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Abstract

Population size estimation has long been a key area of interest across various
fields. The Schnabel census, a widely applied capture-recapture method, is com-
monly used for population estimation. However, the topic of sampling effort in
Schnabel census studies remains insufficiently explored. This study aims to deter-
mine the required sampling effort in Schnabel census studies, considering different
levels of capture success rates and population heterogeneity. To address this, the
number of capture occasions, T, is adjusted to achieved different probabilities
of missing observation, po, with the goal of maintaining a appropriate width of
confidence interval. Specifically, maintaining po < 0.5 could limit uncertainty to
within 20% of the true population size for N > 100. Zero-truncated counting
distribution was applied by fitting three models: binomial, beta-binomial, and
binomial mixture. The findings reveal an exponential relationship between the
desired success capture rate and the required number of capture occasions. Addi-
tionally, lower detectability requires more capture occasions to achieve the same
level of capture success rate compared to higher detectability. This methodolog-
ical approach provides robust and efficient estimation strategies, ensuring the
sustainability and feasibility of population monitoring program.
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1 Introduction

Population size estimation has long been a subject of interest for many years across
various fields (McCrea and Morgan, 2015). One widely used method for statistical
population size estimation is the Schnabel census method (Schnabel, 1938). This
method involves taking successive independent random samples from a closed popu-
lation. Whenever an unmarked individual is captured, it is given a unique identifying
mark before being released back into the population. The usual assumption is that
the probability of capturing any particular individual is the same (Seber, 1982).

A fundamental aspect of the Schnabel census design is determining the appropriate
sampling effort. Figuring out the number of occasions needed to achieve the desired
level of accuracy is crucial, especially when resources such as labour, time, and fund-
ing are limited. Xi et al. (2008) examined the minimum capture proportion required
to obtain reliable population size estimates under various capture-recapture models,
including discrete-time frameworks applicable to the Schnabel census. Sample size
and sampling effort directly affect the accuracy and precision of estimates. Burke
et al. (1995) demonstrated this using 26 years of capture-recapture data on slider
turtles, examining the effects of sample size and study duration on population size
estimates. Similarly, Otis et al. (1978) explained that live-capture studies require both
a sufficiently large number of distinct animals captured and a sufficient number of
recaptures.

Decreasing sample size or sampling effort can lead to decreased precision in estimates.
McKelvey and Pearson (2001) found that 98 percent of samples in small animal pop-
ulation studies were insufficient to estimate population density. Likewise, Howe et al.
(2013) discovered that 15-25 traps were often inadequate for determining female black
bear population density. In practice, a larger sample size is usually preferred to ensure
a more accurate estimate, but this is not always possible due to logistical or financial
constraints. Kordjazi et al. (2016) demonstrates that precision exhibits only marginal
improvements with higher level of sampling effort. This implies that there exists an
optimal point where sampling effort and precision can be balanced, allowing for the
collection of high-quality data without excessive resource costs and efforts. Ultimately,
it is a matter of finding a balance between the desired precision and the feasibility of
the study (Conner et al., 2015).

This study investigates the necessary sampling effort in Schnabel census studies,
accounting for varying capture success rates and population heterogeneity. Initially,
the relationship between sampling effort, capture probability, and capture success rate
is analysed using a simple binomial likelihood. The framework is then extended to
more flexible models, including the beta-binomial and binomial mixture, to incorporate
heterogeneity in detectability.



Table 1: Structure of capture histories from a Schnabel census. Each entry X; ;
indicates whether individual ¢ was detected (X;; = 1) or not (X;,; = 0) during
occasion j. The observed data include capture counts for individuals ¢ = 1,2,...,n.
The remaining individuals ¢ = n 4+ 1,..., N, who were never detected, contribute
unobserved zero histories and are not present in the recorded sample.

Individual Occasion j
7 1 2 T
1 Xl,l X172 Xl,T X1.
2 X2 Xo2 X21T Xo.
3 X31 X32 X3 T X3.
n Xn,l Xn72 e Xn,T Xn.
n+1 Xn+11 Xn+12 o Xppir | Xnt1
n+2 Xnt21  Xnt22 -0 Xpgor | Xnto
n+3 Xni31  Xnis2 ... Xpgsr | Xngs
N-1 XN-11 XN-12 -+ Xno17 | XN-1
N XN,l XN,Q XN,T XN-

2 Schnabel Census

In a Schnabel census, individuals captured on each occasion are first examined for
existing tags, then marked, and released. This tagging process is repeated during each
capture event. The core of the Schnabel census involves a series of sequential, inde-
pendent random samplings of a closed population. Any unmarked individual is tagged
upon capture, except for the final sampling (Schnabel, 1938; McCrea and Morgan,
2015).

The raw data from a Schnabel census consist of capture records for all observed indi-
viduals. The capture-recapture scenario is illustrated in Table 1. Here, X; ; represents
the capture history of individual 7 during occasion j: X; ; = 1 indicates that individ-
ual ¢ was detected during occasion j, while X; ; = 0 indicates that they were not. The
indices i = 1,2,...,N and j = 1,2,...,T define the individuals and capture occa-
sions, respectively. The sum X; = ). =1 X ; represents the capture count for each
individual i, where X; = 0 signifies that individual 7 was undetected across all T
capture occasions.

The data consist of two parts: the observed counts X;., Xs.,...,X,. for the sam-
pled individuals, and X,41., X5 42.,...,Xn. for the unobserved individuals n +
1,n + 2,...,N that were not captured in the sample. This distinction allows us
to differentiate between a full population of counts Xi., X5.,..., Xy. and a zero-
truncated sample of counts X;., Xo., ..., X,., assuming that X, 1., Xp,42.,..., Xn. =
0. Capture-recapture methods aim to estimate the number of missed individuals,
thereby providing an estimate of the total population size N.



2.1 Counting Distribution

From the capture-recapture histories, a count distribution is formed by creating a
frequency table, such as Table 2, which summarizes how frequently each unit was
identified. In this context, f,, indicates the number of individuals captured exactly m
times during the study period, while n = 22:1 fm denotes the number of individuals
captured at least once, where m =1,2,...,T.

Table 2: Frequency Table for Capture Counts with 7' Capture Occasions/Sources

m 0 1 2 T

fm fo f1 f2 fr

Individuals who were never captured result in a zero count, fy, which is absent from
the data and is known referred to as zero-truncated count data. Statistically, this
requires dealing with zero-truncated count distributions. Let p, = P(X = z) represent
an appropriate distribution model for the capture counts of each individual in the
population. Here, pg = P(X = 0) denotes the probability that an individual is not
detected across all T' capture occasions. This parameter can be interpreted as the
proportion of the population that remains unobserved and is a key component in
estimating the number of unseen individuals.

To estimate the number of missing observation fy, the Horvitz-Thompson estimator is
utilized:

N n
N = , 1
T— (1)
which further leads to
7 Do
=N . 2
fo= (2)
It is important to note that
. 1 1

E(N) N(1—po) = N.

= E’n:
L —po (=) L —po

This holds under the assumption that py is known. However, in most cases, p, is
unknown and need to be estimated. To achieve this, a distributional model is assumed,
introducing parameters 6, such that p, = p,(6).

2.2 Zero-truncated counting distribution

In a capture-recapture study, N and f, are unknown since they are unobserved in the
sample. As individuals not detected in any capture occasion are excluded from the



sample, we only observe a zero-truncated count of X. Inferences are thus based on a
zero-truncated distribution, as shown in (3),

+_ D=
Dz’ = 3
1 —po ®)

where p,(0) = P(X = z|0) represents a model requiring the computation of the max-
imum likelihood estimator (MLE). Closed-form solutions for MLEs of zero-truncated
count distributions are generally unavailable. However, these estimators can be derived
using the expectation—maximization (EM) algorithm, as outlined in the works of
Bohning et al. (2018) and Dempster et al. (1977).

EM Algorithm for Zero-Truncated Counting Distribution
First, initialize the parameters 6 to some random values.
Step 1. In E-step, estimate fo with (2).
Step 2. In M-step, compute a new MLE 0 using the full frequency table f07 fi, oo fm

Repeat E- and M-step with the newly generated estimates and continue the cycle
until a convergence is achieved. This algorithm aims to compute 8 that optimize the
likelihood of truncated densities in (4).

[

)
Po

]fz (1)

The procedure is illustrated in the next section.

2.3 Likelihood based on binomial distribution

Assuming equal catchability, X ~ Binomial(T,0), where § € (0,1) is the capture
probability for each individual in any random capture occasion.

pe=Px=a)= (o0 (5)

The likelihood function is defined as
vo) =TI |(;)era -0 )
=0

Therefore, the log-likelihood for equation (6) is

T T

T
1(0) = Zfz In (Z) + foI Inf+ NTIn(l—-0) — Z!Efm In(1 - 0) (7)
=0

x=0 =0



To obtain the MLE of parameter 0, the derivative of equation (7) is equated to 0, and
the estimate of 6 can be obtained by

T

X 1
- TN ;xfx (8)

Based on the distribution in (5), we can obtain py,
P(X=0)=py=(1-6)",

hence R

L (=T

fo=n——m"——. 9

T (9)
These lead to the set-up of the EM algorithm for estimating parameters of a zero-
truncated binomial distribution. In the E-Step, with a given 6, we calculate the
expected value of fy as described in (9). In the M-Step, using fq, we determine the MLE
for the expected, complete likelihood of # based on equation (8). The EM algorithm
alternates between the E-Step and M-Step until it converges.

3 The Idea of Sampling Effort

To study on the sampling effort required in a Schnabel census, let n denote the number
of observed units out of an unknown IN,where n follows a binomial distribution: n ~
Bin(V,1 — pg). The probability mass function and variance are given by

P(X =n) = (Z)pév_"(l —po)",

and
Var(n) = Npo(1 — pog).

Using the estimator in (1), Var(N) is derived as

Do
1—po

Var(N) = 5 Var(n) = N

D E——— (10)
(1 —po)

From (10), the variance of estimated population size is equal to the product of actual
N and the odds of missing observation. Hence, the uncertainty in /N can be controlled
by adjusting the width of the (1 — @)% confidence interval for N:

Do

Niza N .
2 1—po

Suppose N is known to be 100, and let po=0.5, then Var(N') = N. The 95% confidence
interval for N would be N + 1.96v/N ~ (80, 120), which seems reasonable.



Generalizing, assume the researcher is willing to accommodate variations in population
size within & x 100% above/below the true N at (1—a%) confidence level. The margin
of the confidence interval will be equal to

Po
N = kN.
Zoc/2 1—170 R

Hence,
2
__(8/2ap2)"N
Po = 2 .
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N
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Fig. 1: Relationship between population size N, relative margin of error x, and the
proportion of undetected individuals py at a 95% confidence level. The red dashed line
indicates the reference point where pg = 0.5.

Figure 1 depicts the relationship between pg and & for various N when 1—«a=0.95. The
graph demonstrates that keeping pg below 0.5 limits the uncertainty of the estimate
to within 20% above or below the true N for N > 100. Thus, pg is an effective tool
for controlling uncertainty. Replacing pg = (1 — )7 in (10) gives

. _ T
var(V) = Nlil(lf)e)T. (1)

Reducing the population size, N to lower the variance in (11), is not possible as we
have no information on the value of N. However, adjusting T to a large value can cause



(1 —60)T — 0 for a positive 6 € (0,1), thereby reducing prediction variance. Since

po=(1-0)T, (12)
solving T for (12) yields
In(po)
— 1
In(1 —0) (13)

Hence, T depends on pg and 6. Researchers can leverage this property to choose the
appropriate T' by specifying the desired capture success rate, i.e., 1 — pgy. For instance,
when py=0.5, the required T" to achieved the desired capture success rate for various
0 is as shown in Table 3. The relationship between T, pg, and 6 is presented in (13)
and illustrated in Figure 2.

Table 3: Required sampling occasions T for different capture probability 6 to achieve
a 50% of capture success rate (1 — po = 0.50).
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Fig. 2: Contour plot of the required number of capture occasions T in relation to the
proportion of undetected individual py and the capture probability 6.



4 Allowing Heterogeneity: Mixture Models

The previous section employed a simple binomial model to analyse capture counts.
This model assumes that the observations are independent and the parameters are
homogeneous. This section extends the framework to more flexible models using the
beta-binomial distribution and the binomial mixture distribution.

4.1 Beta-binomial distribution

Assume capture counts X ~ BetaBinomial(T, «, 8), where the capture probability
varies among individuals and follows a Beta(«, 8) distribution. The probability mass
function is given by

pe=P(X =z) = (Z)B(a—&—x,T—i—ﬁ—x)

B(a, B)
Based on this model, the probability of zero captures is

B(a, T + )

=——~* 14
" B "
leading to the estimate
A n B(a, T + )
= . 15
fo B(Oé,ﬁ)—B(Oé,T—i-ﬁ) ( )
The complete data likelihood is given by
fo T . fa
I [B(mT—kB)} XH [<T> Bla+z,n+ 8 —1) (16)
B(a, ) 44 [\= B(a, 8) '

To maximize the likelihood in (16), a quasi-Newton method with L-BFGS-B algorithm
is run using R function optim. This sets up the EM algorithm to find the MLE for the
zero-truncated beta-binomial distribution. In the E-step, given o and 3, the expected
value of fy is estimated as in (15). In M-step, given fo, the MLE of the expected,
complete likelihood for @ and 8 are found by maximising the log-likelihood in (16).
The EM algorithm cycles between the E- and M-step until convergence.

4.1.1 Sampling effort with beta-binomial model

If the capture counts X follows a BetaBinomial(T, a, 8) distribution, the optimal
sampling effort, T', can be determined using the relationship in (14) based on the
desired capture success rate, 1 — pp*. No closed-form solution exists for T in (14).
However, it can be solved using numerical methods such as Newton-Raphson. Starting
with an initial guess Ty, iteratively apply

hT5)
h(Tn)’

Tn+1 - Tn -



where
B(a, T + ) .

hT) = Bapg P
and
W) = 2 D (4 6) - vl + T+ 9.

Here, 9 (+) denotes a digamma function. Figure 3 displays the required sampling effort
for various combination of Beta(a, 3).
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(c) 6 ~ beta(2,2) (d) 6 ~ beta(0.5,1)

Fig. 3: Required sampling effort T for different combination of beta(c, ).

4.2 Binomial mixture distribution
Assume the capture counts, X, follows a binomial mixture distribution with k

components of binomial distribution

k

ps=PX =2x)= ij Bino(z|T, 0;),
j=1

10



where T
Bino(z|T, 6;) = ($>0f(1 —0)T" j=1,2,... k.

The mixing distribution, ©, assigns non-negative weights w; to 6;, with Z?Zl wj = 1.
The probability of non-detection is given by

k
po =Y w;(1—6;)", (17)
j=1
leading to the estimate

- S wi (1—0,)7T
S oS T b (9

By fitting a zero-truncated binomial mixture distribution to the capture data, a nested
EM algorithms, adopted from Bohning et al. (2005), was employed to estimate the
parameters, © = {wy,ws,...,wg,01,0s,...,0c}. In E-Step, given ©, the expected
value of fy is estimated as in (18). In M-step, the full frequency table f07 fi, fose oy fm
is utilised to calculate a new set of MLE, ©’. The non-parametric maximum likelihood
estimator (NPMLE) of © can be calculated using the EM algorithm framework for
mixtures of distribution (McLachlan et al., 2019). Define

w; Bino(i|T, 6,)
>, w; Bino(i[T, 0;)

67;j =

this nested EM algorithm uses the expressions (19) and (20) to update w and 8, and
are only executed exactly one step and go back to E-step (Bohning et al., 2005). The
EM algorithm cycles between the E- and M-step until convergence.

w; = szf = (19)
0, = Dizglficij (20)

B ZZ":O T f i €ij
4.2.1 Sampling effort with binomial mixture model

If the capture count follows a binomial mixture distribution, the sampling effort, T,
can be determined using the relationship in (17). By setting the desired capture suc-
cess rate, 1 — pg*, the required number of capture occasions can be determined by
finding the root T', which provides no closed-form solution. However, it can be solved
using numerical methods such as Newton-Raphson. Starting with an initial guess Tp,
iteratively apply the formula:

11



h(Tn)

Thy1 =1, — W7

where i
WT) = w;j(1—0;)" —po”,
j=1
and

k
W(T) = In(1—0;)w;(1-06;)".
j=1

Repeat this process until the change between successive values of T is minimal,
indicating that an approximate root has been found.

To illustrate the effect of population heterogeneity on required sampling effort, four
representative scenarios are presented in Figure 4, each based on a two-component
binomial mixture model. These scenarios reflect different structures of heterogeneity,
defined by specific combinations of weights w and capture probabilities 6.
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Fig. 4: Required sampling effort T, for different combination of w and 6.

Subfigure (a) represents a population in which 10% of individuals have low detectabil-
ity (6 = 0.1), while the remaining 90% are moderately detectable (6 = 0.2). This

12



pattern may arise in cases where a small subgroup, such as elusive juveniles or trap-
averse individuals, is less likely to be captured than the majority. In subfigure (b),
20% of individuals exhibit moderate detectability (6 = 0.2), while the remaining 80%
are harder to capture (6 = 0.1). This skewed structure may reflect differences due to
sex, territoriality, or other behavioural traits.

Subfigure (c) illustrates a stronger degree of heterogeneity, where 30% of the popu-
lation has moderate detectability (§ = 0.2) and 70% are highly elusive (6 = 0.05).
This configuration aligns with populations exhibiting strong trap-avoidance behaviour
among certain subgroups. Subfigure (d) shows a more balanced scenario, with equal
proportions of individuals having slightly different detectabilities (6 = 0.1 and 6 =
0.08), a pattern often observed in age-structured populations such as adults versus
subadults.

Together, these scenarios demonstrate how varying levels and forms of heterogeneity
influence the sampling effort required for reliable population estimation, as displayed
in Figure 4.

5 Real Data Example

The study by Edwards and Eberhardt (1967), later republished by Chao (1987),
involved an investigation on a restricted population of known size using live-trapping
techniques. Within a 4-acre rabbit-proof enclosure, 135 wild cottontail rabbits were
subject to live trapping over 18 consecutive nights. Among them, 76 were captured at
least once. The recorded capture frequencies (f; — f7) were as follows:

43,16,8,6,0,2,1

Four zero-truncated models were fitted on the data, namely the binomial (ZTB),
beta-binomial (ZTBB), two-binomial mixture (ZTMB2), and three-binomial mixture
(ZTMB3). Table 4 presents the estimated population size and the result of the model
fitting to the data. It appears that while ZTBB and ZTMB2 model provide adequate
fits to the data, the ZTB model fails to adequately fit the data. Meanwhile, chi-square
goodness-of-fit test cannot be executed with ZTMB3 model as several cells (f5 — fis)
were combined due to small expected values, resulting in 0 degrees of freedom for the
test. The estimated N based on ZTMB2 and ZTMB3 are close to the actual size,
N = 153. ZTB model provides underestimated size, while ZTBB provides estimated
way too large when compared to the actual size. Binomial mixture models seems to
fit the cottontail rabbits data well. Akaike’s information criterion (AIC) and Bayesian
information criteria (BIC) were used to determine the best fitted model. Overall, the
two-binomial mixture model fits the data the best, according to the findings.

5.1 Sampling effort determination

To determine the required number of capture occasions, T, for the zero-truncated
two-binomial mixture distribution, the Newton-Raphson method was employed as
described in Section 4.2. The parameter estimates used in the calculation were w; =
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Table 4: Model fitting on cottontail rabbits data. Model fitted includes ZTB(Zero-
truncated binomial), ZTBB(Zero-truncated Beta-Binomial), ZTMB2(Zero-truncated
two-binomial), and ZTMB3(Zero-truncated three-binomial). The p-value is derived
from a chi-square goodness-of-fit test.

distribution N p-value log-likelihood AIC BIC
ZTB 97 0.011 -105.109 212.218  214.549
ZTBB 300 0.569 -97.764 201.528  208.521
ZTMB2 150 0.411 -97.761 201.521 208.514
ZTMB3 148 - -97.755 205.510  217.163

0.163, wy = 0.837, 6, = 0.170, and 65 = 0.030. Table 5 presents the required values of
T for achieving various levels of capture success rates, 1 — pg.

The 25th and 75th percentiles for T' were derived from bootstrap samples based on
cottontail rabbit capture-recapture data. Starting with the true value N = 135, fo
was calculated to be 59. Capture count probabilities p; = f;/N for i = 0,1,2,...,7
were then computed. Subsequently, 5000 bootstrap samples were generated by drawing

capture counts from a multinomial distribution defined by (N , D0, D1, P2, -+ ,P7). For
each sample, f, was ignored, and the EM algorithm was applied to the observed
frequencies (f1, fo, ..., f7) to estimate the parameters (wy, ws, 61, 3). These estimates

were used to compute the required sampling effort T'. The resulting distribution of T’
values was analyzed, and the 25th and 75th percentiles were calculated to evaluate
the variability in T

Table 5: Required number of capture occasions 7" for different levels of capture success
rate 1 — pg, along with the 25th to 75th percentile range derived from bootstrap
estimates.

desired capture required sampling 25th — 75th
success rate, 1 — pg effort, T percentile

0.4 12 8-17

0.5 17 11-24

0.6 24 15 - 34

0.7 34 21 - 47

0.8 47 29 - 69

0.9 70 42 - 98

For a relatively high pg value of 0.6, indicating a lower desired success rate of 40%, 12
capture occasions are sufficient. As the success rate requirement increases, the number
of capture occasions also increases significantly. For a success rate of 50% (pg = 0.5),
17 capture occasions are required. This corresponds roughly to the value of T" actually
used in the study. Further increasing the success rate to 60% (py = 0.4) requires 24
capture occasions. For a 70% success rate (pg = 0.3), the required number of capture
occasions jumps to 34. When aiming for an 80% success rate (pg = 0.2), 47 capture
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occasions are needed. Finally, to achieve a 90% success rate (pp = 0.1), 70 capture
occasions are required.

6 Discussion and Conclusion

This paper aims to determine the optimal sampling effort in Schnabel census capture-
recapture studies. One major challenge in achieving this is that it requires the
information of population size, which is typically the main parameter of interest in
Schnabel census. This dependency creates an unresolved, non-ending loop. To address
this issue, some prior knowledge about the population is essential. This information
can be obtained from pilot studies, previous research, or educated guesses (Broder
et al., 2020).

The findings of this study shows that there is an exponential relationship between
the desired success capture rate and the required number of capture occasions. For
instance, in the case of cottontail rabbits discussed in Section 5, 12 capture occasions
are required to achieve a capture success rate of 40%, while 47 capture occasions are
needed to double the success capture rate to 80%. This relationship highlights the
escalating efforts and resources needed to substantially improve the capture success
rate, which then influences the uncertainty of estimates. This finding aligns with the
results of Kordjazi et al. (2016).

In Table 4, the beta-binomial and two-binomial mixture models both provide strong
fits to the data based on AIC and BIC criteria. However, previous studies have high-
lighted limitations of beta-binomial model for zero-truncated count data. Bohning
(2015) points out that the beta-binomial model can exhibit erratic behaviour at bound-
ary values, which may lead to significant overestimation of unobserved counts. This
behaviour arises because the beta-binomial distribution assumes continuous hetero-
geneity but struggles to manage extreme parameter values effectively. In practical
applications, this limitation could result in misleading estimates of population size,
particularly when the true population heterogeneity deviates from the assumed beta
distribution.

In addition to model selection considerations, the capture probability parameter, 6,
plays a key role in driving the uncertainty of estimates and determining the nec-
essary sampling effort (Burnham et al., 1987). As lower detectability requires more
capture occasions to achieve the same level of capture success rate compared to higher
detectability, Papadatou et al. (2012) suggest that enhancing detectability using mod-
ern analytic techniques can reduce sampling effort required and increase estimate
precision.

One important feature in modelling the counting distribution in Schnabel census is the
application of zero-truncated distribution. This distribution accounts for the fact that
zero captures do not necessary imply the absences of individuals but maybe because
they have been left out from the sampling (Bohning et al., 2005). Zero-truncated
modelling normally offers no closed-form solution for the MLE of parameters, which
is where EM algorithm come in. This algorithm iteratively estimating the latent data
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(i.e. the undetected individuals) and updating the MLE for the expected, complete
likelihood for parameters. The combination of the zero-truncated distribution and the
EM algorithm offers a robust framework for modelling the counting distribution in
Schnabel census to estimate the parameter.

Both this study and Xi et al. (2008) highlight the significance of capture success rate
(denoted as 7w in Xi et al. and as 1 — pg in the current study) for obtaining reliable
estimates. Xi et al. determine the minimum required 7 by specifying an upper bound
on the asymptotic variance. Their method requires prior knowledge of the population
size N, which is typically unknown.The present study establishes a similar variance
relationship via (10) and Figure 1, demonstrating that high py leads to unreliable
estimates and should be avoided. Rather than identifying a minimum 7 retrospectively,
this study treats pg as a design input and derives closed-form solution for the number
of capture occasions T' needed to achieve it. This enables prospective planning based
on realistic detectability assumptions including heterogeneity.

The findings of this study offer practical guidance for ecologists and wildlife biologists
seeking to determine the optimal sampling effort for population monitoring using the
Schnabel census method. A recommended approach begins with a small-scale pilot
capture-recapture study involving a limited number of visits. Based on the pilot data,
practitioners can fit a range of candidate models, and perform model selection. Once
the best-fitting model is identified, the desired capture success rate, 1 — pg, can be
chosen based on the management goals. From there, the number of visits T" necessary
to achieve the desired level of accuracy can be estimated using the protocols outlined
in this paper.

In conclusion, this paper provides valuable insight in understanding the relation-
ship between capture success rate and sampling effort in Schnabel census studies.
The guideline enables researchers to design experiments that achieve desired out-
comes within practical constraints, which is essential in ensuring the sustainability
and feasibility of population monitoring program.
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