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In this article, we elucidate the structure and properties of a class of anomalous high-energy states of
matter-free Uð1Þ quantum link gauge theory Hamiltonians using numerical and analytical methods. Such
anomalous states, known as quantum many-body scars in the literature, have generated a lot of interest due
to their athermal nature. Our starting Hamiltonian is H ¼ Okin þ λOpot, where λ is a real-valued coupling,
and Okin (Opot) are summed local off-diagonal (diagonal) operators in the electric flux basis acting on the

elementary plaquette □. The spectrum of the model in its spin-1
2
representation on Lx × Ly lattices reveal

the existence of sublattice scars, jψsi, which satisfy Opot;□jψsi ¼ jψsi for all elementary plaquettes on one
sublattice andOpot;□jψsi ¼ 0 on the other, while being simultaneous zero modes or nonzero integer-valued
eigenstates of Okin. We demonstrate a “triangle relation” connecting the sublattice scars with nonzero
integer eigenvalues of Okin to particular sublattice scars with Okin ¼ 0 eigenvalues. A fraction of the
sublattice scars have a simple description in terms of emergent short singlets, on which we place analytic
bounds. We further construct a long-ranged parent Hamiltonian for which all sublattice scars in the null
space of Okin become unique ground states and elucidate some of the properties of its spectrum. In
particular, zero energy states of this parent Hamiltonian turn out to be exact scars of another Uð1Þ quantum
link model with a staggered short-ranged diagonal term.

DOI: 10.1103/PhysRevD.109.034519

I. INTRODUCTION

Traditional high-energy physics has focused on the
consideration of physical phenomena that typically happen
at energy scales much greater than the ground state or even
the relevant low-energy physics. This approach has been
particularly useful in decoding the fundamental particles
and their interactions in nature through a series of collider
experiments at successively higher energies, culminating in
the discovery of the Higgs particle [1]. The nature of the
collider experiments is such that it is able to create matter
at high energy densities, while having less control on the
microscopic details of particular (eigen)states of interesting
theories. This makes it extremely difficult to study the
physics of isolated excited quantum states which may
have interesting properties by themselves. Probing fragile

quantum mechanical effects directly from collider experi-
ments, such as entanglement, can be challenging, although
there is recent work on studies of entanglement of particle
pairs produced at the Large Hadron Collider [2,3].
In the past decade, the landscape of experiments avail-

able have highly expanded due to the remarkable success of
tabletop experiments in controlling microscopic degrees of
freedom in a very precise manner [4]. This has led to the
construction of quantum simulators and quantum com-
puters using a host of different architectures such as
Rydberg atoms, superconducting qubits, and even photons
trapped in a cavity (circuit QED) [5]. These experiments
have enabled the use of measures of quantum entangle-
ment, and more generally quantum information theory, in
order to classify and understand a variety of physical
phenomena which defy conventional wisdom. Therefore,
dynamical aspects of various theories, notably those relat-
ing to thermalization, can be studied with these tabletop
experiments considerably easily than in collider experi-
ments. There has been proposals to mimic particle colli-
sions in tabletop experiments to study their dynamics [6,7],
as well as various other aspects of the physics which are
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difficult to study using classical simulation methods [8–14].
Together with the original proposals, they havemotivated the
realization of lattice gauge theories in quantumcomputer and
simulator setups [15–18].
Questions about the thermalization of many body quan-

tum systems is also a central topic of investigation in
condensed matter physics. The studies of thermalization in
quantum spin and fermionic models have been guided by
the so-called eigenstate thermalization hypothesis (ETH)
[19–21]. ETH postulates that even though quantum
mechanics allows for unitary dynamics of closed systems,
a subsystem of the full system appears to thermalize, since
the rest of the system acts as a heat bath for the subsystem
under consideration, thereby establishing the validity of
quantum statistical mechanics. A key result that has
emerged from studies of ETH in the most common spin
and fermionic model is that a state whose energy density is
OðJÞ, J ∼ 1 higher than the ground state thermalizes in
time t ∼Oð1Þ.
Simultaneously, there has also been an explosion of

interest towards the investigation of scenarios in transla-
tionally invariant systems which show deviation from the
conventional wisdom of ETH, both theoretically and
experimentally [22–28]. Two such scenarios, weak ergo-
dicity breaking and strong ergodicity breaking, have been
theoretically proposed for translational invariant systems.
The former scenario shows the presence of anomalous
high-energy states, also dubbed as quantum many-body
scars [22,23,29–50] in the spectrum of the Hamiltonian
which often admit description in terms of an exponentially
smaller number of Fock states (compared to neighboring
nonanomalous high-energy states) with a simple physical
interpretation. The latter scenario on the other hand,
emerges when the symmetry resolved Hamiltonian further
splits into exponentially many disconnected sectors without
a clear description in terms of symmetries and no single
dominant sector in the thermodynamic limit [25,26,51,52].
The reader is referred to Ref. [53] for a detailed review of
the topics.
Lattice gauge theories, which possess a local invariance,

and thus often used as microscopic models to explain a
variety of phenomena in both high-energy and condensed
matter physics, such as confinement [54–56], spin liquids
[57], and superconductivity [58] have also been recently
subjected to similar investigations for ETH violation
scenarios without disorder. Quantum many-body scars
have been established to be a reason for the anomalous
thermalization observed in a pedagogical model [27,59]:
the Schwinger model with quantum link gauge fields [60],
also known as the PXP model [22,61,62] in condensed
matter physics. Scars have been investigated in various
kinds of Schwinger models and higher-spin PXP models
[48,63,64]. Such anomalous states have also been uncov-
ered in Z2 as well as certain non-Abelian gauge theories
[65,66]. It has been shown that even two-dimensional

matter free Uð1Þ gauge theories possess a rich variety of
scars [67–69]. In fact, the particular two-dimensional
microscopic models are those which are used in the context
of spin-ice (the quantum link model) [70–72] and effective
theories of quantum antiferromagnets (the quantum dimer
model) [58,73–76], and are known as Rokhsar-Kivelson
models. In the latter case, the presence of exponentially
many (in the longer linear dimension) quantum many-body
scars could be shown for ladder systems, called lego scars
[69]. The structure of the quantum scars in the quantum link
model has been comparatively elusive to identify.
In this article, we provide a systematic study of the

quantum many-body scars of Uð1Þ quantum link models in
their spin-1

2
representation and elucidate the structure of a

class of scars. We call one variety of such scars as sublattice
scars. These scars have the peculiar property of being
localized in one of the two possible sublattices of a Lx × Ly

lattice with both Lx, Ly being even due to interference
effects associated with the flipping of elementary plaquettes
caused by the off-diagonal operatorOkin. WhileOkin has an
exponentially large number (in LxLy) of exact zero modes
due to a particular index theorem [22,23,77], a typical zero
mode is expected to mimic an infinite temperature thermal
state locally and hence be completely featureless, as far as
local features are concerned, from ETH. On the other hand,
these sublattice scars display perfect ordering of the
diagonal operator Opot, which counts the total number of
plaquettes which can be flipped. More specifically, the
local operator Opot;□ acting on each plaquette either takes
its maximum value (1) or minimum (0) on the relevant
sublattice. While most sublattice scars belong to the null
space of Okin, there also exist sublattice scars with nonzero
integer eigenvalues of Okin. We also unearth other anoma-
lous zero modes ofOkin, or quantum many-body scars, that
are distinct from the sublattice scars. These scars turn out to
be simultaneous zero modes of Okin and another non-
commuting diagonal term composed by summing Opot;□

over all elementary plaquettes of the lattice in a staggered
fashion, depending on which sublattice the plaquette
belongs to.
The rest of the article is organized as follows: Sec. II

gives an account of two microscopic lattice gauge theory
models with short-ranged Hamiltonians that we consider in
our study, together with their local and global symmetries.
Section III focuses on the description of sublattice scars
that can either be anomalous zero modes of Okin or are
eigenstates of Okin with eigenvalues �2. We discuss a
class of sublattice scars which can be analytically con-
structed using short singlets on a dual square lattice, as well
as those which cannot be formed using such a description.
In Sec. IV, we describe an efficient numerical method to
specifically generate sublattice scars that goes beyond brute
force exact diagonalization (ED). In Sec. V, we formulate a
long-range parent Hamiltonian whose ground state consists
of all the sublattice scars of the original short-range

SAU, STORNATI, BANERJEE, and SEN PHYS. REV. D 109, 034519 (2024)

034519-2



quantum link model with Okin ¼ 0. The sublattice scars
with eigenvalues Okin ¼ �2 can be given a quasiparticle-
like description starting from particular ground states of this
parent Hamiltonian. Some interesting properties of the
spectrum of this parent Hamiltonian are also discussed.
In particular, zero energy states of this parent Hamiltonian
turn out to be exact anomalous midspectrum zero modes of
another short-ranged quantum Uð1Þ link model, but with a
staggered short-ranged diagonal term which is discussed
in Sec. VI. We finally conclude and present some open
directions in Sec. VII.

II. THE MODELS

The investigation of ETH or violations thereof in the
context of lattice gauge theories is complicated by the fact
that the traditional formulations of lattice gauge theories
due to Wilson [78,79] use an infinite dimensional Hilbert
space for each local degree of freedom. This allows for the
presence of arbitrarily high energy eigenstates in the
spectrum. A better control of this ultraviolet divergence
is provided by the quantum link models [54,80,81] which
still maintain exact gauge invariance using finite dimen-
sional gauge links. We continue using the smallest dimen-
sional representation for the Uð1Þ lattice gauge theory
where the spin-1

2
operators are used for the gauge links as in

the previous works [68,69]. The quantum links, as they are
called, reside on the links (r; μ̂) connecting adjacent lattice
sites r and rþ μ̂. The electric flux operator is given by,
Er;μ̂ ¼ S3r;μ̂ and the gauge fields are raising (lowering)

operators, Ur;μ̂ðU†
r;μ̂Þ ¼ Sþr;μ̂ðS−r;μ̂Þ. The operator Okin;□ is

composed of the elementary plaquette operator, U□ ¼
Ur;μ̂Urþμ̂;ν̂U

†
rþν̂;μ̂U

†
r;ν̂ and its hermitian conjugate U†

□
,

which changes the direction of electric flux loops around
an elementary plaquette (from clockwise to anticlockwise
and vice versa) or annihilate nonflippable plaquettes. The
other operator we will use in order to construct microscopic
Hamiltonians in the following subsection is the operator
Opot;□ ¼ Pr;μ̂;↑Prþμ̂;ν̂;↑Prþν̂;μ̂;↓Pr;ν̂;↓ þ H:c: P↑ð↓Þ is the
projection operator to up (down) electric flux state of
the gauge link. The structure of Opot counts the total
number of flippable plaquettes: every flippable plaquette
is counted as 1 irrespective of whether it is flippable in a
clockwise or anticlockwise manner, but as 0 if not flip-
pable. A pictorial representation of the actions ofOpot;□ and
Okin;□ on a plaquette is illustrated in the lower panel of
Fig. 1. Note that the operatorsOpot;□ andOkin;□ use a four-
body interaction, and the resulting theory is highly con-
strained: out of the 16 possible states at a single plaquette
(for the spin-1

2
representation) states, only two are non-

trivially acted up by the operators Opot;□ and Okin;□. It is
also useful to recognize that for the spin-1

2
representation

Opot;□ ¼ O2
kin;□, with higher powers of Okin;□ do not yield

any new interactions which respect the gauge symmetry

(which will be discussed next). As such in the lattice gauge
theory setup, this can be considered to be an adjoint
interaction term for the gauge links. The other local
interactions could be to take products of electric fields
on the four links of the plaquette, but oriented in different
fashion, but it is unclear what such interactions physically
represent, and we do not consider such interactions in
this work.
It is also useful to define the notion of a Fock state in the

context of this model. In a quantum field theory, or a
quantum many-body system, one typically starts from an
empty state (which for example has no fermions, or in the
case of spins, all spins pointing in a particular direction).
Since our model has only spin-degrees of freedom, we
could start from a state with all spins initialized to Sz ¼ − 1

2
and then apply creation operators to appropriate spins to get
a desired Fock state. The resulting state is diagonal in the
computational (electric flux) basis, and an example of such
a state is represented in Fig. 1. Clearly, as in a typical many-
body system, the system has exponentially many Fock
states, however we only need to keep track of those not
related by any symmetry.
The specific form of the Hamiltonians we build using the

operatorsOpot;□;Okin;□ is explained in the next section, but
before we discuss them, we consider the symmetries which
are common to all the Hamiltonians considered in this
article. The most relevant one is the local Uð1Þ symmetry,
which arises due to the existence of the local operator,

Gr ¼
X

μ

ðEr;μ̂ − Er;r−μ̂Þ; ð1Þ

FIG. 1. Top panel: an electric flux configuration (an example
Fock state) for a ðLx; LyÞ ¼ ð6; 4Þ lattice with periodic boundary
condition in both directions. Even (odd) sublattice has been
shown by shaded (blank) plaquettes. Sx ðSyÞ is the reflection
operation about x (y) axis (shown by dotted lines). Bottom panel:
action of Okin;□ and Opot;□ on elementary flippable plaquettes.
An elementary plaquette flippable in the clockwise (anticlock-
wise) manner is shown by red (blue) circle.
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which commutes with both the operators ½Gr;Opot� ¼ 0,
½Gr;Okin� ¼ 0, and thus with all Hamiltonians which use
these operators as building blocks. Moreover, note that the
local operator is defined on the sites and for the square
lattice, and thus has four links touching each site. Because
of this commutation relations, the Hilbert space splits into
exponentially many superselection sectors which then need
to be specified by imposing the Gauss’ law on particular
states. We will give explicit examples when we discuss the
model Hamiltonians.
Other symmetries of the Hamiltonians we will consider

are all global. First, one has the discrete symmetries such as
lattice translations, lattice rotations, reflections, elements of
the point group symmetries of the square (rectangular)
lattice. The presence or absence of some reflection sym-
metries will play a crucial role in our work. As an example,
Fig. 1 (top panel), shows two particular reflection axes Sx;y.
Not all point-group symmetries commute with each other.
Further, the Hamiltonians we consider are invariant to
shifts by one lattice spacing, but one of the Hamiltonians
we use will only be invariant by two lattice spacings. The
charge conjugation C is another global symmetry, which
transforms CEr;μ̂ ¼ −Er;μ̂, CUr;μ̂ ¼ U†

r;μ̂, and
CU†

r;μ̂ ¼ Ur;μ̂.
Finally, the model has a global Uð1Þ ×Uð1Þ winding
number symmetry corresponding to each spatial direction,
generated by the operator Wμ ¼ 1

Lμ

P
r Er;μ̂. For a detailed

discussion of the symmetries, the reader is referred to
Ref. [69]. We will, henceforth, focus on the largest sector
with zero winding, i.e., ðWx;WyÞ ¼ ð0; 0Þ.

A. Two Uð1Þ quantum link lattice gauge theories

The first model we consider is the one corresponding to
the Uð1Þ quantum link model, whose Hamiltonian is given
in terms of the plaquette operators introduced before, as
follows:

HRK ¼ Okin þ λOpot ¼ −
X

□

Okin;□ þ λ
X

□

Opot;□;

¼ −
X

□

ðU□ þ U†
□
Þ þ λ

X

□

ðU□ þU†
□
Þ2: ð2Þ

As noted previously, this Hamiltonian commutes with the
Gauss law operator in Eq. (1). Different choices of the
Gauss law decide different sectors, each with their own
interesting physics. For example, demanding that the
vacuum is free of any charge implies the definition of
physical states to be Grjψi ¼ 0, for all values of r. The
physics in this sector is relevant for the physics of confining
Abelian gauge theories [55], as well as that of quantum
spin-ice [71,76]. Similarly, if one chooses the Gauss law
sector which consists of static (heavy) charges which are
distributed throughout the lattice with the even-parity sites
having a charge Qr ¼ þ1 and odd-parity sites having
Qr ¼ −1, then the physics on the square lattice is that

of the quantum dimer model, relevant in the theories of
high-temperature superconductivity [58,70,74]. These
models have a rich phase diagram consisting of fractionally
charged electric strings [73] which break the translational
symmetry and give rise to crystalline confined phases,
which confine static charges at zero temperature. At finite
temperatures, this model undergoes a phase transition
into the deconfined phase, with the continuous phase
transition lying in the 2D XY universality class. Instead
of single charges, if one uses charges Qr ¼ �2 which hop
on the lattice due to thermal fluctuations alone, then the
resulting finite temperature phase transition exhibits weak
universality [82].
The second model we consider is very similar to the first

Hamiltonian, except that the potential term carries a
staggered coupling:

Hst¼−
X

□

Okin;□þλ
X

□

ð−1Þ□Opot;□;

¼−
X

□

ðU□þU†
□
Þþλ

X

□

ð−1ÞrxþryðU□þU†
□
Þ2: ð3Þ

Note that each plaquette here is labelled by the lower left
site, and therefore the sign ð−1Þ□ ¼ ð−1Þrxþry is decided
by whether the lower left site r ¼ ðrx; ryÞ has even or odd
parity.
We stress that while the Gauss law, the winding numbers

and the charge conjugation are the same for both the
models, point group symmetries like reflections and trans-
lations act differently due to the presence/absence of the
staggered coupling; e.g., while the first Hamiltonian is
translationally invariant by one lattice spacing in both
μ̂ ¼ x̂; ŷ, the second Hamiltonian is invariant to spatial
translations by two lattice spacing due to the staggered
couplings in Hst.

B. An index theorem and midspectrum zero modes

Both the models, HRK [Eq. (2)] and Hst [Eq. (3)], are
identical when λ ¼ 0 and describe a nonintegrable Uð1Þ
LGT [68,69]. The spectrum ofOkin has a spectral reflection
symmetry due to the presence of an operator Cα (where
α ¼ x; y) that anticommutes with Okin, where

Cα ¼
Y

r;α

Er;α: ð4Þ

Only the horizontal links with even (odd) ry [similarly, the
vertical bonds with even (odd) rx] contribute for α ¼ x
[similarly for α ¼ y] when Lx

2
is odd (even) [similarly, Ly

2
is

odd (even)] in Eq. (4). For example, Cx is defined using the
product of horizontal links on Ly

2
¼ 2 alternate rows with

odd values of ry and Cy is defined using the product of
vertical links on Lx

2
¼ 3 alternate columns with even values

of rx for the (6,4) lattice depicted in Fig. 1. This definition
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ensures that only one link in every elementary plaquette on
the lattice contributes to Cα from which it follows that

fOkin; Cαg ¼ 0: ð5Þ

From the local constraint that Grjψi ¼ 0 at each lattice
point r, we obtain that CxCy ¼ 1 implying that these are not
independent of each other. For any eigenstate of Okin with
energy E ≠ 0, denoted by jEi, there exists another eigen-
state CαjEi (where α may be chosen to be x or y) with
energy −E.
Okin commutes with the space reflection symmetries

defined along the horizontal (Sx) or vertical (Sy) axis
(see Fig. 1) which divides the lattice in two equal halves
leading to

½Okin; Sα� ¼ 0 ð6Þ

for α ¼ x; y. Furthermore, in defining Cx and Cy, the
Ly

2
rows

and the Lx
2

columns containing the links are located
symmetrically with respect to the reflection axes Sx and
Sy resulting in Cα commuting with both Sx and Sy,
irrespective of α, yielding

½Cα; Sβ� ¼ 0 ð7Þ

for α; β ¼ x; y.
Remarkably, any Hamiltonian with these properties

[Eqs. (5)–(7)] has exact zero energy eigenstates with
E ¼ 0 whose number scales exponentially with system
size but which are, nonetheless, protected due to an index
theorem as discussed in Refs. [22,23,77]. Following these
references, one can also show that the number of zero
modes is bounded below by

ffiffiffiffiffiffiffiffiffiffi
HSD

p
, where HSD denotes

the total Hilbert space dimension for a spin-1
2
QLM in a

ðLx; LyÞ ladder in the appropriate winding number sector
[zero winding number sector ðWx;WyÞ ¼ ð0; 0Þ in our
case]. These zero modes of Okin turn out to be the only
eigenstates that have a well-defined “chiral charge” of �1
under the action of Cα with α ¼ x; y distinguishing them
from all the nonzero modes of Okin which are not
eigenstates of Cα.
The number of zero modes for Okin for a range of

ðLx; LyÞ lattices that can be extracted from ED is shown in
Table I. Table I also shows the HSD for these lattices from
exact enumeration.
It is useful to ask whether the index theorem is pre-

served when noncommuting terms like
P

□
Opot;□ orP

□
ð−1Þ□Opot;□ are added to Okin. It turns out that addingP

□
Opot;□ immediately violates the index theorem since an

appropriate chiral operator which anticommutes with HRK
cannot be constructed unless λ ¼ 0, making the spectrum
lose its E → −E symmetry for λ ≠ 0. On the other hand,
adding the

P
□
ð−1Þ□Opot;□ to Okin as done inHst presents

an interesting casewhere the index theorem can be preserved
for any λ. This is because while

P
□
ð−1Þ□Opot;□ commutes

with Cα (for α ¼ x; y), it anticommutes with both Sx and Sy
unlike

P
□
Opot;□, which commutes with Sx and Sy. This

allows for the weaker condition of fHst; CαSβg ¼ 0 for
α; β ¼ x; y to be satisfied for any λ which turns out to be
sufficient to ensure the index theorem as demonstrated in
Ref. [23]. In fact, the number of zero modes of Hst for a
ðLx; LyÞ lattice stays unchanged for any λ∈ ð0;∞Þ and is
given in Table I. Note that it does not imply that the zero
modes themselves stay unchanged as a function of λ. Figure 2
shows the scaling of the number of zero modes of Okin and
Hst, respectively, and

ffiffiffiffiffiffiffiffiffiffi
HSD

p
on various ðLx; 2Þ ladders to

explicitly demonstrate the validity of the index theorem as
well as the accuracy of the lower bound on the number of the
zero modes.

III. SUBLATTICE SCARS

References [68,69] discussed high-energy eigenstates of
HRK [Eq. (2)] for ðLx; LyÞ lattices with periodic boundary
conditions in both directions that stayed unchanged as a
function of λ by virtue of being simultaneous eigenstates of
both Okin and Opot. The fact that these high-energy states
do not mix with the exponentially large (in system size)

TABLE I. Number of midspectrum zero modes in Okin and Hst
and the HSD for various lattices.

Lx × Ly Zero modes in Okin Zero modes in Hst HSD

6 × 2 34 30 282
8 × 2 178 94 2214
10 × 2 346 294 17906
12 × 2 1658 886 147578
4 × 4 158 74 990
6 × 4 1070 426 32810

FIG. 2. Scaling of the number of midspectrum zero modes with
system size in two models which satisfy index theorem. The
behaviour of the lower bound

ffiffiffiffiffiffiffiffiffiffi
HSD

p
is also shown.
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number of neighboring high-energy states as λ is varied,
immediately implies a violation of the ETH [68]. A class of
these eigenstates have Opot ¼ Np

2
(where Np ¼ LxLy refers

to the number of elementary plaquettes) and Okin ¼ 0 or
�2 as ED studies of Refs. [68,69] showed. However, an
analytic understanding of these scars in the QLM was
lacking so far. We will give a physical description of these
scars in what follows below, which will also demonstrate
their existence in 2D lattices.
It turns out that scars with ðOkin;OpotÞ ¼ ð0; Np

2
Þ and

ð�2; Np

2
Þ have much more structure than being just eigen-

states of Opot. All such scars for the finite lattices analyzed
in Ref. [69] can be understood from the following ansatz
that the scar states jψ si satisfy Opot;□jψ si ¼ jψ si for one
sublattice and Opot;□jψ si ¼ 0 for the other sublattice
(where there are two equivalent choices of which sublattice
has Opot;□jψ si ¼ jψ si). Since these sublattice scars are
midspectrum eigenstates of a nonintegrable theory [69],
namely Okin, ETH would have predicted Opot;□jψ si ¼
1
2
jψ si, independent of which sublattice an elementary

plaquette is located. Thus, these sublattice scars clearly
violate ETH. We will discuss a class of sublattice scars that
have a description in terms of emergent short singlets on an
appropriately defined dual square lattice in Sec. III A and
will also place a lower bound on the number of these
scars for arbitrary (even) ðLx; LyÞ lattices. Not all sublattice
scars have such an analytic description and these non-
singlet scars will be discussed in Secs. III B and III C.
The understanding of the structure of these nonsinglet scars
was greatly helped by an efficient numerical algorithm to
specifically target sublattice scars (but not the full Hilbert
space) and would be discussed in the next section.

A. Short singlet sublattice scars

A class of sublattice scars with Okin ¼ 0 can be con-
structed exactly using a tiling representation in terms of
emergent singlets. Let us denote the plaquettes with
Opot;□ ¼ 1 (Opot;□ ¼ 0) as active (inactive). For sublattice
scars, any active plaquette is surrounded by four inactive
plaquettes as its nearest neighbors (sharing a common link)
and vice versa. Now, consider two nearest neighbor active
plaquettes that share a commonvertex. These plaquettes can
only have the following four local configurations, ðC ; A Þ,
ðA ; C Þ, ðC ; C Þ, and ðA ; A Þ, where C ðA Þ denotes an
elementary plaquette where the electric fluxes have a
clockwise (anticlockwise) circulation. The inactive pla-
quettes on the other sublattice are denoted by U henceforth.
It is important to stress here that Opot;□ ¼ 0 on a plaquette
does not fix its electric flux configuration and allows for
electric flux fluctuations since there are 14 local flux
configurations that are U on any elementary plaquette.
Let us first consider two nearest neighbor active pla-

quettes that are either in the local configuration ðA ; C Þ or

ðC ; A Þ. This automatically ensures that the two plaquettes
on the other sublattice that share edges with both these
active plaquettes are U without the need of specifying the
electric fluxes on any other links of these plaquettes. The
above statement is not true if the local configuration of two
nearest neighbor active plaquettes is either ðA ; A Þ or
ðC ; C Þ and enforces extra constraints on the state of the
other active plaquettes that are in contact with the two U
plaquettes to ensure their unflippability. We can now take
this 2 × 2 unit of two flippable and two unflippable
plaquettes and apply Okin on this unit. This gives a
configuration as shown in Figs. 3(a), 3(b) from which it
is clear that actingOkin on a singlet of 1ffiffi

2
p ðA ; C − C ; A Þ

annihilates the state [Fig. 3(c)].
We now ask whether these 2 × 2 units comprising a

singlet and two unflippable plaquettes can be used to tile
the entire ðLx; LyÞ lattice and give sublattice scars. We
define a dual square lattice by joining the centers of the
active plaquettes on one sublattice [Fig. 4(a)]. The emer-
gent singlets can be thought of as living on the bonds of this
dual lattice. These singlets naturally act as hard-core dimers
because any active plaquette cannot be part of more than
one singlet. Furthermore, the perpendicular bisector of
each such dimer touches the center of the two unflip-
pable plaquettes in the 2 × 2 unit [Fig. 4(a)]. Since the
number of unflippable plaquettes equals Np

2
, none of these

perpendicular bisectors associated with the hard-core
dimers (representing the singlets) can share ends and thus
act as dual dimers with their own hard-core repulsion on the
square lattice defined by bonds touching the centers of the
inactive plaquettes. The allowed coverings of these dimers

(a)

(b)

(c)

FIG. 3. (a) and (b) show the action of Okin on two 2 × 2 units
composed of two unflippable plaquettes and one clockwise and
one anticlockwise flippable plaquette. Clockwise (anticlockwise)
circulation of electric fluxes on a plaquette is shown by a red (blue)
circle as in Fig. 1. The plaquette marked by a yellow background
indicates the one on which Okin acts in panels (a) and (b).
(c) Representation of an emergent singlet in the same 2 × 2 unit.
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(i.e., singlets) and their associated perpendicular bisectors
(the dual dimers) define all sublattice scars with a simple
emergent singlet description. Each of these short singlet
sublattice scars are eigenstates of Okin with eigenvalue 0
and satisfyOpot;□jψi ¼ cjψi, where c ¼ 1 (0) for the active
(inactive) elementary plaquettes.
Let us now discuss the degeneracy of such singlet

sublattice scars on ðLx; LyÞ lattices. Consider the ðLx; 2Þ
ladder first, and focus on active plaquettes on one particular
sublattice. It can be seen that the hard-core constraints on
the singlets and their associated perpendicular bisectors
only allow for two possible coverings such that all short
singlets are parallel to each other with their possible
alignment providing the additional degeneracy of 2.
Since the choice of active plaquettes on one sublattice is
arbitrary, the total number of such short singlet sublattice
scars equals 2þ 2 ¼ 4 for ðLx; 2Þ ladders.
We next consider the degeneracy of short singlet sub-

lattice scars for wider ladders with ðLx; 4Þ. The valid dimer
coverings can be constructed by first dividing the lattice
into a close packing of parallel nonoverlapping horizontal
or vertical partitions (see Fig. 4 for some examples), each of
width 2, and then arranging parallel dimers in each partition
in one of the two possible orientations. The internal

orientation of the parallel dimers can be assigned in each
of the partitions independently. For ðLx; 4Þ lattices, there
are two ways to divide the lattice into 4

2
¼ 2 (Lx

2
) non-

overlapping horizontal (vertical) partitions taking into
account periodic boundary conditions. This gives the total

number of dimer coverings to be ð8þ 2
Lx
2
þ1Þ out of which

four dimer coverings that comprise all dimers being parallel
to each other are repeated by multiple partitions. Thus, the
total number of distinct dimer coverings on one particular

sublattice of active plaquettes equals ð8þ 2
Lx
2
þ1 − 4Þ. Not

all these dimer coverings are linearly independent states.
An explicit calculation shows that For a (4,4) lattice, 10 out
of 12 such dimer coverings are linearly independent scars

while the number appears to be ð3þ 2
Lx
2
þ1Þ for Lx > 4 (see

Table II). Extending this counting to an arbitrary ðLx; LyÞ
lattice, we thus obtain Oð2Lx

2
þ1 þ 2

Ly
2
þ1 − 4Þ such short

singlet sublattice scars that immediately provides a lower
bound on the number of sublattice scars.
Let us briefly discuss the symmetries of these scars.

While the short singlet sublattice scars do not, in general,
have a well-defined momentum since the dimer covering
may not have any particular periodicity, all these states are
eigenstates of the charge conjugationC. Since the emergent
singlet is odd under C, a short singlet scar composed of
even (odd) number of singlets has C ¼ þ1 (−1). Since one
needs LxLy

4
short singlets to form a sublattice scar, these

particular scars have C ¼ ð−1ÞLxLy4 for a ðLx; LyÞ lattice.

B. Nonsinglet sublattice scars

From our numerical algorithm that explicitly targets
sublattice scars (see Sec. IV for a discussion of the
procedure), we can compute the total number of sublattice
scars in finite ðLx; LyÞ lattices. This information is given in
Table II for sublattice scars with Okin ¼ 0 where the active
plaquettes (withOpot;□ ¼ 1) have been chosen to be on one

(a)

(b) (c)

FIG. 4. Graphical representations of some short singlet sub-
lattice scars for a (6,4) lattice. The white (gray) plaquettes in all
panels denote active (inactive) plaquettes with Opot;□ ¼ 1ð0Þ.
The singlets (or dimers), shown as thick green lines, follow the
same convention as shown in Fig. 3(c) and reside on the bonds of
the dual square lattice formed by connecting the centers of the
active plaquettes as indicated in panel (a) by thin dotted lines.
Each dimer has an associated perpendicular bisector as shown in
panel (a) by dotted blue lines. Panels (a) and (b) show two
horizontal partitions of width 2 while panel (c) shows three
vertical partitions of width 2 using dotted red lines.

TABLE II. Number of sublattice scars with Okin ¼ 0 in one
sublattice for various lattices. The sublattice scars can be further
classified into short singlet scars, nonsinglet scars formed out of
Fock states with an equal (unequal) number of clockwise
(represented by C) and anticlockwise (represented by A) flip-
pable active plaquettes. The corresponding degeneracies have
been separately listed for clarity.

Lattice

Scars in equal A-C sector
Scars in unequal

A-C sectorSinglet scars Nonsinglet scars

Lx × 2 2 0 0
4 × 4 10 0 3
6 × 4 19 3 1
8 × 4 35 17 1
10 × 4 67 62 1
6 × 6 28 1 1
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particular sublattice. While all sublattice scars for Ly ¼ 2

turn out to be short singlet scars, wider lattices with Ly ≥ 4

immediately lead to the presence of nonsinglet sublattice
scars. From explicit calculations, we see that sublattice
scars with Okin ¼ 0 can be written as a linear combination

of Fock states that involve either ðNp

4
; Np

4
Þ ðA ; C Þ or

ðNp

4
� 1; Np

4
∓ 1Þ ðA ; C Þ active plaquettes (Table II).

The above notation indicates the number of anticlockwise
and clockwise plaquettes in each of the Fock states that
contribute to the scars. Clearly, short singlet scars belong to
the former variety while the latter variety cannot have a
short singlet representation. Focusing on sublattice scars
that can be expressed as a linear combination of Fock states
with ðNp

4
; Np

4
Þ ðA ; C Þ active plaquettes, we see that while

(4, 4) lattice does not have any nonsinglet scar, Lx ≥ 6 for
Ly ¼ 4 has several nonsinglet scars whose number seems
to rapidly increase with Lx. It is not clear to us whether this
number in fact exceeds the corresponding number of singlet
scars when Lx > 10 for Ly ¼ 4. For (6, 6) there is exactly 1
such nonsinglet scar but we expect that this number again
increases as Lx > 6 for Ly ¼ 6. Note that accessing even
(10, 4) lattices with ED targeting the full Hilbert space is
extremely resource intensive and here we have used the
algorithm presented in Sec. IV.
We now come to the sublattice scars that can be

expressed in terms of Fock states with ðNp

4
þ 1; Np

4
− 1Þ

and ðNp

4
− 1; Np

4
þ 1Þ ðA ; C Þ active plaquettes on one

particular sublattice. Interestingly, their number does not
seem to increase with lattice dimension unlike the singlet
and nonsinglet scars composed of an equal number of
clockwise and anticlockwise active plaquettes (Table II).
While there are three such sublattice scars for a (4, 4)
lattice, there is only one such scar for (6, 4), (8, 4), (10, 4),
and (6, 6) lattices. A particular linear combination of the
three sublattice scars (which is also a sublattice scar, by
definition) for a (4, 4) lattice is shown in Fig. 5. This scar
has the property that all the Fock states that combine to
form this state contribute with equal magnitudes but with an
intricate sign structure as depicted in Fig. 5, and the state
can be expressed as

jψ s;0i ¼
1

2
ffiffiffi
6

p
X12

i¼1

SignðiÞðjFii þ CjFiiÞ; ð8Þ

where we refer the reader to Fig. 5 for SignðiÞ for the
corresponding jFii. This striking property of the ampli-
tudes of the contributing Fock states turns out to be true for
the unique scar with ðNp

4
þ 1; Np

4
− 1Þ and ðNp

4
− 1; Np

4
þ 1Þ

ðA ; C Þ active plaquettes on one particular sublattice for
bigger lattices than (4, 4).
We comment on the symmetries of the nonsinglet scars.

We observe that the eigenvalues of the operator C for these

states are ð−1ÞLxLy4 , just like the short singlet scars, though
we do not have an analytic proof in this case. Second,
the unique scars formed by combining Fock states with

ðNp

4
þ 1; Np

4
− 1Þ and ðNp

4
− 1; Np

4
þ 1Þ ðA ; C Þ active pla-

quettes on one particular sublattice for (6, 4),(8, 4),(10, 4),
and (6, 6) lattices have a well-defined momentum with
respect to translations by two lattice units in both direc-
tions x̂ and ŷ (the sublattice structure rules out any
symmetry of these states with respect to translations by
one lattice unit). We denote the momentum as k̂x; k̂y to
avoid any confusion with the usual momentum, defined
through single lattice translations. While these scars
for (6, 4),(8, 4),(10, 4) lattices have a momentum
ðk̂x; k̂yÞ ¼ ð0; 0Þ, the scar for the (6, 6) lattice is at
momentum ðk̂x; k̂yÞ ¼ ðπ; πÞ. The unique nonsinglet scar
for a (6,6) lattice that involves equal number of clockwise
and anticlockwise plaquettes on one sublattice also carries a
momentum ðk̂x; k̂yÞ ¼ ðπ; πÞ.
One can ask how the local operators differ in any non-

singlet scar compared to any short singlet scar. These
operators must be other than Opot;□ which cannot distin-
guish between the two cases. However, certain two-
plaquette correlation functions, where the two plaquettes
are nearest neighbor active plaquettes sharing a common
vertex, are sensitive to the scar states. We expect that these
operators can be measured straightforwardly in quantum
simulator experiments, and provide a route to the exper-
imental demonstration of these states. The four-dimensional

FIG. 5. One of the three sublattice scars with Okin ¼ 0 and
having contributions from unequal number of clockwise and
anticlockwise flippable plaquettes for 4 × 4 lattice. Clockwise
(anticlockwise) circulation of electric fluxes on a plaquette is
shown by a red (blue) circle as in Fig. 1. The white (gray)
plaquettes denote active (inactive) plaquettes with Opot;□ ¼ 1ð0Þ
as in Fig. 4.
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local Hilbert space can then be represented in terms of
singlets and triplets in the following manner:

jtþ1i ¼ ðA ; A Þ;
jt−1i ¼ ðC ; C Þ;

jt0i ¼
1ffiffiffi
2

p ðA ; C þ C ; A Þ;

js0i ¼
1ffiffiffi
2

p ðA ; C − C ; A Þ: ð9Þ

We can then probe the expectation values of the operators
jt�1;0iht�1;0j and js0ihs0j locally for all nearest neighbor
active plaquettes given any sublattice scar, which we denote
by a shorthand ht�1;0iðr1;r2Þ, hs0iðr1;r2Þ, where ðr1; r2Þ indi-
cates the bond connecting the centers of the two plaquettes.
For a short singlet sublattice scar, hs0iðr1;r2Þ ¼ 1 and
ht�1;0iðr1;r2Þ ¼ 0 for the bonds that carry a singlet (dimer)
(Fig. 4) and ht�1;0iðr1;r2Þ ¼ hs0ir1;r2 ¼ 1

4
for the other bonds

(Fig. 4). For nonsinglet sublattice scars, we choose to probe
these local operators for both the unique nonsinglet sublattice
scar with equal number of clockwise and anticlockwise
active plaquettes [Fig. 6(a)] and with ðNp

4
� 1; Np

4
∓ 1Þ

clockwise and anticlockwise active plaquettes [Fig. 6(b)]
on a (6, 6) lattice. For both these nonsinglet scars, the values
of ht�1;0iðr1;r2Þ, and hs0iðr1;r2Þ are independent of the location
of the bond ðr1; r2Þ and are quite different from short singlet
scars. Probing these operators locally for the unique non-

singlet scar with ðNp

4
� 1; Np ∓ 1Þ clockwise and anticlock-

wise active plaquettes for ðLx; 4Þ lattices with Lx ≥ 6
again gives values of ht�1;0iðr1;r2Þ, and hs0iðr1;r2Þ that are
independent of the location of the bond ðr1; r2Þ. We
obtain ht�1iðr1;r2Þ ¼ 1

4
for Lx ¼ 6, 8, 10, respectively,

ht0iðr1;r2Þðhs0iðr1;r2ÞÞ ≈ 0.2038ð0.29167Þ for Lx ¼ 6,
ht0iðr1;r2Þðhs0iðr1;r2ÞÞ ≈ 0.2187ð0.2812Þ for Lx ¼ 8 and
ht0iðr1;r2Þðhs0iðr1;r2ÞÞ ≈ 0.225ð0.275Þ for Lx ¼ 10.

C. Sublattice scars with Okin = � 2

We also find sublattice scars withOkin ¼ �2 for systems
with Ly ≥ 4 (see Table III) that are simultaneous eigen-
states of Opot;□ with it being equal to 1 on one sublattice
and 0 on another. Since these states have nonzero integer
values of Okin, these necessarily violate the ETH as a
generic high-energy state would instead have an irrational
energy eigenvalue. It is interesting to ask how such simple
eigenvalues may be generated from Okin since there is no
analogous index theorem that ensures the presence of
specific E ≠ 0 eigenstates with such simple energies.
Comparing Tables II and III, it is striking that the
degeneracy of sublattice scars with Okin ¼ þ2ð−2Þ equals
that of sublattice scars with Okin ¼ 0 that are composed of
Fock states with unequal number of clockwise and anti-
clockwise active plaquettes.
We now demonstrate a “triangle relation” between sub-

lattice scars with Okin ¼ �2 and the sublattice scars with
Okin ¼ 0, composed of Fock states with ðNp

4
� 1; Np

4
∓ 1Þ

clockwise and anticlockwise active plaquettes. For this, we
note that the sublattice scars withOkin ¼ þ2ð−2Þ consist of
both Fock states with ðNp

4
; Np

4
Þ and ðNp

4
� 1; Np

4
∓ 1Þ clock-

wise and anticlockwise active plaquettes. Given any jψ s;þ2i
(where þ2 denotes the Okin ¼ þ2 states), applying the
chirality operator Cαjψ s;þ2i generates a unique jψ s;−2i with
Okin ¼ −2 (α can be chosen to be x or y). Applying Cα on the
Fock states with ðNp

4
; Np

4
Þ [ðNp

4
� 1; Np

4
∓ 1Þ] clockwise and

anticlockwise active plaquettes gives an eigenvalue of þ1
[−1]. Thus, ðjψ s;þ2i − Cαjψ s;þ2iÞ leads to a state with only

Fock states with ðNp

4
� 1; Np

4
∓ 1Þ clockwise and anticlock-

wise active plaquettes contributing to it. These Fock states
turn out to be identical to the ones that make up the sublattice
scars with Okin ¼ 0, and unequal number of clockwise and
anticlockwise active plaquettes, but the sign structure of the
states are nonetheless different.
We now define an operator O that acts on Fock states

with ðNp

4
� 1; Np

4
∓ 1Þ clockwise and anticlockwise active

plaquettes and leads to a sign change (no sign change) for
Fock states with ðNp

4
þ 1; Np

4
− 1Þ (ðNp

4
− 1; Np

4
þ 1Þ) clock-

wise and anticlockwise active plaquettes. We then see that

Oðjψ s;þ2i − Cαjψ s;þ2iÞ ∝ jψ s;0i; ð10Þ

(a) (b)

FIG. 6. Expectation value htþ1iðr1;r2Þ (red lines), ht−1iðr1;r2Þ
(blue lines), ht0iðr1;r2Þ (green lines), and hs0ir1;r2 (magenta lines)
for the unique nonsinglet scars on a (6,6) lattice composed of
(a) equal number of clockwise and anticlockwise active pla-
quettes, and (b) unequal number of clockwise and anticlockwise
active plaquettes. The white (gray) plaquettes denote active
(inactive) plaquettes with Opot;□ ¼ 1ð0Þ as in Fig. 4.

TABLE III. Number of sublattice scars with Okin ¼ �2 for
various lattice dimensions.

Lattice Scars with Okin ¼ þ2 Scars with Okin ¼ −2

4 × 4 3 3
6 × 4 1 1
8 × 4 1 1
6 × 6 1 1
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where jψ s;0i is a sublattice scar withOkin ¼ 0 composed of
Fock states with unequal number of clockwise and anti-
clockwise active plaquettes on one sublattice. We note
that this relation is also true for (4,4) system where
there is a threefold degeneracy of sublattice scars with
Okin ¼ þ2ð−2Þ. We conjecture that such a “triangle
relation” exists for all ðLx; LyÞ lattices with Ly ≥ 4.
Before closing this section, we note that sublattice scars

with Okin ¼ þ2ð−2Þ are eigenstates of charge conjugation
withC ¼ −1 for ðLx; LyÞ lattices withLy ¼ 4 and withC ¼
þ1 for (6, 6) lattice. Additionally, the unique sublattice scars
withOkin ¼ þ2ð−2Þ for (6, 4), (8, 4), and (6, 6) lattices have
a well-defined momentum of ðk̂x; k̂yÞ ¼ ð0; 0Þ with respect
to translations by two lattice units on both directions.

IV. EFFICIENT ALGORITHM TO GENERATE
SUBLATTICE SCARS

In this section, we discuss the efficient numerical
procedure to specifically target the sublattice scars, unlike
exact diagonalization, which constructs all states in the full
Hilbert space. While both algorithms are computationally
exponentially expensive, the former diverges slower, as can
be guessed from Table I, and will be demonstrated further
in Table IV. For this, we start with a set of n Fock states
fjfiign that have the requisite sublattice structure, i.e., all
plaquettes on one (other) sublattice are flippable (nonflip-
pable). We will soon come to the question of how to
generate this set efficiently. Our task is to now find states of
the form jψ si ¼

P
n
i¼1 aijfii such that Okinjψ si ¼ N jψ si,

whereN is either zero or a nonzero integer. Given fjfiign,
we define a set ofm Fock states fjFiigm, which contains all
possible states generated by a single action of Okin on
the set fjfiign. This set can be written as fjFiigm ¼
fjfiign þ fjf0iigm0 , where fjf0iigm0 contains Fock states
which do not have the sublattice structure of all flippable
(nonflippable) plaquettes on one (other) sublattice. One can
writeOkinjfii¼

P
m
j¼1VjijFji¼

P
n
j¼1vjijfjiþ

P
m0
j¼1v

0
jijf0ji,

where Vji ¼ hFjjOkinjfii; vji ¼ hfjjOkinjfii, and v0ji ¼
hf0jjOkinjfii.
First, we consider the sublattice scars withOkinjψ si ¼ 0.

We then have Okinjψ si ¼
P

n
i¼1 ai

P
m
j¼1 VjijFji ¼P

m
j¼1ð

P
n
i¼1 VjiaiÞjFji. To satisfy Okinjψ si ¼ 0, we need

to satisfy m simultaneous conditions:
P

n
i¼1 Vjiai ¼ 0 for

j ¼ 1 to m. The possible set of solutions (faig) specify the

sublattice scars with Okin ¼ 0. For this, we construct the
m × n dimensional matrix ½Vm×n�ji ¼ vji. If we perform a
singular value decomposition of V , then the right-singular
vectors (f½Φn×1�g) with zero-singular value satisfy the
above conditions because ½Vm×n�½Φn×1� ¼ ½∅m×1� ⇒P

n
i¼1 Vji½Φn×1�i1 ¼ 0 for j ¼ 1 to m. These right-singular

vectors are then the required sublattice scars with N ¼ 0.
Next, we consider the sublattice scars with Okinjψ si ¼

N jψ si, whereN is a nonzero integer. This requires a more
complicated procedure. We can write Okinjψ si¼P

n
j¼1ð

P
n
i¼1vjiaiÞjfjiþ

P
m0
j¼1ð

P
n
i¼1v

0
jiaiÞjf0ji. To satisfy

Okinjψ si ¼ N jψ si with N ≠ 0, we need to satisfy two
conditions simultaneously: (i)

P
n
i¼1 vjiai ¼ N aj for j ¼ 1

to n and (ii)
P

n
i¼1 v

0
jiai ¼ 0 for j ¼ 1 to m0. First, we

construct the matrix ½V 0
m0×n�ji ¼ v0ji. As we have already

argued before, the right-singular vectors of V 0 with zero-
singular value satisfy condition (ii). Let us denote the
space spanned by these right-singular vectors with
zero singular value (assume that there are p of them)
fjΨ1i; jΨ2i;…; jΨpig by ZV. The required sublattice scars
are those which reside in ZV and satisfy condition (i). We
first construct the matrix ½Ṽn×n�ji ¼ ðvji −N δjiÞ and then

take the projection to ZV : ½ðṼ0Þn×p� ¼ ½Ṽn×n� × ½Mn×p�.
The columns of M are formed by the column matrices
jΨiis. Again, the right-singular vectors of Ṽ0 with zero
singular value will satisfy both conditions (i) and (ii). Using
this method, we could only find solutions for N ¼ �2 for
the system sizes that we could numerically access.
We can decompose the sublattice scars into Fock states

with equal (unequal) number of clockwise and anticlock-
wise flippable plaquettes on one sublattice. To do that, we
simply divide the set fjfiign into the sets of equal and
unequal clockwise and anticlockwise flippable plaquettes,
fjfeqi igneq and fjfuneqi ignuneq . Then using the above method
for the individual sets, we can find if any scar can be
obtained from fjfeqi igneq and fjfuneqi ignuneq . At this point, it
is worth stressing that the above method of obtaining
sublattice scars is more efficient than the full ED, because
in this method we use a small subspace of the full Hilbert
space (see Table IV for a comparison).
We now address the construction of the set fjfiign. For

this, we need to start with certain “base states” that are Fock
states that satisfy the sublattice constraint and repeatedly
act Okin on those states to get other Fock states consistent
with the sublattice constraint. Most of the subsequent states
are produced from the base state where plaquettes are
arranged in an alternate clockwise and anticlockwise flip-
pable pattern on the active sublattice as shown in Fig. 7(a)
for (4, 4) lattice and Fig. 7(f) for (6, 4) lattice. Note that it is
enough to consider any one of the two Fock states related
by C for this base state. First we put the base state in
fjfiign. When Okin acts on this base state, new Fock states
are generated out of which only some are consistent with

TABLE IV. HSDandnumber of Fock states present infjfeqi igneq ,fjFeq
i igmeq

, fjfuneqi ignuneq , and fjFuneq
i igmuneq

for various lattices.

Lattice HSD neq meq nuneq muneq

6 × 4 32810 510 1392 552 1628
8 × 4 1159166 4662 16352 5984 20574
10 × 4 42240738 43896 186040 61720 248302
6 × 6 5482716 13778 55080 19260 72818
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the sublattice constraint, and we only insert these additional
Fock states in fjfiign. We then act Okin on these newly
added Fock states to generate more Fock states and
consider only the states consistent with the sublattice
constraint out of these newly generated states to insert in
fjfiign. At this stage, we avoid adding the Fock states
which are already present in fjfiign. We repeat this
recursive process until there is no new Fock state to be
added to the set fjfiign. This procedure leaves out a few
Fock states from the set fjfiign. These “base states,” which
are consistent with the sublattice constraint, have the
property that the action of Okin on them produces no
Fock state in the set fjfiign and, hence, these need to be
inserted separately in fjfiign. There is a simple rule to
generate these extra base states to complete the set fjfiign.
We first divide the lattice into a close packing of parallel
nonoverlapping horizontal or vertical partitions, each of
width 2 and then arrange all the active plaquettes contained

in a partition in a clockwise or anticlockwise manner. Once
active plaquettes in a partition are arranged in a clockwise
(anticlockwise) manner, its neighboring partitions must have
active plaquettes with the opposite circulation. Lastly, the
number of partitions with clockwise active plaquettes must
equal that of partitions with anticlockwise active plaquettes
in such a base state. Figures 7(b) to 7(e) show such base states
for a (4, 4) lattice and Figs. 7(g) and 7(h) show such base
states for the (6, 4) lattice. Note that only half of these base
states are shown here with the other half easily generated by
applying the charge conjugation operator C.

V. PARENT HAMILTONIAN
FOR SUBLATTICE SCARS

The sublattice scars discussed in the previous sections
are midspectrum eigenstates of HRK for any λ ∼Oð1Þ. We
can ask whether a parent Hamiltonian can be written for
which these states are, in fact, ground states. One motiva-
tion for this is to substantiate the expectation, that although
these scar states occur as high-energy excited states of a
lattice Hamiltonian, they should not be dismissed as cutoff
effects. On the contrary, as we show next, such states can
also be realized in the low-energy physics of certain (gauge
invariant) Hamiltonian, and therefore possibly survive the
continuum limit. We do not however, have a rigorous proof
of the latter and leave it for future investigation.
The following long-ranged Hamiltonian:

HLR ¼ 1

Np
ðOkinÞ2 þ c

X

□

ð−1Þ□Opot;□;

¼ 1

Np

X

□i;□j

ðOkin;□ÞiðOkin;□Þj

þ c
X

□

ð−1Þ□Opot;□; ð11Þ

which consists of an all-to-all two-plaquette interaction of
the form ðOkin;□ÞiðOkin;□Þj, where the indices i and j run
over all plaquettes, and another short-ranged staggered term
involving Opot;□. The normalization of 1=Np for the first
term ensures that both the terms scale extensively with
system size. Lastly, c ≠ 0 is an arbitrary real parameter
[which we choose to be O(1)].
For c > 0 (c < 0), all sublattice scars with Okin ¼ 0 and

active plaquettes on one (the other) sublattice become
exact ground states of HLR since both ðOkinÞ2 and
c
P

□
ð−1Þ□Opot;□ are minimized simultaneously. In fact,

it is enough to focus on one particular sign of c. While
sublattice scars with active plaquettes on one sublattice

become ground states with energy E0 ¼ −jcj Np

2
, the other

set of sublattice scars (where the active plaquettes reside on
the other sublattice) become exact eigenstates of HLR with

energy −E0 ¼ jcj Np

2
. The sublattice scars with Okin ¼ �2

(a) (b)

(c) (d)

(e)

(f)

(g) (h)

FIG. 7. Base states from which the set fjfiign can be obtained
shown here. Panels (a) to (e) are for a (4, 4) lattice while panels
(f) to (h) are for a (6, 4) lattice. Clockwise (anticlockwise)
circulation of electric fluxes on a plaquette is shown by a red
(blue) circle as in Fig. 1. The white (gray) plaquettes denote active
(inactive) plaquettes with Opot;□ ¼ 1ð0Þ as in Fig. 4. Horizontal
(vertical) partitions of width 2 are shown using dotted red lines as
in Fig. 4.
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become degenerate eigenstates of HLR with energies

Es;∓ ¼ ð 4
Np
Þ ∓ jcj Np

2
, depending on which sublattice the

active plaquettes belong to.
The triangle relation [Eq. (10)] connecting sublattice

scars with Okin ¼ �2 with particular sublattices scars with
Okin ¼ 0 has a nice interpretation in terms of the states of
HLR. The sublattice scar jψ s;0i, composed of Fock states
with unequal number of clockwise and anticlockwise
flippable active plaquettes, is a ground state of HLR (with
an appropriate sign of c to choose the sublattice). The state
jψ s;þ2i − Cαjψ s;þ2i is an eigenstate of HLR with energy

Es;− ¼ ð 4
Np
Þ − jcj Np

2
. Note that jψ s;þ2i and Cαjψ s;þ2i have

different energies with respect toHRK, so their difference is
not an eigenstate of HRK. Since the operator O leads to
a sign change (no sign change) for Fock states with

ðNp

4
þ 1; Np

4
− 1Þ [ðNp

4
− 1; Np

4
þ 1Þ] clockwise and anti-

clockwise active plaquettes, it is clear that O2 ¼ 1.
Using this, we can rewrite Eq. (10) as

ðjψ s;þ2i − Cαjψ s;þ2iÞ ∝ Ojψ s;0i; ð12Þ

where O can now be interpreted to creates a finite-energy
excitation, with an energy of ΔE ¼ 4

Np
, when acting on a

ground state ofHLR. However, given the form ofO, it does
not seem possible to write it as a sum of local (in space)
operators.
We have verified numerically using ED on finite ðLx; LyÞ

lattice that the ground states (with energy −E0), excited
states with energy þE0, and energies Es;∓ are all sublattice
scars. ED also reveals a rich structure in the spectrum of
HLR. We display the data for a system with dimension
(12, 2) with c ¼ 1 in Fig. 8. Figure 8(a) shows Shannon
entropy for each eigenstate jΨi which can be calculated
using −

P
α jΨαj2 ln jΨαj2, where jΨi ¼ P

α Ψαjαi when
the eigenstate is expressed in the computational basis jαi.
The Shannon entropy shows several prominent dips as a
function of energy E indicating the presence of sev-
eral eigenstates which are much more localized in the
Hilbert space compared to neighboring eigenstates.
Interestingly, the density of states, ρðEÞ, extracted from
the eigenvalues ofHLR display a rather intricate structure as
well with several local maxima [Fig. 8(b)]. The positions of
these local maxima in ρðEÞ seem to be strongly correlated
to the appearance of anomalous dips in the Shannon
entropy.
Finally, from ED on finite lattices, the zero energy states

ofHLR stay unchanged (apart from mixing with each other)
as a function of c. This implies that these must be
simultaneous eigenstates of Okin and c

P
□
ð−1Þ□Opot;□.

We will discuss these anomalous zero modes, which are
distinct from the sublattice scars, in the next section.

VI. MORE QUANTUM SCARS
FROM ZERO MODES

We now discuss a different variety of quantum many-
body scars that are again composed of the null space ofOkin
but have different properties from the sublattice scars.
While the sublattice scars are simultaneous eigenstates of
the noncommuting operators Okin and

P
□
Opot;□, these

scars are instead simultaneous zero modes of Okin andP
□
ð−1Þ□Opot;□. These anomalous states are thus exact

zero modes of Hst that stay unchanged as a function of λ.
We refer the reader to Ref. [83] for a similar scarring
mechanism in a spin chain. As discussed in a previous
section, Hst satisfies an index theorem at any value of
λ and, hence, its spectrum has an E to −E symmetry as
well as exponentially many (in system size) zero modes
(see Table I and Fig. 2). However, since Okin andP

□
ð−1Þ□Opot;□ do not commute with each other, these

zero modes, apart from the ones that are simultaneous
eigenstates of both the terms, keep changing in a nontrivial
fashion. In fact, any typical zero mode ofHst is expected to
satisfy ETH and locally mimic a featureless infinite
temperature state. However, the zero modes that stay
unchanged with λ are expected to violate the ETH [68,83].
The anomalous nature of these simultaneous zero modes

can be clearly demonstrated by calculating the Shannon
entropy of all the eigenstates of Hst [Eq. (3)] for λ ∼Oð1Þ
using ED on finite lattices. Figure 9 displays the data for
(12, 2) at λ ¼ 1.1 and for (6, 4) at λ ¼ 1.0. It is clear from

(a)

(b)

FIG. 8. (a) Behavior of the Shannon entropy shown for all the
eigenstates of HLR for a system of size (12, 2). (b) Density of
states, ρðEÞ, plotted as a function of energy for the same system.
Both calculations use c ¼ 1.0. In (b), 512 bins have been taken
to find density of states. Vertical dotted lines are plotted at the
positions of local maxima of DOS by visual inspection. In (a), the
density of states is indicated by a color map where warmer color
corresponds to higher density of states.
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both panels that the simultaneous zero modes have anoma-
lously low Shannon entropy compared to the typical values
for neighboring eigenstates, demonstrating that these states
do violate the ETH. From both plots, it is also clear that
there may be other anomalous high-energy states in the
spectrum of Hst but we only focus on the ETH-violating
zero modes here.

The number of these simultaneous zero modes is given
in Table V. Just like in the case of sublattice scars,
their number stays fixed with Lx in the thin torus limit
of Ly ¼ 2, while it increases with Lx for wider ladders.
These quantum scars are eigenstates of the charge con-
jugation, C, with half of them possessing C ¼ þ1
(C ¼ −1). For ðLx; 2Þ systems, the unique scar with C ¼ 1
(C ¼ −1) is also a momentum eigenstate with ðkx; kyÞ ¼
ð0; 0Þ (¼ ðπ; πÞ) with respect to translations by one lattice
unit in both directions.
While we do not yet have an analytic understanding of

these quantum scars, we show the form of these states in the
thin torus limit of Ly ¼ 2 for Lx ¼ 8. The representative
Fock states (denoted as jfii where i ranges from 1 to 6)
that contribute to create the two simultaneous zero
modes for a (8, 2) lattice are shown in Fig. 10. Given
any of the representative states, jfii, one can build a basis

state jfiðkx; kyÞi ¼ 1ffiffiffiffi
Ni

p
PLx

x¼1

PLy

y¼1 e
−iðkxxþkyyÞTy

YT
x
Xjfii

that carries a well-defined momentum ðkx; kyÞ with
respect to translations by one lattice unit in ðx; yÞ imple-
mented by the operators ðTX; TYÞ. Note that the renormal-
ization Ni represents the number of distinct Fock states that
can be obtained from jfii by translations and equals Ni ¼ 6
for i ¼ 1 to 5 and N6 ¼ 2. The two anomalous zero modes

FIG. 9. Shannon entropy for all the eigenstates of Hst [Eq. (3)]
plotted as a function of energy E with panel (a) showing data for
system of size (12, 2) and panel (b) showing data for (6,4). In both
plots, the simultaneous zero modes of Okin and

P
□
ð−1Þ□Opot;□

are shown using a different font and color (red stars). The density
of states is indicated by the same color map in both panels where
warmer color corresponds to higher density of states.

TABLE V. Scaling of the number of anomalous zero modes of
Hst as a function of system size extracted from ED.

Lattice Anomalous zero modes of Hst

Lx × 2 2
4 × 4 8
6 × 4 14

FIG. 10. The representative states (jfii) that build the two
anomalous zero modes of Hst for a system of dimension (8, 2).
The electric fluxes are shown for each link of each of the
representative states by arrows. Clockwise (anticlockwise) cir-
culation of electric fluxes on a plaquette is shown by a red (blue)
circle as in Fig. 1.
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of Hst for (8, 2) can now be compactly written as follows:

jΨs;þ1i¼
1ffiffiffiffiffi
41

p ½
ffiffiffi
3

p
jf1ð0;0Þi�þ

ffiffiffi
3

p
jf2ð0;0Þi−

ffiffiffi
3

p
jf3ð0;0Þi

−
ffiffiffi
3

p
jf4ð0;0Þiþ

ffiffiffi
3

p
jf5ð0;0Þiþjf6ð0;0Þi�;

jΨs;−1i¼
1ffiffiffiffiffi
41

p ½
ffiffiffi
3

p
jf1ðπ;πÞi�−

ffiffiffi
3

p
jf2ðπ;πÞiþ

ffiffiffi
3

p
jf3ðπ;πÞi

−
ffiffiffi
3

p
jf4ðπ;πÞi−

ffiffiffi
3

p
jf5ðπ;πÞi− jf6ðπ;πÞi�; ð13Þ

where jΨs;þ1i carries momentum ðkx; kyÞ ¼ ð0; 0Þ and
C ¼ þ1 while jΨs;−1i has ðkx; kyÞ ¼ ðπ; πÞ and C ¼ −1.
From the structure of the representative Fock states in
Fig. 10, it is also clear that these states do not have a
sublattice structure of active and inactive plaquettes in
real space.

VII. CONCLUSION AND OUTLOOK

In conclusion, we have considered two Uð1Þ quantum
link gauge theory Hamiltonians in their spin-1

2
representa-

tion on ðLx; LyÞ square lattices with periodic boundary
conditions in both directions and even Lx, Ly. We specifi-
cally target the largest superselection sector with zero
charge at each site and zero winding numbers in both
directions. Both the link models are composed of plaquette
operators, Okin;□ and Opot;□, defined on elementary pla-
quettes of the lattice where Okin;□ changes a clockwise
circulation of electric fluxes on a plaquette to anticlockwise
and vice versa while Opot;□ acts as a counting operator for
such a plaquette. While the first Hamiltonian that we
consider, HRK ¼ −

P
□
Okin;□ þ λ

P
□
Opot;□ [Eq. (2)],

is a standard Rokhsar-Kivelson model, the second
Hamiltonian, Hst ¼ −

P
□
Okin;□ þ λ

P
□
ð−1Þ□Opot;□

[Eq. (3)] has a staggered potential term that depends on
the sublattice location of the plaquette. Both models
represent nonintegrable Abelian lattice gauge theories
without dynamical matter. Both theories become identical
when λ ¼ 0 where the Hamiltonian, which can be repre-
sented as Okin ¼ −

P
□
Okin;□, only consists of off-

diagonal terms in the electric flux basis. In this limit, the
system supports an exponentially large number (in system
size) of exact midspectrum zero modes that are protected by
an index theorem. The index theorem is immediately lifted
when λ ≠ 0 for HRK while it stays preserved for any λ for
Hst. The zero modes of Okin as well as Hst are expected to
locally mimic a featureless infinite temperature thermal
state from the eigenstate thermalization hypothesis.
We show the existence of several anomalous high-energy

eigenstates, that violate the eigenstate thermalization
hypothesis, in both these quantum link gauge theory
Hamiltonians. We dub one class of these anomalous states
as sublattice scars. These sublattice scars, jψ si, are highly
structured in terms of Opot;□ with Opot;□jψ si ¼ jψ si for all

elementary plaquettes on one sublattice andOpot;□jψ si ¼ 0

on the elementary plaquettes that belong to the other
sublattice. Furthermore, these states are eigenstates of
Okin, with eigenvalues 0 or �2. A class of sublattice scars
with Okin ¼ 0 have a simple representation in terms of
coverings of emergent dimers (singlets) and their number
scales as Oð2Lx=2þ1 þ 2Ly=2þ1 − 4Þ for Lx; Ly ≫ 1, thus
showing their presence even in two dimensions. These
short singlet scars explain all sublattice scars that occur in
the thin-torus limit of Ly ¼ 2 and Lx arbitrary. However,
wider systems with Ly ≥ 4 have several sublattice scars that
are beyond this description in terms of singlets. We also
find sublattice scars with Okin ¼ �2 for Ly ≥ 4 and
demonstrate a nontrivial “triangle relation” between sub-
lattice scars withOkin ¼ þ2,Okin ¼ −2, andOkin ¼ 0. The
analysis of the structure of the nonsinglet scars was greatly
aided by a numerical approach which directly focused on
the relevant state space for these high-energy states, instead
of usual exact diagonalization techniques which require the
full Hilbert space to construct high-energy eigenstates. We
further discuss a long-ranged parent Hamiltonian, HLR
[Eq. (11)], which gives all sublattice scars withOkin ¼ 0 as
unique ground states and sublattice scars with Okin ¼ �2
as finite energy excitations. The triangle relation can be
interpreted as a quasiparticle operator acting on certain
ground states of this long-ranged Hamiltonian to give finite
energy excitations. Apart from these sublattice scars, we
find additional anomalous zero modes of Okin that are also
exact zero modes of ð−1Þ□Opot;□, and hence anomalous
zero modes of Hst that do not change with coupling λ.
The results presented here immediately suggest several

future avenues of study. One of the conceptually challenging
questions is to establish the presence of such anomalous
eigenstates in the limit when the lattice discretization is
removed, i.e., directly in the continuum field theory. One
way we have tried to motivate that this indeed might be the
case is to construct a different Hamiltonian, where such
states occur in the ground state manifold, indicating that the
scarring phenomena resulting in the eigenstates reported
here can exist beyond a single Hamiltonian and energy
window. However, a detailed analysis is required. It might be
interesting to attempt the description of these quantum scars
using the language of path integrals, using which it might be
easier to establish their behavior in the continuum limit.
It might also be worthwhile to explore if addition of local

kinetic energy terms can also give rise to the singlet scar
states as ground states. Moreover, the spectrum of Hst
seems to suggest the presence of several other anomalous
high-energy states apart from the ones discussed here. We
leave this as an interesting question for future studies. A
deeper understanding of both the anomalous zero modes of
Hst and the nonsinglet sublattice scars would be highly
desirable. Additionally, the ground state physics, and
possible phase transitions of both the HLR and the Hst
would be an exciting line of future research, given the
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recent interest of realizing lattice gauge theories on quan-
tum simulator platforms. Finally, another interesting ques-
tion is to search for similar scars in spin-S, with S ≥ 1,
quantum link gauge theories without dynamical matter
fields as well as in non-Abelian versions.
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