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ABSTRACT: We show how the generation of right-handed neutrino masses in Majoron mod-
els may be associated with a first-order phase transition and accompanied by the production
of a stochastic background of gravitational waves (GWs). We explore different energy scales
with only renormalizable operators in the effective potential. If the phase transition occurs
above the electroweak scale, the signal can be tested by future interferometers. We consider
two possible energy scales for phase transitions below the electroweak scale. If the phase
transition occurs at a GeV, the signal can be tested at LISA and provide a complementary
cosmological probe to right-handed neutrino searches at the FASER detector. If the phase
transition occurs below 100 keV, we find that the peak of the GW spectrum is two or more
orders of magnitude below the putative NANOGrav GW signal at low frequencies, but
well within reach of the SKA and THEIA experiments. We show how searches of very
low frequency GWs are motivated by solutions to the Hubble tension in which ordinary
neutrinos interact with the dark sector. We also present general calculations of the phase
transition temperature and Euclidean action that apply beyond Majoron models.
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1 Introduction

The recent discovery of GWs provides a powerful phenomenological tool to probe the
imprint of new physics in the early universe. Primordial GWs that survive until the present
could have been produced by mechanisms that rely on new physics. In particular, strong
first-order phase transitions are a well known source of gravitational radiation [1-3] that
could be detectable in the form of a stochastic GW background. These have been studied
within the standard model (SM), either in relation to a QCD phase transition [1] or to
an electroweak phase transition [4]. However, it is now established that both electroweak
symmetry breaking and the approximate QCD chiral symmetry breaking occur as a smooth
crossover, with no phase transition, so that no associated stochastic GW background is
predicted within the SM. Still, the necessity to extend the SM to explain outstanding
cosmological puzzles and to incorporate neutrino masses and mixing, motivates the study
of first-order phase transitions in the early universe. In this way primordial GWs are
an important tool, complementary to more traditional ones, to probe physics beyond the
SM. For example, GW production from a strong first-order phase transition in the early
universe has been studied jointly with electroweak baryogenesis within supersymmetric
models [5], or in association with dark matter genesis [1, 6], or both [7, 8], and even with
the simultaneous genesis of dark matter and neutrino masses [9].

In this paper we explore first-order phase transitions within extensions of the SM that
can explain neutrino masses and mixing. In this respect, the type-I seesaw mechanism
offers an attractive way to explain neutrino masses with the addition of right-handed
(RH) neutrinos with large Majorana masses. In this case the generation of heavy neutrino
Majorana masses can provide a natural framework for the realization of a first-order phase
transition in the early universe. In particular, the Majoron model [10] provides a way to
embed the type-I seesaw mechanism and at the same time to generate Majorana masses.
This is done through the introduction of a complex scalar field with terms in the Lagrangian
respecting U(1)y symmetry spontaneously broken below a critical temperature. Since
spontaneous symmetry breaking can occur via a strong first-order phase transition, an
associated production of GWs is possible, in a way that GW experiments can probe the
origin of Majorana masses and give insight on the scale of symmetry breaking. The scale
of symmetry breaking is not predicted by the model. It is useful to distinguish high scale
scenarios, in which the scale is above the electroweak scale, from low scale scenarios, in
which the scale is below the electroweak scale. In the latter case, it is intriguing that
the pulsar timing array experiment NANOGrav has recently found strong evidence for a
stochastic GW background in the frequency band ~ 10~® Hz in the 12.5-year dataset [11].
In our scenario, the phase transition occurs in the dark sector which includes the complex
scalar and RH neutrinos. The dark sector interacts with the SM sector gravitationally and
with nonstandard interactions. The possibility that a low scale dark phase transition may
address the NANOGrav result has been recently considered in ref. [12] (see also [13] for a
Bayesian analysis comparing it with other explanations) and, more specifically, within a
Majoron model with nonrenormalizable effective operators in ref. [14]. A general discussion
on GW production from a first-order phase transition in dark sectors has been presented



in refs. [15, 16]. In our paper we consider a few scenarios with only renormalizable terms in
the tree level potential and including one-loop zero and finite temperature contributions.
For each model we calculate the GW spectrum and compare it to the sensitivity of existing
and planned experiments. The paper is organized as follows. In section 2, we discuss the
form of the effective potential within different scenarios. In particular, we discuss both
the tree-level and the one-loop, zero temperature and finite temperature contributions to
the effective potential in the high scale case. In section 3, we discuss the first-order phase
transition and the associated GW production for high scale scenarios. We scan over the
parameter space (at or above the electroweak scale) and show that some of the models
can be tested at future gravitational interferometers. In section 4 we consider low energy
scale scenarios, well below the electroweak scale. In particular, we attempt to reproduce
the NANOGrav signal and also make connection with the Hubble tension in the ACDM
model . Finally, in section 5, we highlight some points and draw our conclusions.

2 Effective potential in Majoron models

The Majoron model is a simple extension of the SM [10]. Spontaneous breaking of a
global Ur (1) symmetry generates a Majorana mass term for the RH neutrinos, which in
combination with a Dirac mass term, generates the light neutrino masses via the type-I
seesaw mechanism. To implement this, the SM field content is augmented with N > 2 RH
neutrinos Ny, and a complex scalar singlet,

1
oc=—(01+102), 2.1
\@( 1+i02) (2.1)
where the real component is CP-even and the imaginary component is CP-odd. The
new scalar o has a tree level potential Vp(c). Then, the tree-level extension of the SM
Lagrangian is

_ ~ A __
—ENI+U:Laha1N1<I>~|—EIJNICNI+V0(U)—|—h.c., (2.2)

where @ is the dual Higgs doublet. As we will discuss, above a critical temperature Tg,
(o) = 0 and the RH neutrinos are massless. Since the lepton doublets L, and RH neutrinos
Ny have L = 1, and o has L = 2, lepton number is conserved. Below T, the Ur(1)
symmetry is broken, the scalar o gets a vacuum expectation value (¢) = v/v/2 and the RH
neutrinos gain Majorana masses M = v Ar/ \/5, which leads to lepton number violation
and small masses for the SM Majorana neutrinos via the type-I seesaw mechanism. We
assume in this and next section that T, 2 Toyw ~ 100 GeV, so that the Majorana mass term
is not generated later than the Dirac mass term.

2.1 Minimal model

Consider the form of the tree-level potential Vp(c). We neglect a possible contribution
from the mixing of the new scalar with the standard Higgs boson. Imposing a global U(1)y,



symmetry and keeping only renormalizable terms, the tree level potential can be simply
written as
Vo(o) = —plo]? + Ao (2.3)

Here, ) is real and positive, so that the potential is bounded from below, and j? is real and
positive to ensure the existence of degenerate nontrivial stable minima with (o) = vg ¥ /+/2
(0 <0 < 2m), where vg = \/u?/A. In the broken phase we can rewrite o as

10

a:iﬁ(vwsmn, (2.4)

where S is a massive field with m% = 2\v3 and .J is the Majoron, a massless Goldstone field.

The vacuum expectation value of o also generates RH neutrino masses M; = Ay vy/ V2 and

these, via the type-I seesaw mechanism, lead to a light neutrino mass matrix given by the

seesaw formula,

’Ugw ha [h/g I

2 MI ’

where ey is the standard Higgs vacuum expectation value. Equation (2.5) is understood

(my)ag = — (2.5)

to be in the flavor basis in which the charged lepton and Majorana mass matrices are
diagonal.

The tree-level zero-temperature potential V(o) describes the broken symmetry phase
of the dark sector that includes the scalar field ¢ and the RH neutrinos. The dark sector
couples to the thermal bath of SM particles via the Yukawa interactions of the Ny’s. In
particular, 2 — 2 scatterings (such as L + ¢ — Nj + t) can thermalize the RH neutrinos
even if they are massless. Indeed, the abundance of the ultrarelativistic RH neutrino Ny,
normalized so that N ec; = 1, evolves simply as Ny, = 1 — exp[—T7?/T], where T7% is the
Ny equilibration temperature given by [17, 18]

(AT h)11v2,

T3~ 0.2
eq

=02M; K, (2.6)

where meq = [167%/2, /9%/(3V/5)] (Veq/Mp) ~ 1.1meV /g% /g5M is the usual effective equi-

librium neutrino mass, and K; = (h' h)r;v2,/(M]meq) is the usual RH neutrino decay
parameter. Here, g5 = gp(ts) is the number of ultrarelativistic degrees of freedom at the
time of the phase transition ¢,, which in the cases of interest to us, is just after the time
of RH neutrino production. In the standard case, when the dynamics occurs above the
electroweak scale, this can be well approximated by the SM number of degrees of freedom.
More accurately, one should include the small contribution from the RH neutrinos and the
complex scalar, but this level of accuracy is not needed at this stage.

For M;/T. 2 5/Kr, the RH neutrino N reaches thermal equilibrium before the onset
of the phase transition, and is unable to decay prior to this because it is massless. In
order for the seesaw formula to be consistent with neutrino oscillation data without fine-
tuning, at least two decay parameters must be in the range 10-100. Only a possible third
RH neutrino can have an arbitrarily small K. For definiteness, when studying high scale
scenarios, we assume that all three RH neutrinos have decay parameters and masses that



satisfy K; M7 2 5T, so that they are all in thermal equilibrium prior to the onset of the
phase transition.

In addition, the N;’s couple to the scalar field through N;+ N; <> o. In this case, the
interaction rate is I'y ~ (M /vg)? T and the processes can be assumed to be in equilibrium
(i.e.,, I'; > H) at the time of the phase transition for a reasonable choice of parameters. In
the following we assume that the dark sector is in thermal equilibrium with the SM sector
prior to the phase transition.

Finite temperature effects induce symmetry restoration at temperatures above the
critical temperature [19] and govern the dynamics responsible for the phase transition from
the metastable vacuum (where lepton number is conserved and neutrinos are massless), to
the true vacuum (where lepton number is violated and neutrinos acquire masses). These
effects are well described by the one-loop effective potential at finite temperatures Vif (o).
The one-loop contribution also generates a zero-temperature term V,?(c) that needs to be
included for consistency. Then, the finite-temperature effective potential at one-loop is [20]

Vaz (o) = Vo(o) + V(o) + Vi (0) . (2.7)

The zero temperature one-loop contribution is given by the Coleman-Weinberg potential
that can be written, using cut-off regularization, as [20-23]

T 64n? m2(vg) 2

m2U
V(o) = {m§<o> <1og o(9) 3>+2m3<o>m3<vo> (2.8

2 g
3 [Mﬁ(cr) (mg fj{gf%)) - 2) 2 M3(o) M?wo)H |

where the prefactor of two in the second line accounts for the two degrees of freedom for
each of the three RH neutrinos. The one-loop thermal potential is given by [21-23]

4 m2 (o 2 g
Vi'(0) = 2% [JB ( ;g )> _2ZI:JF <M§1(2 )ﬂ , (2.9)

where the thermal functions are

Tp.rla®) = [ dyy? log(1 F V), (210)

and m2 (o) and M?(o) are the shifted masses. Without loss of generality, we set § = 0 in
eq. (2.4) so that the minimum of the potential including thermal effects, lies along the real
axis of 0. In this way we can track the dynamics of the potential as a function of o1. The
tree-level potential becomes

1 A
V()(Ul):—ilﬂa%‘*‘zailv (2.11)
and the shifted masses are
d2V0
m2(oy) = d?a(lgl) = -\ + 3)\o} (2.12)



and
2

M2(oy) = A2 % . (2.13)
Note that m2(c1) can be either positive or negative, depending on the size of o1. An

2
o

imaginary part of the effective potential is obtained for mZ(o1) < 0. This corresponds to
decay widths of modes expanded around unstable regions of field space and does not affect
the computation of the phase transition [24]. Therefore, in the following we neglect the
imaginary part of the potential. We account for resummed thermal masses by replacing

the tree-level shifted mass in eq. (2.9) by [25]
mg(al) — mg’T(al) = mg(al) +1II, . (2.14)

The leading contribution to the thermal mass, i.e., the Debye mass, is given by

2+ dscalar M2 2
II, = N T 2.1
7 ( 2 2403 ’ (2.15)

where dgcalar = 2 for a complex scalar. This yields the so-called dressed effective potential.!
M denotes either the mass of the heaviest RH neutrino, if it gives the dominant contribution
(in which case N = 1), or a common mass for quasi-degenerate RH neutrinos (in which
case N is the number of RH neutrinos). This allows us to reduce the number of parameters
while spanning the space between N = 1 (hierarchical RH neutrinos) and N = 3 (quasi-
degenerate RH neutrinos).

It is useful to write the effective potential in terms of the high temperature expansion
of the thermal functions [21, 23],

4 2.2 2

4
o T TE T2 TP 6
Tp(@) = — g+ — 5@ ) — gyl -+ 0,
Tt wla? ot 22 '
Jp(z?) = — — 27 7 _Jog 2+ O(2b 2.16

where ap = 1672 exp(3/2 — 2vg) and ap = 72exp(3/2 — 2vg), with yg = 0.5772. We
checked that this expansion is accurate to better than ~ 5%, 12%,27% for 2> < 3,4,5,
respectively. In our numerical work, we set z? < 3.

Since we are assuming that the RH neutrinos are thermalized, the field dependence
in the logarithmic term in eq. (2.8) cancels the logarithmic term in the high tempera-
ture expansion of Vi' (o) to leave the one-loop finite-temperature effective potential in a
polynomial form,

1
VE(01) ~ D(T? - T3)o? — AT o + A of, (2.17)

€

where the destabilization temperature Ty is defined by

N M* 3
0

'For a detailed discussion see ref. [26]. For a recent critical study on theoretical uncertainties in daisy-
resummed approach see ref. [27].



and the dimensionless coefficients D and A are

A N M? (3)3/2
D=242_""_ and A= .
sTug M 127

(2.19)

The cubic term is obtained using the approximation, m2 (o) = I, — AvZ + 3\o? ~ 3\o?.
This approximation works quite well since the cubic term gives a nonnegligible contribution
only when the field is large. The dimensionless temperature dependent coefficient A is

given by , ) ) )
Ar = A — é\;é\i 7 log 6;’222 + 19612 og ezf;i% . (2.20)
In the following it will prove convenient to define
M3 =2D(T? - T2), (2.21)
so that the thermal effective potential can be written more compactly as
VE (o)) ~ %M%a%—ATU%—Fi/\TG%. (2.22)

Finally, note that the massive scalar S must decay for its thermal abundance not to over-
close the universe. Since the scalar and RH neutrino masses are of roughly the same
order-of-magnitude as vy, we can always assume that the mass of the lightest RH neutrino
M < mg and that S decays quickly enough via S — Nj + Nj.

2.2 Explicit symmetry breaking term and a massive Majoron

It might be useful for various applications to give the Majoron a mass. This can be done
by adding an explicit symmetry breaking term Vj (o) to the tree-level potential, obtaining

Vo(o) = —p®|o|* + Alo]* + Vy(o). (2.23)
Consider the U(1)-breaking renormalizable term,
V(o) = —V2mo?c* 4+ hee., (2.24)

where the mass-dimension parameter m can always be taken to be real by absorbing a
phase into o. Other renormalizable terms that break U(1), explicitly are proportional to
0%, 03, 0* and o30* and their complex conjugates. However, these terms are invariant
under a discrete symmetry, either Zs, Z3 or Z4, and the spontaneous breaking of a discrete
symmetry may induce a domain wall problem [28, 29].2 For this reason we assume Vy in

eq. (2.24) to be the only explicit breaking term. Its inclusion breaks the degeneracy of the

2Domain walls form after spontaneous symmetry breaking. The tension of these walls is estimated to
be ~ mjv?, which should be lower than MeV? to be consistent with the primordial density fluctuations,
Sp/p < O(107°) [30]. Consequently, the explicit U(1) breaking parameter is constrained to be tiny: |m|/v ~
m? /v < MeVE /08,



minima with only one minimum located on the real axis at # = 0 for m > 0,> and with a
vacuum expectation value,

. w2 3m\? 3m

Thus, the tree-level mass of S gets modified and J becomes a pseudo-Goldstone boson by
acquiring a mass due to the explicit breaking term:

m% =2\ — 3mwy, M3 =mug. (2.26)

We now consider how the potential gets modified by the introduction of the explicit
symmetry breaking term. As for the minimal model, the minimum lies on the real axis
and potential can be written in terms of 1. The tree level potential is

1 A
%(01):—5/120%—771034—10%, (2:27)
which yields the shifted mass,
d2V0
m2(oy,m) = dV{o) _ — A2 + 3wy — 6moy + 3\os . (2.28)

d20'1

Again, we neglect the imaginary part of the potential and account for the resummed thermal
masses in the effective potential by the replacement,

m2(o1,m) = mj p(o1,m) =mj (o1, m) + 1, . (2.29)

Assuming that the RH neutrinos get thermalized, the explicit symmetry breaking term
preserves the polynomial form of the one-loop finite temperature effective potential,

_ 1
01+ D(T* = T§)of —{AT+m(1+9(T)} o+ Aot

(2.30)
The destabilization temperature now receives an additional contribution and becomes

Vetr(o1,m) == | T3+ (1) +T°

_ m 3m?9
4

3777,1}0
2D

_3m3
4D

TE(m) = T¢(m = 0) = TZ(m = 0) (2.31)

The dimensionless coefficients D, A and Ar are unchanged from the m = 0 case, while the
new dimensionless temperature dependent coefficients f(7') and g(T") are given by

agT?

aBr (2.32)
e3/2m?,

(3m3 —m%) log

f(T):W

and
9 ap T2

= Tom7 18 (2.33)

9(T)

3 Alternatively, for m < 0 the minimum is located at § = ; the two options are fully equivalent.



Note that the explicit symmetry breaking term results in a linear term and a cubic term
at zero temperature in eq. (2.30). The latter is known to be able to strengthen the phase
transition but the former is potentially dangerous and can jeopardize the phase transition if
it dominates over the other terms at high temperatures. It is oc 72 and at high temperatures
shifts the minimum from o1 = 0 to o1 ~ m/(8 D). Thus, the symmetry is not restored at
high temperatures. This is not necessarily a problem since the universe could start from
this minimum and then tunnel to the true minimum. The real problem is that for large
enough values of m, the linear term dominates over the cubic term thereby removing the
barrier so that there is no first-order phase transition and, therefore, no GW production.
In fact, an upper bound on m is obtainable by requiring that a first-order phase transition
occurs. We have not determined this upper bound but do find that there is no first-order
phase transition for m > 10~% vg. We do not pursue this scenario and set m = 0.

2.3 Adding an auxiliary real scalar

It is well known that the addition of a real scalar to the SM extends the parameter space
in which a strong first-order phase transition can occur [31]. Specifically, great attention
has been devoted to the possibility of successful baryogenesis for values of the Higgs mass
above the upper bound my < 70GeV needed to have a first-order phase transition in
the SM. It has also been noticed that the addition of a real scalar can enhance the GW
signal produced from the phase transition [32]. Motivated by the positive aspects of the
simultaneous presence of two scalars, we augment the Majoron model with a real scalar 7.

New renormalizable terms contribute to the tree-level potential,
Vo(o,m) = Vo(o) + Vi (o, n) + Vi(n) (2.34)

where Vp(o) is given by eq. (2.23),

72 3 V4
Vo) = =0+ —n*+ =t (2.35)
2 3 4
and the mixing term is
01 09
Vao(,0) = 2 o0+ Lo n? (2:36)

Without loss of generality, we can again consider the U(1); symmetry to be broken
along the real part of o. In the decoupling limit, with a very heavy real scalar and a small
mixing angle between the two mass eigenstates at zero temperature, and replacing n with
its vev,* the thermal effective potential for oy takes the form [32],

- 1 ~ _ 1
Veir(on, i) = 5 Mo} = (AT + i) of + Aoy - (2.37)

Compared to eq. (2.17) for the minimal model, there is now a cubic term at zero tem-
perature proportional to the parameter ji = 65 vo/(274). The other parameters also get
modified by the inclusion of the real scalar, so that there are changes to the expressions

4This means that 7 itself undergoes a phase transition and settles to its true vacuum prior to the oy
phase transition.



for A, D, A7 and Ty given for the minimal model. However, there is always a choice of
the parameters §; and -; such that the corrections are small. In sum, the primary effect
of adding a real scalar is the appearance of a zero-temperature cubic term which, as we
show in the next section, can greatly enhance the GW signal, as in the case of electroweak
symmetry breaking.

2.4 Nonthermal RH neutrinos

So far we have assumed that all three RH neutrinos are in thermal equilibrium at the time of
the phase transition, which is a reasonable assumption for two of the neutrinos participating
in the seesaw mechanism. However, it is possible that a third RH neutrino has very small
Yukawa couplings and does not get thermalized. For definiteness, suppose that this is the
lightest, Ny, and that its nonthermal abundance Ny, is in general nonvanishing. Then its
contribution to the one-loop thermal potential will be Ny, times the contribution of the
other two RH neutrinos. This results in a finite temperature effective potential given by

M* ot M?o?
og .
32m2v T ap T? v}

1 ~ 1
Veji;(alvNNJZQM’I%U%_ ATU:I))+Z)‘TU%+(NN1 _1) (2'38)

3 First-order phase transition and GW production

We now consider the behavior of the effective thermal potentials as the falling temperature
first approaches T, and then Tp. We begin with a general discussion that holds for all
models and then consider the four specific potentials of the previous section.

3.1 General description of a first-order phase transition

When a second stable minimum forms at a nonzero value of o1, the temperature is 77. As
the temperature drops below 77 the two minima coexist and are separated by a barrier,
the crucial feature characterizing a first-order phase transition. The time when the two
minima are degenerate defines the critical temperature T.. Below the critical temperature
the second minimum at nonzero ;7 becomes the true minimum and tunneling between the
two minima can occur in the form of nucleation of expanding true vacuum bubbles. The
nucleation probability per unit time and per unit volume in terms of the Euclidean action
Sg is T'(o1,T) = To(T) e~52@1.T) [33]. At finite temperatures Sg(o1,T) ~ S3(o1,T)/T
and Tg(T) ~ T*[S3(T) /(27 T)]*/? [34], where Ss is the spatial Euclidean action given by

1 o0 1 (do?\’
Sg(al,T):/d3:v {2 (val)2+v;}(al)} :477/0 dre? | (;;) + V4| . (3.1)

The physical solution for o; minimizes S3(o1,T) and therefore satisfies the equation of

motion,
d’cy  2doy  dVE(o1)
2L DleffAP 3.2
dr? ~ r dr dr (32)
with boundary conditions (doy/dr),—o = 0 and o1(r — oc0) = 0. For T' > T¢, the nucleation

probability vanishes so Sg — o0, and for T' — Ty, Sg — 0, so that at Tj all space will have

~10 -



nucleated and the phase transition ends. Between T, and Ty, which mark the beginning
and the end of the phase transition, respectively, a nucleation temperature 7T, can be
defined as the temperature at which one bubble is nucleated in one Hubble volume. The
corresponding time is t,, i.e., T, = T(ty), and [y" dt(I'/H?3) = 1. It is also customary to
define the percolation temperature as the temperature at which the fraction of space still
in the false vacuum is 1/e.> We identify this temperature with the temperature of the
phase transition T} and the corresponding time as t, with T, = T'(¢,).
The fraction of space filled by the false vacuum at time ¢ is given by [35, 36]

P(t) = e 1® (3.3)

where 5
A7 [t ¢ v
It)=— [ d'T{)a>{ U dt" — ] 34
( ) 3 te ( )a/ ( ) & a,(t”) ? ( )

a(t) is the scale factor and vy, is the bubble wall velocity. Then, since P(t.) = 1/e corre-

sponds to I(t,) = 1, the following equation for Sg(T}) can be derived [37]:

3. Sp(T T. ,
Se(Ty) — 5 log Ez(ﬂ*) = 4log F** — 4 log[T, S5(Ty)] +log(8mvd), (3.5)

where H, = H(t,). Thus, a solution for Sg(T) ~ S3(T%)/T\ is found if the derivative
S%(T) is known. The latter is related to the quantity 5/H, defined in the next subsection.
If the term containing the derivative is negligible, then using vy, ~ 1/1/3 and estimating the

logarithm of the Euclidean action at T} by iteration, we find the numerical approximation,

S3(Ty)  S3(Th) gy TH
~ ~ 153 —4 1
T, Ty 53 =4 1og 1\ 106,75 100 Gev

where Ty is defined by I'(Ty) = H*(Ty). Strictly speaking, Ty > Ty, > T, but Ty ~ Ty
to within 20%. Equating this with eq. (3.1) for a specific effective potential yields an

; (3.6)

expression for T,. Note that Ty is defined so that Sg(Ty) depends only on g, and is
independent of the effective potential. In our calculations, we solve eq. (3.5) for the greater
accuracy it affords. In appendix A.1 we give some details on how to derive eq. (3.5) and
calculate T, using different procedures depending on the required accuracy.

3.2 Calculation of the GW spectrum

If we define the rate of variation of I' as § = f‘/F, then 37! gives the time scale of the
phase transition. If this is much shorter than the Hubble time, then 5 ~ —(dSg/dt);, and
d(Ss/T
B ~T, d(S3/T) ) (3.7)
H, ar |,
This is one of two parameters that characterize the GW spectrum during the phase tran-
sition. It requires both the temperature of the phase transition and the temperature
derivative of the Euclidean action at the phase transition.

5 Alternatively, the percolation temperature is defined as the temperature at which the fraction of space
converted to the true vacuum is 1/e.
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The second parameter is the strength of the transition «, given by the ratio of the
latent heat ¢ released during the phase transition and the energy density of the plasma at
the time of the phase transition:

(3.8)

As usual, the energy density is calculated in terms of g,(7'), and is given by p(T) =
9,(T)(7?/30) T*. Tt receives contributions from the SM sector and from the dark sector:
g,(T) = gE‘M(T) + g9*™(T). In the high scale scenario, gSM(T*) = 106.75, and

7
ggark(T*) — g;calars + Z N, (39)
where gffalars is either 2 or 3 depending on whether or not the auxiliary real scalar n is

included in the model. The latent heat is

OAVg (01)

oT T

e(T)) = —AVE (01) — T As(T,) = —AVE (01) + T, (3.10)

where AV E (01) = VI (0471¢) =V E: (0f255¢) and in the first relation, from thermodynamics,
As is the entropy density variation and the free energy of the system has been identified
with the effective potential. Recall that in our case, Vi (o1%) = 0.

The GW spectrum is defined as

1 dpcwo

h?Q =
awo(/f) b2 dln f

(3.11)

where peo and pgwo are respectively, the critical energy density and the energy density of
GWs produced during the phase transition and evolved to the present time. We assume that
the phase transition occurs in the detonation regime with supersonic bubble wall velocities,
i.e., vy > ¢s = 1/4/3. This regime is approximately realized for a < 0.1. Also, the duration
of the phase transition 57! is quite short so that the approximation in eq. (3.7) works
quite well, and typically 8/H, = 100 [38]. Moreover, in this regime GWs are primarily

sourced by sound waves in the plasma, so that h% Qqwo(f) ~ h? Qsw(f). An analytic fit to
numerical simulations, valid for o < 0.1, yields [39, 40]

) - o ve(@) Tr(a)al? (106.75) "
W Qew(f) = 2.59 x 10 B/H*{l—Fa] ( p ) Sew(f) (3.12)

where the spectral shape function is

and the peak frequency is given by

1/6
_ 1 5 T g5
w =192 x 10" 2mHz — — p ) 14
Jow = 19210tz o 100 Gav (106.75) (3.14)
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Here we normalized the number of degrees of freedom to the SM value since we are dis-
cussing phase transitions at or above the electroweak scale. The efficiency factor x(«)
measures how much of the vacuum energy is converted to bulk kinetic energy. We adopt
Jouguet detonation solutions since we assume that the plasma velocity behind the bubble
wall is equal to the speed of sound. Then, the efficiency factor is [41]

Ja

M) = s T oos e

(3.15)

and the bubble wall velocity is vy (a) = vy(«), where

vy(a) = VI3 + o +2a/3 : (3.16)

1+«

Note that Jouguet solutions provide a simple and useful prescription, but within a rigorous
treatment, the bubble velocity deviates from vj(«a), and the efficiency factor is a function of
both « and vy,. Moreover, the friction exerted by the plasma on the bubble wall also needs
to be taken into account, leading to a much more complicated description that requires
numerical solutions of the Boltzmann equations [42].

There are several other theoretical uncertainties that may lead to significant correc-
tions. Equation (3.12) assumes that the duration for the bulk motion of the fluid > H, .
However, if the lifetime of the sound waves 7y, is less than a Hubble time, then the peak
amplitude of the GW power spectrum may be suppressed by a factor, 1 —1//1 + 2H, Ty,
which decreases with the strength of the phase transition [40, 43, 44]. Suppression factors
of ©(0.1) have been obtained [43, 44], but a precise calculation is model dependent. The
calculation of the effective thermal potential relies on a few approximations and prescrip-
tions [27]. In particular, it relies on a high temperature expansion of the thermal functions,
a perturbative calculation® and the prescription eq. (2.14) for the resummation of thermal
masses. A more accurate calculation might then correct our results by typically suppressing
the signal. Nevertheless, some corrections are expected to enhance the GW signal. It has
recently been found that density fluctuations with scales H; ' > \, > 87! can significantly
enhance the GW signal for §/H, 2 100 [45], as occurs in the case of phase transitions in
the dark sector. In ref. [12], it has been pointed out that since the fraction of latent heat
converted to GWs is not related to «, but to the dynamics in the dark sector, the efficiency
factor in eq. (3.15) need not apply and can even be of order unity. From a pessimistic stand-
point, our results for the peak amplitude (using eq. 3.12) may be regarded as upper bounds.

3.3 Calculation of the Euclidean action in Majoron models and beyond

We now specialize to the three models of the previous section. For each of them we find
an expression for the Euclidean action as a function of temperature.

6See ref. [46] for a discussion on the necessity of a two-loop calculation to recover renormalization scale
independence at high temperatures.
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3.3.1 Minimal model

The minimal model is characterized by the effective potential V. k(1) in eq. (2.17). Fol-
lowing the procedure of ref. [22], we introduce the dimensionless field 7 defined by

M2
o1 =01 QAJ% , (3.17)
and obtain the dimensionless effective potential,
=T A2T? . 1 o, 1 4 a_
Veg(o1,a) =4 e ‘@7&(01)250%*§U?+§0%7 (3.18)
which depends on a single parameter,
_ M M3
= mmry (3.19)
In terms of &1, the equation of motion in eq. (3.2) becomes
_ — ~1
d’z; 2 doy dV g(T1) (3.20)

> 7 odr  dr
where 7 = r MT is a dimensionless radial coordinate. Solving the differential equation and
integrating over dr = M dr, we find the Euclidean action to be

S M3
7= o @, (3.21)
where
24 026
f(a) ~ 4.85 [1 + % (1 Lt a)Qﬂ (3.22)

provides an accurate analytical fit.

3.3.2 Quartic potential with zero-temperature cubic term

This result can be easily extended to the case of a quartic effective potential with a zero-
temperature cubic term (see eq. 2.37) obtained by adding a real scalar to the minimal
model. We define a dimensionless effective thermal potential,

~2 ~
=T _  ~ - 1_ 1_ a
Ver(@1.0) = 4 2L VE@) i) = S0 — S 0%+ i, (3.23)
M§ 2 2 8
where —,
Ar M.
pr=AT+p, a="22T, (3.24)
2 p
and the dimensionless field 7 is s
o M1 (3.25)
o1 =01 —— . .
1 15 ir
The Euclidean action of eq. (3.21) gets generalized to
Sy M3
— = . 3.26
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3.3.3 Quartic potential with both zero-temperature cubic and logarithmic
field-dependent terms

We extend this treatment to the most general effective potential which includes the zero-
temperature cubic term (generated by the addition of a real scalar), and a logarithmic
field-dependent term (that arises if one RH neutrino has a nonthermal abundance):

72 o2

N M
Vir(on, i, A1) = TT% fir o} + )\TU1+/\10110gBT2

Since this general form may originate from a large class of models beyond the specific case

(3.27)

of Majoron models, the results here are of interest for a broad variety of applications.
In the Majoron model, the following identification holds:
M4 _apvd
3212 g’ ToM?

A= (Ny, — 1) (3.28)

We obtain the dimensionless effective thermal potential,

1 1

— — — ao ai
Veﬂ(017a0>a1)—4M.fo(o-lmua)\l) 50%_7 :{)—*_g‘%—{_ R ‘410g0-17 (329)
which depends now on the two parameters,
_ M}
apg=a =+ al 10g W (330)
and .
A M2
a = St (3.31)
2
The Euclidean action that further generalizes egs. (3.21) and (3.26) can be written in
the form, -
Sy M3
— = 3.32
T ﬁ%Tf(QOaa1)7 ( )
with
ol o T~
flag,a1) == /0 drr 501(7“) + Veg(@1,a0,a1)] , (3.33)

where 7(r) is the solution of the equation of motion. In the limit a; — 0, we find
f(ap,a1) — f(a) and we recover eq. (3.26). In appendix A.2 we provide an analytical
expression for f(ag,a1) by fitting numerical results.

3.4 GW signals

Using the expressions for the Euclidean action in the previous subsection, for the different
scenarios we calculate o and 3/ H,, and the resulting GW spectrum.

3.4.1 Minimal model

In this case we have three parameters, vg, mg/vg, M/vo. The results for o and §/H, are
shown in figure 1 as a scatter plot. It can be seen that we have a < 1073 and 3/H, = 10°.
The peak of the GW spectra are six or seven orders of magnitude below the sensitivity of
any planned experiment. Therefore, we do not show GW spectra for this model.
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Figure 1. Scatter plot in the («, 3/H,) plane for the minimal model.

IS e o ) e T T 10_65”"v BRBR R T T

100 ¢ TianGig /@ Weoo03805; |

: ] 10_8* Taljl 3 5/ 3

b L - EF

10%: 4 107"0F ' ]

.0 ] o 10'122 ]
S o ] 5 F
- g ] S 107L
F A1 E
*
| A3, 10_16%
10 3 A2 ** 3
A4 10—18%

100U 1 | | | 10—20E A W (YR SR A WITHT RRNTTT A N R \

1075 1074 1073 0.01 0.1 10 10* 0.01 1 100 10*

« f[Hz]

Figure 2. Quartic potential with zero temperature cubic term. Left panel: scatter plot in the
(o, B/H,) plane. The blue (red) points correspond to the high scale (GeV seesaw scale) scenario.
Right panel: GW spectra for the four benchmark points in table 1 and marked with stars in the
left panel.

3.4.2 Adding an auxiliary real scalar

Including an auxiliary real scalar field 7 introduces a cubic term at zero temperature and,
as in the case of electroweak baryogenesis, may increase the strength of the phase transition
and GW production. In addition to the three parameters of the minimal model, we scan
over [i/vg, the parameter describing the zero-temperature cubic term. The result of the
scan is shown as blue points in the left panel of figure 2. The points fall in the region with
a < 0.1 and 5/H, 2 1000. We select three benchmark points (A2, A3 and A4 marked with

~
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Inputs Predictions
ms/GeV  1/GeV  M/GeV  vy/GeV | T,/GeV o B/ H, a
Al | 0.06190 0.0005857 0.5361  3.5873 | 0.6504  0.1248 2966 0.05951
A2 156.2 13.15 465.6 1014 721 0.04139 754.8 0.3886
A3 1036 13.72 7977 44424 9180 0.08012 1975 0.06268
A4 | 43874 1856 181099 567378 | 247807 0.05611 809.7 0.1944
Table 1. Values of the parameters corresponding to the four benchmark (starred) points in figure 2.
Inputs Predictions

m M v T

Gv Vi Gv G | G @ B/ Hx % a1
Bl | 1383 3.710 1523 1524 | 991.4 0.004190 247858 —0.04945 4.314
B2 | 3225 3.968 3763 3882 | 2331 0.006232 152233 2.898 8.775
B3 | 19003 7.108 17724 20947 | 11682 0.009441 121398  3.1422  9.1367

Table 2. Values of the parameters corresponding to the three benchmark (starred) points in the
left panel of figure 3 and with GW spectra shown in the right panel of the same figure.

blue stars) whose parameters are in table 1. The corresponding GW spectra are displayed
in the right panel; the scale of the phase transition covers many orders of magnitude,
from ~100GeV to ~PeV. The sensitivity of LIGO [47, 48] and the future experiments,
pAres [49], TianQin [50], Taiji [51], LISA [52], BBO [53], DECIGO [54], AEDGE [55],
AION [56], ET [57], are also shown. Clearly, the scenario is testable at AEDGE, DECIGO,
BBO and ET.”

3.4.3 Nonthermal RH neutrinos

We now consider the case with a nonthermal RH neutrino abundance which introduces a
logarithmic term in the effective potential. We set the zero-temperature cubic term g =0
so that the potential depends on the nonthermal RH neutrino abundance Ny, in addition
to the three parameters of the minimal model. The result of the scan is shown in the left
panel of figure 3. We select three benchmark points (B1, B2 and B3 marked with stars)
and shown the corresponding GW spectra in the right panel; see table 2 for the parameter
values. Although the GW signals are enhanced compared to the minimal model, they are
several orders of magnitude below the experimental sensitivity.

Our results are consistent with the general analysis presented in ref. [38] for potentials
of the same form. However, in our case the range of (o, 3/H,) in the scatter plot is not
spanned because the number of degrees of freedom in the dark sector is a small fraction of

It may be possible to obtain even larger GW signals by engineering a supercooled phase transition in the
conformal limit. However, this requires a significant extension of the Majoron models under consideration
so that the scalar masses vanish at tree level and a false vacuum persists at zero temperature [58]. This
can be done by gauging U(1)z and introducing kinetic mixing with a U(1)" in the dark sector as in the

classically conformal B — L model [59-61].
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Figure 3. Potential with logarithmic field dependence and no cubic term at zero temperature.
Left panel: scatter plot in the (o, 8/H,) plane. Right panel: GW spectra for the three benchmark
points in table 2 and marked with stars in the left panel.

the SM value. Hence, the GW signal is always weaker than, for example, from electroweak
baryogenesis. The situation is better in low scale scenarios, but there is a price to pay.

4 Low scale scenarios

So far we have assumed that the phase transition in the dark sector occurs at a temper-
ature above the electroweak scale, when all SM degrees of freedom are in ultrarelativistic
thermal equilibrium. We also assumed that all RH neutrinos acquire mass during the phase
transition so that T, approximately coincides with the seesaw scale, i.e., Tx ~ M. In this
section we relax either the first of these assumptions or both, thereby considering scenarios
in which the phase transition occurs at temperatures below the electroweak scale, and the
seesaw scale M does not necessarily coincide with T,.

4.1 General considerations

There is an important consequence of this new setup. In high scale scenarios, the Yukawa
couplings of the seesaw RH neutrinos couple the dark sector to the SM sector. During the
phase transition the seesaw RH neutrinos acquire mass and then quickly decay. So the
relic dark sector comprised of the two scalars S and J decouples after the phase transition
and Tgec >~ 1. This is why we could take the dark sector and the SM thermal bath to
have the same temperature during the phase transition, and calculate the effective thermal
potential at the common temperature T'. However, if the phase transition and seesaw scales
are the same and lower than the electroweak scale, then from eq. (2.6) with K; < 500 (to
avoid fine-tuning), the seesaw scale cannot be lower than M ~ GeV for 779 > 100 GeV.
Below this scale the seesaw RH neutrinos, and consequently the entire dark sector, will not
thermalize and the maximum value of « sharply decreases, suppressing the GW signal.
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4.2 GeV seesaw scale scenario

The possibility that the seesaw scale can be as low as M ~ GeV has been intensively
investigated since it offers an avenue to test the seesaw mechanism directly at colliders and
via meson decays, and also because such an extension of the SM does not destabilize the
electroweak scale, thus complying with naturalness. Moreover, for RH neutrinos in the
GeV mass range, the matter-antimatter asymmetry of the universe can be explained by
leptogenesis from RH neutrino oscillations [62].

We consider a scenario with Tgee = Tx ~ M ~ GeV. Then, g,(Tx ~ GeV) = 61.75
which increases the value of a (see eq. 3.8) compared to the high scale scenarios.® The red
points and benchmark point A1 in the left panel of figure 2 correspond to this scenario. The
parameter values for Al and its GW spectrum are provided in table 1 and the right panel
of figure 2. Indeed, the GW signal has a higher peak than for the high scale benchmark
points, and the peak frequency lies within LISA’s sensitivity range.? It is noteworthy that
LISA is more sensitive to low scale phase transitions with 5/H, ~ 1000, than electroweak
scale phase transitions for which 5/H, ~ 10-100 is typically assumed.

4.3 Splitting the seesaw and the phase transition scales

As another class of low scale scenarios, we consider a phase transition scale much below a
GeV. For the time being, the two heaviest RH neutrinos, which we refer to as seesaw RH
neutrinos, are assumed to couple the two sectors at temperature '~ M 2> 1 GeV. (Later,
we will relax this assumption and also consider other options.) Since T, < M, the two
seesaw RH neutrinos do not acquire mass ~ M during the o-phase transition. Instead,
they may gain their mass during an earlier phase transition at 7' ~ M, as for example, in
the case with an additional real scalar 7. While this will not play a role in our immediate
considerations, it is interesting that a double peaked GW spectrum may result, with one
peak at a high frequency and a second peak at a lower frequency. The o-phase transition
will then give a mass only to the lightest RH neutrino N7, and, possibly, to additional
lighter RH neutrinos. We continue to denote the mass scale of the two heavy seesaw RH
neutrinos by M. We will denote the common mass of the light RH neutrinos generated
during the o-phase transition by M’, and their number by N'(= N — 2). If there are no
additional light RH neutrinos beyond Ni, then N’ = 1.

For now we also assume that the N’ light RH neutrinos, and consequently the whole
dark sector, does not recouple prior to the phase transition, and therefore Tye. ~ M > T.
Then, at the phase transition the dark sector has a temperature 7" < T. Our expressions
for the thermal effective potential continue to hold with the replacement T — T’. One
then needs to express T" as a function of 7. This can be easily done by requiring entropy
conservation between decoupling and the phase transition. Introducing the entropy number

8A value g,(T. ~ GeV) = 61.75 holds for a phase transition temperature just below half the tau mass,
T, ~ 0.65 GeV.

9The proposed pAres interferometer [49] has two orders of magnitude greater sensitivity than LISA in
the mHz range, and will easily test the GeV scale scenario.
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degrees of freedom g¢4(T), the total entropy density is

272
s(T) = 7 95(T) T (4.1)

Like the energy density, this can be split into a contribution from the SM sector and a
contribution from the dark sector. Since the dark sector is at temperature 7" when the SM
sector is at temperature T, s(T') = ssm(T") + Sdark(7”(T)). Both contributions in turn can
be expressed in terms of their respective entropy number of degrees of freedom via
272 272
SSM (T) = ﬁ QEM (T) T3 and Sdark(T/(T)) = E gdark(T) T3 T% ) (42)
where rp = T'/T and gqark(T) = gdark (T (T)). With this definition of gqa.k(7), we can
write gs(T) = ¢SM(T) + gqark(T) r3. We assume that when the two seesaw RH neutrinos
decay, their entropy is redistributed in both sectors so that 77 (Tye.) = 1. In the dark sector,
before the phase transition, gqark(7") receives a contribution from the scalars, gy, = 3,
and a contribution from the N’ light RH neutrinos, gn» = 7 N'/4. After decoupling, ggark
can be assumed to be constant until the phase transition. Analogously to the standard
calculation of the evolution of the ordinary neutrino temperature after decoupling, we find
1/3
g M (T%)
] .

4.3
QEM(Tdec ( )

We further assume that after the phase transition, the massive scalar S and the N’ light

TT(TdemT*) = [

RH neutrinos decay so that gqa,k (7 < T%) = 2. In the next subsection we apply this general
setup to a specific interesting scenario.

4.4 Phase transitions below an MeV, NANOGrav, and the Hubble tension

An interesting possibility is whether the class of low scale scenarios with T, <« M can
address the recent NANOGrav results which show evidence for the existence of a stochastic
GW background at ~ 10~8 Hz [11]. For 3/H, > 1000, eq. (3.14) indicates T} < 100keV.
The crucial question is if the amplitude of the NANOGrav signal, h? Qqwo(f) ~ 10710,
is reproducible. We will find that reproducing the NANOGrav signal is challenging [63].
However, the predicted GW signal can be well within the reach of future experiments
such as SKA [64] and THEIA [65]. Quite interestingly, such a phase transition scale is
independently motivated by the Hubble tension, as we discuss below.

For T, < 100keV, well below the electron mass, the standard result ¢5™(T,) = 43/11
holds and, since g5M(Tyee = 100 GeV) = 106.75, eq. (4.3) gives 77(Thee = 100GeV, Ty <

~ ~

100keV) ~ 0.33. To calculate « from eq. (3.8), we also need

7 4\ 3
SM _ ~
9, (T*) =24 1 x 3.044 x (11) ~ 3.36, (4.4)

where NTSM ~ 3,044 is the effective number of ultrarelativistic neutrino species in the
SM [66, 67].1° The left panel of figure 4 shows for N’ = 1 that only a < 0.01 and

0The small deviation from NST = 3 is due to the small component of nonthermal ordinary neutrinos
produced in electron-positron annihilation.
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Figure 4. Low scale scenario for Tge. = 100 GeV and Ty < 100keV. Left panel: scatter plot in the

(o, B/H,) plane. Right panel: GW spectra for the three benchmark points in table 3 and marked
with stars in the left panel.

Inputs Predictions
mg/keV i/ keV M/keV vy /keV | T, /keV ! B/ H., a
C1 | 0.08266 0.00002456 0.04838 0.09244 | 0.3949 0.003506 6206 0.5358
C2 | 0.01065  0.000303  0.03155 0.02364 | 0.1833 0.004152 42997 0.7945
C3 | 0.5266 0.2216 0.8440  0.2836 | 3.831 0.008528 70771 0.9583

Table 3. Values of the parameters corresponding to the three benchmark (starred) points in
figure 4.

B/H, 2 10* are allowed. We select three benchmark points (C1, C2 and C3) that maximize
the GW signal (shown in the right panel of figure 4; the parameter values are in table 3).
The signal peaks are many orders of magnitude below the NANOGrav result and even
below the sensitivity of future experiments like SKA and THEIA.

Consider the possibility that the NANOGrav signal can be reproduced if the seesaw
scale is lowered to a GeV, which as we have seen, permits thermalization of the SM and
dark sectors. We set Tgec ~ 1GeV and obtain rp(Tyec ~ 1GeV, T, < 100keV) ~ 0.40.
This increases o with respect to the previous case (with Tye. = 100 GeV) by a factor
~ (106.75/61.75)%3 ~ (0.40/0.33)* ~ 2. Since the peak of the GW spectrum ~ o’
(accounting for the fact that 3/H, o a2 [38]) this increases the signal by a factor ~ 38,
which is clearly insufficient to explain the NANOGrav signal and one can only marginally
obtain testable signals at planned experiments.

Yet another possibility follows from the assumption that some additional interactions
rethermalize the dark sector with photons. Then, rp = 1 which enhances the peak of the
GW spectrum by a factor of ~ 10°. Although this is sufficient to reproduce the NANOGrav
signal, one must contend with cosmological constraints, as we discuss below.
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We may also allow the number of light RH neutrinos N’ to be larger than unity. This
is expected to increase the GW signal since these neutrinos contribute to the thermal
effective potential; see eqgs. (2.19) and (2.20) with N replaced by N’. From this point of
view N’ may be regarded as an effective number of light RH neutrinos that represent a
higher complexity of the dark sector.

4.4.1 Cosmological constraints on dark radiation

Before proceeding, we pause to consider cosmological constraints on the extra radiation
from the epochs of Big Bang Nucleosynthesis (BBN) and recombination. At temperatures
T < M, the extra degrees of freedom are the N’ light RH neutrinos and the scalars 1, S
and J. The number of extra degrees of freedom at temperatures much below the muon
mass is traditionally expressed in terms of the effective number of extra neutrino species
ANSH(T) via

9n(T) = gT) + § ANST(T) [T, (4.5)
where )
1) = (17) 2" @), (4.6)
with

2 /22, 1 a?
TEVTE A+ 24+ 5 o

e _ 45 [
gl™e (T)f2+ﬁ/0 dx

Here, z = me/T. Primordial helium-4 abundance measurements combined with the baryon
abundance extracted from Cosmic Microwave Background (CMB) anisotropies place a
constraint on ANST(t) at t = t; ~ 1s, the time of freeze-out of the neutron-to-proton
ratio [68]:

ANt (1) ~ —0.140.3 = AN (4) <05 (95%C.L.). (4.8)

Measurements of the primordial deuterium abundance place a constraint on ANST(¢) at
the time of nucleosynthesis, ty,c ~ 310s, corresponding to Thye ~ 65keV [69]:
AN (the) = =0.2£0.3 = AN (t,) <04 (95%C.L.). (4.9)

~

CMB temperature and polarization anisotropies constrain AN¢™(#) at recombination, when
T ~ Tiec >~ 0.3€V, and the Planck collaboration finds [70]

AN (tee) = —0.06 £0.17 = AN (t0) <0.3 (95%C.L.). (4.10)
We now calculate ANST(¢) for the Majoron model with the addition of a real scalar
1. Assuming that the dark sector decouples at a temperature Tye. = 1 GeV and does not

recouple to the SM sector, the value of AN is constant throughout BBN until recombina-
tion. We evaluate ANST below T ~ m,/2 =~ 250keV so that 74 (T) ~ (4/11)}/3, and obtain

I

4 /11\3
ANS() =7 () 7 gau(T). (411)
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Figure 5. Rethermalization scenario with rr = 0.6 and N’ = 1. Left panel: scatter plot in the
(o, B/H,) plane. Right panel: GW spectra for the three benchmark points in table 4 and marked
with stars in the left panel.

with ggark(T) = 3 + ZN’. In the canonical case with Tye. = 100 GeV and N’ = 1, we have
rp = 0.33 and ANl‘fﬁ(t*) ~ (0.12. In the low scale seesaw scenario with Ty.. ~ 1 GeV and
N’ =1, we have rp = 0.4 and AN (t,) ~ 0.27. These results are easily compatible with
the BBN constraints. After the phase transition and prior to recombination, the lightest
RH neutrinos and scalar S acquire mass and behave as matter before decaying. Because
these particles redshift like matter, the later they decay, the greater the contribution to
AN at recombination. Thus, their lifetimes must be bounded from above.

If some new interactions fully rethermalize the dark sector prior to the phase transition,
i.e., r7 = 1, then for N’ = 1, ANS"(T,) ~ 10. This result could be put in agreement with
BBN constraints if the late thermalization occurs just prior to the phase transition and
T, < 65keV, but it would be in obvious disagreement with the CMB anisotropies. There

is, however, another interesting possibility to be considered.

4.4.2 GW signals and the Hubble tension

The so-called Hubble tension [71] between the CMB measurement of Hy within ACDM and
low-redshift astrophysical measurements suggest AN (t,..) ~ 0.6. We calculate the max-
imum value of rp by very conservatively requiring AN (T,) < 1.35 to address the Hubble
tension. From eq. (4.11) with N' = 1, we find rp ~ 0.6. The result of our scan with ro = 0.6
is shown in the left panel of figure 5. Higher values of o and lower values of 3/ H, can be ob-
tained compared to the case with rr = 0.33 presented in figure 4. From the right panel we
see that the GW spectra for three benchmark points can be detected at SKA and THEIA
although their peaks are still three orders of magnitude below the NANOGrav signal.
This scenario, however, is not only too generic, since we have not specified the inter-
actions that cause rethermalization, but also unrealistic, since we have assumed that the
dark sector essentially equilibrates with photons. Also, CMB data now clearly show that a
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Inputs Predictions
mg/keV  [p/keV  M/keV  wg/keV | Ty /keV a B/ H, a
D1 | 0.083651 0.009534 0.3574 0.4082 | 0.8076 0.03641 4046 0.6795
D2 | 0.2650 0.9064 0.5571  0.2505 | 0.9902 0.05283 11407 0.9207
D3 | 5.4732 0.9724 14.19 8.341 26.13  0.04452 10472 0.8831

Table 4. Values of the parameters corresponding to the three benchmark (starred) points in
figure 5.

mere injection of extra radiation at the level of ANST ~ 0.6, though able to yield a higher
value of Hy from CMB anisotropies in agreement with the astrophysical measurements,
results in a worse global fit of the data. This is because the extra radiation also produces a
shift in the acoustic peaks which is not tolerated by current CMB data [72]. To ameliorate
the Hubble tension within an extension of ACDM and provide a better global fit to the
data requires a reduction of the sound horizon at recombination without an alteration of
other CMB observables that are well fitted.

It is quite interesting that the requirements of specifying the interaction within a real-
istic model and producing a better cosmological global fit can be neatly satisfied within our
Majoron model with split seesaw and phase transition scales. We introduce an interaction
of the Majoron J with the ordinary neutrino cosmic background of the type,

i

- El/—dark = 9

1
Z )\iﬁi’yB Vi77+§>\171’y5 v1J +he., (4.12)
i=2,3

where 1 3 are the two heavier ordinary neutrinos with masses generated by the seesaw and
vy is the lightest ordinary neutrino that couples to the Majoron. Indeed, the interaction
between dark radiation and neutrinos is just the ingredient needed to reduce the sound
horizon and obtain a larger value of Hy from the CMB anisotropies. The impact of this kind
of interaction on the CMB was first studied in ref. [73] and it has been recently considered in
refs. [74, 75] in the context of the Hubble tension. We have introduced a flavor dependence
since in our case the seesaw scale and the phase transition scale are different. However,
from the point of view of the CMB anisotropies the flavor dependence has no effect. (This
kind of model falls into a more general class of models recently discussed in ref. [76], also
in relation to the Hubble tension. A recent example of a specific model within this class,
though not a Majoron model, has been recently discussed in ref. [77].) The interactions in
eq. (4.12) partly rethermalizes the dark sector with the ordinary neutrinos such that

1 1
43 3.044 3
— (= . 4.1
T (11) <3.044+N’+12/7) (4.13)

For N =1, we again find rr ~ 0.6. Also,

3.044 + N' +12/7
3.044 + N’ +12/7 — Ny,

1
3
AN (t,00) ~ 3.044 ( > —3.044 ~ 0.5, (4.14)
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where N}, (equal to 2 in our case) is the number of massive states that decay and produce
the excess radiation. The value, ANl’fff ~ (.5, nicely coincides with the best fit value
found in refs. [74, 76] with Ax2,, = —12.2 compared to the ACDM model; the fit includes
the astrophysical determination of Hy.'' The best fit values for the coupling constant and
Majoron mass are \; ~ 1072 and m; ~ O(0.1eV). It is quite intriguing that such values for
the Majoron mass can be accommodated in phase transitions with T} ~ keV. These values
give rise to GW signals in the 1078 Hz range tested by NANOGrav, SKA and THEIA.!?
The interactions in eq. (4.12) now provide a realistic way to achieve rethermalization
of the dark sector and justifies 7 ~ 0.6 which links possible GW signals at ~ 1078 Hz to
the Hubble tension. Effectively, the interaction causes ordinary neutrinos to be treated as
part of the dark sector rather than the SM sector. Compared to the case in which the dark
sector thermalizes with photons, now the thermal coupling between the dark sector and
ordinary neutrinos also affects the value of g[S,M(T*), and therefore the value of a. This
is because the neutrino-to-photon temperature ratio decreases from the standard value
ri=T,/T = (4/1 1)§ to rp. The total number of SM ultrarelativistic degrees of freedom
at the phase transition decreases from the standard value ggM ~ 3.36 to
M (T, < 100keV) = 2+ 3.044 Z . (4.15)

~

For ro = 0.6, ggM'(T* < 100keV) ~ 2.69. On the other hand, the contribution from the

~

dark sector is

4
g2k (T, < 100keV) = Z (f‘l) P ANCE(t,) (4.16)
where AN (t,) is given by eq. (4.11).13

We have so far considered the case N’ = 1 corresponding to the usually considered
total number of RH neutrinos N = 3. However, we can also study how the GW signal
changes with increasing N’. In this context, N’ should be regarded as an effective number
of light RH neutrinos parameterizing an extension of the dark sector that contributes to the
effective thermal potential. The result, not surprisingly, is that the GW signal is enhanced
by increasing N’, but the enhancement saturates for N/ ~ 10 as can be seen from the
right panel of figure 6. We have selected five benchmark points with N’ = 1,3,5,7, 10,
and whose GW spectra peak in the range of frequencies tested by NANOGrav, SKA and
THEIA. The reason for the saturation is that for a given choice of all the other parameters,
there is an upper bound on the value of N’ imposed by the stability of the potential,
since the quartic coupling Az in eq. (2.20) becomes negative for too large N. Note that
for N' = 10, eq. (4.11) gives AN (t,,c) = 0.535, in conflict with the BBN constraint

ACDM gives X2, = 2786.7 [74].

121t is conceivable that m; ~ 0O(0.1) eV may not generate a linear term in the potential which spoils
the phase transition but a dedicated analysis would be needed. However, note also that in our model,
interactions involving the light RH neutrinos such as 71 v° N1 J and i N;4°® N1 J could be included. These
will likely enlarge the parameter space of preferred values of \; and m that resolve the Hubble tension.

13Note that gEM/ + gﬁark = gEM. This is expected since thermalization transfers energy from ordinary
neutrinos to the dark sector with no change in the total energy density. The extra radiation described by
eq. (4.14) is produced by decays of the massive states after the phase transition.
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Figure 6. Rethermalization scenario addressing the Hubble tension. Left panel: scatter plot in
the (o, 8/H,) plane. Right panel: GW spectra for the five benchmark points E1-E5 in table 5
corresponding to N/ = 1, 3,5, 7, 10, respectively, and marked with stars in the left panel.

Inputs Predictions
ms/keV  i/keV M/keV  wvg/keV | T,/keV a B/ H, a
E1 | 0.6847  0.04274  2.795 3.507 7.036  0.03505 5286 0.7226
E2 | 0.3065 0.008314  1.401 3.253 3.711  0.08406 5229 0.4638
E3 | 0.7224  0.01154  3.808 12.34 10.33  0.1186 6993 0.7279
E4 | 2.620 0.05962  10.27 35.12 36.26  0.1086 5919 0.3974
E5 | 0.2771  0.003530  1.402 7.101 5.207  0.1609 8176 0.2127

Table 5. Values of the parameters corresponding to the five benchmark (starred) points in figure 6.

in eq. (4.9). However, this can be circumvented by relaxing our assumption that the
dark sector undergoes an early thermalization at temperatures above ~ 100 GeV and then
rethermalizes at low temperatures. Instead of rethermalization, the dark sector could

thermalize for the first time at low temperatures prior to the phase transition.

These results are quite intriguing, since they show how a solution to the Hubble tension
motivates a GW signal from a strong first-order phase transition in Majoron models within
NANOGrav’s range of frequencies. We also see that even increasing N’ yields GW spectra
with peaks two orders of magnitude below the NANOGrav signal. We do not expect that
a proper accounting of theoretical uncertainties or a calculation of the signal-to-noise ratio
can overcome the two orders of magnitude needed to explain the NANOGrav signal.
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5 Final remarks and conclusion

We discussed how a stochastic GW background may be generated in the early universe
from first-order phase transitions in Majoron models. We considered high scale scenarios,
in which the phase transition occurs above the electroweak scale, and low scale scenarios
in which the phase transition occurs below the electroweak scale.

We highlight some aspects of our study.

e We have not introduced couplings of the complex scalar ¢ to the Higgs boson. So the
Higgs sector is not modified, for example by a Higgs portal operator o« HH |o|?. In
the high scale scenarios, with vy > veyw, it can be assumed that the coupling is small
to not destabilize the electroweak scale and introduce a naturalness problem. Below
the electroweak scale, this term would simply contribute to the quadratic term and
be incorporated into p2. We have also not explicitly considered nonrenormalizable
higher dimensional operators so that our model is ultraviolet-complete.

e In high scale scenarios the GW signal can be detected at currently planned interfer-
ometers.

e The stability of the effective potential limits the size of the GW signal at low fre-
quencies in the low scale scenarios to two or more orders of magnitude below the
NANOGrav signal. If the NANOGrav signal is confirmed then a more drastic depar-
ture from the models presented here needs to be considered.

o For phase transitions in the dark sector, typically 5/H, 2 1000 rather than 5/H, 2,
10-100, as usually assumed in the case of electroweak phase transitions. This shifts all
signals to higher frequencies, which makes it desirable that experiments be planned
with greater sensitivity in the range of frequencies relevant to ET. We find that LISA
will test phase transitions at the GeV scale that may have connections with Majoron

models, and with RH neutrino searches at FASER [78].

e In low scale scenarios we considered the possibility that the phase transition occurs
even below the decoupling scale of ordinary neutrinos. In this case, a GW signal is
generated in the range of frequencies currently probed by NANOGrav and may be
observable at SKA and THEIA.

e The Hubble tension can be addressed in models in which the dark sector interacts
with the ordinary neutrinos. This offers an intriguing connection between two appar-
ently independent phenomenologies and makes it possible to test late thermalization
scenarios and departures from ACDM with GW experiments.

Finally, we stress the inverse problem, i.e., the possibility of extracting the physical
parameters that describe the phase transition from an observed GW signal. The peak
frequency, amplitude and shape of the spectrum can help reconstruct the four thermody-
namic parameters, «, T, 5/ H,, vy, that describe the phase transition despite the presence
of degeneracies. Recently, it has been emphasized that a more realistic description of the
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sound wave contribution entails a double broken power law parameterized by four spectral
parameters rather than just two for a single power law as in eq. (3.12) [79]. It should be
said however that the situation for values of §/H, 2 1000, as in the case of a dark sector
phase transition, is much more challenging than in the case of a phase transition in the
visible sector such as the electroweak phase transition. For this reason it is important to
have a specific model in which the GW signal may be linked to other phenomenological
observables. Our study meets this requirement since there is a strong complementarity
with other phenomenology, such as meson decays experiments for GeV scale scenarios, and
cosmological tensions (i.e., departures from ACDM) in the case of very low energy scale
scenarios. We have also seen how in the latter case a very interesting signature is the
possibility of observing a double peak GW signal, one at high frequencies from seesaw RH

neutrinos and one at low frequencies from light RH neutrinos.
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A Calculations of the phase transition temperature and Euclidean action

In this appendix we briefly discuss how to calculate T} and derive eq. (3.5). We also present
analytical fits of the Euclidean action for a general effective potential. All results contained
in this appendix are applicable in general, and beyond Majoron models.

A.1 Calculation of T,

We defined the time of the phase transition by I(t.) = 1; see eq. (3.4). A brute force
method of calculating 7T is to plug an expression for the Euclidean action Sg as a function
of temperature into the equation, I(¢(7)) = 1, and solve it numerically. However, eq. (3.4)
can be simplified because in the detonation regime the duration of the phase transition is
much shorter than the age of the universe. This is confirmed by the fact we always find
B/H, > 1. We can then neglect the expansion during the phase transition and write,

Am o [ "3
I(t)zng ar'T(t’) (t—t)°. (A1)
te
Since we know the nucleation rate as a function of temperature,
S (T 3/2
I(T) = T* [E()] e Su(T) (A.2)
27
it is convenient to switch variables from time to temperature using dt’ = —dT"/[H(T") T’

and the usual relation in the radiation-dominated regime,

1 90 Mp
t= -l - A.
2\ 813 g,(T) T? (A.3)
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In terms of the dimensionless quantity x = T'/vy, the condition I(7}) = 1 is equivalent to

h(zy) = C(vo), (A.4)
where ) L \
ha) = [ "t [Sf;(: )] ? o Se@) (;2 - 3}2) (A.5)
and Hiw) 6
C(v) = g (A.6)

Although laborious, solving eq. (A.4) for T, is simpler than solving the original equation.

However, further simplification is possible by noting that eq. (3.7) implies a linear
expansion of the Euclidean action around ¢, so that the nucleation rate in eq. (A.1) can
be written as I'(t) = T, e?(=%) where ', = I'(t,). Since the integral is dominated by
t ~ t, [80],

I(t) ~8mvd EZ Pl—t) (A.7)

Using this expression in I(t,) = 1, gives eq. (3.5). Clearly, eq. (3.5) is much easier to solve
if the Fuclidean action is provided as a function of temperature. We verified that solving
eq. (3.5) gives results for o and /H, in full agreement with those obtained by solving
eq. (A.4).

An even simpler and numerically efficient procedure employs the facts that Ty and T,
are very close to each other with T > T, and that the derivative of the Euclidean action
is approximately constant in the interval [Ty, Ty]. Then,

SE(T*) >~ SE(TH) - SIE(TH) (TH - T*) s (A8)
where Sg(Ty) is given by eq. (3.6).

A.2 Analytical expression for the Euclidean action in the general case

We provide expressions for the function f(ag,a1) in eq. (3.32) for the Euclidean action
obtained from the effective potential of eq. (3.29).

The two vacua at (71) = 0 and (51) = (v/4a1 + 1—1)/a; become degenerate at the crit-
ical temperature when the coefficients ag and a; satisfy the condition ag = a{’(a1), where

" 2 VI F1+1
Qg (al) = a W -1+ 210g (14> (Ag)

For a given a;, the potential has a global minimum away from 0 only if ay < af'(a1). In
particular for a; = 0, ap < af'(0) = 1, and for a; = 2, ag < af*(0) = 0. In the presence of
the logarithmic term, a positive a; guarantees the stability of the vacuum, irrespective of
the sign of ag. While ap < af*(a1) with 0 < a; < 400 is an ideal condition to trigger the
first-order phase transition, we require ag < ag'(a;) — 0.05 to keep the numerical scan far
away from the singularity at ap = ag*(a1).
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Since a semi-analytical formula valid for the entire parameter space is challenging, we
obtain two numerical fits for the 3-dimensional Euclidean action in two separate regions:

A= {(ao,a1)|10_3 <

a1 <0.2, 107" < ap < al'(ay) — 0.05},
B = {(ao,al)]0.2 <a; <1

0, —2<ap<ag(a)—0.05}. (A.10)

For (ap,a1) € A, we first fix the value of a;. Then ag'(ai), the maximum value of ay, is
also fixed. We scan ag in the interval (0, aj'(a1) — 0.05) and obtain a fit for f(ap,a1). In
region A, we fit a function of the form,

f2(a1)ao n f3(a1)ao (A11)

flag,a1) = folar) + fi(ai)ao + ar —ag (' —ag)?

Varying a1 in the interval [1073,0.2], we obtain the following numerical fits for the f;’s:

f( ) 5.31 + 17.17 n 48.78 n 70.59
a =
O T — oM B T (@ 22 (- 28 (- 2)1

N —0.52 1.47
filar) = fo(ar)e 1o (al -2 (1 —(121)2> 7

~0.51a%% 4 1.14a; — 0.30,/a7 + 0.64
falar) = fo(ar) 372 :
ay’"+1

5.37a1 n 0.05a1 + 0.02a4
(a1 —=2)% (a1 —2)3 (a1 —2)*

fs(a1) = 0.04ay |a; — 2|*°" + +0.30. (A.12)

In region B we express f(ag,a1) in the form,

f(ag,a1) = g1(a1) g2(a1) + g3(a1) ga(a1)
7 (ag(a1) —ao)?  af(ar) —ao  (af*(ar) —ag)¥/? ~ (af*(a1) — ag)/*
+g5(a1)log(ag(a1) — ao), (A.13)

and obtain the following numerical fits for the g;’s:

g1(a1) = 0.45a; + 0.69,

177.2 229.2 120.6
n - = 276,
VVay \/ah ay
161.6 212.8 112.0
+ - 0.43,
vaj \ah ay
161.3 211.9 1104
n - = 0.71,
Vvay \/ @) ay
146.5 193.6 102.8
) —0.04,

gs(a1) = —0.58 cos | 29.6 — + _
TR

where ] = a; + 2.

g2(a1) = —0.40 cos (41.16 —

gs(a1) = —3.59 cos (32.92 —

ga(ay) = 3.46 cos (26.40 —

(A.14)
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Figure 7. Scatter plots in the (ag,a1) plane in the high-scale scenario with logarithmic field
dependence and no cubic term at zero temperature. The benchmark points in table 2 are marked
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Values of ap and a1 in region A (left panel) and B (right panel) are shown in figure 7.
We verified that the analytical fits for f(ag,a;) in regions A and B agree with the numerical
results within 5%. Figure 8 shows the errors for values of ag that correspond to benchmark
points B1, B2 and B3. We confirmed that in the limit a; — 0, we recover eq. (3.26) with
ap = a.
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