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A study of B → πℓν and Bs → Kℓν form factors using dispersive constraints

by Callum Radley-Scott

This thesis presents several approaches to improve the extrapolation of form factors for

the exclusive semileptonic decays B → πℓν and Bs → Kℓν. These decays are of interest

for testing the predictions of the Standard Model.

These form factors cannot be calculated perturbatively, and so we rely on techniques

such as Lattice QCD (Quantum Chromodynamics) to make theoretical predictions.

For these heavy-to-light decays, Lattice QCD gives form factor information in a lim-

ited region of phase space and the results must be extrapolated to cover the entire

kinematically-allowed region. Model-independent approaches based on dispersion re-

lations are now widely used. The most common is Z-fits, but recently interest has been

revived in what will here be called the Dispersive matrix (DM) approach.

The z-fit approach parametrizes the dispersion relations for these decays and uses lat-

tice information to find optimal coefficients for the resulting curves. Approaches to im-

proving the precision of this technique are explored, such as an alternative parametriza-

tion, and making use of information from multiple decays simultaneously.

The Dispersive Matrix method does not require parametrizing the form factor results

(and so avoids any issues with truncation of the z expansion). This method finds the

minimum and maximum values of the form factors allowed by unitarity using known

form factor points. Modifications to the method are trialled, including using informa-

tion from multiple decays simultaneously, improving numerical stability when com-

puting the bounds, and optimising the implementation of a kinematic constraint relat-

ing the form factors.

A novel method to generating form factor curves using the Dispersive matrix method

is introduced, alongside several optimisations to improve computation time. This new

method is tested, and the results, namely for the Cabibbo–Kobayashi–Maskawa matrix

element, |Vub|, are compared to those from the Z-fit approach.
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and Prof. Andreas Jüttner who provided many helpful insights and suggestions.

I thank Toby Peterken for his many discussions with me about physics and academia

over the last 8 years, and Jack Arthur for helping me become a better programmer.

Finally, I am forever grateful for the support and guidance from my mum throughout

my academic journey. I could not be where I am today without her.





1

Chapter 1

Introduction

The Standard Model (SM) of particle physics describes all known fundamental

particles and their interactions through 3 of the 4 known fundamental forces (Strong,

Weak and Electromagnetic). It has been a very successful theory and has made many

experimental predictions, such as the existence of the top quark, tau neutrino and

Higgs boson.

Despite its many successful predictions, there exist several tensions between the

theoretical predictions of the SM and experimental measurements (some examples

being the muon anomalous magnetic moment [73] and inclusive vs exclusive

measurements of Vub [69]). Additionally, the Standard Model, as originally written,

does not allow neutrinos to have mass.

Beyond this, we know the Standard Model is not a complete theory of all physics as it

does not describe the fourth fundamental force, Gravity. There is then a need for more

precise theoretical predictions to help guide us towards a theory beyond the Standard

Model.

A common place to look for new physics is in the decays of hadrons containing heavy

quarks, for which many decay channels are possible. The top quark decays too

quickly, making the decays of hadrons containing bottom quarks of interest. Exclusive

semileptonic decays such as B → πℓν and Bs → Kℓν occur at tree level in the standard

model and can be used to determine the strength of quark flavour changes, in this case

through the Cabibbo–Kobayashi–Maskawa (CKM) matrix [17, 29] element Vub. Rare B

meson decays, such as rare flavour-changing neutral current decays like B → Kℓ+ℓ−

are suppressed in the Standard Model, possibly making new physics contributions

easier to see (however, these will not be the focus of this work).

Computing SM predictions for decays typically boils down to computing matrix

elements of quark-level operators between hadronic states like B(s) mesons and lighter

mesons. Since the strong interaction is strong at low energy scales, this is a
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non-perturbative problem. For a decay matrix element, Lorentz and other relevant

symmetries can be used to express the matrix element in terms of a number of ’form

factors’ which are then the non-perturbative quantities to be computed.

Lattice QCD is a first-principles systematically improvable method for computing

masses and matrix elements controlled by the strong interaction, and hence for

computing form factors. It then is possible to compute, say, a decay rate up to factors

containing SM parameters like CKM matrix elements. Comparing these results with

experimental decay information allows the CKM matrix elements to be determined.

Another source of theoretical predictions are called sum rules, which rely on the

perturbative nature of QCD over very short distances, and extrapolate to the regime of

the interactions of interest [51]. These rely heavily on the Operator Product Expansion

(OPE) which allows for perturbative calculations. In comparison to lattice QCD, these

methods have additional assumptions, and results from sum rules will not be

considered in this work.

Heavy-to-light B → πℓν and Bs → Kℓν decays allow the determination of the

modulus of the CKM matrix element, Vub, controlling the strength of charged-current

b → u transitions in the SM. Lattice simulations of these decays work best in the

low-recoil, high q2 (where q is the 4-momentum of the outgoing lepton pair) region of

the physical phase space. Because of this, we rely on extrapolation to compare theory

predictions using lattice QCD to experimental results over all the allowed q2 range.

Part of this work concerns methods that exploit unitarity and analyticity constraints

stemming from dispersion relations to make model-independent extrapolations of

form factors from a (small) number of known points without relying on any

parametrised functions for those form factors.



3

Chapter 2

Standard Model

The Standard Model is built on the gauge group:

G = U(1)Y × SU(2)L × SU(3)C (2.1)

Here C denotes colour, which underpins the strong nuclear force. Y and L denote the

hypercharge and the left-handed weak isospin sectors of electroweak interactions. The

following sections describe some core aspects of the Standard Model, as well as Lattice

QCD, since we will rely on using Lattice QCD form factor results as our known input

information for comparison to experiment.

The theoretical development of the Standard Model was shaped by many Physicists.

Yang and Mills formulated the principle of gauge invariance for non-Abelian gauge

theories [7], a critical step in describing the strong and weak interactions. Glashow [9,

14], Salam and Ward [10, 20], and Weinberg [21] independently formulated the

electroweak theory, unifying the electromagnetic and weak interactions and

introducing a mechanism for particle masses through spontaneous symmetry

breaking. This mechanism was further developed by Higgs [19], Brout and

Englert [18], who proposed the scalar field now known as the Higgs field.

Progress in understanding the strong interaction was driven by Gell-Mann’s quark

model [13, 27], which incorporated the concept of colour charge to describe the

structure of hadrons. The mathematical framework of Quantum Chromodynamics

(QCD) was later formalized by Politzer [30], Gross and Wilczek [28], who

demonstrated asymptotic freedom, explaining the energy-dependent behaviour of

quarks. Together, these developments form the theoretical basis of the Standard

Model.

This chapter goes through many of the concepts of the Standard Model. For a more

complete introduction, there are many helpful textbooks available, for example
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Quantum Field Theory and the Standard Model by Schwartz [71], A Modern

Introduction to Quantum Field Theory by Maggoire [57], and An Introduction To

Quantum Field Theory by Peskin and Schroeder [45].

2.1 Fundamental Particles

The Standard Model describes 17 fundamental particles and their interactions.

Particles with spin 1
2 , called fermions, are the matter content of the Standard Model.

Particles with integer spins, bosons, mediate the three forces (electromagnetic, weak

and strong).

Fermionic fields anti-commute, resulting in the Pauli exclusion principle, as two

identical fermions cannot occupy the same state. Fermions in the SM are divided into

two categories, quarks and leptons, each with three generations. Each fermion also

has a corresponding anti-particle with opposite quantum numbers.

Quarks interact with all three SM fundamental forces; they have electric charge

(up-type quarks and down-type quarks have charges of + 2
3 and − 1

3 , respectively, in

units of e), and colour-charge: Quarks transform in the fundamental, 3-dimensional,

representation of SU(3) and hence are commonly described as coming in 3 colours,

red, green and blue.

Each generation in the SM contains a charged lepton, e, µ, and τ, plus a corresponding

neutral neutrino. Leptons do not feel the strong force and so the electrically neutral

neutrinos interact only weakly.

The bosons consist of gluons, g, (of which there are 8 types, each carrying a colour and

anti-colour charge), the photon, γ mediates the electromagnetic force and W± and Z0

bosons which mediate the weak force. Additionally, the Higgs boson is the

fundamental particle associated with the Higgs field, which is responsible for giving

particles their intrinsic masses.

2.2 Symmetries

Symmetries play a very important role in field theories. These are transformations that

leave the Lagrangian unchanged. These can be discrete symmetries, such as C, P and

T (representing charge, parity and time reversal, respectively), or continuous

symmetries such as Lorentz boosts and gauge symmetries. According to Noether’s

theorem, continuous symmetries are intimately linked to conserved quantities; for

example, invariance under time translations corresponds to the conservation of

energy [2].
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FIGURE 2.1: Standard model of elementary particles [70, 91]

Symmetries can also be classified as being local or global; local symmetries correspond

to transformations which can be different at different space-time points, whereas

global symmetries come from transformations that are applied uniformly to all points.

Gauge symmetries are local symmetries characterized by transformations that can

vary independently at each spacetime point while preserving the invariance of the

Lagrangian, and thereby necessitating the introduction of gauge fields. These

symmetries are fundamental to the structure of the Standard Model, where each

interaction is governed by the gauge group associated with the underlying field

theory.

Symmetry breaking occurs when the Lagrangian density after a transformation is not

equivalent to that beforehand. Explicit symmetry breaking occurs when

δL ≡ L′ −L (2.2)

is non-zero. Spontaneous symmetry breaking, on the other hand, occurs when the

transformation leaves the Lagrangian density unchanged, but the resulting ground

state is not invariant under the symmetry. Spontaneous breaking of a continuous

symmetry leads to the appearance of a massless Goldstone boson [15], but in the case

of a gauge symmetry, the Goldstone boson is ’eaten’, giving mass to the corresponding

gauge field [19].
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2.3 Electroweak Interactions

The electroweak interaction is described by the U(1)Y × SU(2)L symmetry in the

Standard Model and combines the electromagnetic and weak interactions. The

electromagnetic force, mediated by the massless photon, describes phenomena such as

the interactions of charged particles with electric and magnetic fields.

The weak interaction is a short-range force and is responsible for processes such as

flavour-changing decays and neutral current interactions involving the Z0 boson.

These interactions are mediated by the W± and Z0 bosons, which acquire mass via

spontaneous symmetry breaking. Unlike the electromagnetic force, the weak

interaction violates parity symmetry. This was first demonstrated by Wu [8], who

showed that beta decay rates are asymmetrically distributed with respect to the spin

direction of decaying nuclei. This parity violation arises because the weak force

couples differently to left-handed and right-handed particles.

The relative strengths of the electromagnetic and weak interactions differ significantly.

At low energies, the weak interaction is much weaker than the electromagnetic force,

primarily due to the large masses of the W± and Z0 bosons. How these interactions

come from the underlying Lagrangian and the mechanism of symmetry breaking will

be explored in this section.

The gauge fields associated to the electroweak interaction, Wa
µ (a = 1, 2, 3) and Bµ, give

rise to the electroweak bosons through the process of electroweak spontaneous

symmetry breaking [71, 45, 57]. After this symmetry breaking, the residual U(1)em

symmetry corresponds to the electromagnetic interactions described by quantum

electrodynamics (QED), an Abelian gauge theory [4, 5].

2.3.1 The Electroweak Lagrangian

A key observed phenomenon of the electroweak interaction is that it beaks parity, to

see how this works we first introduce the right and left-handed parts of the Fermion

field, ψ, as

ψL = PLψ =
1 − γ5

2
ψ; ψR = PRψ =

1 + γ5

2
ψ, (2.3)

where we have used the chiral projectors PR and PL, and
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γ5 ≡ iγ0γ1γ2γ3 =




0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0




, (2.4)

where γi are the gamma matrices (I have used the ordinary/standard

representation) [57].

SU(2)L acts only on left-handed (LH) fields, and the W± bosons are linear

combinations of the W1,2 components of the SU(2)L gauge field. SU(2) is the group of

2 × 2 unitary matrices with determinant 1, and the Pauli matrices are the basis of its

Lie algebra.

Part of the specification of the SM is that the LH quarks and leptons are doublets

under SU(2)L (the Lagrangian is invariant under SU(2) matrix transformations):

Li =

(
νiL

ℓiL

)
(2.5)

This is the doublet for the ith generation of charged and neutral leptons and

Qi =

(
uiL

diL

)
(2.6)

is the doublet for the ith generation of up-type and down-type quarks.

The Bµ gauge field couples to both left and right-handed fermions (with gauge

coupling, g′) according to their weak hypercharge, Y, which is

Y = Q − I3, (2.7)

where I3 is the third generator of SU(2)L (with eigenvalue T3
L) and Q is electric charge.

The top and bottom components of these doublets have weak isospin of + 1
2 and − 1

2 ,

respectively, and leptons/quarks have hypercharges Yl
L = −1 and Y

q
L = −1,

respectively. The right-handed components are SU(2) singlets (i.e. they don’t

transform under SU(2) but do transform under U(1)):
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l− = (eR, µR, τR), (2.8)

q+ = (uR, cR, tR), (2.9)

q− = (dR, sR, bR). (2.10)

The right-handed leptons/quarks have hypercharges Yl
R = −2, Y

q
R+ = + 4

3 and

Y
q
R− = − 2

3 .

The electroweak Lagrangian densities for quarks and leptons are given by:

Ll
EW =

3

∑
i=1

(
iL̄iγ

µDL
µ Li + il̄i−γµDR

µ li−
)

(2.11)

Lq
EW =

3

∑
i=1

(
iQ̄iγ

µDL
µQi + iq̄i+γµDR

µ qi+ + iq̄i−γµDR
µ qi−

)
(2.12)

Here, i sums over the three generations. For charged leptons, these generations are e,

µ, and τ, and for neutrinos, they are the corresponding neutrino types. For quarks, the

generations are up/down, charm/strange, and top/bottom, with + or − indicating

up-like or down-like quarks, respectively.

The absence of li+ in Ll
EW reflects the fact that neutrinos are only left-handed in the

Standard Model. As a result, they are massless in this framework, as the lack of a

right-handed component prevents a Dirac mass term for neutrinos. The observation of

neutrino oscillations is the strongest evidence for physics beyond the Standard Model,

as this confirms that neutrinos have mass [52].

The covariant derivatives are given by

DL
µ = ∂µ − ig

1

2
σaWa

µ(x)− ig′
Y

2
Bµ(x), (2.13)

DR
µ = ∂µ − ig′

Y

2
Bµ(x). (2.14)

Here, σa are the Pauli matrices. The Lagrangian density of the electroweak gauge

terms is

LEW,G = −1

4
Wa

µνWaµν − 1

4
BµνBµν, (2.15)

where we have defined field strength tensors
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FIGURE 2.2: An illustration of the Higgs potential [67].

W i
µν = ∂µW i

ν − ∂νW i
µ − gϵijkW

j
µWk

ν , (2.16)

Bµν = ∂µBν − ∂νBµ. (2.17)

2.3.2 Spontaneous Symmetry Breaking & the Higgs Mechanism

Symmetry requires that the electroweak gauge bosons, Wa
µ (a = 1, 2, 3) and Bµ, be

massless in the unbroken SU(2)L × U(1)Y theory. However, the weak interaction is

observed to be short-ranged, indicating that the mediating bosons must acquire mass

through some mechanism. This occurs via the Higgs mechanism [19], where

spontaneous symmetry breaking of SU(2)L × U(1)Y to U(1)EM results in the masses

of the W± and Z bosons while leaving the photon massless. The Higgs potential, often

illustrated as a ”Mexican hat” potential (shown in Figure 2.2), causes the Higgs field to

acquire a non-zero vacuum expectation value. This vacuum expectation value (VEV)

gives mass to the electroweak gauge bosons through their interactions with the Higgs

field and to fermions through Yukawa couplings. This section outlines this

spontaneous symmetry breaking and the Higgs mechanism.

The Higgs field is a complex scalar doublet, and its Lagrangian is given by

LHiggs = Dµϕ†Dµϕ − V(ϕ), (2.18)

where

ϕ(x) =

(
ϕ+(x)

ϕ0(x)

)
=

1√
2

(
ϕ1(x) + iϕ2(x)

ϕ3(x) + iϕ4(x)

)
, (2.19)

and the Higgs potential, V(ϕ), is



10 Chapter 2. Standard Model

V(ϕ) = −µ2

(
4

∑
i=1

ϕ2
i

)
+ λ

(
4

∑
i=1

ϕ2
i

)2

. (2.20)

This potential has an infinite number of degenerate states with minimum energy for

values of ϕ satisfying

|ϕ|2 =
µ2

4λ
≡ v2

2
, (2.21)

where we have defined the vacuum energy as v2 = µ2

2λ .

Substituting the expression for the Higgs doublet gives:

ϕ2
1 + ϕ2

2 + ϕ2
3 + ϕ2

4 = v2 (2.22)

This equation defines a 3-dimensional sphere. We may reparametrize the Higgs

doublet, choosing θ2
1 , θ2

2 , and θ2
3 to be three real fields tangent to the surface of the

sphere and a real field H(x) which is normal to the surface. The Higgs doublet can

now be written as:

ϕ(x) =
1√
2

ei 1
2v σaθa(x)

(
0

v + H(x)

)
(2.23)

Here the fields θi correspond to three Goldstone bosons[11, 15] and H(x), to the Higgs.

We may now use a gauge transformation to the unitary gauge, setting θi to zero:

ϕ(x) =
1√
2

(
0

v + H(x)

)
(2.24)

Substituting this expression for ϕ into the kinetic part of the Higgs Lagrangian, and

restricting our attention only to the parts which couple to the vacuum expectation

value, v:

(Dµϕ)†(Dµϕ) ⊃ v2

8

[
g2((W1)2 + (W2)2) + (g′Bµ − gW3)2

]
. (2.25)

Our goal is to rewrite these gauge fields in terms of physical fields. We start by

defining

W± =
1√
2

(
W1 ∓ iW2

)
. (2.26)
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This allows us to rewrite the first term in 2.25. We now look at the second term:

(g′Bµ − gW3)
2 = g2W2

3 − 2BµW3 + g′2B2
µ (2.27)

=
(

W3 Bµ

)( g2 −gg′

−gg′ g′2

)(
W3

Bµ

)
(2.28)

We diagonalize our coupling matrix:

(
g2 −gg′

−gg′ g′2

)
= UDU−1, (2.29)

where U and D are

U =
1√

g2 + g′2

(
g′ g

g −g′

)
, D =

(
0 0

0 g2 + g′2

)
. (2.30)

Now we absorb the unitary rotation matrix into the redefined fields:

(
W3 Bµ

)
UDU−1

(
W3

Bµ

)
=
(

Aµ Zµ

)(0 0

0 g2 + g′2

)(
Aµ Zµ

)T
(2.31)

Our new physical fields Aµ and Zµ are given by

Aµ =
1√

g2 + g′2
(g′W3 + gBµ),

Zµ =
1√

g2 + g′2
(gW3 − g′Bµ).

(2.32)

We can now rewrite 2.25 in terms of the physical fields:

(Dµϕ)†(Dµϕ) ⊃ v2

8

[
g2W+2 + g2W−2 + (g2 + g′2)Z2

µ + 0 · A2
µ

]
(2.33)

We can now see that after spontaneous symmetry breaking, we have 1 massless

Goldstone boson, the photon, and 3 massive Goldstone bosons, W± and Z, with

masses

mW± =
1

2
vg, mZ =

v

2

√
g2 + g′2. (2.34)
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2.3.3 Yukawa Interactions

The Standard Model is a chiral gauge theory. As left and right-handed fermions do

not transform the same way under gauge symmetry, it is not possible to write gauge

invariant mass terms for fermions.

The Yukawa Lagrangian for the three generations of leptons is given by:

Ll
Y = −

√
2

3

∑
i,j=1

[
L̄i−ϕmijlj− + l̄j−m∗

jiϕ
†Li−

]
(2.35)

Here L and l are the left and right-handed lepton fields, and mij is the 3x3 matrix

containing the Yukawa coupling constants that determine the strength of interaction

between the Higgs field and the lepton fields.

Following our unitarity gauge transformation, our Higgs doublet, ϕ, is given by 2.24.

The fields in our Lagrangian are represented in the electroweak basis. We wish to find

the mass eigenstates, so we diagonalise our matrix, mij:

mij = D
(1)
ik Λkl D

(2)
l j (2.36)

Here Λ = diag(λe, λµ, λτ), a diagonal matrix of the Yukawa couplings. We absorb

these rotation matrices into our lepton fields:

L′
i− = D

(L)
ij Lj− (2.37)

l′i− = D
(R)
ij lj− (2.38)

The masses of the leptons are given by:

me = λev, mµ = λµv, mτ = λτv (2.39)

For quarks, the procedure is similar, with the added complexity of there being up and

down-types; the Yukawa Lagrangian for quarks is:

Lq
Y = −

√
2

3

∑
i,j=1

[
Q̄iϕm−

ij qj− + q̄j−m−∗
ji ϕ†Qi

+Q̄iϕ̃m+
ij qj+ + q̄j+m+∗

ji ϕ̃†Qi

] (2.40)

Where, after our reparametrization and transformation into the unitary gauge, ϕ̃ is

defined to be
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ϕ̃i(x) =

(
v + H(x)

0

)
. (2.41)

(ϕ̃ = iσ2ϕ∗ before going to the unitary gauge). ϕ̃ is an SU(2) doublet with the opposite

hypercharge to ϕ. This construction exploits a property of SU(2): the fundamental

representation (doublets) is pseudoreal. Pseudoreality means that the fundamental

representation is equivalent to its complex conjugate under a similarity

transformation, a feature specific to SU(2). The operator iσ2 is used to define ϕ̃ in a

way that preserves the SU(2) transformation properties while reversing the

hypercharge.

We wish to find the mass eigenstates, so we diagonalize our matrices m±
ij , and set ϕ̃ to

its VEV:

m±
ij = U

(R)±†
il Λ±

lmU
(L)±
mj (2.42)

Our unitary rotation matrices, U(L)± and U(R)± are absorbed into our quark fields:

Q′
i± = U

(L)±
ij Qj± (2.43)

q′i± = U
(R)±
ij qj± (2.44)

2.3.4 CKM Matrix

Following our transformation into the mass basis using the unitary matrices, U(L)±

and U(R)±, we must now see how this transformation changes the interaction terms

between quarks and electroweak bosons in our electroweak Lagrangian. After the

spontaneous symmetry breaking, these terms are:

Lq−EWb =
g√
2

3

∑
i=1

(
J

µ
+iW

−
µ + J

µ
−iW

+
µ

)
(2.45)

Here, J
µ
± are the left-handed quark currents given by

J
µ
+ = Q̄′

−γµQ+ = Q̄−U(L)−†γµU(L)+Q′
+ (2.46)

J
µ
− = Q̄′

+γµQ− = Q̄+U(L)+†γµU(L)−Q′
− (2.47)
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We define the Cabibbo-Kobayashi-Maskawa (CKM) matrix, VCKM, using this, as

VCKM = U(L)+†U(L)− =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


 . (2.48)

The CKM matrix gives the mixing of up and down-type quarks in the Standard

Model[17, 29]. This matrix is unitary by construction. Because of this, there are only

four degrees of freedom in the CKM matrix (three mixing angles and a CP-violating

phase). The matrix arises because we need different U matrices to diagonalise the

up-type and down-type quark masses, but left-handed up-type and left-handed

down-type quarks are in the same SU(2) doublets. It is worth noting that no

flavour-changing couplings to the Z boson arise.

A common parametrization for the CKM matrix arises from the following mixing:

VCKM =




1 0 0

0 c23 s23

0 −s23 c23







c13 0 s13e−iϕ

0 1 0

−s13eiϕ 0 c13







c12 s12 0

−s12 c12 0

0 0 1


 (2.49)

=




c12c13 s12c13 s13e−iϕ

−s12c23 − c12s23s13eiϕ c12c23 − s12s23s13eiϕ s23c13

s12s23 − c12c23s13eiϕ −c12s23 − s12c23s13eiϕ c23c13


 (2.50)

Here, sij = sin(θij) and cij = cos(θij), where θij is the mixing angle between

generations i and j. ϕ is the CP-violating angle[41].

An alternative parametrization, known as the Wolfenstein parametrization,

approximates the CKM matrix by expanding it in terms of a parameter, λ, equal to Vus.

It makes use of the observed difference in magnitudes between mixing between

different generations of quarks[40].

At the time of its origin, two well observed CKM matrix elements were Vus and Vcb. It

was observed Vcb is of order λ2, so we define a factor, A, such that

Vcb = Aλ2. (2.51)

To order λ2, the CKM matrix is then
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VCKM =




1 − 1
2 λ2 λ 0

−λ 1 − 1
2 λ2 Aλ2

0 −Aλ2 1




(2.52)

We can now use unitarity to go to order λ3:

VCKM =




1 − 1
2 λ2 λ λ3A(ρ − iη)

−λ 1 − 1
2 λ2 λ2 A

λ3A(1 − ρ − iη) −λ2 A 1




, (2.53)

where we have introduced two parameters, ρ and η. In terms of our common

parametrization parameters, λ, A, ρ and η are given by:

λ = s12 (2.54)

A =
s23

s2
12

(2.55)

ρ = Re

{
s13e−iδ

s12s23

}
(2.56)

η = −Im

{
s13e−iδ

s12s23

}
(2.57)

Wolfenstein introduced the parametrization in Equation 2.53 as an approximation, but

it was later realised that you can define

Vus = λ, Vcb = Aλ2, Vub = Aλ3(p − iη), (2.58)

as exact, and then construct the rest of the CKM matrix by unitarity. You can then

expand to any order in λ (this also uses a phase convention that Vud, Vus, Vcs, Vcb and

Vtb are all real and positive).

Figure 2.3 shows the global constraints on the CKM unitarity triangle in the (ρ, η)

plane. ρ and η are defined as

ρ = ρ

(
1 − λ2

2

)
, η = η

(
1 − λ2

2

)
. (2.59)

The CKM unitarity triangle plot is constrained by several experimental

measurements. The blue band comes from CP violation in decays such as
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FIGURE 2.3: Global constraints on the CKM unitarity triangle in the (ρ, η) plane. The
overlapping red ellipse indicates the region allowed at a 95% confidence level. [55]

B0 → J/ψ K0
S; the light-blue wedge is based on neutral kaon mixing through the

measurement of εK; and the orange/yellow bands reflect the mass differences

observed in Bd and Bs meson oscillations. The semileptonic decays analyzed in this

work provide a constraint for |Vub|, which is shown by the green band.

2.4 Quantum Chromodynamics

Quantum Chromodynamics (QCD) is the theory of the strong force, which describes

the interactions of hadronic matter: quarks and gluons. It is a non-abelian SU(3)

gauge theory[71, 45, 57]. Quarks are in the fundamental representation of SU(3).

Gluons (like all gauge bosons) are in the adjoint, which has dimension equal to the

number of generators of the group. For SU(3) this is 8, corresponding to each colour

charge-anti-charge combination, each with a gluon field, Ga
µ. The QCD Lagrangian

density is given by

LQCD = ∑
f

ϕ̄ f (iγ
µDµ − m f )ϕ f −

1

4
Ga

µνGaµν (2.60)

where Gµν is the gluon field strength tensor and ϕ f represents the quark fields (with f

indexing flavours u, d, s, c, b, t). The covariant derivative is defined as

Dµ = ∂µ − igs
1

2
λaGa

µ. (2.61)

The mass, m f in Equation 2.60 comes from the Higgs mechanism in the SU(2)× U(1)

sector, and gS is the strong coupling constant. Analogous to the 2x2 Pauli matrices, we
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FIGURE 2.4: Running of the strong coupling constant, denoted here as αS, with energy
scale Q [86].

have made use of the 3x3 Gell-Mann matrices[16], λi, which are a representation of the

generators of the SU(3) symmetry.

λ1 =




0 1 0

1 0 0

0 0 0


 λ2 =




0 −i 0

i 0 0

0 0 0


 λ3 =




1 0 0

0 −1 0

0 0 0


 (2.62)

λ4 =




0 0 1

0 0 0

1 0 0


 λ5 =




0 0 −i

0 0 0

i 0 0


 λ6 =




0 0 0

0 0 1

0 1 0


 (2.63)

λ7 =




0 0 0

0 0 −i

0 i 0


 λ8 =




1/
√

3 0 0

0 1/
√

3 0

0 0 −2/
√

3


 (2.64)

Due to the nature of the strong coupling, at low energies (below ΛQCD), perturbation

theory is not a valid approach. This is because the running of the strong coupling

constant, αs, becomes large at low energies, making perturbative methods ineffective.

As a result, non-perturbative techniques must be employed to study Quantum

Chromodynamics (QCD). Some of the prominent methods include lattice QCD, sum

rules, and the AdS/CFT correspondence, though the latter has not yet been

successfully applied to realistic, phenomenologically useful examples. In the

high-energy regime, above ΛQCD, QCD exhibits asymptotic freedom, as demonstrated

by the behaviour of the Non-Abelian Gauge Theories (NAGTs) in 4D, where the

coupling strength decreases at higher energy scales. However, at low energy scales,
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the coupling grows stronger, leading to confinement and the breakdown of

perturbation theory. In this low-energy regime, we rely on non-perturbative

approaches such as lattice QCD to obtain insights into the behaviour of QCD. The

form factor information used in this work exclusively comes from lattice QCD, and so

I shall very briefly cover the main concepts in the following section.

2.5 Lattice QCD

Lattice QCD provides a systematic framework for studying strong interactions

directly from first principles[33, 32, 35, 61]. It discretizes spacetime into a

finite-volume grid and reformulates the theory in Euclidean spacetime for numerical

tractability. Quarks are positioned at lattice points, while gluons are modelled as link

variables connecting the points.

There are many ways to implement this discretization that ensure that the continuum

limit a → 0 recovers the QCD Lagrangian. Different lattice formulations of quarks,

such as Wilson [31], staggered [34], domain wall [43], and twisted mass [53], can be

employed, each with specific advantages and challenges in reproducing the correct

chiral continuum behaviour. Discretization effects of order O(an) can be mitigated

using techniques such as the Symanzik improvement program[38, 39, 90].

The lattice parameters, including the lattice spacing a, volume, and quark masses,

must be tuned to match the physical world. This requires extrapolating quark masses

to their physical values, often done through chiral extrapolation, to recover the correct

behaviour in the continuum limit. As part of this process, the lattice spacing a is sent

to zero (the continuum limit), and the volume is taken to infinity to remove finite

volume effects.

This method is systematically improvable, with accuracy improving as computational

power increases, with simulations getting closer to a → 0, L → ∞, and quark masses

to their physical values.

An important part of this formulation is the discretization of the gauge fields. In this

approach the continuous gauge fields are represented by link variables that lie on the

edges between lattice points. These link variables are chosen to be elements of the

underlying gauge group and are designed to preserve the gauge invariance of the

theory. The discretization of fermions is accomplished by defining quark fields on the

lattice sites and choosing an appropriate formulation such as Wilson or staggered

fermions.

An important component of the gauge action is the plaquette. This is defined as the

product of four link variables that form a square on the lattice. The resulting plaquette
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is unitary as each link is a unitary matrix, and it is essential in approximating the

gauge field strength in the continuum limit.

2.5.1 Path Integrals

To perform measurements over our discretized spacetime, such as measuring

correlation functions, we make use of path integrals. Discretizing spacetime on a finite

volume transforms the path integral into an ordinary, albeit extremely

high-dimensional, integral. This integral is most efficiently evaluated using

importance sampling methods, such as Monte Carlo simulations. To facilitate this, we

perform a rotation to Euclidean space, where the factor eiS (from the action S) becomes

e−S, making it possible to interpret the integrand as a probability density.

A general n-point correlation function is of the form

Cn(x1, x2, . . . , xn) = ⟨T{O1(x1)O2(x2) . . .On(xn)}⟩, (2.65)

where we have the expectation value of the time ordered product of n operators

Oi(xi)[45]. I will implicitly assume the time ordering from now on. Our correlation

function is then given by the following path integral in Minkowski spacetime:

⟨O⟩ = 1

Z

∫
D[Φ]OeiSM [Φ] (2.66)

Here, Φ, represents all fermion and gauge fields. Z is our partition function:

Z =
∫

D[Φ]eiSM [Φ] (2.67)

To calculate these on the lattice, we now modify our path integral expression as

follows:

• We perform a Wick rotation to transform from Minkowski spacetime to

Euclidean spacetime. This transforms our action as iSM → −S [6, 33, 32].

• Discretize our spacetime into a lattice of points with a spacing, a, and volume

L3 × T. We also must ensure the correct action is recovered in the continuum

limit (a → 0)[45].

Our path integral on the lattice is now of the form
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⟨O⟩ = 1

Z

∫
D[Φ]Oe−S[Φ]. (2.68)

Measurements on the lattice are performed over variations of lattice spacing, volumes

and quark masses where possible. Results are extrapolated to the chiral continuum

limit, where the lattice spacing, a → 0, the volume, L3 → ∞, and the quark masses are

taken to their physical values.

2.5.2 Importance sampling

The Euclidean path integral for an observable, O, is given in Equation 2.68. This is a

weighted average of all possible quark/gluon field configurations according to e−S[Φ].

e−S[Φ] varies enormously, so evaluating this integral numerically is best done through

sampling the tiny region which contributes significantly [58].

This is importance sampling, which is a variance reduction method (compared to say,

sampling the space uniformly), meaning stochastic estimates of the integral of interest

have a reduced standard error.

Importance sampling focuses computation time on the most highly contributing

configurations. It does this through a Monte Carlo procedure, where all sampled

configurations are given equal weighting, but the probability of being sampled is

proportional to e−S [56].

2.6 Semileptonic Decays

The work in this thesis focuses on pseudoscalar-to-pseudoscalar semileptonic decays,

namely B → πℓν (the Feynman diagram for this is given in 2.5) and Bs → Kℓν

(however much of the work applies to other exclusive semileptonic decays, such as

B → Dℓν, D → Kℓν and those with vector final states, such as B → D∗ℓν, D → K∗ℓν).

b̄

d

ū

d

W+ ν

ℓ

B π

FIGURE 2.5: Feynman diagram for B → πℓν.

We can decompose our matrix element, ⟨P(k) |Vµ(0)| Bs(p)⟩, in terms of the two form

factors, f− and f+. P and Bs represent pseudoscalar mesons with 4-momenta k and p,
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FIGURE 2.6: Sketch of a generic three-point function. The spectator quark (dot-dashed
line) originates from time slice tsrc and propagates forward to time slice tsnk where we
create a point sink and turn it into a sequential source for the parent quark (double
line) propagating backward. This sequential propagator is contracted with the child

light quark (solid line) also originating from tsrc. [88]

and masses MP and MB(S)
, respectively. As our matrix element has a Lorentz index, µ,

it must be constructed from available vectors with the same index:

⟨P(k)|Vµ(0)|Bs(p)⟩ = f+(q
2)pµ + f−(q2)qµ (2.69)

Here qµ = pµ − kµ, the 4-momenum transferred to the outgoing lepton-pair. It is

useful to express Equation 2.69 in terms of the form factors f0 and f+, as these form

factors relate to the transition amplitude with the exchange of a scalar (0+) and vector

(1−) boson in the t-channel, respectively [77]. f0 is defined as

f0

(
q2
)
= f+

(
q2
)
+

q2

M2 − m2
f−
(
q2
)

. (2.70)

Substituting this expression gives the form factor decomposition

⟨P(k) |Vµ(0)| Bs(p)⟩ = 2 f+
(
q2
) (

pµ − p · q

q2
qµ

)
+ f0

(
q2
) M2 − m2

q2
qµ. (2.71)

In the limit of q2 → 0, this matrix element must not diverge, and so f+(0) = f0(0).

This constraint on the form factors will be referred to as the kinematic constraint.

2.7 Correlation functions

Form factor information can be obtained through lattice simulations through the

measurement of two and three-point correlation functions.
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In the example case of Bs → Kℓν, where we create a Bs meson (at rest) at time tsrc = 0

and destroy the Kaon at the sink at tsnk = ∆t, and the flavour changing current,

Vµ = ūγµb acts at time t (as shown in Figure 2.6). The three-point correlation function

is of the form

C3,µ(t, ∆t, pK) = ∑
x,y

eipK ·y⟨0|OBs(x, ∆t)Vµ(y, t)O†
K(0, 0)|0⟩ (2.72)

We make use of the relation O(x, t) = eĤteip̂.xO(⃗0, 0)e−Ĥte−ip̂.x:

C3,µ(t, ∆t, pK) = ∑
x,y

eipK ·y⟨0|eĤ∆tOBs(x, 0)e−Ĥ∆teĤtVµ(y, 0)e−ĤtO†
K(0, 0)|0⟩ (2.73)

We insert complete sets of states, n and m:

C3,µ(t, ∆t, pK) = ∑
x,y,n,m

eipK ·y⟨0|OBs(x, 0)e−En∆t |n⟩⟨n|
2En

eEntVµ(y, 0)e−Emt |m⟩⟨m|
2Em

O†
K(0, 0)|0⟩,

(2.74)

where our exponentiated Hamiltonians have acted on states, n and m, constraining

their momenta (their other quantum numbers are constrained by the matrix elements):

C3,µ(t, ∆t, pK) = ∑
x,y,n,m

e−En(∆t−t)e−Emt

4EnEm
eipK ·y (2.75)

× ⟨0|OBs(x, 0)|B(n)
s ⟩⟨B

(n)
s |Vµ(y, 0)|K(m)⟩⟨K(m)|O†

K(0, 0)|0⟩

For sufficiently long time separations, this is dominated by the ground states (as these

are the lowest energy states, the exponential terms decay slower than for other states),

Bs and K. In the limit t → ∞:

C3,µ(t, ∆t, pK) = ∑
x,y

eMBs (∆t−t)e−EKt

4MBs EK
eipK ·y⟨0|OBs(x, 0)|Bs⟩⟨Bs|Vµ(y, 0)|K⟩⟨K|O†

K(0, 0)|0⟩

(2.76)

To extract the matrix element ⟨Bs|Vµ(y, 0)|K⟩, we make use of the following 2-point

correlation functions:



2.8. Form Factors and Phenomenology 23

CBs(t, 0) = ∑
x

⟨0|OBs(x, t)OBs(0, 0)|0⟩ (2.77)

CK(t, pk) = ∑
x

eipk .x⟨0|OK(x, t)OK(0, 0)|0⟩ (2.78)

Repeating the same procedure and taking the limit t → ∞ gives:

CBs(t, 0) = |⟨0|OBs(0, 0)|Bs(0)⟩|2
e−MBs t

2MBs

(2.79)

CK(t, pk) = |⟨0|OK(0, 0)|K(pk)⟩|2
e−EKt

2EK
(2.80)

We can extract our desired matrix element by taking the ratio of our 3-point function

with the square root of these 2-point functions.

This can be done for many values of Kaon momentum, allowing us to measure the

matrix element for various values of q2. Once the chiral continuum extrapolation has

been performed, this allows us to generate form factor values from the lattice.

Practically, we are limited on how many form factor values we can generate on the

lattice to avoid the covariance matrix becoming singular. As f+ cannot be determined

at q2
max, in the case of an odd number of points, we choose to allocate an extra point to

f0 (so if we can only extract 5 form factor points from the lattice simulation results

before making the covariance matrix singular, we choose to take 3 values for f0 and 2

for f+) [60].

2.8 Form Factors and Phenomenology

2.8.1 Differential Decay Rate

To compare experimental results with theoretical predictions from the lattice, an

important phenomenological value is the differential decay rate:
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dΓ
(

B(s) → Pℓν
)

dq2
=

G2
F |Vub|2
24π3

(
q2 − m2

ℓ

)2
√

E2
P − M2

P

q4M2
B(s)

×
[(

1 +
m2

ℓ

2q2

)
M2

B(s)

(
E2

P − M2
P

) ∣∣ f+
(
q2
)∣∣2

+
3m2

ℓ

8q2

(
M2

B(s)
− M2

P

)2 ∣∣ f0

(
q2
)∣∣2
]

(2.81)

With knowledge of the functional dependence of the form factors, extrapolated from

lattice results, we can calculate all parts of this equation besides |Vub|. The differential

decay rate without the CKM matrix factor, dΓ̃/dq2 is given by

dΓ̃

dq2
=

1

|Vub|2
dΓ

dq2
(2.82)

With binned experimental measurements of the differential decay rate, and by

integrating dΓ̃/dq2 from our theoretical predictions over the same bins, we can extract

|Vub|.

2.8.2 Forward-Backward Asymmetry

The angular dependence of the differential decay rate is given by

d2Γ(Bs → Kℓν)

dq2d cos θl
= ηEW

G2
F|Vub|2

128π3M2
Bs

(
1 − m2

ℓ

q2

)2

×

|pK|
[

4M2
Bs
|pK|2

(
sin2 θl +

m2
ℓ

q2
cos2 θℓ

)
f 2
+(q

2)

+
m2

ℓ

q2
(M2

Bs
− M2

K)MBs |pK| cos θℓ f0(q
2) f+(q

2)

+
mℓ

q2
(M2

Bs
− M2

K)
2 f 2

0 (q
2)

]
,

(2.83)

where θℓ is the angle between the incoming Bs and the outgoing charged-lepton in the

dilepton rest frame. The forward-backward asymmetry is the difference in the

integrated decay rate in the forward (0 ≤ cosθℓ ≤ 1) and backward directions

(−1 ≤ cosθℓ ≤ 0) [88]:

Aℓ
FB(q

2) ≡
[

1∫
0

−
0∫

−1

]
d cos θℓ

d2Γ(Bs → Kℓν)

dq2d cos θℓ
(2.84)
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Aℓ
FB(q

2) =ηEW
G2

F|Vub|2
32π3MBs

(
1 − m2

ℓ

q2

)2

|pK|2

× m2
ℓ

q2

(
M2

Bs
− M2

K

)
f+(q

2) f0(q
2)

(2.85)

2.8.3 R Ratio

Another important test of the Standard Model is lepton flavour universality (LFU),

which occurs due to the identical couplings to the weak gauge bosons from each

generation of lepton. Differences in masses between the leptons causes the shapes of

the decay rates to differ.

The R ratio tests LFU and is largely free of hadronic uncertainties:

RBs→K =

∫ q2
max

m2
τ

dq2 dΓ(Bs→Kτν̄τ)
dq2

∫ q2
max

m2
ℓ

dq2 dΓ(Bs→Kℓν̄ℓ)
dq2

(2.86)

Here, ℓ denotes either e or µ, which are both essentially massless compared to the tau

lepton and the kinematic range of q2.

An improved R ratio can be constructed to improve upon several features present in

RBs→K [88]:

• The integration range from m2
ℓ
≤ q2 ≤ m2

τ in the denominator is unmatched in

the numerator. This can be solved by choosing a common integration range

starting at q2
min (where q2

min ≥ m2
τ).

• A weighting factor is introduced, ω, that scales the differential decay rate by the

phase space factor related to lepton mass. This factor makes the f+ components

of the numerator and denominator the same.

This phase space weighting comes from the following expression for the differential

decay rate:

dΓ(Bs → Kℓν)

dq2
= Φωℓ(q

2)
[
F2

V + (Fℓ
S)

2
]

(2.87)

Where
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Φ = ηEW
G2

F|Vub|2
24π3

, (2.88)

ωℓ(q
2) =

(
1 − m2

ℓ

q2

)2 (
1 +

m2
ℓ

2q2

)
, (2.89)

F2
V = |pK|3| f+(q

2)|2, (2.90)

(Fℓ
S)

2 =
3

4

m2
ℓ
|pK|

m2
ℓ
+ 2q2

(M2
Bs
− M2

K)
2

M2
Bs

| f0(q
2)|2. (2.91)

Our improved R ratio is then given by:

R
imp
Bs→K =

∫ q2
max

q2
min

dq2 dΓ(Bs→Kτν̄τ)
dq2

∫ q2
max

q2
min

dq2
[

ωτ(q2)
ωℓ(q2)

]
dΓ(Bs→Kℓν)

dq2

(2.92)

We note that the contribution of the scalar term, (Fℓ
S)

2, in the denominator is very

small (m2
e,µ/2q2 ≤ m2

µ/2q2 ≤ m2
µ/2m2

τ = 0.002 in the integration range), and so we

ignore it in our denominator. Our simplified approximation of the R ratio is:

R
imp
Bs→K ≈ 1 +

∫ q2
max

q2
min

dq2ωτ(q2)(Fτ
S )

2

∫ q2
max

q2
min

dq2ωτ(q2)F2
V

(2.93)
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Statistical Techniques

3.1 Bootstrapping

A statistical technique used extensively in this work is bootstrapping, which allows

the propagation of statistical uncertainties throughout the analysis.

The primary input data for this analysis are synthetic form factor values from lattice

simulations, with an associated covariance matrix. The bootstrapping procedure

involves generating numerous resamples of these data points and performing the

same analysis on each resample [37].

With a sufficiently large number of samples, the distribution of outcomes will capture

the statistical uncertainty from the distribution of inputs, without relying on

assumptions about the underlying error distribution.

3.2 Kolmogorov–Smirnov test

A statistical tool employed multiple times in this work is the Kolmogorov–Smirnov

(K-S) test [49]. This allows us to test whether two sets of data are likely to be samples

from the same underlying distribution. There are two main ways we use this test in

this work.

The first is to determine if a given distribution is consistent with the uniform

distribution. Firstly, we take many sets of samples of a uniform distribution between

the minimum and maximum value. These sets consist of n samples, where n is the

number of elements in our test data.

For each set, we measure the Kolmogorov–Smirnov statistic, Dn,m, which is the

maximum difference between the sample’s empirical distribution function (EDF),
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F1,n(x), and the uniform distribution’s cumulative distribution function (CDF),

F2,m(x) [74]:

Dn,m = sup
x

|F1,n(x)− F2,m(x)| (3.1)

The P-value is then the proportion of sets with a greater or equal

Kolmogorov–Smirnov statistic than that of the distribution we are testing. If the

P-value is within the range, 0.05 < x ≤ 1 (here we denote this as α = 0.05) then we do

not have sufficient evidence to reject our null hypothesis (the distribution of curves is

uniform).

The second way we use this test is to determine if two distributions are from the same,

unknown, underlying distribution. Here we use the two-sample

Kolmogorov–Smirnov test, which involves the same measure (Kolmogorov–Smirnov

statistic), but we only need to compare the two distributions once as we are not

sampling from a known distribution for comparison. The threshold for rejecting the

null hypothesis, at level α, is:

Dn,m >

√
− ln

(α

2

)
· 1 + m

n

2m
(3.2)
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Choice of Data

The analysis in this work focuses on two semileptonic pseudoscalar to pseudoscalar

decays, B → πℓν and Bs → Kℓν. The lattice data used for each decay consists of the

synthetic points and their covariances (both systematic and statistical).

4.1 B → πℓν

For B → πℓν, form factor results from the JLQCD collaboration are chosen [80]. The

synthetic form factor points are given in Table 4.1, with statistical and systematic

correlation matrices given in Tables 4.2 and 4.3.

f+(q2
1) f+(q2

2) f+(q2
3) f0(q2

1) f0(q2
2) f0(q2

3)
Mean 1.165 2.600 6.597 0.500 0.703 0.937
Stat. err 0.067 0.152 0.423 0.019 0.026 0.036
Syst. err 0.099 0.229 0.631 0.027 0.037 0.043

TABLE 4.1: Synthetic data points for f+ and f0 at q2
1 = 19.15GeV2, q2

2 = 23.65GeV2

and q2
3 = 26.40GeV2

f+(q2
1) f+(q2

2) f+(q2
3) f0(q2

1) f0(q2
2) f0(q2

3)
f+(q2

1) 1.000 0.957 0.901 0.799 0.728 0.663
f+(q2

2) 0.957 1.000 0.989 0.758 0.720 0.662
f+(q2

3) 0.901 0.989 1.000 0.708 0.682 0.639
f0(q2

1) 0.799 0.758 0.708 1.000 0.971 0.921
f0(q2

2) 0.728 0.720 0.682 0.971 1.000 0.943
f0(q2

3) 0.663 0.662 0.639 0.921 0.943 1.000

TABLE 4.2: Statistical correlation matrix for f+ and f0 at q2
1 = 19.15GeV2, q2

2 =

23.65GeV2 and q2
3 = 26.40GeV2

To obtain phenomenological results for B → πℓν, several sources of experimental

results will be used. These experimental results consist of binned integrated branching
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f+(q2
1) f+(q2

2) f+(q2
3) f0(q2

1) f0(q2
2) f0(q2

3)
f+(q2

1) 1.000 0.996 0.969 0.761 0.675 0.692
f+(q2

2) 0.996 1.000 0.981 0.737 0.650 0.663
f+(q2

3) 0.969 0.981 1.000 0.682 0.590 0.604
f0(q2

1) 0.761 0.737 0.682 1.000 0.992 0.996
f0(q2

2) 0.675 0.650 0.590 0.992 1.000 0.996
f0(q2

3) 0.692 0.663 0.604 0.996 0.996 1.000

TABLE 4.3: Systematic correlation matrix for f+ and f0 at q2
1 = 19.15GeV2, q2

2 =

23.65GeV2 and q2
3 = 26.40GeV2

fractions, alongside systematic and statistical covariance matrices (or correlation

matrices with corresponding errors). The experimental results chosen are:

• Belle 2010 [64] – B0 → π−ℓ+ν branching fractions from EPAPS Table III, with

associated statistical and systematic correlation matrices from Tables I and II.

• Belle 2013 [68] – Combined B̄0 → π+ and B− → π0 branching fractions, and

correlation matrices given in Tables XVII-XX.

• BaBar 2010 [62] – B0 → π− 4-mode fit branching fraction given in Table X, with

total correlation matrix from TABLE XXI.

• BaBar 2012 [65] – Combined B0 → π− and B+ → π0 branching fractions, given

in Table XXIII, with statistical and systematic correlation matrices from Tables

XXVIII and TABLE XXXI.

In all cases, branching fractions are converted into differential decay rates using

lifetimes from the Particle Data Group [91].

4.1.1 Combining data for Belle 2013

For Belle 2013 there are 2 sets of data, one for B̄0 → π+ and the other for B− → π0. For

each we have binned branching fractions, statistical error, systematic error, total error,

and statistical correlation matrix. Each decay has different bins, 13 for B̄0 → π+ and 7

for B− → π0.

We rescale each decay by the lifetime and isospin factor to give the differential decay

rate:

∆B(B̄0 → π+
ℓν) = 2

τB̄0

τB−
∆B(B− → π0

ℓν) (4.1)

For a given decay, the integrated branching fraction bins have systematic error that is

fully correlated. Between decays, the systematic correlation is 0.49 (estimated by Belle
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in [68]). From this, we construct a 20x20 systematic correlation matrix. The statistical

error is not correlated between decays, so the full correlation matrix is block diagonal.

From these, we construct the statistical and systematic covariance matrices from the

statistical and systematic errors. The total covariance matrix is then the sum of these.

4.2 Bs → Kℓν

For Bs → Kℓν, we use synthetic form factor values from the RBC/UKQCD

collaboration’s 2023 paper [88]. These form factor points are generated at

q2 = 17.6, 20.8 and 23.4GeV2 for f0, and at q2 = 17.6 and 23.4GeV2 for f+. Tables VII

and VIII give the central values, errors and correlation matrices for these points.

Bs → Kℓν experimental data is very limited, so extraction of Vub will only be

performed using data from the LHCb collaboration [76], that measures the ratio of

branching fractions for B0
s → K−ℓν and B0

s → D−
s ℓν, using the procedure outlined in

[88].
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Dispersive Bounds

Π
µν
J is the two-point momentum-space Green’s Function of a vector-like quark

current, Jµ ≡ Q̄ΓµQ′. We can decompose Π
µν
J into spin-1 (Π1−) and spin-0 (Π0+)

components:

Π
µν
J (q) ≡ i

∫
d4xeiq·x⟨0|TJµ(x)J†ν(0)|0⟩ (5.1)

=
1

q2

(
qµqν − q2gµν

)
Π1−

(
q2
)
+

qµqν

q2
Π0+

(
q2
)

(5.2)

We define z (t; t0) as

z (t; t0) ≡
√

tcut − t −√
tcut − t0√

tcut − t +
√

tcut − t0
, (5.3)

We define tcut as the minimum value of the invariant mass squared required for the

vacuum to produce a physical quark–antiquark pair. In practical terms, it’s the energy

threshold at which pair production becomes possible, marking the beginning of the

continuum region in dispersion relations.

t0 = tcut −
√

tcut(tcut − (M − m)2) is a common choice to make z(t) symmetric around

0 for the range of available t values (M and m are the masses of the initial-state meson

and final-state meson in the decay, respectively). This mapping takes the q2 complex

plane onto a unit disc.

For a semi-leptonic pseudoscalar to pseudoscalar decay, the imaginary parts of the

longitudinal and transverse components of the HVP tensors are related to their

derivatives via the following dispersion relations:
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χ0+(Q
2) ≡ ∂

∂q2
[q2Π0+(q

2)] =
1

π

∫ ∞

0
dz

zImΠ0+(z)

z2
, (5.4)

χ−
1 (Q

2) ≡ 1

2

(
∂

∂q2

)2

[q2Π1−(q
2)] =

1

π

∫ ∞

0
dz

zImΠ1−(z)

z3
, (5.5)

Where q2 is the momentum of the outgoing lepton pair, and

ImΠJ =
1

2 ∑
n

∫
dµ(n)(2π)4δ(4)(q − pn)|⟨0|J|n⟩|2. (5.6)

Here a complete set of states has been inserted with the same quantum numbers as a

generic current, J. dµ(n) is the phase space for the states, n. χ(Q2) are known as the

susceptibilities, and the values used in this work are from the 2023 RBC/UKQCD

paper [88], calculated perturbatively using the common choice of Q2 = 0:

χ1−(0) = 6.03 × 10−4GeV−2

χ0+(0) = 1.48 × 10−2
(5.7)

These susceptibilities will be denoted as χ1− and χ0+ (ignoring the Q2 = 0). The

completeness sum is positive semidefinite. By inserting a subset of hadronic states we

can obtain inequalities allowing us to bound the form factors. In this case, we consider

those relating to two decays, Bs → Kℓν and B → πℓν. For a generic susceptibility

(from the current-current correlator), χ, we have

χ(q2) ≥ 1

π

∫ ∞

tcut

dt
W(t)| f (t)|2
(t − q2)a

(5.8)

where a is the degree of subtraction (a = 2 for J = 0+ and a = 3 for J = 1−). For a

given spin-parity channel, we may write the dispersion relation as:

1

2πi

∫

|z|=1

dz

z
|ϕ(z) f (z)|2 ≤ χ (5.9)

The full derivation of W(t) and the outer functions ϕ can be found in Appendix B. We

introduce Blaschke factors, B0(z) and B+(z)[1], for our two form factors f0 and f+,

respectively. The Blaschke factor for a given pole is defined as

B(z; a) =
z − z(q2

pole)

1 − z(q2
pole) z

. (5.10)
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These Blaschke factors ensure analyticity in the presence of sub-threshold poles

without changing the value of the integrand on the unit disc, leaving the integral

unchanged.

1

2πi

∫

|z|=1

dz

z
|Bi(z)ϕi(z) fi(z)|2 ≤ χi (5.11)

From this dispersion relation, we can proceed in two different ways. One approach,

which I will denote the z-fit method, makes use of the analyticity of the integrand by

expanding it in terms of a power series in z, which I shall discuss in Section 6 [44, 46,

48, 59].

The second approach I will explore in Section 7 is the Dispersive Matrix (DM) method,

which uses the inequality in Equation 5.11 to bound the form factor at any z (hence

q2), independent of any parametrisation or assumed functional form. These bounds

are commonly referred to as ”unitarity bounds”. The DM method can exploit known

information on the form factors to tighten the bounds [36, 47, 24, 25, 26].

In both cases, kinematic constraints on the form factors, for example the relation

f+(0) = f0(0) for the semileptonic decays of interest here, can also be taken into

account.
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Z-Fits

Parametrizing form factors to extrapolate theoretical predictions has a long history.

Some examples include the Ball-Zwicky approach (which utilises light-cone sum

rules) [54], the Becirevic-Kaidalov parameterization [50] and Bauer-Stech-Wirbel

parameterization [42]. In recent times, these have fallen out of favour in comparison to

parametrizations stemming from dispersion relations, such as the BCL [59] and

BGL [44, 46, 48] parametrizations, which, by relying only on general quantum field

theory properties of analyticity and unitarity, are model-independent.

6.1 BGL Parametrization

From Equation 5.11, our dispersion relation is given by:

1

2πi

∫

|z|=1

dz

z
|Bi(z)ϕi(z) fi(z)|2 ≤ χi (6.1)

As the integrand of our dispersion relation is analytic, by construction in the unit disc,

we may expand as power series (note that χi is absorbed into ϕi):

f0(z) =
1

B0(z)ϕ0(z)

∞

∑
n=0

anzn (6.2)

f+(z) =
1

B+(z)ϕ+(z)

∞

∑
n=0

bnzn (6.3)

This power series expansion is known as the BGL expansion [44, 46, 48]. The unitarity

constraint is then given by
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∞

∑
n=0

|an|2 ≤ 1,
∞

∑
n=0

|bn|2 ≤ 1 (6.4)

The kinematic constraint, which enforces that our form factors must be equal at

z(q2 = 0), is a linear relation between the an and bn, allowing any one of them to be

expressed in terms of the others.

1

B0(z(q2 = 0))ϕ0(z(q2 = 0))

∞

∑
n=0

anz(q2 = 0)n

− 1

B+(z(q2 = 0))ϕ+(z(q2 = 0))

∞

∑
n=0

bnz(q2 = 0)n = 0. (6.5)

The number of independent synthetic form-factor points available from lattice data is

relatively limited. This in turn limits the number of terms we can use in a z-expansion

when making a (frequentist) fit. Hence, although the full z-expansion is

model-independent, in practice we have to consider the systematic effect of using a

truncated expansion. If experimental inputs are also used, then it becomes possible to

use higher order truncations of the z-series.

6.2 BCL Parametrization

This parametrization was created to improve upon some limitations of the BGL

approach. It makes use of an additional constraint on the derivative of f+[59]:

[
d f+
dz

]∣∣∣∣
z=−1

= 0 (6.6)

This comes from angular momentum conservation, and enforces that the form factor

obeys the known asymptotic behaviour near the Bπ production threshold [72]. The

constraint imposes an additional linear relation on the expansion coefficients for f+. In

a truncation of the BCL series for f+, is it usually taken into account by writing

f+(q
2) =

1

1 − q2/m2
B∗

K−1

∑
k=0

b
(k)
+

[
zk − (−1)k−K k

K
zK

]
(6.7)

There is no equivalent derivative constraint for f0, so we have the following

expressions:
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f Bπ
0 (q2) =

K−1

∑
k=0

b
(k)
0 zk (6.8)

f BsK
0 (q2) =

1

1 − q2/m2
B∗
(0+)

K−1

∑
k=0

b
(k)
0 zk (6.9)

Unfortunately, the BCL expansion has no direct unitarity constraint, and instead one

can be obtained from mapping the BCL coefficients to those in a BGL expansion and

utilizing this unitarity constraint [59]. In this analysis, the BGL expansion is

exclusively used, as this comes directly from the dispersion relation.

6.3 Fitting Procedure

To perform the form factor extrapolation using only the lattice data, the statistical and

systematic errors of the synthetic data points may be factored in to the results through

bootstrapping.

The synthetic data points are resampled nboot times, and for each resample we

perform our fitting procedure assuming perfect knowledge of the form factors at these

points. For a given resample, we find the optimal set of coefficients by minimising χ2,

our squared residual,

χ2 =
(

F⃗calc − F⃗lattice

)T
M−1

cov

(
F⃗calc − F⃗lattice

)
, (6.10)

where F⃗calc are the values of the form factors ( f0 and f+) calculated from the

coefficients, F⃗lattice are the resampled form factor values from the lattice data, and Mcov

is the covariance matrix of the lattice form factor values. This minimisation is done

through multivariable minimisation, in this case using the ”BFGS” method using

SciPy’s optimize.minimize function [75]. The variables being minimised are all but

one of the coefficients for the form factors, as one can be expressed in terms of all

others due to the kinematic constraint. This optimisation is constrained through

unitarity, which dictates that the sum of squares of coefficients for a form factor must

not exceed 1.

This process is repeated for all nboot resamples, allowing analysis to be performed on

each set of coefficients individually. When generating synthetic form factor input

values from lattice data, the mean values and their covariance can be computed

directly, enabling a z-fit using a single minimization. This approach assumes a

Gaussian distribution for the coefficients. However, if you wish to investigate, for
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example (as will be done in the following section), the impact of the unitarity

constraint on the fit, a bootstrapping procedure is more appropriate.

6.4 Unitarity constraint

We can see how frequently the unitarity constraint influences the optimal coefficients

generated for each resample of our inputs. Figure 6.1 shows the distribution of sums

of coefficients squared for Bs → Kℓν and B → πℓν. In both cases, the unitarity

constraint was ignored in the fitting procedure, and in all 10000 sets of coefficients the

unitarity constraint was met regardless. This shows that this constraint never, for the

synthetic data we are using, impacted the coefficients generated.
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FIGURE 6.1: Sum of coefficients (10000 sets) squared for Bs → Kℓν and B → πℓν, fitted
without consideration of the unitarity constraint, using synethetic form factor points

from the RBC/UKQCD [88] and JLQCD [80] collaborations, respectively.

Decay χ2/(d.o.f.) P-value
B → πℓν 2.24 0.106
Bs → Kℓν 2.28 0.102

TABLE 6.1: χ2/(d.o.f.) and P-value for Bs → Kℓν and B → πℓν fit without respecting
the unitarity constraint.

6.5 Alternative polynomials

In the dispersion relation, the start of the cut is determined by the lowest energy state

that can be produced from the vacuum by the current. The current and hence the start

of the cut is the same for B → πℓν and Bs → Kℓν decays. For Bs → Kℓν the cut starts
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below the production threshold. As such, integrating over the whole unit disc adds

unphysical contribution to the unitarity constraint [87].

q2
max = t−

t∗ = (mB+mπ)2

t+ = (mBs+mK)
2

m2
B∗(1−)

m2
B∗(0+)

q2

α

z

FIGURE 6.2: A schematic depiction of the mapping from the q2-plane (left) to the con-
formal z-plane (right). The coloured segments on the real axis denote the physical and
unphysical regions for the B → K decay form factors, while the circle on the right rep-

resents the boundary of the unit disk after the conformal transformation.

When integrating over the unit circle, zn form an orthonormal basis. For Bs → Kℓν, we

wish to construct a new orthonormal basis over the range −α ≤ θ ≤ α,

α = arg(z(q2 = tth)), where tth = (mBs − mK)
2 (for Bs → Kℓν, α = 1.117). This can be

done using the Gram-Schmidt process, as few orders of the polynomial are needed

(these are the Rogers–Szegö polynomials [3]).

Equivalently, we can stick to expanding in powers of z over the restricted integration

range, with a modified inner product [88]:

⟨zi|zj⟩α =
1

2π

∫ α

−α
dϕ(zi)∗zj|z=eiϕ ,

=





sin(α(i−j))
π(i−j)

i ̸= j

α
π i = j

(6.11)

The resulting unitarity constraint is

∑
i,j≥0

a∗i ⟨zi | zj⟩αaj ≤ 1. (6.12)

For the decay Bs → Kℓν, the unitarity constraint rarely restricts the optimisation of

coefficients. Figure 6.3 shows the distribution of coefficients, ai, when fitting Bs → Kℓν

using the circle and arc models (using the whole unit disc vs an arc of the disc, again,

using data from the RBC/UKQCD collaboration [88]). Here i = 0, 1, 2 correspond to

the coefficients for f0 and i = 3, 4 for f+.

We perform the two-sample Kolmogorov-Smirnov test to calculate the P-value

associated with both sets of coefficients coming from the same unknown distribution.
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As we are looking at 5 separate coefficients, we adjust our P-value threshold using the

Bonferroni correction [12]. This means our previous threshold of α = 0.05 now

becomes α = 0.01 (note that this is the α for the K-S test, not that which defines the arc

we integrate over).

The results of these K-S tests indicate that the two sets of coefficients are consistent

with the same distribution, giving evidence that the arc fitting method does not impact

the fitting for this decay. This can be expected from the sums of squared coefficients

given in 6.1, as for each decay the sum stays much below 1 for all 10000 resamples. As

a result, the arc model, which does not overestimate the Bs → Kℓν contribution to the

dispersive integral, will not have any practical difference in fitting. It is possible the

differences between these two models is more significant for other decays where the

start of the cut also does not coincide with the pair production threshold.

6.6 Z-Fits with 2 decays

Both B → πℓν and Bs → Kℓν decays have the same weak flavour changing current.

The following procedure allows simultaneous fitting of form factors for both decays

using a shared unitarity constraint.

From Equation 5.6, we have

ImΠ0+,1− =
1

2 ∑
n

∫
dµ(n)(2π)4δ(4)(q − pn)|⟨0|J|n⟩|2. (6.13)

Here a complete set of states has been inserted with the same quantum numbers as a

generic current, J. dµ(n) is the phase space for the states, n.

The completeness sum is positive semidefinite, and as such we may only consider a

subset of hadronic states. In this case, we consider those relating to both decays,

Bs → Kℓν and B → πℓν, where previously we restricted ourselves to one. For a

generic susceptibility, χ, and form factor, f (t), we now have

χ ≥ 1

π

∫ ∞

tth

dt
W(t)BsK| f (t)BsK|2

(t − q2)a
+

1

π

∫ ∞

tcut

dt
W(t)Bπ| f (t)Bπ|2

(t − q2)a
. (6.14)

W(t) for each decay is given by
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FIGURE 6.3: Distribution of BsK coefficients for the circle and arc (a restricted arc of
the unit disc) models.

WBsK
+ (t) =

ηBsK

6πt
1
2

(
(t − tBsK

+ )(t − tBsK
− )

4t

) 3
2

, (6.15)

WBsK
0 (t) =

ηBsK

8πt
3
2

(tBsK
+ tBsK

− )

(
(t − tBsK

+ )(t − tBsK
− )

4t

) 1
2

, (6.16)

WBπ
+ (t) =

ηBπ

6πt
1
2

(
(t − tBπ

+ )(t − tBπ
− )

4t

) 3
2

, (6.17)

WBπ
0 (t) =

ηBπ

8πt
3
2

(tBπ
+ tBπ

− )

(
(t − tBπ

+ )(t − tBπ
− )

4t

) 1
2

, (6.18)
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FIGURE 6.4: Distribution of BsK coefficients for the circle and arc (a restricted arc of
the unit disc) models.

tBsK
± = (MBs ± MK)

2, tBπ
± = (MB ± Mπ)2 and the isospin factors are ηBπ = 3

2 and

ηBsK = 1 have been absorbed into W(t).

We again apply the conformal transformation

z(t) =

√
tcut − t −√

tcut − t0√
tcut − t +

√
tcut − t0

, (6.19)
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where we choose t0 = tcut −
√

tcut(tcut − (MBs − MK)2), which makes z(t) symmetric

around 0 for the range of available t values, [0, tBsK
− ], for Bs → Kℓν (one could choose

to make it symmetric for the range of z for either decay, or any other reasonable choice

that keeps z small). We may now express Equation 6.14 as:

χ ≥ 1

2πi

∫

arc

dz

z

∣∣∣BBsKϕ(z, q2)BsK f (z)BsK
∣∣∣
2

+
1

2πi

∫

|z|=1

dz

z

∣∣∣BBπϕ(z, q2)Bπ f (z)Bπ
∣∣∣
2

(6.20)

As in the single decay case, Blaschke factors, B, have been introduced to ensure

analyticity in the presence of subthreshold poles. ϕ, the kinematical functions

dependent on the form factor and decay, are given by:

ϕBsK
+ (t; t0) =

√
ηBsK

48π

(
tcut − t

tcut − t0

) 1
4 (√

tcut − t +
√

tcut − t0

) (
tBsK
+ − t

) 3
4

(6.21)

(√
tcut − t +

√
tcut − tBsK

−

) 3
2 (√

tcut − t +
√

tcut

)−5

ϕBsK
0 (t; t0) =

√
ηBsK

16π

(
tcut − t

tcut − t0

) 1
4 (√

tcut − t +
√

tcut − t0

) (
tBsK
+ − t

) 1
4

(6.22)

(√
tcut − t +

√
tcut − tBsK

−

) 1
2 (√

tcut − t +
√

tcut

)−4

ϕBπ
+ (t; t0) =

√
ηBπ

48π

(
tcut − t

tcut − t0

) 1
4 (√

tcut − t +
√

tcut − t0

) (
tBπ
+ − t

) 3
4

(6.23)

(√
tcut − t +

√
tcut − tBπ

−

) 3
2 (√

tcut − t +
√

tcut

)−5

ϕBπ
0 (t; t0) =

√
ηBπ

16π

(
tcut − t

tcut − t0

) 1
4 (√

tcut − t +
√

tcut − t0

) (
tBπ
+ − t

) 1
4

(6.24)

(√
tcut − t +

√
tcut − tBπ

−

) 1
2 (√

tcut − t +
√

tcut

)−4

6.6.1 Method

This method makes use of the shared unitarity constraint between the two decays. For

each resampling of our form factor data (for both decays, where the resampling is

independent for each decay), we perform a simultaneous optimization of the

coefficients for all form factor curves given the unitarity constraint.
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Practically, this extends our squared residual we wish to minimize,

χ2 =

[(
F⃗calc − ⃗Flattice

)T
M−1

cov

(
F⃗calc − ⃗Flattice

)]Bπ

(6.25)

+

[(
F⃗calc − ⃗Flattice

)T
M−1

cov

(
F⃗calc − ⃗Flattice

)]BsK

, (6.26)

where the unitarity constraint for each form factor now has contributions from both

decays:

∞

∑
n=0

|a(Bπ)
n |2 +

∞

∑
i,j=0

a
(BsK)
i ⟨zi | zj⟩αa

(BsK)
j ≤ 1 (6.27)

The χ2/(d.o.f.) for this combined fit is 2.25 with a corresponding P-value of 0.06.

6.6.2 Comparison with single decay

Figures 6.5 -6.8 show the distribution of coefficients, ai, when fitting each decay

separately and together for B → πℓν and Bs → Kℓν, respectively, as well as their

Cumulative Density Functions (CDF). Here i = 0, 1, 2 correspond to the coefficients for

f0 and the rest are for f+.

In both cases, we perform the two-sample Kolmogorov-Smirnov test to calculate the

P-value associated with both sets of coefficients coming from the same unknown

distribution. As, for each decay, we are looking at 5 separate coefficients, we adjust

our P-value threshold in the same way as in Section 6.5.

The results of these K-S tests indicate that the two sets of coefficients are consistent

with the same underlying distribution, giving evidence that the two-decay fitting

method does not impact the fitting for these decays. This can be expected from the

sums of squared coefficients given in 6.1, as each for each decay the sum never goes

above 0.5 for any of the 10000 resamples. As a result, the combined fit will not

combine to be greater than 1, and so the unitarity constraint plays no part in the fitting

procedure. It is possible this combined fit provides a stronger constraint for other

decays.
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FIGURE 6.5: Distribution of BPi coefficients for single and dual (2-decay) fitting meth-
ods.
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FIGURE 6.6: CDF of BPi coefficients for single and dual (2-decay) fitting methods.
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FIGURE 6.8: CDF of BsK coefficients for single and dual (2-decay) fitting methods.
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6.7 Extracting Vub

6.7.1 B → πℓν

For a theory-only fit, our squared residual, χ2 (note that this is not the same χ as the

susceptibility) is given by:

χ2
lattice =

(
F⃗calc − ⃗Flattice

)T
M−1

cov

(
F⃗calc − ⃗Flattice

)
(6.28)

Where F⃗calc are the values of the form factors ( f0 and f+) calculated from the

coefficients, F⃗lattice are the resampled form factor values from the lattice data, and Mcov

is the covariance matrix of the lattice form factor values.

We may extend our χ2 to include the experimental data:

χ2 =
(

F⃗calc − ⃗Flattice

)T
M−1

cov,latt

(
F⃗calc − ⃗Flattice

)
+

(
D⃗calc − D⃗exp

)T
M−1

cov,exp

(
D⃗calc − D⃗exp

) (6.29)

Here we are optimizing the coefficients of z-fit parametrization as well as Vub, and

from these parameters, we calculate the Differential Decay Rate and integrate

numerically over the q2 bins given by the experiment (D⃗calc). Mcov,exp is the total

covariance matrix of the differential decay rate bins for the experiment. This can be

extended by adding in data from multiple experiments, each with its own

contribution to the χ2.

Combined fits of lattice and experimental data are done through ”BFGS” parameter

optimization, where the function being minimised is the total χ2. This is performed

using SciPy’s optimize.minimize function on the chi-squared formed using the input

form factor data and the binned DR from experiment. This produces the optimal set of

coefficients and Vub alongside the χ2 value and the Hessian matrix. The covariance

matrix of the fitted parameters is given by twice the inverse Hessian matrix.

For B → πℓν, we have 4 experimental datasets that we can use to obtain Vub. Table 6.2

shows the Vub, χ2/d.o.f. and the P-value for each experiment. This is also done for the

fit for all experimental datasets simultaneously, and for all experiments besides

BaBar2010. Figure 6.9 shows why excluding BaBar2010 leads to a better χ2/d.o.f., as

the shape of the BaBar2010 differential decay rate bins is an outlier from the other

experiments. These results are consistent with those from JLQCD using a BCL

parametrization [80].
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Vub (×103) 4.08(45) 3.83(44) 3.57(39) 3.92(42) 3.91(41) 4.00(41)

χ2/d.o.f. 1.12 1.29 1.46 0.70 1.36 1.04

P-value 0.34 0.18 0.21 0.72 0.05 0.40

TABLE 6.2: The Vub, χ2/d.o.f., and P-values for each experiment and the combined
fits.
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FIGURE 6.9: Differential decay rate from coefficients (Blue) plotted alongside experi-
mental bins (yellow/green) and differential decay rate values from lattice form factor

values (red).

6.7.2 Bs → Kℓν

For Bs → Kℓν, the experimental results are very limited. We use the LHCb

measurements [66] of
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RBF =
B(B0

s → K−µ+νµ)

B(B0
s → D−

s µ+νµ)
. (6.30)

Which are measured over two bins, low (q2 ≤ 7GeV2) and high (q2 > 7GeV2):

Rlow
BF = 1.66(08)(09)× 10−3

R
high
BF = 3.25(21)(+18

−19)× 10−3
(6.31)

We can use this information alongside the branching ratio,

B(B0
s → D−

s µ+νµ) = 2.49(12)(21)× 10−2, (6.32)

and the B0
s lifetime, τB0

s
= 1.520(5)× 10−12s, to extract Vub using the expression:

|Vub| =
√

Rbin
BF B(B0

s → D−
s µ+νµ)

τB0
s
Γ̄bin(Bs → Kℓν)

(6.33)

This is the procedure presented in the 2023 RBC/UKQCD collaboration paper for

Bs → Kℓν [88].

To extract the best full range Vub value, we take the weighted mean of the ’low’ and

’high’ bin results. This weighted mean is calculated by calculating the covariance

matrix for Vlow
ub and V

high
ub , M, and optimising θ such that it minimises

χ2(θ) =

[(
Vlow

ub

V
high
ub

)
−
(

θ

θ

)]
M−1

[(
Vlow

ub

V
high
ub

)
−
(

θ

θ

)]
(6.34)

The uncertainty in this result is given by the range of Vub at χ2
min + 1, illustrated in

Figure 6.10. Table 6.3 shows the low and high range values using the corresponding

experimental results, alongside the weighted mean. The final χ2/d.o.f. = 1.13, which

has a corresponding p-value of 0.337.

Range Vub × 103

Low 7.51(2.12)
High 4.17(41)
Weighted Mean 3.66(31)

TABLE 6.3: Vub calculated for low and high range experimental results from LHCb[66],
alongside the weighted mean value. Lattice form factor results used are from the

RBC/UKQCD collaboration[88].
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Chapter 7

Dispersive Matrix method

7.1 The Dispersive Matrix

The dispersive bounds method aims to provide a model-independent approach to

extrapolate from lattice simulations (low-recoil, high q2) form factor results into the

high-recoil (low-q2) area of the allowed kinematic region using our dispersion

relations. It provides bounds without using any parametrisation or series expansion of

the form factors [24, 25, 26, 36, 47, 78, 82, 84].

From Equation 5.11, our familiar dispersion relation:

1

2πi

∫

|z|=1

dz

z
|B(z)ϕ(z) f (z)|2 ≤ χ (7.1)

We define the inner product

⟨g | h⟩ = 1

2πi

∮

|z|=1

dz

z
ḡ(z)h(z), (7.2)

so, using the positivity of the inner product, we may rewrite eq 7.1 as

0 ≤ ⟨Bϕ f | Bϕ f ⟩ ≤ χ. (7.3)

It is useful to define gt(z) as

gt(z) ≡
1

1 − z̄(t)z
, (7.4)
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FIGURE 7.1: Form factor bounds calculated using the DM method for Bs → Kℓν using
unitarity only.

so that the inner product, ⟨gt | Bϕ f ⟩ = B(t)ϕ(t) f (t) (gt(z) picks out the value f (t)).

Consequently

⟨gtm | gtl
⟩ = 1

1 − z (tl) z̄ (tm)
. (7.5)

From eq 7.3 we may construct a 2x2 Gram matrix,

(
⟨Bϕ f | Bϕ f ⟩ ⟨Bϕ f | gt⟩
⟨gt | Bϕ f ⟩ ⟨gt | gt⟩

)
, (7.6)

which can be used to impose a loose constraint on the form factors:

This constraint comes from the non-negativity of the matrix determinant. The bounds

from unitarity alone can be seen in Figure 7.1. This is the form of the DM method first

developed by Bourelly et al. [36] (which uses a procedure from Okubo to exploit the

analyticity of the form factors to establish bounds on their values [24, 25, 26]). Earlier

work by Ling-Fong and Pagels establish bounds for Kaon semileptonic decays using

information from the dispersion relation [23, 22].

The dispersive bounds method may impose a stricter constraint by also making use of

known form factor values, as was pioneered by Lellouch for B → πℓν [47]. To do this,

we construct an extended Gram matrix, M:



7.1. The Dispersive Matrix 57

M =




⟨Bϕ f | Bϕ f ⟩ ⟨Bϕ f | gt⟩ ⟨Bϕ f | gt1
⟩ · · · ⟨Bϕ f | gtn⟩

⟨gt | Bϕ f ⟩ ⟨gt | gt⟩ ⟨gt | gt1
⟩ · · · ⟨gt | gtn⟩

⟨gt1
| Bϕ f ⟩ ⟨gt1

| gt⟩ ⟨gt1
| gt1

⟩ · · · ⟨gt1
| gtn⟩

...
...

...
...

...

⟨gtn | Bϕ f ⟩ ⟨gtn | gt⟩ ⟨gtn | gt1
⟩ · · · ⟨gtn | gtn⟩




(7.7)

Here ti denote the q2 values for the input lattice form factor values, and t is the value

of q2 for which we wish to constrain the form factor. We introduce the notation

M{(i1,j1),(i2,j2),...}, representing the matrix M with rows i1, i2, ... and columns j1, j2, ...

removed. We will name the matrix M{(0,0)}, G.

Due to the improvement in lattice data, this method has become more popular in

recent years. This followed a paper by Di Carlo et al. [78], which was the first analysis

using the DM method using only lattice inputs (previously the susceptibilities, χ, had

been calculated perturbatively), and also improved the implementation of the

kinematic constraint. The procedure and notation used in this paper is the basis of the

DM explanation described in this section. Since then, this method has been used to

obtain form factor information for many decays (see papers[82, 79, 83, 85, 89], for

example).

Due to the positivity of the inner product, matrix M is positive semi-definite. Using

this, we may write the determinant of M as

⟨Bϕ f | Bϕ f ⟩det(G)−
n

∑
i,j=0

(Bϕ f )i(Bϕ f )j(−1)i+jdet(G{(i,j)}) ≥ 0 (7.8)

Here t0 = t. From eq 7.3 we know we may replace ⟨Bϕ f | Bϕ f ⟩ with the susceptibility

in the above inequality and, as G is also positive semi-definite, will only increase the

left-hand side (or leave it unchanged). Doing this gives us

χdet(G)−
N

∑
i,j=0

(Bϕ f )i(Bϕ f )j(−1)i+jdet(G{(i,j)}) ≥ 0 (7.9)

Rearranging and grouping powers of ft gives

γ − 2β(Bϕ f )t − α(Bϕ f )2
t ≥ 0, (7.10)

where
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FIGURE 7.2: Example form factor bounds calculated using the DM method for Bs →
Kℓν with the unitarity constraint and a set of form factor points. Here, the curves

plotted represent the top and the bottom of the region allowed by unitarity.

α = det(G{(0,0)}) (7.11)

β =
n

∑
j=1

(Bϕ f )j(−1)jdet(G{(0,j)}) (7.12)

γ = χdet(G)−
n

∑
i,j=1

(Bϕ f )i(Bϕ f )j(−1)i+jdet(G{(i,j)}). (7.13)

The bounds on each form factor are then given by

−β −
√

β2 + αγ

α
≤ (Bϕ f )t ≤

−β +
√

β2 + αγ

α
(7.14)

It can be shown that the discriminant, ∆, is equal to det(G)det(M{(1,1)}). It is worth

noting that det(G) ≥ 0 (provided t and all ti are distinct) and det(M{(1,1)}) ≥ 0 if f (ti)

themselves satisfy unitarity.

It is worth noting that when calculating the bounds at a t value coinciding with an

input form factor value, tj, matrix G becomes singular, meaning the discriminant

becomes zero, and we recover the form factor value f (tj) exactly. Figure 7.1 shows

example bounds calculated from input form factor points.
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7.1.1 Bootstrapping Procedure

We now know how to generate bounds for a given set of form factor inputs and

susceptibilities using the dispersion relations.

In addition to this unitarity constraint, we also have a kinematical constraint on our

two form factors f0 and f+. This states that the two form factors must have the same

value at t = 0: f0(0) = f+(0). This is apparent from the form factor decomposition in

equation 2.71, as in the limit of q2 → 0 the two form factors must tend to the same

value to keep the matrix element finite.

As our lattice form factors are not precisely known, we resample the form factors

using a multivariate normal distribution from their covariance matrix, giving Nboot

input data sets (I shall refer to this as the ’outer bootstrap’).

From these form factor values we calculate det(M{(1,1)}), removing any bootstrap

events that don’t satisfy unitarity (for the decays in this work, this never occurred).

We then calculate the bounds at t = 0 for both form factors and discard any bounds

that do not satisfy the kinematic constraint (the bounds at t = 0 do not overlap). This

leaves us with Ñboot events.

For a given bootstrap event the form factors can take any value in the overlap region

at t = 0, from f ∗lo to f ∗up (being the bottom and top of the overlap region, respectively).

For each event we sample N0 form factor values (uniform distribution). For this inner

bootstrap of N0 form factor values we repeat the form factor bounds procedure by

extending our matrix M, treating this value as an additional input form factor input

value, ⟨Bϕ f | gt0⟩. Our extended matrix, MC for each form factor takes the form

MC =




⟨Bϕ f | Bϕ f ⟩ ⟨Bϕ f | gt⟩ ⟨Bϕ f | gt1
⟩ · · · ⟨Bϕ f | gtn⟩ ⟨Bϕ f | gt0⟩

⟨gt | Bϕ f ⟩ ⟨gt | gt⟩ ⟨gt | gt1
⟩ · · · ⟨gt | gtn⟩ ⟨gt | gt0⟩

⟨gt1
| Bϕ f ⟩ ⟨gt1

| gt⟩ ⟨gt1
| gt1

⟩ · · · ⟨gt1
| gtn⟩ ⟨gt1

| gt0⟩
...

...
...

...
...

...

⟨gtn | Bϕ f ⟩ ⟨gtn | gt⟩ ⟨gtn | gt1
⟩ · · · ⟨gtn | gtn⟩ ⟨gtn | gt0⟩

⟨gt0 | Bϕ f ⟩ ⟨gt0 | gt⟩ ⟨gt0 | gt1
⟩ · · · ⟨gt0 | gtn⟩ ⟨gt0 | gt0⟩




(7.15)

From this we find the bounds, ( f 1
lo, f 2

lo, ..., f N0

lo ) and ( f 1
up, f 2

up, ..., f N0
up ) for each form

factor at any value of t for each of the N0 inner bootstraps. As the form factor is

allowed to take any value in the overlap region, the extremal bounds at any value of t

are taken from the inner bootstrap events:
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FIGURE 7.3: Example form factor bounds calculated using the DM method for Bs →
Kℓν with the unitarity and kinematic constraints and a set of form factor points. Here,
the curves plotted represent the top and the bottom of the region allowed by unitarity.

This plot is for a single resample of form factors, and so, has no errors.

¯flo = min( f 1
lo, f 2

lo, ..., f N0

lo ) (7.16)

¯fup = max( f 1
up, f 2

up, ..., f N0
up ) (7.17)

Figure 7.3 shows an example set of form factor bounds that have been calculated

using both the unitarity and kinematic constraints.

Doing this for all Ñboot bootstrap events gives us Ñboot sets of upper and lower bounds

for each form factor (denoted with the subscripts up and lo, respectively) at each

chosen value of t. From this we can calculate the average values, flo/up(t), standard

deviations, σlo/up(t), and covariance matrix, ρlo,up(t) (this is the covariance between

lower and upper bound values):

flo/up(t) =
1

Ñboot

Ñboot

∑
i=1

f̄ i
lo/up, (7.18)

σ2
lo/up(t) =

1

Ñboot − 1

Ñboot

∑
i=1

[
f̄ i
lo/up(t)− flo/up(t)

]2
, (7.19)

ρlo,up(t) = ρup,lo(t) =
1

Ñboot − 1

Ñboot

∑
i,j=1

[
f̄ i
lo(t)− flo(t)

] [
f̄

j
up(t)− fup(t)

]
(7.20)
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FIGURE 7.4: Form factor bounds calculated using the DM method over 2000 bootstrap
events for Bs → Kℓν with both the unitarity and kinematic constraints. Synthetic form

factor data is from the RBC/UKQCD collaboration [88]

We may combine the upper and lower bound results to calculate the average form

factor values and standard deviations:

f (t) =
flo(t) + fup(t)

2
, (7.21)

σ2
f (t) =

1

12

[
fup(t)− flo(t)

]2
+

1

3

[
σ2

lo(t) + σ2
up(t) + ρlo, up(t)

]
. (7.22)

Figure 7.4 shows bounds calculated using this procedure using input form factor

values at q2 = 17.6 and 23.4GeV2 for f0 and q2 = 17.6, 20.8 and 23.4GeV2 for f+ over

2000 bootstrap events (again, using synthetic form factor data from the RBC/UKQCD

collaboration [88]). Here, central values and errors shown are calculated using

Equations 7.21 and 7.22.

7.2 Improving Numerical Stability

We may express the bounds in Equation 7.14 as

(Bϕ f )lo/up(t) =
−β ∓

√
β2 + αγ

α
(7.23)
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Numerical precision errors often arise from the formulation of the bounds above, as

terms in the discriminant can become numerically tiny.

This can be mitigated by modifying the matrix M, which can be written as

M =

(
⟨Bϕ f | Bϕ f ⟩

−−−→
Bϕ f T

−−→
Bϕ f G

)
,

−−→
Bϕ f = (B(t)ϕ(t) f (t), (Bϕ f )1, . . . (Bϕ f )n)

T . (7.24)

We diagonalise the sub-matrix, G, G = UTΛU, where UUT = 1 and

Λ = diag (λ0, . . . , λn) (I thank Nikolai Husung for demonstrating this [81]).

We construct the modified matrix, M′:

M′ =

(
⟨Bϕ f | Bϕ f ⟩ f⃗ ′T

f⃗ ′ Λ

)
,

−→
f ′ = U

−−→
Bϕ f . (7.25)

Once again, M′ is positive semi-definite, and we may use the determinant to find the

bounds of the form factors. Collecting terms according to their dependence on f0 gives

modified α, β and γ coefficients:

α′ =
n

∑
i=0

ui0ui0

λi
, β′ =

n

∑
i=0

ui0 f̂i

λi
, γ′ = ⟨Bϕ f | Bϕ f ⟩ −

n

∑
i=0

f̂ 2
i

λi
(7.26)

where f̂i is

f̂i = ∑
j>0

uij(Bϕ f )j. (7.27)

The discriminant may now be written as

β′2 + α′γ′ = ⟨Bϕ f | Bϕ f ⟩+
n

∑
i<j, i=0, j=1

1

λiλj

[
2ui0uj0 f̂i f̂ j − u2

i0 f̂ 2
j − u2

j0 f̂ 2
i

]
. (7.28)

By re-writing in this way the largest and smallest terms have canceled out.

Additionally, by performing the sum from the smallest eigenvalues to the largest we

cancel most of the contribution from large terms before summing smaller ones.

Implementing this more numerically stable approach drastically reduces the number

of false-negative unitarity-violating bootstrap events (from around 3% of bounds

calculations to almost none). These occur as bounds calculated using a synthetic data

point at the top/bottom of the overlap range will have a zero or near-zero
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discriminant, and any numerical instability will result in a significant portion of these

coming out as negative.

7.3 Sampling Across the Overlap Region

The method outlined by Di Carlo et al. in [78] to find the extremal bounds within a

bootstrap event is to perform an inner bootstrap that randomly and uniformly

samples, N0 times, across the bound at q2 = 0 and select the maximum upper bounds

and minimum lower bound (this implementation of the kinematic constraint differs

from that first done by Lellouch [47]).

It seems logical that it is sufficient to only look at the top and bottom of the overlap

region, as one would expect that the highest/lowest synthetic data point would

correspond to the highest/lowest bounds. To test this, we may move our synthetic

data point across the overlap region and see how the bounds change for each form

factor. Figure 7.5 shows the relationship in a typical bootstrap event.
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FIGURE 7.5: Form factor bounds for Bs → Kℓν calculated at q2 = 15 GeV2 for an
individual bootstrap event as the synthetic data point is moved over the overlap region
at q2 = 0 GeV2. f0 is on the left and f+ on the right. Here the red curve signifies the

top of the bounds, and the blue curve is the bottom.

The relationship is almost monotonic, with a slight inversion near the very top and

bottom of the bound in the example for f0 [47].

The extremum does not lie at the top/bottom of the overlap region for a particular

form factor if this form factor dictates the overlap region at that point (i.e. when the

kinematical constraint is applied, the top of the overlap region is dictated by a

particular form factor and so is the bottom). In this instance, we observe the extremum

to be slightly away from the edge of the overlap. A more zoomed in plot of the f0

bounds at the bottom of the overlap region can be seen in Figure 7.6. For the decays

we are looking at it is always the case that f0 dictates the bounds, as the unitarity
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FIGURE 7.6: f0 bounds at q2 = 15 GeV2 for Bs → Kℓν, as the synthetic data point is
moved away from the bottom of the overlap region.

constraint gives much wider bounds for f+, and so the ellipse-like shape is cut on both

ends, giving the monotonic behaviour we see for f+.

The difference between the extremal value and that from the top/bottom of the

overlap region is very small. This, combined with the observation that most of the

error in the final measurements comes from the variation in bootstrap events,

indicates that looking at the top/bottom of the overlap region is sufficient until lattice

measurements become much more precise.

If a more precise procedure is needed, one can instead use a minimisation algorithm

such as SciPy’s ”optimize.minimize scalar”. For the ”bounded” method between the

bottom and top of the overlap region, and with default tolerance of 10−8, the

minimum and maximum bounds are found in 15-25 function evaluations, making it

10× more expensive than just looking at the ends of the overlap region for just this

part of the optimiser routine.

For a sample of 2000 bootstrap events in each case, we can compare the results from

our approach looking at only the top and bottom of the overlap region, to the more

precise approach using the algorithm to locate the exact minimum and maximum.

q2
(

GeV2
)

f0

(
q2
)∣∣

Top/Bot
f+
(
q2
)∣∣

Top/Bot
f0

(
q2
)∣∣

Min/Max
f+
(
q2
)∣∣

Min/Max

5.0 0.306(71) 0.320(115) 0.305(70) 0.319(114)
10.0 0.381(42) 0.452(107) 0.381(41) 0.450(107)
15.0 0.486(23) 0.720(64) 0.485(22) 0.719(64)

TABLE 7.1: Means and uncertainties for the approach looking at only the top and
bottom of the overlap region and when finding the minimum and maximum using

the optimiser routine.
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Table 7.1 shows that when looking at a large sample of bootstrap events, the results

when using the optimiser are indiscernible from those when looking only at the

top/bottom of the overlap region. If the method were sufficiently beneficial, for each

bootstrap the bounds obtained would be notably wider, meaning the uncertainty in

the form factor value would be consistently larger. We do not observe this for these

results. Additionally, for a fixed computational budget, many more bootstrap events

can be run if only the top and bottom are used. The precise approach may be used

when calculating final results where computation time is available.

7.4 The DM method for two decays

We can express the dispersion relation for two-decays, given in Equation 6.20, as

χ ≥ ⟨Bϕ f | Bϕ f ⟩BsK + ⟨Bϕ f | Bϕ f ⟩Bπ. (7.29)

We shall now consider the case where we wish to use information from both decays to

find bounds for Bs → Kℓν (which we will therefore refer to as the primary decay). The

primary and secondary (B → πℓν) decays can be interchanged trivially. It is also easy

to see that this method extends to any number of additional decays, which will all be

treated identically to the secondary decay in the following procedure.

For the primary decay, we construct a Gram matrix:

MP =




⟨Bϕ f | Bϕ f ⟩P ⟨Bϕ f | gt⟩P ⟨Bϕ f | gt1
⟩P · · · ⟨Bϕ f | gtn⟩P

⟨gt | Bϕ f ⟩P ⟨gt | gt⟩P ⟨gt | gt1
⟩P · · · ⟨gt | gtn⟩P

⟨gt1
| Bϕ f ⟩P ⟨gt1

| gt⟩P ⟨gt1
| gt1

⟩P · · · ⟨gt1
| gtn⟩P

...
...

...
...

...

⟨gtn | Bϕ f ⟩P ⟨gtn | gt⟩P ⟨gtn | gt1
⟩P · · · ⟨gtn | gtn⟩P




(7.30)

Here ti denote the q2 values for the input lattice form factor values, and t is the value

of q2 we wish to find the form factor bounds at. For the secondary decay, we construct

an almost identical Gram matrix which only contains form factor information from the

lattice:

MS =




⟨Bϕ f | Bϕ f ⟩S ⟨Bϕ f | gt1
⟩S · · · ⟨Bϕ f | gtn⟩S

⟨gt1
| Bϕ f ⟩S ⟨gt1

| gt1
⟩S · · · ⟨gt1

| gtn⟩S

...
...

...
...

⟨gtn | Bϕ f ⟩S ⟨gtn | gt1
⟩S · · · ⟨gtn | gtn⟩S




(7.31)
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We introduce the notation M{(i1,j1),(i2,j2),...}, representing the matrix M with rows

i1, i2, ... and columns j1, j2, ... removed. The matrix M{(0,0)} is then the matix G.

As Gram matrices are semi-positive definite, this restriction on the determinant sets a

lower bound imposed on the value of ⟨Bϕ f | Bϕ f ⟩S:

⟨Bϕ f | Bϕ f ⟩S ≥ 1

det(G)

n

∑
i=1

(−1)i+1B(ti)
Sϕ(ti)

S f (ti)
Sdet(M

{(0,i)}
S ) (7.32)

We will name this lower bound χS. This can be substituted into Equation 7.29:

χ ≥⟨Bϕ f | Bϕ f ⟩P + ⟨Bϕ f | Bϕ f ⟩S (7.33)

χ ≥⟨Bϕ f | Bϕ f ⟩P + χS (7.34)

χ − χS ≥⟨Bϕ f | Bϕ f ⟩P (7.35)

We may now perform the usual DM method to obtain the bounds for the form factor

at a given value of t for our primary decay. However, now we substitute ⟨Bϕ f | Bϕ f ⟩P

with χ − χS instead of χ.

This saturates the unitarity constraint more strongly, resulting in bounds that are

narrower than for the single-decay method.

7.4.1 Comparison with single-decay

Single Decay 2 Decay Method % Improvement
Decay q2 (GeV2) f0 f+ f0 f+ f0 f+
BsK 0.0 0.252(105) 0.252(105) 0.248(101) 0.248(101) 2.9 2.9

5.0 0.310(71) 0.324(115) 0.307(69) 0.321(111) 2.0 2.5
10.0 0.384(42) 0.453(107) 0.382(41) 0.452(105) 0.4 1.9
15.0 0.487(22) 0.719(64) 0.486(22) 0.720(63) −1.8 0.9

BPi 0.0 0.148(153) 0.148(153) 0.148(145) 0.148(145) 5.0 5.0
5.0 0.210(105) 0.253(146) 0.210(100) 0.253(140) 4.9 4.2
10.0 0.285(62) 0.414(124) 0.286(59) 0.415(120) 4.5 3.3
15.0 0.384(30) 0.696(89) 0.385(29) 0.697(88) 1.9 1.5

TABLE 7.2: Comparison of the single decay and 2-decay DM methods for 2000 inde-
pendent bootstrap events. The ”% Improvement” is defined as the amount the stan-
dard deviation has decreased using the 2 Decay method compared to the single decay

result.

Table 7.2 shows the results for both decays using the single decay and 2-decay

methods at several values of q2, where all are using 2000 bootstrap events. Generally,

both decays showed slight improvements to their errors, around 2% for Bs → Kℓν and
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around 4% for B → πℓν. It is possible for other decays, where the unitarity condition

is saturated more strongly, this method would provide a more substantial

improvement to the results.

7.5 Form Factor Curves from the DM method

The Z-fit method has a very convenient feature in that the results are a set of

coefficients describing a polynomial. As such, for a given choice of coefficients, it is

trivial to evaluate the form factor at any desired value of q2.

This is very useful for generating phenomenological results, as we are required to

integrate the form factors (or functions containing them) across q2 bins.

The DM method makes it easy to find form factor bounds at any q2, but it is not so

obvious how to exploit the bounds over continuous ranges of q2 when, for example,

(partially) integrating the differential decay rate.

One method of comparing DM results with binned experimental results involves

taking the midpoint of each q2 bin and performing the dispersive matrix method to

find a distribution of form factors at each q2 [82]. For each bin, from q2
1 to q2

2, a value of

Vub can be estimated using

∫ q2
2

q2
1

dq2 dΓ

dq2
≈ |Vub|2(q2

2 − q2
1)
∫

dq2 G2
F

24π3

(
q2 − m2

ℓ

)2√
E2

π − M2
π

q4M2
B

×
[(

1 +
m2

ℓ

2q2

)
M2

B

(
E2

π − M2
π

) ∣∣ f+
(
q2
)∣∣2

+
3m2

ℓ

8q2

(
M2

B − M2
π

)2 ∣∣ f0

(
q2
)∣∣2
] ∣∣∣

q2=
q2
1
+q2

2
2

This method is simple and does allow for comparison between theory and

experiment; however, this ”midpoint method” suffers with substantial systematic

errors, as it assumes that the form factor at the centre of the bin is the average value

across it. Furthermore, even with results generated at many points across each bin, it

is not clear how one would account for errors in and correlations between them.

We wish to find a method to generate form factor curves using the DM method that

avoids such problems, and instead captures the shape of the form factor curves across

the entire kinematic range.
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7.5.1 Method

One assumption of the DM method is that the form factor is equally probable

anywhere inside the upper and lower bounds given by our unitarity constraint. When

considering an infinite number of form factor curves across the q2 spectrum passing

through the resampled form factor points, the bounds represent the maximum and

minimum values the curves pass through if they obey unitarity. Our assumption that

all form factor values within the bounds are equally likely means that the density of

curves is uniform at every value of q2.

FIGURE 7.7: Example form factor inputs from Lattice data, and their resulting bounds
at q2 = 0GeV2.

The first step is to find the bounds at q2 = 0 and implement the kinematic constraint,

following the method described in Section 7.3 [84]. We separately determine the

bounds for f+ and f0 at q2 = 0 and then randomly and uniformly select a value in the

intersection of these bounds as the common f+(0) = f0(0) (as shown in Figure 7.7).

From here on, both form factors are treated in the same way, and our discussion will

apply for either one.

With the point at q2 = 0 chosen, we have constrained our attention to all form factor

curves passing through this point. The extra point is added as new input in the

dispersive matrix, allowing us to determine a new bound at q2 = δ, where δ is small.

We randomly choose a value satisfying the bound, add the q2 = δ point to the

dispersive matrix and compute bounds at q2 = 2δ (this is visualised in Figures ??-??).

We repeat this process to step across the entire physical q2 region. We repeat this,

constructing ninner curves.

In the limits ninner → ∞, δ → 0, we will construct every form factor curve allowed by

unitarity that passes through our resampled input points (and satisfies the kinematic
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(A) Bounds at q2 = 0, δ and 2δ from the
input data (B) Point at q2 = 0 chosen within bounds

(C) Bounds at q2 = δ are recalculated us-
ing the point selected at q2 = 0

(D) Bounds at q2 = 2δ are recalculated
using the points selected at q2 = 0 and δ

FIGURE 7.8: Step by step visualisation of how form factor curves are generated.

constraint). In practice, we keep δ finite and compute an interpolating function

through all the generated points. We must therefore check that δ can be made small

enough for it not to affect phenomenological quantities computed using the generated

curves (and check for independence of the interpolation method).

This method to generate curves becomes incredibly expensive as the value of δ

decreases, as the Dispersive Matrix becomes very large, and more bounds are

calculated. Sections 7.5.2 and 7.5.3 show two different approaches to tackle this

problem.

Figure 7.9 shows 100 curves generated for a single resample of JLQCD B → πℓν

synthetic data points [80], and Figure 7.10 shows the DM method bounds overlaid,

showing that these match the envelope of the curves, as expected.



70 Chapter 7. Dispersive Matrix method

0 5 10 15 20 25
q2 (GeV2)

0

1

2

3

4

5

6
Fo

rm
 Fa

ct
or

Form Factor curves through a single set of resampled inputs
Input f0
Input f+

FIGURE 7.9: 100 curves generated for a single resample of JLQCD B → πℓν synthetic
data points [80].

7.5.2 Generating curves across bins

The described method allows us to generate form factor curves across the entire q2

spectrum. However, for phenomenological values, we integrate over bins and, it is

only necessary to generate curves over individual bins. This is advantageous as this

decreased range means we can use a greater number of points per bin and increase the

number of curves we can generate for a fixed computational cost.

The process is identical to that outlined before, however the first step is to q2 = tlower,

where tlower is the start of the bin, and we end after npoints at q2 = tupper.

To ensure that this method is valid, we test if these segments of form factor curves are

equivalent when starting at tlower compared to reaching tlower after a series of small

steps. Figure 7.11 shows the distribution of curves generated for a single resample of

input lattice data for f0 and f+. Because the kinematic constraint almost always

influences f+ and not f0, we observe a uniform distribution for f0 only. For f+, the

distribution is not uniform, so if we wish to compare two distributions, we instead

perform a two-sample Kolmogorov–Smirnov test [49].

The tests indicate that the distributions of curves through a given q2 are the same in

both cases, indicating that the segments of curves over these ranges are equivalent to

those generated over the whole kinematic region.
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FIGURE 7.10: 100 curves generated for a single resample of JLQCD B → πℓν synthetic
data points [80]. The DM method bounds for these points are also plotted.

7.5.3 ’Marching’ across the full q2 range

When generating form factor curves over the full q2 range, the size and number of

dispersive matrices increases, more so as δ decreases. However, the upper and lower

bounds for adding new points to a curve become closer and closer and effectively

coalesce as more points are added. This is because almost all freedom in the curve is

exhausted after sufficiently many points have been chosen. We find that we can

remove earlier points from the dispersive matrix provided we check that the width of

the bound for a new point remains close enough to zero. This speeds up the

generation of curves; the dispersive matrix does not keep growing in size and we

‘march’ across the range of q2. In practice, a threshold is set below which the width of

the bound is considered to be zero. If the width is above the threshold, then we do not

drop an earlier point before computing the next set of bounds. We check that we can

make the threshold small enough for it not to affect phenomenological results.

7.5.4 Tests

This section contains various tests to check the validity of the method. As the method

is identical for both decays, B → πℓν and Bs → Kℓν, tests are only performed on the

former.
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FIGURE 7.11: Comparing the distribution of form factor curves at q2 = 10GeV2, when
using intermediate points (at q2 = 1, 2, ..., 9 GeV2) and when jumping directly.

7.5.4.1 Direction of curve generation

To convince ourselves that this method is valid, we can check if it is consistent. One

test is to see if the curves created are equivalent if they are generated from low-to-high

q2 or high-to-low q2.

One assumption of the Dispersive Matrix method is that a single set of bounds gives

the minimum and maximum allowed form factor values, and all values within these

bounds are equally probable in the absence of other information.

For a distribution of curves through a chosen q2, we can test that this distribution

aligns with our assumption.
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FIGURE 7.12: Comparison of the cross-section of f0 curves at q2 = 10GeV2, when
generated forwards and backwards. For each direction, we have the K-S test p-value

associated to an underlying uniform distribution.

Figure 7.12 shows that the distribution of curves for f0 when generated forwards

(starting at q2 = 0GeV2) and backwards (starting at q2 = 23.4GeV2) are consistent with

the same uniform distribution. To generate curves forwards and backwards in the

same way, we ignore the kinematic constraint. As in almost all cases this constraint

does not impact f0, we use this form factor only to assess the impact of the direction of

generation. The results of the K-S test provide evidence that the direction of curve

generation does not influence the distribution of curves generated, as both are

consistent with the uniform distribution.

7.5.4.2 Dependence on δ

Figure 7.13 shows how Γ/|Vub|2, the calculated decay rate with the CKM factor

removed, changes as δ is varied. We see stability as δ is decreased and that the effects

of non-zero δ are much smaller than the variations allowed by unitarity.

7.5.4.3 Dependence on interpolation method

For a sufficiently small value of δ, the points generated should be close enough

together that the interpolation method chosen should not impact the curves

meaningfully.
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FIGURE 7.13: Calculation of Γ|Vub|−2 using 500 form factor curves for various values
of δ. The plotted bars indicate the median, 16th and 84th percentile values.
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FIGURE 7.14: Calculation of Γ|Vub|−2 using 500 form factor curves for various interpo-
lation methods. The plotted bars indicate the median, 16th and 84th percentile values.

We can see from figure 7.14 that the effect of our choice of interpolation method does

not have an appreciable effect on the results.

7.5.5 Marching parameters

In the implementation of the marching method, we have a number of parameters that

influence the degree to which previous points are excluded. The three parameters are

as follows:

• ”marching threshold” - This parameter is used to specify the maximum width

threshold we consider to be effectively zero. If the width calculated is below this

threshold, then the next bounds calculated (at the next integer multiple of δ) will

use the same number of input points as in this calculation. If the width is found

to be above this threshold, then the process continues as normal, but the next

bounds calculation will have an additional input point (no input point will be

removed).



7.5. Form Factor Curves from the DM method 75

• ”warning threshold” - In this method, we dynamically adjust the number of

points being used by monitoring the width of the bounds. We have a threshold

width that we set that tells us if the bounds become too large. This indicates to

us that we have started the marching method, but we have not properly

managed the number of points used in our calculation, resulting in the newly

calculated bound width to become too large. If this warning triggers, the curve

we are generating must not be used.

• ”marching delay” - This is the number of times the bounds calculation must

satisfy the marching threshold condition before the marching procedure begins.

This should not impact the creation of curves, but practically it can help make

sure bounds stay below our warning threshold.

There are a few ways we can test the impact of these parameters, and if they are found

to be incorrectly set, they can be changed until they are found to not impact the

generation of curves.

The first is to compare the distribution of curves generated at various values of q2,

when generated forwards and backwards. If these parameters are poorly chosen, then

the generation of curves will deviate away from those allowed by unitarity the further

along the process we are. This would lead to the distribution of curves at various q2

not being the same for each direction of curve generation.

The second method is to use the curves to calculate a phenomenological value, such as

Vub, while varying the parameters. These parameters are then varied and their impact

on Vub results is measured.

7.5.5.1 Marching threshold

To assess the impact of this parameter, we vary our marching threshold and, using

experimental data, calculate the decay rate (without the CKM matrix element factor)

for 500 curves over many resamples of our lattice data.

Figure 7.15 shows that the impact of the marching threshold, over the range of values

chosen, does not have a significant impact on the decay rate.

7.5.5.2 Warning threshold and marching delay

The ”warning threshold” parameter does not impact the generation of curves, but

instead acts as an indicator that the marching method impacted curve generation. We

would also know that this has occurred if the distribution of curves differs from

forward/backward generation.
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FIGURE 7.15: Dependence of Γ|Vub|−2 on marching threshold, using 500 curves per
threshold.

Similarly, as ”marching delay” serves only a practical purpose, variation of this

parameter is not necessary as the ”warning threshold” warning is not triggered.

7.5.6 Number of curves per resample

When generating curves, a choice needs to be made on how many curves are

generated per resample of our input form factor values. In the limit of an infinite

number of resamples, the results generated using the curves will be independent of

this choice. In reality, with a fixed amount of computation, we should ensure this

choice does not meaningfully affect our results.

One would expect that the best choice would be a single curve generated per

resample, however if more curves per resample yields the same results then more

curves would be preferable as this cuts down on the overhead of resampling more

often (and also from initialization of parallel processing tasks). In reality, the process

of generating the curves is much more expensive than all other parts of the process, so

this benefit is very minimal.

Figure 7.16 shows how the full range Γ|Vub|−2 changes as the number of curves per

resample is varied. For each, the total number of curves generated is fixed (1760

curves), and a delta value of 0.776 was used.

It can be seen from the graph that, as expected, any effect of the choice is much smaller

than the combined effect of all other sources of error (with an extreme enough number

of curves per resample, meaning very few resamples, this will not stay true).
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FIGURE 7.16: Effect of varying the number of curves per resample on Γ|Vub|−2 for
B → πℓν (left) and Bs → Kℓν (right)

7.5.7 Extraction of Vub for DM Curves

Unlike the fitting procedure for Z-fits (namely for B → πℓν in this work), the

generation of form factor curves using the DM framework cannot be done for lattice

and experimental data simultaneously. Hence, we take a set of curve pairs (for f+ and

f0) generated using lattice data and subsequently combine it with experimental data

to extract Vub.

In the case of B → πℓν, we have 4 experimental datasets, each giving binned

differential decay rate measurements and associated covariance matrices, from Belle

and BaBar [64, 68, 62, 65].

For a set of curves generated for this decay, we can extract a Vub for each curve pair, c,

by finding the θ2 = |Vub|2 that minimises

χ2
c(θ) = ∑

e

(
∆⃗e − θ2∆⃗0

c

)T
C−1

e

(
∆⃗e − θ2∆⃗0

c

)
, (7.36)

Here ∆⃗e is a vector of experimental partial branching fractions for a set of q2 bins for

experiment e, while ∆⃗0
c are the corresponding quantities, without the CKM factor,

computed using the curve pair c. Ce is the experimental covariance matrix.

Table 7.3 gives the average Vub values for these experimental datasets over a sample of

1760 curves generated for B → πℓν.

As these curves were generated without experimental data, the shape of ∆⃗0
c often does

not align well with the differential decay rate measurements and the χ2/DoF for

many of these curves is very large, shown in Figure 7.17.

Curves with a large χ2 fit the experimental differential decay rate distribution poorly,

and so we would like to account for this. This is done by using the Bayesian
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Experiment Vub (×103)

Belle 2010 3.70(65)
Belle 2013 3.84(61)
BaBar 2012 3.66(49)
BaBar 2010 3.70(56)
All experiments excl. BaBar 2010 3.71(56)
All experiments 3.73(59)

TABLE 7.3: Vub results for B → πℓν from different experiments.
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FIGURE 7.17: Vub vs χ2/DoF for all curves.

viewpoint, where the result for each curve pair is weighted by a likelihood, e−χ2/2.

The posterior for a Vub value θ is

ρ(θ) =
∑c exp

[
−χ2

c(θ)/2
]

∑c

∫ θ1

θ0
exp [−χ2

c(θ)/2] dθ
, (7.37)
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and from this distribution which we can evaluate the expectation value for some

function g of θ according to

ĝ =
∫ θ1

θ0

g(θ)ρ(θ)dθ. (7.38)

In particular, we can evaluate the mean and variance of θ to provide an estimated

|Vub|. We are assuming a uniform prior for θ in the range [θ0, θ1]. We checked that

several choices of the range did not change our results within the accuracy quoted.

Table 7.4 and figure 7.19 show results for |Vub| for different combinations of

experimental inputs. The table also shows the compatibility of our results with those

obtained by JLQCD [80] from a BCL Z-fit to the same inputs. The variation from

resampling the input form factor values when computing phenomenological results is

bigger than the variation seen by changing ninner. Hence, we performed the above

analysis by generating one curve for each resample and increasing the number of

resamplings. We used 1760 form-factor curve pairs.

This is one demonstration of a method to generate form factor curves as functions of

q2 which satisfy dispersive unitarity constraints and can easily be used in

phenomenology, maintaining the DM matrix method’s feature that no functional form

needs to be imposed in advance.

Figure 7.18 shows the differential decay rate from all pairs of curves ( f0 and f+) with

opacity scaling with the relative likelihood (the likelihood relative to the maximum

likelihood of all the curves for that experimental dataset).

Experiment Vub (×103) DM Curves Vub (×103) BCL z-fit

Belle 2010 4.05(43) 4.10(45)
Belle 2013 4.14(52) 3.91(45)
BaBar 2010 3.55(39) 3.58(41)
BaBar 2012 3.97(48) 4.04(43)
All experiments 3.88(38) 3.93(41)
All excl. BaBar 2010 4.08(45) 4.01(42)

TABLE 7.4: Vub results for B → πℓν for different experimental datasets using the
posterior distribution[62, 65, 63, 68].

For Bs → Kℓν, we undergo the same procedure as for the Z-fit approach in Section

6.7.2. Our weighted Vub value is 3.74(43)× 10−3, with χ2 = 0.042 (this is compatible

with the RBC/UKQCD result of 3.66(31)). Figure 7.20 shows how χ2 varies with Vub.
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FIGURE 7.18: Differential decay rate of all curve pairs, with opacity scaling with the
relative likelihood, alongside binned experimental results.



7.5. Form Factor Curves from the DM method 81

0.0025 0.0030 0.0035 0.0040 0.0045 0.0050 0.0055 0.0060
Vub

0

200

400

600

800

1000

(V
ub
)

BaBar2010
Vub=3.55(39)×10 3

0.0025 0.0030 0.0035 0.0040 0.0045 0.0050 0.0055 0.0060
Vub

0

200

400

600

800

1000

1200

(V
ub
)

BaBar2012
Vub=3.97(48)×10 3

0.0025 0.0030 0.0035 0.0040 0.0045 0.0050 0.0055 0.0060
Vub

0

200

400

600

800

1000

(V
ub
)

Belle2010
Vub=4.05(43)×10 3

0.0025 0.0030 0.0035 0.0040 0.0045 0.0050 0.0055 0.0060
Vub

0

100

200

300

400

500

600

700

800

(V
ub
)

Belle2013
Vub=4.14(52)×10 3

0.0025 0.0030 0.0035 0.0040 0.0045 0.0050 0.0055 0.0060
Vub

0

200

400

600

800

1000

1200

1400

1600

(V
ub

)

All Exp
Vub = 3.88(38) × 10 3

0.0025 0.0030 0.0035 0.0040 0.0045 0.0050 0.0055 0.0060
Vub

0

200

400

600

800

1000

1200

(V
ub

)

All excl BaBar2010
Vub = 4.08(45) × 10 3

FIGURE 7.19: Bayesian posterior distributions of Vub for various experimental
datasets.
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Chapter 8

Phenomenology

Two methods in this work, the Z-fit method and the DM curve method, allow for the

generation of form factor curves across the kinematic range using unitarity and lattice

QCD results. The motivation for doing so is to allow us to measure phenomenological

values. This section shows the results using both of these methods, for both decays,

for quantities introduced in Section 2.8: the differential decay rate, forward-backward

asymmetry, R ratio, and the ’improved’ R ratio.

8.1 Comparison with 2015 Results

To test the implementation of phenomenological equations, we test to see if the correct

curves and results are recovered when using the central BCL coefficients from the

RBC/UKQCD collaboration’s 2015 paper [72]. The various results are in Appendix A.

We can see from Figures A.1-A.5 the central curves from the previous phenomenology

plots have been successfully refitted.

The Z-fit column in Table A.1 shows the reconstructed values from the BCL

coefficients. Some values differ by a small amount, however this can most likely be

attributed to updated mass/constant values and any discrepancy between values

calculated using the central form factor coefficient values only, and the mean of values

generated using the full distribution of coefficients.

8.2 Z-fit and DM Curve Results

Table 8.1 gives a summary of key phenomenological quantities, using either the Z-fit

approach or the DM curves method, and Figures 8.1-8.12 compare the q2 dependence
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of these quantities. For all the phenomenological results in this section, the DM curves

are not weighted according to experimental results.

These plots consistently show a much wider spread of values for the DM curves

method compared to the Z-fit approach. A possible explanation to this is the

fundamental difference in the fitting procedure for each of these methods. For a given

resample of the synthetic form factor points, the Z-fit approach finds the best fitting

set of coefficients, corresponding to a single, most likely, pair of form factor curves. In

contrast, for the same synthetic form factor points, the DM curves method can

generate curves that may take any form, provided they obey unitarity constraint.

Another possible explanation is the truncation for the z-series. For the Z-fit method

used in this work, we are forced to truncate the z-expansion due to the number of

degrees of freedom of the data generated on the lattice. This truncation limits the

shape of the form factor curves, which may artificially reduce the spread in the results

we see in this section. The 2023 RBC/UKQCD paper for Bs → Kℓν uses a Bayesian

fitting approach, which allows a larger number of coefficients to be used in the

Z-fits [88]. The phenomenological plots shown in this paper more closely resemble

those from the DM curves method, suggesting truncation of the z-expansion may play

a significant role in the results of this method.

Quantity Z-fit DM Curves

Γ(B → πµν)/|Vub|2 5.91(1.22)ps−1 5.38(2.38)ps−1

Γ(B → πτν)/|Vub|2 4.19(0.75)ps−1 3.94(1.02)ps−1

Γ(Bs → Kµν)/|Vub|2 3.68(0.70)ps−1 6.26(2.29)ps−1

Γ(Bs → Kτν)/|Vub|2 3.54(0.45)ps−1 4.50(86)ps−1

R
τ/µ
π 0.71(03) 0.80(16)

R
τ/µ
K 0.97(07) 0.77(15)
∫ q2

max

m2
µ

dq2AB→πµν
FB (q2)/|Vub|2 0.028(6)ps−1 0.025(22)ps−1

∫ q2
max

m2
τ

dq2AB→πτν
FB (q2)/|Vub|2 1.09(19)ps−1 1.02(29)ps−1

∫ q2
max

m2
µ

dq2ABs→Kµν
FB (q2)/|Vub|2 0.0103(36) ps−1 0.0403(248)ps−1

∫ q2
max

m2
τ

dq2ABs→Kτν
FB (q2)/|Vub|2 0.95(13)ps−1 1.27(27)ps−1

AB→πµν
FB 0.0048(02) 0.0040(21)

AB→πτν
FB 0.262(04) 0.256(13)

ABs→Kµν
FB 0.0027(04) 0.0059(20)

ABs→Kτν
FB 0.2671(25) 0.2823(90)

TABLE 8.1: Various phenomenological quantities calculated using the Z-fit method
(with 10000 sets of coefficients) and the DM curves method (1760 curve pairs).
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FIGURE 8.1: Differential decay rate divided by |Vub|2 for B → πµνµ using Z-fit (left)
and DM curve (right) methods.
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FIGURE 8.2: Differential decay rate divided by |Vub|2 for Bs → Kµνµ using Z-fit (left)
and DM curve (right) methods.
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FIGURE 8.3: Differential decay rate divided by |Vub|2 for B → πτντ using Z-fit (left)
and DM curve (right) methods.
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FIGURE 8.4: Differential decay rate divided by |Vub|2 for Bs → Kτντ using Z-fit (left)
and DM curve (right) methods.
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FIGURE 8.5: Forward-backward asymmetry for B → πµνµ using Z-fit (left) and DM
curve (right) methods.
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FIGURE 8.6: Forward-backward asymmetry for Bs → Kµνµ using Z-fit (left) and DM
curve (right) methods.
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FIGURE 8.7: Forward-backward asymmetry for B → πτντ using Z-fit (left) and DM
curve (right) methods.
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FIGURE 8.8: Forward-backward asymmetry for Bs → Kτντ using Z-fit (left) and DM
curve (right) methods.
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FIGURE 8.9: Normalized forward-backward asymmetry for B → πµνµ using Z-fit
(left) and DM curve (right) methods.
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FIGURE 8.10: Normalized forward-backward asymmetry for Bs → Kµνµ using Z-fit
(left) and DM curve (right) methods.
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FIGURE 8.11: Normalized forward-backward asymmetry for B → πτντ using Z-fit
(left) and DM curve (right) methods.
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FIGURE 8.12: Normalized forward-backward asymmetry for Bs → Kτντ using Z-fit
(left) and DM curve (right) methods.
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Chapter 9

Conclusions

This work has seen similar techniques used to try and improve both the Z-fit and

dispersive matrix methods, with mixed success. One example of this is the inclusion

of information from both decays to saturate the unitarity constraint more fully.

In the case of Z-fits, the unitarity constraint acts as a condition on the fitted

coefficients, which never came close to affecting the fitting procedure, and hence did

not change the results of the fit. This was seen from the results of the two-sample

Kolmogorov–Smirnov test, which determined there was insufficient evidence that the

sets of coefficients obtained using the single-decay and two-decay method were

drawn from different underlying distributions. This was expected, as the unitarity

constraint does not play a significant role in the fitting for B → πℓν and Bs → Kℓν.

On the other hand, as the unitarity constraint plays a core role in the DM method,

directly determining the limits of the bounds (as the lower and upper bounds are the

threshold, beyond which the unitarity constraint is no longer fulfilled), we would

expect improvement to the bounds from any extra contribution to the unitarity

constraint. For this method, the two-decay variation saw slight improvements to the

width of the bounds (around 2-4%). It is possible that for both Z-fits and the DM

method, combining results for several decays would be far more significant for a

different choice of decays.

For similar reasons to the two-decay method, the use of alternative polynomials for

Bs → Kℓν to more accurately implement the unitarity constraint (as unlike for

B → πℓν, the pair production threshold does not align with the start of the cut) did

not see any measurable difference in the Z-fit coefficients. This was tested using the

two-sample Kolmogorov–Smirnov test.

When implementing a kinematic constraint on form factors, the application of the DM

method in previous literature [78, 84] handled the sampling over the overlap region

fairly exhaustively, where many points were chosen over this region and the bounds
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at some value of q2 were calculated for each point, keeping only the most extreme

bounds. A faster method of finding these extremal bounds was discussed in Section

7.3, where a minimisation procedure is used. It was then found that for a fixed

computational budget, it was more efficient to use the very top and bottom points in

the overlap region, as the difference between the bounds found was so small that the

results obtained over the many resamples of the lattice form factor data were

indistinguishable from those using the optimiser (this is true for the data at present,

however in the limit of more and more precise data and more computation, it may

prove beneficial to find the true extremal bounds using a minimisation algorithm).

Section 7.5 presents a novel approach to using the DM framework to generate a family

of form factor curves consistent with unitarity. This method avoids the

parametrization of the Z-fit approach, and any issues from truncating the z-expansion.

The computational cost of the curves method is greatly reduced using two different

approaches. Section 7.5.2 introduces the idea of generating curves only across

individual bins, as these bins are the regions over which we need to integrate our

curves over to compare to experimental data. Generating the curves over a much

smaller range of q2 prevents the Gram matrices becoming too large over subsequent

steps. This method was shown to generate curves consistent with those generated

over the full range.

The second approach, which was used for all the phenomenological results, is to only

include a certain number of the most recent points on the curve in the generation of

the next point. This also limits how large the Gram matrices grow, while also allowing

for curves to be generated over the full range of q2. This method had several

systematic variables which were investigated to show, at the scale of the values

chosen, that they did not change the curves generated. Although slower in most cases

than generation of curves over individual bins, this approach results in curves which

can then be used for comparison with any experimental data bins.

The phenomenological values for the two different methods were largely similar for

B → πℓν, however they differed (sometimes fairly significantly) for Bs → Kℓν. The

2023 paper by the RBC/UKQCD collaboration [88] for Bs → Kℓν using a Bayesian

fitting method, allowing for a larger number of Z-fit coefficients (not limited by the

number of degrees of freedom of the lattice simulation results), shows results using

the choice of 2 points for f+ and 3 for f0 give poor agreement compared to other

choices. This could explain why the Z-fit results for B → πℓν gives better agreement,

as we are able to use 3 points for both form factors.

The graphs for the differential decay rate and forward-backward asymmetry highlight

the greater spread of curves generated using the DM curves method. The

RBC/UKQCD phenomenological plots, that use a much greater number of coefficients
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(5 for f0 and 5 for f+), more closely resemble those from the DM method, suggesting

the discrepancy may come from the truncation of the z-expansion.

Where we see good agreement between the two methods for both decays is with the

extraction of the CKM matrix element, Vub, as can be seen in Table 9.1. In this table, we

see the mean and error of Vub extracted using the Z-Fit method and the DM curve

method (using the posterior distribution). The values obtained are very close for both

methods, and the errors are of similar size.

Experiment Vub (×103) - Z-Fit Vub (×103) - DM Curves

Belle 2010 4.08(45) 4.05(43)
Belle 2013 3.83(44) 4.14(52)
BaBar 2010 3.57(39) 3.55(39)
BaBar 2012 3.92(42) 3.97(48)
All experiments 3.91(41) 3.88(38)
All excl. BaBar 2010 4.00(41) 4.08(45)
LHCb (Bs → Kℓν) 3.66(31) 3.74(43)

TABLE 9.1: Vub results for B → πℓν and Bs → Kℓν for different experimental datasets
using Z-Fit and DM Curves.

To continue the research presented, there are several options. Firstly, one could

expand the analysis to numerous other sources of lattice data, and combine the results

to improve precision. This work chose data from JLQCD and RBC/UKQCD and used

them to compare proposed improvements to each method, as well as comparing the

results of the two methods.

Secondly, this work focusses on two semi-leptonic pseudoscalar to pseudoscalar

decays, B → πℓν and Bs → Kℓν. There are many other decays of interest with

different (and a different number of) form factors that may see improvement from the

multiple-decay methods introduced.

Another potential direction of research would be to develop a method of generating

the DM curves using lattice and experimental data simultaneously, instead of relying

on likelihood weighting.





93

Appendix A

Reconstruction of

phenomenological quantities
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FIGURE A.1: Differential decay rate divided by |Vub|2 for Bs → Kµνµ and B → πµνµ

from the 2015 paper (left) and central value curve reconstruction (right).
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FIGURE A.2: Differential decay rate divided by |Vub|2 for Bs → Kτντ and B → πτντ

from the 2015 paper (left) and central value curve reconstruction (right).
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FIGURE A.3: Forward-backward asymmetry for Bs → Kµνµ from the 2015 paper (left)
and central value curve reconstruction (right).
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FIGURE A.4: Forward-backward asymmetry for Bs → Kτντ from the 2015 paper (left)
and central value curve reconstruction (right).
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FIGURE A.5: Normalized forward-backward asymmetry for B → πτντ and Bs →
Kτντ from the 2015 paper (left) and central value curve reconstruction (right).

Quantity 2015 Result Reconstructed Central Value

Γ(B → πµν)/|Vub|2 6.2(2.5)ps−1 6.20ps−1

Γ(B → πτν)/|Vub|2 4.3(1.2)ps−1 4.27ps−1

Γ(Bs → Kµν)/|Vub|2 4.55(1.08)ps−1 4.55ps−1

Γ(Bs → Kτν)/|Vub|2 3.52(0.60)ps−1 3.51ps−1

R
τ/µ
π 0.69(19) 0.69

R
τ/µ
K 0.77(12) 0.77
∫ q2

max

m2
µ

dq2AB→πµν
FB (q2)/|Vub|2 0.028(19)ps−1 0.028ps−1

∫ q2
max

m2
τ

dq2AB→πτν
FB (q2)/|Vub|2 1.08(35)ps−1 1.07ps−1

∫ q2
max

m2
µ

dq2ABs→Kµν
FB (q2)/|Vub|2 0.0175(87) ps−1 0.0179ps−1

∫ q2
max

m2
τ

dq2ABs→Kτν
FB (q2)/|Vub|2 0.93(18)ps−1 0.93ps−1

AB→πµν
FB 0.0044(13) 0.0045

AB→πτν
FB 0.252(12) 0.251

ABs→Kµν
FB 0.0039(11) 0.0039

ABs→Kτν
FB 0.2650(79) 0.2645

TABLE A.1: Comparison of RBC/UKQCD B → πℓν phenomenological quantities and
the reconstructed values from the central values of the corresponding BCL coefficients.
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Appendix B

Derivation of the Outer Function

The susceptibilities are defined from derivatives of Π, leading to subtracted dispersion

relations:

χ0+
(
Q2
)
≡ ∂Π0+

∂q2
=

1

π

∫ ∞

0
dt

Im Π0+(t)

(t − Q2)2
, (B.1)

χ1−
(
Q2
)
≡ 1

2

∂2Π1−

∂ (q2)2
=

1

π

∫ ∞

0
dt

Im Π1−(t)

(t − Q2)3
, (B.2)

where we denote the outgoing lepton-pair momentum, q2, as the Mandelstam variable

t for clarity.

Πµν(Q
2) = i

∫
d4xeiqx⟨0|Jµ(x)J†

ν (0)|0⟩ (B.3)

= i
∫

d4k

(2π)4
⟨0| J̃µ(q) J̃†

ν (k)|0⟩ (B.4)

Im Πµν(Q
2) =

1

2

∫
d4k

(2π)4 ∑
Γ

∏
j∈Γ

∫ d3 pj

(2π)3

1

2ωj
⟨0| J̃µ(q)|Γ⟩⟨Γ| J̃†

ν (k)|0⟩ (B.5)

.(2π)8δ(4)(q − pΓ)δ
(4)(k − pΓ)

=
1

8(2π)2

∫
δ(q0 − ωBs − ωK)

ωBs ωK
|⟨0| J̃|Bs(p1)K(p2)⟩|2δ(3)(q − pΓ)d

3 p1d3 p2

(B.6)

Using
∫ d3 p

2E =
∫

d4 p δ(p2 − m2)Θ(p0) on momentum p1 gives:
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1

4(2π)2

∫
d4 p1d3 p2

ωK
δ(p2

1 − M2)Θ(p10)δ(q0 − p10 − ωK)δ
(3) (⃗q − p⃗Γ)|⟨0| J̃|Bs(p1)K(p2)⟩|2

(B.7)

=
1

4(2π)2

∫
d3 p2

ωK
δ((q0 − ωK)

2 − p⃗ 2
2 − M2)Θ(q0 − ωK)|⟨0| J̃|Bs(q, p2)K(p2)⟩|2 (B.8)

Using the Lorentz-invariance, we may choose the centre of mass frame. We switch to

spherical coordinates

p⃗2 = p




cos(ϕ)sin(θ)

sin(ϕ)sin(θ)

cos(θ)


 (B.9)

Im Πµν =
1

4(2π)2

∫ q0

0
dωK p δ(q2

0 − 2q0ωK + m2 − M2)Θ(q0 − ωK)× (B.10)

|⟨0| J̃|Bs(q0, p⃗, ωK)K(q0, p⃗, ωK)⟩|2dϕdcos(θ)

=
p

8(2π)2q0

∫ 1

−1
dcos(θ)

∫ 2π

0
dϕ|⟨0| J̃|Bs(q0, p⃗, ωK)K(q0, p⃗, ωK)⟩|2 (B.11)

Where ωK = q0

2 + m2−M2

2q0
. We substitute 2.71 into the above, where

p =




ωK

pcos(ϕ)sin(θ)

psin(ϕ)sin(θ)

pcos(θ)




(B.12)

q =

(
q0

0⃗

)
(B.13)
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p

8(2π)2q0

∫ 1

−1
dcos(θ)

∫ 2π

0
dϕ

[
2 f+

(
q2
) (

pµ −
p · q

q2
qµ

)
+ f0

(
q2
) M2 − m2

q2
qµ

]
(B.14)

[
2 f+

(
q2
) (

pν −
p · q

q2
qν

)
+ f0

(
q2
) M2 − m2

q2
qν

]

=
p

8(2π)2q0

∫ 1

−1
dcos(θ)

∫ 2π

0
dϕ 4 | f+|2

[
pµ pν −

ωK

q0
(pµqν + qµ pν) +

ω2
K

q2
0

qµqν

]
(B.15)

+ | f0|2
[
(M2 − m2)2

q4
0

]
qµqν + f+ f0

[
M2 − m2

q2
0

(
pµqν + qµ pν −

ωK

q0
(2qµqν)

)]

=
p

(2π)2q0

∫ 1

−1
dcos(θ)

∫ 2π

0
dϕ 4 | f+|2

[
pµ pν − 2

ωK

q0
(pµqν) +

ω2
K

q2
0

qµqν

]
(B.16)

+ | f0|2
[
(M2 − m2)2

q4
0

]
qµqν + 2 f+ f0




M2 − m2

q2
0

(
pµqν −

ωK

q0
qµqν

)

︸ ︷︷ ︸
= 0




We look at the integrand as µ, ν varies (only components with non-zero contribution):

µ, ν Integrand

0, 0 4 | f+|2
(
ω2

K − ω2
K

)
+ | f0|2 (M2−m2)2

q2
0

1, 1 4 | f+|2 p2 cos2(ϕ) sin2(θ)
2, 2 4 | f+|2 p2 sin2(ϕ) sin2(θ)
3, 3 4 | f+|2 p2 cos2(θ)

Integrating:

µν Integrand

0, 0 4π| f0|2 (M2−m2)2

q2
0

1, 1 4 | f+|2 p2π 4
3

2, 2 4 | f+|2 p2π 4
3

3, 3 4 | f+|2 p22π 2
3

Therefore

Im Πµν =
p

8(2π)2q0

(
4 | f+|2

4πp2

3
δij + 4π| f0|2

qµqν

q2

(M2 − m2)2

q2
0

)
(B.17)

=
1

q2

(
qµqν − q2gµν

)
ΠT

J

(
q2
)
+

qµqν

q2
ΠL

J

(
q2
)

(B.18)

Im ΠT(Q2) =
p3

6πq0
| f+|2 (B.19)

Im ΠL(Q2) =
p

8πq0

(M2 − m2)2

q2
0

| f0|2 (B.20)
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Using ω2
K − p2 = m2 and ωK = q0

2 + m2−M2

2q0
, we have

p =

([
q0

2
+

m2 − M2

2q0

]2

− m2

) 1
2

(B.21)

=

(
q2

0

4
+

(m2 − M2)2

4q2
0

− m2 + M2

2

) 1
2

(B.22)

=

(
(t − t+)(t − t−)

4t

) 1
2

(B.23)

We define z (t; t0) as

z (t; t0) ≡
√

tcut − t −√
tcut − t0√

tcut − t +
√

tcut − t0
, (B.24)

where tcut = (M + m)2 is the pair production threshold and

t0 = tcut −
√

tcut(tcut − (M − m)2) is a common choice to make z(t) symmetric around

0 for the range of available t values. This mapping takes the q2 complex plane onto a

unit disc. Therefore,

dz

dt
=

√
tcut − t0√

tcut − t
(√

tcut − t +
√

tcut − t0

)2
. (B.25)

We define the following functions:

W+(t) =
1

6πt
1
2

(
(t − t+)(t − t−)

4t

) 3
2

(B.26)

W0(t) =
1

8πt
3
2

(t+t−)
(
(t − t+)(t − t−)

4t

) 1
2

(B.27)

Here we have introduced t± = M ± m. We define our outer function, ϕi (t; t0):

ϕi (t; t0) =

[
Wi(t)

|dz (t; t0) /dt| χj (q2) (t − Q2)nj

] 1
2

(B.28)

We make the common choice, Q2 = 0. ϕ+ (t; t0) and ϕ0 (t; t0) are then given by:
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ϕ+ (t; t0) =

[
W+(t)

|dz (t; t0) /dt| χ1− t3

] 1
2

(B.29)

=

√
1

48πχ1−

(
tcut − t

tcut − t0

) 1
4 (√

tcut − t +
√

tcut − t0

)
(t+ − t)

3
4 (B.30)

(√
tcut − t +

√
tcut − t−

) 3
2 (√

tcut − t +
√

tcut

)−5

ϕ0 (t; t0) =

[
W0(t)

|dz (t; t0) /dt| χ0+ t2

] 1
2

(B.31)

=

√
1

16πχ0+

(
tcut − t

tcut − t0

) 1
4 (√

tcut − t +
√

tcut − t0

)
(t+ − t)

1
4 (B.32)

(√
tcut − t +

√
tcut − t−

) 1
2 (√

tcut − t +
√

tcut

)−4
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with Möbius domain-wall fermions”. In: Phys. Rev. D 106 (5 Sept. 2022),

p. 054502. DOI: 10.1103/PhysRevD.106.054502. URL:

https://link.aps.org/doi/10.1103/PhysRevD.106.054502.

[81] Nikolai Husung. Private communication. 2022.

[82] G. Martinelli, S. Simula, and L. Vittorio. “|Vcb| and R(D(∗)) using lattice QCD

and unitarity”. In: Phys. Rev. D 105 (3 Feb. 2022), p. 034503. DOI:

10.1103/PhysRevD.105.034503. URL:

https://link.aps.org/doi/10.1103/PhysRevD.105.034503.

[83] G. Martinelli, S. Simula, and L. Vittorio. “Exclusive determinations of |Vcb| and

R(D∗) through unitarity”. In: Eur. Phys. J. C 82.12 (2022), p. 1083. DOI:

10.1140/epjc/s10052-022-11050-0. arXiv: 2109.15248 [hep-ph].

[84] Guido Martinelli, Silvano Simula, and Ludovico Vittorio. “Exclusive

semileptonic B → πℓν and Bs → Kℓν decays through unitarity and lattice

QCD”. In: Journal of High Energy Physics 2022.8 (Aug. 2022), p. 22. ISSN:

1029-8479. DOI: 10.1007/JHEP08(2022)022. URL:

https://doi.org/10.1007/JHEP08(2022)022.



BIBLIOGRAPHY 111

[85] Guido Martinelli, Silvano Simula, and Ludovico Vittorio. “Non-perturbative

bounds for B → D(∗)ℓνℓ decays and phenomenological applications”. In: PoS

LATTICE2021 (2022), p. 365. DOI: 10.22323/1.396.0365. arXiv: 2111.10582

[hep-ph].

[86] R. L. Workman et al. “Review of Particle Physics”. In: PTEP 2022 (2022),

p. 083C01. DOI: 10.1093/ptep/ptac097.

[87] Thomas Blake et al. “Dispersive bounds for local form factors in Λb → Λ

transitions”. In: Physical Review D 108 (Nov. 2023). DOI:

10.1103/PhysRevD.108.094509.

[88] J. M. Flynn et al. “Exclusive semileptonic Bs → Kℓν decays on the lattice”. In:

Phys. Rev. D 107 (11 June 2023), p. 114512. DOI: 10.1103/PhysRevD.107.114512.

URL: https://link.aps.org/doi/10.1103/PhysRevD.107.114512.

[89] Guido Martinelli et al. “The DM approach to semileptonic heavy-to-heavy and

heavy-to-light B decays”. In: PoS LATTICE2022 (2023), p. 298. DOI:

10.22323/1.430.0298. arXiv: 2211.15131 [hep-ph].

[90] Maxwell T. Hansen and Toby Peterken. Discretization effects in finite-volume

2 → 2 scattering. 2024. arXiv: 2408.07062 [hep-lat]. URL:

https://arxiv.org/abs/2408.07062.

[91] S. Navas et al. “Review of particle physics”. In: Phys. Rev. D 110.3 (2024),

p. 030001. DOI: 10.1103/PhysRevD.110.030001.


	List of Figures
	List of Tables
	Declaration of Authorship
	Acknowledgements
	1 Introduction
	2 Standard Model
	2.1 Fundamental Particles
	2.2 Symmetries
	2.3 Electroweak Interactions
	2.3.1 The Electroweak Lagrangian
	2.3.2 Spontaneous Symmetry Breaking & the Higgs Mechanism
	2.3.3 Yukawa Interactions
	2.3.4 CKM Matrix

	2.4 Quantum Chromodynamics
	2.5 Lattice QCD
	2.5.1 Path Integrals
	2.5.2 Importance sampling

	2.6 Semileptonic Decays
	2.7 Correlation functions
	2.8 Form Factors and Phenomenology
	2.8.1 Differential Decay Rate
	2.8.2 Forward-Backward Asymmetry
	2.8.3 R Ratio


	3 Statistical Techniques
	3.1 Bootstrapping
	3.2 Kolmogorov–Smirnov test

	4 Choice of Data
	4.1 B 
	4.1.1 Combining data for Belle 2013

	4.2 Bs K 

	5 Dispersive Bounds
	6 Z-Fits
	6.1 BGL Parametrization
	6.2 BCL Parametrization
	6.3 Fitting Procedure
	6.4 Unitarity constraint
	6.5 Alternative polynomials
	6.6 Z-Fits with 2 decays
	6.6.1 Method
	6.6.2 Comparison with single decay

	6.7 Extracting Vub
	6.7.1 B 
	6.7.2 Bs K 


	7 Dispersive Matrix method
	7.1 The Dispersive Matrix
	7.1.1 Bootstrapping Procedure

	7.2 Improving Numerical Stability
	7.3 Sampling Across the Overlap Region
	7.4 The DM method for two decays
	7.4.1 Comparison with single-decay

	7.5 Form Factor Curves from the DM method
	7.5.1 Method
	7.5.2 Generating curves across bins
	7.5.3 'Marching' across the full q2 range
	7.5.4 Tests
	7.5.4.1 Direction of curve generation
	7.5.4.2 Dependence on 
	7.5.4.3 Dependence on interpolation method

	7.5.5 Marching parameters
	7.5.5.1 Marching threshold
	7.5.5.2 Warning threshold and marching delay

	7.5.6 Number of curves per resample
	7.5.7 Extraction of Vub for DM Curves


	8 Phenomenology
	8.1 Comparison with 2015 Results
	8.2 Z-fit and DM Curve Results

	9 Conclusions
	Appendix A Reconstruction of phenomenological quantities
	Appendix B Derivation of the Outer Function

