The University of Southampton
University of Southampton Institutional Repository

A qubit regularization of asymptotic freedom without fine-tuning

A qubit regularization of asymptotic freedom without fine-tuning
A qubit regularization of asymptotic freedom without fine-tuning
Other than the commonly used Wilson’s regularization of quantum field theories (QFTs), there is a growing interest in regularizations that explore lattice models with a strictly finite local Hilbert space, in anticipation of the upcoming era of quantum simulations of QFTs. A notable example is Euclidean qubit regularization, which provides a natural way to recover continuum QFTs that emerge via infrared fixed points of lattice theories. Can such regularizations also capture the physics of ultraviolet fixed points? We present a novel regularization of the asymptotically free massive continuum QFT that emerges at the Berezenski-Kosterlitz-Thouless (BKT) transition through a hard core loop-gas model, discussing the advantages this model provides compared to traditional regularizations. In particular, we demonstrate that without the need for fine-tuning, it can reproduce the universal step-scaling function of the classical lattice XY model in the massive phase as we approach the phase transition.
Proceedings of Science
Maiti, Sandip
95f7691a-9956-4e68-8fe3-81d5ed4fa474
Banerjee, Debasish
dcc5d706-d0ed-40b7-94f6-a4ddd7d41646
Chandrasekharan, Shailesh
162eccab-c1a9-4b5c-8142-7a0ab4814cb3
Krstic Marinkovic, Marina
798b8cb7-7b32-4bdc-ad21-6d82bf51015b
Maiti, Sandip
95f7691a-9956-4e68-8fe3-81d5ed4fa474
Banerjee, Debasish
dcc5d706-d0ed-40b7-94f6-a4ddd7d41646
Chandrasekharan, Shailesh
162eccab-c1a9-4b5c-8142-7a0ab4814cb3
Krstic Marinkovic, Marina
798b8cb7-7b32-4bdc-ad21-6d82bf51015b

Maiti, Sandip, Banerjee, Debasish, Chandrasekharan, Shailesh and Krstic Marinkovic, Marina (2024) A qubit regularization of asymptotic freedom without fine-tuning. In Proceedings of The 40th International Symposium on Lattice Field Theory: (LATTICE2023). vol. 453, Proceedings of Science. 8 pp . (doi:10.22323/1.453.0358).

Record type: Conference or Workshop Item (Paper)

Abstract

Other than the commonly used Wilson’s regularization of quantum field theories (QFTs), there is a growing interest in regularizations that explore lattice models with a strictly finite local Hilbert space, in anticipation of the upcoming era of quantum simulations of QFTs. A notable example is Euclidean qubit regularization, which provides a natural way to recover continuum QFTs that emerge via infrared fixed points of lattice theories. Can such regularizations also capture the physics of ultraviolet fixed points? We present a novel regularization of the asymptotically free massive continuum QFT that emerges at the Berezenski-Kosterlitz-Thouless (BKT) transition through a hard core loop-gas model, discussing the advantages this model provides compared to traditional regularizations. In particular, we demonstrate that without the need for fine-tuning, it can reproduce the universal step-scaling function of the classical lattice XY model in the massive phase as we approach the phase transition.

Text
LATTICE2023_358 - Version of Record
Download (2MB)

More information

e-pub ahead of print date: 2 May 2024

Identifiers

Local EPrints ID: 501407
URI: http://eprints.soton.ac.uk/id/eprint/501407
PURE UUID: 3a6adb89-9dc8-45a3-8079-41fbb6f53527
ORCID for Debasish Banerjee: ORCID iD orcid.org/0000-0003-0244-4337

Catalogue record

Date deposited: 30 May 2025 16:49
Last modified: 22 Aug 2025 02:47

Export record

Altmetrics

Contributors

Author: Sandip Maiti
Author: Debasish Banerjee ORCID iD
Author: Shailesh Chandrasekharan
Author: Marina Krstic Marinkovic

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×