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Abstract

A summary of the design calculation steps used in Simulation.

1 Problem formulation

Let G* represent the true, possibly non-linear form of the system to be controlled. This system can be
linearised about an operating point to give a model with the state-space form (1), in which z4(¢) € R”
represents the system state at time-step t of trial k, and ug(t) € R? and yx(t) € R? represent the
system input and output respectively.

i (t + 1) = Awk(t) + Buk(t)
yr(t) = Ca(t) (1)
ILC analysis can be simplified by packaging the state-space model (1) into a single ’lifted’ sys-

tem matrix representing the system dynamics over a full trial. This requires representing signals as
’supervectors’ such that

T
ya = [ya(1) ... wa(N)] eRW (2)
T
ye = [ue(1) ... w(N)] € RN
up = [ug(0) ... up(N—1)]" e RPN
This allows (1) to be re-written as
yr = Guy, +d (3)
where G € RIV*PN s given by
CB 0
_ CAB CB 0
G= : : (4)
CAN-'B CAN—2B ... CB

and d is the initial condition response

d= [C:E(), CA(E(], ceey CANfll'()]T S §RqN

however for simplicity d = 0 is assumed throughout.



Figure 1: A diagram of the rotary inverted pendulum setup.

2 Inverted pendulum model

Control algorithms were implemented using MATLAB and Simulink on a simulation of the Quanser
QUBE-Servo. The control variable was the input voltage to a rotational servo motor that altered the
angle 0 of a rotary arm to which the pendulum was attached. This rotation was then used to stabilise
the pendulum angle o. A diagram of the setup can be seen in Figure 1.

The full system model is highly non-linear, with equations taking the form

ma1(g2)d1 + mi2(gz)dz + 2mal3 sin(gz) cos(g2)d1dz — malaLy sin(g2)d3 =
ma1(q2) G + maz(g2)dz — mal3 sin(gz) cos(q2)di — magls sin(gz)

where my,, m,, Ly, Ly, J,, J. represent the mass, length, and moment of inertia of the pendulum
and rotary arm respectively [1]. The applied torque 7 is related to the motor voltage V;,, via

(Vi — k)
e S— (6)

where k,,, is the motor torque constant and R,, is its terminal resistance.
These equations can be expressed in the standard form

M(q)§+C(g,4)q + G(q) = F(q)u (7)
or
mi1(g2) mi2(qe) | | ¢ " 2mol3 sin(gz) cos(g2)ge —malaLy sin(g2)de | [ ¢ " 0 _
. 2 . . . . —_—
ma1(q2) ma2(q2) | | 2 —mal3 sin(ga) cos(ga)d1 0 2 magla sin(ga)
—— —_— ~— —
M(q) g C(q,9) q G(q)

Equations can be linearised about the operating point at a = 0 by using small angle approximations.
This allows the system to be expressed in the form

Il—i-mll%—i—mgL% molqls - 0 0 |1 9)
molLqly Iz-i-mgl% 0 mogls |0 T




so that linear state space equations are given by (1) with x(t) = [¢(t) T, ¢(t) "], u(t) = V;, and

0

A= 0

i

These are then used to construct matrix G in (4).
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feedback controller K took the form of two nested PID controllers, K; and K.
matrices of the stabilised linearised model P are as follows:

O O =

0
~0.1791
0.109
—35.8088
| 21.8055
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As outlined in Section 5 of the main paper,
The state-space

o O o o
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