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A B S T R A C T

Long-term decisions, such as electric vehicle purchases, typically involve assessing complex in
teractions among several cognitive components. These psychological constructs are often a source 
of heterogeneity in the preferences for instrumental attributes. In this paper, we analyse vehicle 
fuel type choices using a latent class-discrete choice model where attitudinal and emotional ap
praisals of the electric vehicle purchase decision influence both class membership and preferences 
within each class. The model is estimated using data from a stated choice experiment and an 
attitudinal questionnaire. Attitudinal and emotional outputs come from the hot coherence 
(HOTCO) model, where motivation and behavioural response interact with each other to produce 
a consistent assessment. Our results reveal three distinct user segments in the sample – potential 
innovators, laggards, and sceptics, with markedly different purchase motives, preference pa
rameters, and decision-making profiles. The HOTCO attributes help identifying the cognitive 
aspects that shape decision-making which is beneficial for effective policy design.

1. Introduction

Individual attitudes and emotional appraisals are key determinants of transport choices. Studies addressing the impact of psy
chological factors on transport preferences tend to rely on attitude-behaviour link theories (such as the Theory of Planned Behaviour −
TPB; Ajzen, 1991) that assume linear and unidirectional links between psychological constructs (e.g. attitudes influence intentions, 
and intentions predict behaviour) and consider independent evaluations of each of their components. However, it is likely that human 
decision-making is substantially affected by mutual and complex interactions between attitudes, emotions, and other components of 
the cognitive representation (Simon & Stenstrom, 2015). This is particularly true for long-term transport decisions such as household 
vehicle purchases and fuel type choices, which typically involve simultaneously assessing several elements, including instrumental 
variables and cognitive components of the mental representation, before reaching a decision.

Differently from the attitude-behaviour link theory, cognitive consistency theories conceptualise decision-making as a process by 
which individuals try to minimise inconsistency between given pieces of information to form a consistent mental representation of the 
decision (Glöckner et al., 2014). The hot coherence (HOTCO) model (Thagard, 1989, 2006; Thagard and Millgram, 1997), the most 
widely used cognitive consistency theory, assumes that individuals make decisions by maximising the coherence of their current beliefs 
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and emotions, where coherence is understood in terms of maximal satisfaction of multiple constraints (namely the relation between 
needs to be satisfied and actions to be taken) derived from mental representations of the decision-making process (Thagard, 2001).

Cognitive consistency theories, and in particular the HOTCO model, have been used only sparingly to analyse transport decisions. 
Wolf et al. (2015) and Schröder and Wolf (2017) are the only papers that implement the HOTCO model to analyse attitudes toward 
electric vehicle adoption and pro-environmental transport behaviour accounting for interaction between agents in an agent-based 
model simulation. Domarchi et al. (2024) extended these previous works by focusing on the determinants of the decision to pur
chase alternative fuel vehicles (AFVs),1 their interactions and interdependencies. They found that electric vehicles (EVs) and hybrid- 
electric vehicles (HEVs) are perceived in a remarkably similar way from a cognitive consistency perspective, because they produce the 
same degree of coherence and satisfy the same sets of needs. Environmental awareness and pro-innovative orientation emerge from 
their analysis as the two differentiating motives, with AFVs perceived as coherent with their satisfaction, and internal combustion 
engine (ICE) evaluated as strongly incoherent with it. However, Domarchi et al. (2024) focus only on the psychological perspective of 
the decision-making process, without considering preferences for economic or instrumental attributes such as purchase price, oper
ation cost, driving range, or charging time, or modelling choice behaviour as a function of these attributes and the HOTCO inputs. 
Other papers report different preferences for these fuel types (e.g. Lane et al., 2018;; Higueras-Castillo et al., 2020), but their emphasis 
is only on economic preferences for operational and cost-related attributes.

Numerous studies have confirmed that the adoption of AFVs is correlated with latent psychological constructs (including attitudes 
towards the environment, innovation-oriented beliefs, and social influence), as well as economic and/or instrumental attributes (such 
as purchase prices and operation costs, driving ranges, motor power and reliability, and the coverage and specific characteristics of the 
charging network. (reviews can be found in Domarchi & Cherchi, 2023; Liao et al., 2017; Wicki et al., 2023). In addition, it is also likely 
that psychological constructs are a source of preference heterogeneity, i.e., that economic preferences for instrumental attributes such 
as purchase prices, driving ranges, or charging times, vary across the population as a result of differences in attitudinal or emotional 
evaluations of each fuel type. Bansal et al. (2021) and Ghasri et al. (2019) estimate heterogeneity in preferences for EVs by using 
interaction between latent variables (measured following an attitude-behavioural link theory) and economic/instrumental attributes. 
In both studies, individual perceptions about EVs interact with preferences for specific attributes, revealing heterogeneity patterns that 
change linearly with attitudinal evaluations. It is likely however that the latent psychological constructs might rather identify groups of 
respondents with similar preferences. Latent class choice models (LCCM) have often been applied to measure this effect. Few studies 
have used LCCM to address preference heterogeneity in AFV choices (Axsen et al., 2015; Hidrue & Parsons, 2015; Ferguson et al., 2018; 
Abotalebi et al., 2019; Kormos et al., 2019; Gong et al., 2020). These studies incorporate responses to attitudinal questionnaires into 
the class membership equations as a method to aid the interpretation of the estimated classes. Still, the questionnaires in these studies 
are based on attitude-behaviour link theories.

In this paper, we aim to assess the role that cognitive consistency plays in shaping users preference for AFVs and their charac
teristics, i.e. to assess differences in user evaluation between EVs, HEVs, and ICE vehicles, from an attitudinal and emotional 
perspective. To our knowledge, no previous studies have attempted an integration between HOTCO and the discrete choice modelling 
paradigm to study psychological effects in individual choices. We therefore model preferences for AFVs using a Hybrid Latent Class 
Choice Model (HLCCM) that incorporates latent cognitive consistency evaluations based on the HOTCO theory both as alternative- 
level attributes to address preference heterogeneity among classes and as individual-level attributes that help with the definition of 
user profiles. Cognitive consistency is measured by the outputs of the HOTCO model, that represents individual decision-making with a 
“connectionist” network in which motivation and behavioural response interact with each other to produce a consistent assessment.2

The outputs of the implementation of the HOTCO network are the cognitive activation, that is a measure of the acceptability of needs 
and actions, and the valence, which measures the respondents’ emotional response. Our specification differs from conventional hybrid 
choice-latent variable models in that it does not assume a linear and unidirectional relationship between attitudinal indicators and 
latent variables. The emotional coherence perspective requires all the elements of the psychological evaluation to be mutually 
interdependent, to achieve a more comprehensive representation of the AFV purchase decision. The paper extends the work previously 
conducted by Domarchi et al. (2024) by modelling EV choice behaviour as a product of the interaction between HOTCO attributes, and 
other instrumental and economic attributes, in an integrated framework that also considers preference heterogeneity.

Cognitive consistency theories such as HOTCO offer significant advantages compared with other psychological theories more 
commonly used to address the effects of attitudes on transport behaviour, such as the Theory of Planned Behaviour (TPB, Ajzen, 1991) 
or the Technology Acceptance Model (TAM; Davis, 1989). From a theoretical perspective, HOTCO is well-suited to address complex 
decision-making processes involving multiple motivating factors that require simultaneous evaluation. Instead of a linear and uni
dimensional link between motivating factors and behaviour, HOTCO constructs a mental representation of decision-making by iter
atively assessing the bidirectional flow of information between motives and outcomes. Thus, attitudinal and emotional evaluations of 
available options emerge as a byproduct of a nuanced and multidimensional assessment of the intervening factors – an effect that is 
often oversimplified in conventional theories. From a practical perspective, the mental representation generated by the HOTCO model 
reveals the mechanisms of attitude formation, as general evaluations (activations and valences) of available alternatives are modelled 
as the outcome of the interaction between the assessment of needs to be satisfied, and the perceived effectiveness of those alternatives. 

1 We use the umbrella term AFV to refer to battery electric vehicles (EVs) or plug-in hybrid electric vehicles (HEVs).
2 In the HOTCO model, the decision-making process is conceptually represented using a “connectionist network” to organise all the elements that 

produce a cognitive and affective evaluation. In such a network, units (nodes) represent elements (actions and needs) while links between nodes 
represent positive and negative constraints (Thagard, 2006).

C. Domarchi et al.                                                                                                                                                                                                     Transportation Research Part D 143 (2025) 104729 

2 



This representation makes possible to test how changes in evaluations of transport needs affect the strength and polarity of attitudinal 
evaluations towards fuel types, and which motives are more relevant in inducing sustainable attitudinal change, which can in turn 
strongly influence choice. Conducting this type of analysis with traditional specifications based on TPB or other attitude-behaviour link 
theories is challenging, as they rely on more complex and less transparent interactions between indicators, latent variables, and so
cioeconomic attributes.

The data used to estimate the HLCCM come from a SC experiment on electric vehicles (EVs), specifically designed for this study, in 
which the choice situations still consider hybrid-electric vehicles (HEVs) as an available alternative, in light of their increasing share in 
the UK market (Department for Transport, 2024). We also validate our model using an independent dataset to test in particular the 
effect cognitive consistency in predictive accuracy of individual preferences for AFVs.

The remainder of the paper is organised as follows: Section 2 describes the model structure, the HLCCM, and the utility specifi
cation. Section 3 describes the dataset collected to estimate the model. Section 3.1 describes the SC experiment built to collect the 
choice among AFVs and their characteristics, while Section 3.2 describes the HOTCO questionnaire design (section 3.2.1), and the 
HOTCO model algorithm implementation (Section 3.2.2). Section 3.3. provides a general overview of the sample collected. Results and 
discussion are provided in Section 4, while the conclusions, limitations, and recommendations for further research are outlined in 
Section 5.

2. Modelling framework

The HLCCM model used to estimate the role of cognitive consistency in the preferences for alternative fuel vehicles consists of a 
Latent Class Choice Model (LCCM) that includes latent variables. The LCCM consists of a Mixed Multinomial Logit (MMNL) model to 
simulate the probability of choosing a fuel type vehicle and a Multinomial Logit (MNL) model to simulate the probability of belonging 
to a given behavioural class. The fuel type model considers three purchasing alternatives: electric vehicles (EV), hybrid-electric ve
hicles (HEV), and internal combustion engine (ICE) cars, as well as an “opt-out” option that was included in the stated choice 
experiment to increase the realism of the behaviour elicited. The choice probabilities are a function of the classical economic, oper
ational, and instrumental variables, but also a function of the individual cognitive consistency, outputs from the HOTCO model, which 
are latent variables. Similarly, the class membership models depend on a set of individual-level socioeconomic attributes, as well as on 
the HOTCO outputs.

Following Walker (2001) and Walker et al. (2007), and extending this framework to consider data collected with a stated choice 
(SC) experiment, the probability that individual q performs a series of T choices, Pq(j1, j,⋯, jT) is given by: 

Pq(j1, j2,⋯, jT) =
∑S

s=1
Pq(s) ⋅ P(j1, j2,⋯, jT |s) (1) 

This expression is equal to the sum over all latent classes s of the class-specific choice probability that individual q will make a sequence 
of choices jt = {j1, j2,⋯, jT}, conditional on belonging to class s, multiplied by the probability of the individual q belonging to class s. 
Expression (1) represents the contribution by individual q to the likelihood function of the choice model.

The conditional probability of the sequence of choices can, in turn, be expressed as: 

Pq(j1, j2,⋯, jT |s) =
∫

η

∏T

t=1
Pqt(j|s, η) ⋅ f(η) ⋅ dη (2) 

Where Pqt(j|s, η) are choice probabilities for choice situation t conditional on belonging to class s and on the unknown η. The product of 
probabilities is integrated over the distribution of η, a multivariate Normal vector representing the error components in the model.

Both probabilities in expression (1) can assume any given form and can be estimated assuming any utility specification. In the 
context of our LCCM, fuel type vehicle choice is modelled using a MMNL with four alternatives (EV, HEV, ICE, and the opt-out option) 
and class-specific utilities for each alternative with the following specifications: 

UEV,qts = VEV,qts + θACT,s ⋅
(
ACTEV,q + σACT,EV ⋅ ζACT,EV,q

)
+ θVAL,s ⋅

(
VALEV,q + σVAL,EV ⋅ ζVAL,EV,q

)
+ σEV ⋅ ηEV,q + εEV,qts

UHEV,qts = VHEV,qts + θACT,s ⋅
(
ACTHEV,q + σACT,HEV ⋅ ζACT,HEV,q

)
+ θVAL,s ⋅

(
VALHEV,q + σVAL,HEV ⋅ ζVAL,HEV,q

)
+ σHEV ⋅ ηHEV,q + εHEV,qts

UICE,qts = VICE,qts + θACT,s ⋅
(
ACTICE,q + σACT,ICE ⋅ ζACT,ICE,q

)
+ θVAL,s ⋅

(
VALICE,q + σVAL,ICE ⋅ ζVAL,ICE,q

)
+ σICE ⋅ ηICE,q + εICE,qts

UOPT− OUT,qt = σOPT− OUT ⋅ ηOPT− OUT,q + εOPT− OUT,qts

(3) 

Here, 

• Vj,qts (with j = {EV,HEV, ICE}) is the component of the utility that individual q derives from alternative j in choice situation t, 
conditional on his/her characteristics and the attributes of the alternative j, and conditional of individual q being a member of class 
s. We use a linear in the parameters specification where parameter θjls corresponds to the l-th attribute;

• ACT jq and VAL jq are mean values of individual-level activations and valences generated as HOTCO outputs for the alternative j for 
individual q. In the HOTCO model, these are the outputs associated with the action nodes;
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• εjqts is the random component of the utility function, varying across alternatives j, individual q, choice situations t, and classes s, IID 
EV1 distributed;

• σj⋅ηjq is an error component associated with alternative j, which remains constant across choice situations for each individual q, but 
varies across individuals, allowing to account for intra-individual correlation, with ηjq distributed Normal (0, σj); and

• ζACT, jq and ζVAL, jq are also error terms distributed IID Normal (0,1) that vary across alternatives and individuals but are constant 
across choice situations. These error terms account for the latent nature of valences and activations.

Two comments are relevant at this point. First, since we use a sequential estimation failing to include ζACT, jq and ζVAL, jq would result 
in biased estimators for these parameters. Secondly, cognitive consistency theories posit that “a sufficient level of consistency is a 
precondition for terminating the decision process” (Glöckner & Betsch, 2008, p. 5), which implies that a connectionist network that takes 
consistency into account (such as the network used in the HOTCO model, which we present in section 3.2.2) should be able to 
reasonably predict a behavioural intention. According to this, cognitive evaluations and emotional appraisals exist before the 
behaviour (choice), are available for individual consideration at the moment of performing it and are not modified during it. This 
assumption aligns with the usual premises of attitudinal-behavioural link theories – that is, attitudes are formed or changed due to 
several possible factors, including past experiences, learning, and social influence, and they are one of the determinants of behaviour, i. 
e. they precede it (see for example Petty & Wegener, 1998). Under this assumption, activations and valences for EV, HEV, and ICE are 
treated as latent variables (unobserved initially but measured as a combination of the HOTCO inputs that were collected using the 
questionnaire). It is important to note that ζACT, jq and ζVAL, jq also account for panel effects in the SC data.

In the basic specification of the model, the θjls parameters of the conditional utility functions Vjqts and the activation and valence 
parameters, θACT,s and θVAL,s are assumed to be class-specific, with no restrictions imposed beforehand. The error component pa
rameters (σACT,j, σVAL,j, and σj for j = EV, HEV, and ICE) are assumed to be invariant across classes. Finally, since the choice set contains 
four alternatives, all four variances (σEV , σHEV , σICE and σopt− out) are identified and can be estimated (Walker et al., 2007). We tested 
several specifications for the error terms, including modelling structures that: i) only included activation and valence error compo
nents, ii) only included panel effects, or iii) included generic (instead of alternative-specific) error terms. The chosen structure, 
including both panel effects and alternative-specific error components for activation and valence, was the best-performing specifi
cation in terms of AIC and BIC.

We model the class membership probabilities using a MNL structure as follows: 

Pq(s) =
exp

(
Fqs

)

∑S
ś =1exp

(
Fqś

) (4) 

Here, Fqs are class-specific membership functions, defined as: 

Fqs = γs +
∑K

k=1
βks ⋅ Xqk +

∑N

n=1
βACT,ns ⋅ ACTqn +

∑N

n=1
βVAL,ns ⋅ VALqn (5) 

These functions depend on K sociodemographic characteristics Xqk, HOTCO outputs for the N needs (ACTqn and VALqn), individual- 
specific but invariant across alternatives, and a corresponding set of parameters (γs, βks, βACT,ns, βVAL,ns) to be estimated. While the 
role of alternative-specific variables is clearly limited to the class-specific choice components, individual (e.g., socioeconomic, or 
psychological/attitudinal) attributes could, in principle, play roles in either the choice model, the class membership model, or in both. 
As Kim and Mokhtarian (2023) point out, if a variable is conceived as directly influencing the outcome, it should belong to the choice 
component. Conversely, if a variable is seen as influencing the weight an individual places on other variables that affect the outcome, it 
should be seen as affecting the class the individual belongs to, and in that case, the class membership function should include it. In our 
case, HOTCO activations and valences associated with needs or motives are individual-level attributes not associated with any 
alternative and thus we use them as part the class membership functions.

The likelihood function in equation (1) depends on η, a 10-dimensional vector of multivariate Normal variables, i.e. the 4 
alternative-specific error components plus the 6 error components associated with activations and valences described in expression 
(3). The 10-dimensional integral in equation (2) must be evaluated using numerical integration. The models were estimated using 
Pandas Biogeme (Bierlaire, 2023).

3. Data collection and Methodology

To estimate the model presented in the previous section, a survey was specifically built to collect the data needed. The survey 
includes two main components: first, a stated choice (SC) experiment to elicit preference towards vehicle segments and fuel types; and 
second, a HOTCO questionnaire to measure attitudinal and emotional appraisal of the car purchasing decision and its motivating 
factors. The survey also included a set of questions to collect socioeconomic information and data about vehicles features in each 
household.

3.1. Stated choice experiment design

The SC experiment was designed to study the impact of specific attributes on vehicle choice. The experiment was customised to 
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present the respondents with alternatives and attributes that would appear realistic. We used two screening questions to create cus
tomised designs, as described in Section 3.1.1. The experimental design, attributes, and levels are discussed in Section 3.1.2. Fig. 1
presents a general flowchart of the choice experiment. The first screening question (Q1) concerns the type of car that respondents 
would likely purchase. The figure assumes the respondent chose vehicle type 3 (large). The second screening question (Q2) asks about 
the preferred purchase option, and the figure illustrates the three design scenarios generated for large cars, depending on whether the 
respondent prefers new cars (7), second-hand cars (8), or both purchase options (9). We built three scenarios for each of the other car 
types (not shown here). The total number of scenarios is 5 × 3 = 15.

3.1.1. Screening questions and scenario definition
Previous research has shown that fuel type and vehicle segment choices are highly correlated, and that the chosen purchase option 

(i.e., whether the vehicle is bought new or second hand) also plays a relevant role (e.g. Domarchi & Cherchi, 2024). To include these 
effects in the experiment and customise the choice tasks, the experiment was preceded by two screening questions in which re
spondents were asked to think about their next car purchase: 

• Which of these car types would you most likely buy? (Five options: Small, Medium, Large, SUV/MPV, Sports/Luxury). We defined 
these groups considering aggregations of the nine vehicle segments defined in the European classification scheme (Commission of 
the European Communities, 1999; Thiel et al., 2014). The survey included a list of illustrative models, as well as a small non- 
labelled drawing of each vehicle type (see Table 1 and Fig. 2).

• Which of these purchase options would you consider? (Three options: I would only consider new cars, I would only consider second- 
hand cars, I would consider both new and second-hand cars).

The combination of responses to these screening questions generated 15 possible scenarios (5 vehicle groups × 3 purchase options), 
and a customised SC design was built for each. First, 10 different designs were built for respondents who stated they consider only one 
purchasing option (i.e. new OR second hand) – one for each segment (5 vehicle groups × 2 purchase options). Each choice task in these 
designs included four alternatives: EV, HEV, ICE, and opt-out. The choice tasks for each of these scenarios were built using efficient 

Fig. 1. Flowchart of the stated choice experiment.
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designs (Rose & Blimier, 2009). Five additional designs were then built for respondents who declared considering both purchase 
options (i.e. new AND second hand). While these respondents should theoretically face seven alternatives (3 fuel types × 2 purchase 
options + 1 opt-out) in each choice task, such a detailed scenario might be too cognitively demanding (Caussade et al., 2005). To avoid 
this, five partial choice set designs (or availability designs) were built where a subset of four alternatives (rather than seven) is selected 
for display in each choice task using a modified Federov algorithm (Cook & Nachtrheim, 1980) along with an efficient design. This 

Table 1 
Summary of vehicle groups and segments.

Group Segment NTS 
share (%)

Example models (for Survey)

1 / Small car A and B 36.5 Fiat 500, Hyundai i10, Renault Clyo, Vauxhall Corsa, Ford Fiesta, Volkswagen Polo  

2 / Medium car C 20.7 Ford Focus, Volkswagen Golf, Vauxhall Astra, Peugeot 306 

3 / Large car D 10.8 BMW 3 Series, Peugeot 406, Mazda 6, Volkswagen Passat  

4 / SUV and multi-purpose J and M 25.2 Hyundai Tucson, Toyota RAV-4, Honda CRV, Nissan Qashqai, Citroën C4 Picasso, Ford Galaxy  

5 / Sport and luxury E, F, and S 6.8 BMW 7-Series, Jaguar XF, Audi TT, Porsche 911 

Vehicle shares are adapted from the National Travel Survey (Department for Transport, 2021)

Fig. 2. Screenshot from screening question #1 (on car types).
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algorithm creates a series of designs by randomly selecting four alternatives to display among the seven available, and then chooses the 
combination with the lowest efficiency error. Each of the 15 scenarios contains nine choice situations with three purchasing alter
natives plus the opt-out option.

3.1.2. Experimental design, attributes, and levels
We defined the attributes for the experiment based on the specialised literature, mostly focusing on recent SC experiments applied 

in the European context to model EV choice. We imposed a maximum of five attributes to reduce the risk of mistakes or biases by 
respondents (Caussade et al., 2005). We obtained the status-quo (SQ) levels for each attribute from Teoalida (2021), a privately 
sourced dataset assembling detailed information about vehicle makes and models available in the UK market. We defined variations 
around the SQ values to reflect the expected market trends in the attributes, and to generate choice situations that elicit meaningful 
preferences, while retaining the realism of the experiment. The attributes considered and the criteria used to define their levels in the 
experiment are as follows: 

• Purchase cost was defined as the upfront cost of purchasing a vehicle, including any applicable taxes, rebates, or subsidies. This 
attribute was defined separately for new and second-hand purchases. In both cases, three levels were used. For ICE cars, we used the 
mean SQ value for each segment and purchase option, as well as variations of − 10 % and + 25 % to reflect the varying shifts in the 
price trends. For EVs and HEVs, the SQ and variations of − 10 % and − 25 % were used to reflect the expected decreasing trend over 
time.

• Operation cost was defined as the mean cost per distance unit (in this case, 100 miles), considering fuel or energy expenditures. As 
petrol costs are expected to rise in the long-term (Department for Transport,2022a), the SQ plus variations of + 20 % and + 40 % 
were considered. The cost of electricity is harder to forecast, and subsequently the SQ and variations of − 20 % and + 20 % were 
assumed for EVs and HEVs.

• Driving range was specified as the maximum number of miles a car can travel before recharge or refuel. The average driving range 
for EVs during 2022 was about 200 miles or 350 km (International Energy Agency, 2022). While an increase in this figure would be 
expected over time, some car models still have significantly lower ranges. Three levels were considered for EV range: the SQ plus 
variations of + 20 % and + 40 %. For ICE and HEVs (where the range is a much less significant concern) the three levels are the 
mean SQ plus variations of –20 % and + 20 %.

• Distance to recharge/refuel was defined as the average distance (in miles) from home to the nearest charging station. As we could not 
find any consistent statistics about average distance to petrol stations in the UK, we carried out a set of measurements on Google 
Maps, which yielded a mean of about 0.5 miles in urban environments. For EV charging stations, it was assumed that they would 
have a SQ value of 0.75 miles in an urban environment to reflect the current upward trend in the total number of stations across the 
country ZapMap.Com (2024). Variations of + 50 % and + 100 % were also considered to account for their uneven distribution both 
in urban and rural settings.

• Charging time was specified as the time (in minutes) to get the vehicle charged up to 80 % of its capacity (tank or battery). The 
design assumed that an EV adoption might stimulate the development in rapid and ultra-rapid charging stations in the upcoming 
years, as predicted by the EV infrastructure strategy (HM Government, 2021). Three levels were then used: fast charge (60 min to 
80 % charge), rapid charge (20 min to 80 % charge), and ultra-rapid charge (5 min to 80 % charge). For ICE and HEV, a charging 
time of 3 min was used as a reference value.

A summary of the attribute levels and values is provided in Table 2. In the table, the SQ value is the mean value for 2020 – 2021 as 
reported in the Teoalida (2021) dataset. SQ values are bolded in the table.

The NGene software (ChoiceMetrics, 2018) was used to generate the designs. Efficient designs require priors for the coefficients, 
which are typically derived from existing literature. In our case, the most appropriate source of priors for building the SC experiment is 
the model estimated in our previous work (Domarchi & Cherchi, 2024), where we obtained purchase price and operating cost co
efficients for the UK using a revealed preference dataset. In the case of driving range, charging time, and distance to charging points, 
we reviewed the preference parameters estimated in several studies that modelled preferences for EVs in the European context (Valeri 
and Cherchi, 2016; Liu and Cirillo, 2018; Kormos et al., 2019; Giansoldati et al., 2020; Manca et al., 2020; Aravena & Denny, 2021; 
Jensen et al., 2021; Rotaris et al., 2021), and chose the inter-study mean values as priors for our design. The priors used are listed in 
Table 3, which also summarises the wide range of variation of estimatest in the literature:

We then adjusted considering the results of two pilot surveys (further details are provided in Domarchi, 2023). The nine choice 
situations were randomised, and each situation was presented consecutively one after the other. Fig. 3 illustrates the layout of one of 
the nine choice situations for a respondent who chose new medium-sized cars in the screening questions. The survey was hosted by the 
Survey Engine platform (SurveyEngine, 2022).

3.2. HOTCO outputs: Valence and activations

3.2.1. HOTCO questionnaire design
The HOTCO questionnaire was designed to measure attitudinal and emotional appraisal of the car purchasing decision and its 

motivating factors. The questionnaire consists of a list of motives of vehicle purchases that respondents are asked to rate using a Likert 
scale. Table 4 lists the ten most relevant motives for car purchases, identified as those having a statistically significant influence in 
either short- or long-term EV purchase intentions in a preliminary survey of households in England. The table also lists the sentences 
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used to present them in the survey. Full details about this survey and the work done to select the motives are provided in Domarchi 
et al. (2024).

Respondents were asked to rate these ten motives in three types of scale: 

Table 2 
Summary of attribute values by vehicle group and fuel type.

Group Fuel 
type

New Price 
(£1,000)

2nd hand Price 
(£1,000)

Operation cost (£/100 miles) Driving range 
(miles)

Distance to 
Recharge/Refuel (miles)

Charging 
Time (min)

1 / 
Small

ICE [15, 17, 20] [7, 8, 10] [11.4, 13.6, 15.8] [420, 520, 625] [0.5, 0.8, 1.0] [3, 3, 3]
EV [16, 18, 20] [8, 9, 10] [4.8, 6.1, 7.4] [350, 420, 490] [0.75, 1.1, 1.5] [3, 20, 60]
HEV [14, 16, 18] [7, 8, 9] [7.7, 9.6, 11.5] [480, 600, 720] [0.5, 0.8, 1.0] [3, 3, 3]

2 / 
Medium

ICE [23, 26, 31] [14, 15, 18] [12.3, 14.7, 17.3] [475, 590, 710] [0.5, 0.8, 1.0] [3, 3, 3]
EV [24, 27, 30] [14, 15, 17] [4.5, 5.6, 6.7] [400, 480, 560] [0.75, 1.1, 1.5] [3, 20, 60]
HEV [22, 25, 28] [13, 14, 16] [7.7, 9.6, 11.5] [570, 710, 855] [0.5, 0.8, 1.0] [3, 3, 3]

3 / 
Large

ICE [24, 27, 32] [14, 15, 18] [13.0, 16.0, 18.6] [490, 610, 735] [0.5, 0.8, 1.0] [3, 3, 3]
EV [27, 31, 34] [17, 19, 21] [9.1, 11.4, 13.6] [500, 600, 700] [0.75, 1.1, 1.5] [3, 20, 60]
HEV [24, 27, 30] [15, 17, 19] [8.6, 10.9, 13.1] [685, 855, 1030] [0.5, 0.8, 1.0] [3, 3, 3]

4 / 
SUV/ 
MPV

ICE [29, 32, 38] [17, 19, 23] [13.8, 16.5, 19.2] [480, 595, 715] [0.5, 0.8, 1.0] [3, 3, 3]
EV [29, 32, 36] [20, 23, 25] [5.3, 6.6, 7.8] [500, 600, 700] [0.75, 1.1, 1.5] [3, 20, 60]
HEV [27, 31, 34] [18, 20, 22] [4.2, 5.1, 6.1] [590, 735, 885] [0.5, 0.8, 1.0] [3, 3, 3]

5 / 
Sport/ 
Luxury

ICE [54, 60, 72] [41, 45, 54] [17.6, 21.1, 24.6] [430, 535, 645] [0.5, 0.8, 1.0] [3, 3, 3]
EV [56, 63, 70] [38, 42, 47] [4.5, 5.6, 6.7] [400, 480, 560] [0.75, 1.1, 1.5] [3, 20, 60]
HEV [52, 59, 65] [34, 38, 42] [8.0, 10.1, 12.2] [540, 675, 810] [0.5, 0.8, 1.0] [3, 3, 3]

Table 3 
Summary of priors for the experimental design.

Attribute Alternative Value Range of variation

Purchase price (£1,000) All − 0.02 −

Cost per 100 miles (£1,000) ICE, HEV − 0.23 −

Distance to charging point (miles) All − 0.032 [-0.006, − 0.773]
Driving range (100 miles) All 0.725 [0.346, 2.000]
Charging time (hour) All − 0.067 [-0.025, 0.120]

Fig. 3. SC experiment – General layout (Screenshot).
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• Priority that refers to the desirability that each motive has to the participant “for intrinsic or other non-coherence reasons”, and was 
measured using an importance rating question, i.e. “Please rate the following elements according to their importance to you when you 
decide which type of car to buy”, with a 5-point Likert scale ranging from “Not important at all” to “Very important”.

• Emotional that is a composite score of two emotional scales – one measuring pleasure (happy/unhappy) and another one measuring 
arousal (calm/excited). Both were measured asking respondents to rate “To what extent do these concepts make you feel happy (instead 
or sad)” or “excited (instead of calm)”. The 5-point Likert scale here ranged between “To no extent” and “To a very large extent”, and 
the emotional score is the arithmetic mean of these two dimensions.

• Facilitation links were measured using questions worded as follows: “To what extent do you think these needs or requirements would be 
satisfied by choosing a [petrol car, electric vehicle or hybrid-electric vehicle]”. The Likert scale here is the same used for the 
emotional scores, ranging from “to no extent” to “to a very large extent”. Three facilitation scales were used, one for each fuel type 
available (ICE, EV, HEV).

Six scales in total were used – one priority scale, two emotional scales, and three facilitation scales. The complete list of ten motives 
for each scale was placed in a single screen (six successive screens in total), using a randomised order for the motives to avoid any 
biases derived from question ordering.

3.2.2. HOTCO algorithm
The HOTCO model assumes that individuals will aim to satisfy a set of needs represented as a set of nodes in the connectionist 

network) by purchasing (which is the action, represented as another set of nodes in the connectionist network) one of the available 
options (EV, ICE, HEV). Needs and actions are joined by facilitation links, which represent the perceived coherence (or the positive and 
negative constraints) between each need-action pair. For example, a person with strong pro-environmental attitudes might feel that 
their need of engaging in a “green” behaviour might be satisfied by purchasing an EV, in which case the facilitation weight is defined as 
positive, and the need is “coherent” with the action. Conversely, if the action is deemed as detrimental to the satisfaction of the need, it 
is said to be “incoherent” with it. In our example, buying an EV might be perceived as incoherent with a strong need of reliability in 
transport if the person is too concerned about battery range or charging times. In this case, the facilitation link is negative.

The HOTCO algorithm involves an iterative process of coherence maximisation. During this process, activation and valence in each 
node are updated in parallel with all other units on every cycle, as a function of their previous value on the cycle as well as the 
combined stimulus (activations and valences) received from all the connected nodes (Thibault, 2013), including the action nodes. 
These stimuli depend on the activations and valences on all these nodes, and the value of the weight that connects them. On each cycle, 
all the activations and valences are updated in parallel considering the values of the stimuli from the previous cycle. The process is 
repeated until no significant change is observed between two iterations. At the end of this process, each node will have a certain degree 
of activation and valence, and the resulting network will involve the best possible satisfaction of all the given constraints in parallel 
(Thagard, 2001). The final output for individual q in the sample is a set of real numbers in the [ − 1, 1] range that represent activations 
(ACTnq) and valences (VALnq) associated with the needs nodes n, and activations (ACTEV,q, ACTHEV,q, ACTICE,q) and valences (VALEV,q, 
VALHEV,q, VALICE,q) associated with each action node (EV, HEV, ICE). Further details about the algorithm can be found in Thagard 
(2006) and Thibault (2013), with its adaptation to this this study described in detail in Domarchi et al. (2024).

As an illustration, Fig. 4 depicts an example of the activations in the settled HOTCO connectionist network for one respondent in our 
dataset. Here, the nodes between 1 and 10 represent the needs, the nodes ICE, EV, and HEV represent the actions, and the nodes SpA 
and SpV are special units, built for computational purposes, that allow for the spread of activation and valence across the network. 
Green nodes represent positive activations, while yellow nodes negative activations. The diameter of each node is proportional to the 
absolute value of the activation score (bigger green nodes have activations closer to + 1 while bigger yellow nodes have activations 
closer to − 1). The green and yellow coding also applies to the weights of the links. It should be noted that the coherence maximisation 
process involves needs 4 and 8, plus the HEV action node, in a final state of indifference (activation equal to zero, hence no colour in the 
figure).

Table 4 
List of car purchasing motives for the HOTCO model.

ID Motive Sentence

1 Environmental awareness A car that is environmentally friendly
2 Purchase cost A car with a low purchase cost
3 Performance A car that offers a good performance, in terms of speed, acceleration, handling, and brakes
4 Pleasure/Enjoyment A car that makes you enjoy the driving experience
5 Pro-technological orientation A car with advanced technological features and gadgets
6 Flexibility A car that provides flexibility for your daily activities
7 Self-identification A car that distinguishes you from others
8 Pro-innovative orientation A car that satisfies your curiosity for innovation
9 Comfort A car that makes you feel comfortable when driving
10 Convenience A car that provides a convenient mean to carry out your daily activities

C. Domarchi et al.                                                                                                                                                                                                     Transportation Research Part D 143 (2025) 104729 

9 



3.3. Data collection

The survey was collected between November and December 2022. The questionnaire was responded by 620 individuals, with an 
average completion time of 14 min. After discarding incomplete or inconsistent responses (for example, individuals who responded too 
fast,3 or who provided invariant responses to the HOTCO questionnaires), 555 individuals (90 % of the initial sample) remained in the 
sample. Table 5 presents a descriptive summary. For reference, the survey is compared with the 2021 subset of the National Travel 
Survey (NTS; Department for Transport, 2021) sample – albeit excluding car-less households, to make it comparable with the target 
population of the present study.

The 555 respondents owned a total of 889 cars in their households, with EVs representing 2.5 % of the sample, and HEVs (either 
plug-in hybrid or hybrid cars) accounting for 3.5 % (6.0 % of alternative fuels in total). These figures are similar to the shares of li
cenced vehicles for the same period in England (Department for Transport, 2022b), which are equal to 2.1 % of EVs and 4.3 % of HEVs 
(6.4 % of alternative fuels) and indicate that the sample appropriately represents the target population in this dimension. Further 
details about the sample are reported in Domarchi et al. (2024).

One month after this data collection stage was finalised, we conducted a follow-up survey using an identical questionnaire, and 
only recruiting individuals who had previously responded to the main survey. We obtained 91 valid responses in this follow-up and 
used them to validate the results of the estimated model.

4. Results and discussion

4.1. Latent class choice model specification

The HLCCM introduced in Section 2 is illustrated in Fig. 5. In the class membership model, socioeconomic variables and HOTCO 
outputs (activations and valences, depicted as grey arrows) for need nodes (representing motives to be satisfied by the car purchase) 
are used to estimate class membership probabilities. In the class-specific choice model, utilities depend on latent class membership, but 
also on socioeconomic variables, alternative attributes, and HOTCO outputs for action nodes (representing the available fuel types). 
The HOTCO model links activations and valences for needs and actions.

To estimate the LCCM, the class-specific direct utility functions (equation (2) was specified including the following attributes: 

Fig. 4. Example of activations in a settled HOTCO network.

3 The threshold was set at 6 min after analysing the results of two pilot surveys. Details are reported in Domarchi (2023).
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• All the five attributes from the SC experimental design (Table 2), with all attributes customised according to the response to the 
screening question.4

• Both HOTCO attributes (activations and valences) for each fuel type (ICE, HEV, EV). The HOTCO decision is assumed conditional to 
the decision of purchasing a vehicle, and therefore the opt-out option does not appear in the coherence network, and the opt-out 
alternative in the choice model does not depend on any HOTCO attribute.

• An inertia variable that takes the value 1 if the respondent chooses a vehicle purchased new in the experiment, and they currently 
own a new vehicle. Inertia is usually incorporated into discrete choice models to reflect the tendency to stick with the past choice 
even when another alternative becomes more appealing (e.g. Cherchi & Manca, 2011; González et al., 2017).

• An annual mileage variable added to the ICE utility function, to test whether respondents with higher distances travelled were more 
or less likely to choose AFVs.

To determine the number of classes required, we estimated first a model that did not consider user heterogeneity (1 class model). 
Then we estimated several models with 2-, 3- and 4-classes, and compared their results in terms of level-of-fit indicators (AIC and BIC, 
with lower values preferred in both cases), but also considering the microeconomic plausibility and statistical significance of their 
coefficients. Table 6 summarises these results, with the lowest AIC and BIC values bolded. All the models were estimated with 4,725 
responses coming from 525 respondents.

All the statistics in the table suggest that any model with latent class segmentation is superior to the model without segments. The 
minimum AIC value is given by the 4-class model (7165.2. about 0.4 % lower than the AIC value associated with the 3-class model), 
this comes at the cost of a significant increase in the number of estimated parameters and only a slight increase in the adjusted ρ2 index. 
Importantly, the 4-class model yields several parameters with non-intuitive signs (according to the behavioural theory) and non- 
significant parameters. The classes were also difficult to interpret. The chosen specification is the 3-class model, as it provides the 

Table 5 
Descriptive stats of the sample.

Dimension Variable Level Survey Reference 
(NTS 2021-R)

Comparison

Sample size Total respondents – 620 – –
Number of complete responses – 555 – –
Mean response time (minutes) 
(Complete responses only)

– 14.6 
(SD = 6.1)

– –

Vehicles % of households by number of vehicles 0 – – –
1 52.3 56.3
2 37.8 35.9
3 or more 9.9 7.8

Mean vehicles per household – 1.60 1.53 t(df = 4478) = 1.98p < 0.024
% of vehicles by fuel type Petrol 65.4 60.2 –

Diesel 28.6 35.8 –
Electric 2.5 0.8 –
Hybrid-electric 3.5 3.2 –

% of households by number of driving licences  1 26.7 38.8 –
2 58.7 53.4
3 9.9 5.9
4 or more 4.7 1.8

Mean licences per household – 1.94 1.70 t(df = 4478) = 6.78,p < 0.001

Households % of households by annual income (Thousands of £) <15 5.8 11.9 –
15 – 29 19.5 23.4
30 – 44 24.6 24.7
45 – 60 20.1 9.2
60 – 150 28.6 26.8
>150 1.3 4.1

Mean annual income (Thousands of £) – 56.6 52.2 t(df = 4478) = 0.08,p = 0.46

% of households by size (persons) 1 13.0 22.2 –
2 35.3 41.3
3 19.3 16.2
4 or more 32.4 20.2

Mean household size (persons) – 2.82 2.42 t(df = 4478) = 4.88,p < 0.001
% of urban households – 69.0 74.0 −

4 The experiment was designed considering operation costs per unit distance (100 miles). However, we found a better level of fit when including 
annual operation costs, defined as the mean operation cost per distance unit, multiplied by the distance driven by each vehicle, as reported by 
respondents.
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minimum BIC value (7595.9, about 0.7 % lower than the BIC value associated with the 4-class model), a richer interpretation for the 
class profiles, and more significant and consistent parameters.

4.2. Estimation results and class profiling

This section contains the estimation results of the 3-class LCCM, alongside the class profiling, and some post-estimation analyses. 
Table 7 includes the general results of the 3-class model, as well as the general level-of-fit indicators. For comparison purposes, the 
table includes a hybrid mixed logit model estimated without considering class heterogeneity (baseline model). Table 8 reports the 
coefficients estimated for the class membership functions in the 3-class specification of the LCCM.

We estimate several versions of our chosen specification, removing non-significant coefficients at the 95 % confidence level. 
However, following the recommendations in Ortuzar and Willumsen (2024, p. 288), we retain all “relevant (i.e. Policy type) variable[s] 
with a correct sign even if it fails any significance tests. The reason is that the estimated coefficient is the best approximation available for its real 
value; the lack of significance may just be caused by lack of enough data”. We apply this criterion for the purchase price, operation cost and 
driving range parameters, as well as the HOTCO coefficients, the alternative-specific constants, and the variances of random terms. For 
the remaining variables (including all the individual-level attributes in the class membership equations), we only retain them when the 
t-test comparing the coefficients with zero is significant at the 90 % confidence level (i.e., t-test > 1.282 using a one tail distribution). It 
must be noted that we chose the opt-out alternative as the reference, and therefore all three alternative-specific constants associated 
with fuel type (EV, HEV, and ICE) were estimated.

As expected, the level-of-fit results reveal that the latent class specification performs significantly better than the baseline model, 
indicating that there is significant heterogeneity in the preferences. However, in the hybrid mixed logit specification, each respondent 
is deterministically associated to a certain level of preference. In the HLCCM, individuals have a probability of belonging to each class, 

Fig. 5. Graphic illustration of the estimated model.

Table 6 
Overview of the results of the latent class choice models.

Indicator Number of classes

1 2 3 4

Log-likelihood (*) − 3810.7 − 3598.9 − 3535.7 − 3507.6
ρ2 indicator (market shares) 0.246 0.296 0.308 0.314
Akaike Information Criterion (AIC) 7669.5 7295.9 7195.4 7165.2
Bayesian Information Criterion (BIC) 7824.5 7612.5 7595.9 7649.7
Number of parameters 24 49 62 75
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and class-specific parameters that characterise their preferences. In addition, the HLCCM yields class membership probabilities that 
depend on individual attributes, and facilitate respondent profiling. Both models contain alternative-specific error components to 
account for the panel effect, as well as additional components to account for the effect of the random distribution of the activation and 
valence scores in the sequential estimation. The random components of activation and valence appear to be playing a role in ac
counting for this effect in the baseline specification, so that the measurement error in the HOTCO outputs might be correlated with the 

Table 7 
Latent class choice model estimation results – I: Class-specific choice model and general model indicators(*).

Attribute Alternative Baseline Latent class choice model

Attributes 
generic 
among classes

Attributes specific among classes

Class 1 
(47.5 %)

Class 2 
(14.9 %)

Class 3 
(37.6 %)

Coef. (t-test) Coef. (t-test) Coef. (t-test) Coef. (t-test) Coef. (t-test)

A) Class specific choice model
Alternative specific constants
​ EV 9.349 (10.81) – 10.694 (6.47){2,3} 1.995 (1.17){1,3} 19.454 (9.07){1,2}

​ HEV 10.068 (12.56) – 11.797 (9.09){2,3} 4.197 (3.41){1,3} 18.201 
(10.51){1,2}

​ ICE 8.135 (9.99) – 9.341 (5.99){2,3} 1.557 (1.05){1,3} 16.047 (8.84){1,2}

Vehicle parameters
Purchase price EV; HEV; ICE − 0.167 

(− 14.21)
– − 0.138 

(− 10.32){2,3}
− 0.001 
(− 0.03){1,3}

− 0.589 
(− 8.54){1,2}

Annual operation cost EV; HEV; ICE − 2.272 (− 9.58) – − 3.261 (− 6.23){2} − 0.567 
(− 1.13){1,3}

− 2.602 (− 6.00){2}

Charging distance EV; HEV; ICE − 0.408 (− 3.98) – – – − 1.199 
(− 4.14){1,2}

Charging distance × Charger 
awareness

EV 0.383 (2.53) – – – 0.848 (1.97){1,2}

Driving range EV 0.302 (10.22) – 0.281 (4.79) 0.181 (1.75) 0.435 (5.96)
HEV; ICE 0.422 (7.73) – 0.506 (4.83) 0.406 (2.27){3} 0.234 (1.41){2}

Charging time EV; HEV; ICE − 0.791 (− 8.71) – − 1.197 (− 6.40){2} − 0.57 (− 2.07){1} − 0.818 (− 2.43)
Annual mileage ICE 0.054 (6.10) – 0.082 (3.67){2} – 0.075 (4.43){2}

Inertia parameters
New vehicles EV; HEV; ICE 0.599 (3.40) – – – 1.426 (1.55){1,2}

HOTCO outputs
Activation EV; HEV; ICE 0.549 (3.34) – 0.44 (1.78){2} 4.395 (1.90){1,3} 0.317 (0.62){2}

Valence EV; HEV; ICE 1.111 (4.39) – – 2.834 (0.95) 1.746 (2.71){1}

Error components
Panel effect Opt-out 4.652 (11.25) 5.248 (10.35) – – –

EV − 0.5 (− 0.79) 1.693 (8.14) – – –
HEV − 0.157 (− 0.96) 0.435 (0.82) – – –
ICE − 1.225 (− 5.54) − 1.359 

(− 3.80)
– – –

Activation error component EV 0.806 (0.96) 0.211 (1.93) – – –
HEV − 0.216 (− 0.57) 0.642 (2.25) – – –
ICE − 1.89 (− 2.49) − 0.087 

(− 0.49)
– – –

Valence error component EV − 1.36 (− 4.56) − 0.472 (− 0.7) – – –
HEV − 0.522 (− 2.37) 0.135 (0.79) – – –
ICE − 0.049 (− 0.21) − 0.714 

(− 1.34)
– – –

B) General model indicators and level-of-fit
Log-likelihood (*) − 3810.7 − 3535.7 ​ ​ ​
Number of individuals 525 525 ​ ​ ​
Number of observations 4,725 4,725 ​ ​ ​
Number of parameters 24 62 ​ ​ ​
ρ2 (market share) 0.414 0.451 ​ ​ ​
Akaike Information Criterion (AIC) 7669.5 7195.4 ​ ​ ​
Bayesian Information Criterion (BIC) 7824.5 7595.9 ​ ​ ​

(*) Values below each class denomination in the top row indicate the mean membership probability. Values in parenthesis next to each coefficient 
are t-test values testing the null hypotheses that the coefficient is equal to zero. For the latent class model parameters, superscripts in each line indicate 
that the coefficient is statistically different from the corresponding class-specific coefficients in the other classes. The comparisons were assessed with 
pairwise t-tests of equality between coefficients and considering a 95% confidence level.
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panel effect.
In the baseline model, all panel effects are significant, as are the variances of the random terms of the valence for two of three 

alternatives (EV and ICE). However, all three activation random components are non-significant.
Conversely, the panel effect for the HEV alternative is non-significant in the LCCM specification; however, two of the tree error 

components for activation (EV and HEV) become significant in this structure, and there are no changes in the significance for the error 
components of valence. These results seem to indicate that consideration of user heterogeneity helps to correctly identify the mea
surement error in the HOTCO components (activation and valence).

Preference parameters for purchase price, annual operation cost, charging distance, and driving range, fall generally within the 
range of estimators previously available in the literature, whose ranges of variation were reported in Table 4 (considering changes in 
measurement units). Our estimated parameters for charging time are higher than the ones previously obtained in the literature for all 
three classes. Familiarity with the EV charging process might play a role in this result. With adoption increasing in the UK in recent 
years, respondents might be more familiar with charging points and consequently might value the process more negatively. In 
addition, the studies used for obtaining priors were from 2021 or before (when adoption was significantly lower) and still showed a 
high degree of variability in the parameter estimates, as reported in Domarchi & Cherchi (2023).

Table 8 
Latent class choice model estimation results – II: Class membership functions(*).

C) Class membership functions

Attribute Class 1 
(47.5 %)

Class 2 
(14.9 %)

Class 3 
(37.6 %)

Coef. (t-test) Coef. (t-test) Coef. (t-test)

Class-specific constant – − 8.443 (− 3.24) –
Gender (Male = 1) – 1.801 (2.67) –
Number of driving licences – 1.020 (2.42) –
Number of employed people – − 1.551 (− 3.58) − 0.351 (− 2.26)
Household has bought a car new – – − 0.892 (− 2.45)
Household owns a medium car – 1.305 (1.82) –
Household owns a large car – 2.155 (2.12) –
Household owns a SUV/MPV – 1.835 (2.16) –
Activation 2: Purchase price – – 1.245 (3.21)
Activation 3: Driving performance – 1.905 (1.56) –
Activation 4: Technological features – 2.889 (2.66) –
Activation 5: Driving enjoyment – − 2.262 (− 2.86) –
Activation 8: Curiosity for innovation – 1.423 (2.46) –
Activation 10: Convenience – 3.21 (2.47) –
Valence 5: Driving enjoyment – – − 1.009 (− 2.34)
Valence 6: Flexibility – – 1.368 (1.72)
Valence 10: Convenience – – − 1.378 (− 1.99)

(*) Class 1 is treated as the reference. Values below each class indicate the mean membership probability. Values in parenthesis next to each coef
ficient are t-test values testing the null hypotheses that the coefficient is equal to zero with 90% confidence.

Table 9 
Weighted mean values of attributes by latent class(*).

Attribute Units Class 1 
(47.5 %)

Class 2 
(14.9 %)

Class 3 
(37.6 %)

Mean predicted choice probabilities ​ ​ ​ ​
ICE − 0.104{2.3} 0.195{1} 0.165{1}

EV − 0.435{2,3} 0.351{1} 0.346{1}

HEV − 0.430 0.414 0.436
Opt-out − 0.040{2,3} 0.077{1.3} 0.075{1,2}

Sociodemographic attributes ​ ​ ​ ​
Population density Persons/hectare 22.6 21.8 22.1
Household size Persons 3.1{2} 2.6{1} 2.9
% of children % 24.7 18.0 26.9
% of women % 75.6{2} 33.9{1,3} 75.2{2}

Annual income Thousands of GBP 58.8 50.1 52.5
Car attributes ​ ​ ​ ​
Number of driving licences − 2.1 2.1 1.9
Number of cars − 1.8 1.8 1.6
% of households owning an EV/HEV % 6.7{2} 29.8{1,3} 4.7{2}

% of cars bought as new % 38.3{3} 47.5{3} 16.3{1,2}

Annual mileage driving (by car) Thousands of miles 17.3 18.1 18.2

(*) Superscripts indicate that the class-specific weighted mean differs across classes. The comparisons were assessed with t-tests for the equality of 
means and considering a 95% confidence level.
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Classes can be identified by analysing the class membership equations as well as some post-estimation indicators. First, as can be 
noted from Table 8 among the several socioeconomic explanatory variables tested in the class membership equations, respondent 
gender, the number of driving licences, and the number of employed people were significant. Moreover, four attributes related to 
previous cars bought by the household were also significant in explaining class membership, as were seven of the ten car purchasing 
motives modelled with HOTCO.

Table 9 shows the average values of some attributes for individuals within each of the three classes. These values were calculated as 
the weighted average of each variable, where the weight is the probability of belonging to a particular class. The same calculation was 
performed with the mean values of HOTCO activations and valences, and illustrated visually in  Fig. 6 and Fig. 7 with error bars 
representing the standard error of the mean. These weighted means are helpful for interpretation of user profiling and class identi
fication. For example, Table 9 reveals that respondents in class 2 live in significantly smaller households than those in class 1, and that 
these households have a lower proportion of women compared with households in classes 2 and 3. Similarly, respondents in class 2 
have a significantly higher proportion of EVs and of vehicles bought as new. Figs. 6 and 7 illustrate inter-class differences in terms of 
HOTCO outputs. Fig. 6 reveals that, in contrast to classes 1 and 3, respondents in class 2 have a positive activation (associated with a 
positive attitude) in their pro-innovation character. They also assign a significantly higher activation score to attributes like driving 
performance, pleasure and enjoyment, flexibility, comfort and convenience, compared with the other two classes. They also have 
significantly higher activation scores for EVs and HEVs than the other two classes. Similarly, respondents in class 3 have a significantly 
higher activation score for purchase cost, and a strong and negative activation value for pro-innovative character. Similar effects, albeit 
with lower differentiation, appears in valence scores (Fig. 7), which reveal a significantly higher emotional appraisal for pro- 
innovation character and for EVs in general in class 2 (compared to classes 1 and 3), and lower valence scores for pro-technology 
and pro-innovation needs in class 3 (compared to classes 1 and 2).

Using all these results, we can identify the profiles of three user classes as follows: 

• Class 1 (“Potential innovators” – mean class membership probability ¼ 47.5 %). Respondents belonging to this class appear to 
have a higher income level than the other two classes, as well as the highest predicted probabilities of EV purchase. While this class 
appears inclined to adopt EVs, translating these intentions into actual behaviour might not be as straightforward for them. Their 
activation and valence scores in key motives including environmental awareness, pro-technology, and pro-innovation, are rela
tively weak, as are their mean activations and valences towards purchasing EVs and HEVs. The class-specific parameters for 
purchase price, operation cost, driving range, and charging time, are all significant for this class, revealing a concern for instru
mental and economic attributes that might impede adoption. This rational approach to purchases is reinforced by the fact that 
HOTCO activations and valences do not play a significant role in their choices, with activation only significant at 90 % confidence. 
In fact, only 7.9 % of individuals in this class currently own an EV or an HEV.

• Class 2 (“Innovators” – 14.9 %). Respondents in this class do not appear majorly concerned for any economic attribute in the 
model, as their cost parameters are all non-significant. They have the second-highest income level in the sample, live in less densely 
populated areas, and typically buy their cars as new. Crucially, this class has the highest activation and valence scores for EV and 

Fig. 6. Latent class choice model – Weighted mean activation scores by class.
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HEV, as well as the highest scores for most attributes (crucially including environmental awareness, pro-technology orientation, 
and pro-innovation), revealing a highly coherent decision network that favours AFV adoption, with both activations and valences 
playing a role in their choices (both significant at 90 % confidence). Importantly, this is the only one of the three classes where the 
“pro-innovation” dimension has a positive activation and valence score, indicating that users in this class are motivated by being 
pioneers in adopting new technologies. This group should be the first to massively adopt AFVs and they are probably in that process 
– it must be noted that 21.2 % of households in this class already own an EV or an HEV.

• Class 3 (“Sceptics” – 37.6 %). Respondents in this class has a comparatively higher proportion of children, live in more densely 
populated areas, and have the lowest level of income across all three classes. They are the least likely to own an AFV currently (only 
5.7 % of respondents in this class have one) or to have bought their current cars as new. Individuals in the class have the highest 
activation and valence scores for purchase costs, while their evaluation of dimensions such as environmental awareness, comfort, 
and convenience is the lowest across the three classes. Their choices are also less affected by their HOTCO evaluations than Class 2, 
with only valences playing a significant role at 90 % confidence. These are rational users without a specific intention to adopt the 
more innovative alternatives, and a majorly rational approach towards choices that reveals a strong concern about the costs 
involved.

As discussed, the main sources of class heterogeneity in the model are purchase price, EV annual operation costs, and driving range 
of HEV and ICE vehicles (as indicated by the superscripts next to the parameter values in Table 7). In other cases, there is significant 
variability when comparing one class with the other two; for example, the charging distance parameter is only significant for Class 3. In 
fact, all attributes are statistically significant for this class, which is consistent with their definition as “sceptics”, or users who are 
highly aware of every aspect of their purchase decision, and therefore highly rational or less likely to be influenced by attitudinal or 
emotional attributes. Conversely, EV driving range is non-significant for uses in Class 2 who, as “innovators”, appear to be less con
cerned about instrumental and operational attributes of their decision, and more driven by their pro-innovation character. In fact, none 
of the class-specific price coefficients are significant for this class. These attributes are very significant for both “potential innovators” 
in Class 1 and “sceptics” in Class 3, which highlights the more rational focus of these respondents in terms of their decision-making. 
There appears to be no significant class differences with respect to charging time, annual vehicle mileage, HOTCO activations and 
valences, and the two new vehicle inertia parameters.

All the retained parameters have the expected sign, and we have retained some key parameters (such as those related to prices, 
costs, and driving ranges) even if they were not statistically significant at 90 %. The purchase price and annual operation cost pa
rameters are significant in two of the three classes.

In the case of Class 3, there is a significant negative effect of the charging distance variable in choice probabilities. The effect is 
mitigated when respondents declared having a charging point available either at home or at their place of work/study. User sensi
tivities to driving range are positive and significantly different for EVs and HEVs/ICEs, as expected in the design. As also expected, the 
coefficients for the sensitivity to charging time are negative and significant for all three classes. In addition, a higher use of the car (as 
indicated by the highest number of miles driven during the year), increases the probability of choosing the conventional fuel 

Fig. 7. Latent class choice model – Weighted mean valence scores by class.
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alternatives (ICE).
The alternative specific attitudinal and emotional evaluations play a significant role in increasing choice probabilities in two of the 

three classes (innovators and laggards), with activation playing a significantly higher role for respondents in Class 2, and valence in 
Class 3. As previously mentioned, these variables appear to have no effect in car purchasing decisions for Class 1 users, with the valence 
score only significant at 90 % confidence, somewhat reinforcing the definition of decision-makers in this class as rational users with a 
positive disposition towards innovative alternatives, but who also seem to be less influenced by emotional or attitudinal evaluations.

Individuals across all three classes experiment show some level of inertia in their decision, with users who have bought new cars in 
the past more likely to buy them new in the future.

4.3. Post-estimation analysis

The models were validated against the dataset obtained with the follow-up survey, conducted one month after the main data 
collection stage, using an identical questionnaire. The validation dataset contains 819 observations from 91 respondents (we excluded 
2 respondents with invariant responses).

Validation indicators are reported in Table 10. These include the first preference recovery, the Brier score, the mean absolute error, 
and the ρ2 indicator measured against the market share models. The results are compared with those obtained using the baseline model 
(the MMNL model that does not consider latent classes).

The chosen specification (LCCM) performs the best across all indicators except for the mean absolute error in the prediction of fuel 
types, obtaining a lower Brier score, a higher first percentage recovery, as well as a higher ρ2 indicator. This indicates that the increase 
in the number of parameters is compensated by a significantly better level-of-fit. These results confirm that the LCCM is an efficient 
method to capture user heterogeneity in the context of this dataset and reinforces the predictive ability of the model.

To illustrate the potential interpretations allowed by our model, we built a set of forecasting scenarios and estimated how the 
HOTCO model captures changes in attitudes towards EVs, and in the effect of these changes in EV choice probabilities. This application 
allows assessing how changes in attitudes toward transport needs and motives (measured as changes in HOTCO input scores for each 
participant) translate into attitudinal and emotional evaluations of EVs (measured as HOTCO output scores for activations and va
lences) and, more importantly, into EV choice probabilities. This analysis is feasible because, in our framework, individual-specific 
attitudes are linked to attitudes toward alternatives, which in turn serve as determinants of choice probabilities. Such an analysis is 
not possible with conventional HLCM specifications based on traditional attitude-behaviour link theories, where the relationships 
between questionnaire scores, latent variables, and choice probabilities are less transparent and harder to interpret.

The four forecasting scenarios for each car purchasing motive were identified considering four possible types of variation in the 
HOTCO inputs: 

1) An increase of 0.5 points in the priority score for the motive.
2) An increase of 0.5 points in the emotional score for the motive.
3) An increase of 0.5 points in the facilitation link between EV and the motive, in the same way as (1).
4) A combination of the three effects, (1), (2), and (3).

HOTCO inputs were originally measured in a 5-point Likert scale and later transformed to the scale ranging from − 1 to + 1, 
required by the model. The 0.5-point increases in the transformed scale are therefore equivalent to each respondent in the dataset 
increasing their ratings by one point in the original 5-point Likert scale (compared to the initial rating), except for those respondents 
who had already provided the highest possible rating in the scale.

We use the validation dataset for this application. After the inputs are changed, we run the HOTCO networks for each individual in 
the sample and use the results in the LCCM to obtain class-specific choice probabilities for each observation. As class membership 
probabilities depend on HOTCO outputs, these are also updated when the inputs change. It should be noted that the forecasting 
scenarios are generated by simulating small shifts in the evaluation of a single need, one at a time. However, each run of the HOTCO 
algorithm produces new activations and valences for all ten needs and three action nodes (i.e. the whole network is updated). This is a 
significant advantage of HOTCO over attitude-behaviour link theories, as these only allow for a linear, piecemeal analysis of their 
components in predictive mode. Full results for the 40 simulations (10 needs × 4 scenarios) are summarised in Appendix 1.

Table 11 provides an excerpt of this table, containing only the four motives that generate the highest changes in EV choice 
probabilities in the predictions. When ranking the motives in terms of the changes they generate in EV choice probabilities due to the 
combined effect of changes in all three HOTCO inputs, the four most relevant motives are environmental awareness, pleasure/ 
enjoyment, pro-technological orientation, and convenience. The table lists the mean changes in activations and valences for EVs, the 
mean changes in choice probabilities for all three vehicle types, and the mean changes in class membership probabilities for each need.

These results allow evaluating the process through which an attitudinal change can produce changes in EV choice probabilities. 
Increases in priority and emotional scores only generate a mild effect in EV choice probabilities, while an increase in the score for the 
link between the motive and EV produces a slightly higher increase. The combined effect of the three HOTCO inputs increasing at the 
same time yields the highest growth in EV choice probabilities for each scenario. Taking the first need listed in Table 11 as an example, 
the HOTCO theory reveals that a more positive individual attitude towards the environment, or a higher emotional evaluation of 
environmental awareness, are not enough on their own to produce a significant change in the propensity to buy an EV (the associated 
changes in EV choice probabilities amount to 0.2 and 0.3 percentage points respectively for this effect). Individuals also need to 
perceive that the action provides a reasonable alternative to satisfy this need, i.e., that EVs are a good car purchasing option when 
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environmental issues are a high concern. A change in this perception causes a slightly higher increase in EV choice probabilities (0.5 
percentage points). However, the combined effect of both increases produces an increment of 1.2 % in EV choice probabilities.

All these results indicate that measures aimed to stimulate the adoption of EV technology should not be solely directed towards 
changes in general attitudes at the individual level, independent of coherence considerations. They might be more effective if they also 
account for how EVs can be beneficial in satisfying each need, approaching the decision-making process from a coherence perspective. 
These more complex changes in perspective can generate stronger effects on choice probabilities, as they are both necessary to achieve 
coherence networks with higher EV activations and valences. It must also be noted that some motives can bring about more significant 
changes in terms of class profiling. For example, the combined change in HOTCO inputs related with the pro-technological orientation 
motive increases the share of respondents belonging to Class 1 (“possible innovators”) by 8.3 %, while significantly reducing the other 
two classes; in particular, the proportion of sceptics is reduced by 5.3 %. The remaining motives cause somewhat lower variations in 
the class profiles.

All the changes in probabilities are relatively modest compared to those that can be obtained by variations of the economic/ 
instrumental attributes such as purchase prices or driving ranges.5 Still, attitudinal effects can produce relevant shifts when combined, 
as can be seen in the final two scenarios in Table 11 where EV probabilities increase by 2.6 and 3.7 percentage points, and the class 
membership probabilities are reconfigured so that there are fewer sceptics and more innovators and potential innovators in the sample. 
This is derived from the strong increases in EV activation and valence, which arise from the combined effect of more positive 
perception of these needs. These effects can be significant, as they entail a change in the decision-making framework for at least some 
individuals in the sample.

5. Conclusions

Compared to the TPB (Ajzen, 1991) and other similar theories (e.g. Triandis, 1977; Wicklund & Gollwitzer, 1982; Rogers, 1983), 
cognitive consistency allows considering the non-linear and multidimensional interaction between the elements that constitute the 
mental representation of the decision-making process. Among the few models proposed to model the cognitive consistency theory, 
HOTCO is an attractive method to address the effect of attitudinal and emotional variables in individual choices because it yields a 

Table 10 
Validation indicators.

Name (Range) Desirable value Baseline LCCM

First preference recovery (%) Closer to 100 % 66.2 67.4
Brier score (0 – 2) Closer to 0 0.450 0.448
Mean absolute error (0 % –100 %) Closer to 0 % 0.9 1.5
ρ2 (market share) Higher 0.428 0.461

Table 11 
Forecasting scenarios for the most important car purchasing motives.

Motive Sc. Change Change in HOTCO 
outputs for EV

Percentage change in 
choice probabilities

Percentage change in class 
membership probabilities

Activation Valence EV HEV ICE Class 1 Class 2 Class 3

Environmental Awareness (1) 1–1 + Priority +0.026 0.000 +0.2 +0.1 − 0.3 +0.8 − 1.0 +0.2
1–2 + Emotional +0.024 +0.016 +0.3 +0.1 − 0.4 +0.7 − 0.5 − 0.2
1–3 + EV link +0.032 +0.057 +0.5 − 0.3 − 0.2 +0.4 − 0.3 − 0.1
1–4 Combined +0.092 +0.091 +1.2 − 0.1 − 0.9 +0.9 − 0.4 − 0.5

Pleasure/Enjoyment (4) 4–1 + Priority +0.007 +0.009 +0.3 − 0.3 +0.0 +0.0 +0.5 − 0.5
4–2 + Emotional +0.002 +0.011 +0.4 − 0.3 − 0.2 − 0.1 1.0 − 0.9
4–3 + EV link +0.067 +0.058 +1.0 − 0.4 − 0.4 +0.7 − 0.3 − 0.4
4–4 Combined +0.086 +0.082 +1.4 − 0.9 − 0.5 − 0.4 +2.2 − 1.8

Pro-technological Orientation (6) 6–1 + Priority +0.007 +0.008 +0.2 +0.2 − 0.2 +1.2 − 2.4 +1.2
6–2 + Emotional +0.006 +0.012 +0.7 +0.0 − 0.5 +6.2 − 2.0 − 4.2
6–3 + EV link +0.066 +0.087 +1.0 − 0.6 − 0.3 +1.6 − 0.6 − 1.0
6–4 Combined +0.093 +0.091 +1.6 − 0.5 − 0.7 +8.3 − 3.0 − 5.3

Convenience (10) 10–1 + Priority +0.016 +0.012 +0.2 − 0.3 +0.1 − 1.0 +0.7 +0.3
10–2 + Emotional +0.010 +0.002 +0.5 − 0.2 − 0.3 +5.2 +0.6 − 5.8
10–3 + EV link +0.044 +0.044 +0.8 − 0.4 − 0.3 +1.4 − 0.5 − 0.9
10–4 Combined +0.080 +0.074 +1.2 − 0.8 − 0.4 +4.6 +3.0 − 7.6

Combined A CA (1) + (8) +0.160 +0.151 +2.6 − 1.1 − 1.1 +6.8 − 0.7 − 6.1
Combined B CB (1) + (4) + (6) + (10) +0.231 +0.240 +3.7 − 2.2 − 1.2 − 3.0 6.2 − 3.2

5 We simulated scenarios with EV purchase prices and operational costs reduced by 10%, and ranges increased by 10%. In these scenarios, EV 
choice probabilities increased by 4.4%, 1.4%, and 1.9%, respectively.
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complete profile of each user’s attitudinal and emotional appraisals towards behavioural motives and possible courses of action and it 
produces a simple representation of the relationship between the basic attitudinal scores provided by the respondent, and his/her 
propensity towards each behavioural outcome. This latter property is key for prediction, as it makes possible to test the effect of 
attitudinal changes (for example, due to learning or social interaction) on these propensities and, in turn, on choice probabilities, while 
prediction of latent variables in hybrid choice models is problematic due to the nature of the indicators.

The HOTCO score parameters confirms that attitudinal and affective appraisals play a key role in the choice of fuel type and vehicle 
segment. User profiles indicate that diffusion in the English market is already past its initial stages, as two of the three classes appear 
prone to innovation. In terms of the classifications of adopters in Rogers (2003) innovation diffusion theory, Class 2 is likely to include 
the reduced group of early innovators and the more numerous segment of early adopters, while Class 1 should include the larger part of 
the early majority which has already started to evaluate the possibility of considering the purchase of AFVs.

In addition, findings from our simulation highlight how the elements in the purchase decision interact to produce updated eval
uations of the alternatives. According to the HOTCO framework, individuals first build the mental representation of the purchase 
decision problem in terms of their attitudes and emotional responses towards their transport needs. Their psychological evaluations of 
each alternative are mediated by their perceptions on how effective each vehicle type can be in satisfying these needs. Our model 
shows that these evaluations also sensibly affect their preferences. Coherence maximisation implies that individuals need to “make 
sense” of how the alternatives available can satisfy their needs. As shown in our scenario analysis, if individuals do not perceive EVs as 
effective means to fulfil their need of protecting the environment, they will not choose them, even if they have a strong pro- 
environmental attitude. These coherence effects can be crucial for policy formulation, as decision-makers are more likely to select 
options that are coherent with their beliefs and motivations. The efficiency of policy interventions will depend on the degree to which 
they are perceived as coherent by decision-makers. From the perspective of car manufacturers and sellers, awareness campaigns that 
highlight the connection between EVs and factors such as driving pleasure, convenience, technological appeal, and environmental 
awareness can significantly influence EV choice. Our analysis reveals that, while the individual impact of these factors may be modest, 
their cumulative effect can lead to a substantial increase in the EV choice probabilities. The combined influence of these factors can be 
comparable to the effects of practical improvements like extended driving range or reduced charging times. However, differently from 
previous research using TPB or TAM, our results show that for these effects to materialize, it is crucial that consumers perceive a strong 
and coherent alignment between EVs and these motivating factors. This suggests that campaign aimed at promoting EV adoption 
should thus clearly and effectively communicate this connection to achieve the desired outcomes.

There are some potential limitations in our study. First, while our sample represents the target population relatively well in some 
key dimensions, it is recruited from an online platform, which somewhat limits the generalisability of our findings. As the aim of this 
paper is mostly methodological, we do not claim our sample to be representative of the population. A larger and more representative 
sample might be required to obtain more generalisable conclusions. Second, while the HOTCO framework represents an attractive 
option to model decision-making from a psychological perspective, our data does not allow comparing the results with more tradi
tional attitude-behaviour link theories in terms of their ability to represent this aspect in a choice modelling context. A more specific 
data collection framework that includes the HOTCO questionnaire alongside TPB-compatible attitudinal questionnaire would 
potentially enable these comparisons, and we suggest this as possible further research in this topic. Third, from a practical standpoint, 
the large number of inputs required to model decision-making using HOTCO increases the questionnaire complexity and places a 
greater burden on respondents. While we did not observe significant evidence of respondent fatigue in either the HOTCO input 
questionnaire or the stated choice experiment, the length of the questionnaire can pose challenges for survey administration. This 
makes adapting HOTCO to other research contexts somewhat difficult. The use of HOTCO requires also a sequential estimation of the 
hybrid choice models, because at the moment it is not possible to estimate it jointly with the discrete choice part. Finally, our 
framework for integrating activations and valences into the discrete choice modelling assumes that coherence evaluation precedes 
choice. As activation and valence can be influenced by the same factors that affect choice, our latent variable might be endogenous to 
choice (e.g. Chorus & Kroesen, 2014). Further work is required to postulate a modelling framework that allows for simultaneous 
estimation of the HOTCO outputs and the preference parameters, avoiding this source of endogeneity. The question of how well such a 
modelling framework would represent the decision-making problem is open. Further theoretical work, possibly of a qualitative nature, 
might be required to combine cognitive consistency and utility maximisation, as they are, in principle, difficult to reconcile. Exploring 
such a unified theory is also proposed as further research derived from this paper.
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Appendix A. – Full simulation results

The following table contains the full results of the 42 simulation scenarios, as explained in section 4.3.

Forecasting scenarios for the all the car purchasing motives.

Motive Sc. Change Change in HOTCO 
outputs for EV

Percentage change in 
choice probabilities

Percentage change in class 
membership probabilities

Activation Valence EV HEV ICE Class 1 Class 2 Class 3

Environmentalawareness (1) 1–1 + Priority +0.026 +0.000 +0.2 +0.1 − 0.3 +0.8 − 1.0 +0.2
1–2 + Emotional +0.024 +0.016 +0.3 +0.1 − 0.4 +0.7 − 0.5 − 0.2
1–3 + EV link +0.032 +0.057 +0.5 − 0.3 − 0.2 +0.4 − 0.3 − 0.1
1–4 Combined +0.092 +0.091 +1.2 − 0.1 − 0.9 +0.9 − 0.4 − 0.5

Purchase cost (2) 2–1 + Priority − 0.007 − 0.001 +0.1 − 0.3 +0.0 − 0.4 +1.1 − 0.7
2–2 + Emotional − 0.011 +0.004 +0.2 − 0.2 − 0.1 +0.0 +0.4 − 0.3
2–3 + EV link +0.013 +0.054 +0.8 − 0.4 − 0.3 +0.1 +0.1 − 0.2
2–4 Combined +0.052 +0.064 +0.9 − 0.7 − 0.2 − 1.4 +2.9 − 1.6

Performance (3) 3–1 + Priority +0.004 +0.005 − 0.2 +0.1 +0.1 − 1.7 − 0.4 +2.1
3–2 + Emotional − 0.002 − 0.011 − 0.4 +0.1 +0.3 − 1.8 − 0.4 +2.2
3–3 + EV link +0.067 +0.050 +0.8 − 0.4 − 0.3 +0.2 − 1.0 +0.8
3–4 Combined +0.078 +0.054 +0.5 − 0.4 − 0.2 − 2.4 − 1.5 +3.9

Pleasure/Enjoyment (4) 4–1 + Priority +0.007 +0.008 +0.0 − 0.1 +0.1 − 0.4 1.1 − 0.7
4–2 + Emotional +0.002 +0.008 +0.1 − 0.1 +0.0 +0.1 +0.3 − 0.4
4–3 + EV link +0.068 +0.062 +0.9 − 0.4 − 0.4 +0.7 − 0.5 − 0.2
4–4 Combined +0.099 +0.100 +1.0 − 0.7 − 0.2 − 0.2 +1.5 − 1.2

Pro-technologicalOrientation (5) 5–1 + Priority +0.007 +0.009 +0.3 − 0.3 +0.0 +0.0 +0.5 − 0.5
5–2 + Emotional +0.002 +0.011 +0.4 − 0.3 − 0.2 − 0.1 +1.0 − 0.9
5–3 + EV link +0.067 +0.058 +1.0 − 0.4 − 0.4 +0.7 − 0.3 − 0.4
5–4 Combined +0.086 +0.082 +1.4 − 0.9 − 0.5 − 0.4 2.2 − 1.8

Flexibility (6) 6–1 + Priority +0.007 +0.008 +0.2 0.2 − 0.2 +1.2 − 2.4 +1.2
6–2 + Emotional +0.006 +0.012 +0.7 0.0 − 0.5 +6.2 − 2.0 − 4.2
6–3 + EV link +0.066 +0.087 +1.0 − 0.6 − 0.3 +1.6 − 0.6 − 1.0
6–4 Combined +0.093 +0.091 +1.6 − 0.5 − 0.7 +8.3 − 3.0 − 5.3

Self-identification (7) 7–1 + Priority − 0.001 +0.004 +0.3 +0.0 − 0.2 +0.4 − 0.3 − 0.1
7–2 + Emotional − 0.006 − 0.002 − 0.4 +0.0 +0.3 − 5.5 − 1.6 +7.1
7–3 + EV link +0.052 +0.046 +0.6 − 0.3 − 0.3 +0.0 − 0.9 +0.9
7–4 Combined +0.084 +0.070 +0.1 − 0.3 +0.2 − 6.7 − 0.2 +6.8

Pro-innovativeorientation (8) 8–1 + Priority − 0.006 +0.009 +0.0 +0.2 − 0.2 +0.0 − 0.2 +0.2
8–2 + Emotional +0.002 +0.030 +0.0 +0.1 +0.0 +0.1 − 0.4 +0.3
8–3 + EV link +0.008 +0.071 +0.6 − 0.4 − 0.2 +0.1 +0.3 − 0.4
8–4 Combined +0.023 +0.083 +0.7 − 0.3 − 0.3 +0.3 +0.1 − 0.4

Comfort (9) 9–1 + Priority +0.007 +0.008 +0.3 − 0.2 +0.0 +0.5 − 0.1 − 0.4
9–2 + Emotional − 0.001 +0.003 +0.1 +0.2 − 0.2 +1.0 − 1.4 +0.4
9–3 + EV link +0.064 +0.060 +1.1 − 0.7 − 0.3 +1.2 − 0.7 − 0.4
9–4 Combined +0.087 +0.081 +1.1 − 0.5 − 0.4 +0.2 +0.5 − 0.7

Convenience (10) 10–1 + Priority +0.016 +0.012 +0.2 − 0.3 0.1 − 1.0 +0.7 +0.3
10–2 + Emotional +0.010 +0.002 +0.5 − 0.2 − 0.3 +5.2 +0.6 − 5.8
10–3 + EV link +0.044 +0.044 +0.8 − 0.4 − 0.3 +1.4 − 0.5 − 0.9
10–4 Combined +0.080 +0.074 +1.2 − 0.8 − 0.4 +4.6 +3.0 − 7.6

Combined A CA (4) + (8) +0.160 +0.151 +2.6 − 1.1 − 1.1 +6.8 − 0.7 − 6.1
Combined B CB (4) + (6) + (8) + (10) +0.231 +0.240 +3.7 − 2.2 − 1.2 − 3.0 6.2 − 3.2

Appendix B. – HOTCO questionnaire

The attitudinal questionnaire in the survey included questions aiming to measure the required inputs to build the HOTCO con
nectionist networks, considering these ten motives as needs nodes, and three possible action outcomes of the purchase decision: EV, 
HEV, and petrol vehicle with an internal combustion engine (ICE). The format of the questions for each HOTCO input is summarised in 
Table B1:

Table B1 
HOTCO – Questionnaire formulation.

Input type Meaning Question wording Scale N

Priority Desirability of each need “for intrinsic or 
other non-coherence reasons” (Thagard and 
Millgram, 1997).

“Please rate these items according to its importance to you 
when you decide which type of car to buy”.

5-point Likert scale from “Not 
important at all” to “Very 
important”.

10

(continued on next page)
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Table B1 (continued )

Input type Meaning Question wording Scale N

Emotional 
scale (1) 
Pleasure

Continuum between happiness and 
unhappiness.

“To which extent do these items make you feel happy 
(instead or sad)”.

5-point Likert scale from “To 
no extent” to “To a very large 
extent”.

10

Emotional 
scale (2) 
Arousal

Continuum between excitedness and 
calmness.

“To which extent do these items make you feel excited 
(instead or calm)”.

5-point Likert scale from “To 
no extent” to “To a very large 
extent”.

10

Facilitation 
links

Perception of connection between needs 
and action nodes.

“To what extent do you think these needs or requirements 
would be satisfied by choosing a [petrol vehicle, electric 
vehicle, hybrid-electric vehicle]”.

5-point Likert scale from “To 
no extent” to “To a very large 
extent”.

30

All these items were measured using a 5-point Likert scale and coded to ensure that the scores varied from –1 to + 1. The complete 
calibration of a HOTCO network requires 10 + 10 + 10 + 30 = 60 ratings by each respondent. All the sentences evaluating the same 
questions were placed in the same screen, so that all 10 items could be rated relatively quickly. In addition, all the motives were 
randomised for each evaluation question, to avoid any biases derived from question ordering. These questionnaires were included in 
both surveys (Before and After). Further details are discussed in Domarchi (2023) and Domarchi et al. (2024).

Data availability

Data will be made available on request.
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