the numerator integrated over
MWL.

In the context of multiple observables, the single cluster mass
calibration likelihood Lsingle can be written (assuming ∆̃Σ is
uncorrelated with other observables) as a product of the single
cluster lensing likelihood and the likelihood of the observables

Lsingle = P(∆̃Σk |∆̃Σmod, z)P(λ̂|ζ̂, z, p), (38)
where the second component is the likelihood of the observed
richness λ̂ given the observed tSZE detection significance ζ̂ and
redshift z. It can be calculated using Bayes’ theorem accounting
for intrinsic scatter in the observables
P(λ̂|ζ̂, z, p) =#

dMdλdζP(λ̂|λ)P(ζ̂ |ζ)P(ζ, λ|M, z, p)P(M|z, p)

P(ζ̂ |z, p)
, (39)

where P(ζ̂ |z, p) is just the normalization that comes from inte-
grating the numerator over all λ̂, including importantly the
λ̂min(z) selection threshold, which is crucial for accounting for
Malmquist bias. Additionally, in this study, we assume that there
is no correlated scatter between ζ and λ, so P(ζ, λ|M, z, p) can be
further simplified as P(ζ |M, z, p)P(λ|M, z, p).

4.3.3. Likelihood of multi-cluster average rescaled matter
profile

For a given ζ̂ − λ̂ − z bin containing n clusters, the rescaled mat-
ter profile ∆̃Σ is notionally calculated as in Eq. (19). However,
as discussed above for the single cluster rescaled matter pro-
file, the mass posteriors of the clusters must be included. Rather
than extracting an average likelihood by marginalizing over the
WL mass posterior P(MWL|ζ̂, λ̂, z, p) as in the single cluster case
(Eq. (36)), in the multi-cluster case we adopt a Monte Carlo inte-
gration approach that allows us to efficiently marginalize over
the mass posteriors of all n clusters simultaneously. In effect, we
rebuild the average matter profile ∆̃Σ for the cluster ensemble
many times and use those profiles to extract likelihoods and then
estimate the average likelihood of the rescaled matter profile.

Following the likelihood for a single cluster matter profile
in Eq. (38), we write the WL mass calibration likelihood for an
ensemble of n clusters with associated observables λ̂i, ζ̂i and zi
as

Lbin = 〈P
(
∆̃Σ(ζ̂, λ̂, z, p)|∆̃Σmod, z

)
〉

n∏
i=1

P(λ̂i|ζ̂i, zi, p), (40)

where 〈P
(
∆̃Σ(ζ̂, λ̂, z, p)|∆̃Σmod, z

)
〉 is the average lensing likeli-

hood of the average rescaled matter profile built from the ensem-
ble. The observable vectors ζ̂, λ̂, and z each contain the mea-
surements for the n clusters in the ensemble. For an n cluster
ensemble, it takes the form

〈P
(
∆̃Σ

(
ζ̂, λ̂, z, p

)
|∆̃Σmod, z

)
〉 =(

dMWL1 . . . dMWLn P(MWL1 |ζ̂1, λ̂1, z1, p) × . . .

P(MWLn |ζ̂n, λ̂n, zn, p) (41)

P
(
∆̃Σ(MWL1 , . . . ,MWLn , p)|∆̃Σmod, z

)
,

where we note that the MWL is needed to build the rescaled mat-
ter profile (using Eq. (19) with MWL instead of M200c) and is cal-
culated from observables (λ̂, ζ̂ and z) and the MWL-mass relation
using Eq. (28).

The final likelihood for m ζ̂ − λ̂− z bins can be written as the
product of the likelihood of individual bins

L =

m∏
bin=1

Lbin. (42)

4.4. Modeling and correcting for systematic effects

4.4.1. Cluster mis-centering distribution

For each of the clusters in our sample, we have two measure-
ments of the cluster center. The first is the tSZE center as mea-
sured by the SPT and the second is the optical center extracted
using the MCMF algorithm. MCMF adopts the BCG as the cen-
ter if it is within 250 kpc of the cluster position determined by
SPT; otherwise, the position of the peak of the galaxy density
map is used. We only make use of MCMF centers for our anal-
ysis. As the observationally determined center is not a perfect
tracer of the true halo center, the effect of this mis-centering must
be taken into account when modeling the cluster matter profile.
We adopt the mis-centering model and the parameters from the
recent work by Bocquet et al. (2024b). The mis-centering dis-
tribution for the tSZE and optical centers is modeled using the
double Rayleigh distribution.

Poffset(r) = ρRayl(r, σ0) + (1 − ρ)Rayl(r, σ1),

σi = σi,0

(
λ

60

)1/3

for i ∈ {0, 1}. (43)

The double Rayleigh distribution is a good description of the mis-
centering of the optical center with respect to the true halo cen-
ter. The constraints on the mis-centering parameters (ρ, σ0, σ1)
are obtained by simultaneously fitting for SPT and optical cen-
ters. A large fraction of clusters (ρ ≈ 0.89) are well centered, and
the two scatter parameters are σ0 ≈ 0.007 h−1 Mpc and σ1 ≈

0.18 h−1Mpc (for additional details, see Bocquet et al. 2024b).
Crucial for our mass calibration analysis is to include the

effects of uncertainties on the mis-centering distribution. We do
this as part of the MWL-mass relation calibration. However, given
the radial range we adopt for mass calibration (R > 500 h−1 kpc),
the miscentering itself and the uncertainties on the mis-centering
have little impact on our results.

4.4.2. Cluster member contamination

Cluster galaxies are generally included in the WL source galaxy
sample in the case where the cluster redshift lies within the source
galaxy redshift distribution associated with a tomographic bin
(see Fig. 2). These cluster galaxies are not sheared by their host
cluster halo, and therefore their inclusion biases the lensing sig-
nal toward being low. To correct for this shear bias, we follow the
methodology described in Paulus (2021), developed for the DES
Y1 WL dataset, and in Bocquet et al. (2024b), where the method
was extended for application to the DES Y3 WL tomographic
bin based dataset. The method follows notionally the work by
Varga et al. (2019) but more explicitly accounts for varying clus-
ter redshift zcl. Here we extend this method again by modeling the
contamination within each tomographic bin separately.

In our analysis, the fractional contamination by cluster mem-
bers fcl,b in tomographic source bin b is extracted by modeling
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the probability density function of galaxies in redshift along the
line of sight toward the cluster as the weighted sum of the cluster
member distribution Pcl,b(z) and the average source galaxy field
distribution in tomographic bin b as

Pb(z) = fcl,bPcl,b(z) + (1 − fcl,b)Pfield,b(z), (44)

where Pfield,b(z) corresponds to the field component, which
has been divided into three tomographic bins b ∈ 2, 3, 4.
For this analysis the individual source galaxy DNZ photo-z’s
(De Vicente et al. 2016) are employed.

To determine both the cluster and field components as
described, the source galaxies from the DES Y3 shear catalog
associated with each cluster are divided into nine logarithmi-
cally spaced bins in projected radius, ranging from 0.7h−1 Mpc to
10h−1 Mpc from each cluster center. Because the projected clus-
ter galaxy population falls off rapidly with radial distance from
the cluster, the outermost two bins are dominated by the field
source distribution. As previously reported in Paulus (2021), the
depth inhomogeneities and masking variations in the DES WL
source galaxy catalog lead to a field component surface density
associated with each tomographic bin being relatively homoge-
neous on the scale of a cluster but varying significantly over the
survey. Thus, we used a local measure of the field surface density
around each cluster when modeling the contamination.

The redshift distribution of the cluster component Pcl,b(z) is
modeled as a Gaussian distribution in the space of z − zcl with
a redshift dependent characteristic width of σz,b(z) and redshift
offset parameter zoff,b(z) as

Pcl,b(z) =
1

√
2πσz,b(z)

e
−

(z−zcl−zoff,b(z))2

2σ2
z,b (z) . (45)

The characteristic width of the cluster members in redshift
reflects the typical photo-z uncertainties, and the offset in red-
shift away from the cluster redshift can result from, for exam-
ple, the selection applied in dividing source galaxies into tomo-
graphic bins.

The spatial distribution of the cluster component is modeled
as a projected NFW profile fNFW(R, cλ) whose amplitude varies
with observed cluster richness as λ̂Bλ and whose redshift varia-
tion is extracted directly through measurements within indepen-
dent redshift bins (Paulus 2021). For convenience, this projected
NFW spatial model is normalized to a value of 1.0 at a projected
radius of 1 h−1 Mpc, and the NFW concentration 10cλ is modeled
as a function of richness as

rs =
(λ̂/60)1/3

10cλ
h−1Mpc. (46)

This approach allows adequate freedom to describe the
galaxy populations around tSZE selected clusters over our red-
shift range of interest (Hennig et al. 2017). We note that we mea-
sure the contamination around the same cluster centers used for
the matter profile analysis, and so mis-centering effects are auto-
matically included. In our analysis, we exclude the core region
of the cluster where blending is more common. Moreover, we
apply no correction for WL magnification bias (e.g., Chiu et al.
2016b), which is strongest in the excluded cluster core region.

The fractional cluster member contamination extracted is
used to apply a radially dependent correction 1/(1 − fcl,b(R)) to
the amplitude of each cluster matter profile ∆Σ(R) derived from
each tomographic bin b before these matter profiles are averaged.
It can be expressed as

1
1 − fcl,b(R)

= 1 + eAeff,b(zcl)
(
λ̂

60

)Bλ,b

fNFW(R, cλ,b), (47)
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Fig. 8. Fractional cluster member contamination for a cluster with
λ̂ = 60 as a function of redshift for the three source galaxy tomo-
graphic bins (see Fig. 2) and their weighted combination. The solid
(dashed) lines show the mean (68% credible interval) of the contami-
nation. The colored lines extend over the redshift ranges for which each
tomographic bin is employed in constructing the cluster matter profiles.
The 1.4h−1 Mpc radius is chosen because that is a characteristic radius
from which the WL constraints are coming, given the adopted radial
fitting range and the increasing number of source galaxies with radius.

where

Aeff,b(zcl) = A∞ +
∑

i

Aie
− 1

2
(zcl−zi )2

ρ2
corr , (48)

is a normalization factor that is dependent on the cluster red-
shift and the extracted amplitudes Ai that are extracted within
redshift bins zi, where the redshift centers of the bins are zi ∈

{0.2, 0.28, 0.36, 0.44, 0.52, 0.6, 0.68, 0.76, 0.84, 0.92, 1.0}. In this
expression we have integrated over the cluster member redshift
distribution. For each tomographic bin b, the parameters A∞,
Ai, ρcorr, Bλ,b, cλ,b, zoff,b(z) and σz,b(z) are obtained by fitting
to the entire cluster population. The redshift dependence of the
redshift width and offset in Eq. (45) are assumed to be simple
linear functions in redshift around a pivot redshift z = 0.5 as
σz(z) = σz0 + σzz (z − 0.5) and zoff(z) = zoff0 + zoffz (z − 0.5),
respectively (again, within each tomographic bin b).

To solve for the parameters of the cluster member contam-
ination model, we iterate over all clusters in the sample com-
paring our model (Eq. (44)) to the observed surface density of
source galaxies as a function of redshift and projected separation
from the cluster. Following Paulus (2021), we apply a regulariza-
tion term to the likelihood with a correlation length in redshift
ρcorr−z to the pairs of neighboring amplitudes eAi,b , which then
prefers a solution with smooth variation in redshift (as noted
explicitly in Eqs. (24) through (27) in Bocquet et al. 2024b).
With larger cluster samples these regularization terms would no
longer be important. The parameter constraints for each tomo-
graphic bin are given in Table C.1. Because the method applied
here is similar to that in Bocquet et al. (2024b), we direct the
reader to Fig. 9 in Bocquet et al. (2024b) for validation tests of
the model.

Figure 8 shows the fractional cluster member contamination
at a projected radius of 1.4h−1 Mpc as a function of cluster red-
shift for the three source galaxy tomographic bins. The mean
model is shown in color coded solid lines corresponding to the
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Fig. 9. Posterior constraints for average cluster mass calibration of three
different mock SPT samples in a fiducial flat ΛCDM cosmology. The
gray dashed line shows the input parameters used to generate the mock
samples, which are recovered within the uncertainties.

model parameters as listed in Table C.1 over the redshift range
for which each tomographic bin is used. The dashed lines show
the 68% credible intervals. For a cluster at a given redshift, the
total fractional contamination would be a weighted sum of the
fractional contamination within each tomographic bin, where we
apply the weight Σ−1

crit appropriate for each bin. This weighted
contamination is shown as the black black line with associated
dashed lines corresponding to the 68% credible interval. The
radius 1.4h−1 Mpc is the characteristic radius for the cluster fit-
ting when considering our radial fitting range and the increase of
the number of source galaxies with radius. Thus, the typical con-
tamination for a λ̂ = 60 cluster varies from ∼1% at the lowest
cluster redshifts to ∼6% at the highest, and the contamination
varies as λ̂Bλ where Bλ = 0.78, 0.60 and 0.53 for tomographic
bins 2, 3 and 4, respectively.

5. Results and discussion

In this section we first present validation tests of our new cal-
ibration method applied to mock data in Sect. 5.1. In Sect. 5.2
we show the resulting constraints from the real data, discuss the
choices made in this analysis, such as which systematics are
included, and present a validation of our adopted form for the
observable-mass relations using the real data. We then present
the average cluster matter profile out to larger radii (including
the two-halo dominated region) and compare it with the simula-
tion in Sect. 5.3. Section 5.4 contains a comparison of our results
with those reported in the recent literature.

5.1. Validation of method using mock dataset

We validate our analysis method using a realistic SPT+MCMF
mock catalog with DES-like mock WL data. For this purpose,

we create mock clusters and lensing data following the approach
taken in the recent SPT×DES analysis (Bocquet et al. 2024b).

The first step in creating a mock SPT+MCMF cluster cat-
alog within a fiducial cosmological model is to calculate the
expected number of halos as a function of redshift and mass; for
this we adopt the Tinker et al. (2008) halo mass function scaled
by the surveyed volume as a function of redshift, imposing a
mass range 1013M� < M200c < 1016 M� and a redshift range
0.25 < z < 0.94. We draw a Poisson realization of this sample,
and then for each halo we assign cluster observables using the
observable-mass relations presented in Sect. 4.1. We then apply
survey selection cuts in tSZE detection significance ζ̂ and optical
richness λ̂ consistent with those used to produce the real sample.
These realistic mocks follow the SPT and MCMF related survey
depth geometry and produce a mock sample similar to the real
dataset (see Fig. 1) that is fully consistent with the form of the
observable-mass relations that we use to analyze the real dataset.

To generate mock WL data for each selected cluster in our
mock catalog, we first estimate the total source galaxies associ-
ated with the cluster by calculating its area on the sky (corre-
sponding to the radial distance to cluster center R = 10h−1Mpc)
and assuming a source galaxy density of 6 arcmin−2. We assume
the same source redshift distribution as the DES Y3 data for
each tomographic bin for the mock source galaxies. For each
source, we assign a weight by randomly drawing source weights
from real DES data. We divide the total source galaxies equally
among the three tomographic bins. We then assign a radial dis-
tance to each source galaxy by randomly drawing distance ∝ R.
We then sample the amplitude of the rescaled matter profile ∆̃Σ
at the distance Ri/R200c for each galaxy i, given the cluster radius
R200c and using our rescaled matter profile model (see Sect. 4.2).
We add tomographic bin-dependent cluster member contamina-
tion, consistent with our measurement using the DES data (see
Sect. 4.4.2) and then convert the ∆̃Σ amplitude for each galaxy to
gt using 〈Σcrit,b〉 for the appropriate tomographic bin b. We apply
scatter to each gt measurement by drawing gt from a normal dis-
tribution with σeff = 0.3 (effective shape noise for DES data).
This process produces realistically noisy and biased tangential
shear data for each cluster. Specifically, these shear data include
all the known systematic and stochastic effects needed to model
cluster shear profiles in DES data.

We create several statistically independent mock catalogs to
assess the performance of our likelihood model and the software.
For the analysis, we divide our data into 3×3×3 ζ̂− λ̂−z observ-
able bins, and the likelihood calculation is performed following
the formalism outlined in Sect. 4.3. Figure 9 shows the posteriors
for three mock catalogs with the same set of input observable-
mass relation and cosmological parameters but with different
uniform random deviate seeds. As expected, all the mock cat-
alogs contain a number of clusters that is similar to the real SPT
sample. The corresponding sets of lensing data are also gener-
ated with different random number seeds. Mock-1 and mock-2
are generated with a shape noise (σeff = 0.3), similar to DES Y3,
while mock-3 is created with a shape noise value of 0.05, which
is equivalent to scaling up the lensing source galaxy density by
a factor of 36, therefore providing a more stringent test of the
software.

To effectively and efficiently sample the high dimensional
parameter space, we used the Markov Chain Monte Carlo algo-
rithm MultiNest (Feroz et al. 2009, 2019) for our likelihood
analysis. As is clear in Fig. 9, the posteriors are in good agree-
ment with the input parameters (plotted as dashed lines). These
validation tests show no signs of biases.
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Fig. 10. Contour plot showing the posterior constraints for cluster mass
calibration using average matter profiles (in red) of the SPT cluster sam-
ple in a ΛCDM model. The blue contour shows cluster-by-cluster WL-
only mass calibration results from Bocquet et al. (2024a) for the same
SPT sample. The dashed blue line shows the prior boundary used in
Bocquet et al. (2024a) for two parameters which is smaller than ours.

Our ∆̃Σ profile analyses of both mock and real datasets typ-
ically converge in a factor of five less time on similar comput-
ing resources than in the case of the cluster-by-cluster analysis.
Interestingly, the time required for a single iteration of the ∆̃Σ
likelihood is similar to that for the cluster-by-cluster analysis,
but the number of iterations required for convergence is typi-
cally five times less. This faster convergence seems to be due
to the difference in SNR of the average profiles as compared to
the individual cluster matter profiles, which influences the stabil-
ity of the likelihood far away from the best fit parameter values.
In future analyses using the average profile method, we plan to
present further efficiency improvements. Ongoing testing indi-
cates that these approximate methods reduce the time required
for a single likelihood evaluation by more than an order of mag-
nitude.

5.2. SPT×DES analysis

With the validation of the code, we move on to apply the anal-
ysis method outlined above to the SPT×DES sample. Following
Grandis et al. (2021), we restrict our analysis to the radial range
0.5 < R/(h−1Mpc) < 3.2/(1 + zcl). This radial cut allows us
to restrict the analysis to the one-halo region while simultane-
ously avoiding the central region of the cluster, which is most
affected by cluster member contamination, mis-centering, and
baryonic processes. Throughout the analysis, we use DNF red-
shifts (De Vicente et al. 2016), which are used to calibrate clus-
ter member contamination. The shape noise per tomographic bin
for the DES Y3 data is taken from Amon et al. (2022), which is

Table 2. Mean parameter posteriors and 1-σ uncertainties from our
mass calibration analysis.

Parameter Posterior

tSZE detection significance ζ-mass relation
ln ζ0 0.586 ± 0.158
ζM 1.797 ± 0.195
ζz 0.045 ± 1.054
σln ζ 0.127 ± 0.068
Optical richness λ-mass relation
λ0 37.69 ± 4.37
λM 1.275 ± 0.150
λz −0.349 ± 0.690
σln λ 0.216 ± 0.025
MWL − M200c relation
σln MWL0,1

−0.35 ± 0.80
σln MWL0,2

0.20 ± 1.00
MWLM 1.000 ± 0.004
lnσ2

ln WL0
(z0) −3.08 ± 0.02

lnσ2
ln WL0

(z1) −3.04 ± 0.03
lnσ2

ln WL0
(z2) −2.80 ± 0.03

lnσ2
ln WL0

(z3) −1.88 ± 0.05
σ2

ln WLM
−0.22 ± 0.04

Cosmology
Ωm 0.315 ± 0.006

in good agreement with our bootstrap error estimates

σeff,b =


0.262 b = 2
0.259 b = 3
0.301 b = 4

.

We analyzed the SPT clusters in the redshift range 0.25 ≤ z <
0.94, which contains 698 clusters with DES WL data. As with
the mock validation, we divide the data into 3×3×3 ζ̂−λ̂−z bins,
leading to 27 independent average rescaled matter profiles ∆̃Σ.
Because the WL signal in our sample has a higher SNR for lower
redshift clusters, the highest redshift bin is chosen to be wider so
that it has a sufficient SNR to approximately equal the SNR in the
two lower redshift bins. Each redshift bin is further divided into
9 bins (3×3 ζ̂ − λ̂). Here, also, we choose bin boundary values
such that each bin has a similar SNR. The observable bins for
each redshift range are as follows

0.25 ≤ z < 0.33

0 ≤ λ̂ < 60, 60 ≤ λ̂ < 120, 120 ≤ λ̂ < 250

4.25 ≤ ζ̂ < 5, 5 ≤ ζ̂ < 7, 7 ≤ ζ̂ < 50
0.33 ≤ z < 0.43

0 ≤ λ̂ < 75, 75 ≤ λ̂ < 120, 120 ≤ λ̂ < 250

4.25 ≤ ζ̂ < 6.5, 6.5 ≤ ζ̂ < 8.5, 8.5 ≤ ζ̂ < 50
0.43 ≤ z < 0.94

0 ≤ λ̂ < 65, 65 ≤ λ̂ < 110, 110 ≤ λ̂ < 250

4.25 ≤ ζ̂ < 5, 5 ≤ ζ̂ < 7, 7 ≤ ζ̂ < 50.

Parameter priors for our run are listed in Table 1. In
summary, we fixed the sum of neutrino masses to the min-
imum allowed value of 0.06 eV. Nearly all other cosmo-
logical parameters were fixed to their mean Planck values
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Fig. 11. Average SPT cluster matter profiles corresponding to the mean recovered parameters in twelve ζ̂ − λ̂ − z bins are shown with black data
points with 1σ error bars. The WL model is shown in the red line and the shaded blue region represents 2σ error region on the model.

(Planck Collaboration VI 2020), except for Ωm, which has a
Gaussian prior (our results are unaffected when using a wide
flat prior on Ωm). The observable-mass relation parameters are
assigned a wide flat prior. Moreover, we assume no correlated
scatter between ζ and λ.

Rather than precisely following the form of the MWL−M200c
relation presented in Eqs. (28) and (29), our analysis follows
the approach adopted in Bocquet et al. (2024b) where they ana-
lyze the same SPT×DES sample. We follow the redshift varia-
tion by interpolating between the relations determined through
mock observations of specific simulation outputs at redshifts
z ∈ {0.252, 0.470, 0.783, 0.963}. We set the amplitude and mass
trend of the bias to 0 and 1, respectively, because we have
adopted the simulation matter profiles as our model. We adopt
the scatter parameter priors from the mock analysis of the sim-
ulations at four different redshifts, and we interpolate linearly
to obtain the expectation at a given redshift. Additionally, we
include the redshift dependent uncertainty on the amplitude of
the bias with Gaussian random deviates whose values are scaled
using the parameters σln MWL0,1

and σln MWL0,2
.

The resulting posteriors inferred from applying the new mass
calibration software to the SPT×DES data are shown in Fig. 10.
The mean posterior, along with the corresponding 68% credible
intervals, are listed in Table 2. We find that the mass trend ζM of
the ζ-mass relation has a value of 1.797±0.195, which is close to
the 5/3 scaling one would expect for the tSZE measured within
the cluster virial region (e.g., r < r200c). However, given that the

angular filtering in the tSZE cluster detection removes more flux
from larger, more massive clusters, this measured mass trend is
likely evidence for a steeper than self-similar relation. The red-
shift trend ζz is consistent with 0. We find that the redshift trend
λz of the λ-mass relation and the mass trend λM, are statistically
consistent with 0 and 1, respectively.

We note that we marginalize over all the crucial system-
atic errors in our analysis by adopting the MWL − M200c rela-
tion. We have repeated the analysis without marginalizing over
the systematics, and we do not notice any significant difference.
This is expected, because our analysis is shape-noise dominated.
Bocquet et al. (2024a) find the same as shown in their Fig. 3.

The blue contours in Fig. 10 show the constraints from
Bocquet et al. (2024a) WL analysis of the same SPT×DES sam-
ple with MCMF center and DNF redshifts. They perform the
analysis on a cluster-by-cluster basis compared to our aver-
age profile approach and they use the same radial fitting range
as ours. Our analysis is done with a prior on Ωm unlike in
Bocquet et al. (2024a), where they use a flat prior. We use a
wider prior on σln ζ and ζz compared to their work as can be
seen in Fig. 10. The slight differences in intrinsic scatter poste-
riors can be attributed to the different modeling of the observa-
tional Poisson noise on the richness in this and the Bocquet et al.
(2024a) analyses. In general, the results from our analysis show
very good agreement with their single cluster analysis method
and every parameter agrees on average at the ≈0.4σ level.
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Fig. 12. Observed optical richness λ̂ of SPT clusters as a function of the
cluster halo mass (top) and redshift (bottom). The clusters are shown
with filled circles, where the error bars also capture the error in the
observable-mass relations and the estimated cluster halo mass. The top
and bottom plots shows the richness λ̂ normalized at the pivot redshift
zpiv = 0.6 and the pivot mass Mpiv = 3 × 1014h−1 Mpc, respectively. The
intrinsic model (Eq. (27)) is shown in blue. The light and dark-shaded
regions in both the panels represent 68% and 95% credible intervals of
the mean model respectively.

5.2.1. Goodness of fit

To assess the goodness of fit of the data to our model, we com-
pare the average matter profile model to the average cluster mat-
ter profile in 3 × 2 × 2 ζ̂ − λ̂ − z bins and perform a χ2 fit to all
bins. Figure 11 shows 12 average matter profiles (observations
represented with black data points), each for a given ζ̂ − λ̂− z bin
along with the model and its corresponding 2σ region (shown
in shaded blue region). The profiles are extracted corresponding
to the mean parameter obtained from our posterior. We obtain
a chi-squared value of χ2 = 97.83 from 84 data points, effec-
tively constraining 8 parameters. This corresponds to a reduced
chi-squared value of χ2

red = 1.27 and a probability of exceeding
the observed χ2 of p=0.047.

5.2.2. Observable-mass relation validation

To further validate our mass calibration results, we perform a
series of tests on the richness and tSZE observable-mass rela-
tions. In these tests we are determining whether the data are
consistent with our model description of the observable-mass
relations. In Fig. 12 we show the λ̂-mass (top) and λ̂-redshift
(bottom) relations. To analyze the λ̂-mass relation, we calcu-
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Fig. 13. Observed debiased detection significance ζ̂ of SPT clusters as a
function of the cluster halo mass (top) and redshift (bottom). The intrin-
sic model (Eq. (24)) is shown in blue. The plotting scheme is the same
as Fig. 12. The effects of Eddington bias and selection on ζ̂ can be seen
in the above plots.

late the richnesses at the pivot redshift by simply dividing λ̂ by(
(1 + z)/(1 + zpiv)

)λz
. This factor removes the measured redshift

trend and allows us to study only the mass trend. On the x-axis,
we show mean mass posteriors obtained using dual-observables,
given by the following equation:

P(M200c|ζ̂, λ̂, z, p) =!
dλdζP(λ̂|λ)P(ζ̂ |ζ)P(ζ, λ|M200c, z, p)P(M200c|z, p)#

dMdλdζP(λ̂|λ)P(ζ̂ |ζ)P(ζ, λ|M200c, z, p)P(M200c|z, p)
. (49)

where of course the parameters of the observable-mass relations
have been constrained using the WL mass calibration described
above.

Similarly, we study the richness-redshift relation by normal-
izing the richnesses with

(
M200c/Mpiv

)λM
. In both panels the solid

black line shows the intrinsic observable-mass relation (Eq. (27))
corresponding to the mean posterior values. The dark and light-
shaded blue bands represent 68% and 95% credible intervals on
the intrinsic observable-mass relation model. The gray error bar
on the data points represents the statistical errors and uncertain-
ties in the observable-mass relations and the estimated cluster
halo masses.

In Fig. 13 we show ζ̂-mass and ζ̂-redshift relation. On the y-

axis, we plot (
√
ζ̂2 − 3)/γ, where γ is a scale factor that is used

to correct for the different depths of fields in the SPT survey.
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Fig. 14. Distributions of deviations in λ̂ about the intrinsic observable-
mass relation shown for the SPT sample (green histogram) and a
mock dataset (100 times larger) drawn from that same intrinsic relation
(orange line). The top (bottom) panels show the deviations in low and
high mass (redshift) with the measured redshift (mass) trend removed
as in Fig. 12.
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Fig. 15. Same as Fig. 14 but for normalized ζ̂. The top (bottom) panels
show the deviations in low and high mass (redshift) with the measured
redshift (mass) trend removed as in Fig. 13.

Again, we normalize the y-axis with a factor of
(
E(z)/E(zpiv)

)ζz

while analyzing the relation with mass and with a factor of(
M200c/Mpiv

)ζM
while analyzing its relation with redshift. The

intrinsic observable-mass relation model (Eq. (24)) with mean
posterior parameters is shown with a black line and the error
region is shown in blue bands as in the previous figure.
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Fig. 16. Average rescaled matter profile ∆̃Σ(R/R200c) of the full sample
of 698 clusters over the full mass and redshift ranges estimated using the
mean mass posterior P(M200c|ζ̂, λ̂, z, p) for each cluster (see Eq. (49)).
The black points represent the measured mean profile, and the error bars
include not only shape noise but also marginalization over the cluster
mass uncertainties. The dark and light-shaded red bands show 68% and
95% credible intervals, respectively, on the model profile extracted from
hydrodynamical simulations.

Compared to the intrinsic observable-mass relations (defined
by blue bands) the observables in our analysis suffer from selec-
tion effects, which can be seen in Figs. 12 and 13 (we further
dicuss this in Appendix B). The Eddington bias is clearly visi-
ble in the left side (low mass portion) of the top panels in Figs. 12
and 13 from the points lying above the best-fitting line in ζ̂-mass
and below the relation in λ̂-mass. These points are preferentially
scattered away from the mean expected observables ζ̂ and λ̂. A
particularly strong feature is the two extensions of the observable
ζ̂ to lower mass away from the mean relation. These two features
are created by the ζ̂ selection thresholds in the two SPT survey
fields, and these are often referred to as Malmquist bias.

To understand whether the data points are behaving consis-
tently with expectation, we create a mock sample 100 times larger
than SPT sample using the mean parameter values from the mea-
sured posteriors and apply the same selection in ζ̂ and λ̂ that was
applied in creating the real cluster sample. The comparison of the
mock and the real data then allows for robust validation.

In Fig. 14 we plot the difference between the observed λ̂ and
the mean intrinsic observable-mass relation model in log space,
within two different mass bins (top panels) and two different dif-
ferent redshift bins (bottom panels). The orange line represents
the 100 times larger mock sample and the green histogram is
the real SPT sample. Poisson uncertainties are shown as error
bars for each real data bin. We see good agreement between the
mocks and the real sample in bins of high (χ2 = 20.68, p = 0.04)
and low mass (χ2 = 15.15, p = 0.17) and high (χ2 = 26.92,
p = 0.002) and low redshift (χ2 = 16.86, p = 0.05), indicat-
ing that our observable-mass relation model (including intrinsic
and observed scatter components) provides a reasonably good
description of the real dataset. The p value in the high redshift
deviation plot indicates a ∼3σ tension, which is notable. This
tension could likely be reduced by introducing a redshift depen-
dent intrinsic scatter component in the λ-mass relation, but we
leave that for a future discussion. We note that the deviations in
the top panels have the redshift trend scaled out, and the devia-
tions in the bottom panels have the mass trend scaled out, similar
to what we show in Fig. 12.
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Fig. 17. Best fit λ-mass (top) and λ-redshift (bottom) relations evaluated
at our pivot mass and redshift compared to Chiu et al. (2023) work (in
blue). Dark and light-shaded regions represent 68% and 95% credible
intervals, respectively. Our analysis of the tSZE selected and MCMF
confirmed sample (in pink) shows good agreement with the analysis of
an X-ray extent-selected sample (blue).

Similarly, in Fig. 15 we show the distribution of deviations in
observed debiased ζ̂ around the mean intrinsic observable-mass
relation for the SPT sample (green histogram) and the 100 times
larger mock sample (orange line). The top panels present data
within two mass ranges, and the bottom panels show two redshift
ranges. We obtain quite reasonable χ2 in all four cases, with p
values of 0.21 and 0.35 for the high- and low-mass bins, respec-
tively, while the p values corresponding to the high- and low-
redshift bins are 0.48 and 0.11, respectively. Overall, the scatter
of the real and mock clusters around the intrinsic observable-
mass relation is similar, indicating that the ζ-mass relation we
adopt (together with its intrinsic scatter and measurement noise)
provides a good description of the real dataset. The shift in the
histogram peak away from zero is reflective of the Eddington
bias introduced by the ζ̂ selection, which is more pronounced
when compared to richness. As with the previous plot, the devi-
ations in the top panels have the redshift trend scaled out, and
the deviations in the bottom panels have the mass trend scaled
out, similar to what we show in Fig. 13.

In the appendix we present in Fig. B.1 a version of the ζ̂-mass
figure shown for real data in Fig. 13 that is created by down-
sampling the 100 times larger mock sample to a similar number
of clusters as for the real data. The mock and real data behave
similarly, showing the same selection related scatter of the data
around the best fits intrinsic relation.

5.3. Matter profile extending to cluster outskirts

In our mass calibration analysis, we restricted our radial range
to R < 3.2/(1 + z)h−1Mpc to avoid the impact of the two-halo
regime. Using our mass calibration results (Table 2), we com-
bine the whole SPT sample with redshift, 0.25 < z < 0.94 and
all masses to create an average rescaled matter profile ∆̃Σ that
includes regions beyond the one-halo region. We create 200 real-
izations of the average matter profile using the parameter poste-
riors to marginalize over the observable-mass relation parameter
uncertainty in the profile. The SNR of the full average matter
profile is ∼36 out to 6 R/R200c. Figure 16 shows the full pro-
file compared to the mean model calculated at the mean red-
shift of the sample. The light and dark-shaded red bands repre-
sent the 68% and 95% credible intervals,respectively. We obtain
χ2 = 15.51 for 12 degrees of freedom, which corresponds to a
probability to exceed observed χ2 of p = 0.21. This suggests
that the model and data are in good agreement, even in the clus-
ter outskirts.

The agreement between simulations (red) and observations
(points) in this high SNR measured profile over this radial range
is quite interesting. It suggests that structure formation modeled
using CDM and baryonic physics within a ΛCDM context pro-
vides quite a good description of not only cluster halo profiles
but also cluster infall regions. Extending the profile inward to
smaller radii should enable interesting tests of baryonic feedback
and the CDM scenario in the limit that cluster mis-centering
and cluster member contamination can be sufficiently controlled.
This topic lies beyond the scope of the current analysis.

5.4. Comparison to previous work

In this section we compare our tSZE and richness observable-
mass relation results to those from previous studies. Chiu et al.
(2023) analyzed the eROSITA Final Equatorial Depth Survey
(eFEDS) cluster sample with Hyper Suprime-Cam (HSC) WL
data along with MCMF richness and calibrated the richness-
mass-redshift relation. Their results are shown in shaded blue
color in Fig. 17 plotted at our pivot redshift of 0.6 and pivot
mass of M200c = 3 × 1014h−1 Mpc. Because their analysis is per-
formed with M500c, we used the conversion relation provided
in Ragagnin et al. (2020) to convert M500c to M200c. Our work
(in pink) results in tighter constraints than those presented in
Chiu et al. (2023). Our mass trend is slightly steeper and red-
shift trend is slightly weaker than those from Chiu et al. (2023),
but given the uncertainties there is no tension between the two
analyses.

6. Summary

In this work, we have studied galaxy cluster matter profiles in
observations and simulations. We have developed a new mass
calibration technique that employs average matter profiles and
applied it to the SPT+MCMF tSZE selected and optically con-
firmed cluster sample with associated DES weak gravitational
lensing measurements.
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Our analysis began with a comparison of the scaling proper-
ties, the so-called self-similarity, of the simulated and observed
matter profiles ∆Σ(R) of the cluster samples. An examination
of Magneticum and IllustrisTNG simulations indicated remark-
able self-similarity among galaxy clusters with varying redshift
and masses. In particular, we analyzed the rescaled matter pro-
files ∆̃Σ(R/R200c), which is ∆Σ(R/R200c)/(R200cρcrit). Rescaling
individual profiles by their corresponding R200c and associated
critical density ρcrit(z) significantly reduces the mass and red-
shift dependences, respectively. We quantified the observed self-
similarity by computing fractional variation with redshift and
mass in the rescaled space and comparing it with the fractional
variation obtained with the original matter profiles ∆Σ(R). The
fractional variation with redshift is roughly six times lower in
the rescaled matter profile. We observed a remarkably low frac-
tional variation with mass of ≈1%, which is ≈23 times lower
than the fractional variation obtained in ∆Σ(R). This self-similar
behavior is ideal for analyzing the average cluster matter profiles
because it minimizes the cluster-to-cluster variation among the
profiles and allows one to combine clusters with a wide range of
redshift and mass, enabling studies of cluster matter profiles in a
high S/N regime.

We exploited the self-similarity of the average matter pro-
files in the rescaled space in order to develop a new mass
calibration method that relies on average rescaled matter pro-
files, and we employed that method to calibrate the masses
of SPT tSZE-selected and MCMF optically confirmed clusters.
For this method, we used hydrodynamical simulations to con-
struct a model average rescaled matter profile ∆̃Σ(R/R200c) while
accounting for small residual redshift trends and assuming per-
fect self-similarity with mass. We created average SPT × DES-
WL cluster matter profiles with their appropriate weights and
accounted for all crucial systematic errors through the MWL −

M200c relation. Our likelihood constrains the λ − M − z and
ζ − M − z relation parameters and takes into account the obser-
vational and intrinsic scatter on the observables. Additionally,
we accounted for the Eddington and Malmquist biases that arise
from the selection applied to the observables in defining the clus-
ter sample.

We calibrated the λ − M − z and ζ − M − z observable-
mass relations using the average rescaled matter profile cali-
bration method described in Sect. 4, which simultaneously con-
strains the amplitude, mass trend, redshift trend, and intrinsic
scatter for both observable-mass relations. Our constraints on
the observable-mass relation parameters show mass trends that
are steeper than but statistically consistent with the self-similar
expectations for both the richness and tSZE observable-mass
relations. Moreover, we found no statistically significant evi-
dence for a redshift trend in richness, λz = −0.349 ± 0.690, or
tSZE ζ, ζz = 0.045±1.054. Our constraints on λ−M−z parame-
ters are in good agreement with Chiu et al. (2023), who has ana-
lyzed the eFEDS X-ray extent-selected cluster sample with HSC
WL.

In addition, Bocquet et al. (2024a) have previously analyzed
the SPT selected and MCMF confirmed cluster sample with DES
WL using a cluster-by-cluster WL calibration method together
with a simultaneous fit to the tSZE halo observable function.
Our results from the average rescaled matter profile analysis for
both the observable-mass relations are in good agreement with
their work. Because our analysis uses no information from the
underlying halo mass function, which is strongly cosmologically
dependent, the agreement between the two methods is an inter-
esting indication that with the DES WL dataset, the direct mass

constraints from WL are not significantly biased by the inclusion
of the cluster abundance information.

We have presented a new validation of the observable-mass
relations that examines the scatter of the cluster sample observ-
ables around the mean intrinsic relations. Using a large sample
of mock clusters drawn from the best-fit relation, we found no
significant differences between the real and mock samples for
the ζ-mass relation. This indicates that the power-law form of
the observable-mass relations, including our modeling of intrin-
sic scatter and measurement noise, provides a good description
of the data. For the λ-mass relation, however, we find that the
high-redshift bin indicates a ∼3σ tension, which could suggest
a potential redshift dependence of the intrinsic scatter in the λ-
mass relation.

The validation of the form of the observable-mass rela-
tions, along with the evidence showing that the mass calibration
reported using the Bocquet et al. (2024b) method is unaffected
by potential biases from the underlying halo mass function, lend
further weight to recent findings. These findings include standard
cosmological results on interacting dark matter, modified grav-
ity, and combined probe results reported using variations of that
method to analyze the SPTxDES dataset (Bocquet et al. 2024a;
Mazoun et al. 2024; Vogt et al. 2024; Bocquet et al. 2024c).

Employing the rescaled matter profile method, we produced
a high S/N average rescaled matter profile from the entire SPT
and MCMF selected sample of 698 clusters that extends to
6R/R200c (see Fig. 16). This profile deviates from a null profile
with an S/N∼36, providing the most precise measurement of the
average ICM selected cluster matter profile to date. A compar-
ison of this profile to hydrodynamical simulations carried out
within the ΛCDM paradigm over the same radial range shows
good agreement within the current uncertainties.

The upcoming stage IV WL surveys will offer a vast amount
of much higher quality lensing data. The average rescaled mat-
ter profile mass calibration method, which we have successfully
demonstrated here, provides a promising new tool for analyz-
ing these future datasets. Moreover, this new method will enable
efficient analyses of much larger cluster samples for cosmology
and structure formation constraints. Analyzing the average clus-
ter matter profiles in rescaled space will further help create high
S/N profiles by combining cluster measurements over wide red-
shift and mass ranges. The shape of the average cluster matter
profile can then be used to study baryonic feedback, different
modified gravity models, and the collisional nature of dark mat-
ter.

Data availability

The data underlying this article will be shared upon reasonable
request to the corresponding author.
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Fig. A.1. Comparison of average matter profiles from IllustrisTNG and
Magneticum at the redshift of 0.42 and 0.47 (top figure) and at the red-
shift of 0.64 and 0.78 (bottom figure). The profiles exhibit very small
differences with a small redshift change for a given simulation through-
out the radial range R/R200c > 0.5

Appendix A: Cluster matter profile interpolation

In Fig. A.1 (top panel) we show the differences in the Illus-
trisTNG average cluster matter profiles at 0.42 vs. 0.47 in solid
red and solid black lines respectively. In dashed red and black
lines we show a average cluster matter profile in Magneticum at
the redshift of 0.42 and 0.47 respectively. The profiles show very
small differences with slight changes in redshift. Similarly in the
bottom figure, we compare the profiles at the redshift of 0.64 vs.
0.78 and find that both simulation profiles exhibit minor differ-
ences. The purpose of this plot is not to compare the different
simulations themselves, but, the differences in the simulations in
the inner radial region at the same redshift are due to different
baryonic effects. That region is avoided in the mass calibration
method presented in Sect. 4.

Appendix B: Observable mass relation

To confirm that the features observed in Fig. 13 (top) is a real
effect caused by ζ̂ tSZE selection, we analyze a mock SPT cata-
log along with mock DES Y3 lensing data. We perform a mass
calibration analysis on this mock data and plot the debiased ζ̂
as a function of the calibrated M200c, just as we have done with
the real data in Sect. 5.2.2. Figure B.1 illustrates this relation
for the mock sample, where the mock data is represented by
black dots, the mean relation is shown as a black line, and the
shaded regions denote the 68% and 95% credible intervals on
that model. We observe the same features at low mass and low
debiased ζ̂ as seen in Fig. 13 (top). This analysis confirms that
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Fig. B.1. The observed debiased detection significance, ζ̂, as a function
of cluster halo mass for a mock SPT catalog (black dots). The solid
black line indicates the intrinsic mean relation, and the shaded regions
denote the 68% and 95% credible intervals. The similarities between the
deviations of the mock clusters and of the real clusters (Fig. 13) about
the mean relation are striking.

the feature is introduced by the tSZE selection, where only clus-
ters exceeding the selection threshold make it into our sample.
At low masses, only those clusters that are scattered up in ζ̂ due
to the combination of intrinsic scatter and measurement noise are
selected. Additionally, we observe the same qualitative features
in the mock analysis as those seen in Fig.12 and the bottom plot
of Fig.13.

Appendix C: Robustness of the mass calibration

In this section, we assess the robustness of our analysis method
by changing the inner fitting region of the cluster matter profile
and also by changing the binning of the sample in ζ̂ − λ̂ − z.
In the top figure of Fig. C.1, we compare the posterior of
the observable-mass relation parameter for inner fitting radii of
0.5h−1Mpc and 0.7h−1Mpc (we note that for this analysis we
have binned our observables in 3 × 3 × 3 bins ). The blue pos-
terior (R > 0.7h−1Mpc) results in a larger error compared to the
red posterior, which is expected given that we have fewer source
galaxies as we restrict our fitting range.

In the bottom figure of Fig. C.1, we compare the observable-
mass relation parameters posterior resulting from different bin-
ning of observables for the SPT sample compared to our fiducial
3×3×3 binning. For the new binning, we divide our observables
in 3 × 2 × 2 bins as follows

0.25 ≤ z < 0.33

0 ≤ λ̂ < 80, 80 ≤ λ̂ < 243

4.25 ≤ ζ̂ < 6, 6 ≤ ζ̂ < 50
0.33 ≤ z < 0.43

0 ≤ λ̂ < 95, 95 ≤ λ̂ < 243

4.25 ≤ ζ̂ < 7.5, 7.5 ≤ ζ̂ < 50
0.43 ≤ z < 0.94

0 ≤ λ̂ < 85, 85 ≤ λ̂ < 243

4.25 ≤ ζ̂ < 6, 6 ≤ ζ̂ < 50.

The above binning is such that each redshift bin is further divided
into observable bins with roughly similar SNR. The blue and red
posteriors show good agreement, indicating that the choice of
ζ̂ − λ̂ − z binning does not strongly impact parameter values.
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Fig. C.1. Comparison of the posterior for the SPT sample with the same binning but different inner radius fit (left figure) of 0.5h−1Mpc (red) and
0.7h−1Mpc (blue). The blue posterior is in good agreement with the red posterior with a slightly larger error region. In the right figure, we compare
the results from two different observable binning schemes while keeping the inner-fitting radii fixed at 0.5h−1Mpc. We see good agreement between
the two results suggesting our results are not heavily affected by the choice of observable binning.

Table C.1. Parameters of the cluster member contamination model as described in Sect. 4.4.2. For each parameter the mean and 68% credible
region of the posterior are given.

Parameter DNF photo-z and MCMF center
tomographic bin 2 tomographic bin 3 tomographic bin 4

zoff0 −0.009 ± 0.002 0.050 ± 0.002 0.164 ± 0.007
zoffz −0.22 ± 0.02 −0.23 ± 0.02 −0.45 ± 0.02
σz0 0.047 ± 0.002 0.076 ± 0.002 0.130 ± 0.006
σzz −0.018 ± 0.021 −0.086 ± 0.017 −0.16 ± 0.02

log(cλ) 0.44 ± 0.03 0.51 ± 0.04 0.26 ± 0.06
Bλ 0.78 ± 0.04 0.60 ± 0.04 0.53 ± 0.07

ρcorr−z 0.27 ± 0.01 0.18 ± 0.01 0.494 ± 0.006
A0 0.12 ± 0.06 −0.32 ± 0.17 0.16 ± 0.03
A1 0.19 ± 0.04 −0.22 ± 0.13 0.16 ± 0.03
A2 0.29 ± 0.04 −0.01 ± 0.12 0.17 ± 0.03
A3 0.42 ± 0.05 0.30 ± 0.12 0.18 ± 0.02
A4 0.53 ± 0.06 0.64 ± 0.11 0.19 ± 0.03
A5 0.62 ± 0.06 0.86 ± 0.11 0.19 ± 0.02
A6 0.68 ± 0.06 0.87 ± 0.12 0.20 ± 0.02
A7 0.72 ± 0.06 0.69 ± 0.12 0.21 ± 0.02
A8 0.74 ± 0.07 0.44 ± 0.13 0.22 ± 0.03
A9 0.75 ± 0.08 0.24 ± 0.17 0.22 ± 0.03
A10 0.75 ± 0.09 0.13 ± 0.21 0.23 ± 0.03
A∞ −4.94 ± 0.06 −4.61 ± 0.38 −4.76 ± 0.21
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