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Neutrinoless double-beta (Ovff) decay is an as-yet unobserved nuclear process, which stands to provide
crucial insights for model building beyond the Standard Model of particle physics. Its detection would
simultaneously confirm the hypothesis that neutrinos are Majorana fermions, thus violating lepton-number
conservation, and provide the first measurement of the absolute neutrino mass scale. This work aims to
improve the estimation within chiral effective field theory of the so-called “contact term” for Ov3f decay, a
short-range two-nucleon effect that is unaccounted for in traditional nuclear approaches to the process. We
conduct a thorough review of the justifications for this contact term and the most precise computation of its
size to date [g)Y = 1.3(6) at renormalization point y = m,], whose precision is limited by a truncation to
elastic intermediate hadronic states. We then perform an extension of this analysis to a subleading class of
inelastic intermediate states that we characterize, delivering an updated figure for the contact coefficient
[¢YN = 1.4(3) at u = m,] with uncertainty reduced by half. Such ab initio nuclear results, especially with
enhanced precision, show promise for the resolution of disagreements between estimates of Ovyff from

different many-body methods.

DOI: 10.1103/PhysRevD.111.055033

I. INTRODUCTION

From a theory perspective, the usefulness of neutrinoless
double-beta (Ovff) decay as a probe of neutrino mass and
of lepton-number violation (LNV) is constrained by the
precision with which its half-life may be related to physical
model parameters. This precision is most severely limited
by our ability to calculate many-body or even few-body
nuclear structure, a challenge amplified by the inherent
two-body nature of Ovpf decay. The factorization of the
Ovpp amplitude into a leptonic phase-space factor (PSF)
and a hadronic nuclear matrix element (NME) [1], although
inexact, has become a standard approximation. This is, in
part, because the imprecision introduced by this factoriza-
tion falls well below other theoretical uncertainties [2] and,
in part, because the PSFs are calculable with relative ease
compared to the NMEs.

No exact method to solve the nuclear many-body
problem from first principles has yet been developed;
instead, a collection of efficient, truncated techniques are
in common usage, which are reviewed extensively, e.g.,
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in [3]. Estimates of the Oyfpf-decay NMEs are known to be
correlated across isotopes, both within and across many-
body methods, due to shared (and only partially under-
stood) systematics of the many-body procedures [4]. These
correlations are sometimes interpreted through the lens of
“quenching,” a generic overestimation of NMEs for both
and 2upp decay, owing to the Gamow-Teller term. As
Ref. [3] reviews in great detail, numerous underlying
mechanisms for this systematic offset have been proposed
but lack any conclusive evidence. Any or all nuclear-
structure correlations, multinucleon weak currents, heavier
isobars such as the A, pion-range properties of the nuclear
medium, and more could be responsible for the effect, and
as such it is unclear whether a similarly strong effect
occurs for Oupf decay.

Between 2018 and 2021, Cirigliano et al. surprised the
Ovpp and nuclear theory communities with a series of works
[5-8] purporting to show that even the two-body picture of
Ovpp decay within conventional nuclear theory was, in fact,
incomplete, containing its own intrinsic systematic offset.
Employing an ab initio framework derived from chiral
effective field theory (yEFT), these works claimed that a
short-range, two-nucleon LNV interaction necessarily indu-
ces a contribution to the decay similar in magnitude to the
contribution from the usual light neutrino exchange. There
has been debate in the community about the implications of
this result for NME computations performed in standard
phenomenological nuclear frameworks and, in particular,
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whether the proposed ‘“‘contact counterterm” is already
accounted for by the nucleon-nucleon correlations included
within modern many-body nuclear models. However, [8]
argued concisely that the EFT-based argument still proceeds
even if the involved nucleons are maximally correlated and
so must be a distinct effect. To this point, there has been no
published rebuttal.

Beyond such generic considerations, the Ovffp-decay
theorist is of course most interested in the quantitative
impact of the contact counterterm on estimated NMEs. This
question was partially answered in the most recent works
by Cirigliano et al. [7,8], which implemented a matching
analysis between low-momentum yEFT and high-momen-
tum perturbative QCD in order to estimate the coefficient of
the contact counterterm. Their final result, at renormaliza-
tion point 4 = m,, was

gIZJVN |NN =3 '32(50)inelastic (ZO)VS (S)parameters =13 (6)’ (1 . 1)

where the largest error, about 38% relative error, arises
from the choice to only account for elastic NN states in the
intermediate stage of the process. The other acknowledged
sources of error are the choice of a short-range nuclear
potential V¢ and other model-dependent parameters used to
extend the yEFT result up to higher momenta, closer to the
perturbative QCD regime so that a matching analysis is
possible. The renormalization point is a kinematic scale at
which one chooses to match theory parameters to physical
observables; it is not unexpected that an unobservable
coupling such at g’V should vary with this choice of scale,
although observables should not.

This work aims to improve upon the 38% error from
truncation to elastic states, by explicitly accounting for the
lowest-lying collection of inelastic states, namely, NNz
states. Our result will therefore include both an adjusted
coefficient for the contact counterterm and an improved
error bar on the inelastic-state truncation, and at the same
renormalization point will have numerical value

1.4(3).
(1.2)

gllJVN|NN+NNﬂ = 140(20) Vs (S)parameters (3)inelastic -

To contextualize this result, and our methods, we will first
give an overview of the mathematical and physical foun-
dations of the work of Cirigliano et al. in Sec. II: chiral
symmetry, yEFT, and nucleon-nucleon interactions within
that framework. Section III will review the derivation of the
contact counterterm from [8], including the aforementioned
matching procedure for determining its coefficient. Finally,
in Sec. IV, we will present our novel derivation of the
contact counterterm coefficient accounting for both NN and
NNr intermediate states, ultimately delivering an updated
estimate of gV with improved uncertainty, and comment on
the uncertainties that then dominate.

II. CHIRAL EFFECTIVE FIELD THEORY
AND NUCLEAR FORCES

The experimental properties of both bound quark-gluon
matter and hadronic scattering processes have constrained
the gauge group of the strong interactions to be SU(3).qjor-
This fact has numerous nontrivial implications, not the least
of which is that quarks and gluons should be confined into
hadronic matter in systems below the Hagedorn temperature
[9,10]. In studying QCD at low energies (MeV-GeV)
relevant to nuclear processes, typically MeV-GeV-scale
as opposed to TeV-scale collisions, our essential goal will be
to make accurate predictions of hadronic properties, in
particular the interactions of stable baryonic matter (protons
and neutrons) via short-lived mesonic mediators. The
running of the strong coupling leads to the breakdown of
perturbation theory for low-energy QCD; i.e., we cannot
hope to describe these hadronic interactions through some
convergent series of diagrams involving their constituent
quark and gluon field quanta.

However, nature has blessed QCD with a natural (chiral)
symmetry, which is broken lightly enough that direct
calculation of hadronic interactions is possible—with quan-
tifiable perturbative uncertainties. The lightest mesons,
pions, emerge as the Goldstone bosons of this approximate
spontaneously symmetry breaking (SSB), and their inter-
actions are severely constrained. The resultant yEFT, whose
formulation is outlined in this section, will prove powerful
enough to explain properties of nucleon-nucleon collisions
from what are effectively QCD first principles. By including
electroweak source terms in the yEFT Lagrangian, Ovfp
decay can also be described at the nucleon level.

A. Chiral symmetry, SSB, and an effective Lagrangian

Chiral symmetry is most simply stated as the separation
between the mass scale of the light quarks and that of the
hadrons; with these light-quark masses taken to be 0, QCD
classically enjoys an exact, global U(3)g,o, Symmetry.
Furthermore, examining chirality eigenstates of the
quark field reveals a copy of this flavor symmetry in each
chirality sector, i.e., U(3), x U(3)g = SU(3), x SU(3)gx
U(1), x U(1)g, where the latter factorization emerges from
extracting a global phase from each U(3) transformation.

This approximation of QCD still holds when we
promote the SU(3),,,, sSymmetry of the quark fields to
a local symmetry, introducing non-Abelian gauge self-
interactions and a f-term. However, the gauge interactions
do constrain the collection of global flavor symmetries
after quantization. The famous axial anomaly of U(1),
[11,12], with a violation inversely proportional to the
number of colors, implies that U(1) , plays a role neither in
chiral symmetry breaking nor in the eventual yEFT. The
remaining Abelian symmetry U(1),, on the other hand, is
preserved after quantization and corresponds to baryon-
number conservation.
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The action of chiral SSB is therefore restricted to
SU(3), x SU(3)g and its subgroup SU(3), under which
the QCD vacuum is invariant. Before exploring the
consequences of this breaking, it is valuable to physically
motivate its occurrence. Speaking phenomenologically, a
SU(3), symmetry on the baryon spectrum allows one to
construct from any positive parity state a mass-degenerate
negative parity state; however, such opposite-parity pairs
are firmly absent from the observed baryon spectrum.
Speaking theoretically, if the operator gg has a nonvanish-
ing expectation value, which must be flavor independent in
the chiral limit, the QCD vacuum is no longer invariant
under axial symmetry SU(3), [13]. Thus, the scalar singlet
quark condensate gg provides not only an explanation, but
a mechanism by which chiral symmetry can be sponta-
neously broken at zero temperature, yet be preserved/
restored at higher energies. The pions, an isotriplet of
pseudoscalars with masses 135.0 (z°) and 139.6 MeV (z%),
are interpreted as the pseudo-Goldstone bosons resulting
from this SSB, and their significant mass hierarchy to the
next-lightest mesons, kaons ~490 MeV and p mesons
~770 MeV, may be taken as evidence of the chiral
symmetry of QCD in action.

Some general comments about EFTs are in order.
Although we have selected a symmetry-breaking pattern
based on the theoretical and experimental properties of
QCD, numerous quantum field theories could be con-
structed that obey this symmetry-breaking pattern. The
natural question is then: which approximation is the best
choice? A key result by Weinberg [14] is that the most
general Lagrangian obeying the chosen symmetry will
generate the most general complex-analytic S matrix that
also obeys that symmetry, as well as being consistent with
unitary time evolution and “cluster decomposition,” where
the latter refers to a conjected asymptotic independence
between distant experiments. The conventional wisdom is
that one cannot generically improve on this choice, as all
specific physical content is encoded in the symmetry
breaking. One is free to select the constituent fields most
appropriate at the observed scale; in yEFT, these degrees of
freedoms are hadrons rather than the more fundamental
quarks and gluons. The resultant Lagrangian will also, in
general, be nonrenormalizable, but this is in line with the
expectation that the effective theory will only make
accurate predictions within some range of scales. Even
still, an infinite quantity of interaction terms appear in the
Lagrangian, and there is no a priori method for determining
which will contribute dominantly in all situations. As a
result, part of constructing the effective theory is the choice
of “power counting” scheme, usually in the form of a small
expansion parameter. In yEFT, the standard and physically
well-motivated choice is an expansion in A% ~ ’A”—; ~ % for
characteristic momentum Q and chiral symmetry-breaking
scale A, ~ 1 GeV [15].

We will not review the construction of the yEFT
Lagrangian from the above principles in detail, but instead
direct the reader to standard resources such as [13]. In
brief, one constructs the simplest nontrivial realization of
spontaneously broken chiral symmetry, building invariant

interactions out of SU(N)-valued fields U(x) = exp (i %:))

for pion fields ¢ and constant F. ¢ can be expanded
¢ = ¢p,A, over some basis A,_; . of SU(N), with
standard normalization Tr(4,4,) =2; for N =2, A, are
the (isospin) Pauli matrices, and for N = 3 they are the
Gell-Mann matrices. The chiral symmetry is promoted to a
local symmetry by introducing two gauge fields /,, r, and
an appropriate gauge-covariant spacetime derivative.
Explicit chiral symmetry breaking is encoded in the
light-quark mass matrix M, and an argument due to
Manohar and Georgi [15] shows that it is consistent to
treat M as an auxiliary field and build the most general
possible chiral-invariant Lagrangian accordingly, although
it will always take on a constant value at evaluation.

If we are to apply yEFT to nuclear problems, baryonic
fields must be introduced into the formalism. It is not
necessary, for low-energy applications, for these baryons
to be full-fledged dynamical fields, as processes in which
baryons are created and destroyed are already beyond the
range of validity of yEFT due to the heavy masses of
baryons. Practically, this implies that our baryon realiza-
tions of the chiral symmetry need not be matrix valued;
instead they can be isospin multiplet states N that trans-
form under SU(N), as N — VN. While previously we
could only evaluate pion diagrams between QCD vacuum
initial and final states, now these states can be (tensor
products of) N states, providing a language for n-nucleon
interactions.

Again, invariance under chiral symmetry specifies the
most general set of interactions possible between baryons
N and pion exponentials U. In nuclear applications, it is
highly beneficial to take a “static approximation” in which
the nucleon mass is thought of as very large and in which
Dirac algebra reduces to Pauli algebra. Within the regime of
our results, we implicitly take to be equivalent such
formalisms as the heavy-baryon chiral perturbation theory
of [16] or the simple neglect of a mass term for nucleons
employed by [17,18].

Altogether, we have leading-order chiral Lagrangian

F? F2B
L, — —OTr(D,, UD"U"') +-L °Tr(M Ut + UM*)

4
+]V<iy”(aﬂ+l"ﬂ)—m+g—Ay”y5uﬂ)N, (2.1)

2

where B, is an independent low-energy constant not
determined by chiral symmetry, and where I', and u,
are particular vector combinations of the pion fields and
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their derivatives, to be defined as needed. F; may be related
to the expectation value for the decay of a pion to the
vacuum via an axial current [13],

(01A%(0)|p()(p)) = ip"Fodap (2.2)

and is thus known as the “pion decay constant.”
Normalization varies by factors of v/2 depending on the
choice of pion field normalization, but we follow [8,13] and
the bulk of recent literature in taking the relation above to
define F. Corrections from £, and beyond distinguish
between F, for pions and Fg for kaons, and the exper-
imental value F, =92.1(8) MeV [19] includes these
corrections. Therefore, in the following, we will follow
[8] in writing F, with an awareness that its value includes
higher-order chiral corrections even though the rest of our
calculation does not.

Since even the /=2 Lagrangian contains infinitely
many interaction terms, it is necessary to be able to truncate
this series such that any resultant approximation error is
bounded. This is the ethos of power counting: to estimate
the magnitudes of interaction vertices, and therefore the
magnitudes of the diagrams they compose, before needing
to evaluate the high-dimensional integrals that those dia-
grams encode. Of course, these integrals must eventually be
evaluated and divergences cured through appropriate regu-
larization and the introduction of counterterms, but power
counting allows for the choice of truncation to be made
without the evaluation of any unnecessary integrals.

The more exact aspect of power counting is the book-
keeping of both dimensionless and dimensionful constants
that arise at interaction vertices. In yEFT, this is quite
straightforward. All terms in the U-field Lagrangian come

with fixed constants, e.g., F% for all terms of L,, in
combination with B, for the scalar/pseudoscalar sym-
metry-breaking terms; external fields, of course, may come
with their own dimensionless factors that are defined
during matching, but are fixed for every appearance of
the field. Where unknown, is it standard to take such
dimensionless constants to be of order O(1) or vary them
over ~2 orders of magnitude around 1. In the exponential
realization of the spontaneously broken axial symmetry,
each pion field ¢ also comes with a factor of Fi”

The less exact aspect of power counting is the choice of
representative values for the spatial momenta and energies
that emerge from derivatives of field operators. Physically,
one can imagine that these virtual quanta have some
characteristic scale for all processes within the range of
validity of yEFT. Of course, no choice can be truly
universal, and indeed we encounter in Ovf3f a process that
in part astounds expectations of a nice hierarchy of scales
for nuclear processes. For now, we will proceed by letting
the characteristic four-momentum scale of pions be Q ~ m,,,
which is considered in ratio to the chiral symmetry-breaking

scale A, ; this is plausible since r ~ mi is the typical distance

between nucleons. Any interaction vertex may then be

assigned a label k denoting approximate magnitude (AQ)" .
4

Since our interactions will permit only low-energy pions
and nucleons, we can write Q ~m, <A, ~My [20]
such that the ratio Q/A, ~ % is an appropriate small
parameter [15].

We will revisit the chiral power counting in Sec. IV D,
when we define the specific rules necessary for estimating
the magnitudes of our NNz contributions.

B. The problematic NN sector

Studies of two-nucleon (NN) interactions and bound-
systems in yEFT, as distinct from the very broad literature
on high-energy nucleon scattering, e.g., in colliders, have
been motivated by the desire to perform further analysis of
many-nucleon systems. The first steps in this direction were
phenomenological treatments of two-nucleon potentials,
which were derived as fits to measured scattering data
and bound-state (deuteron) characteristics [21,22] and
dominated the discipline until recently. The reasons are
twofold for the broad acceptance [23] of effective chiral
potentials over these phenomenological ones: they come
with quantitative error bars owing to the truncation of the
chiral ordering and are therefore systematically improvable;
and they are explainable in terms of the broken chiral
symmetry of QCD.

The key distinction between the NN sector of yEFT and
the 7z and 7N sectors is that NN interactions are known to be
strong at low energies, and perturbation theory breaks down.
While interactions involving pions, as Goldstone bosons,
are “protected” by chiral symmetry, those between nucleons
are not. Pion-range interactions such as one-pion exchange
may obey the chiral power counting, but by the same logic,
shorter-range nucleon interactions should also—this para-
doxically leads to a description of nuclear physics where the
interactions are not strong, where nuclear bound states are
not captured, and indeed where nuclei do not appear at all
[24]. More concretely, we will consider the effective NN
Lagrangian of [18]

V2 1
Lyy = NTio N — NT N —=Cy(NTN)?
NN 10; My 2 s( )
1
—5 Cr(NTGN).... (2.3)

which includes all interactions invariant under chiral sym-
metry and defines two undetermined four-nucleon low-
energy constants (LECs), Cg and Cy.

Evaluating all leading-order (LO) diagrams between
incoming and outgoing NN states |p) and |p’) gives the
NN potential first elucidated by Weinberg [20],
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FIG. 1. The box diagram for two-pion exchange, shown in the
text to be of similar order to the diagram for one-pion exchange.

- - 9a
"Ny =C—1 17,24
(P'|Van|P) 7172 2F2

(2.4)

where C = Cy—3Cy for a 'S, — 'S, transition. The
derivation of the pion-exchange term is unimportant here,
but will prove key to our argument in Sec. IV. From the
chiral power counting and now manifestly from the
evaluation between states, both terms of the LO potential
are of order O(Q"). Consider then the two-pion-exchange
“box diagram” of Fig. 1. While the heavy-baryon NN
propagator contributes Q~!, the nonrelativistic loop inte-
gration contributes Q°, and we find that the diagram is
suppressed by Q? compared to one-pion exchange; the
same result would hold with any or all of the pion
exchanges replaced by NN contact interactions.

This power counting does not survive integration using
the static nucleon propagator # which diverges uncon-

trollably for the reason that the static baryon approximation
cannot consistently hold while p, — 0. To see this, it is
enough to observe that there is no such thing as a soft
nucleon in our chiral limit; all components of the on-shell
nucleon four-momentum p cannot at once be 0.

NN pairs of kinetic energy E experience a pairwise
Green’s function

- - i
(PIGo(E)|p) = =
E P

(2.5)

My

. M
whose enhancement can be estimated to be S over the

naive estimate by letting |p| ~m,. The chiral power
counting would have us take My to be of order 00, as
My~ chiral symmetry-breaking scale A,, whereby the
suppression of the doubly iterated NN interaction drops to
Q!, still allowing perturbative expansion. Weinberg argues
[20] that large nuclear scattering lengths observed at low
energies justify the treatment of My as a “free parameter,”
in the sense that its value is determined more directly by the
number of colors in QCD than by the chiral flavor
symmetry. Then taking My ~ Q~!, while not quite numeri-
cally satisfying [24], is a compact way to bring the iterated
NN interaction down to O(QY). In summary, the enhance-
ment of pure nucleon intermediate states by both the pinch

singularity and the separation of scales My > m, implies
that it is equally probable, roughly speaking, for a pair of
low-energy nucleons to propagate freely or to interact via
the contact/pion-range interactions of Lyy.

The resultant procedure for generating nuclear forces
from yEFT has become ubiquitous in the literature. First,
one produces an effective n-nucleon potential by evaluating
only those interaction diagrams which do not include
n-nucleon intermediate states, corresponding to joint
Green’s functions like Go(E). Then, one iterates this
potential, for example, by numerically solving a complete
Schrodinger equation with the potential as input [17]. This
iteration may in some cases be treated as a formal geo-
metric series, and indeed this is the approach that will prove
efficient for the study of Oyfp decay. The great success of
Weinberg’s scheme is that it allows for the nonperturbative
computation of n-nucleon forces within yEFT; the great
drawbacks are that the power counting is not wholly
consistent with the single-nucleon sector and that the
extension to higher-order contact terms (with spacetime
derivatives) is undefined [24].

Perhaps inadvertently, a toy model Weinberg used to
demonstrate the above procedure in [20] emerged as a
significant tool for modern nuclear theory. This is the
pionless EFT (#EFT), which contains only the interactions
of Eq. (2.3) at LO and supports only nucleonic degrees of
freedom. As such, it is the simplest nuclear EFT valid at
short-distance scales [24], and yet it is robust enough to
indicate the renormalization procedure for diagrams con-
taining two (or more) nucleons. We note that, because the
m, — 0 limit is no longer meaningful, this theory cannot be
said to obey even a broken chiral symmetry.

First we recall the demonstration by [20] of the one-loop
renormalization of four-nucleon contact strength C, shown
diagrammatically in Fig. 2. The integral to be evaluated is

) = [ a6 e

—Cz/ d*q 1
(2”)3E—A'fl—i/+i€’

which in dimensional regularization with D =3 —¢
gives [18]

(2.6)

2
(2.7)

e —e -1
TZD=3—£(E) = —C2(47[)_ST/,{€MN(—MNE - ie)lTF <£ )

Letting € — 0 gives a finite regularized result, with £ = pﬁz
for the reduced-mass NN system,

_ .C2M -
T5(E) = imTP=-(g) = —-C-MnlP|

2.8
e—0 47[ ( )
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FIG. 2. The one-loop renormalization diagram of four-nucleon
contact interaction C in pionless EFT (#EFT), as encoded in
integral T, (E).

However, Weinberg does not perform the renormalization
of C order by order in [20], nor even attempt it. Realizing
that a chain of k contact loops is, in fact, separable into

k + 1 interaction vertices C and k bubbles T’C(ZE ),

applying the infinite geometric series property Y 2, ark =
a(1 —r)~! with radius of convergence |r| < 1, he writes

1 d* 1 -
ra®) = g [ G| @9
C J@QE-{-+ie
which may be encoded diagrammatically, following [18], as

Too(E) = >-< +>-©-< +>-©o©-< + -
— o (1- e,

and

(2.10)

Then absorbing any infrared divergences in T (E) by
defining Cr = T, (0), the geometric series simplifies to

T (E) = [1 +iMN|’3q_1. (2.11)

FR 47

This result already contains all the key physics of
NN scattering in #EFT, even if some loose ends need
tying up. It can be matched directly to the so-called
effective-range expansion, an experimentally determined
[25] fit to NN-scattering phase-shift data,

4z 1 1
(1B - =y O(p*),
i|p| M T(E)  at2iP (r*)

(2.12)
where a is known as the scattering length, and r, is the
effective range. Reference [18] quotes 'S, np scattering
values a = —-23.714+0.013 and rq=2.73 £0.03 fm
from [26] as a point of reference. Evaluating with 7 (E)
gives

(2.13)

Two important conclusions must be drawn. The first is that
large scattering lengths, as are observed for shallow NN
bound states (those near the unitarity limit), necessitate large
contact couplings Cr in Weinberg’s approach. The second is
that the “natural” proportionality C ~ Mi,lfn,, [24] implies
a~1/m, ~ 1.5 fm; by defying this expectation, the exper-
imental scattering length suggests that this effective theory
formalism is not, in fact, consistent up to the m, scale.
Reference [18] cleanly shows the converse by working out
T(E) to next-to-leading order (NLO) in #EFT and observes
a breakdown of the chiral expansion around A ~ 35 MeV, a
factor of 5 below m,,.

In landmark work, Kaplan et al. [18] showed that both of
these limitations can be overcome by an alternative regu-
larization scheme, referred to as power-divergence subtrac-
tion (PDS) or alternatively as the Kaplan-Savage-Wise
(KSW) scheme. First, one notes that the dimensionally
regularized expression of Eq. (2.7), while finite at ¢ = 0 and
therefore requiring no counterterm in the minimal subtrac-
tion MS scheme, does diverge linearly at ¢ = —1. The idea
of PDS is to subtract this divergence with an additional
counterterm, dependent on a regularization scale u [27].
Then,

1 My +ip)]-!
TPDS(E) = + v +ilp|) ’
C(p*.p) 4r

(2.14)

which clearly matches the MS result if y = 0.

The above approach may seem arbitrary, and indeed
surprising, given the familiar result that physical results
obtained from different perturbative renormalization
schemes are identical; only the sum of divergence and
counterterm is observable. As a toy model, Ref. [28] instead
argues that for 6 potentials the physical amplitude can be
dependent on the nonperturbative renormalization scheme,
in particular, with different results for MS-dimensional
regularization compared with cutoff regularization. Since
the MS removal of divergences is a choice of renormaliza-
tion scheme beyond the regularization of a loop integral,
PDS achieves success by making an alternative choice more
compatible with cutoff renormalization.

More precisely, bound states with large scattering
lengths, also known as shallow bound states, are those
where the kinetic and potential energies of the state nearly
cancel [27]. However, neither the kinetic nor the potential
energy is an independent observable, and so this cancella-
tion is an unfortunate side effect of MS renormalization. The
additional scale u provides a sliding cutoff that separates the
kinetic and potential terms and can be chosen at a value that
provides a consistent power counting. Specifically, match-
ing to the effective-range expansion now gives

4z (1 -1
Crp=—|—— , 2.15
= (54 2.15)
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so even for large scattering length «, the natural choice y ~
m,, facilitates C ~ O(Q~") as initially claimed, while u = 0
again reproduces the MS result. With renormalization
complete, the power counting of all diagrams in the theory
is well defined: the iteration of the lowest-order contact term
C has been justified, while all higher-order vertices are
counted perturbatively [27].

#EFT has proven useful to the nuclear community
because large scattering lengths manifest in many physical
systems beyond NN. For example, it has been applied to
so-called halo nuclei whose valence nucleons largely have
density outside the classical interaction radius [29]. Since a
large scattering length in comparison to the interaction
radius implies that the bound-state properties are driven by
tunneling, an EFT approach need not probe many details of
the internucleon potential to be descriptive of such systems
[24]. #EFT has also successfully been applied to the
Efimov effect [30], the observation that three particles
with short-range attractions near threshold can induce long-
range, specifically three-body interactions [31]. A review of
practical applications of the pionless framework to few-
nucleon systems may be found in [32]; these include
electromagnetic form factors for the deuteron, deuteron
formation in the context of big bang nucleosynthesis, and
weak-deuteron interactions. While our focus is on the NN
system as relevant to Ovpp decay, many of our yEFT
conclusions will first be motivated within #EFT.

The value of including explicit pion fields and interactions
in our model as opposed to the #EFT approach (beyond the
realization of chiral symmetry) is that the EFT should be
valid to higher energies—naively, up to the mass scale of the
next “integrated-out” degree of freedom, the p meson.

Weinberg’s power counting implied that a one-
pion-exchange potential should be iterated to all orders,
just as the four-nucleon contact potential was. The joint
iteration of two potentials requires some careful algebra,
detailed in [18]. Let us define the free, retarded two-

nucleon Green’s function as G% = [E — H® + ie]_1 and the
two-nucleon potential as V, both of which will have simple
actions on the space of momentum eigenstates |p). Writing
the geometric series

VA VGV + V(GRV)2 4 =) VGV
(2.16)

allows us to define an interacting Green’s function G.
Reducing the geometric series gives the simple relations

TXEFT(E) _

[e.9]

B R |
T

@
E="T"—%20~-
1-G%V
Gi' = (G -V =[E-B -V +ie] . (217)

which relate the “dressed” and “undressed” Green’s func-
tions. It is then straightforward to uniquely define the
scattering state |y ) as the eigenvector of H with eigenvalue

E = A’;—; or, equivalently, such that

Gi'ltp) =0, lp) =(1+GeV)[B),  (2.18)

where the latter relation is consistent with factorizing the
iterated potential amplitude as

<ﬂ0+m%mﬁw4mwm»=/ﬁ%fﬁW0nﬂa.

(2.19)

With these definitions in place, the strategy of [18] is to
absorb the four-nucleon contact interaction C into H, in the
sense of #EFT, making use of the same explicit power series
solution. V then consists only of the one-pion-exchange
potential, and it is with (iterated) pion exchange that the
scattering state |yj) and two-nucleon propagator G are
therefore dressed. In #EFT, |y ;) reduces to the plane-wave
state |p), G reduces to the free two-nucleon propagator
G%, and the NN-scattering amplitude corresponds to
Eq. (2.11) or Eq. (2.14) depending on subtraction scheme.

We can now precisely state how this framework changes
when pions are included. First, the pion-exchange potential
induces a correction in the NN contact coupling,

C—C=C+ > fz Iterating as before, the T matrix is [18]

PEE) = Ta(B) + GO [+ G| 1 (220)

so long as one can evaluate scattering state |y;) at 7 = 0
ff dgq dw (§'|GE|g), the dressed
two-nucleon propagator from F=0to 7 =0. T%(E) is
the iterated one-pion-exchange contribution, i.e., the col-
lection of terms containing no contact interactions. This
series can be represented diagrammatically as follows,
adapted from [18]:

+]><D<[+
D)

and compute Gj =

(2.21)

055033-7



GRAHAM VAN GOFFRIER

PHYS. REV. D 111, 055033 (2025)

N N

FIG. 3.

where

N N

Leading perturbative diagrams of chiral two-nucleon bubble G(E) both of which contain regularizable divergences.

Green’s function Gy contains divergences from the first
two diagrams in its perturbative series, shown in Fig. 3.
These divergences must be regularized and absorbed into
the renormalized interaction strength C(u). It will be
instructive to review the MS regularization of these dia-
grams by [18], as an analogous computation for divergent
diagrams containing a neutrino-exchange operator will later
prove relevant to Ouvff decay. The goal is to examine the
divergent parts of these diagrams only; the finite parts,

dq dq/'%

(2.22)

while calculable through numerical solution of the relevant
Schrodinger equation, will not be directly relevant to us.
Because the S-wave solutions to this Schrodinger equation
are independent of £ as r — 0, [18] sets E =0 for
convenience in these calculations.

As an example, we can explicitly evaluate the integral
corresponding to the left of Fig. 3, the amplitude with no
pion exchange,

(71Gol7 = 0)

///dr

[¢3) Y .
= 27:/ qqu/ dl cos 96_"1”0592—
0 0 q

<—’/|—'r> (2”)36( )(Zjl - Ei)
? (2x) - = —+ie
MN

—ie

— 2aMy / " dg / " 46 cos Ge=areoso
0 0

:2”MN/ a6 |- 1 —qrcost‘) =0
(2r)3 r —oo

My
4rv’”’

where in the third line, we take g > —ig by the Cauchy
theorem in the absence of any poles off the imaginary ¢>
axis. The limit # — 0 is then singular. Reference [18]
shows that the irregular s-wave solution takes the following
asymptotic form at small distances:

M M3
4rr’ 4z

,ljinéK}E(r’) - In(Ar) + O(rinr), (2.24)

(2.23)

|
where 1 is a choice of separation scale between the regular
and irregular Schrodinger solutions. Crucially, the 1/7
divergence here exactly cancels that from our first diver-
gence perturbative diagram. Since MS dimensional regu-
larization reduces this diagram to 0 [18], the conclusion is
that this asymptotic Schrodinger regularization agrees with
dimensional regularization to 1/7" order.

What of the In7’ divergence? Ignoring finite contribu-

tions, direct integration of the amplitude (¥'|GV,Go|7 = 0)
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. . . . a; M ’
shown on the right of Fig. 3 gives a divergent term —;_*In r’,

which again precisely cancels the divergence of K% (7). MS

dimensional regularization at scale p gives the divergent

2
a”f:N In(®2) identical to the Schrodinger diver-
"

gence with A+ u [18], albeit with a distinct finite part.
Therefore, we learn two things: the renormalization of C is
scheme independent, and the kinematic point u ~ m,
provides the most precise perturbative series, as expected
from dimensional analysis.

Reference [18] promotes the numerical Schrodinger
procedure for practical calculations in part because it is
easily extended to higher-order chiral potentials. Indeed,
this approach will also extend to the inclusion of neutrino
potentials, but backed up with rigorous agreement to
dimensional regularization. A clever way to see the manifest
symmetry preservation of dimensional regularization is to
observe [33] that the DxDNDN' path-integral measure
transforms nontrivially under chiral symmetry, requiring the
introduction of a counterterm; this counterterm vanishes
with dimensional regularization. Therefore, momentum
cutoffs must be used with some caution, either by checking
for symmetry violations postcalculation [34] or by including
counterterms in the Lagrangian that cancel the effects of
cutoff regularization at each chiral order [33].

In effect, the choice of PDS subtraction during regulari-
zation of the leading divergences has implied a new power
counting for NN interactions in yEFT, in which pion
exchanges are treated perturbatively with convergence
guaranteed for momentum scales less than Ayy
300 MeV [27]—the Kaplan-Savage-Wise power counting,
in contrast to the Weinberg power counting. This approach
has not been without controversy, shown in [35] to not
converge for spin-triplet channels such as S, where two-
pion-exchange contributions are large. One resolution to
this quandary has been to apply KSW counting only in the
IS, partial wave, where the distinctive hard-core interaction
between nucleons facilitates a perturbative treatment of pion
exchanges [36]. Because the singular tensor component of
the pion potential in higher partial waves seeded the failure
of the KSW counting in these cases, a direct regularization
of the pion propagator [37] is another route to perturbative
pion physics beyond 'S;. A more modern approach that has
been shown to be scalable through N*LO in the chiral
expansion is a for-purpose regularization of contact inter-
actions by nonlocal Gaussian cutoffs, while pion-range
interactions are regularized at the level of the propagator—
thus, semilocal momentum-space regularization [38].
Although the renormalization of pionic NN forces has been
thoroughly computed in higher partial waves [39,40], this
will play only a small role in our analysis—the enhanced
contact term for Ovf3f to be discussed will only appear in the
1S, partial wave.

We have now introduced all the primary tools
and methodologies that facilitate [5] in treating the

contribution

leading-order divergent diagrams of Ovff in yEFT—these
will prove essential to our refined estimate of the contact
term. The unifying feature that binds all these EFT-driven
nuclear computations together, whether in the symmetry-
constrained framework of yEFT or the satisfying simplic-
ity of #EFT, is that each and every observable quantity
comes with a quantitative estimate of error. As in any EFT
with a consistent power counting, this bound emerges from
the truncation in the chiral expansion, which can be either
treated somewhat approximately [41] or formalized as a
Bayesian inference procedure [42—44] such that any prior-
assumption dependence, regarding the coefficients of the
chiral expansion of the observable, is controlled. Without
such tools, nuclear theorists have historically had to rely
upon variations of cutoffs and fit parameters to indirectly
estimate the theoretical uncertainty of a computation.
Although informative, such estimates are not statistically
rigorous and, unlike an EFT power counting, do not allow
the practitioner to anticipate at what scale higher-order
mechanisms may become relevant to a process.

III. RENORMALIZATION ENHANCEMENT
AND THE 0v48 CONTACT TERM

We have now overviewed the development of yEFT-
derived nuclear potentials and, in particular, their applica-
tion to shallow two-nucleon bound states. Now we will
present the state of the field in applying this ab initio
technology to the Ovff transition in the two-nucleon
system, following the seminal works by Cirigliano et al.
[5-8]. To our knowledge, this is the first thorough review of
the Cirigliano group’s approach in print outside of their own
publications, and as such we will aim to present the core
results simply, but with an emphasis on how they represent a
general viewpoint toward calculations of nuclear amplitudes
[both Standard Model (SM) and beyond SM (BSM)], which
is very much in the spirit of systematically improvable
effective theories. We will also highlight the explicit and
implicit assumptions that are manifest in this approach, the
most numerically significant of which we will attempt to
expand upon in Sec. IV.

The procedure for realizing the two-nucleon contribution
to Ovpp decay at LO in the yEFT expansion has three stages.
First, a “neutrino potential” corresponding to the AL =2
NN — NN operator of choice must be defined between any
relevant NN partial waves, as first performed in [5]. Second,
in the style of the NN scattering computations presented in
Sec. 2.2 [18], this potential must be dressed with resummed
contact and pion-exchange potential operators and renor-
malized where divergences appear to produce a consistent
nonperturbative amplitude. The key result of [6] is that this
renormalization enhances a doubly LNV dimension-nine
contact counterterm to LO in the chiral power counting,
which is not accounted for in standard phenomenological
nuclear calculations of the decay. Third and finally, although
the contact term contribution to the full two-nucleon
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amplitude depends on an unknown LEC that will ultimately
require input from lattice QCD (LQCD), its size may be
estimated by a matching analysis as illustrated in [8].

A. Neutrino potential in yEFT

In order to evaluate the T matrix for an NN neutrino
exchange, the neutrino-lepton vertex on a single nucleon
must first be specified. Given that Lorentz invariance
severely constrains the form of this vertex, an efficient
approach is to first decompose the vertex into all permitted
Lorentz structures, whose unknown kinematic dependence
is encoded in form factors. In purely phenomenological
approaches to nuclear theory, these form factors are derived
from experiment using simple parametrizations such as
|

dipoles; in an ab initio approach, each form factor is
computable from yEFT.
Following [45], the effective single-f-decay Hamiltonian
is
Grp ut
Hy = —=[ey,(1 =ys)v..]J; +H.ec.,

V2

where the expression in square brackets is the usual
leptonic weak current, which is left handed (V — A)—note
that full details of neutrino potentials for “leptonic” BSM
operators of all Lorentz structures may be found in [46].
Taking the impulse approximation for nucleon-level cal-
culations, the hadronic current consists of six independent
Lorentz structures [47],

(3.1)

o'

Jp =Ty =T = No" | gv(@)7* + 9u(@®) 5——a, + igs(4*)q"

—9a(@*)7"rs — 97(@%) 55— qurs — gp(tf)q"ys} N,

2M y
ot

S (3.2)

where 6# = i [y#, y*]. Imposing hermiticity and time-reversal invariance, scalar and tensor terms gs(¢*) = gr(¢*) = 0, and
the other form factors are guaranteed to be real [47]. It is convenient to write this current in the nonrelativistic limit [45]

JINR = Nzt [9”’09v<‘]2) + g <i9M(¢12)

While the above separation is guided by phenomenological
simplicity, symmetry properties also support the conserved
vector-current (CVC) hypothesis and partially conserved
axial-current (PCAC) hypothesis. CVC allows one to set
gv(0) = 1 regardless of host isotope and to assign dipole
approximations to both gy, and gy, [45],
my

—_—, 3.4
q2+mv ( )

= 9V<0)

gn(q*) = (1 +K1)gv(q?). (3.5)
PCAC connects the divergence of the axial current to
measurable pion decay, allowing both gp and g4 to be
expressed in terms of the same phenomenological vertex
form factor Fyy(g?) accurate up to ¢g*> ~ 1 GeV,

2
my

2Y = g4 (0)F H_——4 3.6
9a(q°) = ga( ) ann (g )qz /2‘ ( )
2M yga(q?) m?
2 N9ga\q T
=——1-—], 3.7
gP(q ) 6]2 ]2[ ( z‘> ( )

which take the functional form of a dipole because they
emerge from a single graph mediated by an axial meson.

€ijk0jqk
2M y,

F e = ar(a) D2 ) |

i (3.3)

I

Sample values for the constants in this model are [45]
gy=1, gs=127, k =37, my=0.84 GeV, and
my = 1.09 GeV. Although the CVC/PCAC hypotheses
predate the modern EFT approach and indeed QCD itself,
their predictions generically hold at the first nontrivial
leading orders of yEFT [13] with small corrections at
higher chiral orders.

Separate from the determination of form factors, we can
construct the neutrino potential by taking a product of two
copies of the nonrelativistic one-body current J yg.
contracted over the index of exchange momentum gq.
Those product terms that do not evaluate to zero are
collected in Table I, where notably the vector term
decouples in the nonrelativistic limit, and hy4) =
h.py = 0 by symmetrization. Of these, only Ay y) is a
Fermi contribution and is purely so; Ky 4) is purely
Gamow-Teller, and all other terms include both Gamow-
Teller and tensor contributions. We define the Gamow-
Teller and tensor contributions as the respective coefficients
of Pauli inner product ¢;, = 5, - 6, and Pauli quadrupole
moment S12 = 3(31 . 6]32 . @) —01).

Finally, to make contact with yEFT predictions for the
couplings of nucleons to external currents, [46] computes
the single-nucleon form factors at LO in the chiral
expansion, obtaining
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TABLE 1. Allowed pairs of Lorentz structures, their contributions to the NN neutrino potential, and LO yEFT
evaluation.
h(’) N1N271+T2+(...)N2N1 LO /}’EFT
V. V) gv(q®) 1
(A, A) 94(4°)3 - 6, T
1 13 oo o > ,
(P, P) 9(@) pz 61 G52 4147 L[S+ 01) (rLonr
(M’ M) gM(qz)l;l_/%v[El '52q2 _31 65261 %[512 —2612]1&—;
(A, P) 90 ()9p(@) 55751+ G52 G L1512 + o) s
av(q?) =1, au(@?) =1+K =47, B. Resummation, the leading divergence,
M and its counterterm
(4?) = g4 = 1.27 (¢?) = - _STN (3.8) . . .
9a\4q ga = L2/, grlq 9a 2 +m’ : With the NN potential corresponding to doubly LNV
3

where k| encodes the difference between the proton and
neutron magnetic moments [47]. Form factors have also
been derived at higher order in yEFT, for example, to
next-to-next-to-leading order (NNLO) in [48], but these
will be beyond the requirements of our precision. It is
noteworthy that LO yEFT reproduces the pseudoscalar
form factor “induced” by the axial coupling in PCAC.
Then the resultant expression for each Lorentz product
is given in the right-hand column of Table I. Factoring
out global constants and the lepton bilinear as V, =
(4G2V2 )i(ky ) PrCi” (ky)V,, we can now write the neu-
trino potential induced by light Majorana-neutrino
exchange [45,46],

. (D+7(2)+ 5 5 5
Vu(CI) = T [hF(CI ) - UlthT(q ) - SthT(q )]
(D)+,-2)+ 22 4
¢ v l_ﬂglz 1+—2m” 2
3 2(q* + mz)

4
gA mzr

—ASH(1-—T55 |
3 ( <q2+m%>2)]

Coordinate-space realizations of the above are presented
in [6]. Our primary interest will be the insertion of the
neutrino potential between 'S, NN states, where S}, = 0

(3.9)

and o, = —3, the above expression simplifying to
(D)+(2)+ 4 4
(> ]SO( o T T 2 gA 4
V(g) =———|1+20; + —"F=|- (3.10)
7’ g my)

When ¢ > m,, the quantity in brackets has a limiting
behavior of 1+ 2¢3, while it is enhanced to 1 + 3¢5 if
m, — oo as in #EFT.

light neutrino exchange in hand, the naive expectation
might be that the amplitude between well-defined NN
states should be directly calculable. More precisely, if we
write [6]

AJEE) == (%, (ENV.* (@) (E))s,  (3.11)

for center-of-mass energies E = p*>/m, and E' = p"*/m,,,
with momentum transfer ¢ = p — p’, the naive expectation
is that .4, should be finite for all physical kinematics and
represent the LO perturbation theory of this weak operator,
naturally regularized by the leading g~2 dependence of the
neutrino potential. This expectation fails as a consequence
of the enhanced contact counterterms required to renorm-
alize A, after the strong interactions intrinsic to Wy, are
accounted for.

In agreement with the analysis of shallow bound-state
NN scattering reviewed in Sec. 1IB, the yEFT |Wyy)
differs from a free nucleon pair state | p) by the iteration to
all orders of both contact and pion-exchange terms in V y.
In the 'S, channel, we therefore have three potentials to be
combined,

= - ]
pp.'Sy <p,| Vu|p>nn,‘S0 = W

gamy
(P-P)+m3)?]

x |14 245 +

5, (FIVelB)s, = C.

9 my

AFZ(p—p')* +m;

1S0<1_5,|V7z|5>'50 =

Although they appear two orders suppressed in the
chiral expansion, we should have in mind the leading local
AL = 2 structures in the yEFT Lagrangian [49],
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2G2V2 mg, 5
)  _AYFYuadpp T
Lil s 7—(475F B EF,ngl’f o 'rn

+ V2guF gV pS,nda= + giN pnpn e, Cel,
(3.13)

where g7, gV, and gV are O(1) LECs corresponding to
respective tree-level amplitudes 77z~ — e"e™, nzx~ —
pte e, and nn — ptpTe~e”. Because the latter is the
trivial counterterm topology for our neutrino potential
amplitude, we can make the ansatz

pp,1S0<ﬁ/|VV|I_5>””*]SU = pp,]SO<ﬁ/|VV - 2gl]/VN(/’lS)|ﬁ>nn.'So
(3.14)

to adjust for any regulator dependence of A,, where ug is
the regulator scale that separates any short-range AL = 2
physics.

The earliest evidence that the size of this counterterm is
larger than anticipated by the chiral power counting comes
from a #EFT analysis in [49]. The argument ultimately
parallels that of [18] in the pure NN-scattering case; the
large scattering length requires that any contact NN
interaction be enhanced if the iteration of the interaction
is to reflect nonperturbative nuclear physics. The ¢V
interaction itself cannot be iterated because it includes
leptonic final states, but intuitively it can induce the iteration
of both incoming and outgoing C interactions, resulting in
two orders of enhancement. To see this explicitly, [49]
employs dimensional regularization with the PDS scheme,
with the result

) = (anr e P g s

where gV (ug) is O(1) and the quantity in square

brackets is the inverse scattering length a~'. Thus,

gV ~ A2a* ~ (£)72. This amplitude and its counterterm
X

e

diagram are shown in Fig. 4. To see how this back-of-the-
envelope calculation generalizes to yEFT, [5,6] construct a
geometric series in the style of [18]. Recall that, in the pure
strong-interaction case, it was possible to decompose the
T matrix as T4 " (E) = T% (E) + x5(0)Kgx5(0), where
Kp=[5+Gg™" is the iteration of the NN contact
interaction to all orders, with each 7 = 0 to ¥ = 0 bubble
dressed by iterated one-pion exchange. Analogously, an
insertion of the LO V, can be dressed by contact strong
interactions on either or both side, which are then summed
coherently,

A, = Ay + x5 (0)Kp A + ApK px5(0)
NN

2 v

where all A implicitly have incoming E and outgoing FE’
two-nucleon kinematics, and the constant factors on gV
account for the two C interactions that are absorbed
compared to the bubble diagram, as well as the symmetry
of the counterterm. Because both the scattering states
x5(0) and K can be regularized in a scheme-independent
manner [18], it is sufficient to separately evaluate and
regulate A, p ¢ to obtain A,. As it happens, A4 and Ay are
UV finite and so do not require regularization. This can be
seen exactly in #EFT [6],

14342 —2pp’
Ay = + ‘({Atanh”( 5 ppa)’
2pp p-+p

- iMy1+3g3
AB:AB: 4”N ZP,AIO

p+p
p—p +im,

+O(m,). (3.17)

where dimensional regularization and the Feynman integral
trick have been applied, analogous to Coulomb corrections
to nucleon scattering in [50]. The apparent IR divergence in
both cases is controlled by including some small neutrino
mass m, ~ 07 in the propagator. A, on the other hand,
exhibits a logarithmic divergence at d = 4, for example in
the MS regularization scheme [6,50],

n p
n e b
C C
g
n p

e

n e~ P

FIG. 4. Leading AL = 2 NN-scattering amplitude (left) and its counterterm diagram (right) in pionless EFT (#EFT).
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n p

Ag = v :

FIG. 5.

Decomposition of NN Ovff diagrammatic series in pionless EFT (#EFT), adapted from [6]. The leading (leftmost) .4, and

Ap ~ Ap diagrams are evaluated in the text and shown to be finite to all orders of contact iteration, while the leading diagram A is
divergent and requires regularization through contact AL = 2 diagram g)V.

-M%(1+3g3) (1
=2 —— log4 1
AC 5. (47[)2 e ve +logdr +

2
flog—H ), 318
g—(p+p’)2) (3.18)

where yr ~ 0.577 is the Euler-Mascheroni constant and p
is the chosen regularization scale. In alignment with the
PDS subtraction scheme proposed in [18] and defined in
Sec. II B, one can also observe that A is finite at d = 3,
and so should be consistent with cutoff regularization—in
other words, the calculation performed here should not fall
victim to the same energetic cancellations that plagued the
1Sy, NN-scattering state.

Recalling that the scale-dependent amplitude was

defined with normalization Aq(p) + %, the counter-

term has f function

=dg£VN71+3gi
“dlnp 2

B (3.19)

which can be satisfied, e.g., by coupling ¢V (u) =

2
=38 n(u/po) + g™ (o).

All of the above calculations have been performed in
#EFT, and the critical reader might reasonably expect that
proceeding to yEFT could substantively modify the struc-
ture of divergences. Diagrammatically, this corresponds to
inserting an iterated pion exchange of the form in Eq. (2.22)
into every two-nucleon reducible component of each dia-
gram in Fig. 5. However, the difference is minor, for the
convenient reason that each pion-exchange potential

inserted between the two nucleons contributes | &k 1

(27)% k*
[6] and therefore improves the convergence of a diagram
by one order. Therefore, only the leading diagram of type C
with no pion exchanges could require an enhanced counter-
term. Following [8], the divergent contribution is denoted
AZ"Y, while the convergent part of these diagrams and any
pion-iterated convergent diagrams are collected in 6.A.
Ascing itself is modified in passing from #EFT to yEFT in
two ways. First, as before, the pion-exchange potential
induces a correction in the NN contact coupling,
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Ci>C=C+2,
Second, the coefficient of the neutrino potential recovers
its induced pseudoscalar component: 1+ 3¢; —

2
5. For the same reason as the pion-exchange

wherever it appears in a diagram.

2
1+ 293‘ + ié_t:%
insertions above, this additional term can only improve the
convergence of diagrams, and its effects are absorbed into
SAc. AZ" is then recovered in yEFT by means of the
simple substitution 1 + 3gfx =1+ 2gi, and the f function
of g¥V is similarly adjusted.

Overall, we see that the leading-order yEFT renormal-
ization requirements on neutrino exchange in an NN
system can be extracted from a #EFT analysis. We could
interpret this to mean that the separation of nuclear forces
into short- and pion-range interactions remains appropriate
for a process such as Oypff decay—but that some short-
range physics specific to neutrino exchange is not captured
by the naive truncation of the short-range diagrams and so
must be encoded in ¢g)YV. Our more precise investigation of
the extent to which short- and pion-range physics can be
separated will play a central role in Sec. IV.

C. Quantitative estimates for the contact contribution

Having established that a sizable two-nucleon contact
term enters into the yEFT description of Oyff decay, it
remains to quantify its size. A preliminary attempt at this
estimation was made in [5], based on a comparison to the
I =2 charge-independence-breaking (CIB) NN process,
with a more thorough and systematically improvable
estimate made in [7,8], based on a generalization of the
Cottingham approach to electromagnetic hadron-mass
corrections [51]. In this section, we will summarize the
former approach and detail the latter, which we will then
expand upon in Sec. IV E.

N

1. Approximating gV from CIB scattering data

In the midterm, precise LQCD computations of NN
systems are expected to become possible to the effect that
quantities like ¢V may be extracted from a matching
between #EFT/yEFT and LQCD [52]. At present, a
substitute is to consider nuclear processes similar in top-
ology to Oyff decay for which experimental scattering data
are available. Reference [5] makes the first such comparison

e'e'T,,(q) = ine'e’ / d*xe' " (N|T{j,(%).j,(0)} + T{j,(%).j,(0)}|N).

with CIB, or isospin-breaking, NN scattering. Just as in the
AL = 2 case discussed above, the leading diagrams of this
process require renormalization by a contact counterterm.
Two such four-nucleon contact operators are available [5],
which correspond to the insertion of currents with handed-
ness LL/RR or LR, associated with respective LECs C; and
C,. In the electromagnetic case, the LH and RH currents are
identical and so the process can only probe the sum
C; + C,, which [5] reports to have regularization scale
dependence,

d(Cl + C2) > m2+ - m20

:1 T T
dlogpu + e’F2

(3.20)
Choosing u = m,, as the natural regularization scale within
yEFT, experimental scattering lengths imply the dimension-
less value C; + C, = (Cy + CZ)[M‘{;C]2 ~5.0. For Oupp
decay, however, the weak-current insertion can only occur
with LL handedness, and so ¢}V = C,. Thus, Ref. [5]
makes the assumption that C; = C, to arrive at estimate

gV = ©3% ~ 2.5, More conservatively assuming that |C, |
and |C,| differ at most by an order of magnitude, one can
conclude that —0.5 < V¥ < 5.5.

Once gV is determined, the magnitude of its contribution
to the amplitude can be assessed by comparing the divergent
amplitude A4, _,(u) and counterterm A§T_,(u), the sum
of which is seen to be scale invariant. Reference [5] finds
that Rer = AST_, (u)/ A%, —> (1) ~ 10% for u ~ 350 MeV,
increasing to Ry ~ 30% for u ~ 2 GeV, although beyond
the chiral symmetry-breaking scale A, one can expect these
results to come with significant uncertainties. Further
computational estimates on A = 6, 12 nuclei affirm this
substantial impact, with Rc7 ~ 25%—-60% depending on the
choice of CIB contact potential and the fit of C; + C,.

2. Aside: The neutron-proton mass difference
d la Cottingham

The second, more thorough estimate of the contact
contribution by [7,8] is conceptually based on a classic
dispersive calculation of the electromagnetic nucleon mass
correction [51], which we will now briefly review.

The forward Compton scattering amplitude for a virtual
photon with momentum ¢ and polarization £ may be
written

(3.21)

where 7 is the time-ordering operator and j, is the electromagnetic current. By inserting a complete set of intermediate
nuclear states and performing the Fourier integrals in the nucleon rest frame, one obtains

(2z)*

Bk -q)

3 (k+ q)

7@ = 2 SN0 (60N |

K

ko—qo—M—ie ky+qy—M —ie

+(u<v). (3.22)
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Dispersive analysis relies on the examination of analyticity
constraints when a real function f(g,) or f(g?) is continued
to complex-valued g, or ¢°. In general, two-point functions
in quantum field theories may be written in the Killén-
Lehmann spectral representation [53]

flg*) = Am ds— L0

—_—, 3.23
s—p?—i0* (323)

where the analogous representation for f(g,) may be
obtained by taking q> as a fixed parameter. Unitarity
requires that the spectral function p(s) is positive definite,
and it frequently may be decomposed as

p(s) = Z8(s —m?) + 0(s — s0)o(s), (3.24)
where the pole term (first) represents a one-particle state of
total energy m?, and the branch-cut term (second) repre-
sents a continuum of multiparticle states beginning at
threshold energy s,. For a single nucleon in yEFT, m? =
M3, and sy = (My + m,)? imply the following poles and
branch cuts in g, [51]:

Zl:qO:\/MZZV‘i‘qZ_MN—l.E,

quZ\/<MN+mﬂ)2+q2—MN—i€.

(3.25)

Cottingham’s essential observation is that the one-loop
electromagnetic correction to the nucleon mass is simply
the forward Compton scattering amplitude with the photon
line contracted. This is not immediately useful. However,
the absence of any poles or branch cuts from the ++
quadrant of the complex plane (including the new photon
pole +¢q, = q°> —ie) allows for a rotation to Euclidean
four-momentum, i.e.,

AM i/d“ " 1)
8’ qq"qﬂ—ie wd

1 ;71“/ )
- _@/d“qm%(l%,q)- (3.26)
0

A= (27)*W(p,, + po, + Py — pi)(AGEV2 ymggiiy (py)u§ (p2)) X A,

This result is very consequential, because the now-space-
like virtual “photons” of energy ig, are equivalent to those
that mediate measurable electron-nucleon scattering.
Reference [51] decomposes 7, (igy.q) into two indepen-
dent Lorentz structures ¢;, which can be further decom-
posed into elastic pole contributions f; and inelastic cut
contributions /; (which must be integrated along the cut).

In modern incarnations of the Cottingham approach,
elastic photon contributions are able to quantitatively
capture the final result for the electromagnetic nucleon
mass difference within 30% error [54,55]. Determinations
of the inelastic contribution between dispersive and lattice
methods disagree: in contrast to the elastic term m;‘_n =
0.72(2) MeV approaching percent-level precision [8,55],

the dispersive evaluation gives mi, = —0.17(16) MeV
[55], while the lattice gives mi™, = 0.28(11) MeV [8,56].

A resolution of this tension at some intermediate value
would thus only improve the 30% error of an elastic-only
calculation. It is noteworthy that calculations for electro-
magnetic meson-mass corrections do not show the same
elastic dominance, with the vector and axial-vector reso-
nances first applied by [57] delivering over 93% of the
experimental pion mass difference in a modern calculation
[58], while elastic diagrams give only 10%, the excess
being negated by other inelastic corrections.

3. Extracting contact contribution
Jrom matching procedure

On the above grounds, [7,8] argue that there is no
conceptual reason why a loop correction to a two-nucleon
system cannot be treated according to Cottingham’s
approach, and furthermore that the nominal error from only
including elastic contributions should be taken to be ~30%.
A more rigorous dispersive derivation would likely verify
and clarify this claim, but to date has not been attempted. In
the following, we will see how the Cottingham representa-
tion of the two-nucleon OyfpB-decay amplitude allows for a
controlled estimate of the impact of the contact counterterm.

The construction begins by defining the factorized
amplitude [Eq. (2.9) in [8]]

(3.27)

where the hadronic amplitude .4, encodes the nuclear evaluation that is our focus. The neutrino propagator becomes that of
amassless boson while mass effects are absorbed into . With the further assumption that the outgoing electron momenta
are sufficiently similar that their Dirac algebra may be approximated as y*y* — n**, A, is reduced to the form necessary for

the Cottingham approach,

d*k g v
Ay_z/ €T}(4U)(k7pi’pf)

r)*k* +i

4 "
-2/ %—kﬂ N )| [ e T /203 /D HNN )

(3.28)
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where T, is now a forward two-nucleon neutrino scattering amplitude. Just as for forward Compton scattering, one can
insert a complete set of intermediate nuclear states and perform not just the Fourier integrals, but the k, integral as well,

obtaining [Eq. (2.22) in [8] ]

T3 (k. pipr) = =

i
k|

INN;) and |[NN;) are scattering states, i.e., these two-
nucleon wave functions must take into account the strong
interactions, both short- and pion-range, which bind the
system together. They can be described by making contact
with the NN-scattering results discussed in [18,27]
reviewed in Sec. II B, which imply

INN:)(pi) = (1+G(E)V)|pi) = (1+ G (E)TO(E))|p7).
(3.30)

for plane-wave state |p;), where the scattering operator is
defined 79 (E) = V(I + G°(E)V)~" in the notation of [8].

(6 (k = q) + 6% (k + q)].

(NN (ps)15(0)[x(q)) {k(q) [T (0) NN, (pi))
- q+E(q) —5(p? + pp) —ie

(3.29)

While both representations are convenient in their separa-
tion of the free and interacting components, the latter is
perhaps more intuitive, because 75)(E) contains all iter-
ated strong interactions, while G°(E) simply encodes the
free two-nucleon propagator at energy E.

This transition to a Euclidean spatial-momentum picture,
and, in particular, the smoothness of the resultant single-
current amplitudes and energy denominators, is the prac-
tical benefit of having treated OvfBf decay through the
Cottingham lens. Again inserting complete sets of nuclear
states between all defined operators, [8] decomposes the
amplitude into four parts,

A= % (T Wp) + > oA @R N 1)

+ X (P TY Kk (G(E)) (kT (E) pi)

+ Z D Apr TOEN KNG (E)),o (K |T (k) 1) (GO (E) (k| T (E) i) |

where the Green’s function expectation is (G°(E)), =
#ﬂ This expression is directly useful, giving the full
two-nucleon Ovffp-decay amplitude so long as one can
calculate matrix elements of the strong T matrix and the
neutrino-exchange T matrix between relevant nuclear
states. However, obtaining even those single-operator
expectation values for a large selection of nuclear states
is highly nontrivial. One simplification arises from the
fortunate circumstance that only the neutrino-exchange
potential in the 'S, partial wave requires a contact counter-
term at LO in the chiral power counting [6], i.e., this entire
procedure need only be performed with |p; ;) in that partial
wave. However, this still leaves an unbounded nuclear state
space from which intermediate states x and «’ are to be
selected. For this reason, [7,8] restrict to elastic intermedi-
ate states, i.e., pure [NN) states. Conservation of angular

(3.31)

momentum then restricts both intermediate states purely to
the 'S, partial wave.
If we take the spatial momentum to have magnitude

|l;| < m, such that LO yEFT is certainly valid, then the
above construction is exactly equivalent to the result (3.16)
computed by [5,6]. Indeed, since AA,B.E,C were distin-
guished from one another by the absence or presence of
NN rescattering before and after the insertion of the
neutrino-exchange potential, the four terms in Eq. (3.16)
exactly correspond to the decomposition of Eq. (3.32). As a
consequence, the target of this matching-based analysis
need only be the divergent part of A- = ALY + 5A¢.

After much preamble, we can now define the matching
procedure conceived by [7,8]. As presented earlier and
in [6], A‘gv was calculated in LO yEFT to have real
component
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s = ()
e

where the role of , is apparent as a cutoff on the validity of
this EFT amplitude. It is precisely the ignorance of short-
range physics beyond g, that our enhanced contact term
parametrizes. As such, [8] conceives of a hypothetical
AZ(u,,) that integrates accounts for all 0 < k < co and is
finite. yEFT, of course, cannot provide such an amplitude;
however, QCD may be treated perturbatively at scales
above some A ~ 1.5 GeV, allowing us to compute some
partial amplitude AZ such that

A (o]
Aexact AC_I,__AC_/ dka<(k)—|—/ dk(l><k)- (333)

0 A

Perturbative methods are valid for QCD in the [k| > A
regime because asymptotic freedom ensures that the
effective strong coupling is small, i.e., a, <1 [59]. If
we were modeling the interactions of free, high-energy
quarks and gluons, direct perturbative computation would
be largely sufficient. However, our quarks and gluons are
quanta of a nuclear (ground) state, as opposed to the QCD
vacuum, and so our model clearly requires input from
nonperturbative nuclear scale around Agcp. In fact, even in
the free vacuum case, QCD vacuum condensates of both
quarks and gluons are present due to the nonlinearities of
the QCD Lagrangian [59], and some nonperturbative input
is eventually necessary.

A clean way to decompose these perturbative and
nonperturbative QCD inputs in the case of a two-point
correlator is by constructing a Wilsonian operator product
expansion (OPE) [60,61], first performed in this context by
[62]. Formally, this expansion may be written
1im(0| 7 {0, (x)02(0)}|0) = ch

(0104 (0)[0),

(3.34)

where 7 is the time-ordering symbol, O;, are two
particular local operators, O are (typically other) local
operators of dimension d, and C, are their respective
coefficients. Note that there may well be distinct operators
O(q) of the same dimension requiring independent coef-
ficients, although this will not occur in our case. There is
typically a unit operator O, with vacuum expectation value
1 (in our case it will instead have expectation
(NNl y,dp i y*d INN;)), such that Cy(x) encodes the
usual perturbative expansion of QCD diagrams. This

+ A " dkax(k)]

_ /"” dk(1 +2¢2) %H(k - 2p)} :

(3.32)

perturbative series is only the first term in the summation
over vacuum condensates (0[O 4 (0)[0) seen in Eq. (3.34),
whose lowest-order nontrivial terms include the quark
condensate yy and the gluon condensate Gy, G***. We
will follow [8] in restricting ourselves to d = 0, but note that
the subleading corrections would arise from the gluon
condensate. Implicitly, the separation between perturbative
and nonperturbative QCD has occurred at a chosen scale p,
where physics at scales greater than p is explicitly calculated
in coefficients C,(x), and physics at scales less than u is
absorbed into the QCD vacuum condensates.

A full derivation of Cy(k*) leads to the following
amplitude truncated at the first term of the OPE [8]:

3@5

A=

oo 1
(NNl dyinrd NN [ dkgg. (339)

where the condensate contains all contributions softer than
A. From Eq. (3.13), those contributions are encoded in the
local LECs g7*, g™, g% ~ O(1), which together contribute
a factor % (gy 7 (6 gr™ — gfN)). For simplicity and
since gLVN is poorly constrained, [8] elects to set the latter
term in parentheses to zero, absorbing any inaccuracy into
the uncertainty assessment of ¢g)'"V. Because the share of
A from the k > A regime is vanishingly small compared
with uncertainties of this approach, only a very unnaturally
large gV or other LECs would confound this assumption.
Altogether, the integrand for the matching analysis is
therefore written

3ag g™ 1

a- (k) = r CPK

(3.36)

Model-independent information about a_(k) is not so
readily available as it is about a. (k) in the perturbative
QCD limit. A multitude of hadronic states not included in
XEFT are accessible between u, and A, including strange
pseudoscalar mesons 7, 7’ and K +0.~vector mesons p0~,
w, ¢, and baryonic ATH+0~ resonances. Rather than
account for these effects directly, [8] treats the intermediate
momentum regime as a perturbation on the low-momentum
regime already computed in yEFT. To the extent that
nucleons are still appropriate degrees of freedom for the
interaction, the topology of the bubble diagrams and
therefore the decomposition equation (3.32) is retained.

Thus, A can be obtained from A)éEFT by some appropriate
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generalizations of 7)(E) and 7% (E), i.e., by introducing
form factors, which are accurate up to A ~ 1.5 GeV.

The modification of 7*)(E) can be expected to proceed
smoothly, since for larger momentum exchange the NN
state should be at least as separable as in the yEFT regime.
Therefore nucleon-level form factors at the neutrino ver-
tices are an appropriate generalization; [8] chooses to
include the form factors for all pairs of Lorentz structures
compatible with the product of two left-handed currents:
AA, PP, AP, and MM. However, the induced pseudoscalar
current only contributes to the convergent part of the
amplitude, so we need not include it in AS. Therefore
this form factor contribution amounts to a substitution,

k2
2M?,

(1+2g3) = gy (k) + 203 () + g3, (k). (3.37)

where the form factors were defined in Sec. III A and
depend on scales Ay =084 and A, = 1.0 GeV.
Reference [8] demonstrates that the dependence on the
amplitude on these precise scales is a “by far subdominant
uncertainty” in contrast to, for example, the truncation of
nuclear states.

The modification of 7()(E) is somewhat more subtle,
because it directly relies upon a choice of phenomenological
short-range potential between nucleons. These data are
encoded in a so-called “half-off-shell” form factor on the

iterated strong-interaction vertex represented by 7, i.e.,

7% (q. p) = T®(p. p) x f5(q. p). Part of the appeal of
this parametrization is that f(q, p) = 1 in LO yEFT [8], so
the form factor will specifically encode deviations from the
low-momentum amplitude. Simply extending yEFT to NLO
gives

C
T — 1 -2 (p2 = ¢ 3.38

where the two form factors together deliver a real-valued

suppression factor NFO (k) =1 — ,;féz k to AgZ. The ratio

of constants C,/C? evaluates to 0.52 in #EFT and 0.38 on
yEFT. To obtain more precision at momenta up to
A ~ 1.5 GeV, Ref. [8] calculates the form factor fs(q, p)
using three popular phenomenological NN potentials: the
Kaplan-Steele potential [63], the Reid potential [64], and the
AV 18 potential [65], which match very well to NLO yEFT
below k = 200 MeV, and all show a suppression r(k) ~ 0.1
before k = 400 MeV. Model dependencies for momenta
larger than this are thus highly suppressed in their con-
tribution to the overall amplitude, whose integrand is written

0-0) = = (R0 +24,00) + 51 2108
« %H(k _2p). (3.39)

a,(k), a_(k), and a. (k) are plotted in Fig. 13, adapted from
Fig. 6 in [8], alongside the corrected integrands from the
NNz analysis in Sec. IV D. These pieces together are
sufficient to estimate the size of the enhanced contact
counterterm ¢V (u), since the scale-invariant amplitude

Ac(u) + w should have equal value to our constructed
AP = A5 4+ AZ. Here we note some ambiguity in the
notation; the constant gV that appears in the OPE is more
precisely the y — oo limit of ¢V (u), and performing the
matching analysis is equivalent to determining the action of
the renormalization group on this constant. In terms of the

integrands [8],

2 " A
2gyN(ﬂ>:1+229A- A dka, (k) + /0 dka..(k)

n / " dka_(k), (3.40)

which is plotted as the pure NN comparison point for our
later NNz analysis in Figs. 14 and 15 for a range of
matching scales A, where the dependence on the latter is
comfortingly weak. Reference [8] selects the value gV (u =
m,) = 1.32 as a representative value, which is essentially
independent of A between 1 and 4 GeV. However, this
number by itself is not especially meaningful, because it is
specific to a decomposition of the amplitude into convergent
and divergent parts, i.e., the MS/PDS regularization scheme.
Section 7 of [8] performs the analogous matching calcu-
lation for several choices of momentum and coordinate-
space cutoff regulators. The material point is that the relative
importance of light neutrino exchange and the contact
counterterm is scheme dependent and therefore nonphysi-
cal; however, one can expect that the total A, will be
scheme independent and, in general, have been modified
with a significance similar to the ~15% adjustment seen in
the MS scheme. To facilitate other groups in evaluating the
contact contribution within their own chosen regularization
scheme, [7,8] provide “synthetic data” by computing A, in
full at a kinematic point relevant to the many-body nuclear
community, p = 25 and p’ = 30 MeV.

However, our primary interest is in the two-nucleon
matrix element and, in particular, the improvement of the
leading uncertainty on the matching calculation that arises
from truncating the sum over intermediate nuclear states to
elastic NN states only. Reference [8] demonstrates that this
uncertainty is dominant primarily by constraining all other
sources of uncertainty. The impact of model-dependent
form factors for the strong interactions in the intermediate
momentum range is assessed by parameter variation and
contributes an uncertainty of £0.2 to 5g)'V, only £0.05 of
which arises from the less well-described but suppressed
region 0.4 <k < 1.5 GeV. A further +0.05 (at most)
enters 5g"'V from numerical parameter selections, especially
the scales A4y entering the single-nucleon form factors.

055033-18



IMPROVED PRECISION CALCULATION OF THE ...

PHYS. REV. D 111, 055033 (2025)

However, a rough evaluation of one divergent diagram with
a NNr intermediate state, which can be interpreted as a
leading inelastic correction, contributes between —0.1 and
0.35 to 8glV; this, of course, is just one of numerous
possible diagrams containing the first accessible inelastic
state, and [8] consequently assigns an uncertainty of £0.5 in
the absence of further information. This source of uncer-
tainty, its more precise quantification, and steps toward its
improvement will be the focus of the following section.

IV. QUANTIFYING THE NN~z
INTERMEDIATE STATE

In the Cottingham procedure for studying loop correc-
tions from nuclear operators, the superposition principle
directly requires the completeness of the intermediate set of
nuclear states. Taking a perturbative viewpoint of the
nuclear state space, these intermediate states need not have
the same particle content as the external NN states—such
states are called inelastic. At the scales well modeled by
yEFT, this will mean that dynamical fluctuations of the
nucleon field induce fluctuation quanta in “nearby”
strongly interacting fields, most accessibly the pseudo-
Goldstone pion fields. Of course, all this is a convenient
perturbative realization of systems that are more precisely
nonperturbative bound configurations of QCD fields,
where, as the particle number of a nucleon state is a
distribution rather than a single value, the line between
elastic and inelastic nuclear states is blurred. We are able to
take advantage of a truncation between elastic and inelastic
nuclear states in the case of Oyff for two fortunate reasons:
the bulk of the neutrino-momentum transfer occurs well
below energy scales that probe the internal structure of
nucleons, and chiral symmetry is sufficiently broken such
that, roughly speaking, momentum at the order of the
transferred neutrino is required to induce even a single
(virtual) excitation of the pion field.

For these same reasons, we take a further truncation of
inelastic nuclear states between [NN,) and |[NN,+) (all
other inelastic states) to be well defined. As [8] is careful to
note, the two-particle kinematics of this process greatly
complicate a direct relation between elastic states of the
forward scattering amplitude and the Cottingham-style
loop correction, and we accept the same limitation in
framing our |NN,) intermediate states. We retain the state
decomposition of [8] from Egs. (3.29) and (3.32), where
k), |<") now are summed over both elastic and NN states.
We will also refer to the leading elastic correction as the
difference AAYNT = A, — AVN. AANNT receives contri-
butions from diagrams (1) where only one of |k), |k’) is
inelastic (distinguished by isospin breaking) and (2) where
both |k) and |«) are inelastic.

A significant complication regarding NNz states is that
both angular momentum and isospin may now be distrib-
uted between the component particles in multiple ways, and

strong scattering T) will transfer these quantum numbers.

We cannot therefore retain the 'S, partial wave or some
NNz equivalent throughout our analysis as [8] does, and
the principles of angular momentum, isospin, and parity
conservation will constrain our result via selection rules.

We will proceed as follows. First, the role of selection
rules in constraining the angular momentum and isospin
properties of our intermediate states will be reviewed.
Then, (NN|T®)|NNz) will be characterized within
xEFT and compared to the broader literature on threshold
pion production from nucleon pairs. (NN|T")|NNz) and
(NNz|T®W|NNz) will also be characterized with the
derivation of zz and zN neutrino potentials within
yEFT. Combining these two building blocks will lead to
the complete diagrammatic structure of the divergent
contributions to AAYV*. Naive dimensional analysis d la
Weinberg will be used to estimate the size of each diagram
in comparison to AYV; finally, the leading divergences will
be evaluated in the dimensional regularization scheme such
that a numerical adjustment to the elastic computation of
contact term g™ can be claimed.

A. Selection rules for NN — NNz transitions

An excellent description of the selection rules for NN —
NNx transitions is given in the review [66] and the thesis
[67]. First, let us state the relevant quantum numbers.
Two-nucleon systems may have total spin S =0, 1, total
isospin 7 =0, 1, and total orbital angular momentum
L =0,1,2,..., while a pion in an NNz system has spin
S, = 0, total isospin T, = 1, and angular momentum [, =
0, 1,2, ... about the center of mass of the NN component.

Total isospin T and total angular momentum J = |L + §|
are conserved by strong interactions, which may be thought
of as the zeroth selection rule. It is crucial that L and S
combine vectorially, so a given J can arise from any L and
S satisfying [L — S| <J <|L+S|.

Nucleons, as fermions, obey Pauli statistics, so the wave
function of an NN system (including as a component of an
NNz system) must be antisymmetric under particle
exchange. Orbital angular momentum contributes (—1)F
to this antisymmetry, while spin and isospin contribute
(=1)5*1 and (=1)T*!, respectively. As a result, we have
the first selection rule (—1) = (=1)2*5*T on both initial
and final NN states, satisfied, for example, by 'S, nn
and pp states (S =0,L = 0,T = 1). Here we make use of
the NN-spectroscopic notation 251X (L),, where X(L) is
the conventional mapping 0 —» S,1 - P,2 - §,3 > F
(lowercase will be used for pions).

Parity, the eigenvalue of a physical system under reversal
of all spatial coordinates, is another quantum number that is
at least approximately conserved under strong interactions
[68]. Spin/isospin do not influence parity as they do not
contribute to the spatial wave function, but each angular
momentum quantum contributes (—1) to parity, which
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together with the intrinsic parities of field quanta implies
the second selection rule [66],

(=Dt =z (=D)Erthe = (DA =g (1), (4.1)
where 7, = —1 is the intrinsic parity of the pion (relative to
the proton, by convention), and the implication holds only
in the presence of Pauli statistics.

As an example application of these rules, consider the
NN — NNz processes of an initial 'S, state. Since
J; =0=Jg, conservation implies J, =1, =0,1,2,...,
with each choice allowing for a multiplet of (L/,Sy)
selections. NN isospin T = 0, 1, and Pauli statistics require
that 7;=1 (nn or pp) as well as that T,=
S¢+ L+ 1(mod 2).

If T; = 1 (AT = 0), Pauli statistics require Sy + L/ to be
even. Meanwhile, parity conservation requires Sy + [, to be
odd. For example, we could take S = 1 and [, = 0. Then
Jy=0,s50 Ly =1 and the process is 'Sy — 3Py + 5. We
might also try Sy =0 and [, =1, so J; =1 and again
Ly =1; but now Sy + L is odd, so this combination is
deselected. The next lowest-order candidates are Sy = 2 and
I, =1, which gives J; = 1 and L; =2 ('Sy - D, + p);
and Sf =1 and [, = 2, which gives Jy= 2 and Lf =1,3
(1Sy = 3Py + d, 'Sy — 3F, + d).

If Ty = 0 (AT = —1), Pauli statistics require Sy + L to
be odd, and parity conservation requires Sy + [, to be even.
For example, we might try S; =0 and [, =0, s0 J; =0
and Ly = 0, butnow S; + L is even, so this combination is
deselected. Next we could take S = landl, =1,s0J =
1 and Ly = 1, selecting the process 'S, — 3S; + p. The
next lowest-order candidates are Sy = 3 and [, = 1, which
gives Jp=1 and L;=2, 4 ('Sg—>'D;+p.'S, —
'Gy+ p); and Sy =1 and [, =3, which gives J, =3
and Ly =2, 4 ('Sy = °D5 + f, 'Sy = G5 + /).

The above results are summarized in Table II. Overall,
Pauli statistics and the conservation of angular momentum
and parity impose quite strong restrictions on what NN —
NNr channels can contribute (virtually) to our process.
Presuming suppression of higher angular momentum pion
states, we will restrict ourselves to (AT = 0) 'S, — Py + s
and (AT = —1) 'Sy — 35, + p. Significantly, the neutrino-
exchange insertion cannot occur in any 'S, + x NNr state
for 'S, external NN states. Note that only AT =0 can
contribute to neutral-pion production, while both isospin
channels contribute to charged-pion production.

B. Off-shell pion production from nucleon pairs

There exists a long and thorough literature on “thresh-
old” pion production from nucleon pairs in connection to
low-energy scattering experiments. This literature will
provide us with the necessary tools to account for virtual

TABLEIl. NN — NNz processes permitted by Pauli statistics,
conservation of angular momentum, and conservation of parity
for an initial 'S, state, derived in the text and truncated at
Jp=1,<3.

NN — NNz process AT Jr=1, Sy Ly
1Sy = 3Py + s 0 0 1 1
1Sy =D, + p 0 1 2 2
1Sy =3P, +d 0 2 1 1
1Sy = 3F, +d 0 2 1 3
1S0 bd 3S1 + P -1 1 1 1
1Sy = D, + p -1 1 3 2
1Sy =G, +p -1 1 3 4
1S0 b d 3D3 —|—f -1 3 1 2
1S9 > 3G+ f -1 3 1 4

NN — NNz processes in our 7). As we are only
interested in the divergent part of our Ovpf-decay ampli-
tude and will ultimately compute this through MS at the
diagram level, it will not be necessary to explicitly

compute 7' () as a matrix operator. Instead, here we will
identify the leading partial diagrams for both s- and p-
wave pion production through dimensional analysis and
bound the subleading uncertainties through a comparison
to the threshold scenario.

Early works such as [69,70] generally made use of the
distorted-wave Born approximation (DWBA), where the
process is decomposed into initial- and final-state strong
interactions around a fixed, perturbative pion-production
core. The three-parameter model described in [69], based on
the [71] effective-range approach to p-wave pion-nucleon
resonances, was the first to achieve broad agreement with
scattering data, ranging from near threshold (where s-wave
pion production becomes relevant) to ~600 MeV (beyond
which d-wave pion production becomes relevant).
Reference [70] attempts to model higher-energy production
using a one-pion-exchange model without final-state inter-
actions, appropriate since deuteron formation is suppressed
above ~800 MeV. This approach is quite prescient of the
later role one-pion exchange will play in yEFT-based NN
and NNz theory. In conceptual agreement with the methods
of [8], we will also pursue a DWBA-like separation, but a
review of early works that instead made use of fully
nonperturbative, coupled-channel computations can be
found in [66].

References [72,73] developed a formalism for s-wave
pion production near threshold, based on a phenomeno-
logical pion-nucleon interaction Hamiltonian that is rem-
iniscent of later yEFT Lagrangians and is accurate within
10% for the process pp — d + n" while agreeing with
limited experimental data on pp — pp + z°. Crucially,

p- and s-wave pion production arise from distinct inter-

action terms, of respective size ,’;—” and ﬁ as well as two
T
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FIG. 6. NN — NNz production via the p-wave NNz vertex (left), the suppressed s-wave NNz vertex (middle), and the NNzx

Weinberg-Tomozawa vertex (right).

rescattering coefficients fit from zN scattering lengths.
Reference [74], focusing on pion absorption, extends this
methodology to include virtual p- and @w-meson diagrams in
an attempt to explain discrepancies with experimental pion
absorption in heavier nuclei, ultimately concluding that
the fault lies with irreducible three-nucleon contributions.
Such additional meson diagrams did, however, account
for discrepancies with threshold pp — ppz® as better
data became available [75], albeit in conflict with
similarly sized corrections from off-shell z/N-rescattering
contributions [76].

The first yEFT- and therefore QCD-based computations
of pp — ppa° near threshold were presented in [77,78].
As we have seen for NN scattering, the systematic
organization of diagrams via a power counting facilitates
a concrete calculation with controlled errors, with typical
expansion parameter € ~ m, /My ~ 0.1. This typical power
counting arises from treating both the typical three-momen-
tum exchange and the typical nucleon three-momentum of
a process as being of the order of the pion mass:
Q ~ py ~ m,. Reference [77] observes that, at threshold,
this approximation is not kinematically sound, since at
minimum py ~ /M ym, is required to produce a real pion
excitation. Then one expects also Q ~/Mym,, and the
revised expansion parameter is &g, ~ \/m ~04; a
significantly slower perturbative expansion results, and we
will see that in many cases the ordering of diagrams is
changed substantially. This detail is relevant to us not
because we will use &y,; in fact, for off-shell pions,
O ~ py ~m, is still a valid expectation, so we will use
the standard & power counting. However, most of the
subsequent threshold literature has been expressed in
&mr» and it will be necessary to carefully convert between
the two.

At this point, it is useful to define the dominant
irreducible diagrams which in some order will fill out the
LO through NNLO classes of contributions. The impulse or
Born diagram is evidently the simplest, with a single ZNN
vertex facilitating the process. At threshold, this diagram is
kinematically forbidden, as one of the external NN pairs
must be off shell by m; Ref. [77] resolves this by defining
connected impulse diagrams with a single (contact or pion-
range) strong interaction, which together may be thought of
as the impulse contribution. Equivalently, the connected

impulse diagrams are irreducible because no kinematical
two-nucleon unitary cut is permitted [66]. Of course, in our
application, both the produced pion and the final NN state
are expected to be off shell, so we can treat these subsidiary
strong interactions as part of the scattered NN wave
functions.

Several irreducible diagrams may be seen as modifica-
tions of the impulse diagram. The A-excitation impulse
diagrams provide for an excited nucleon state between the
pion-production vertex and the subsidiary strong interac-
tion. The recoil diagrams have distinct kinematics to their
one-pion-exchange impulse counterparts. Furthermore, as
mentioned previously, there exist two distinct NNz vertices
corresponding to p- and s-wave pion production, the latter
of which is suppressed; impulse diagrams with both vertices
are shown in Fig. 6. The seagull or pion-rescattering
diagram arises from the inclusion of the NNzz or
Weinberg-Tomozawa (WT) interaction vertex and is irre-
ducible, as seen in Fig. 6. Irreducible diagrams containing
higher-dimensional vertices, of course, can be constructed,
but are surfeit to our needs. A collection of one-loop
irreducible diagrams generically prove to be more relevant
[66,77].

The power counting of [77] for s-wave pion production
places impulse and A-excitation contributions at leading
order, with recoil corrections, the seagull diagram, and all
one-loop diagrams subleading by a ratio m, /M y. However,
numerical calculations with phenomenological NN wave
functions reveal that the seagull contribution is approx-
imately equal (and opposite in sign) to the impulse
contribution, which the authors attribute to some combi-
nation of spin/isospin factors and off-shell behavior. They
also reveal a suppression of the A-excitation contributions
that is strongly dependent on the choice of NN potential.
Overall, the calculated result is much too small to agree
with experiment, and so [77] is taken as a methodological
point of comparison rather than a generalizable result.
Reference [78] similarly realizes the cancellation between
impulse contributions, attributing the mismatch with
experiment to unaccounted-for heavy-meson exchange
diagrams.

The fully relativistic approach of [79] delivered near
percent-precision cross sections for s-wave pp — ppna’
and pp — pnr' at threshold, including a verification of
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the importance of heavy-meson exchange diagrams. The
decomposition of an amplitude into perturbative diagrams
is (always) model dependent, in the sense that we cannot
take this relativistic computation as a comparable break-
down for the power counting of diagrams in yEFT with
nonrelativistic nucleons. However, [79] also presents an
excellent spin-operator decomposition of both processes,

TeM(pp — ppr®) = A(io, — 6, + 6, X 6,) - P.
A o L . -
Ter(pp — pnat) = 75(101 —i6y+ 061 X6y) - p

—\V2Bi(3, + 3,) - p. (4.2)

where two complex-valued coefficients A, B are then
evaluated within one’s chosen model and correspond,
respectively, to 3Py — 'S, + s and 3P, — 3§, + s transi-
tions [80]. References [66,80] employ the same represen-
tation in a demonstration that, with the modified power
counting introduced by [77], the perturbative expansion of
yEFT for threshold pion production does indeed converge.

It is easier to show this for p-wave pion production
because irreducible loop diagrams should only appear at
N3LO [81]; the impulse term alone gives agreement within
experimental error bars for p, < 0.7m,, with seagull and
subleading NNz vertex contributions entering at NNLO
and pushing agreement up to p, ~ 0.9m,. For s-wave pion
production, irreducible loop diagrams enter at NLO, but
Ref. [80] shows an exact cancellation between divergences
of these diagrams, which in the neutral-pion case has zero
finite part. This is to be expected from consistency of the
power counting, Ref. [66] explains, because there is no
NNLO counterterm diagram to absorb NLO divergences.
To NLO, A is then built only from the impulse and
A-excitation terms, while B is built from the impulse,
seagull, and finite-loop terms.

NNLO p-wave pion-production amplitudes were pro-
duced by [82] for three experimentally comparable channels
(pn — ppr~, pp — drn", and pp — pnzn"), with a com-
fortable fit to data with p, < 0.4m,. Later, [83,84] followed
a similar formalism in computing the first complete NNLO
s-wave pion-production amplitude, employing a yEFT
Lagrangian with explicit A degrees of freedom. Order-of-
magnitude expectations from the modified power counting
of [77] were again verified. Later still, [85] performed the
phenomenological NN wave function convolution neces-
sary to compare the NNLO s-wave pp — drz™ amplitude to
experimental data, finding a 10%-20% deficit for cutoffs
between 600 and 1000 MeV which is attributed to short-
range processes, €.g., p- and w-meson exchanges.

All this has been a rather roundabout way of justifying
the application of LO and NLO yEFT to the virtual pion
production and absorption within our 75) operators. In the

absence of an on-shell requirement for our intermediate
NNz state, we will follow the Weinberg power counting
with small parameter € ~ m,/My ~ 0.1.

For p-wave charged-pion production, the Ileading
terms [66] are the impulse and seagull diagrams of size
pe/m,~1 and p.m,/pi~1, with error estimate
P=/My ~ 0.1 provided by the same topologies with sub-
leading pion vertices.

For s-wave neutral- and charged-pion production, we
need only consider partial amplitude A since we require
one 'S, external NN state. The seagull term vanishes
regardless of kinematics as the WT vertex is isovector,
so the leading contributions are, in fact, NLO, arising from
the subleading impulse and A-excitation diagrams of
size py/Mpy ~0.1.

C. iz and zN neutrino potentials from yEFT

Now that we have determined the T(5) physics relevant
to the NNr intermediate-state contribution, we must also
compute the relevant neutrino potential contributions
corresponding to (NNz|T™|NN). Intuitively, one expects
that (NNz|T®")|NNz) will be dominated by three chan-
nels: the usual neutrino insertion between two nucleon
lines (but in the presence of a pion state), an insertion
between a pion line and a nucleon line, and a double
insertion on the same pion line. The leading irreducible
contribution to (NNz|T™)|NN) also includes a neutrino
insertion between one nucleon line and a zvNN vertex;
all these diagrams are displayed in Fig. 7. We already
discussed the Lorentz decomposition of neutrino couplings
to a single nucleon line in Sec. IV B, in particular, Eq. (3.3)
and the following yEFT-derived form factors, but in order
to quantify these channels we must first perform a similar
analysis of AL = 2 couplings to one, two, and three pions
and to a 7NN vertex.

All pion couplings are derivable from the generic chiral
Lagrangian, which with external vectorlike couplings can
be parametrized as follows [46]:

L, :FT’ZZTr[(DﬂU)TD”U}

F2 .
:T”Tr[(()ﬂU' iUl = in,U) (U =il U +iUr) .

(4.3)

where [, and r, will facilitate a coupling to the leptonic
states via a W propagator and therefore have an associated
isospin operator z+. Here we show the extraction of the zv
vertex Feynman rule as an example. To compute the
coupling to an axial-vector leptonic current 2a, =1, —ry,

we set —l# =r,=aq, and find
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FIG.7. Diagrams for the neutrino interaction potentials relevant for NNz intermediate states. The solid dots denote interaction vertices
from the chiral Lagrangian. (a) NN — zz. (b) NNz —x. (¢c) NNz — NN. (d) NNz — NN=z. (e) # —n. (f) zx — nz. () nan — x.

.F2 . . . .
=T [F—: 9, - 7(2a"t%) + (<2a,77) Fiﬂaﬂqs 7

F >
= T”TrHaﬂqb - 7T, T+}:| a’

= F”\/Eaﬂ[n'_]a",

Ly

(4.4)

where the quantity in square brackets indicates the isospin
constraints on the Feynman vertex, amounting to charge
conservation (i.e., only a z_ may decay to an e_). Strictly
speaking, this pion field is factored away from the coupled
current at the vertex, so this notation serves only to
indicate which diagrams are permitted. If instead, one
takes [, = r, = v,, a trivial cancellation reveals that the =
coupling to a vector leptonic current vanishes. Similar
computations reveal the patterned structure of Nzv ver-
tices, where we display only those relevant for our NNz
diagrams,

Jy =0,
Th e = —iF V24" [57],
]/\l/.zm = _\/iqﬂ {77;_71-0],

Jl,:.im = 0’
Jl\l/.mm = 0’

1
Hawe = 1= V29![172°2° + 277" n7). - (4.5)

Y

Also derivable from the above Lagrangian is the Feynman
rule for the four-pion vertex, which we will later need to
connect the zzz — z neutrino potential into a loop dia-
gram. In our case, this vertex will connect two momenta
+k and two momenta £/ and has amplitude

, -2
iAppan = 372 (k* + 1> =2M?), (4.6)
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where M? is a mass parameter generated by the explicit
chiral symmetry breaking of the quark masses, which at
LO is simply m2 [13].

To study the zvNN vertex, we also follow [46] in
introducing an NLO nucleonic chiral Lagrangian,

ﬁﬂ'N.LO = lNVDN+gANS MN,

£7rN,NLO oM (V”VD—’?W)(ND D N)
N
i9a
N{S-D,V-u}N, 4.7
o u} (47)

where a static nucleon approximation has been made with
velocity V¥ = (1,0) and spin S* = (0, 5). D, is the chiral-
covariant derivative derived in terms of covariant vector I',,,
and u, is the contravariant vector counterpart,

1

=5 [ @ = i)+ u(@, = i),

u, = i[uT(dﬂ —il,)u—u(d, —ir,)u } (4.8)

Note that this is the same chiral order to which the neutrino
potential for NN states has been presented here as well as in
[8]. We will see that those terms in the Lagrangian that
contributed to the vector coupling for an NN state will

iNV¥D,N = iNV*T',N
= %NV” <u+(iA,;r+)u + u(—iA”T*)uT)
! AT g 7N
=— —A, | T
2 F,
= 2;1 V"AM[\/E]_m_p —\2inn — 2pn°n,
(4.9)
and at NLO

iN D, D,N = N(9,T, +T,d,)N
_—i pt+pt

2F, oMy ¥
X [\/Epﬂ_p —\2iixn — 21‘775011}. (4.10)

Setting [, = r, = v, for the vector contribution, we find
at LO

gANS - uN = g,NS* (u"'vﬂﬁu - uvﬂr+u+>

lgA

T

= l}g—ASﬂvﬂ, [V2pr~p —\2an~n — 2pa°n),

T

L2 NSH, [T+,(Z'?:| v,N

contribute only to the axial-vector coupling here, and vice (4.11)
versa. Again setting —[, = r, = a, for the axial-vector
contribution, we find at LO and at NLO
|
ng {s D,V -u}N = IA N{Sﬂa Vet %‘]}N
2F My #
—iga V¥ / — P = 0
= —S-(p+p)v,. [\/Epﬂ p—2inn—-2pn n}, (4.12)
F, 2My
as well as the vector current induced by the pseudoscalar NNz vertex and the 7 — v coupling derived above,
i 1
T dveed = % <q TS q> [V2pa~p — 2z~ n — 2pan]. (4.13)
Thus, in total, we have for the currents at the zZvNN vertex,
_iga VH 1
g = S — S- Nt+t———-¢"S-q),
VaNE T < My (P+P)+q2+m%q CI)
. {\/Efm‘p — 2z n - 2pﬂ0n] ,
—1 p/’ _|_p//4 _ o B
JXNN;: :E(’Uﬂﬁ-m s |:\/§pﬂ' p—\/inn' n—2pﬂ0n] (414)
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With all vertex-level building blocks defined, we can now
contract them to form complete AL = 2 potentials for NNz
states. Let us first consider the neutrino interaction between
a nucleon line and a pion line, shown diagrammatically in
Fig. 7(a). Since we have seen that the latter only couples via
a vector current, the NN — 2z potential is given by

p'+ p*
2My

=—\/_<q T

Jp\l/,NN ' JﬂV,m‘r = (Vﬂ + )(_\/Eqﬂ)

q-(p+7)
My
= —V2qy[nmy = pr,.nx_ — pmy), (4.15)

where the final simplification results from observing that
qg-(p+p)=(@-p) (p+p)=p"-p?=Ep,

Following [46], we count the electron energies at NNLO in
the chiral power counting, specifically E;, ~ m (Q) and

therefore such terms can be safely neglected from our NLO
potentials.

H . — JH .
Iy wnve S wn = Tanng - Juann

= (g s (p )+
F, 2My g*+m
_i9a ! 1 0
~F <q T2 4054 4M§,(p +p
iga (L1 oo G ()
F A\ m2 2797 4y,

2q"S-q) <vﬂ +

AN O

The neutrino interaction between a 7zvNN vertex and a
single 7z, shown in Fig. 7(b), proceeds only via an axial-
vector current, but delivers a very similar potential to the
above [this is less surprising comparing the diagram to that
of Fig. 7(a)],

3
~=qo. |V2pr_— pr,,

H - _
Janng Juaa = 2

—\2na_ — nz.,-2nm_ — pmy|. (4.16)

In fact, this pair of potentials very clearly exhibits the
importance of carrying through all isospin algebra; although
their kinematic dependence differs only by a constant factor,
they share only one isospin channel and discriminate
between three others. The neutrino interaction between a
avNN vertex and a nucleon line NN, shown in Fig. 7(c),
exhibits more complexity, as both vector V — V and axial-
vector A — A channels may contribute. Fortunately, these
two components turn out to be identical, and the static
nucleon approximation leads to significant simplification,

Put Dy
2My

2om, 1

T m -(p+p’)5-q>

> {\ﬁnp - ppry,—V2nn - pnr,,—2nn - ppﬂo]. (4.17)

Similarly, the neutrino interaction between two zvNN vertices, shown in Fig. 7(d), receives contributions from both vector
V — V and axial-vector A — A channels. The current algebra matches that of the N N neutrino exchange, albeit with vector
and axial-vector contributions interchanged, and an additional constant factor = F2’

u —4g3 w W u 2
Sy wne  Juvung = 72 S —ZMNS'(P+I?)+ q"S-q
_493 5 qz )
G (”*2 S G
ﬁ(a PRl P )
AN (q2+mﬂ) 42
2 4 4
gi (2. - my 1 my
=4(55-6,( 1 ~Sp(1- ,
2 < " "2< Ty +m%>2> 3 < @ +m,,>2>>
[nn — pprom] (4.18)
and
Ty e JuaNNe = F_,2, (Vﬂ + MZMN ”> F_,2, +0 Af( , [nn — pprym). (4.19)
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TABLE 1III. Neutrino interaction potentials V?x_y) =
Jyx Sy + P x - Ju,y as functions of exchange momentum

q. These potentials correspond to the diagrams of Fig. 7.

Potential V* G2V my (..) (k) PrCil" (ky)

779 2
AT, ) 2

(NN, zx) 2%
q
(NNz, x) _@q_g
q
NNz, NN i - G(p +7)
( ) %# (q -é—m2 qo% q = 46\4,5 )
(NNz,NNr) ;_%#(1 -GGy — % 143, §)
(7. 7) -2F;
(
(

Here we have only included the isospin factors for the
double-neutral-pion case, as this is the only one relevant for
our later analysis. The charged-pion channels are slightly
suppressed by factors of either ++/2 or 42.

Finally, we have three pion-only potentials, of the forms
n —n, ix — nx, and zxxw — x, which are shown in Figs. 7
(e)-7(g), respectively. The first and third of these involve
only axial-vector couplings because both vertices connect
an odd number of pions; the second conversely involves
only vector couplings. Contracting our previously calcu-
lated currents, we have

JZJZ ’ JMAJT = <_iFn\/§qﬂ><_iF7r\/§q#)

= 2F2¢* [n_ > 1], (4.20)
J/\l/,zm' uvoanr — ( \/_qﬂ)(_\/iqﬂ)
=2q°, [n_n_ — momy, m_10
> TRy, BTy = T Ty, (4.21)

—i )
Jﬁ ann JﬂA,Jr = <F_ ﬁq”) (_IFE\/EQ#)
b3

=2¢°, 7y = momm, 28 —> n_m m,].

(4.22)

To express these products of currents as bona fide two-
nucleon potentials, we must include the neutrino propaga-
tor — q as well as the leptonic structure (and dimensionful

constants) that apply equally to all topologies. The resultant
potentials are collected in Table III.

In computing these NLO potentials, we experience the
full benefits of the yEFT formulation of nuclear forces. The
highly symmetric interactions permitted for pions deliver
simple kinematics for all permitted v interactions. Indeed,

only the J%, vy, - v ny potential has any spin or pion-mass

Diagram Dimensional Analysis Chiral Order
. cgs =1 2
gv - gv +9ga-ga + 94 LO
~ 2.6
n p
gA Q 2\/7
74 2F -
2 g2 V2FQ g4 = g0 LO
~ 1.1
n p
ga Q@ 1 94 Q Ya
A2 \2F, S(2A = F. Ja
(B8 7o) (Y5 g vome)=%
~ (.8
n p

FIG. 8.

Dimensional analysis of leading NN neutrino-exchange diagrams. They are all at LO in the chiral power counting.
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dependence up to NLO, a fact that will dramatically ease the
estimation of our leading Ovff diagrams.

D. Diagrammatics and power counting
of the leading NNx divergences

With both off-shell pion production/absorption NN —
NNz and NNz — NN and neutrino potentials connecting
NNz and NN states characterized, we can now present the
complete set of diagrams whose divergences will contribute
to the size of the contact Oyff counterterm. These are
shown in Fig. 9, alongside the workings that demonstrate
their (order-of-magnitude) NLO status in the chiral power
counting; the diagrams with only NN intermediate states
are also presented in Fig. 8.

We largely follow the power counting formalized in [86].
As is standard in chiral perturbation theory, pion propa-
gators (being light compared to the cutoff scale) contribute
1/Q?, while nucleon propagators (being heavy compared to
the cutoff scale and therefore static) contribute 1/Q. Loop
integrals generically contribute Q*/(4x)?, where the factor

From the

(47)~% arises from angular integrations of (ZZ;.

exponential form of U in the chiral Lagrangian, a vertex
with d derivatives, p-pion fields, and n-nucleon fields can
be expected to contribute Q¢ F2 7 _b/\)z(_d_b/ 2. At this point,
two large scales enter into the power counting: F, and A, ;
Manohar and Georgi’s “naive dimensional analysis” pro-
cedure [15] shows that, in order for the leading non-
renormalizable four-pion vertex to be sufficiently and
naturally suppressed, A, can be at most 4xF,, and in the
chiral power counting we take this bound to be saturated.

For multinucleon interactions, [20] showed that one must
treat nucleon propagators and loops differently when they
appear as reducible subdiagrams, i.e., elastic intermediate
states. When integrating over these internal nucleon lines,
pole contributions effectively restrict the nucleon from a
static treatment, with the result [32,86,87] that the nucleon
propagator is enhanced to ~My/Q?. The loop integral
contribution is adjusted to Q3/(4zMy), but since in the
power counting My ~ A, ~4zQ, is of the same order as
the irreducible loop integral.

An additional feature of the chiral power counting
specific to our application is that it distinguishes between
p- and s-wave pion production from/absorption to NN
states. As discussed in Sec. IV B and in [66], the leading
NNz vertex in the chiral Lagrangian only gives nonzero
contributions for p-wave pion production and is assigned
size %"FQ in agreement with the generic vertex expression

T

from [86] (we choose to retain simple constant factors since
they prove substantial for certain NNz diagrams). The first
vertex to contribute to s-wave pion production is sup-

pressed by 1 chiral order, specifically by a ratio 2“A’4"N where

w, is the pion energy. We recall that neutral-pion produc-
tion receives no contribution from the p wave.

We conduct our power counting in the manner appro-
priate for comparison to the integrand a, (k) in the match-
ing expression [8]

1+ 243 u A
ng,VN(,u):TA—/O dka)((k)—l—A dka (k)

+/ dka_(k). (4.23)
A
Thus, the factor % arising from the two NN contact

interactions on either side of each bubble diagram is
neglected, and we implicitly include the neutrino-momen-
tum measure d|k| such that each estimate is formally
dimensionless. As a proof of concept, Fig. 8 shows the
application of our chosen power counting to the elastic
diagrams A, containing divergences; we separate these
diagrams to make explicit the contributions from the
pseudoscalar-induced axial N Nv coupling, whose presence
will play a more direct role in the NNz-inelastic diagrams

to follow. As expected, all three diagrams enter at leading

chiral order (AQ)O.

In Fig. 9, a complete classification is presented of NN
Ovpp diagrams whose neutrino exchange occurs in an NNz
hadronic intermediate state. From the six neutrino poten-
tials exhibited and two competing pion production/absorp-
tion channels (charged and neutral), one might naively have
expected as many as 24 distinct topologies. However,
isospin symmetry places severe restrictions on these
combinatorics, leaving only the eight families of diagrams
illustrated in Fig. 9. Note that we show only one repre-
sentative of each family, whose pion production and
absorption occur via the impulse diagram defined in
Sec. IV B. As described there, each p-wave charged-pion
production/absorption can occur either via an impulse or a
seagull (pion-rescattering) diagram, both at leading order.
In our power counting estimate, we will neglect the seagull
diagrams, as simple power counting shows that the pres-
ence of an additional loop integral suppresses such dia-
grams by 2 chiral orders. Each s-wave neutral-pion
production likewise can occur either via an impulse
diagram or a A-excitation diagram, both at subleading
order. We elect not to include these A-excitation diagrams
in our estimate for the reason of consistency with our
truncation of the inelastic hadronic states to NNr.
Including A degrees of freedom in one stage of our
calculation would necessitate their inclusion throughout,
in particular, in the intermediate hadronic state present for
neutrino exchange, which lies beyond the scope of this
work. Furthermore, each charged-pion production/absorp-
tion diagram also includes a subleading s-wave component;
we do not explicitly consider these, but they serve as a
reminder that, generically, diagrams that enter the chiral
power counting at some particular order may also experi-
ence contributions at any or all higher orders.
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FIG. 9. Dimensional analysis of leading NNz neutrino-exchange diagrams. Diagram (a) is the “eye” diagram evaluated in Eq. (4.35),
diagrams (b)—(d) are the “surfer” diagrams evaluated in Eqs. (4.27)—(4.34), and diagrams (e)—(h) give significantly subleading
contributions, as explained in the text.
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This classification reveals four broader types of NNz
diagrams according to the isospin properties of their virtual
pion. First, the lone “eye” diagram in Fig. 9(a) simply inserts
a pion exchange at the same vertices of the neutrino
exchange, as captured by our NNz — NNz neutrino poten-
tial. The pion production vertices contribute near unity
factors of F%, but the integration of the pion loop suppresses

Fig. 9(a) to NNLO in the chiral counting, 2 orders below the
NN contributions. The eye diagram topology was fully
evaluated in Appendix C of [8] and forms the basis of the
NN uncertainty estimate quoted in that work. Second, three
“surfer” diagrams [Figs. 9(b)-9(d)] are distinguished by both
charged-pion production and absorption, as well as by
neutrino exchange via a purely pionic potential; these
diagrams are also suppressed to NNLO. However, all the
other families of diagrams will experience additional sup-
pressions. Next, three “mountain” diagrams [Figs. 9(e)-9(g)]
involve a lone neutral-pion interaction (some with an
additional charged-pion interaction), with the neutrino
exchanged via a mixed pion-nucleon potential; all these
diagrams are suppressed to N’LO due to the s-wave
interaction of the neutral pion. Note that each of these
diagrams has a further multiplicity of 2 since the neutral pion
could interact on either nucleon line, not impacting the
power counting estimate but giving a distinct momentum
routing. Finally, the lone “bridge” diagram [Fig. 9(h)] is
present, whose virtual pion experiences 1 order of suppres-
sion at both the production and absorption ends, while
neutrino exchange occurs via a purely nucleonic potential,
just as in the NN contribution of [8]. This diagram is thus
suppressed to N*LO, along with a family of variations
depending on the placement of the pion-production vertices
on the nucleon lines. Overall, one expects from the power
counting that the surfer diagrams will dominate with the
mountain diagrams subleading.

Before proceeding to the integrals, we can now give a
power-counting-driven estimate of the error bar that Ovfp
diagrams with an NNz intermediate-state place on the
elastic contact term size. Summing all diagrams construc-

tively alongside the aforementioned multiplicities for each
family, approximating A%fv%, and comparing with the
estimate gyy (4, = m,) =~ 1.32 from [8], we find

2
AgNNﬂ"’(4.2+2'2+2'2+2.2)(Ag)()

3
+(8-0.3+8'0.15+8-O.4)<Ag)

v
+(4-04) (/%)4

= 0.288xn1.0 + 0.01653; 0 -+ 0.0005x:1 0.

N

== 21.8%NNLO + 1.2%N3LO + 0.04%N4L0.
gnN

(4.24)

This estimate is in agreement with the error bars allocated
by [8], suggesting that we can expect as much as a 22%
modification to the size of contact counterterm g)'" through
the inclusion of our NNLO corrections (the eye and surfer
diagrams). Even further, our estimate shows that, if all four
described NNLO diagrams [Figs. 9(a)-9(d)] are taken into
account in a complete regularization analysis, the remain-
ing NNz contributions only induce uncertainties on the
order of 1%.

E. Dimensional regularization of the NNLO
NN divergences

In the preceding subsection, we identified a collection
of four neutrino-exchange diagrams, the “eye” diagram
[Fig. 9(a)] and “surfer” diagrams [Figs. 9(b)-9(d)], as
encoding the leading NNz contribution to NN Ovpf decay.
These diagrams and their power counting are shown in the
top four rows of Fig. 9 and were expected to enter at NNLO
in the chiral power counting, with as much as a 8%
modification to the elastic contact coefficient anticipated.
Here we will test that hypothesis by evaluating the
divergent part of all four diagrams in the dimensional
regularization framework and follow the matching strategy
of [8] in order to compute the corrected contact term.

We first consider the surfer diagrams in Figs. 9(b)-9(d),
which require novel calculation. All three give a general-
ized amplitude with the structure

d*l i
SA¢ ——iK | ="
S ! / (2r)* 1> —m? +ie

i
mlc(ZZ’p2’p/2)l&i(12)’ i:1,2,3, (425)
where I.(I?, p?, p?) is the two-nucleon bubble integral,
shown in [8] to have asymptotic (p ~ p’) real component
4:0(|1| = 2|pl), the partial amplitudes I;(/?) encode the
kinematics of the distinct pion-neutrino subdiagrams, and
K encodes constant factors. We will see momentarily that
the leading divergences of Ig,(I?) in which we are
interested will resolve to the form A/*> + B, and so, very
fortunately, we can factorize the internal one- and external
two-loop integrals.

However, first, one further factorization can be per-
formed, as all of the I ; enjoy the same spin structure at the
NNr vertices. Following the normalization of [66,88], this
p-wave charged-pion vertex is determined by the following
term of the LO chiral Lagrangian:

ga
2F

L.y D Nt,6/Vin,N. (4.26)

T

The isospin algebra (index a) is implicitly accounted for in
our enforcement of charge conservation at each NNz
vertex; however, the spin algebra requires more thought.
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Each Ig; will include an operator o, - lo, - [, where o; Now we perform the external integration separately for
indicates the vector of Pauli spin operators on nucleon i.  both Ig; =1 and Ig; = I, a complete basis for our
This operator may be decomposed into a spherical com-  solution. Because we are working within a static nucleon

ponent %l -loy - 05, which we will need, and a tensor  approximation, pion-exchange momentum / needs only be
Comp()nent — % 512, which vanishes since we are Only treated within D = 3, averting the usual Wick rotation step.
considering 'S, NN partial waves on the external legs. For I ; = 1, the resultant Euclidean integral is logarithmi-

In this partial wave, o, - 6, = —3, so the total spin algebra cally solvable and divergent, and following [8] we regulate
factor is simply —/2. it with a cutoff scale u, ~ A,

3 2
5o =3 (22)" [ s 0 - 210D

11 g
N 82( ) \p\ "y
= il g_) [ m 5+ i +10g<M>]

827222 \2F m2+4pr " m2+ > m; + 4p?

2 2

=8 jg‘F% [—1 o ’iﬂuﬁ +log (1 +%>] (4.27)

ForIg; = I2, the Euclidean integral is solvable but naively appears quadratically divergent. The situation is analogous to the
NN one-pion-exchange potential as treated in [18], whose momentum-space integral is proportional to

G [ &P i_ﬁ/ 1 _mp 1 (4.28)
4F2 | 2z P +m2|l]  4F2 ) (2x) P4+m2) || '

In the above, the latter term gives a convergent contribution to the one-pion-exchange bubble diagram (seen in Fig. 3). The
former term is linearly divergent, but has the same form as the four-nucleon contact interaction C; in spatial coordinates,

they are both 60 )( ) potentials. Thus, by setting the contact interaction C +— C=C+ the linear divergence is absorbed

4F2’
into an existing, observable constant encoding short-range physics.

We assume, perhaps liberally, that our leading quadratic divergence can be absorbed into short-range parameters in a
similar fashion; we isolate and subtract the linear term from the integrand, assuming that it can absorbed into the coefficient
of the yEFT NNNNzx vertex, which will only contribute to our process at a much lower order. This leaves only a
logarithmic divergence, regularized as follows:

1 [ ga 2/ &l A
SAgip = —— AN Y
SihP 8 <2F”> (2”)3 (12 ) |l| o(|l| = 2[pl)
_ 11 g 2//% dl P
- 887° 2F, 20| (2 + m2)?
AN 75 o PRS-
subtraction - 887> \2F ) Joyp WP +mz)* 1P+ m3)
_ L LLa Nl e M g (Mat A
82722 \2F,) " mi+pu.  mi+4p? mZ + i’
2 202 2
—9aMx M Mz
= 1- —2log (1 +7% . 4.29
p—0 1287‘[2F% [ m% +ﬂn2 o8 < * m%):| ( )

Now we apply dimensional regularization to each of the /g ;, making use of standard integration results similar to those
shown by [13] in computing the one-loop chiral correction to the nucleon mass. /g, corresponding to Fig. 9(b), is
regularized as follows:
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d*k 1 k>
Isi=2 [ > 2 2 2 2
’ 27* (k= 1)* —m; + iek* —m; + ie

_2/d4k 1 s 1 m2
) 22t (k=0 —m2 +ie T (k—=1)?—m2+ie k*—m2+ie

2myz (2 S’

where p, is the scale of dimensional regularization, and where we employ a finite m, as a regulator, but find that such
contributions are suppressed by ;”1—5 Thus, applying the MS scheme such that %—f— ve —log(4z) — 1 is absorbed into the

coupling constants of the Lagrangian [i.e., g, > g&”, F,.—F 5,”] overall we find

M2 P m2 12 12
SAg) = AT ] T +log(1+-5]||log( =5 |- 4.31
s R G 1)
Examining Fig. 9(c), we find that /5, = I up to corrections of O(:’nig), since
/d4k 1 k2 B /d4k 1 n 1 m? (432)
21 k2 —m2 +iek® —mk+ie ) 2n*kE—m2 +ie kE—m2+iek® —m2+ ie '

m?

is equivalent to the integrand of /g after a shift in k [sans corrections of (D(m2

)]. This equivalence is facilitated by chiral

symmetry, via the equivalence of the zz — zz and zzz — = potentials seen in Table 1.
Now considering Fig. 9(d), we will see that the four-pion vertex ~ 575 (k* + I* — 2mj) will facilitate a demarcation into

terms that are proportional either to /* or to a constant. Regularizing,

—4F2 [d*k K2+ P —2m2 K2 ,
Iss=—m [ g e 2. Olm)
3F; ) 27" (k* — mz + ie)* k* — m; + ie
B 4/d4k K? k?
3) 224 (K = m2 +ie)? k2 —m2 + e
4 d*k 1 k?
(2 = om? /_ O(m?
3( ) 27t (kz—m,2,+ie)2k2—m3+ie+ (m3)

' piee(® 2 2m2) log (2 O(m?
*_Tﬂz mz 10g ﬁ +< - mn) 0g W + (mv)

T b

12 U 2
=———log <ﬁ> + O(m?), (4.33)

where in the final steps we have enforced the MS scheme and canceled all but the divergent term proportional to /2. Then,
combining with the result of the /> external integration Eq. (4.29), the regularized amplitude is

M2 g2m2 m2 Mz qu
SAgr=—0N JAT || _ L | T+22 )| |log| =4 1. 4.34
o= lseirs ||~z e 2on (100 e () (34

s b

All of the calculated Ag ; are displayed as functions of y,, and yu, in Fig. 10, where the remarkable cancellation between the
logarithmic divergences of 2Ag; + 2Ag, and 2Ag5 is apparent. Shown alongside are enhanced models, where g, is
replaced with the dipole form factor defined in Eq. (3.6) with scale A4 = 1.0 GeV, with the intention of making the
amplitudes more valid for the intermediate momenta between m, and A,. These enhanced models will prove essential for a
matching analysis analogous to that performed by [8] in the NN case. In addition to these contributions, we quote the
amplitude for the eye diagram (top row in Fig. 8) as computed in Appendix C of [8],
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FIG. 10. Dimensionless amplitudes for surfer diagrams 1 and 2 (orange), 3 (blue), and their sum (green), as functions of regularization
scales u, (left) and yu, (right), with the respective other scale set to y, = 0.5 GeV. In both plots, the solid lines show the direct yEFT
result, while the dashed lines show the enhanced model defined in the text, where g, is replaced with its dipole form factor.

M3 Hy
bAp = — | dkbag(k),
E (471_)2/0 aE( )
1+ 247
where 5aE(k) = %TF‘I;Z

Fx)=V1-22 {m-l(

and where we have made the substitution 1 + 3¢5 > 1+
2¢% in accordance with the induced pseudoscalar compo-
nent of the NN neutrino potential in yEFT. Note that the
final integration in neutrino momentum k for this diagram
has not been analytically solved; in order to compare apples
to apples with our analytically regulated amplitudes for the
surfer diagrams, we define partial amplitudes

(4.36)

as,i(ﬂv) = As,i(ﬂy)'

du,

Strictly speaking, these distributions are not physically
meaningful; they encode the density of an amplitude that
one obtains while increasing the dimensional regularization
scale, rather than amplitude densities over loop momentum
k defined before regularization. However, we will only use
them for visualization purposes and to verify our power
counting, instead applying A, ;(u,) directly when we
compute the contact counterterm coefficient.

Recall that three adjustable scales appear in this pro-
cedure: the neutrino loop regularization scale y, appearing
above, which is the running renormalization scale of the
counterterm coefficient g, ; the pion loop regularization
scale yu,, which we treat with a simple momentum cutoff, as
does Appendix C of [8]; and the matching scale A, which

[k(l t Halln )
og
(k+ /& +m2)?

i)~ (=)

()]

(4.35)

was seen in [8] to introduce negligible error into the
counterterm estimate for 1 < A <4 GeV. We will follow
[8] in choosing the renormalization point y, = m, for
quoted values of g4, but emphasize that the entire function
Jav(u,) is the physical quantity that this analysis aims to
predict.

The partial amplitudes for all three surfer diagrams are
shown in Figs. 11(b)-11(d) for example pion regularization

0.3
0.2} /ffresn..
- 01
%
o 00
(\(375 -0.1
-0.2 283Y1+2as_2
0375 0.4 0.6 0.8 1.0
K [GeV]
FIG. 11. Partial amplitudes (defined in text) for surfer diagrams

1 and 2 (orange), 3 (blue), and their sum (green), as functions of
regularization scale y, with u, = 0.5 GeV. The solid lines show
the direct yEFT result, while the dashed lines include a dipole
form factor for gy.

055033-32



IMPROVED PRECISION CALCULATION OF THE ...

PHYS. REV. D 111, 055033 (2025)

0.4f
0.3f
T> 0.2t
[0
O 0.1
T ool — ————
TI= —_—~—~NN
A
-0.1F — \\
2as3
-0.2
0 -6 -4 -2 0 2
Log[p,/GeV]

FIG. 12. Partial amplitudes for the eye diagram (red), surfer
diagrams 1 and 2 (orange), 3 (blue), their sum (green), as
functions of regularization scale y, shown linearly (top) and
logarithmically (bottom). y, is varied between 0.5A,, and 1.5A,,
and the dipole g4 form factor is included throughout.

point p, = 0.5 GeV, where again the significant cancella-
tion is apparent, as well as some indication that virtual
momenta above nuclear scales contribute diminishing
amounts to these diagrams. To illustrate sensitivity of
our results to the pion regularization point, Fig. 12 again

a< a.

a[GeV]

-10

—15’ aX

—20 4 ‘ ‘ ‘
0.0 0.5 1.0 1.5 2.0

H, [GeV]

FIG. 13.

shows the partial amplitudes for the surfer diagrams as well
as for the eye diagram treated in [8], for a range of 4, values
between 0.5A, and 1.5A,. One notices immediately that,
although the partial amplitude for the eye diagram suffers
from some significant pion regularization scale depend-
ence, the sum of partial amplitudes for the surfer diagrams
is nearly vanishing across a broad range of both y, and u,;
in fact, the total surfer diagram contribution exactly
vanishes at u, = m, (the representative nuclear scale
chosen here and by [8]), regardless of yu,. We can say
roughly that the chiral symmetry inherent in our treatment
of this nuclear system has enforced a natural smallness of
pion loops through both the permitted neutrino currents and
the combinatorics. This exact cancellation will be broken
by electromagnetic effects that separate m_ o and m_=, but
these should only be relevant 1 chiral order lower than our
diagrams, at N3LO.

To illustrate the size of these contributions relative the
partial amplitudes a,, a_, and a. needed for the matching
analysis of [8], we interpret our yEFT result as a correction
on a,, while we interpret its enhanced g, form factor
counterpart as a correction on a.. In a more complete
analysis, phenomenological pion-nucleon form factors
would be included in a corrected a. alongside an appro-
priate extension of the half-off-shell form factors used in [8]
to improve the robustness of the NN contact interactions.
We will treat these possible extensions as falling within the
uncertainties accorded to the choice of the short-range
potential and see that this simple parametrization of
intermediate-momentum behavior is enough to deliver a
corrected matching result with expected scale dependence
properties. There is certainly no need to adjust a. within the
precision desired in this analysis, since as discussed in [8]

3 -2 -1 0 1
Log[u,/GeV]

Total partial amplitudes for the matching analysis following Fig. 6 of [8], where a, is accurate in the low-momentum

exchange region up to ~m,, a_ is the enhanced model for the intermediate-momentum exchange region, a. is the high-momentum
exchange OPE from perturbative QCD, and the pion regularization scale is fixed at 4, = A,. The solid lines include all four NNz partial
amplitudes, while the dotted lines include only the NN results of [8].
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FIG. 14. Computed low-energy constant gV from combined
NN and NNz amplitudes using the naive low-momentum
schemes described in the text (purple), a more robust low- and
intermediate-momentum scheme (green), in comparison with the
NN-only result following [8] (orange). The weak dependence of
g™ on matching scale A is seen, and all computations are
performed at pion regularization scale u, = A, and neutrino
regularization scale u, = m,.

the role of this partial amplitude is primarily to enforce
finiteness in the UV, and at any rate, the quark-level
diagrams used in its calculation already include at least
some inelastic intermediate nuclear states.

In Fig. 13 the corrected partial amplitudes for the
matching analysis are plotted (solid) in comparison to
the NN-only partial amplitudes from [8] (dotted). Viewed
globally, these corrections are almost invisible to the eye,
certainly smaller than say 5%, showing the most discrep-
ancy inthe 0.1 < g, < 0.5 GeV range where the eye partial
amplitude is strongest.

03 04 05

H, [GeV]

01 0.2

0.6

FIG. 15.

With these partial amplitudes in hand, we can perform a
preliminary matching analysis analogous to that of [8] to
estimate the corrected size of the contact counterterm gV,
In practice, this amounts to implementing Eq. (3.40) on our
corrected partial amplitudes, and in particular, we propose a
hybrid matching scheme where the pure yEFT corrections
and those including a g, form factor are applied separately
to a, and a_, thus preserving the demarcation between low-
and intermediate-momentum physics. However, other
schemes are plausible: naively, one might assume that
due to our incomplete knowledge of the intermediate-
momentum range, we should only apply our corrections
to a,, either with a hard cutoff or with the softer inclusion of
the g, dipole form factor (FF). The results of all three
approaches, at u, =m,, u, = A,, and as a function of
matching scale A, are displayed in Fig. 14. We find that, in
our hybrid matching scheme, the size of g™ (u, = m,) is
enhanced from 1.35 to 1.40, an increase of just under 4%,
while generic independence of sufficiently large matching
scale A is preserved. The suppression of 1% in the naive
cutoff and form factor schemes, in our view, neglects
relevant intermediate-momentum-scale physics that is
present in our analysis. However, at the very least, it
provides an additional confirmation that the NNz correction
gV is small, well below the 38% uncertainty allocated by
[8]. Note also that our value of 1.35 for the NN-only
counterterm size differs from the value of 1.34 quoted by
[8]; this difference appears to be entirely attributable to
updated measurement of m, and so does not represent a
correction but rather an update on the NN-only result.

In Fig. 15, we illustrate the dependence of these results on
the neutrino regularization scale y,. As expected, the size of

0.10

0.05E..>

NN + NN7T (hybrid)

NN

0.00

NN
v

Ag

-0.05¢

. NN + NNt (FF)
1+ NN + NNt (cutoff)

-0.10}
01 02 03 04 05 06
W, [GeV]

-0.15

Computed low-energy constant g)'V from combined NN and NNz amplitudes using the naive low-momentum schemes

described in the text (purple), a more robust low- and intermediate-momentum scheme (green), in comparison with the NN-only result
(orange). The logarithmic dependence of ¢’V on neutrino regularization scale y, is seen, and all computations are performed at pion
regularization scale u, = A, and matching scale A = A,,. Global similarity of the running coupling is demonstrated on the left, while the
right shows the NN, corrections AgY" by scheme, where the values at chosen scale u, = m,, correspond to Fig. 14.
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the correction remains small across all y, and, globally, we
can state that the shape of the renormalization group of gV
is adjusted very little. However, the total corrections to gV
are scale dependent; in the hybrid scheme they vary between
—0.06 < AgYN < 0.07 for scales 0.05 < p, < 0.6 GeV.
The results according to the naive cutoff and form factor
schemes diverge from one another as one moves away from
u, = m, and the surfer diagram contributions become
larger; however, all three schemes exhibit decreasing scale
dependence of Ag)Y". In other words, accounting for NNz
diagrams has served to improve the scale dependence of
gV, albeit very slightly.

In total, we quote the following N Nz-corrected result for
the size of the AL = 2 contact counterterm first estimated
by [8], representing a ~4% increase in its size:

QII/VN = 140(20) Vg (S)parameters (3>inelastic = 14(3) (437)

Regarding our uncertainties, we retain the short-range
potential and parameter uncertainties claimed by [8], since
we have not sought to make improvements on the
calculation in either of these areas, and since we have
not introduced any dramatically different short-range
physics or physical parameters into the picture that would
be more prone to uncertainty. In addition, we have checked
that reasonable variation of our model parameters (namely,
A, in the g4 dipole form factor) does not exceed 6 = 0.05.

Our remaining inelastic uncertainty is derived from
the power counting performed in Fig. 9, from which all
unaccounted for, subleading NNz diagrams are expected
to contribute not more than 0.016 uncertainty to the total
correction amplitude. NNzz and more-pion intermediate
states only begin to contribute at N*LO in our power
counting and can be expected to be safely subpercentile.
We suggest that the inclusion of A and heavier resonance
intermediate states in our analysis, because it would
require a full extension of the underlying yEFT framework
to include explicit heavier degrees of freedom, is already
accounted for in the short-range potential uncertainty
oy, = 0.20. To account for any N3LO A-resonance dia-

grams that might contribute at N°LO to our power
counting of diagrams, we conservatively double our
remaining inelastic uncertainty to give jpeasic = 0.03.

Therefore, in addition to identifying a ~5% increase in
the size of the contact counterterm owing to NNz inter-
mediate states, our yEFT framework demonstrates a reduc-
tion of inelastic uncertainties from the ~38% of [8] to ~3%,
corresponding to a total uncertainty improvement from
~46% to ~21%. Thus, the dominant source of contact
counterterm uncertainty, rather than inelastic states, is the
selection of a short-range internucleon potential for inter-
mediate momenta.

V. DISCUSSION

The complexity of the nuclear many-body problem and
resultant wide spread in estimates of NMEs remains the
primary obstacle to improving the precision of our theo-
retical understanding of Ovff decay. While development
continues for a variety of computational methods based on
phenomenological nuclear theory, a growing proportion of
the nuclear theory community has come to view ab initio,
first principles nuclear theory as the most promising way
forward. Uncertainty quantification in ab initio nuclear
theory is more rigorous than in phenomenological models,
granting insights into disagreements between calculations
and ultimately the systematic improvement of many-body
methods as well as the NMEs they predict [89].

In this work, we have attempted to expand upon the
calculation of the contact counterterm contribution to Ovf
decay, as first noted in Ref. [5] and quantified for elastic
intermediate states in Refs. [7,8]. At renormalization point
u = m,, this estimate was

gll:]N |NN ~1 '32(50)ine]astic (2O)VS (S)parameters =13 (6) ’ (5 1)

where a total of ~46% uncertainty is present, dominated by
the ~38% uncertainty arising from the choice to only
account for elastic intermediate hadronic states. By
accounting for NNz intermediate states, we have generated
an improved estimate of the contact coefficient

g{/VN|NN+NNn = 1'40(20)VS (S)parameters(3)inelastic = 14(3)’
(5.2)

where a total of ~21% uncertainty is present, only ~3%
now stemming from the intermediate-state truncation (an
order of magnitude reduction). As indicated in Sec. IV E,
additional work will be required to ensure the robustness of
this intermediate-state correction through intermediate-
momentum scales. Further improvements in precision
could mainly be obtained through careful characterization
of the short-range nuclear potentials employed in modeling
that intermediate-momentum scale.

A distinct verification of the size of the contact counter-
term, justifying in part the relation to charge independence
breaking low-energy constants made in [5], was recently
performed by [90,91] using a large-N . analysis. We note
that their determination, like ours, favors a slightly larger
gV than the elastic truncation, and that our results agree
within uncertainties.

Recently, the author became aware of a new and
alternative approach by [92], in which the Ovpf-decay
amplitude is computed using the manifestly Lorentz-
invariant chiral Lagrangian of [93]. Just as Ref. [93] shows
how to absorb all UV divergences for S-wave NN scatter-
ing, Ref. [92] claims that this relativistic Lagrangian leads
to an Ovff-decay amplitude that requires no counterterm at
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LO. The resultant LO amplitude is numerically compatible
with the nonrelativistic approach with a counterterm and,
therefore, our improved precision estimate as well; it would
be interesting to consider whether the subleading correc-
tions presented here have an analogous effect in the
relativistic setting.

To obtain an ab initio estimate of the NME for Ovpp
decay in a given isotope, input from the two- and few-
nucleon scale must be provided to an appropriate many-
body method; popular contenders include the self-consistent
Green’s function approach [94], the in-medium similarity
renormalization group (IMSRG) [95], coupled-cluster
methods [96], and the in-medium generator coordinate
method (IM-GCM) [97]. NME estimates from these
approaches, built upon long-range few-nucleon inputs only,
skew smaller than estimates from most phenomenological
nuclear models, with the consequence that a given Ovfp-
decay search will probe less of new-physics parameter
space. The most recent calculation based on IMSRG [98]
suggested as much as an order-of-magnitude decrease in
experimental reach or, rather, that biased estimates based on
phenomenological nuclear models have overinflated exper-
imental reach by this amount.

Reference [99] was the first to produce NME esti-
mates that include the contact counterterm as input,
demonstrating (within a no-core shell model) a ~15%
enhancement in ®He compared to the long-range-only
estimate. References [98,100] similarly applied IMSRG
and IM-GCM incorporating the contact counterterm to
experimentally relevant isotopes such as 7°Ge; compared to
the long-range-only NME estimates, these results show
40%-90% enhancements depending on the isotope. As a
result, a significant portion of the experimental reach that
was lost in proceeding from a phenomenological to an
ab initio nuclear model is restored. Since our improved
precision estimate of the contact term has resulted in only a
very small adjustment of the central value, within even the

improved uncertainties, we should therefore anticipate a
tightening of the ab initio NME estimates, without much
movement.

Clearly, it is essential both to the interpretation and
design of future Oypp-decay searches that the remaining
theoretical uncertainties embedded in these ab initio esti-
mates be suitably resolved. As [98] explains, many of these
theoretical uncertainties will arise from neglected many-
body effects, e.g., in IMSRG; these are beyond the scope of
this work and represent significant future endeavors of the
nuclear theory community. However, other theoretical
uncertainties arise from the two-nucleon scale, and it is
precisely those uncertainties on the contact counterterm
that we have here reduced by a factor of 2.
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