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ARTICLE INFO ABSTRACT

Keywords: Background: MYCN amplification and high expression is associated with pediatric malignancies including neu-
MYCN roblastoma and alveolar rhabdomyosarcoma. MYCN transcription in alveolar rhabdomyosarcomas is driven by a

ChIP-sequencing feedback loop with the PAX3::FOXO1 fusion protein. However, the role of MYCN is not well-defined.

Eig]:g:rls osarcoma Methods: Chromatin ImmunoPrecipitation (ChIP)-sequencing of alveolar rhabdomyosarcoma cell lines was used
CDK6 v to identify genome-wide MYCN binding sites. Ontology analyses of genes adjacent to MYCN binding sites cor-
KDMA4B responding to expression changes after siRNA reduction was performed and confirmed by ChIP-qPCR. Cells from

each phase of the cell cycle were isolated by Fluorescence Activated Cell Sorting for assessing protein expression
by Western blotting.

Results: Genes encoding transcription factors adjacent to MYCN binding sites and genes with binding sites
proximal to their promoters were strongly associated with RNA synthesis and cell cycle pathways, respectively.
MYCN binding sites in regions that positively correlated with gene expression changes were linked to cell cycle
regulation, consistent with phenotypic absence of cell cycle checkpoint control. Cell cycle regulated genes CDK4
and KDM4B were validated as MYCN-regulated and, in-keeping with unchecked cell cycle progression, expressed
throughout the cell cycle, coincident with MYCN.

Conclusions: MYCN binding sites associated with gene expression changes defined the contribution of MYCN to
the transcriptional control of key pathways/molecular processes in the development and progression of rhab-
domyosarcomas. MYCN aberrantly regulated CDK4 and KDM4B expression throughout the cell cycle in PAX3::
FOXO1 positive rhabdomyosarcoma. The regulatory network defined supports MYCN, CDK4 and KDM4B as
therapeutic targets in the treatment of rhabdomyosarcoma patients.

1. Introduction of these tumors [4-7]. Genes directly bound and regulated by PAX3::

FOXO1 have been previously indicated and include MYCN, a member of

Rhabdomyosarcoma (RMS) is the most frequent pediatric soft tissue
sarcoma and resembles developing skeletal muscle. There are two main
histological subtypes, embryonal (ERMS) and alveolar (ARMS). Most
ARMS are associated with a characteristic fusion gene, PAX3::FOXO1 or,
less frequently, PAX7::FOXO1. Fusion-positive ARMS are generally more
aggressive and have a poorer prognosis [1-3]. The fusion genes encode
potent transcriptional activators that play a key role in the pathogenesis

the MYC gene family [5,7]. MYC and MYCN regulate many cellular
processes including cell proliferation, differentiation, and cell cycle
progression, and have been implicated in the progression of many tumor
types (reviewed in [8,9]).

MYCN amplification is observed in around 20 % of fusion-positive
ARMS through genomic amplification at 2p24 [10]. MYCN has also
been shown to auto-regulate as well as regulate PAX3::FOXO1
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expression [11,12]. We have previously shown the dependence of RMS
on MYCN through its requirement for tumor cell growth and efficient
silencing using peptide nucleic acids (PNAs) resulted in cell death in
vitro and reduced rate of tumor growth in vivo [12,13]. Modulation of
either MYCN or PAX3::FOXO1 proteins leads to overlapping changes in
gene expression including genes involved in myogenesis and cell cycle
progression [1,5,7,12].

Here we identified direct binding targets of MYCN associated with
transcriptional changes in PAX3::FOXO1 cells and demonstrated that
ARMS cell lines were resistant to cell cycle arrest with no cell cycle
checkpoint control, as previously indicated [14]. Given our previous
demonstration of dependency on MYCN [12], aberrant expression of
MYCN and specific downstream proteins were expected to contribute to
the RMS phenotype as well as support potential therapeutic
opportunities.

2. Materials and methods
2.1. Cell culture

ARMS cell lines RMS-01, RH4, RH41 and RH30 cells were cultured as
previously described [15] and detailed in the Supplementary materials
and methods. RMS-01 and RH30 have genomic amplification of MYCN
and CDK4, respectively [10,16-19].

2.2. Flow cytometry

Fluorescence Activated Cell Sorting (FACS) isolated cells from each
phase of the cell cycle representing Go/G1, S and Go/M (Supplementary
materials and methods).

2.3. Western blotting

Total cell lysates were extracted from siRNA experiments in RMS cell
lines using Cell Lysis Buffer at 72hrs post-transfection (Cell Signaling
Technology) (Supplementary materials and methods).

2.4. Chromatin ImmunoPrecipitation (ChIP), ChIP-sequencing and
correlation with gene expression data

ChIP was performed using the MAGnify ChIP kit (Invitrogen) ac-
cording to manufacturer’s instructions. ChIP DNA was sent to Source
Bioscience for library preparation and sequencing on an Illumina GAII
sequencer (Supplementary materials and methods).

2.5. Bioinformatic analyses

Alignment of reads from ChIP-sequencing was performed using BWA
v0.5.8a (http://bio-bwa.sourceforge.net/), samtools v0.1.8 and PICARD
v1.5.2 [20]. MACS v1.4.2 was used to identify enrichment peaks be-
tween the ChIP and control datasets using default parameters [21].
Enrichment peaks unique to the HA antibody were defined using an FDR
threshold of 5%. Nearest genes were identified using PeakAnnotator
[22] (Supplementary materials and methods).

Gene ontology analysis of ChIP-sequencing (ChIP-seq) targets and
MYCN-bound DNA motifs was conducted using MetaCore (GeneGo,
Thompson Reuters). Statistical-significance threshold levels for all
enrichment analyses was set at p < 0.05. KEGG pathway analyses used
DAVID [23,24].

Analysis of genes correlating with MYCN expression in patient
samples used two datasets within R2 (http://hgserverl.amc.nl/cgi-bin/
r2/main.cgi); Intergroup Rhabdomyosarcoma Study Group/Pediatric
Cooperative Human Tissue Network (IRSG/PCHTN) and Innovative-
Therapies for Children with Cancer/Carte d’Identité des Tumeurs
(ITCC/CIT). Correlations with MYCN where R > +/-0.339 and p < 0.01.
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2.6. Luciferase assays

pGL3 Promoter, pGL3 Control and pRL-CMV (Promega) were used
for luciferase assays. DNA containing the putative MYCN binding site
within the CDK4 promoter was amplified from RH30 genomic DNA and
cloned into pGL3 Promoter. Cells were transfected using Lipofectamine
2000 according to manufacturer’s protocol. Dual luciferase assays were
performed at 72 h using the Dual-Glo luciferase reporter assay system
(Promega) with 3 separate experiments performed for each assay.

3. Results

3.1. Genome-wide ChIP-sequencing identifies binding sites of MYCN in
RMS

To identify regions of the genome bound by MYCN we performed
ChIP-seq analyses on RH30 cells transfected with a HA-tagged MYCN
construct. Using a stringent FDR (< 0.05), we identified peaks at 3278
genes throughout the genome. We analyzed MYCN-bound peaks in the
RMS genome, denoted proximal (+/-5kb from the transcription start
site (TSS) of a gene), distal (+/-5kb to +/- 50 kb of TSS) and intergenic
(> 50 kb of any TSS). Of the 3278 gene-associated peaks identified, only
20 % were located within the proximal promoter (Fig. 1A). The majority
of peaks were located between 5 and 50 kb from any gene transcription
start site (TSS), suggesting that MYCN functions primarily via enhancer
regions in the RH30 cell line.

Motif analysis of our MYCN ChIP-seq data using an FDR cut-off of
5 % revealed transcription factor binding motifs associated with MYCN
binding peaks, including the common E-box motif CACGTG and a non-
canonical E-box CAGCTG (p-value < 0.001, Fig. 1B, Supplementary
Table S4). Additionally, motifs for MYOD and MYOG were also found to
be associated with MYCN peaks, consistent with the myogenic lineage
seen in RMS.

As MYCN and PAX3::FOXO1 regulate the transcription of each other,
we sought to determine whether genes might be co-regulated by MYCN
and PAX3::FOXO1 in RMS. We compared publicly available ChIP-
sequencing data of targets of PAX3::FOXO1 with our MYCN ChIP-
sequencing data [5]. We found MYCN binding sites to be predomi-
nantly located away from TSS (Fig. 1A), correlating with previously
published data for PAX3::FOXO1 that showed binding at distal regions
(> 4 kb from TSS). However, of the 3278 regions bound by MYCN, only
7 % of the called genes overlapped with the PAX3::FOXO1 data (1166
sites), suggesting that although MYCN and PAX3::FOXO1 regulate one
another, they predominantly regulate different genes in RMS cells.

3.2. Ontology analysis of genes associated with MYCN binding and gene
expression changes shows a role for MYCN in cell cycle control in RMS

To identify MYCN binding sites highly likely to correspond to direct
transcriptional targets of MYCN, we compared our previously published
expression profiling data for MYCN-silenced RH30 cells (PNA (12 h post
transfection) and siRNA (24 h post transfection), [12]) with our
ChIP-sequencing data. We identified 121 genes that are transcriptionally
regulated and are annotated with a binding site for MYCN. Of these
genes, 34 have a proximal promoter binding site for MYCN and 58 have
a distal binding site. 64 of the 121 genes are positively regulated by
MYCN and 57 appear repressed by MYCN, suggesting that MYCN plays a
role as both a transcriptional activator and repressor in these cells
(Fig. 1C, Supplementary Table S5 and S6).

To identify genes expected to be regulated by MYCN in patient
samples, we interrogated our previously derived gene expression
profiling data of PAX3::FOXO1-positive RMS patient samples [25]. We
compared our MYCN binding sites with genes correlating with MYCN
expression levels in RMS patient samples (Supplementary Tables S7 and
S8). Of the 3521 genes that correlated with MYCN, 405 (11.5 %) over-
lapped with the MYCN ChIP-sequencing data. This was consistent with
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Fig. 1. Identification of MYCN binding sites in RMS by ChIP-sequencing. (A) The percentage of peaks in RH30 located within the proximal promoter region (+ 5 kb),
distal (+ 5 kb to + 50 kb) and intergenic (> 50 kb) to the transcription start site (TSS). (B) Top binding motifs in RH30 identified from analysis of all MYCN peaks
with FDR < 5 %, p < 0.0001. (C) Distribution of MYCN peaks related to differentially expressed genes after siRNA or PNA silencing of MYCN. (D) Distribution of
MYCN peaks related to genes that are either positively or negatively correlated with MYCN RNA expression levels in RMS patient samples. (E) Ontology analysis of
genes located near a MYCN-bound peak and that are positively correlated with MYCN RNA expression levels from our dataset [32]. (F) Ontology analysis of genes
located near a MYCN-bound peak and that are positively correlated with MYCN from the IRSG/PCHTN dataset [7].

comparison with another publicly available dataset (IRSG/PCHTN)
[26], overlapping genes = 250/2160 (11.6 %). Within the distal region,
233 genes with a binding site as well as 82 genes with a binding site
within the proximal promoter region also correlated with MYCN
expression levels (Fig. 1D). Of these, 185 genes were positively corre-
lated with MYCN expression levels and 130 were negatively correlated.
Ontology analysis of targets that positively correlated with MYCN
expression using our dataset [25] showed predominant involvement of
MYCN in cell cycle related processes and networks (Fig. 1E), which was
also confirmed in the IRSG/PCHTN dataset [26], Fig. 1F).

3.3. MYCN binds to and regulates CDK4 and KDM4B in RMS

Of the genes that correlated with MYCN expression levels and con-
tained a binding site for MYCN in our dataset, 26 are predicted to play a
role in cell cycle regulation (Supplementary Table S10). One of the
largest peaks in the MYCN ChIP-sequencing data was in the promoter of
CDK4 (Fold Enrichment = 184.62, FDR =0 %, p-value < 0.0001,
Fig. 2A), a regulator of G1/S phase progression of the cell cycle [27]. To
determine whether MYCN expression correlates with CDK4 in RMS we
analyzed RMS patient sample expression profiling data [25] using R2
(http://hgserverl.amc.nl/cgi-bin/r2/main.cgi) and found a positive
correlation between MYCN and CDK4 (Fig. 2B, p-value < 0.05).
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Fig. 2. CDK4 and KDM4B are downstream targets of MYCN. (A) Integrative Genomics Viewer (IGV) screenshot showing MYCN ChIP-sequencing read depth from
MACS at the CDK4 proximal promoter. (B) Correlation between mRNA expression of CDK4 with MYCN in RMS patient samples using the ITCC/CIT dataset [29]. (C)
ChIP-gPCR in RH30 HA-MYCN expressing cells showing binding of MYCN at the CDK4 promoter relative to the IgG control. (D) Luciferase assay performed in MYCN
amplified RMS cells showing an increase in luciferase activity at the CDK4 promoter relative to the control vector. (E) Correlation between mRNA expression of
KDM4B and MYCN in RMS patient samples using the ITCC/CIT dataset [29]. (F) ChIP-qPCR in RH30 HAMYCN cells showing binding of MYCN at the KDM4B
promoter relative to the IgG control. (G) Luciferase assay performed in MYCN amplified RMS cells showing an increase in luciferase activity at the KDM4B promoter
relative to the control vector. Western blot showing siRNA silencing of MYCN at 48hrs post transfection in RH30 cells resulting in a reduction in expression of CDK4

(H) and KDM4B (1) at the protein level.

Although copy number data was not available for analyses of these pa-
tient cases, the higher levels of expression of MYCN and CDK4 may be
associated with genomic amplification of these regions that has been
previously described [10,18]. To confirm that MYCN is binding to the
CDK4 promoter in RMS cell lines we performed a MYCN pull down
followed by ChIP-qPCR in RH30 cells and confirmed binding of MYCN to
the CDK4 promoter (Fig. 2C). Luciferase reporter assays surrounding the
MYCN binding site within the CDK4 promoter showed a 3-fold increase
in luciferase activity compared to the control vector (Fig. 2D) consistent
with MYCN binding to and regulating CDK4.

The cell cycle regulated histone demethylase KDM4B and MYCN

have been reported to interact and regulate one another [28,29]. We
have recently shown that KDM4B is aberrantly expressed in RMS sam-
ples [15,30] and KDM4B is reported to be downregulated after MYCN
silencing in RMS cells [12]. Analysis of expression profiling data for RMS
patient samples [26] identified a positive correlation between MYCN
and KDM4B in RMS patient samples (Fig. 2E, r = 0.31, p < 0.001).
Consistent with this, analysis of our ChIP-sequencing data suggested that
there is a binding site for MYCN in the promoter of KDM4B. To confirm
MYCN binding at this region we performed ChIP-PCR around a region
identified as containing an E-box domain and found that MYCN can
indeed bind to this region within KDM4B (Fig. 2F). Additionally,
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luciferase reporter assays surrounding the MYCN binding site within the
KDM4B promoter showed a fold increase in luciferase activity compared
to the control vector (Fig. 2G). To confirm that CDK4 and KDM4B are
downstream targets of MYCN we performed siRNA-mediated silencing
of MYCN in RH30 cells and demonstrated reduction of CDK4 (Fig. 2G)
and KDM4B protein expression (Fig. 2H) upon MYCN silencing.

3.4. MYCN is aberrantly expressed during the cell cycle in ARMS cell
lines

MYCN has previously been shown to be upregulated during G1 with
rapid downregulation of the MYCN protein during S and G2 phases of
the cell cycle in neuroblastoma [31]. As RMS cells failed to arrest with
serum starvation or respond as expected to agents such as thymidine and
mimosine that typically synchronize cells in the cell cycle
(Supplementary Fig. 1), we assessed MYCN expression in ARMS cells
after isolating each phase of the cell cycle using fluorescence activated
cell sorting (FACS) (Supplementary Fig. 2). MYCN was expressed in each
phase of the cell cycle in ARMS cells (Fig. 3A) indicative of aberrant
expression or protein stability. Analysis of CDK4 and MYCN in a
non-MYCN or CDK4 amplified ARMS line (RH4), revealed that these
were concurrently expressed throughout the cell cycle (Fig. 3B). Simi-
larly, KDM4B was consistently present throughout the cell cycle in RH30
in line with MYCN protein levels (Fig. 3C).

4. Discussion

MYCN is genomically amplified and a key oncogene in a number of
pediatric malignancies including neuroblastomas and RMS although
little is understood about its role in PAX::FOXO1 positive RMS. There-
fore, we aimed to determine genes, and associated processes, that are
transcriptionally regulated by MYCN in RMS cells. Analysis of DNA re-
gions bound by MYCN revealed an association with non-canonical E-box
motifs in addition to the classic canonical E-box motif which has also
seen in neuroblastoma [32]. In addition, we identified a number of other
MYCN binding motifs (Supplementary Tables) consistent with the
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finding that MYC binding is not restricted to E-box sequences (reviewed
in [33]). ChIP-seq in combination with gene expression profiling data
revealed that MYCN regulates genes involved in other processes
including neurogenesis, a feature consistent with the expression of
neurological markers in PAX3::FOXO1 positive RMS that may represent
a therapy resistant cell population [34,35].

We show that MYCN is a potential transcriptional driver of several
cell cycle-related and other genes worthy of further investigation in RMS
(Supplementary Tables). These included CDK4 and KDM4B, that links
MYCN amplification and/or over-expression to cell cycle progression.
Previously we have shown a reciprocal regulatory relationship between
PAX3::FOXO1 and MYCN in RMS where MYCN contributes to PAX3::
FOXO1 expression and vice versa [12]. Also, c-Myc and N-Myc have
been shown to regulate the expression of the developmental control
gene Pax3 in a cell cycle dependent manner in mouse models [31]. Here
we found that MYCN is expressed throughout the cell cycle in ARMS cell
lines contrary to the variable pattern of MYC gene expression in normal
neuronal [31] and other normal cell types [36].

MYC proteins regulate the expression of cell cycle checkpoint pro-
teins and are involved cell cycle progression (reviewed in [36]). Cell
cycle proteins, KDM4B and CDK4 were identified as direct transcrip-
tional targets of MYCN, and their expression upregulated in
MYCN-overexpressing cells. CDK4 can be genomically amplified and has
been correlated with adverse outcome in fusion-positive RMS [18]. In
other cancers, MYCN has been shown to either directly bind to KDM4B
[28] or where KDM4B regulates the expression of c-MYC [37,38], our
data demonstrate that KDM4B is downstream of MYCN in the context of
fusion-positive RMS. PAX3::FOXO1 functions as a transcriptional acti-
vator in RMS and has been shown to create autoregulatory loops at super
enhancers in conjunction with MYCN [5,39]. ChIP-seq data showed that
there were no peaks for PAX3::FOXO1 in either the CDK4 or KDM4B
promoters and therefore direct regulation of these genes by MYCN is a
significant driver [5]. PAX3::FOXO1 is regulated via phosphorylation on
serine 430 by CDK4, which in turn leads to enhanced transcriptional
activity of the fusion protein. As MYCN drives expression of both CDK4
and PAX3::FOXO1 in RMS cells, this is consistent with MYCN directly
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Fig. 3. MYCN is aberrantly expressed throughout the cell cycle in PAX3-FOXO1-positive cell lines. (A) MYCN protein expression analysis by Western blot in 3 ARMS
cell lines (RMS-01, RH30, RH41). (B) Expression of MYCN and MYCN-regulated cell cycle protein, CDK4 throughout the cell cycle in the PAX3-FOXO1 positive ARMS
cell line (RH4). (C) Expression of MYCN and KDM4B throughout the cell cycle in a PAX3-FOXO1 positive ARMS cell line (RH30).
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and indirectly driving the transcriptional output of the fusion protein in
these cells thus contributing to the enhanced transcriptional program
and aggressive proliferative state of PAX3::FOX0O1 RMS.

Here we have shown that MYCN acts as a transcription factor in
fusion-positive ARMS to control the expression of selected cell cycle
genes throughout the cell cycle thereby maintaining the proliferative
state in RMS. Our analyses reveal a complex role for MYCN in regulating
genes involved in cell cycle progression, as well as developmental pro-
cesses including neurogenesis and myogenesis. As such, in addition to
recognition of MYCN as a therapeutic target in neuroblastoma, it also
represents an attractive target for high-risk fusion-positive RMS [12].
MYCN, together with MYC for other cancer types, are showing
increasing promise of being therapeutically targetable [40]. Also, direct
downstream targets of MYCN in RMS such as CDK4 and KDM4B
demonstrated here highlights potential novel avenues for targeting the
downstream activity of MYCN in RMS. Data already support therapeutic
potential of inhibiting CDK4 or KDM4B activity in RMS [15,18,30]
although selective inhibitors have yet to be developed for KDM4B to
enable clinical translation. Future studies may focus on these and other
downstream targets of MYCN in new combination strategies, or target-
ing MYCN itself using, for example, degrader-based strategies, for the
treatment of MYCN-positive RMS.
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