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A study of B — rt/v and B; — K/v form factors using dispersive constraints

by Callum Radley-Scott

This thesis presents several approaches to improve the extrapolation of form factors for
the exclusive semileptonic decays B — 7t/v and B; — K/v. These decays are of interest

for testing the predictions of the Standard Model.

These form factors cannot be calculated perturbatively, and so we rely on techniques
such as Lattice QCD (Quantum Chromodynamics) to make theoretical predictions.
For these heavy-to-light decays, Lattice QCD gives form factor information in a lim-
ited region of phase space and the results must be extrapolated to cover the entire
kinematically-allowed region. Model-independent approaches based on dispersion re-
lations are now widely used. The most common is Z-fits, but recently interest has been
revived in what will here be called the Dispersive matrix (DM) approach.

The z-fit approach parametrizes the dispersion relations for these decays and uses lat-
tice information to find optimal coefficients for the resulting curves. Approaches to im-
proving the precision of this technique are explored, such as an alternative parametriza-

tion, and making use of information from multiple decays simultaneously.

The Dispersive Matrix method does not require parametrizing the form factor results
(and so avoids any issues with truncation of the z expansion). This method finds the
minimum and maximum values of the form factors allowed by unitarity using known
form factor points. Modifications to the method are trialled, including using informa-
tion from multiple decays simultaneously, improving numerical stability when com-
puting the bounds, and optimising the implementation of a kinematic constraint relat-
ing the form factors.

A novel method to generating form factor curves using the Dispersive matrix method
is introduced, alongside several optimisations to improve computation time. This new
method is tested, and the results, namely for the Cabibbo-Kobayashi-Maskawa matrix

element, |V,;|, are compared to those from the Z-fit approach.






Contents

List of Figures

List of Tables

Declaration of Authorship
Acknowledgements

1 Introduction

2 Standard Model

2.1 Fundamental Particles . . . . ... ... ... ... ... ... .....
22 Symmetries . . ...
2.3 Electroweak Interactions . . . . ... ... ... ... ... ..
23.1 The Electroweak Lagrangian . .. ... ...............
2.3.2 Spontaneous Symmetry Breaking & the Higgs Mechanism . . . .
2.3.3 Yukawa Interactions . . .. ... ... ... ... Lo L.
234 CKMMatrix . . . ... ...
24 Quantum Chromodynamics . . . . ... ... ... .. .. .......
25 Lattice QCD . . . . . . . e
251 PathIntegrals . . ... ... ... .. ... ... .. .. ... ...
252 Importancesampling. . . . ... . ... ... ... ... .. ...
2.6 Semileptonic Decays . . .. ... .... . ... ... .. ... ...
2.7 Correlation functions . . . . ... ... L Lo Lo
2.8 Form Factors and Phenomenology . . ... ... ..............
2.8.1 Differential Decay Rate . . . .. ... ... .............
2.8.2 Forward-Backward Asymmetry . ... ...............
283 RRatio . .. ... ... L

3 Statistical Techniques
3.1 Bootstrapping . . . . ... ... .
3.2 Kolmogorov-Smirnovtest . . . ... ... ... ... .. .. .. ...

4 Choice of Data

41 B = 70U ..
41.1 Combining data for Belle2013 . . . ... ... ... ... .....
42 By = KO . .o e e

5 Dispersive Bounds

vii

xi

xiii

XV

ot

O N O = =W

12
13
16
18
19
20
20
21
23
23
24
25

27
27
27

29
29
30
31

33



vi CONTENTS
6 Z-Fits 37
6.1 BGL Parametrization . . . . . ... ... ... ... .. ..o L. 37

6.2 BCL Parametrization . . . ... ... ... ... 38

6.3 Fitting Procedure . . ... ... ... ... ... ... . .. o . 39

6.4 Unitarity constraint . . . . . . ... .. ... ... . 0 L 40

6.5 Alternative polynomials . . . . ... ..................... 40

6.6 Z-Fitswith2decays. ... ... .. ... .. ... ... .. .. ... .. .. 42
6.6.1 Method. .. ... ... ... 45

6.6.2 Comparison with singledecay . . ... ... ... ......... 46

6.7 Extracting Vi, . . . ... ... . 51
671 B—=7mlv . . 51

672 Bs = Klv . ... . 52

7 Dispersive Matrix method 55
7.1 The Dispersive Matrix . .. ... ... ... ... ... .. ... .. 55
7.1.1 Bootstrapping Procedure . . . . ... ... ... .. ... ... 59

7.2 Improving Numerical Stability . . ... .. ... ... ........... 61

7.3 Sampling Across the OverlapRegion . . . . ... .............. 63

74 The DM method fortwodecays . . . . ... .. ............... 65
74.1 Comparison with single-decay . . ... ............... 66

7.5 Form Factor Curves from the DM method . . . . ... ... ... ..... 67
751 Method. . .. ... ... . 68

7.5.2 Generating curvesacrossbins . . . .. ... ... ... . L. 70

7.5.3 ’Marching’ across the fullg?range . . . .. ............. 71

754 Tests . . . . e 71

7.54.1 Direction of curve generation . .. ............ 72

7542 Dependenceond. ... .. ... ... ........... 73

7.54.3 Dependence on interpolation method . . . . . .. .. .. 73

7.5.,5 Marching parameters . . ... ... ... ... ... ... ..., 74

7551 Marching threshold . . . ... ... ... ... ...... 75

7.5.5.2  Warning threshold and marching delay . . . . . ... .. 75

7.5.6 Number of curves per resample . . .. ... ... ......... 76

7.5.7 Extractionof V, for DM Curves . . ... ... ... ........ 77

8 Phenomenology 83
8.1 Comparison with2015Results . . . .. ... ... ... ......... 83
82 Z-fitand DM CurveResults . . . . .. ... ... ... ... ... ... 83

9 Conclusions 89
Appendix A Reconstruction of phenomenological quantities 93

Appendix B Derivation of the Outer Function 97



List of Figures

2.1
2.2
23

24

2.5
2.6

6.1

6.2

6.3

6.4

6.5

6.6
6.7

6.8
6.9

Standard model of elementary particles [70,91] . . . . ... ... ... ..
An illustration of the Higgs potential [67]. . . . . .. ... ... ... ...
Global constraints on the CKM unitarity triangle in the (p, 77) plane. The
overlapping red ellipse indicates the region allowed at a 95% confidence
level. [B5] . . . . . o e e e
Running of the strong coupling constant, denoted here as a5, with energy
scale Q[86]. . . . . . . . e e
Feynman diagram for B — 7tlv.. . . . ... .. ... ... .. .......
Sketch of a generic three-point function. The spectator quark (dot-dashed
line) originates from time slice 5, and propagates forward to time slice
tsnk where we create a point sink and turn it into a sequential source for
the parent quark (double line) propagating backward. This sequential
propagator is contracted with the child light quark (solid line) also orig-
inating from #5.c. [88] . . . . . ... .o

Sum of coefficients (10000 sets) squared for By — K¢v and B — mfv,
titted without consideration of the unitarity constraint, using synethetic
form factor points from the RBC/UKQCD [88] and JLQCD [80] collabo-
rations, respectively. . . . ... ... oL Lo
A schematic depiction of the mapping from the g2-plane (left) to the con-
formal z-plane (right). The coloured segments on the real axis denote the
physical and unphysical regions for the B — K decay form factors, while
the circle on the right represents the boundary of the unit disk after the
conformal transformation. . . . . ... ... ... o oL
Distribution of BsK coefficients for the circle and arc (a restricted arc of
theunitdisc)models. . . . . . . ... ... ... ... .. .
Distribution of BsK coefficients for the circle and arc (a restricted arc of
theunitdisc)models. . . . . . . ... ... ... .. ... .. ...
Distribution of BPi coefficients for single and dual (2-decay) fitting meth-
ods. . . .
CDF of BPi coefficients for single and dual (2-decay) fitting methods. . .
Distribution of BsK coefficients for single and dual (2-decay) fitting meth-
ods. . . .
CDF of BsK coefficients for single and dual (2-decay) fitting methods. . .
Differential decay rate from coefficients (Blue) plotted alongside exper-
imental bins (yellow/green) and differential decay rate values from lat-
tice form factor values (red). . . . . . . . . ... ... ... ... ... ..

6.10 x? optimisation of the V,;, weighted mean. . . . ... ... ........

Vii

49
50



viii

LIST OF FIGURES

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8
79

7.10

7.11

7.12

7.13

7.14

7.15

7.16

717
7.18

7.19

Form factor bounds calculated using the DM method for B; — K{v using
unitarityonly. . . .. ... L L 56
Example form factor bounds calculated using the DM method for B; —
K/{v with the unitarity constraint and a set of form factor points. Here,
the curves plotted represent the top and the bottom of the region allowed
by unitarity. . . .. ... 58
Example form factor bounds calculated using the DM method for B; —
K/{v with the unitarity and kinematic constraints and a set of form factor
points. Here, the curves plotted represent the top and the bottom of the
region allowed by unitarity. This plot is for a single resample of form
factors, and so, hasnoerrors. . . . . . . . . . .. ... 60
Form factor bounds calculated using the DM method over 2000 boot-
strap events for B, — K/v with both the unitarity and kinematic con-
straints. Synthetic form factor data is from the RBC/UKQCD collabora-
Hon [88] . . . . . . e 61
Form factor bounds for B; — K/{v calculated at q2 = 15 GeV? for an
individual bootstrap event as the synthetic data point is moved over the
overlap region at > = 0 GeV?. fj is on the left and f. on the right. Here
the red curve signifies the top of the bounds, and the blue curve is the
bottom. . . . . ... 63
fo bounds at g> = 15 GeV? for B; — K/v, as the synthetic data point is
moved away from the bottom of the overlap region. . . . . .. ... ... 64
Example form factor inputs from Lattice data, and their resulting bounds
atg> =0GeV2. . .. 68
Step by step visualisation of how form factor curves are generated. . . . 69
100 curves generated for a single resample of JLQCD B — 7t/v synthetic
datapoints [80]. . . . . .. ... .. 70
100 curves generated for a single resample of JLQCD B — /v synthetic
data points [80]. The DM method bounds for these points are also plotted. 71
Comparing the distribution of form factor curves at g2 = 10GeV?, when
using intermediate points (at 4> = 1,2,...,9 GeV?) and when jumping
directly. . . . . ... 72
Comparison of the cross-section of fy curves at 4> = 10GeV?, when gen-
erated forwards and backwards. For each direction, we have the K-S test
p-value associated to an underlying uniform distribution.. . . . . . . .. 73
Calculation of T'|V,;|~2 using 500 form factor curves for various values
of 6. The plotted bars indicate the median, 16th and 84th percentile values. 74
Calculation of T|V,;|~2 using 500 form factor curves for various inter-
polation methods. The plotted bars indicate the median, 16th and 84th
percentilevalues. . . . .. ... ... . Lo L o 74
Dependence of I'|V,;| 2 on marching threshold, using 500 curves per
threshold. . . ... .. ... ... .. .. ... 76
Effect of varying the number of curves per resample on T'|V,;,| =2 for B —
lv (left)and B — Klv (right) . . . ... ... ... ... .. ... ... 77
Vup vs x2/DoFforallcurves. . . .. ... ... ... ... .. .. ..... 78
Differential decay rate of all curve pairs, with opacity scaling with the
relative likelihood, alongside binned experimental results. . . . . . . .. 80
Bayesian posterior distributions of V,;, for various experimental datasets. 81



LIST OF FIGURES ix

7.20 x? minimisation to extract V,;, for B, — Kfv over a sample of 1760

curves, using the LHCb experimental results [76]. . . .. ... ... ... 82
8.1 Differential decay rate divided by |V,|? for B — mtuv, using Z-fit (left)

and DM curve (right) methods. . . . . .. ... ............... 85
8.2 Differential decay rate divided by | V| for B, — Kuv,, using Z-fit (left)

and DM curve (right) methods. . . . . .. ... ........ .. ... .. 85
8.3 Differential decay rate divided by |V,;|? for B — mtv, using Z-fit (left)

and DM curve (right) methods. . . . . ... .. ............... 85
8.4 Differential decay rate divided by |V,;|? for B; — Ktv; using Z-fit (left)

and DM curve (right) methods. . . . . ... .. ... ............ 86
8.5 Forward-backward asymmetry for B — muv, using Z-fit (left) and DM

curve (righty methods. . . ... .. ... ... .. ... .. . . . 86
8.6 Forward-backward asymmetry for B; — Kuv, using Z-fit (left) and DM

curve (righty methods. . . .. ... ... ... ... ... . o . 86
8.7 Forward-backward asymmetry for B — 7ttv; using Z-fit (left) and DM

curve (righty methods. . . .. ... ... ... .. ... ... o . 87
8.8 Forward-backward asymmetry for B; — Ktv; using Z-fit (left) and DM

curve (righty methods. . . . . ... ... ... ... .. . o L. 87
8.9 Normalized forward-backward asymmetry for B — muv, using Z-fit

(left) and DM curve (right) methods. . . . .. .. ... ... ... . ... 87
8.10 Normalized forward-backward asymmetry for Bs — Kuv, using Z-fit

(left) and DM curve (right) methods. . . . . ... ... .. ...... ... 88
8.11 Normalized forward-backward asymmetry for B — mtv,; using Z-fit

(left) and DM curve (right) methods. . . . . . .. ... .. ... ... ... 88
8.12 Normalized forward-backward asymmetry for B; — Ktv; using Z-fit

(left) and DM curve (right) methods. . . . . . ... ... ... ... ... 88

Appendix A.1 Differential decay rate divided by |V,;|? for B, — Kuv, and

B — mtuv, from the 2015 paper (left) and central value curve reconstruc-

tion (right). . . . . . ... 93
Appendix A.2 Differential decay rate divided by |V,;|? for Bs — Ktv; and

B — mttv; from the 2015 paper (left) and central value curve reconstruc-

tion (right). . . . . ... .. . 94
Appendix A.3 Forward-backward asymmetry for B; — Kuv, from the 2015

paper (left) and central value curve reconstruction (right). . .. ... .. 94
Appendix A.4 Forward-backward asymmetry for B; — Ktv, from the 2015

paper (left) and central value curve reconstruction (right). . .. ... .. 94

Appendix A.5 Normalized forward-backward asymmetry for B — 7tv; and
Bs — Ktv from the 2015 paper (left) and central value curve reconstruc-
tion (right). . . . . . ... 95






List of Tables

4.1 Synthetic data points for f, and fj at g7 = 19.15GeV?, g5 = 23.65GeV?>
and g3 =2640GeV?Z . . . ..
4.2 Statistical correlation matrix for fi and fy at 42 = 19.15GeV?, g5 =
23.65GeV? and g3 = 26.40GeV? . . ...

43 Systematic correlation matrix for fy and fo at g3 = 19.15GeV?, g3 =
23.65GeV? and g3 = 26.40GeV? . . ..

6.1 x2/(d.o.f.) and P-value for B; — K{v and B — m/v fit without respect-
ing the unitarity constraint. . . . .. ... ... ... o000

6.2 The V,;, x*/d.o.f., and P-values for each experiment and the combined
fits. . . e e

6.3V, calculated for low and high range experimental results from LHCb[66],
alongside the weighted mean value. Lattice form factor results used are
from the RBC/UKQCD collaboration[88]. . . .. ..............

7.1 Means and uncertainties for the approach looking at only the top and
bottom of the overlap region and when finding the minimum and maxi-
mum using the optimiser routine. . . . . .. ... ... .. 00 L

7.2 Comparison of the single decay and 2-decay DM methods for 2000 in-
dependent bootstrap events. The “% Improvement” is defined as the
amount the standard deviation has decreased using the 2 Decay method
compared to the single decay result. . . . ... ... .. ... ... ....

7.3 Vyp results for B — mtfv from different experiments. . . . . ... ... ..

74 V,p results for B — mlv for different experimental datasets using the
posterior distribution[62, 65,63,68]. . . .. ... ... .. .0 0 L

8.1 Various phenomenological quantities calculated using the Z-fit method
(with 10000 sets of coefficients) and the DM curves method (1760 curve

91 V,results for B — mfvand B; — K/lv for different experimental datasets
using Z-Fitand DM Curves. . . . . ... ... ... ............

Appendix A.1 Comparison of RBC/UKQCD B — m{v phenomenological
quantities and the reconstructed values from the central values of the
corresponding BCL coefficients. . . . . .. ... ........ .. .....

xi

53

78






xiii

Declaration of Authorship

I declare that this thesis and the work presented in it is my own and has been generated
by me as the result of my own original research.

I confirm that:

1. This work was done wholly or mainly while in candidature for a research degree
at this University;

2. Where any part of this thesis has previously been submitted for a degree or any
other qualification at this University or any other institution, this has been clearly
stated;

3. Where I have consulted the published work of others, this is always clearly at-
tributed;

4. Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work;

5. Thave acknowledged all main sources of help;

6. Where the thesis is based on work done by myself jointly with others, I have made
clear exactly what was done by others and what I have contributed myself;

7. None of this work has been published before submission






XV

Acknowledgements

I would firstly like to thank my supervisor, Prof. Jonathan Flynn, for all of his help,
patience and guidance throughout my time at Southampton. He has always made
himself available to answer my questions and has provided an immense amount of
knowledge and insight.

Secondly, I would like to thank everyone I have worked within the lattice group at the
University of Southampton, in particular Nikolai Husung, for his assistance and ideas,
and Prof. Andreas Jiittner who provided many helpful insights and suggestions.

I thank Toby Peterken for his many discussions with me about physics and academia
over the last 8 years, and Jack Arthur for helping me become a better programmer.

Finally, I am forever grateful for the support and guidance from my mum throughout
my academic journey. I could not be where I am today without her.






Chapter 1

Introduction

The Standard Model (SM) of particle physics describes all known fundamental
particles and their interactions through 3 of the 4 known fundamental forces (Strong,
Weak and Electromagnetic). It has been a very successful theory and has made many
experimental predictions, such as the existence of the top quark, tau neutrino and
Higgs boson.

Despite its many successful predictions, there exist several tensions between the
theoretical predictions of the SM and experimental measurements (some examples
being the muon anomalous magnetic moment [73] and inclusive vs exclusive
measurements of V,;;, [69]). Additionally, the Standard Model, as originally written,
does not allow neutrinos to have mass.

Beyond this, we know the Standard Model is not a complete theory of all physics as it
does not describe the fourth fundamental force, Gravity. There is then a need for more
precise theoretical predictions to help guide us towards a theory beyond the Standard
Model.

A common place to look for new physics is in the decays of hadrons containing heavy
quarks, for which many decay channels are possible. The top quark decays too
quickly, making the decays of hadrons containing bottom quarks of interest. Exclusive
semileptonic decays such as B — /v and B; — K{v occur at tree level in the standard
model and can be used to determine the strength of quark flavour changes, in this case
through the Cabibbo-Kobayashi-Maskawa (CKM) matrix [17, 29] element V,,,. Rare B
meson decays, such as rare flavour-changing neutral current decays like B — K{T ¢~
are suppressed in the Standard Model, possibly making new physics contributions
easier to see (however, these will not be the focus of this work).

Computing SM predictions for decays typically boils down to computing matrix
elements of quark-level operators between hadronic states like B(,) mesons and lighter

mesons. Since the strong interaction is strong at low energy scales, this is a
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non-perturbative problem. For a decay matrix element, Lorentz and other relevant
symmetries can be used to express the matrix element in terms of a number of "form

factors” which are then the non-perturbative quantities to be computed.

Lattice QCD is a first-principles systematically improvable method for computing
masses and matrix elements controlled by the strong interaction, and hence for
computing form factors. It then is possible to compute, say, a decay rate up to factors
containing SM parameters like CKM matrix elements. Comparing these results with
experimental decay information allows the CKM matrix elements to be determined.

Another source of theoretical predictions are called sum rules, which rely on the
perturbative nature of QCD over very short distances, and extrapolate to the regime of
the interactions of interest [51]. These rely heavily on the Operator Product Expansion
(OPE) which allows for perturbative calculations. In comparison to lattice QCD, these
methods have additional assumptions, and results from sum rules will not be
considered in this work.

Heavy-to-light B — mfv and Bs — K/{v decays allow the determination of the
modulus of the CKM matrix element, V,;, controlling the strength of charged-current
b — u transitions in the SM. Lattice simulations of these decays work best in the
low-recoil, high ¢? (where g is the 4-momentum of the outgoing lepton pair) region of
the physical phase space. Because of this, we rely on extrapolation to compare theory
predictions using lattice QCD to experimental results over all the allowed ¢? range.

Part of this work concerns methods that exploit unitarity and analyticity constraints
stemming from dispersion relations to make model-independent extrapolations of
form factors from a (small) number of known points without relying on any
parametrised functions for those form factors.



Chapter 2

Standard Model

The Standard Model is built on the gauge group:

G= U(l)y X SU(Z)L X SU(3)C (2.1)

Here C denotes colour, which underpins the strong nuclear force. Y and L denote the
hypercharge and the left-handed weak isospin sectors of electroweak interactions. The
following sections describe some core aspects of the Standard Model, as well as Lattice
QCD, since we will rely on using Lattice QCD form factor results as our known input

information for comparison to experiment.

The theoretical development of the Standard Model was shaped by many Physicists.
Yang and Mills formulated the principle of gauge invariance for non-Abelian gauge
theories [7], a critical step in describing the strong and weak interactions. Glashow [9,
14], Salam and Ward [10, 20], and Weinberg [21] independently formulated the
electroweak theory, unifying the electromagnetic and weak interactions and
introducing a mechanism for particle masses through spontaneous symmetry
breaking. This mechanism was further developed by Higgs [19], Brout and

Englert [18], who proposed the scalar field now known as the Higgs field.

Progress in understanding the strong interaction was driven by Gell-Mann’s quark
model [13, 27], which incorporated the concept of colour charge to describe the
structure of hadrons. The mathematical framework of Quantum Chromodynamics
(QCD) was later formalized by Politzer [30], Gross and Wilczek [28], who
demonstrated asymptotic freedom, explaining the energy-dependent behaviour of
quarks. Together, these developments form the theoretical basis of the Standard
Model.

This chapter goes through many of the concepts of the Standard Model. For a more
complete introduction, there are many helpful textbooks available, for example
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Quantum Field Theory and the Standard Model by Schwartz [71], A Modern
Introduction to Quantum Field Theory by Maggoire [57], and An Introduction To
Quantum Field Theory by Peskin and Schroeder [45].

2.1 Fundamental Particles

The Standard Model describes 17 fundamental particles and their interactions.
Particles with spin %, called fermions, are the matter content of the Standard Model.
Particles with integer spins, bosons, mediate the three forces (electromagnetic, weak
and strong).

Fermionic fields anti-commute, resulting in the Pauli exclusion principle, as two
identical fermions cannot occupy the same state. Fermions in the SM are divided into
two categories, quarks and leptons, each with three generations. Each fermion also
has a corresponding anti-particle with opposite quantum numbers.

Quarks interact with all three SM fundamental forces; they have electric charge
(up-type quarks and down-type quarks have charges of +% and — %, respectively, in
units of e), and colour-charge: Quarks transform in the fundamental, 3-dimensional,
representation of SU(3) and hence are commonly described as coming in 3 colours,
red, green and blue.

Each generation in the SM contains a charged lepton, e, y, and 7, plus a corresponding
neutral neutrino. Leptons do not feel the strong force and so the electrically neutral
neutrinos interact only weakly.

The bosons consist of gluons, g, (of which there are 8 types, each carrying a colour and
anti-colour charge), the photon, ¥ mediates the electromagnetic force and W* and Z°
bosons which mediate the weak force. Additionally, the Higgs boson is the
fundamental particle associated with the Higgs field, which is responsible for giving

particles their intrinsic masses.

2.2 Symmetries

Symmetries play a very important role in field theories. These are transformations that
leave the Lagrangian unchanged. These can be discrete symmetries, such as C, P and
T (representing charge, parity and time reversal, respectively), or continuous
symmetries such as Lorentz boosts and gauge symmetries. According to Noether’s
theorem, continuous symmetries are intimately linked to conserved quantities; for
example, invariance under time translations corresponds to the conservation of

energy [2].
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Standard Model of Elementary Particles

three generations of matter interactions / force carriers
(fermions) (bosons)

mass | ~2.16 MeV/c

charge |% % % 0 0
o [ | . @ » @ ' @ . H

1.273 GeV/c? ~172.57 GeV/c? 0 ~125.2 GeV/c?

up charm top gluon higgs
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eIectl:on muon tau W boson
neutrino neutrino neutrino |

FIGURE 2.1: Standard model of elementary particles [70, 91]

Symmetries can also be classified as being local or global; local symmetries correspond
to transformations which can be different at different space-time points, whereas
global symmetries come from transformations that are applied uniformly to all points.
Gauge symmetries are local symmetries characterized by transformations that can
vary independently at each spacetime point while preserving the invariance of the
Lagrangian, and thereby necessitating the introduction of gauge fields. These
symmetries are fundamental to the structure of the Standard Model, where each
interaction is governed by the gauge group associated with the underlying field
theory.

Symmetry breaking occurs when the Lagrangian density after a transformation is not

equivalent to that beforehand. Explicit symmetry breaking occurs when

SL=L —L (2.2)

is non-zero. Spontaneous symmetry breaking, on the other hand, occurs when the
transformation leaves the Lagrangian density unchanged, but the resulting ground
state is not invariant under the symmetry. Spontaneous breaking of a continuous
symmetry leads to the appearance of a massless Goldstone boson [15], but in the case
of a gauge symmetry, the Goldstone boson is ‘eaten’, giving mass to the corresponding
gauge field [19].
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2.3 Electroweak Interactions

The electroweak interaction is described by the U(1)y x SU(2);, symmetry in the
Standard Model and combines the electromagnetic and weak interactions. The
electromagnetic force, mediated by the massless photon, describes phenomena such as
the interactions of charged particles with electric and magnetic fields.

The weak interaction is a short-range force and is responsible for processes such as
flavour-changing decays and neutral current interactions involving the Z° boson.
These interactions are mediated by the W* and Z° bosons, which acquire mass via
spontaneous symmetry breaking. Unlike the electromagnetic force, the weak
interaction violates parity symmetry. This was first demonstrated by Wu [8], who
showed that beta decay rates are asymmetrically distributed with respect to the spin
direction of decaying nuclei. This parity violation arises because the weak force
couples differently to left-handed and right-handed particles.

The relative strengths of the electromagnetic and weak interactions differ significantly.
At low energies, the weak interaction is much weaker than the electromagnetic force,
primarily due to the large masses of the W= and Z° bosons. How these interactions
come from the underlying Lagrangian and the mechanism of symmetry breaking will

be explored in this section.

The gauge fields associated to the electroweak interaction, W;j (a=1,2,3)and By, give
rise to the electroweak bosons through the process of electroweak spontaneous
symmetry breaking [71, 45, 57]. After this symmetry breaking, the residual U(1)em
symmetry corresponds to the electromagnetic interactions described by quantum
electrodynamics (QED), an Abelian gauge theory [4, 5].

2.3.1 The Electroweak Lagrangian

A key observed phenomenon of the electroweak interaction is that it beaks parity, to
see how this works we first introduce the right and left-handed parts of the Fermion
field, ¥, as

L= Py — _275 0 YR = PRy — - +275¢, 2.3)

where we have used the chiral projectors Pr and P;, and
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0010
000 1
5 __ .. 0.1.2.3
=1 = Y] 24
Y =ivy Ty 100 0 (2.4)
0100

where 7/ are the gamma matrices (I have used the ordinary/standard

representation) [57].

SU(2), acts only on left-handed (LH) fields, and the W= bosons are linear
combinations of the W'? components of the SU(2); gauge field. SU(2) is the group of
2 x 2 unitary matrices with determinant 1, and the Pauli matrices are the basis of its
Lie algebra.

Part of the specification of the SM is that the LH quarks and leptons are doublets

under SU(2) (the Lagrangian is invariant under SU(2) matrix transformations):

Li— <”L> 25)
i

This is the doublet for the i generation of charged and neutral leptons and

[ HiL
Qi = ( dl-L> (2.6)

is the doublet for the i*" generation of up-type and down-type quarks.

The B, gauge field couples to both left and right-handed fermions (with gauge
coupling, ¢') according to their weak hypercharge, Y, which is

Y=Q-1I, (2.7)

where I3 is the third generator of SU(2) (with eigenvalue T;) and Q is electric charge.

The top and bottom components of these doublets have weak isospin of +3 and —3,
respectively, and leptons/quarks have hypercharges Y! = —1and Y] = —1,
respectively. The right-handed components are SU(2) singlets (i.e. they don’t
transform under SU(2) but do transform under U(1)):
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I_ = (er, Ur, TR), (2.8)
g+ = (ug, cr, tr), (2.9)
g— = (dgr,sr, br). (2.10)

The right-handed leptons/quarks have hypercharges Y; = —2, Y} L= —}—% and
YR =-2

The electroweak Lagrangian densities for quarks and leptons are given by:

3
Lhw = Y- (il DEL; +ili-y"DfI;- ) 11)
i=1

3
Lhy = Y (i0n"DEQi + idin"Digis +idi 7"Djia ) (2.12)
i=1

Here, i sums over the three generations. For charged leptons, these generations are e,
#, and 7, and for neutrinos, they are the corresponding neutrino types. For quarks, the

generations are up/down, charm/strange, and top/bottom, with + or — indicating
up-like or down-like quarks, respectively.

The absence of I;; in £k, reflects the fact that neutrinos are only left-handed in the
Standard Model. As a result, they are massless in this framework, as the lack of a
right-handed component prevents a Dirac mass term for neutrinos. The observation of
neutrino oscillations is the strongest evidence for physics beyond the Standard Model,

as this confirms that neutrinos have mass [52].

The covariant derivatives are given by

N Y
Dl =9, - ig50 Wy (x) — 1g’§B,,(x), (2.13)
DR=9,—i ’XB 2.14
nw — Vi lg 2 ﬂ(x)' ( . )

Here, 0" are the Pauli matrices. The Lagrangian density of the electroweak gauge

terms is

1 1
Lew,c = —Ew;szw - ZLB,WBW, (2.15)

where we have defined field strength tensors
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FIGURE 2.2: An illustration of the Higgs potential [67].

Wi, = 9, W} — 3, Wi, — gen W)W, (2.16)
B,y = 3,B, — 3,B,. 2.17)

2.3.2 Spontaneous Symmetry Breaking & the Higgs Mechanism

Symmetry requires that the electroweak gauge bosons, Wy (a = 1,2,3) and By, be
massless in the unbroken SU(2);, x U(1)y theory. However, the weak interaction is
observed to be short-ranged, indicating that the mediating bosons must acquire mass
through some mechanism. This occurs via the Higgs mechanism [19], where
spontaneous symmetry breaking of SU(2); x U(1)y to U(1)gm results in the masses
of the W* and Z bosons while leaving the photon massless. The Higgs potential, often
illustrated as a “Mexican hat” potential (shown in Figure 2.2), causes the Higgs field to
acquire a non-zero vacuum expectation value. This vacuum expectation value (VEV)
gives mass to the electroweak gauge bosons through their interactions with the Higgs
tield and to fermions through Yukawa couplings. This section outlines this
spontaneous symmetry breaking and the Higgs mechanism.

The Higgs field is a complex scalar doublet, and its Lagrangian is given by

Ltiiges = D'¢'Dup — V(9), (2.18)

where

(0@ _ 1 () + a0
Plx) = <¢O<x>) ~ V2 <q>3<x> +i¢4<x>>’ 219

and the Higgs potential, V(¢), is
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4 4 2
V(p) = —p (Z ¢?> +A (2 q>§> . (2.20)
i=1 i=1

This potential has an infinite number of degenerate states with minimum energy for

values of ¢ satisfying

2 2
R 2.21
P =5=> (2.21)

2
where we have defined the vacuum energy as v* = 5.

Substituting the expression for the Higgs doublet gives:

¢+ ¢+ ¢35 + ¢5 = 0 (2.22)

This equation defines a 3-dimensional sphere. We may reparametrize the Higgs
doublet, choosing 62, 63, and 63 to be three real fields tangent to the surface of the
sphere and a real field H(x) which is normal to the surface. The Higgs doublet can

now be written as:

_ 1 ke 0
¢(x) Vi (v H (x)> (2.23)

Here the fields 6; correspond to three Goldstone bosons[11, 15] and H(x), to the Higgs.

We may now use a gauge transformation to the unitary gauge, setting 6; to zero:

1 0
P(x) = 7 (U N H(x)> (2.24)

Substituting this expression for ¢ into the kinetic part of the Higgs Lagrangian, and
restricting our attention only to the parts which couple to the vacuum expectation

value, v:

(D) (D) > & [(W R+ (W2P) + (B — W] 229

Our goal is to rewrite these gauge fields in terms of physical fields. We start by
defining

Wt = (wl - in) . (2.26)

N
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This allows us to rewrite the first term in 2.25. We now look at the second term:

(§'By — gWs)* = §"W3 — 2B, Ws + ¢?B, (2.27)
2 ol %Y,

_ (w3 By) ( & %f) ( 3) (2.28)
—88 8§ By

We diagonalize our coupling matrix:

2 ool
( & ) — upu-, (2.29)
-g8' 8

where U and D are

__ 1 g g _(0 0
U_W<g —g’>' D_<0 g2+g’2>' (250

Now we absorb the unitary rotation matrix into the redefined fields:

(w5 B,)upu! @/3) = (Av 2) (8 gzjg,2> (4, z},)T (2.31)

4

Our new physical fields A, and Z, are given by

1
Ay = ————(8'Ws +gBy),
G : (2.32)
Ve .
Zy = (§Ws —&'By)

We can now rewrite 2.25 in terms of the physical fields:

2
v -
(D) (Dug) > 5 [gzvv” + W (P22 +0- Aﬂ (2.33)
We can now see that after spontaneous symmetry breaking, we have 1 massless

Goldstone boson, the photon, and 3 massive Goldstone bosons, W= and Z, with

masses

1 v
My = 508, Mz = EW' (2.34)
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2.3.3 Yukawa Interactions

The Standard Model is a chiral gauge theory. As left and right-handed fermions do
not transform the same way under gauge symmetry, it is not possible to write gauge

invariant mass terms for fermions.

The Yukawa Lagrangian for the three generations of leptons is given by:

3
£y = —V2 3 |Ligmily + T mig'Li (2.35)

ij=1

Here L and [ are the left and right-handed lepton fields, and m;; is the 3x3 matrix
containing the Yukawa coupling constants that determine the strength of interaction
between the Higgs field and the lepton fields.

Following our unitarity gauge transformation, our Higgs doublet, ¢, is given by 2.24.
The fields in our Lagrangian are represented in the electroweak basis. We wish to find

the mass eigenstates, so we diagonalise our matrix, mij:

mij = Dy AuDf? (2.36)

Here A = diag(Ae, Ay, Ar), a diagonal matrix of the Yukawa couplings. We absorb

these rotation matrices into our lepton fields:

L =D{L; (2.37)
i =Dy (2.38)

The masses of the leptons are given by:
me = Aev, my = Ayv, My = A0 (2.39)

For quarks, the procedure is similar, with the added complexity of there being up and
down-types; the Yukawa Lagrangian for quarks is:

3
ﬁ@ = —\/E Z |:Q1(Pml;q]_ + q]_m;*cp'le
ij=1 (2.40)

+Qipm; g4 + f7]'+mjf*43+Qi]

Where, after our reparametrization and transformation into the unitary gauge, ¢ is
defined to be



2.3. Electroweak Interactions 13

¢i(x) = <U - H(x)> . (2.41)

(¢ = ic?¢* before going to the unitary gauge). ¢ is an SU(2) doublet with the opposite
hypercharge to ¢. This construction exploits a property of SU(2): the fundamental
representation (doublets) is pseudoreal. Pseudoreality means that the fundamental
representation is equivalent to its complex conjugate under a similarity
transformation, a feature specific to SU(2). The operator io? is used to define ¢ in a
way that preserves the SU(2) transformation properties while reversing the

hypercharge.

We wish to find the mass eigenstates, so we diagonalize our matrices mﬁ, and set ¢ to
its VEV:

mt = uRF AL ylb= (2.42)

ij il Im~"mj

Our unitary rotation matrices, U")* and U®)* are absorbed into our quark fields:

Q. =Ui Q (2.43)
T = U g (2.44)

2.3.4 CKM Matrix

Following our transformation into the mass basis using the unitary matrices, U+
and UR*, we must now see how this transformation changes the interaction terms
between quarks and electroweak bosons in our electroweak Lagrangian. After the

spontaneous symmetry breaking, these terms are:

c -8 i (ﬁ‘.w— +]”.w+) (2.45)
q—EWbD V2 = U —i' v :

N

Here, ]!, are the left-handed quark currents given by

Ji=Q Q= Q- ubtyrudrq, (2.46)
" =Q Q- = Q. ubtpruti-gl (2.47)
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We define the Cabibbo-Kobayashi-Maskawa (CKM) matrix, Vcky, using this, as

Vud Vus Vub
Vekw =uD+Hub-= v, v, v, |. (2.48)
Vie Vis Vi

The CKM matrix gives the mixing of up and down-type quarks in the Standard
Model[17, 29]. This matrix is unitary by construction. Because of this, there are only
four degrees of freedom in the CKM matrix (three mixing angles and a CP-violating
phase). The matrix arises because we need different U matrices to diagonalise the
up-type and down-type quark masses, but left-handed up-type and left-handed
down-type quarks are in the same SU(2) doublets. It is worth noting that no

flavour-changing couplings to the Z boson arise.

A common parametrization for the CKM matrix arises from the following mixing:

1 0 0 C13 0 513671.4) c1p s;p O
Vekm = [0 23 s23 0 1 0 —s1p c12 0 (2.49)
0 —S23 (23 —sl3ei¢ 0 C13 0 0 1
C12€13 512€13 s13¢7
= | —s12023 — C125235136" 12003 — S12523513¢" sazcn3 (2.50)
512523 — 012C23513€’¢ —C12523 — 512023513€i¢ C23C13

Here, s;; = sin(6;;) and c;; = cos(6;;), where 6;; is the mixing angle between

generations i and j. ¢ is the CP-violating angle[41].

An alternative parametrization, known as the Wolfenstein parametrization,
approximates the CKM matrix by expanding it in terms of a parameter, A, equal to V.
It makes use of the observed difference in magnitudes between mixing between

different generations of quarks[40].

At the time of its origin, two well observed CKM matrix elements were V,; and V. It

was observed V; is of order A?, so we define a factor, A, such that

Vi, = AAZ. (2.51)

To order A2, the CKM matrix is then
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1
1—3A2 A 0
V. = 2.52
CKM A1 ax (2.52)
0 —AA* 1
We can now use unitarity to go to order A>:
1— 12 A AA(p —in)
—A 1—3A? A2A
Vekm = 2 , (2.53)
MA(1—-p—in) —A%A 1
where we have introduced two parameters, p and #. In terms of our common
parametrization parameters, A, A, p and 7 are given by:
A= 512 (254)
— S% (2.55)
s
12
—id
p="Re {5136 } (2.56)
§12523
S13 e~ 10
n=—1y (2.57)
512523

Wolfenstein introduced the parametrization in Equation 2.53 as an approximation, but

it was later realised that you can define

Vis=A, Vg =AA, V= AN (p—in), (2.58)

as exact, and then construct the rest of the CKM matrix by unitarity. You can then
expand to any order in A (this also uses a phase convention that V4, Vi, Ves, Vo and

Vip are all real and positive).

Figure 2.3 shows the global constraints on the CKM unitarity triangle in the (p,7)

plane. p and 77 are defined as

_ A2\ A2
p=p<1—2), 17217<1—2)- (2.59)

The CKM unitarity triangle plot is constrained by several experimental

measurements. The blue band comes from CP violation in decays such as
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FIGURE 2.3: Global constraints on the CKM unitarity triangle in the (p,7) plane. The
overlapping red ellipse indicates the region allowed at a 95% confidence level. [55]

BY — J/y KY; the light-blue wedge is based on neutral kaon mixing through the
measurement of ex; and the orange/yellow bands reflect the mass differences
observed in B; and B; meson oscillations. The semileptonic decays analyzed in this

work provide a constraint for |V,;;|, which is shown by the green band.

24 Quantum Chromodynamics

Quantum Chromodynamics (QCD) is the theory of the strong force, which describes
the interactions of hadronic matter: quarks and gluons. It is a non-abelian SU(3)
gauge theory[71, 45, 57]. Quarks are in the fundamental representation of SU(3).
Gluons (like all gauge bosons) are in the adjoint, which has dimension equal to the
number of generators of the group. For SU(3) this is 8, corresponding to each colour
charge-anti-charge combination, each with a gluon field, Gj. The QCD Lagrangian
density is given by

A ; 1 a a
Locp =) ¢s (i7" Dy —ms) s — 7 G, G (2.60)
7

where Gy is the gluon field strength tensor and ¢ £ represents the quark fields (with f
indexing flavours u,d, s, ¢, b, t). The covariant derivative is defined as

D, =0, — igS%/\”GZ. (2.61)

The mass, 11y in Equation 2.60 comes from the Higgs mechanism in the SU(2) x U(1)
sector, and g is the strong coupling constant. Analogous to the 2x2 Pauli matrices, we
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0.35 . . .
[ T decay (N3LO) —— ]
[ Y low Q2 cont. (N3LO)
03 Heavy Quarkonia (NNLO) —— 7]
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FIGURE 2.4: Running of the strong coupling constant, denoted here as «g, with energy
scale Q [86].

have made use of the 3x3 Gell-Mann matrices[16], A;, which are a representation of the
generators of the SU(3) symmetry.

010 0 —i 0 1 0 0

M=|1 00| AX=]i 0 0] Az=[0 -1 0 (2.62)
000 0 0 0 0 0
00 1 0 0 —i 000

Aq=10 0 0 As=10 0 0 Ae=10 0 1 (2.63)
100 i 00 010
00 0 1/v/3 0 0

A=10o0 —i|lx=| 0 1/V3 0 (2.64)
0i 0 0 0 —2/V3

Due to the nature of the strong coupling, at low energies (below Aqcp), perturbation
theory is not a valid approach. This is because the running of the strong coupling
constant, a5, becomes large at low energies, making perturbative methods ineffective.
As a result, non-perturbative techniques must be employed to study Quantum
Chromodynamics (QCD). Some of the prominent methods include lattice QCD, sum
rules, and the AdS/CFT correspondence, though the latter has not yet been
successfully applied to realistic, phenomenologically useful examples. In the
high-energy regime, above Agcp, QCD exhibits asymptotic freedom, as demonstrated
by the behaviour of the Non-Abelian Gauge Theories (NAGTs) in 4D, where the

coupling strength decreases at higher energy scales. However, at low energy scales,
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the coupling grows stronger, leading to confinement and the breakdown of
perturbation theory. In this low-energy regime, we rely on non-perturbative
approaches such as lattice QCD to obtain insights into the behaviour of QCD. The
form factor information used in this work exclusively comes from lattice QCD, and so
I shall very briefly cover the main concepts in the following section.

2.5 Lattice QCD

Lattice QCD provides a systematic framework for studying strong interactions
directly from first principles[33, 32, 35, 61]. It discretizes spacetime into a
finite-volume grid and reformulates the theory in Euclidean spacetime for numerical
tractability. Quarks are positioned at lattice points, while gluons are modelled as link

variables connecting the points.

There are many ways to implement this discretization that ensure that the continuum
limit @ — O recovers the QCD Lagrangian. Different lattice formulations of quarks,
such as Wilson [31], staggered [34], domain wall [43], and twisted mass [53], can be
employed, each with specific advantages and challenges in reproducing the correct
chiral continuum behaviour. Discretization effects of order O(a") can be mitigated
using techniques such as the Symanzik improvement program[38, 39, 90].

The lattice parameters, including the lattice spacing a, volume, and quark masses,
must be tuned to match the physical world. This requires extrapolating quark masses
to their physical values, often done through chiral extrapolation, to recover the correct
behaviour in the continuum limit. As part of this process, the lattice spacing a is sent
to zero (the continuum limit), and the volume is taken to infinity to remove finite

volume effects.

This method is systematically improvable, with accuracy improving as computational
power increases, with simulations getting closer toa — 0, L — oo, and quark masses

to their physical values.

An important part of this formulation is the discretization of the gauge fields. In this
approach the continuous gauge fields are represented by link variables that lie on the
edges between lattice points. These link variables are chosen to be elements of the
underlying gauge group and are designed to preserve the gauge invariance of the
theory. The discretization of fermions is accomplished by defining quark fields on the
lattice sites and choosing an appropriate formulation such as Wilson or staggered

fermions.

An important component of the gauge action is the plaquette. This is defined as the
product of four link variables that form a square on the lattice. The resulting plaquette
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is unitary as each link is a unitary matrix, and it is essential in approximating the

gauge field strength in the continuum limit.

2.5.1 Path Integrals

To perform measurements over our discretized spacetime, such as measuring
correlation functions, we make use of path integrals. Discretizing spacetime on a finite
volume transforms the path integral into an ordinary, albeit extremely
high-dimensional, integral. This integral is most efficiently evaluated using
importance sampling methods, such as Monte Carlo simulations. To facilitate this, we
perform a rotation to Euclidean space, where the factor ¢’ (from the action S) becomes
e~5, making it possible to interpret the integrand as a probability density.

A general n-point correlation function is of the form

Cu(xy,x2,...,x) = (T{O1(x1)O2(x2) ... On(x) }), (2.65)
where we have the expectation value of the time ordered product of n operators

O;(x;)[45]. T will implicitly assume the time ordering from now on. Our correlation

function is then given by the following path integral in Minkowski spacetime:

<w:;/m@wwm (2.66)

Here, @, represents all fermion and gauge fields. Z is our partition function:

ZZ/D@WWW (2.67)

To calculate these on the lattice, we now modify our path integral expression as

follows:

* We perform a Wick rotation to transform from Minkowski spacetime to

Euclidean spacetime. This transforms our action as iSy; — —S [6, 33, 32].

¢ Discretize our spacetime into a lattice of points with a spacing, 4, and volume
L3 x T. We also must ensure the correct action is recovered in the continuum
limit (a — 0)[45].

Our path integral on the lattice is now of the form
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(0) = % [ plejoese) (2.68)

Measurements on the lattice are performed over variations of lattice spacing, volumes
and quark masses where possible. Results are extrapolated to the chiral continuum
limit, where the lattice spacing, a — 0, the volume, L3 — o0, and the quark masses are

taken to their physical values.

2.5.2 Importance sampling

The Euclidean path integral for an observable, O, is given in Equation 2.68. This is a

weighted average of all possible quark/gluon field configurations according to e~5®),

e~5[®! varies enormously, so evaluating this integral numerically is best done through

sampling the tiny region which contributes significantly [58].

This is importance sampling, which is a variance reduction method (compared to say,
sampling the space uniformly), meaning stochastic estimates of the integral of interest
have a reduced standard error.

Importance sampling focuses computation time on the most highly contributing

configurations. It does this through a Monte Carlo procedure, where all sampled
configurations are given equal weighting, but the probability of being sampled is
proportional to e~ [56].

2.6 Semileptonic Decays

The work in this thesis focuses on pseudoscalar-to-pseudoscalar semileptonic decays,
namely B — /v (the Feynman diagram for this is given in 2.5) and B; — K{v
(however much of the work applies to other exclusive semileptonic decays, such as

B — D{v, D — K{v and those with vector final states, such as B — D*fv, D — K*{v).

14

b il
B 7T

FIGURE 2.5: Feynman diagram for B — m/v.

We can decompose our matrix element, (P (k) |[V*(0)| Bs(p)), in terms of the two form

factors, f_ and f. P and Bs represent pseudoscalar mesons with 4-momenta k and p,
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FIGURE 2.6: Sketch of a generic three-point function. The spectator quark (dot-dashed

line) originates from time slice ts;c and propagates forward to time slice t,,; where we

create a point sink and turn it into a sequential source for the parent quark (double

line) propagating backward. This sequential propagator is contracted with the child
light quark (solid line) also originating from .. [88]

and masses Mp and Mp ) respectively. As our matrix element has a Lorentz index, y,

it must be constructed from available vectors with the same index:

(P(k)|V(0)[Bs(p)) = f+(a*)p" + f-(q°)9" (2.69)

Here g# = p# — k¥, the 4-momenum transferred to the outgoing lepton-pair. It is
useful to express Equation 2.69 in terms of the form factors fy and £, as these form
factors relate to the transition amplitude with the exchange of a scalar (0") and vector
(17) boson in the t-channel, respectively [77]. fj is defined as

2
fo (@) = fo (03) + s (7). (270)

Substituting this expression gives the form factor decomposition

M2 — m?

7 g". (2.71)

(P O] B(p) =2f+ () (1" - ”q'ﬂqﬂ) T fo ()

In the limit of g2 — 0, this matrix element must not diverge, and so f(0) = fo(0).
This constraint on the form factors will be referred to as the kinematic constraint.

2.7 Correlation functions

Form factor information can be obtained through lattice simulations through the

measurement of two and three-point correlation functions.
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In the example case of B; — K{v, where we create a Bs meson (at rest) at time t;,, = 0
and destroy the Kaon at the sink at t;,; = At, and the flavour changing current,

Vy = ti7y,b acts at time ¢ (as shown in Figure 2.6). The three-point correlation function
is of the form

Cau(t, At pr) = Y eP<Y (0| Op, (x, At)Vy(y, ) Ok (0,0)]0) (2.72)
Xy
We make use of the relation O(x, t) = eftelPX((0,0)e~Hte—iPx;
Cau(t, A, pr) = Y PV (0] Op (x,0)e MY, (y,0)e 1 0%(0,0)|0)  (2.73)
Xy

We insert complete sets of states, n and m:

C3y(t At/pK Z eszy 0|0B (x 0) fEnAt| >< | Entv (y,O) Emt|m><m’01‘2(0/0)’0>/
X,y 2E, 2E,,

(2.74)

where our exponentiated Hamiltonians have acted on states, n and m, constraining
their momenta (their other quantum numbers are constrained by the matrix elements):

¢~ En(At—t) p—Ent

Cau(t, At pr) = ——¢/PKY (2.75)
K Xyzn:m AE,E,,

% (0|Og, (x,0) B (B |V, (y,0)| K™y (K™ |0 (0,0)|0)

For sufficiently long time separations, this is dominated by the ground states (as these
are the lowest energy states, the exponential terms decay slower than for other states),
Bs and K. In the limit t — co:

oM, (At—t) p—Ext

ipxy t
M B © (0] OB, (x,0)|Bs) (Bs| Vi (y, 0)|K) (K| Ok (0,0)|0)

C3,}l (tl At/ PK) ==
xy
(2.76)

To extract the matrix element (B, |V, (y,0)|K), we make use of the following 2-point
correlation functions:
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Cr.(1,0) = Y-(0|0p, (x,1) 05, (0,0)[0) @77)

X

Ck(t, pr) = Y_eP*(0| Ok (x, t) Ox(0,0)]0) (2.78)

Repeating the same procedure and taking the limit ¢t — co gives:

— Mgt

Cs,(1,0) = [{010,(0,0)|B:(0)) " 37 279)
—Ext

Ci(t,pr) = {010k (0,0)|K(pe)) * (280)

We can extract our desired matrix element by taking the ratio of our 3-point function
with the square root of these 2-point functions.

This can be done for many values of Kaon momentum, allowing us to measure the
matrix element for various values of 2. Once the chiral continuum extrapolation has
been performed, this allows us to generate form factor values from the lattice.

Practically, we are limited on how many form factor values we can generate on the
lattice to avoid the covariance matrix becoming singular. As f; cannot be determined
at g2, in the case of an odd number of points, we choose to allocate an extra point to
fo (so if we can only extract 5 form factor points from the lattice simulation results

before making the covariance matrix singular, we choose to take 3 values for f; and 2

for f1) [60].

2.8 Form Factors and Phenomenology

2.8.1 Differential Decay Rate

To compare experimental results with theoretical predictions from the lattice, an

important phenomenological value is the differential decay rate:
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2
dr (B(s) = P€v) G |Vf2 (=) JER - M3

= X
dg? 24773 q4MZB(S)

m? 2
L5 (- a) [ () @

3m?2 2 2
3L (v, ) 1 |

With knowledge of the functional dependence of the form factors, extrapolated from
lattice results, we can calculate all parts of this equation besides |V,;|. The differential
decay rate without the CKM matrix factor, dT'/dq? is given by

af 1 dr

ab _al (2.82)
dg> |V, |* d9?

With binned experimental measurements of the differential decay rate, and by

integrating dI'/dg® from our theoretical predictions over the same bins, we can extract
| Viip)-

2.8.2 Forward-Backward Asymmetry

The angular dependence of the differential decay rate is given by

2
PT(Bo > Kev) GVl ([ m2\"
ddcos6; — "V12873M2 e
: m;
|P| [4M1235 px[® <sm2 0 + — cos® Ge) @)
q (2.83)

2
m
+ ?f(M%s — MR)Ms, |pk| cos 0, fo(q) f+ (%)
my 2 2N\2 272
+ LM, - MR G )|

where 6, is the angle between the incoming B, and the outgoing charged-lepton in the
dilepton rest frame. The forward-backward asymmetry is the difference in the
integrated decay rate in the forward (0 < cosf, < 1) and backward directions

(=1 < cosfy < 0) [88]:

1 0

-Afég(qz) = [f— f] dcos By

0 -1

42T (Bs — Klv)
dg?d cos 0,

(2.84)
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2
2 2
A7) = sl (1 ’Zﬁ) il
; (2.85)

2

X —£ (Mg, — M) f+(q%) fo(q?)

2.8.3 R Ratio

Another important test of the Standard Model is lepton flavour universality (LFU),
which occurs due to the identical couplings to the weak gauge bosons from each
generation of lepton. Differences in masses between the leptons causes the shapes of
the decay rates to differ.

The R ratio tests LFU and is largely free of hadronic uncertainties:

fqmﬂx qu dr(Bs_ﬂ(TVT)

Rp, sk = (2.86)

fqmax qu dr( B<—>K£W)

Here, ¢ denotes either e or y, which are both essentially massless compared to the tau
lepton and the kinematic range of 4.

An improved R ratio can be constructed to improve upon several features present in
Rp,—k [88]:

* The integration range from m? < g% < m?2 in the denominator is unmatched in
the numerator. This can be solved by choosing a common integration range

starting at ¢2... (where g2. > m?).

* A weighting factor is introduced, w, that scales the differential decay rate by the
phase space factor related to lepton mass. This factor makes the f; components
of the numerator and denominator the same.

This phase space weighting comes from the following expression for the differential
decay rate:

dr (B, — Kév)

i = Dawy(q?) [Fy + (FS)?] (2.87)

Where
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Gl2?|Vub|2
D= WEWWI (2.88)
2 m% ’ m%
we(g°) = 1—[72 1+2—q2 , (2.89)
Fy = [px’If+ (4% (2.90)

o _ 3 milpx| (Mj, — M)
4 m? 4 24? M3,

(F§) | folg*) % (2.91)

Our improved R ratio is then given by:

Ginax ;2 4T (Bs—Ktr)
Rimp _ fyznin dq dg? (2.92)
B K ™ g2 o [wel(q?)] dT(Bs—Ktv) -
Jda? | Gy ) i

Tmin

We note that the contribution of the scalar term, (Fg)Z, in the denominator is very
small (mgly / 2q2 < m’% / Zqz < m%, / Zm% = 0.002 in the integration range), and so we
ignore it in our denominator. Our simplified approximation of the R ratio is:

2
| () () -
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Chapter 3

Statistical Techniques

3.1 Bootstrapping

A statistical technique used extensively in this work is bootstrapping, which allows

the propagation of statistical uncertainties throughout the analysis.

The primary input data for this analysis are synthetic form factor values from lattice
simulations, with an associated covariance matrix. The bootstrapping procedure
involves generating numerous resamples of these data points and performing the

same analysis on each resample [37].

With a sufficiently large number of samples, the distribution of outcomes will capture
the statistical uncertainty from the distribution of inputs, without relying on

assumptions about the underlying error distribution.

3.2 Kolmogorov—-Smirnov test

A statistical tool employed multiple times in this work is the Kolmogorov-Smirnov
(K-S) test [49]. This allows us to test whether two sets of data are likely to be samples
from the same underlying distribution. There are two main ways we use this test in

this work.

The first is to determine if a given distribution is consistent with the uniform
distribution. Firstly, we take many sets of samples of a uniform distribution between
the minimum and maximum value. These sets consist of n samples, where # is the

number of elements in our test data.

For each set, we measure the Kolmogorov-Smirnov statistic, D,, ,,, which is the
maximum difference between the sample’s empirical distribution function (EDF),
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F; »(x), and the uniform distribution’s cumulative distribution function (CDF),
o m(x) [74]:

Dy = sup |F1u(x) — Fom(x)] (3.1)
X

The P-value is then the proportion of sets with a greater or equal
Kolmogorov-Smirnov statistic than that of the distribution we are testing. If the
P-value is within the range, 0.05 < x < 1 (here we denote this as « = 0.05) then we do
not have sufficient evidence to reject our null hypothesis (the distribution of curves is

uniform).

The second way we use this test is to determine if two distributions are from the same,
unknown, underlying distribution. Here we use the two-sample
Kolmogorov-Smirnov test, which involves the same measure (Kolmogorov-Smirnov
statistic), but we only need to compare the two distributions once as we are not
sampling from a known distribution for comparison. The threshold for rejecting the
null hypothesis, at level «, is:

Dy > \/— In (%) : 1;;1 (3.2)
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Choice of Data

The analysis in this work focuses on two semileptonic pseudoscalar to pseudoscalar
decays, B — mfv and Bs — K{v. The lattice data used for each decay consists of the

synthetic points and their covariances (both systematic and statistical).

41 B — tlv

For B — v, form factor results from the JLQCD collaboration are chosen [80]. The

synthetic form factor points are given in Table 4.1, with statistical and systematic

correlation matrices given in Tables 4.2 and 4.3.

fielai) fo(g3) fi(a3) folai) folg3) fo(q3)
Mean  1.165 2600 6597 0500 0703 0.937
Stat.err 0.067 0152 0423 0019 0.026 0.036
Syst.err 0.099 0229 0631 0027 0037 0.043

TABLE 4.1: Synthetic data points for f; and fj at 4> = 19.15GeV?, g5 = 23.65GeV?
and g% = 26.40GeV?

fe(@}) fr(@3) fo(a3) folai) fo(g3) fo(a3)
Fi(@®) 1000 0957 0901 0799 0728 0.663
fi(g?) 0957 1.000 0989 0758 0.720 0.662
fi(g?) 0901 0989 1.000 0708 0.682 0.639
folg?) 0799 0758 0708 1.000 0971 0.921
fo(g?) 0728 0720 0682 0971 1.000 0.943
folq3) 0663 0662 0639 0921 0943 1.000

TABLE 4.2: Statistical correlation matrix for f1 and fy at g7

23.65GeV? and g% = 26.40GeV?

= 19.15GeV?, ¢5 =

To obtain phenomenological results for B — 7fv, several sources of experimental

29

results will be used. These experimental results consist of binned integrated branching
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felai) fe(a3) fi(a3) folgi) fola3) fo(a3)
) 1000 099 0969 0761 0675 0.692

(47
Fi(3) 099 1.000 0981 0737 0.650 0.663
() 0969 0981 1.000 0682 0590 0.604

q3) 0761 0737 0.682 1.000 0.992 0.996
fo(g3) 0675 0.650 0590 0.992 1.000 0.996
g3) 0.692 0663 0.604 0996 0.996 1.000

TABLE 4.3: Systematic correlation matrix for f; and f at g7 = 19.15GeV?, g3 =
23.65GeV? and g% = 26.40GeV?

fractions, alongside systematic and statistical covariance matrices (or correlation

matrices with corresponding errors). The experimental results chosen are:

Belle 2010 [64] - B — 7 ¢tv branching fractions from EPAPS Table III, with
associated statistical and systematic correlation matrices from Tables I and II.

* Belle 2013 [68] - Combined B — 7+ and B~ — ¥ branching fractions, and
correlation matrices given in Tables XVII-XX.

* BaBar 2010 [62] - B® — 71~ 4-mode fit branching fraction given in Table X, with
total correlation matrix from TABLE XXI.

* BaBar 2012 [65] — Combined B® — 77~ and B* — 7” branching fractions, given

in Table XXIII, with statistical and systematic correlation matrices from Tables
XXVII and TABLE XXXI.

In all cases, branching fractions are converted into differential decay rates using
lifetimes from the Particle Data Group [91].

411 Combining data for Belle 2013

For Belle 2013 there are 2 sets of data, one for B — 717 and the other for B~ — 7V For
each we have binned branching fractions, statistical error, systematic error, total error,
and statistical correlation matrix. Each decay has different bins, 13 for B® — 7+ and 7

for B~ — 0.

We rescale each decay by the lifetime and isospin factor to give the differential decay
rate:

Tgo

AB(B® — mtv) =2
TB-

AB(B™ — m’tv) (4.1)

For a given decay, the integrated branching fraction bins have systematic error that is
fully correlated. Between decays, the systematic correlation is 0.49 (estimated by Belle
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in [68]). From this, we construct a 20x20 systematic correlation matrix. The statistical
error is not correlated between decays, so the full correlation matrix is block diagonal.
From these, we construct the statistical and systematic covariance matrices from the

statistical and systematic errors. The total covariance matrix is then the sum of these.

4.2 B, — Klv

For B; — K{v, we use synthetic form factor values from the RBC/UKQCD
collaboration’s 2023 paper [88]. These form factor points are generated at

q* = 17.6,20.8 and 23.4GeV? for f;, and at > = 17.6 and 23.4GeV? for f, . Tables VII
and VIII give the central values, errors and correlation matrices for these points.

B; — K/{v experimental data is very limited, so extraction of V,,;, will only be
performed using data from the LHCb collaboration [76], that measures the ratio of
branching fractions for B — K~ ¢v and BY — D; {v, using the procedure outlined in
[88].
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Chapter 5
Dispersive Bounds

H}; " is the two-point momentum-space Green’s Function of a vector-like quark
current, J* = QT*Q’. We can decompose 1’[7 " into spin-1 (I1;-) and spin-0 (I1y+)

components:

() = i [ dxe (0| T (x) ] (0)]0) 1)
1 WAy
= (@0 =) e () + 1 qZ My (¢) (52)

We define z (£; tg) as

z (i’,’ tO) — \/tcut —t— \/tcut - tO (5.3)

n \/tcut_t+\/tcut_t0,

We define t,; as the minimum value of the invariant mass squared required for the
vacuum to produce a physical quark-antiquark pair. In practical terms, it’s the energy
threshold at which pair production becomes possible, marking the beginning of the

continuum region in dispersion relations.

to = teut — \/teut (teur — (M — m)?) is a common choice to make z(t) symmetric around
0 for the range of available ¢ values (M and m are the masses of the initial-state meson
and final-state meson in the decay, respectively). This mapping takes the g complex

plane onto a unit disc.

For a semi-leptonic pseudoscalar to pseudoscalar decay, the imaginary parts of the
longitudinal and transverse components of the HVP tensors are related to their

derivatives via the following dispersion relations:
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d ImITy:
xo+(Q%) = BTIZ[QZHW / dz 28 0 ), (5.4)
1/ 09\ _ZmlTy(z) H

Where g2 is the momentum of the outgoing lepton pair, and

tml = 3 7 [ d(on) )5 g = pu) 01 ) 66

Here a complete set of states has been inserted with the same quantum numbers as a
generic current, J. du(n) is the phase space for the states, n. x(Q?) are known as the
susceptibilities, and the values used in this work are from the 2023 RBC/UKQCD
paper [88], calculated perturbatively using the common choice of Q2 = 0:

x1-(0) = 6.03 x 10 *GeV 2 5

Xo+(0) = 1.48 x 1072 67
These susceptibilities will be denoted as x;- and x+ (ignoring the Q> = 0). The
completeness sum is positive semidefinite. By inserting a subset of hadronic states we
can obtain inequalities allowing us to bound the form factors. In this case, we consider
those relating to two decays, Bs — Kfv and B — 7t/v. For a generic susceptibility

(from the current-current correlator), x, we have

1 WOUOP 69

X(qZ) = T tcut (t_ q )

where a is the degree of subtraction (4 =2 for ] = 0" anda =3 for ] =17). Fora

given spin-parity channel, we may write the dispersion relation as:

1
2771

[ Z@r@P <x 59

The full derivation of W(t) and the outer functions ¢ can be found in Appendix B. We
introduce Blaschke factors, By(z) and B (z)[1], for our two form factors fy and f.,

respectively. The Blaschke factor for a given pole is defined as

zZ— Z(ql%o]e)

B(za) = —Tpole)
1-2(q3) 2

(5.10)
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These Blaschke factors ensure analyticity in the presence of sub-threshold poles
without changing the value of the integrand on the unit disc, leaving the integral
unchanged.

[ EBEnEAEE < x (5.11)

ﬁ Z‘:l Z
From this dispersion relation, we can proceed in two different ways. One approach,
which I will denote the z-fit method, makes use of the analyticity of the integrand by

expanding it in terms of a power series in z, which I shall discuss in Section 6 [44, 46,
48, 59].

The second approach I will explore in Section 7 is the Dispersive Matrix (DM) method,
which uses the inequality in Equation 5.11 to bound the form factor at any z (hence
%), independent of any parametrisation or assumed functional form. These bounds
are commonly referred to as “unitarity bounds”. The DM method can exploit known
information on the form factors to tighten the bounds [36, 47, 24, 25, 26].

In both cases, kinematic constraints on the form factors, for example the relation
f+(0) = fo(0) for the semileptonic decays of interest here, can also be taken into
account.
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Chapter 6

Z-Fits

Parametrizing form factors to extrapolate theoretical predictions has a long history.
Some examples include the Ball-Zwicky approach (which utilises light-cone sum
rules) [54], the Becirevic-Kaidalov parameterization [50] and Bauer-Stech-Wirbel
parameterization [42]. In recent times, these have fallen out of favour in comparison to
parametrizations stemming from dispersion relations, such as the BCL [59] and

BGL [44, 46, 48] parametrizations, which, by relying only on general quantum field

theory properties of analyticity and unitarity, are model-independent.

6.1 BGL Parametrization

From Equation 5.11, our dispersion relation is given by:

[ E B < x (6.1)

271 Jiz|=1 z

As the integrand of our dispersion relation is analytic, by construction in the unit disc,

we may expand as power series (note that yx; is absorbed into ¢;):

1 = n
fo(z) = W‘PO(Z) HZ::O%Z (6.2)
fr() = =Y b 63)

B (2)¢+(2) =

This power series expansion is known as the BGL expansion [44, 46, 48]. The unitarity

constraint is then given by



38 Chapter 6. Z-Fits

Yo lauP <1, Y ba|* <1 (6.4)
n=0 n=0

The kinematic constraint, which enforces that our form factors must be equal at
z(g* = 0), is a linear relation between the a, and b,,, allowing any one of them to be

expressed in terms of the others.

1 - n
B = o= = 0)) 20 =0

1 o0 .
B (z(42=0))¢ (z(42 = 0)) gbnz(qz =0)"=0. 6.5)

The number of independent synthetic form-factor points available from lattice data is
relatively limited. This in turn limits the number of terms we can use in a z-expansion
when making a (frequentist) fit. Hence, although the full z-expansion is
model-independent, in practice we have to consider the systematic effect of using a
truncated expansion. If experimental inputs are also used, then it becomes possible to
use higher order truncations of the z-series.

6.2 BCL Parametrization

This parametrization was created to improve upon some limitations of the BGL

approach. It makes use of an additional constraint on the derivative of f,[59]:

%]

This comes from angular momentum conservation, and enforces that the form factor

=0 (6.6)

z=—1

obeys the known asymptotic behaviour near the B7r production threshold [72]. The
constraint imposes an additional linear relation on the expansion coefficients for f. . In
a truncation of the BCL series for f+, is it usually taken into account by writing

2 1 oo [« -k k _k
f+(q?) Y b | — (1) =2 (6.7)
k=0

:1—q2/m%* — K

There is no equivalent derivative constraint for fy, so we have the following

expressions:



6.3. Fitting Procedure 39

N0k
(g =Y by'z 6.8)
k=0
1 K—-1
o () = PR (6.9)

q°/my o) k=0
Unfortunately, the BCL expansion has no direct unitarity constraint, and instead one
can be obtained from mapping the BCL coefficients to those in a BGL expansion and
utilizing this unitarity constraint [59]. In this analysis, the BGL expansion is

exclusively used, as this comes directly from the dispersion relation.

6.3 Fitting Procedure

To perform the form factor extrapolation using only the lattice data, the statistical and
systematic errors of the synthetic data points may be factored in to the results through

bootstrapping.

The synthetic data points are resampled 10 times, and for each resample we
perform our fitting procedure assuming perfect knowledge of the form factors at these
points. For a given resample, we find the optimal set of coefficients by minimising x?,
our squared residual,

- = T _ . .
XZ = (Fcalc - Flattzce) MCOE(l) (FCHIC — Fluttzce) , (6‘10)

where L, are the values of the form factors ( fo and f) calculated from the
coefficients, Fjyiqe are the resampled form factor values from the lattice data, and My,
is the covariance matrix of the lattice form factor values. This minimisation is done
through multivariable minimisation, in this case using the "BFGS” method using
SciPy’s optimize.minimize function [75]. The variables being minimised are all but
one of the coefficients for the form factors, as one can be expressed in terms of all
others due to the kinematic constraint. This optimisation is constrained through
unitarity, which dictates that the sum of squares of coefficients for a form factor must
not exceed 1.

This process is repeated for all 1,0t resamples, allowing analysis to be performed on
each set of coefficients individually. When generating synthetic form factor input
values from lattice data, the mean values and their covariance can be computed
directly, enabling a z-fit using a single minimization. This approach assumes a

Gaussian distribution for the coefficients. However, if you wish to investigate, for
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example (as will be done in the following section), the impact of the unitarity
constraint on the fit, a bootstrapping procedure is more appropriate.

6.4 Unitarity constraint

We can see how frequently the unitarity constraint influences the optimal coefficients
generated for each resample of our inputs. Figure 6.1 shows the distribution of sums
of coefficients squared for B; — K¢v and B — 7tfv. In both cases, the unitarity
constraint was ignored in the fitting procedure, and in all 10000 sets of coefficients the
unitarity constraint was met regardless. This shows that this constraint never, for the
synthetic data we are using, impacted the coefficients generated.

Sums of squares of coefficients for fo and f,

7004 BPi 1 BPi
BskK BskK
600 4
500 4
T 400
c
Q
El
o
£
300 4
200 4
100 4
0 T T T T T T T T T T T T T T .
0.05 0.10 0.15 0.20 0.25 0.30 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018

Sum of fy coefficients squared Sum of f, coefficients squared

FIGURE 6.1: Sum of coefficients (10000 sets) squared for B — Kfv and B — mtfv, fitted
without consideration of the unitarity constraint, using synethetic form factor points
from the RBC/UKQCD [88] and JLQCD [80] collaborations, respectively.

Decay | x?/(d.o.f.) | P-value
B — mtly 2.24 0.106
Bs — Klv 2.28 0.102

TABLE 6.1: x?/(d.o.f.) and P-value for B; — K¢v and B — 7tlv fit without respecting
the unitarity constraint.

6.5 Alternative polynomials

In the dispersion relation, the start of the cut is determined by the lowest energy state
that can be produced from the vacuum by the current. The current and hence the start
of the cut is the same for B — /v and B; — K{v decays. For B; — K/v the cut starts



6.5. Alternative polynomials 41

below the production threshold. As such, integrating over the whole unit disc adds
unphysical contribution to the unitarity constraint [87].

A A

L z

v
[ ]
v

te = (mp+niz)?

ty = (mp,+mg)?

FIGURE 6.2: A schematic depiction of the mapping from the g2-plane (left) to the con-

formal z-plane (right). The coloured segments on the real axis denote the physical and

unphysical regions for the B — K decay form factors, while the circle on the right rep-
resents the boundary of the unit disk after the conformal transformation.

When integrating over the unit circle, z”* form an orthonormal basis. For B; — K{v, we
wish to construct a new orthonormal basis over the range —a < 0 < a,

a = arg(z(q*> = ty,)), where tyy, = (mp, — mg)? (for Bs — Kfv, & = 1.117). This can be
done using the Gram-Schmidt process, as few orders of the polynomial are needed
(these are the Rogers-Szego6 polynomials [3]).

Equivalently, we can stick to expanding in powers of z over the restricted integration

range, with a modified inner product [88]:

1 .
Fa= 5 [ dg()2

sin(a )) i 7& ] (6.11)
i=]

The resulting unitarity constraint is

Y ai(z' | 2)ea; < 1. (6.12)
i,j>0

For the decay Bs — K/v, the unitarity constraint rarely restricts the optimisation of
coefficients. Figure 6.3 shows the distribution of coefficients, a;, when fitting B; — K{v
using the circle and arc models (using the whole unit disc vs an arc of the disc, again,
using data from the RBC/UKQCD collaboration [88]). Here i = 0,1, 2 correspond to
the coefficients for fopand i = 3,4 for f,.

We perform the two-sample Kolmogorov-Smirnov test to calculate the P-value

associated with both sets of coefficients coming from the same unknown distribution.
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As we are looking at 5 separate coefficients, we adjust our P-value threshold using the
Bonferroni correction [12]. This means our previous threshold of & = 0.05 now
becomes « = 0.01 (note that this is the a for the K-S test, not that which defines the arc
we integrate over).

The results of these K-S tests indicate that the two sets of coefficients are consistent
with the same distribution, giving evidence that the arc fitting method does not impact
the fitting for this decay. This can be expected from the sums of squared coefficients
given in 6.1, as for each decay the sum stays much below 1 for all 10000 resamples. As
a result, the arc model, which does not overestimate the B; — K/v contribution to the
dispersive integral, will not have any practical difference in fitting. It is possible the
differences between these two models is more significant for other decays where the
start of the cut also does not coincide with the pair production threshold.

6.6 Z-Fits with 2 decays

Both B — mtfv and B; — K{v decays have the same weak flavour changing current.
The following procedure allows simultaneous fitting of form factors for both decays
using a shared unitarity constraint.

From Equation 5.6, we have

i1 = 5 3 [ delm) )% (g — py) 01 ) - 613)

Here a complete set of states has been inserted with the same quantum numbers as a
generic current, J. dy(n) is the phase space for the states, 1.

The completeness sum is positive semidefinite, and as such we may only consider a
subset of hadronic states. In this case, we consider those relating to both decays,
B; — Kfv and B — mfv, where previously we restricted ourselves to one. For a

generic susceptibility, x, and form factor, f(¢), we now have

L e L O W L O GV Dl

6.14
7o, (- I W e (6.19)

W(t) for each decay is given by
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FIGURE 6.3: Distribution of BsK coefficients for the circle and arc (a restricted arc of

the unit disc) models.
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Histograms of BsK Coefficients - Circle vs Arc Model
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FIGURE 6.4: Distribution of BsK coefficients for the circle and arc (a restricted arc of
the unit disc) models.

t9K = (Mp, £ Mg)?, t87 = (Mg + M,)? and the isospin factors are 757 = 3 and
1B = 1 have been absorbed into W (t).

We again apply the conformal transformation

_ \/tcut_t_\/tcut_to
\/tcut_t+\/tcut_t0’

z(t) (6.19)
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where we choose tg = teut — \/teut (beur — (Mp, — M)?), which makes z(#) symmetric
around 0 for the range of available f values, [0, 5 SK], for B; — Kfv (one could choose
to make it symmetric for the range of z for either decay, or any other reasonable choice

that keeps z small). We may now express Equation 6.14 as:

2

1 dz
X2 o [T B

o [ B (e, s (6:20)

271 Jiz)=1 2z

As in the single decay case, Blaschke factors, B, have been introduced to ensure
analyticity in the presence of subthreshold poles. ¢, the kinematical functions

dependent on the form factor and decay, are given by:

3
1

UBSK

1
fout — £\ *
P (o) =\ 1o ( cut > (Vieur =t + Ve = fo) (£25 — t) (6.21)

fout — tO

3
2 -5
<\/twt A teut — t§SK> (Vteut — t+ Vtcur)

1
B;K 1 1
BsK U/ fout — t (BK )4
S (tty) = e feur — 1 ter —t 6.22
¢O ( 0) 1677 <tcut — to) (\/ cut + \/ cut O) + ( )

1

x\?2 4
<\/tcut — 4\ tour — t“) (Vtcut — t+ Veur)

Brt i 3
Bm n tcut —t\* Brt 1
; =\ — — toyr — t 7 —t 2
+ (t/ tO) 4877 <tcut — tO) (\/tcut t+ \/ cut O) ( + ) (6 3)

3
/ 2 -5
(v feut — £+ Feut — tBn) (V feut — £+ Vv tcut)

1
Brt For—F\*% i
(Pgn (t; to) = ;1767 (t;;t_ tO) (\/tcut —t+ \/tcut - tO) <t§n - t) ) (624)

1
— t o 4
( feur — £+ feur — tBn> ( feur — £+ tcut)

6.6.1 Method

This method makes use of the shared unitarity constraint between the two decays. For
each resampling of our form factor data (for both decays, where the resampling is
independent for each decay), we perform a simultaneous optimization of the
coefficients for all form factor curves given the unitarity constraint.
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Practically, this extends our squared residual we wish to minimize,

B . T B . B

X2 = |:(Fcalc - Flattice) M(;)}J (Fcalc - Fluttice):| (625)
. . T R . BsK

+ |:<Fculc - Flattice) M;o}; <Fcalc - Flattice):| ’ (6-26)

where the unitarity constraint for each form factor now has contributions from both

decays:

Y (a2 4 2 a0 (2 | 2)palP) <1 (6.27)
n=0 i,j=0

The x2/(d.o.f.) for this combined fit is 2.25 with a corresponding P-value of 0.06.

6.6.2 Comparison with single decay

Figures 6.5 -6.8 show the distribution of coefficients, a;, when fitting each decay
separately and together for B — 7tfv and B; — K/{v, respectively, as well as their
Cumulative Density Functions (CDF). Here i = 0, 1,2 correspond to the coefficients for
fo and the rest are for f .

In both cases, we perform the two-sample Kolmogorov-Smirnov test to calculate the
P-value associated with both sets of coefficients coming from the same unknown
distribution. As, for each decay, we are looking at 5 separate coefficients, we adjust
our P-value threshold in the same way as in Section 6.5.

The results of these K-S tests indicate that the two sets of coefficients are consistent
with the same underlying distribution, giving evidence that the two-decay fitting
method does not impact the fitting for these decays. This can be expected from the
sums of squared coefficients given in 6.1, as each for each decay the sum never goes
above 0.5 for any of the 10000 resamples. As a result, the combined fit will not
combine to be greater than 1, and so the unitarity constraint plays no part in the fitting
procedure. It is possible this combined fit provides a stronger constraint for other

decays.
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Histograms of BPi Coefficients
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FIGURE 6.5: Distribution of BPi coefficients for single and dual (2-decay) fitting meth-
ods.
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FIGURE 6.6: CDF of BPi coefficients for single and dual (2-decay) fitting methods.
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Histograms of BsK Coefficients
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FIGURE 6.7: Distribution of BsK coefficients for single and dual (2-decay) fitting meth-
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FIGURE 6.8: CDF of BsK coefficients for single and dual (2-decay) fitting methods.
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6.7 Extracting V,;

6.71 B — mlv

For a theory-only fit, our squared residual, x* (note that this is not the same x as the

susceptibility) is given by:

- - T — -
Xlzutticg = (Fcalc - Pluttice) M:;)% (Fcalc - Flattice) (6'28)

Where L., are the values of the form factors (fo and f) calculated from the
coefficients, Fjyice are the resampled form factor values from the lattice data, and My,

is the covariance matrix of the lattice form factor values.

We may extend our x? to include the experimental data:

—

T
2 - 1 - .
X = (Fcalc - Flattice) Mcov,latt (Fcalc - Flattice) +

—

T (6.29)
(D:alc - Dexr?) M;o}),exp (D;:zlc - Dpr)
Here we are optimizing the coefficients of z-fit parametrization as well as V,;, and
from these parameters, we calculate the Differential Decay Rate and integrate
numerically over the 42 bins given by the experiment (D). Mcov,exp is the total
covariance matrix of the differential decay rate bins for the experiment. This can be
extended by adding in data from multiple experiments, each with its own

contribution to the x?2.

Combined fits of lattice and experimental data are done through "BFGS” parameter
optimization, where the function being minimised is the total x2. This is performed
using SciPy’s optimize.minimize function on the chi-squared formed using the input
form factor data and the binned DR from experiment. This produces the optimal set of
coefficients and V,;, alongside the x? value and the Hessian matrix. The covariance

matrix of the fitted parameters is given by twice the inverse Hessian matrix.

For B — mtfv, we have 4 experimental datasets that we can use to obtain V,;;,. Table 6.2
shows the V,;, x?/d.o.f. and the P-value for each experiment. This is also done for the
fit for all experimental datasets simultaneously, and for all experiments besides
BaBar2010. Figure 6.9 shows why excluding BaBar2010 leads to a better x%/d.o.f. as
the shape of the BaBar2010 differential decay rate bins is an outlier from the other
experiments. These results are consistent with those from JLQCD using a BCL

parametrization [80].
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S
N
1%
%’D’
S * S Y F
N N N QO .
Q N 1\ 1\ U
& & & & &
ol > ¥ R S S
Experiment < Y oY oY X X
Vb ( X 103) 4.08(45) 3.83(44) 3.57(39) 3.92(42) 3.91(41) 4.00(41)
)(z/d.o.f. 1.12 1.29 1.46 0.70 1.36 1.04
P-value 0.34 0.18 0.21 0.72 0.05 0.40
TABLE 6.2: The V,;, x*/d.o.f., and P-values for each experiment and the combined
fits.
les Belle2010 les Belle2013
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FIGURE 6.9: Differential decay rate from coefficients (Blue) plotted alongside experi-
mental bins (yellow/green) and differential decay rate values from lattice form factor

6.7.2 By — Klv

values (red).

For B; — K/{v, the experimental results are very limited. We use the LHCb
measurements [66] of
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B(BY — K~ ptvy)

Rpp = .
PFT B(BY = D; ptvy)

(6.30)

Which are measured over two bins, low (4% < 7GeV?) and high (§* > 7GeV?):

R = 1.66(08)(09) x 1073

. (6.31)
RYEM — 3.25(21)(18) x 1073

We can use this information alongside the branching ratio,

B(BY — D; utv,) = 2.49(12)(21) x 1072, (6.32)

and the B? lifetime, T = 1.520(5) x 1025, to extract V,; using the expression:

RYNB(BY — Dg utvy)
V| = BE= s : K 6.33
’ llb’ \/ TBgrbm(Bs N Kf]/) ( )

This is the procedure presented in the 2023 RBC/UKQCD collaboration paper for
Bs — Kfv [88].

To extract the best full range V,;;, value, we take the weighted mean of the 'low” and

"high” bin results. This weighted mean is calculated by calculating the covariance

matrix for V9% and Vf;;gh, M, and optimising 6 such that it minimises

Viow 0 _ Viow 0
B )= (2] (B ) - (5)] e

The uncertainty in this result is given by the range of V,;, at x2.. + 1, illustrated in

x*(0) =

Figure 6.10. Table 6.3 shows the low and high range values using the corresponding
experimental results, alongside the weighted mean. The final x?/d.o.f. = 1.13, which

has a corresponding p-value of 0.337.

Range Vp x 103
Low 7.51(2.12)
High 4.17(41)

Weighted Mean  3.66(31)

TABLE 6.3: V,;, calculated for low and high range experimental results from LHCb[66],
alongside the weighted mean value. Lattice form factor results used are from the
RBC/UKQCD collaboration[88].
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FIGURE 6.10: x? optimisation of the V,;, weighted mean.
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Chapter 7

Dispersive Matrix method

7.1 The Dispersive Matrix

The dispersive bounds method aims to provide a model-independent approach to
extrapolate from lattice simulations (low-recoil, high g?) form factor results into the
high-recoil (low-42) area of the allowed kinematic region using our dispersion
relations. It provides bounds without using any parametrisation or series expansion of
the form factors [24, 25, 26, 36, 47,78, 82, 84].

From Equation 5.11, our familiar dispersion relation:

1 d
ot o 3 1BEWESEIF <x 7.1
We define the inner product
1 d
@) =5-4  Ta@he), 7.2

so, using the positivity of the inner product, we may rewrite eq 7.1 as

0 < (Bopf|Bof) < x- (7.3)

It is useful to define g;(z) as

gt(z) = ———+ (7.4)



56 Chapter 7. Dispersive Matrix method

—
—f

Form Factor

FIGURE 7.1: Form factor bounds calculated using the DM method for B; — K{v using
unitarity only.

so that the inner product, (g; | B¢f) = B(t)$(t)f(t) (g:(z) picks out the value f(t)).
Consequently

1

(8tw | &) = m (7.5)
From eq 7.3 we may construct a 2x2 Gram matrix,
<<B¢f| Bof) (Bef|s) ) 76
(gt | Bof)  (8elge)

which can be used to impose a loose constraint on the form factors:

This constraint comes from the non-negativity of the matrix determinant. The bounds
from unitarity alone can be seen in Figure 7.1. This is the form of the DM method first
developed by Bourelly et al. [36] (which uses a procedure from Okubo to exploit the
analyticity of the form factors to establish bounds on their values [24, 25, 26]). Earlier
work by Ling-Fong and Pagels establish bounds for Kaon semileptonic decays using
information from the dispersion relation [23, 22].

The dispersive bounds method may impose a stricter constraint by also making use of
known form factor values, as was pioneered by Lellouch for B — /v [47]. To do this,

we construct an extended Gram matrix, M:
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(Bof [ Bopf) (Boflge) (Boflgn) --- (Boflge)

(81 Bopf)  (gtlgr)  (gelgn) -+ (8el8&u)
M= | (gnlBof) (gnlg) (8ulgn) - (gnl8u) (7.7)
(e, | Bof) (gt lg) (8 l8u) - (gt l8t)

Here t; denote the g2 values for the input lattice form factor values, and t is the value
of g for which we wish to constrain the form factor. We introduce the notation
MG i2j2) -} representing the matrix M with rows iy, i, ... and columns jy, jo, ...
removed. We will name the matrix M {(0'0)}, G.

Due to the improvement in lattice data, this method has become more popular in
recent years. This followed a paper by Di Carlo et al. [78], which was the first analysis
using the DM method using only lattice inputs (previously the susceptibilities, x, had
been calculated perturbatively), and also improved the implementation of the
kinematic constraint. The procedure and notation used in this paper is the basis of the
DM explanation described in this section. Since then, this method has been used to
obtain form factor information for many decays (see papers[82, 79, 83, 85, 89], for

example).

Due to the positivity of the inner product, matrix M is positive semi-definite. Using

this, we may write the determinant of M as

n

(Bof | Bopf)det(G) — Y (Bof)i(Bof);(—1)+det(GLIN}H) > 0 (7.8)

i,j=0

Here ty = t. From eq 7.3 we know we may replace (B¢f | B¢ f) with the susceptibility
in the above inequality and, as G is also positive semi-definite, will only increase the
left-hand side (or leave it unchanged). Doing this gives us

N

xdet(G) — Y (Bof)i(Bepf);(—1)" T det(GLE)}) >0 (7.9)
i,j=0

Rearranging and grouping powers of f; gives

7 —2B(Bof): — a(Bpf); >0, (7.10)

where



58 Chapter 7. Dispersive Matrix method

® Known form factor points
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FIGURE 7.2: Example form factor bounds calculated using the DM method for B; —
K{lv with the unitarity constraint and a set of form factor points. Here, the curves
plotted represent the top and the bottom of the region allowed by unitarity.

a = det(GIOO}) (7.11)
B= Z Bof)i(—1)/det(GHO)}) (7.12)
j=1
v = xdet(G) — Z (Bof)i(Bof);(—1)Tdet(GIE). (7.13)
ij=1

The bounds on each form factor are then given by

W - 5op) _[Him -

It can be shown that the discriminant, A, is equal to det(G)det(M{(1)}), Tt is worth
noting that det(G) > 0 (provided t and all t; are distinct) and det(M{(:D}) > 0if f(t;)

themselves satisfy unitarity.

It is worth noting that when calculating the bounds at a ¢ value coinciding with an
input form factor value, t;, matrix G becomes singular, meaning the discriminant
becomes zero, and we recover the form factor value f(¢;) exactly. Figure 7.1 shows

example bounds calculated from input form factor points.
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7.1.1 Bootstrapping Procedure

We now know how to generate bounds for a given set of form factor inputs and

susceptibilities using the dispersion relations.

In addition to this unitarity constraint, we also have a kinematical constraint on our
two form factors fy and f. . This states that the two form factors must have the same
value at t = 0: fp(0) = f1(0). This is apparent from the form factor decomposition in
equation 2.71, as in the limit of g% — 0 the two form factors must tend to the same
value to keep the matrix element finite.

As our lattice form factors are not precisely known, we resample the form factors
using a multivariate normal distribution from their covariance matrix, giving Npo,:

input data sets (I shall refer to this as the ‘outer bootstrap’).

From these form factor values we calculate det(M{(11)}), removing any bootstrap
events that don’t satisfy unitarity (for the decays in this work, this never occurred).
We then calculate the bounds at ¢t = 0 for both form factors and discard any bounds
that do not satisfy the kinematic constraint (the bounds at t = 0 do not overlap). This

leaves us with Nj,,; events.

For a given bootstrap event the form factors can take any value in the overlap region
att =0, from f}; to f;, (being the bottom and top of the overlap region, respectively).
For each event we sample Ny form factor values (uniform distribution). For this inner
bootstrap of Ny form factor values we repeat the form factor bounds procedure by
extending our matrix M, treating this value as an additional input form factor input

value, (B¢f | g1,)- Our extended matrix, M¢ for each form factor takes the form

(Bof|Bof) (Boflgy) (Boflgn) --- (Boflgn) (Bof|gn)

(gt | Bof) (gt 1gt) (8elgn) -+ (gtlge) (8t 18t)

M — (8n !.B<Pf> (8n .| gt (8n th1> (gt !8tn> (8n !gf0> 7.15)
(8t | Bof) (8. lgr) (g lgn) - (& l8n) (8t 18k)
(8o | BOf) (8t lgt)  (Slgn) (St l&u) (8t |8t)

From this we find the bounds, (., /2, ..., ZI;IO) and (f,}p, 3p, " f,\,{,o) for each form
factor at any value of t for each of the Ny inner bootstraps. As the form factor is
allowed to take any value in the overlap region, the extremal bounds at any value of ¢

are taken from the inner bootstrap events:
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FIGURE 7.3: Example form factor bounds calculated using the DM method for B; —

K¢v with the unitarity and kinematic constraints and a set of form factor points. Here,

the curves plotted represent the top and the bottom of the region allowed by unitarity.
This plot is for a single resample of form factors, and so, has no errors.

fro = min(fb, fios s fio") (7.16)
fup = max(fup, fipr s fug) (7.17)

Figure 7.3 shows an example set of form factor bounds that have been calculated

using both the unitarity and kinematic constraints.

Doing this for all Ny, bootstrap events gives us Ny, sets of upper and lower bounds
for each form factor (denoted with the subscripts up and lo, respectively) at each
chosen value of t. From this we can calculate the average values, fj,/,,(t), standard
deviations, 77,/ (t), and covariance matrix, oy, (t) (this is the covariance between

lower and upper bound values):

Nboot
flO/MP oot Z;, flo/up/ (7-18)
i
5 1 Nbuat - 2
leo/up(t) = m Zl |:flo/up(t) _flo/up(t):| ’ (7-19)
1=
1 Nboot

Proap(t) = Pupio(t) = S Y [ = Ao [F) — fu®] @20

Nboot T =1
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FIGURE 7.4: Form factor bounds calculated using the DM method over 2000 bootstrap
events for Bs — K{v with both the unitarity and kinematic constraints. Synthetic form
factor data is from the RBC/UKQCD collaboration [88]

We may combine the upper and lower bound results to calculate the average form

factor values and standard deviations:

f(t) — flo(t) —;fup(t), (721)
(szf(t) = 113 [fu}?(t) - fIO(t)}z + % [O.IZO(t) + Ulzlp(t) +plo,up(t)] . (7-22)

Figure 7.4 shows bounds calculated using this procedure using input form factor
values at 4> = 17.6 and 23.4GeV? for fy and ¢> = 17.6,20.8 and 23.4GeV? for f. over
2000 bootstrap events (again, using synthetic form factor data from the RBC/UKQCD
collaboration [88]). Here, central values and errors shown are calculated using
Equations 7.21 and 7.22.

7.2 Improving Numerical Stability

We may express the bounds in Equation 7.14 as

(B Popup(t) = ETVEL2T 723
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Numerical precision errors often arise from the formulation of the bounds above, as

terms in the discriminant can become numerically tiny.

This can be mitigated by modifying the matrix M, which can be written as

-
M=(<B4’%f?4’f> B“’(’;f ) Bof = (B()@(DF(1), (Bof)u, ... (Bof))T. (7.24)

We diagonalise the sub-matrix, G, G = UTAU, where UUT = 1 and
A = diag (Ao, ..., As) (I thank Nikolai Husung for demonstrating this [81]).

We construct the modified matrix, M':

M < <B¢f}/B¢f> Jj’\T ) 7~ ubgh 7.25)

Once again, M’ is positive semi-definite, and we may use the determinant to find the
bounds of the form factors. Collecting terms according to their dependence on fj gives

modified a, B and 7y coefficients:

- ZOMZO - zsz ’ . - ﬁ
=Ly PEL s v =BefIBef) -y (7.26)
where f; is

fi= Y uij(Bof);. (7.27)

i>0
The discriminant may now be written as

n

B?+a'y' = (BofBof) + ) S+

i<j,i=0,j=1""i"Y

[21/11'014]'0]61']?]' — u?osz — M]Zofiz . (7.28)

By re-writing in this way the largest and smallest terms have canceled out.
Additionally, by performing the sum from the smallest eigenvalues to the largest we

cancel most of the contribution from large terms before summing smaller ones.

Implementing this more numerically stable approach drastically reduces the number
of false-negative unitarity-violating bootstrap events (from around 3% of bounds
calculations to almost none). These occur as bounds calculated using a synthetic data
point at the top/bottom of the overlap range will have a zero or near-zero
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discriminant, and any numerical instability will result in a significant portion of these
coming out as negative.

7.3 Sampling Across the Overlap Region

The method outlined by Di Carlo et al. in [78] to find the extremal bounds within a
bootstrap event is to perform an inner bootstrap that randomly and uniformly
samples, Ny times, across the bound at 4> = 0 and select the maximum upper bounds
and minimum lower bound (this implementation of the kinematic constraint differs
from that first done by Lellouch [47]).

It seems logical that it is sufficient to only look at the top and bottom of the overlap
region, as one would expect that the highest/lowest synthetic data point would
correspond to the highest/lowest bounds. To test this, we may move our synthetic
data point across the overlap region and see how the bounds change for each form
factor. Figure 7.5 shows the relationship in a typical bootstrap event.

0.492 4 0.800 4
0.4901 0.7751

482 & 06751
0480 0.650 1
0.478 1

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Form factor value chosen at g% =0
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N} > o =3
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o
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Form factor value chosen at g% =0

FIGURE 7.5: Form factor bounds for By — K/v calculated at g> = 15 GeV? for an

individual bootstrap event as the synthetic data point is moved over the overlap region

at > = 0 GeV2. fy is on the left and f on the right. Here the red curve signifies the
top of the bounds, and the blue curve is the bottom.

The relationship is almost monotonic, with a slight inversion near the very top and
bottom of the bound in the example for fy [47].

The extremum does not lie at the top /bottom of the overlap region for a particular
form factor if this form factor dictates the overlap region at that point (i.e. when the
kinematical constraint is applied, the top of the overlap region is dictated by a
particular form factor and so is the bottom). In this instance, we observe the extremum
to be slightly away from the edge of the overlap. A more zoomed in plot of the fj
bounds at the bottom of the overlap region can be seen in Figure 7.6. For the decays
we are looking at it is always the case that f; dictates the bounds, as the unitarity
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FIGURE 7.6: fo bounds at g> = 15 GeV? for B; — K/v, as the synthetic data point is
moved away from the bottom of the overlap region.

constraint gives much wider bounds for f, and so the ellipse-like shape is cut on both

ends, giving the monotonic behaviour we see for f .

The difference between the extremal value and that from the top/bottom of the
overlap region is very small. This, combined with the observation that most of the
error in the final measurements comes from the variation in bootstrap events,
indicates that looking at the top /bottom of the overlap region is sufficient until lattice

measurements become much more precise.

If a more precise procedure is needed, one can instead use a minimisation algorithm

l 7”7

such as SciPy’s ”optimize.minimize_scalar”. For the “bounded” method between the
bottom and top of the overlap region, and with default tolerance of 1078, the
minimum and maximum bounds are found in 15-25 function evaluations, making it
10x more expensive than just looking at the ends of the overlap region for just this

part of the optimiser routine.

For a sample of 2000 bootstrap events in each case, we can compare the results from
our approach looking at only the top and bottom of the overlap region, to the more

precise approach using the algorithm to locate the exact minimum and maximum.

q2 GeV2 H fO ‘Top/Bot ‘ f+ ‘Top/Bot ‘ fO ‘Mm/Max f+ ( 2) ’Min/Max
0.306(71) 0.320(115) 0.305(70) 0.319(114)
10 0 0.381(42) 0.452(107) 0.381(41) 0.450(107)
15.0 0.486( 23 0. 720 64) 0.485( 22 0.719(64)

TABLE 7.1: Means and uncertainties for the approach looking at only the top and
bottom of the overlap region and when finding the minimum and maximum using
the optimiser routine.
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Table 7.1 shows that when looking at a large sample of bootstrap events, the results
when using the optimiser are indiscernible from those when looking only at the
top/bottom of the overlap region. If the method were sufficiently beneficial, for each
bootstrap the bounds obtained would be notably wider, meaning the uncertainty in
the form factor value would be consistently larger. We do not observe this for these
results. Additionally, for a fixed computational budget, many more bootstrap events
can be run if only the top and bottom are used. The precise approach may be used

when calculating final results where computation time is available.

7.4 The DM method for two decays

We can express the dispersion relation for two-decays, given in Equation 6.20, as

X > (Bof | Bof)PX + (Bpf | Bof) ™. (7.29)

We shall now consider the case where we wish to use information from both decays to
tind bounds for B; — K{v (which we will therefore refer to as the primary decay). The
primary and secondary (B — 7rtfv) decays can be interchanged trivially. It is also easy
to see that this method extends to any number of additional decays, which will all be
treated identically to the secondary decay in the following procedure.

For the primary decay, we construct a Gram matrix:

(Bof | Bof)" (Boflgn)” (Boflgn)” -+ (Boflgu)”

(g1 Bef)Y  (gilgn)”  (gelge)” -+ (gelgw)’
Mp=| (&nlBof)’ (gnlg)® (gnlg)” - (8nl&u)" (7.30)
(1, 1 Bef)Y (g, 1" (&nlge)” - (g, 18"

Here t; denote the g2 values for the input lattice form factor values, and t is the value
of g?> we wish to find the form factor bounds at. For the secondary decay, we construct
an almost identical Gram matrix which only contains form factor information from the

lattice:

(Bof | Bof)® (Boflgn)® - (Bopflge,)®

(gn |BOf)°  (gnl&n)° -+ (8nl&n)°

M; = (7.31)

(8, I BOS)® (81, 180)° -+ (81, 181,)°
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We introduce the notation M{(i1/1)(202)--} representing the matrix M with rows

i1,iz,... and columns ji, jp, ... removed. The matrix M {(00)} is then the matix G.

As Gram matrices are semi-positive definite, this restriction on the determinant sets a
lower bound imposed on the value of (B¢f | Bof)®:

n

(BoSf | Bof)® D B(1) (1) f (1) det(M{™M)  (732)
1=1
We will name this lower bound x°. This can be substituted into Equation 7.29:
X =(Bof | Bef)" + (Bof | Bof)® (7.33)
X =(Bof | Bf)" + (7.34)
X —X° =(Bof | Bof)" (7.35)

We may now perform the usual DM method to obtain the bounds for the form factor
at a given value of ¢ for our primary decay. However, now we substitute (B¢ f | Bof)"
with x — x° instead of y.

This saturates the unitarity constraint more strongly, resulting in bounds that are

narrower than for the single-decay method.

7.4.1 Comparison with single-decay

Single Decay 2 Decay Method % Improvement

Decay | 4* (GeV?) fo f+ fo f+ fo f+
BsK 0.0 0.252(105) | 0.252(105) | 0.248(101) | 0.248(101) 2.9 2.9
5.0 0.310(71) | 0.324(115) | 0.307(69) | 0.321(111) | 2.0 2.5

10.0 0.384(42) | 0.453(107) | 0.382(41) | 0.452(105) 0.4 1.9

15.0 0.487(22) | 0.719(64) | 0.486(22) | 0.720(63) | —1.8 0.9

BPi 0.0 0.148(153) | 0.148(153) | 0.148(145) | 0.148(145) 5.0 5.0
5.0 0.210(105) | 0.253(146) | 0.210(100) | 0.253(140) | 4.9 4.2

10.0 0.285(62) | 0.414(124) | 0.286(59) | 0.415(120) | 4.5 3.3

15.0 0.384(30) | 0.696(89) | 0.385(29) | 0.697(88) 1.9 1.5

TABLE 7.2: Comparison of the single decay and 2-decay DM methods for 2000 inde-

pendent bootstrap events. The "% Improvement” is defined as the amount the stan-

dard deviation has decreased using the 2 Decay method compared to the single decay
result.

Table 7.2 shows the results for both decays using the single decay and 2-decay
methods at several values of g%, where all are using 2000 bootstrap events. Generally,

both decays showed slight improvements to their errors, around 2% for B; — K{v and
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around 4% for B — mtfv. It is possible for other decays, where the unitarity condition
is saturated more strongly, this method would provide a more substantial

improvement to the results.

7.5 Form Factor Curves from the DM method

The Z-fit method has a very convenient feature in that the results are a set of
coefficients describing a polynomial. As such, for a given choice of coefficients, it is

trivial to evaluate the form factor at any desired value of ¢°.

This is very useful for generating phenomenological results, as we are required to

integrate the form factors (or functions containing them) across 42 bins.

The DM method makes it easy to find form factor bounds at any g2, but it is not so
obvious how to exploit the bounds over continuous ranges of g> when, for example,
(partially) integrating the differential decay rate.

One method of comparing DM results with binned experimental results involves
taking the midpoint of each g bin and performing the dispersive matrix method to
find a distribution of form factors at each ¢ [82]. For each bin, from 43 to 43, a value of

Vip can be estimated using

2
%o ,dl G} (q> —mj)" E:— M2
/ dq dﬂ] ’ Vub ’ ( ‘71 / q 247.(3 q4M2 X

(14 3% ) o 23 - s 15

328 - o )

2.2
21117
9"=""3

This method is simple and does allow for comparison between theory and
experiment; however, this “midpoint method” suffers with substantial systematic
errors, as it assumes that the form factor at the centre of the bin is the average value
across it. Furthermore, even with results generated at many points across each bin, it

is not clear how one would account for errors in and correlations between them.

We wish to find a method to generate form factor curves using the DM method that
avoids such problems, and instead captures the shape of the form factor curves across

the entire kinematic range.
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7.5.1 Method

One assumption of the DM method is that the form factor is equally probable
anywhere inside the upper and lower bounds given by our unitarity constraint. When
considering an infinite number of form factor curves across the 4> spectrum passing
through the resampled form factor points, the bounds represent the maximum and
minimum values the curves pass through if they obey unitarity. Our assumption that
all form factor values within the bounds are equally likely means that the density of

curves is uniform at every value of ¢>.

Form Factor

o
L=
xS
=]

¢

FIGURE 7.7: Example form factor inputs from Lattice data, and their resulting bounds
at g> = 0GeV?2.

The first step is to find the bounds at 4> = 0 and implement the kinematic constraint,
following the method described in Section 7.3 [84]. We separately determine the
bounds for f; and fy at g2 = 0 and then randomly and uniformly select a value in the
intersection of these bounds as the common f (0) = fo(0) (as shown in Figure 7.7).
From here on, both form factors are treated in the same way, and our discussion will

apply for either one.

With the point at g2 = 0 chosen, we have constrained our attention to all form factor
curves passing through this point. The extra point is added as new input in the
dispersive matrix, allowing us to determine a new bound at 4> = 6, where ¢ is small.
We randomly choose a value satisfying the bound, add the g = ¢ point to the
dispersive matrix and compute bounds at g> = 26 (this is visualised in Figures 22-2?).
We repeat this process to step across the entire physical 4? region. We repeat this,

constructing Ninner CUIrvVes.

In the limits 71;,,r — 00, & — 0, we will construct every form factor curve allowed by

unitarity that passes through our resampled input points (and satisfies the kinematic
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q 7
(C) Bounds at q2 = ¢ are recalculated us- (D) Bounds at qz = 26 are recalculated
ing the point selected at > = 0 using the points selected at g = 0 and &

FIGURE 7.8: Step by step visualisation of how form factor curves are generated.

constraint). In practice, we keep ¢ finite and compute an interpolating function
through all the generated points. We must therefore check that § can be made small
enough for it not to affect phenomenological quantities computed using the generated
curves (and check for independence of the interpolation method).

This method to generate curves becomes incredibly expensive as the value of &
decreases, as the Dispersive Matrix becomes very large, and more bounds are
calculated. Sections 7.5.2 and 7.5.3 show two different approaches to tackle this
problem.

Figure 7.9 shows 100 curves generated for a single resample of JLQCD B — mtfv
synthetic data points [80], and Figure 7.10 shows the DM method bounds overlaid,

showing that these match the envelope of the curves, as expected.
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Form Factor curves through a single set of resampled inputs

® Inputfy
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FIGURE 7.9: 100 curves generated for a single resample of JLQCD B — 7tfv synthetic
data points [80].

7.5.2 Generating curves across bins

The described method allows us to generate form factor curves across the entire g2
spectrum. However, for phenomenological values, we integrate over bins and, it is
only necessary to generate curves over individual bins. This is advantageous as this
decreased range means we can use a greater number of points per bin and increase the

number of curves we can generate for a fixed computational cost.

The process is identical to that outlined before, however the first step is to 7% = tiower,

where t},,,, is the start of the bin, and we end after 1,15 at g> = tupper-

To ensure that this method is valid, we test if these segments of form factor curves are
equivalent when starting at ¢;,,,., compared to reaching ¢y, after a series of small
steps. Figure 7.11 shows the distribution of curves generated for a single resample of
input lattice data for fp and f,. Because the kinematic constraint almost always
influences f and not fy, we observe a uniform distribution for fj only. For f., the
distribution is not uniform, so if we wish to compare two distributions, we instead

perform a two-sample Kolmogorov-Smirnov test [49].

The tests indicate that the distributions of curves through a given g° are the same in
both cases, indicating that the segments of curves over these ranges are equivalent to

those generated over the whole kinematic region.
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Form Factor curves through a single set of resampled inputs
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FIGURE 7.10: 100 curves generated for a single resample of JLQCD B — 7tfv synthetic
data points [80]. The DM method bounds for these points are also plotted.

7.5.3 ’'Marching’ across the full g2 range

When generating form factor curves over the full 4> range, the size and number of
dispersive matrices increases, more so as § decreases. However, the upper and lower
bounds for adding new points to a curve become closer and closer and effectively
coalesce as more points are added. This is because almost all freedom in the curve is
exhausted after sufficiently many points have been chosen. We find that we can
remove earlier points from the dispersive matrix provided we check that the width of
the bound for a new point remains close enough to zero. This speeds up the
generation of curves; the dispersive matrix does not keep growing in size and we
‘march’ across the range of 2. In practice, a threshold is set below which the width of
the bound is considered to be zero. If the width is above the threshold, then we do not
drop an earlier point before computing the next set of bounds. We check that we can

make the threshold small enough for it not to affect phenomenological results.

7.5.4 Tests

This section contains various tests to check the validity of the method. As the method
is identical for both decays, B — rtfv and Bs — K{v, tests are only performed on the

former.
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FIGURE 7.11: Comparing the distribution of form factor curves at 4> = 10GeV?, when
using intermediate points (at > = 1,2, ...,9 GeV?) and when jumping directly.

7.5.4.1 Direction of curve generation

To convince ourselves that this method is valid, we can check if it is consistent. One
test is to see if the curves created are equivalent if they are generated from low-to-high
g% or high-to-low 42,

One assumption of the Dispersive Matrix method is that a single set of bounds gives
the minimum and maximum allowed form factor values, and all values within these
bounds are equally probable in the absence of other information.

For a distribution of curves through a chosen g2, we can test that this distribution
aligns with our assumption.
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FIGURE 7.12: Comparison of the cross-section of fy curves at g> = 10GeV?, when
generated forwards and backwards. For each direction, we have the K-S test p-value
associated to an underlying uniform distribution.

Figure 7.12 shows that the distribution of curves for f, when generated forwards
(starting at g’ = 0GeV?) and backwards (starting at q> = 23.4GeV?) are consistent with
the same uniform distribution. To generate curves forwards and backwards in the
same way, we ignore the kinematic constraint. As in almost all cases this constraint
does not impact fy, we use this form factor only to assess the impact of the direction of
generation. The results of the K-S test provide evidence that the direction of curve
generation does not influence the distribution of curves generated, as both are

consistent with the uniform distribution.

7.5.4.2 Dependence on

Figure 7.13 shows how I'/|V,;|?, the calculated decay rate with the CKM factor
removed, changes as ¢ is varied. We see stability as J is decreased and that the effects
of non-zero J are much smaller than the variations allowed by unitarity.

7.5.4.3 Dependence on interpolation method

For a sufficiently small value of J, the points generated should be close enough
together that the interpolation method chosen should not impact the curves

meaningfully.
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FIGURE 7.13: Calculation of T'|V,;| 2 using 500 form factor curves for various values
of 6. The plotted bars indicate the median, 16th and 84th percentile values.
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FIGURE 7.14: Calculation of I'|V,,;,| =2 using 500 form factor curves for various interpo-
lation methods. The plotted bars indicate the median, 16th and 84th percentile values.

We can see from figure 7.14 that the effect of our choice of interpolation method does
not have an appreciable effect on the results.

7.5.5 Marching parameters

In the implementation of the marching method, we have a number of parameters that
influence the degree to which previous points are excluded. The three parameters are
as follows:

¢ ”"marching threshold” - This parameter is used to specify the maximum width
threshold we consider to be effectively zero. If the width calculated is below this
threshold, then the next bounds calculated (at the next integer multiple of §) will
use the same number of input points as in this calculation. If the width is found
to be above this threshold, then the process continues as normal, but the next
bounds calculation will have an additional input point (no input point will be
removed).



7.5.  Form Factor Curves from the DM method 75

¢ “warning threshold” - In this method, we dynamically adjust the number of
points being used by monitoring the width of the bounds. We have a threshold
width that we set that tells us if the bounds become too large. This indicates to
us that we have started the marching method, but we have not properly
managed the number of points used in our calculation, resulting in the newly
calculated bound width to become too large. If this warning triggers, the curve

we are generating must not be used.

¢ ”"marching delay” - This is the number of times the bounds calculation must
satisfy the marching threshold condition before the marching procedure begins.
This should not impact the creation of curves, but practically it can help make

sure bounds stay below our warning threshold.

There are a few ways we can test the impact of these parameters, and if they are found
to be incorrectly set, they can be changed until they are found to not impact the

generation of curves.

The first is to compare the distribution of curves generated at various values of 42,
when generated forwards and backwards. If these parameters are poorly chosen, then
the generation of curves will deviate away from those allowed by unitarity the further
along the process we are. This would lead to the distribution of curves at various 4>

not being the same for each direction of curve generation.

The second method is to use the curves to calculate a phenomenological value, such as
V.., while varying the parameters. These parameters are then varied and their impact

on V,,;, results is measured.

7.5.5.1 Marching threshold

To assess the impact of this parameter, we vary our marching threshold and, using
experimental data, calculate the decay rate (without the CKM matrix element factor)

for 500 curves over many resamples of our lattice data.

Figure 7.15 shows that the impact of the marching threshold, over the range of values

chosen, does not have a significant impact on the decay rate.

7.5.5.2 Warning threshold and marching delay

The “warning threshold” parameter does not impact the generation of curves, but
instead acts as an indicator that the marching method impacted curve generation. We
would also know that this has occurred if the distribution of curves differs from

forward /backward generation.
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FIGURE 7.15: Dependence of T'|V,;|~2 on marching threshold, using 500 curves per
threshold.

Similarly, as “marching delay” serves only a practical purpose, variation of this

parameter is not necessary as the “warning threshold” warning is not triggered.

7.5.6 Number of curves per resample

When generating curves, a choice needs to be made on how many curves are
generated per resample of our input form factor values. In the limit of an infinite
number of resamples, the results generated using the curves will be independent of
this choice. In reality, with a fixed amount of computation, we should ensure this
choice does not meaningfully affect our results.

One would expect that the best choice would be a single curve generated per
resample, however if more curves per resample yields the same results then more
curves would be preferable as this cuts down on the overhead of resampling more
often (and also from initialization of parallel processing tasks). In reality, the process
of generating the curves is much more expensive than all other parts of the process, so
this benefit is very minimal.

Figure 7.16 shows how the full range T'|V, ;| =2 changes as the number of curves per
resample is varied. For each, the total number of curves generated is fixed (1760

curves), and a delta value of 0.776 was used.

It can be seen from the graph that, as expected, any effect of the choice is much smaller
than the combined effect of all other sources of error (with an extreme enough number
of curves per resample, meaning very few resamples, this will not stay true).
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FIGURE 7.16: Effect of varying the number of curves per resample on T'|V,;|~2 for
B — mlv (left) and Bs — K{v (right)

7.5.7 Extraction of V,;, for DM Curves

Unlike the fitting procedure for Z-fits (namely for B — /v in this work), the
generation of form factor curves using the DM framework cannot be done for lattice
and experimental data simultaneously. Hence, we take a set of curve pairs (for f, and
fo) generated using lattice data and subsequently combine it with experimental data
to extract V.

In the case of B — /v, we have 4 experimental datasets, each giving binned
differential decay rate measurements and associated covariance matrices, from Belle
and BaBar [64, 68, 62, 65].

For a set of curves generated for this decay, we can extract a V;;;, for each curve pair, c,
by finding the 62 = |V, ;| that minimises

xe(0)=Y" (& - GZES)T (o (& - 9258) ) (7.36)

e

Here A, is a vector of experimental partial branching fractions for a set of 42 bins for
experiment e, while 5? are the corresponding quantities, without the CKM factor,

computed using the curve pair c. C, is the experimental covariance matrix.

Table 7.3 gives the average V,,, values for these experimental datasets over a sample of
1760 curves generated for B — mt/v.

As these curves were generated without experimental data, the shape of A? often does
not align well with the differential decay rate measurements and the x?/DoF for

many of these curves is very large, shown in Figure 7.17.

Curves with a large x? fit the experimental differential decay rate distribution poorly,
and so we would like to account for this. This is done by using the Bayesian
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Experiment Vi (x103)
Belle 2010 3.70(65)
Belle 2013 3.84(61)
BaBar 2012 3.66(49)
BaBar 2010 3.70(56)
All experiments excl. BaBar 2010 | 3.71(56)
All experiments 3.73(59)

TABLE 7.3: V,,;, results for B — 7tfv from different experiments.

Vb for x2/DoF Threshold: None
Belle2010 Belle2013

50 1

40

X2/DoF

All excl BaBar2010

Vo X 1073

FIGURE 7.17: V,,; vs x2/DOoF for all curves.

viewpoint, where the result for each curve pair is weighted by a likelihood, e X2,
The posterior for a V,;, value 6 is

xp [— 2
0(8) = Yexp [—xz(0)/2]

== ) (7.37)
Ye Jo, exp[—x2(0)/2]do
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and from this distribution which we can evaluate the expectation value for some

function g of 6 according to

01
§= <(0)p(6)de. (7.38)

fo
In particular, we can evaluate the mean and variance of 6 to provide an estimated
|Viip|. We are assuming a uniform prior for 6 in the range [0y, 61]. We checked that
several choices of the range did not change our results within the accuracy quoted.
Table 7.4 and figure 7.19 show results for |V,;| for different combinations of
experimental inputs. The table also shows the compatibility of our results with those
obtained by JLQCD [80] from a BCL Z-fit to the same inputs. The variation from
resampling the input form factor values when computing phenomenological results is
bigger than the variation seen by changing #inner. Hence, we performed the above
analysis by generating one curve for each resample and increasing the number of

resamplings. We used 1760 form-factor curve pairs.

This is one demonstration of a method to generate form factor curves as functions of
q* which satisfy dispersive unitarity constraints and can easily be used in
phenomenology, maintaining the DM matrix method’s feature that no functional form

needs to be imposed in advance.

Figure 7.18 shows the differential decay rate from all pairs of curves (fp and f1) with
opacity scaling with the relative likelihood (the likelihood relative to the maximum
likelihood of all the curves for that experimental dataset).

Experiment V,p (x10%) DM Curves | V,; (x103%) BCL z-fit
Belle 2010 4.05(43) 4.10(45)
Belle 2013 4.14(52) 3.91(45)
BaBar 2010 3.55(39) 3.58(41)
BaBar 2012 3.97(48) 4.04(43)
All experiments 3.88(38) 3.93(41)
All excl. BaBar 2010 | 4.08(45) 4.01(42)

TABLE 7.4: V,;, results for B — mfv for different experimental datasets using the
posterior distribution[62, 65, 63, 68].

For B; — K{v, we undergo the same procedure as for the Z-fit approach in Section
6.7.2. Our weighted V,;, value is 3.74(43) x 1073, with x* = 0.042 (this is compatible
with the RBC/UKQCD result of 3.66(31)). Figure 7.20 shows how x? varies with V,j,.
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FIGURE 7.18: Differential decay rate of all curve pairs, with opacity scaling with the
relative likelihood, alongside binned experimental results.
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FIGURE 7.19: Bayesian posterior distributions of V,; for various experimental
datasets.
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FIGURE 7.20: x? minimisation to extract V,;, for By — K{v over a sample of 1760
curves, using the LHCb experimental results [76].
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Phenomenology

Two methods in this work, the Z-fit method and the DM curve method, allow for the
generation of form factor curves across the kinematic range using unitarity and lattice
QCD results. The motivation for doing so is to allow us to measure phenomenological
values. This section shows the results using both of these methods, for both decays,
for quantities introduced in Section 2.8: the differential decay rate, forward-backward

asymmetry, R ratio, and the 'improved’ R ratio.

8.1 Comparison with 2015 Results

To test the implementation of phenomenological equations, we test to see if the correct
curves and results are recovered when using the central BCL coefficients from the
RBC/UKQCD collaboration’s 2015 paper [72]. The various results are in Appendix A.

We can see from Figures A.1-A.5 the central curves from the previous phenomenology

plots have been successfully refitted.

The Z-fit column in Table A.1 shows the reconstructed values from the BCL
coefficients. Some values differ by a small amount, however this can most likely be
attributed to updated mass/constant values and any discrepancy between values
calculated using the central form factor coefficient values only, and the mean of values

generated using the full distribution of coefficients.

8.2 Z-fit and DM Curve Results

Table 8.1 gives a summary of key phenomenological quantities, using either the Z-fit
approach or the DM curves method, and Figures 8.1-8.12 compare the q> dependence
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of these quantities. For all the phenomenological results in this section, the DM curves
are not weighted according to experimental results.

These plots consistently show a much wider spread of values for the DM curves
method compared to the Z-fit approach. A possible explanation to this is the
fundamental difference in the fitting procedure for each of these methods. For a given
resample of the synthetic form factor points, the Z-fit approach finds the best fitting
set of coefficients, corresponding to a single, most likely, pair of form factor curves. In
contrast, for the same synthetic form factor points, the DM curves method can
generate curves that may take any form, provided they obey unitarity constraint.

Another possible explanation is the truncation for the z-series. For the Z-fit method
used in this work, we are forced to truncate the z-expansion due to the number of
degrees of freedom of the data generated on the lattice. This truncation limits the
shape of the form factor curves, which may artificially reduce the spread in the results
we see in this section. The 2023 RBC/UKQCD paper for B; — K{v uses a Bayesian
titting approach, which allows a larger number of coefficients to be used in the

Z-fits [88]. The phenomenological plots shown in this paper more closely resemble
those from the DM curves method, suggesting truncation of the z-expansion may play
a significant role in the results of this method.

Quantity Z-fit DM Curves
T(B — tuv)/ |V |? 591(1.22)ps~ !  5.38(2.38)ps !
T(B — mtv)/|Vip|? 419(0.75)ps~ ! 3.94(1.02)ps !
T(Bs — Kuv)/|V|? 3.68(0.70)ps~!  6.26(2. 29)ps
T(Bs — Ktv) /| Vi ? 3.54(0.45)ps 1 4.50(86)ps
R 0.71(03) 0.80(16)
RY¥ 0.97(07) 0.77(15)

I Trox g2 ABT (02) /| V2 0.028(6)ps!  0.025(22)ps !
f‘?max dg? AB ™ (q2) /|[Vip|?  1.09(19)ps ™! 1.02(29)ps !
¥ Trox g2 AR KV (02 /1y 2 0.0103(36) ps—! 0.0403(248)ps !
I qmax A AR5 (g2 / [Vip > 0.95(13)ps 1.27(27)ps

)
)

AL 0.0048(02) 0.0040(21)
A 0.262(04) 0.256(13)
Ay, 0.0027(04) 0.0059(20)
AnoK 0.2671(25) 0.2823(90)

TABLE 8.1: Various phenomenological quantities calculated using the Z-fit method
(with 10000 sets of coefficients) and the DM curves method (1760 curve pairs).
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FIGURE 8.1: Differential decay rate divided by |V,,|* for B — muv, using Z-fit (left)
and DM curve (right) methods.
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FIGURE 8.2: Differential decay rate divided by |V,;|* for Bs — Kuvy, using Z-fit (left)
and DM curve (right) methods.
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FIGURE 8.3: Differential decay rate divided by |V,;,|? for B — mtv; using Z-fit (left)
and DM curve (right) methods.
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FIGURE 8.5: Forward-backward asymmetry for B — 7muv, using Z-fit (left) and DM
curve (right) methods.
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FIGURE 8.6: Forward-backward asymmetry for B; — Kpuv, using Z-fit (left) and DM
curve (right) methods.
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FIGURE 8.7: Forward-backward asymmetry for B — mtv, using Z-fit (left) and DM
curve (right) methods.
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FIGURE 8.8: Forward-backward asymmetry for B — Ktv; using Z-fit (left) and DM
curve (right) methods.
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FIGURE 8.9: Normalized forward-backward asymmetry for B — muv, using Z-fit
(left) and DM curve (right) methods.
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FIGURE 8.10: Normalized forward-backward asymmetry for B; — Kuv, using Z-fit
(left) and DM curve (right) methods.
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FIGURE 8.11: Normalized forward-backward asymmetry for B — mtv; using Z-fit
(left) and DM curve (right) methods.
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Chapter 9

Conclusions

This work has seen similar techniques used to try and improve both the Z-fit and
dispersive matrix methods, with mixed success. One example of this is the inclusion

of information from both decays to saturate the unitarity constraint more fully.

In the case of Z-fits, the unitarity constraint acts as a condition on the fitted
coefficients, which never came close to affecting the fitting procedure, and hence did
not change the results of the fit. This was seen from the results of the two-sample
Kolmogorov-Smirnov test, which determined there was insufficient evidence that the
sets of coefficients obtained using the single-decay and two-decay method were
drawn from different underlying distributions. This was expected, as the unitarity
constraint does not play a significant role in the fitting for B — /v and B; — K/v.

On the other hand, as the unitarity constraint plays a core role in the DM method,
directly determining the limits of the bounds (as the lower and upper bounds are the
threshold, beyond which the unitarity constraint is no longer fulfilled), we would
expect improvement to the bounds from any extra contribution to the unitarity
constraint. For this method, the two-decay variation saw slight improvements to the
width of the bounds (around 2-4%). It is possible that for both Z-fits and the DM
method, combining results for several decays would be far more significant for a
different choice of decays.

For similar reasons to the two-decay method, the use of alternative polynomials for
Bs — K{v to more accurately implement the unitarity constraint (as unlike for

B — mlv, the pair production threshold does not align with the start of the cut) did
not see any measurable difference in the Z-fit coefficients. This was tested using the
two-sample Kolmogorov-Smirnov test.

When implementing a kinematic constraint on form factors, the application of the DM
method in previous literature [78, 84] handled the sampling over the overlap region
fairly exhaustively, where many points were chosen over this region and the bounds
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at some value of g% were calculated for each point, keeping only the most extreme
bounds. A faster method of finding these extremal bounds was discussed in Section
7.3, where a minimisation procedure is used. It was then found that for a fixed
computational budget, it was more efficient to use the very top and bottom points in
the overlap region, as the difference between the bounds found was so small that the
results obtained over the many resamples of the lattice form factor data were
indistinguishable from those using the optimiser (this is true for the data at present,
however in the limit of more and more precise data and more computation, it may

prove beneficial to find the true extremal bounds using a minimisation algorithm).

Section 7.5 presents a novel approach to using the DM framework to generate a family
of form factor curves consistent with unitarity. This method avoids the
parametrization of the Z-fit approach, and any issues from truncating the z-expansion.

The computational cost of the curves method is greatly reduced using two different
approaches. Section 7.5.2 introduces the idea of generating curves only across
individual bins, as these bins are the regions over which we need to integrate our
curves over to compare to experimental data. Generating the curves over a much
smaller range of g2 prevents the Gram matrices becoming too large over subsequent
steps. This method was shown to generate curves consistent with those generated
over the full range.

The second approach, which was used for all the phenomenological results, is to only
include a certain number of the most recent points on the curve in the generation of
the next point. This also limits how large the Gram matrices grow, while also allowing
for curves to be generated over the full range of g2. This method had several
systematic variables which were investigated to show, at the scale of the values
chosen, that they did not change the curves generated. Although slower in most cases
than generation of curves over individual bins, this approach results in curves which

can then be used for comparison with any experimental data bins.

The phenomenological values for the two different methods were largely similar for
B — mtlv, however they differed (sometimes fairly significantly) for B; — K{v. The
2023 paper by the RBC/UKQCD collaboration [88] for B; — K{v using a Bayesian
titting method, allowing for a larger number of Z-fit coefficients (not limited by the
number of degrees of freedom of the lattice simulation results), shows results using
the choice of 2 points for f; and 3 for f give poor agreement compared to other
choices. This could explain why the Z-fit results for B — v gives better agreement,

as we are able to use 3 points for both form factors.

The graphs for the differential decay rate and forward-backward asymmetry highlight
the greater spread of curves generated using the DM curves method. The
RBC/UKQCD phenomenological plots, that use a much greater number of coefficients
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(5 for fo and 5 for f ), more closely resemble those from the DM method, suggesting
the discrepancy may come from the truncation of the z-expansion.

Where we see good agreement between the two methods for both decays is with the
extraction of the CKM matrix element, V,,;, as can be seen in Table 9.1. In this table, we
see the mean and error of V,;, extracted using the Z-Fit method and the DM curve
method (using the posterior distribution). The values obtained are very close for both
methods, and the errors are of similar size.

Experiment Vi (x103) - Z-Fit | V,;, (x10%) - DM Curves
Belle 2010 4.08(45) 4.05(43)
Belle 2013 3.83(44) 4.14(52)
BaBar 2010 3.57(39) 3.55(39)
BaBar 2012 3.92(42) 3.97(48)
All experiments 3.91(41) 3.88(38)
All excl. BaBar 2010 | 4.00(41) 4.08(45)
LHCb (Bs — K/v) 3.66(31) 3.74(43)

TABLE 9.1: V,;, results for B — mfv and B; — K{v for different experimental datasets
using Z-Fit and DM Curves.

To continue the research presented, there are several options. Firstly, one could
expand the analysis to numerous other sources of lattice data, and combine the results
to improve precision. This work chose data from JLQCD and RBC/UKQCD and used
them to compare proposed improvements to each method, as well as comparing the
results of the two methods.

Secondly, this work focusses on two semi-leptonic pseudoscalar to pseudoscalar
decays, B — mfv and Bs — K{v. There are many other decays of interest with
different (and a different number of) form factors that may see improvement from the
multiple-decay methods introduced.

Another potential direction of research would be to develop a method of generating
the DM curves using lattice and experimental data simultaneously, instead of relying
on likelihood weighting.
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Reconstruction of
phenomenological quantities
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FIGURE A.1: Differential decay rate divided by |V,,;| for B; — Kuv, and B — muv,
from the 2015 paper (left) and central value curve reconstruction (right).
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FIGURE A.5: Normalized forward-backward asymmetry for B — mtv; and Bs —
Ktv; from the 2015 paper (left) and central value curve reconstruction (right).

Quantity 2015 Result Reconstructed Central Value
T(B — mtuv)/ |V |? 6.2(2.5)ps ! 6.20ps !
(B — rttv)/ |V |? 43(1.2)ps~! 4.27ps~1
[(Bs — Kuv) /| Vi |? 455(1.08)ps~!  4.55ps!
[(Bs — Ktv)/ |V |? 3.52(0.60)ps~!  3.51ps~!
RY* 0.69(19) 0.69
R 0.77(12) 0.77
2
S AR AL (?) /| Vip2 0.028(19)ps™  0.028ps~!
)
A AR () / [Vip* 1.08(35)ps™'  1.07ps!
2
[T dg? A7 M () / Vi 2 0.0175(87) ps™! 0.0179ps ™
H
2
e dg? Agy "™ (¢7)/ Vi ? 0.93(18)ps™ 0.93ps !
Ay ™ 0.0044(13) 0.0045
Ap ™ 0.252(12) 0.251
Apy 0.0039(11) 0.0039
AnKT 0.2650(79) 0.2645

TABLE A.1: Comparison of RBC/UKQCD B — rrfv phenomenological quantities and
the reconstructed values from the central values of the corresponding BCL coefficients.
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Appendix B

Derivation of the Outer Function

The susceptibilities are defined from derivatives of I, leading to subtracted dispersion

relations:

xo+ (Q%) = aHO* = / IT?OQ;(Z) (B.1)
B 2 :18 Hl— _ d ImHl (t) 5
(@)= 5= wh e o2

where we denote the outgoing lepton-pair momentum, 42, as the Mandelstam variable
t for clarity.

[,(Q%) = i [ d*xe™ (0], (x)11(0)[0) (B3)
. d*k ~
=i/ *4<ow<q>1:<k>|o> (B.4)
d3p] 1
ImT1,,(Q%) = 5 / 2l | Gz @D K)10) (B.5)

(27)86W (g — pr)o™ (k — pr)

1 [ 6(go—wp — _
- 8(2n)2/ = w:qu ) | O[1Bo (1) K(p2)) 5 (g — pr)dpadpo
(B.6)

Using [ % = [d*p§(p* — m*)®(py) on momentum p; gives:
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4 3 ~
s [ 255 — M0 p10)5 (a0 — pio — w0 (7 — )l O1T1B. (K (p2))

4(2m)? wg
(B.7)
1 43 ~ _
= s | w8 — @k = = M)O0 — w07 B g, p2)K(p)) P (B3)

Using the Lorentz-invariance, we may choose the centre of mass frame. We switch to

spherical coordinates

cos(¢)sin(6)
P2 =p | sin(¢)sin(0) (B.9)
cos(0)
I Ty = —— /qodwK p (g5 — 2qowxk + m* — M*)®(qg — wi) X (B.10)
M 4(2m)2 Jo 0

|(017|Bs(q0, B, wi)K(qo, B, wk)) [*depdcos(6)

p 1 27 " . . )
:8<2n>2qo/1d“’5<9> /O de| (0[] |Bs(q0, F, wic)K (g0, P, )| (B.11)

Where wg = ‘72—“ + mzz_qéwz. We substitute 2.71 into the above, where

WK
pcgs(qb)sz:n((?) (B.12)
psin(¢)sin(6)
pcos(6)

_ (40
qg= (6) (B.13)
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8(25)2%/11 dcos(0) /OzndfP [2f+ (4%) (Py - Zﬂ%) + fo (7) qu_zmzqy] (B.14)
[2f+ (4%) <Pv — qu%) + fo (7%) qu_zmzqv]

—p/ldcos(G)/an 41f, 2 C K (an +gupe) + K (B.15)
_8(27_[)2% . 0 PA1f+1" | pubv a0 Puqv — qupPv 5]% Tuqv .

2 2

M? — m?)? M? —m w
+ |f0’2 [(114)] quqv + f+ fo [qz (py% + qupv — qf(z%qv))]

0 0
WK 2 :|

Wi
v) + —Xg,.q, (B.16)
. (Pudv) . quq

1 27
— (2;)2%/101(:05(6)/0 d¢4|f+|2 [PMPV—Z

M2 — m?)? M? — m? w
+ | fol? [(qé)] Tudv + 2f+ fo T (PMV - qf%qv)

=0

We look at the integrand as y, v varies (only components with non-zero contribution):

i, v | Integrand

2 .2)2
0,0 | 4|f[? (wf — wi) + |fof
L1 | 4] 22 cos?() sin®(6)
2,2 | 4[f, ['p?sin?(9) sin?(6)
3,3 | 4|f+ p? cos?(0)

Integrating:

uv | Integrand

2_ .22
0,0 | 47| fol2 M
1,1 4|f+|§P§7T§
2,2 4|f+|P7T§2
3,3 | 4, Ppand

Therefore

4mp? v (M? —m?)?
ImIl, = P <4 P +47T]f0]2qu ( ) ) (B.17)

8(27'()2[]0 q(z)

1 v v g
= 2 (@' = )1 (7) + L () (B.18)

3
ImI17(Q?) = 6Zqolmz (B.19)

ImHL(QZ) — p (Mz _m2)2

2 B.20
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m?—M?

Using w2 — p2 = m? and wx = L + , we have
gWk—P 2 240
2 212 %
go m-—M 2
_ ([0 _ B.21
b ([2+ = } m> (B.21)

1
2 2 2\2 2 2\ 2
B, (M) mE M
= <40 i 5 (B.22)
1
t—t F—t_)\2
= <( +4)l$‘ )) (B.23)
We define z (t; tg) as
Z(t,‘to) — \/tcut_t_\/tcut_tO (324)

B \/tcut_t+\/tcut_t0’

where t.; = (M + m)? is the pair production threshold and

to = teut — \/teut (teur — (M — m)?) is a common choice to make z(t) symmetric around
0 for the range of available ¢ values. This mapping takes the 4> complex plane onto a

unit disc. Therefore,

dz _ .
At St —t (Ve — E+ Vet — fo)

dz \/ tcut — t() (B 25)

We define the following functions:

[SI[e%}

1 (-t -t

W, (t) = p— < hs T ) (B.26)
_ 1 (t=t)(E—t))?

Wo(t) = %(t#—) < it > (B.27)

Here we have introduced f,. = M £ m. We define our outer function, ¢; (; to):

Wi(t) ]2
|dz (t;to) /dt| x7 (92) (t — Q2)"

¢i (t;to) = [ (B.28)

We make the common choice, Q* = 0. ¢, (t; to) and ¢y (£; ) are then given by:
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Y — W (t) >
¢ (ttg) = [\dz(t;to) /dt!)(1t3]

1 tcut —t %
=V 28 o 1) Ve = Viaw =) (£ = 1)
- cu

(x/tcut—t+\/tcut_t,> (Ve —F+ Vo)

o Wo(t) :
Po(tito) = [|dz(t; to) /df|Xo+t2]

1 tcut —t %
e 167TX0+ tcut — tO (\/tcut —t + \/tcut — to) (t+ — t)

1
2 —4
(\/tcut —t+ \/tcut - t7> ’ (\/tcut —t+ \% tcut)

=G

(S}

ST

(B.29)

(B.30)

(B.31)

(B.32)
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