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Neutrinoless double-beta (0νββ) decay is an as-yet unobserved nuclear process, which stands to provide
crucial insights for model building beyond the Standard Model of particle physics. Its detection would
simultaneously confirm the hypothesis that neutrinos are Majorana fermions, thus violating lepton-number
conservation, and provide the first measurement of the absolute neutrino mass scale. This work aims to
improve the estimation within chiral effective field theory of the so-called “contact term” for 0νββ decay, a
short-range two-nucleon effect that is unaccounted for in traditional nuclear approaches to the process. We
conduct a thorough review of the justifications for this contact term and the most precise computation of its
size to date [gNN

ν ¼ 1.3ð6Þ at renormalization point μ ¼ mπ], whose precision is limited by a truncation to
elastic intermediate hadronic states. We then perform an extension of this analysis to a subleading class of
inelastic intermediate states that we characterize, delivering an updated figure for the contact coefficient
[gNN

ν ¼ 1.4ð3Þ at μ ¼ mπ] with uncertainty reduced by half. Such ab initio nuclear results, especially with
enhanced precision, show promise for the resolution of disagreements between estimates of 0ννββ from
different many-body methods.

DOI: 10.1103/PhysRevD.111.055033

I. INTRODUCTION

From a theory perspective, the usefulness of neutrinoless
double-beta (0νββ) decay as a probe of neutrino mass and
of lepton-number violation (LNV) is constrained by the
precision with which its half-life may be related to physical
model parameters. This precision is most severely limited
by our ability to calculate many-body or even few-body
nuclear structure, a challenge amplified by the inherent
two-body nature of 0νββ decay. The factorization of the
0νββ amplitude into a leptonic phase-space factor (PSF)
and a hadronic nuclear matrix element (NME) [1], although
inexact, has become a standard approximation. This is, in
part, because the imprecision introduced by this factoriza-
tion falls well below other theoretical uncertainties [2] and,
in part, because the PSFs are calculable with relative ease
compared to the NMEs.
No exact method to solve the nuclear many-body

problem from first principles has yet been developed;
instead, a collection of efficient, truncated techniques are
in common usage, which are reviewed extensively, e.g.,

in [3]. Estimates of the 0νββ-decay NMEs are known to be
correlated across isotopes, both within and across many-
body methods, due to shared (and only partially under-
stood) systematics of the many-body procedures [4]. These
correlations are sometimes interpreted through the lens of
“quenching,” a generic overestimation of NMEs for both β
and 2νββ decay, owing to the Gamow-Teller term. As
Ref. [3] reviews in great detail, numerous underlying
mechanisms for this systematic offset have been proposed
but lack any conclusive evidence. Any or all nuclear-
structure correlations, multinucleon weak currents, heavier
isobars such as the Δ, pion-range properties of the nuclear
medium, and more could be responsible for the effect, and
as such it is unclear whether a similarly strong effect
occurs for 0νββ decay.
Between 2018 and 2021, Cirigliano et al. surprised the

0νββ and nuclear theory communities with a series of works
[5–8] purporting to show that even the two-body picture of
0νββ decay within conventional nuclear theory was, in fact,
incomplete, containing its own intrinsic systematic offset.
Employing an ab initio framework derived from chiral
effective field theory (χEFT), these works claimed that a
short-range, two-nucleon LNV interaction necessarily indu-
ces a contribution to the decay similar in magnitude to the
contribution from the usual light neutrino exchange. There
has been debate in the community about the implications of
this result for NME computations performed in standard
phenomenological nuclear frameworks and, in particular,
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whether the proposed “contact counterterm” is already
accounted for by the nucleon-nucleon correlations included
within modern many-body nuclear models. However, [8]
argued concisely that the EFT-based argument still proceeds
even if the involved nucleons are maximally correlated and
so must be a distinct effect. To this point, there has been no
published rebuttal.
Beyond such generic considerations, the 0νββ-decay

theorist is of course most interested in the quantitative
impact of the contact counterterm on estimated NMEs. This
question was partially answered in the most recent works
by Cirigliano et al. [7,8], which implemented a matching
analysis between low-momentum χEFT and high-momen-
tum perturbative QCD in order to estimate the coefficient of
the contact counterterm. Their final result, at renormaliza-
tion point μ ¼ mπ , was

gNN
ν jNN ≃1.32ð50Þinelasticð20ÞVS

ð5Þparameters¼ 1.3ð6Þ; ð1:1Þ

where the largest error, about 38% relative error, arises
from the choice to only account for elastic NN states in the
intermediate stage of the process. The other acknowledged
sources of error are the choice of a short-range nuclear
potential VS and other model-dependent parameters used to
extend the χEFT result up to higher momenta, closer to the
perturbative QCD regime so that a matching analysis is
possible. The renormalization point is a kinematic scale at
which one chooses to match theory parameters to physical
observables; it is not unexpected that an unobservable
coupling such at gNN

ν should vary with this choice of scale,
although observables should not.
This work aims to improve upon the 38% error from

truncation to elastic states, by explicitly accounting for the
lowest-lying collection of inelastic states, namely, NNπ
states. Our result will therefore include both an adjusted
coefficient for the contact counterterm and an improved
error bar on the inelastic-state truncation, and at the same
renormalization point will have numerical value

gNN
ν jNNþNNπ ≃ 1.40ð20ÞVS

ð5Þparametersð3Þinelastic ¼ 1.4ð3Þ:
ð1:2Þ

To contextualize this result, and our methods, we will first
give an overview of the mathematical and physical foun-
dations of the work of Cirigliano et al. in Sec. II: chiral
symmetry, χEFT, and nucleon-nucleon interactions within
that framework. Section III will review the derivation of the
contact counterterm from [8], including the aforementioned
matching procedure for determining its coefficient. Finally,
in Sec. IV, we will present our novel derivation of the
contact counterterm coefficient accounting for bothNN and
NNπ intermediate states, ultimately delivering an updated
estimate of gNN

ν with improved uncertainty, and comment on
the uncertainties that then dominate.

II. CHIRAL EFFECTIVE FIELD THEORY
AND NUCLEAR FORCES

The experimental properties of both bound quark-gluon
matter and hadronic scattering processes have constrained
the gauge group of the strong interactions to be SUð3Þcolor.
This fact has numerous nontrivial implications, not the least
of which is that quarks and gluons should be confined into
hadronic matter in systems below the Hagedorn temperature
[9,10]. In studying QCD at low energies (MeV–GeV)
relevant to nuclear processes, typically MeV–GeV-scale
as opposed to TeV-scale collisions, our essential goal will be
to make accurate predictions of hadronic properties, in
particular the interactions of stable baryonic matter (protons
and neutrons) via short-lived mesonic mediators. The
running of the strong coupling leads to the breakdown of
perturbation theory for low-energy QCD; i.e., we cannot
hope to describe these hadronic interactions through some
convergent series of diagrams involving their constituent
quark and gluon field quanta.
However, nature has blessed QCD with a natural (chiral)

symmetry, which is broken lightly enough that direct
calculation of hadronic interactions is possible—with quan-
tifiable perturbative uncertainties. The lightest mesons,
pions, emerge as the Goldstone bosons of this approximate
spontaneously symmetry breaking (SSB), and their inter-
actions are severely constrained. The resultant χEFT, whose
formulation is outlined in this section, will prove powerful
enough to explain properties of nucleon-nucleon collisions
from what are effectively QCD first principles. By including
electroweak source terms in the χEFT Lagrangian, 0νββ
decay can also be described at the nucleon level.

A. Chiral symmetry, SSB, and an effective Lagrangian

Chiral symmetry is most simply stated as the separation
between the mass scale of the light quarks and that of the
hadrons; with these light-quark masses taken to be 0, QCD
classically enjoys an exact, global Uð3Þflavor symmetry.
Furthermore, examining chirality eigenstates of the
quark field reveals a copy of this flavor symmetry in each
chirality sector, i.e., Uð3ÞL × Uð3ÞR ≃ SUð3ÞL × SUð3ÞR×
Uð1ÞL ×Uð1ÞR, where the latter factorization emerges from
extracting a global phase from each Uð3Þ transformation.
This approximation of QCD still holds when we

promote the SUð3Þcolor symmetry of the quark fields to
a local symmetry, introducing non-Abelian gauge self-
interactions and a θ-term. However, the gauge interactions
do constrain the collection of global flavor symmetries
after quantization. The famous axial anomaly of Uð1ÞA
[11,12], with a violation inversely proportional to the
number of colors, implies thatUð1ÞA plays a role neither in
chiral symmetry breaking nor in the eventual χEFT. The
remaining Abelian symmetry Uð1ÞV, on the other hand, is
preserved after quantization and corresponds to baryon-
number conservation.
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The action of chiral SSB is therefore restricted to
SUð3ÞL × SUð3ÞR and its subgroup SUð3ÞV under which
the QCD vacuum is invariant. Before exploring the
consequences of this breaking, it is valuable to physically
motivate its occurrence. Speaking phenomenologically, a
SUð3ÞA symmetry on the baryon spectrum allows one to
construct from any positive parity state a mass-degenerate
negative parity state; however, such opposite-parity pairs
are firmly absent from the observed baryon spectrum.
Speaking theoretically, if the operator q̄q has a nonvanish-
ing expectation value, which must be flavor independent in
the chiral limit, the QCD vacuum is no longer invariant
under axial symmetry SUð3ÞA [13]. Thus, the scalar singlet
quark condensate q̄q provides not only an explanation, but
a mechanism by which chiral symmetry can be sponta-
neously broken at zero temperature, yet be preserved/
restored at higher energies. The pions, an isotriplet of
pseudoscalars with masses 135.0 (π0) and 139.6 MeV (π�),
are interpreted as the pseudo-Goldstone bosons resulting
from this SSB, and their significant mass hierarchy to the
next-lightest mesons, kaons ∼490 MeV and ρ mesons
∼770 MeV, may be taken as evidence of the chiral
symmetry of QCD in action.
Some general comments about EFTs are in order.

Although we have selected a symmetry-breaking pattern
based on the theoretical and experimental properties of
QCD, numerous quantum field theories could be con-
structed that obey this symmetry-breaking pattern. The
natural question is then: which approximation is the best
choice? A key result by Weinberg [14] is that the most
general Lagrangian obeying the chosen symmetry will
generate the most general complex-analytic S matrix that
also obeys that symmetry, as well as being consistent with
unitary time evolution and “cluster decomposition,” where
the latter refers to a conjected asymptotic independence
between distant experiments. The conventional wisdom is
that one cannot generically improve on this choice, as all
specific physical content is encoded in the symmetry
breaking. One is free to select the constituent fields most
appropriate at the observed scale; in χEFT, these degrees of
freedoms are hadrons rather than the more fundamental
quarks and gluons. The resultant Lagrangian will also, in
general, be nonrenormalizable, but this is in line with the
expectation that the effective theory will only make
accurate predictions within some range of scales. Even
still, an infinite quantity of interaction terms appear in the
Lagrangian, and there is no a priorimethod for determining
which will contribute dominantly in all situations. As a
result, part of constructing the effective theory is the choice
of “power counting” scheme, usually in the form of a small
expansion parameter. In χEFT, the standard and physically
well-motivated choice is an expansion in Q

Λχ
≃ mπ

Λχ
∼ 1

7.5 for

characteristic momentum Q and chiral symmetry-breaking
scale Λχ ∼ 1 GeV [15].

We will not review the construction of the χEFT
Lagrangian from the above principles in detail, but instead
direct the reader to standard resources such as [13]. In
brief, one constructs the simplest nontrivial realization of
spontaneously broken chiral symmetry, building invariant

interactions out of SUðNÞ-valued fieldsUðxÞ ¼ exp ði ϕðxÞF0
Þ

for pion fields ϕ and constant F0. ϕ can be expanded
ϕ ¼ ϕaλa over some basis λa¼1;…;n2 of SUðNÞ, with
standard normalization TrðλaλaÞ ¼ 2; for N ¼ 2, λa are
the (isospin) Pauli matrices, and for N ¼ 3 they are the
Gell-Mann matrices. The chiral symmetry is promoted to a
local symmetry by introducing two gauge fields lμ, rμ and
an appropriate gauge-covariant spacetime derivative.
Explicit chiral symmetry breaking is encoded in the
light-quark mass matrix M, and an argument due to
Manohar and Georgi [15] shows that it is consistent to
treat M as an auxiliary field and build the most general
possible chiral-invariant Lagrangian accordingly, although
it will always take on a constant value at evaluation.
If we are to apply χEFT to nuclear problems, baryonic

fields must be introduced into the formalism. It is not
necessary, for low-energy applications, for these baryons
to be full-fledged dynamical fields, as processes in which
baryons are created and destroyed are already beyond the
range of validity of χEFT due to the heavy masses of
baryons. Practically, this implies that our baryon realiza-
tions of the chiral symmetry need not be matrix valued;
instead they can be isospin multiplet states N that trans-
form under SUðNÞV as N ↦ VN. While previously we
could only evaluate pion diagrams between QCD vacuum
initial and final states, now these states can be (tensor
products of) N states, providing a language for n-nucleon
interactions.
Again, invariance under chiral symmetry specifies the

most general set of interactions possible between baryons
N and pion exponentials U. In nuclear applications, it is
highly beneficial to take a “static approximation” in which
the nucleon mass is thought of as very large and in which
Dirac algebra reduces to Pauli algebra. Within the regime of
our results, we implicitly take to be equivalent such
formalisms as the heavy-baryon chiral perturbation theory
of [16] or the simple neglect of a mass term for nucleons
employed by [17,18].
Altogether, we have leading-order chiral Lagrangian

L2 ¼
F2
0

4
Tr
�
DμUDμU†

�
þ F2

0B0

2
Tr
�
MU† þUM†

�

þ N̄
�
iγμð∂μ þ ΓμÞ −mþ gA

2
γμγ5uμ

�
N; ð2:1Þ

where B0 is an independent low-energy constant not
determined by chiral symmetry, and where Γμ and uμ
are particular vector combinations of the pion fields and

IMPROVED PRECISION CALCULATION OF THE … PHYS. REV. D 111, 055033 (2025)

055033-3



their derivatives, to be defined as needed. F0 may be related
to the expectation value for the decay of a pion to the
vacuum via an axial current [13],

h0jAμ
að0ÞjϕðbÞðpÞi ¼ ipμF0δab ð2:2Þ

and is thus known as the “pion decay constant.”
Normalization varies by factors of

ffiffiffi
2

p
depending on the

choice of pion field normalization, but we follow [8,13] and
the bulk of recent literature in taking the relation above to
define F0. Corrections from L4 and beyond distinguish
between Fπ for pions and FK for kaons, and the exper-
imental value Fπ ¼ 92.1ð8Þ MeV [19] includes these
corrections. Therefore, in the following, we will follow
[8] in writing Fπ with an awareness that its value includes
higher-order chiral corrections even though the rest of our
calculation does not.
Since even the l ¼ 2 Lagrangian contains infinitely

many interaction terms, it is necessary to be able to truncate
this series such that any resultant approximation error is
bounded. This is the ethos of power counting: to estimate
the magnitudes of interaction vertices, and therefore the
magnitudes of the diagrams they compose, before needing
to evaluate the high-dimensional integrals that those dia-
grams encode. Of course, these integrals must eventually be
evaluated and divergences cured through appropriate regu-
larization and the introduction of counterterms, but power
counting allows for the choice of truncation to be made
without the evaluation of any unnecessary integrals.
The more exact aspect of power counting is the book-

keeping of both dimensionless and dimensionful constants
that arise at interaction vertices. In χEFT, this is quite
straightforward. All terms in the U-field Lagrangian come

with fixed constants, e.g., F2
π
4

for all terms of L2, in
combination with B0 for the scalar/pseudoscalar sym-
metry-breaking terms; external fields, of course, may come
with their own dimensionless factors that are defined
during matching, but are fixed for every appearance of
the field. Where unknown, is it standard to take such
dimensionless constants to be of order Oð1Þ or vary them
over ∼2 orders of magnitude around 1. In the exponential
realization of the spontaneously broken axial symmetry,
each pion field ϕ also comes with a factor of 1

Fπ
.

The less exact aspect of power counting is the choice of
representative values for the spatial momenta and energies
that emerge from derivatives of field operators. Physically,
one can imagine that these virtual quanta have some
characteristic scale for all processes within the range of
validity of χEFT. Of course, no choice can be truly
universal, and indeed we encounter in 0νββ a process that
in part astounds expectations of a nice hierarchy of scales
for nuclear processes. For now, we will proceed by letting
the characteristic four-momentum scale of pions beQ ∼mπ ,
which is considered in ratio to the chiral symmetry-breaking

scale Λχ ; this is plausible since r ∼ 1
mπ

is the typical distance
between nucleons. Any interaction vertex may then be
assigned a label k denoting approximate magnitude ðQΛχ

Þk.
Since our interactions will permit only low-energy pions
and nucleons, we can write Q ∼mπ ≪ Λχ ∼MN [20]
such that the ratio Q=Λχ ∼ 1

7.5 is an appropriate small
parameter [15].
We will revisit the chiral power counting in Sec. IV D,

when we define the specific rules necessary for estimating
the magnitudes of our NNπ contributions.

B. The problematic NN sector

Studies of two-nucleon (NN) interactions and bound-
systems in χEFT, as distinct from the very broad literature
on high-energy nucleon scattering, e.g., in colliders, have
been motivated by the desire to perform further analysis of
many-nucleon systems. The first steps in this direction were
phenomenological treatments of two-nucleon potentials,
which were derived as fits to measured scattering data
and bound-state (deuteron) characteristics [21,22] and
dominated the discipline until recently. The reasons are
twofold for the broad acceptance [23] of effective chiral
potentials over these phenomenological ones: they come
with quantitative error bars owing to the truncation of the
chiral ordering and are therefore systematically improvable;
and they are explainable in terms of the broken chiral
symmetry of QCD.
The key distinction between the NN sector of χEFT and

the π and πN sectors is thatNN interactions are known to be
strong at low energies, and perturbation theory breaks down.
While interactions involving pions, as Goldstone bosons,
are “protected” by chiral symmetry, those between nucleons
are not. Pion-range interactions such as one-pion exchange
may obey the chiral power counting, but by the same logic,
shorter-range nucleon interactions should also—this para-
doxically leads to a description of nuclear physics where the
interactions are not strong, where nuclear bound states are
not captured, and indeed where nuclei do not appear at all
[24]. More concretely, we will consider the effective NN
Lagrangian of [18]

LNN ¼ N†i∂tN − N† ∇2

2MN
N −

1

2
CSðN†NÞ2

−
1

2
CTðN†σ⃗NÞ2…; ð2:3Þ

which includes all interactions invariant under chiral sym-
metry and defines two undetermined four-nucleon low-
energy constants (LECs), CS and CT .
Evaluating all leading-order (LO) diagrams between

incoming and outgoing NN states jp⃗i and jp⃗0i gives the
NN potential first elucidated by Weinberg [20],
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hp⃗0jVNN jp⃗i ¼ C − τ1 · τ2
g2A
2F2

π

ðp⃗ − p⃗0Þ · σ1ðp⃗ − p⃗0Þ · σ2
ðp − p0Þ2 þm2

π
;

ð2:4Þ

where C ¼ CS − 3CT for a 1S0 → 1S0 transition. The
derivation of the pion-exchange term is unimportant here,
but will prove key to our argument in Sec. IV. From the
chiral power counting and now manifestly from the
evaluation between states, both terms of the LO potential
are of order OðQ0Þ. Consider then the two-pion-exchange
“box diagram” of Fig. 1. While the heavy-baryon NN
propagator contributes Q−1, the nonrelativistic loop inte-
gration contributes Q3, and we find that the diagram is
suppressed by Q2 compared to one-pion exchange; the
same result would hold with any or all of the pion
exchanges replaced by NN contact interactions.
This power counting does not survive integration using

the static nucleon propagator i
p0
, which diverges uncon-

trollably for the reason that the static baryon approximation
cannot consistently hold while p0 → 0. To see this, it is
enough to observe that there is no such thing as a soft
nucleon in our chiral limit; all components of the on-shell
nucleon four-momentum p cannot at once be 0.
NN pairs of kinetic energy E experience a pairwise

Green’s function

hp⃗jG0ðEÞjp⃗i ¼
i

E − p2

MN

; ð2:5Þ

whose enhancement can be estimated to be MN
mπ

over the
naive estimate by letting jp⃗j ∼mπ . The chiral power
counting would have us take MN to be of order Q0, as
MN∼ chiral symmetry-breaking scale Λχ , whereby the
suppression of the doubly iterated NN interaction drops to
Q1, still allowing perturbative expansion. Weinberg argues
[20] that large nuclear scattering lengths observed at low
energies justify the treatment of MN as a “free parameter,”
in the sense that its value is determined more directly by the
number of colors in QCD than by the chiral flavor
symmetry. Then takingMN ∼Q−1, while not quite numeri-
cally satisfying [24], is a compact way to bring the iterated
NN interaction down to OðQ0Þ. In summary, the enhance-
ment of pure nucleon intermediate states by both the pinch

singularity and the separation of scales MN ≫ mπ implies
that it is equally probable, roughly speaking, for a pair of
low-energy nucleons to propagate freely or to interact via
the contact/pion-range interactions of LNN .
The resultant procedure for generating nuclear forces

from χEFT has become ubiquitous in the literature. First,
one produces an effective n-nucleon potential by evaluating
only those interaction diagrams which do not include
n-nucleon intermediate states, corresponding to joint
Green’s functions like G0ðEÞ. Then, one iterates this
potential, for example, by numerically solving a complete
Schrödinger equation with the potential as input [17]. This
iteration may in some cases be treated as a formal geo-
metric series, and indeed this is the approach that will prove
efficient for the study of 0νββ decay. The great success of
Weinberg’s scheme is that it allows for the nonperturbative
computation of n-nucleon forces within χEFT; the great
drawbacks are that the power counting is not wholly
consistent with the single-nucleon sector and that the
extension to higher-order contact terms (with spacetime
derivatives) is undefined [24].
Perhaps inadvertently, a toy model Weinberg used to

demonstrate the above procedure in [20] emerged as a
significant tool for modern nuclear theory. This is the
pionless EFT (=πEFT), which contains only the interactions
of Eq. (2.3) at LO and supports only nucleonic degrees of
freedom. As such, it is the simplest nuclear EFT valid at
short-distance scales [24], and yet it is robust enough to
indicate the renormalization procedure for diagrams con-
taining two (or more) nucleons. We note that, because the
mq → 0 limit is no longer meaningful, this theory cannot be
said to obey even a broken chiral symmetry.
First we recall the demonstration by [20] of the one-loop

renormalization of four-nucleon contact strength C, shown
diagrammatically in Fig. 2. The integral to be evaluated is

T2ðEÞ ¼ C2

Z
d3q
ð2πÞ3 hq⃗jG0ðEÞjq⃗i

¼ C2

Z
d3q
ð2πÞ3

1

E − q2

MN
þ iϵ

; ð2:6Þ

which in dimensional regularization with D ¼ 3 − ε
gives [18]

TD¼3−ε
2 ðEÞ ¼ −C2ð4πÞ−3−ε

2 μϵMNð−MNE− iϵÞ1−ε2 Γ
�
ε− 1

2

�
:

ð2:7Þ
Letting ε → 0 gives a finite regularized result, with E ¼ p2

M
for the reduced-mass NN system,

T2ðEÞ ¼ lim
ϵ→0

TD¼3−ε
2 ðEÞ ¼ −iC2MN jp⃗j

4π
: ð2:8Þ

FIG. 1. The box diagram for two-pion exchange, shown in the
text to be of similar order to the diagram for one-pion exchange.
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However, Weinberg does not perform the renormalization
of C order by order in [20], nor even attempt it. Realizing
that a chain of k contact loops is, in fact, separable into

kþ 1 interaction vertices C and k bubbles T2ðEÞ
C2 , and

applying the infinite geometric series property
P∞

k¼0 ar
k ¼

að1 − rÞ−1 with radius of convergence jrj < 1, he writes

T∞ðEÞ ¼
�
1

C
−
Z

d3q
ð2πÞ3

1

E − q2

MN
þ iϵ

�−1
; ð2:9Þ

which may be encoded diagrammatically, following [18], as

ð2:10Þ

Then absorbing any infrared divergences in T∞ðEÞ by
defining CR ≡ T∞ð0Þ, the geometric series simplifies to

T∞ðEÞ ¼
�
1

CR
þ iMN jp⃗j

4π

�
−1
: ð2:11Þ

This result already contains all the key physics of
NN scattering in =πEFT, even if some loose ends need
tying up. It can be matched directly to the so-called
effective-range expansion, an experimentally determined
[25] fit to NN-scattering phase-shift data,

ijp⃗j − 4π

MN

1

TðEÞ ¼ −
1

a
þ 1

2
r0p2 þOðp4Þ; ð2:12Þ

where a is known as the scattering length, and r0 is the
effective range. Reference [18] quotes 1S0 np scattering
values a ¼ −23.714� 0.013 and r0 ¼ 2.73� 0.03 fm
from [26] as a point of reference. Evaluating with T∞ðEÞ
gives

a ¼ MN

4π
CR; r0 ¼ 0: ð2:13Þ

Two important conclusions must be drawn. The first is that
large scattering lengths, as are observed for shallow NN
bound states (those near the unitarity limit), necessitate large
contact couplingsCR inWeinberg’s approach. The second is
that the “natural” proportionality C ∼ 4π

MNmπ
[24] implies

a ∼ 1=mπ ∼ 1.5 fm; by defying this expectation, the exper-
imental scattering length suggests that this effective theory
formalism is not, in fact, consistent up to the mπ scale.
Reference [18] cleanly shows the converse by working out
TðEÞ to next-to-leading order (NLO) in =πEFT and observes
a breakdown of the chiral expansion around Λ ∼ 35 MeV, a
factor of 5 below mπ.
In landmark work, Kaplan et al. [18] showed that both of

these limitations can be overcome by an alternative regu-
larization scheme, referred to as power-divergence subtrac-
tion (PDS) or alternatively as the Kaplan-Savage-Wise
(KSW) scheme. First, one notes that the dimensionally
regularized expression of Eq. (2.7), while finite at ε ¼ 0 and
therefore requiring no counterterm in the minimal subtrac-
tion MS scheme, does diverge linearly at ε ¼ −1. The idea
of PDS is to subtract this divergence with an additional
counterterm, dependent on a regularization scale μ [27].
Then,

TPDS
∞ ðEÞ ¼

�
1

Cðp2; μÞ þ
MNðμþ ijp⃗jÞ

4π

�
−1
; ð2:14Þ

which clearly matches the MS result if μ ¼ 0.
The above approach may seem arbitrary, and indeed

surprising, given the familiar result that physical results
obtained from different perturbative renormalization
schemes are identical; only the sum of divergence and
counterterm is observable. As a toy model, Ref. [28] instead
argues that for δ potentials the physical amplitude can be
dependent on the nonperturbative renormalization scheme,
in particular, with different results for MS-dimensional
regularization compared with cutoff regularization. Since
the MS removal of divergences is a choice of renormaliza-
tion scheme beyond the regularization of a loop integral,
PDS achieves success by making an alternative choice more
compatible with cutoff renormalization.
More precisely, bound states with large scattering

lengths, also known as shallow bound states, are those
where the kinetic and potential energies of the state nearly
cancel [27]. However, neither the kinetic nor the potential
energy is an independent observable, and so this cancella-
tion is an unfortunate side effect ofMS renormalization. The
additional scale μ provides a sliding cutoff that separates the
kinetic and potential terms and can be chosen at a value that
provides a consistent power counting. Specifically, match-
ing to the effective-range expansion now gives

CR ¼ 4π

MN

�
1

a
− μ

�
−1
; ð2:15Þ

FIG. 2. The one-loop renormalization diagram of four-nucleon
contact interaction C in pionless EFT (=πEFT), as encoded in
integral T2ðEÞ.
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so even for large scattering length a, the natural choice μ ∼
mπ facilitates C ∼OðQ−1Þ as initially claimed, while μ ¼ 0
again reproduces the MS result. With renormalization
complete, the power counting of all diagrams in the theory
is well defined: the iteration of the lowest-order contact term
C has been justified, while all higher-order vertices are
counted perturbatively [27].
=πEFT has proven useful to the nuclear community

because large scattering lengths manifest in many physical
systems beyond NN. For example, it has been applied to
so-called halo nuclei whose valence nucleons largely have
density outside the classical interaction radius [29]. Since a
large scattering length in comparison to the interaction
radius implies that the bound-state properties are driven by
tunneling, an EFT approach need not probe many details of
the internucleon potential to be descriptive of such systems
[24]. =πEFT has also successfully been applied to the
Efimov effect [30], the observation that three particles
with short-range attractions near threshold can induce long-
range, specifically three-body interactions [31]. A review of
practical applications of the pionless framework to few-
nucleon systems may be found in [32]; these include
electromagnetic form factors for the deuteron, deuteron
formation in the context of big bang nucleosynthesis, and
weak-deuteron interactions. While our focus is on the NN
system as relevant to 0νββ decay, many of our χEFT
conclusions will first be motivated within =πEFT.
The value of including explicit pion fields and interactions

in our model as opposed to the =πEFT approach (beyond the
realization of chiral symmetry) is that the EFT should be
valid to higher energies—naively, up to the mass scale of the
next “integrated-out” degree of freedom, the ρ meson.
Weinberg’s power counting implied that a one-

pion-exchange potential should be iterated to all orders,
just as the four-nucleon contact potential was. The joint
iteration of two potentials requires some careful algebra,
detailed in [18]. Let us define the free, retarded two-

nucleon Green’s function as Ĝ0
E ¼ ½E − Ĥ0 þ iϵ�−1 and the

two-nucleon potential as V̂, both of which will have simple
actions on the space of momentum eigenstates jp⃗i. Writing
the geometric series

V̂ þ V̂Ĝ0
EV̂ þ V̂ðĜ0

EV̂Þ2 þ � � � ¼
X∞
k¼0

V̂ðĜ0
EV̂Þk

≡ V̂ þ V̂ĜEV̂ ð2:16Þ

allows us to define an interacting Green’s function ĜE.
Reducing the geometric series gives the simple relations

ĜE ¼ Ĝ0
E

1 − Ĝ0
EV̂

;

Ĝ−1
E ¼ ðĜ0

EÞ−1 − V̂ ¼
h
E − Ĥ0 − V̂ þ iϵ

i
−1
; ð2:17Þ

which relate the “dressed” and “undressed” Green’s func-
tions. It is then straightforward to uniquely define the
scattering state jχp⃗i as the eigenvector of Ĥ with eigenvalue

E ¼ p2

MN
or, equivalently, such that

Ĝ−1
E jχp⃗i ¼ 0; jχp⃗i ¼ ð1þ ĜEV̂Þjp⃗i; ð2:18Þ

where the latter relation is consistent with factorizing the
iterated potential amplitude as

hp⃗jV̂ þ V̂ĜEV̂jp⃗0i ¼ hp⃗jV̂jχp⃗0 i ¼
Z

d3re−ip⃗·r⃗Vðr⃗Þχp⃗0 ðr⃗Þ:

ð2:19Þ

With these definitions in place, the strategy of [18] is to
absorb the four-nucleon contact interaction C into Ĥ0 in the
sense of =πEFT, making use of the same explicit power series
solution. V̂ then consists only of the one-pion-exchange
potential, and it is with (iterated) pion exchange that the
scattering state jχp⃗i and two-nucleon propagator ĜE are
therefore dressed. In =πEFT, jχp⃗i reduces to the plane-wave
state jp⃗i, ĜE reduces to the free two-nucleon propagator
Ĝ0

E, and the NN-scattering amplitude corresponds to
Eq. (2.11) or Eq. (2.14) depending on subtraction scheme.
We can now precisely state how this framework changes

when pions are included. First, the pion-exchange potential
induces a correction in the NN contact coupling,

C ↦ C̃ ¼ Cþ g2A
2f2π

. Iterating as before, the T matrix is [18]

TχEFT
∞ ðEÞ ¼ Tπ

∞ðEÞ þ ½χp⃗ð0Þ�2
�
1

C
þ G̃E

�
−1
; ð2:20Þ

so long as one can evaluate scattering state jχp⃗i at r⃗ ¼ 0

and compute G̃E ¼ R R d3q
ð2πÞ3

d3q0

ð2πÞ3 hq⃗0jĜEjq⃗i, the dressed

two-nucleon propagator from r⃗ ¼ 0 to r⃗0 ¼ 0. Tπ
∞ðEÞ is

the iterated one-pion-exchange contribution, i.e., the col-
lection of terms containing no contact interactions. This
series can be represented diagrammatically as follows,
adapted from [18]:

ð2:21Þ
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where

ð2:22Þ

Green’s function G̃E contains divergences from the first
two diagrams in its perturbative series, shown in Fig. 3.
These divergences must be regularized and absorbed into
the renormalized interaction strength C̃ðμÞ. It will be
instructive to review the MS regularization of these dia-
grams by [18], as an analogous computation for divergent
diagrams containing a neutrino-exchange operator will later
prove relevant to 0νββ decay. The goal is to examine the
divergent parts of these diagrams only; the finite parts,

while calculable through numerical solution of the relevant
Schrödinger equation, will not be directly relevant to us.
Because the S-wave solutions to this Schrödinger equation
are independent of E as r → 0, [18] sets E ¼ 0 for
convenience in these calculations.
As an example, we can explicitly evaluate the integral

corresponding to the left of Fig. 3, the amplitude with no
pion exchange,

hr⃗0jĜ0
0jr⃗ ¼ 0i ¼

ZZZ
dr3

ð2πÞ3
dq3

ð2πÞ3
dq03

ð2πÞ3 hr⃗
0jq⃗0i ð2πÞ

3δð3Þðq⃗0 − q⃗Þ
− q2

MN
þ iϵ

¼ 2π

Z
∞

0

q2dq
Z

π

0

dθ cos θe−iqr cos θ
MN

q2 − iϵ

¼ 2πMN

Z
∞

0

dq
Z

π

0

dθ cos θe−qr cos θ

¼ 2πMN

ð2πÞ3
Z

π

0

dθ

�
−
1

r
e−qr cos θ

�
q¼0

q¼∞

¼ −
MN

4πr0
; ð2:23Þ

where in the third line, we take q ↦ −iq by the Cauchy
theorem in the absence of any poles off the imaginary q2

axis. The limit r0 → 0 is then singular. Reference [18]
shows that the irregular s-wave solution takes the following
asymptotic form at small distances:

lim
r0→0

Kλ
Eðr0Þ →

M
4πr0

−
απM2

N

4π
lnðλrÞ þOðr ln rÞ; ð2:24Þ

where λ is a choice of separation scale between the regular
and irregular Schrödinger solutions. Crucially, the 1=r0
divergence here exactly cancels that from our first diver-
gence perturbative diagram. Since MS dimensional regu-
larization reduces this diagram to 0 [18], the conclusion is
that this asymptotic Schrödinger regularization agrees with
dimensional regularization to 1=r0 order.
What of the ln r0 divergence? Ignoring finite contribu-

tions, direct integration of the amplitude hr⃗0jĜ0
0V̂πĜ

0
0jr⃗ ¼ 0i

FIG. 3. Leading perturbative diagrams of chiral two-nucleon bubble G̃ðEÞ, both of which contain regularizable divergences.
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shown on the right of Fig. 3 gives a divergent term απM2
N

4π ln r0,
which again precisely cancels the divergence of Kλ

Eðr0Þ. MS
dimensional regularization at scale μ gives the divergent

contribution απM2
N

4π lnðmπ
μ Þ identical to the Schrödinger diver-

gence with λ ↦ μ [18], albeit with a distinct finite part.
Therefore, we learn two things: the renormalization of C̃ is
scheme independent, and the kinematic point μ ∼mπ

provides the most precise perturbative series, as expected
from dimensional analysis.
Reference [18] promotes the numerical Schrödinger

procedure for practical calculations in part because it is
easily extended to higher-order chiral potentials. Indeed,
this approach will also extend to the inclusion of neutrino
potentials, but backed up with rigorous agreement to
dimensional regularization. A clever way to see the manifest
symmetry preservation of dimensional regularization is to
observe [33] that the DπDNDN† path-integral measure
transforms nontrivially under chiral symmetry, requiring the
introduction of a counterterm; this counterterm vanishes
with dimensional regularization. Therefore, momentum
cutoffs must be used with some caution, either by checking
for symmetry violations postcalculation [34] or by including
counterterms in the Lagrangian that cancel the effects of
cutoff regularization at each chiral order [33].
In effect, the choice of PDS subtraction during regulari-

zation of the leading divergences has implied a new power
counting for NN interactions in χEFT, in which pion
exchanges are treated perturbatively with convergence
guaranteed for momentum scales less than ΛNN ≃
300 MeV [27]—the Kaplan-Savage-Wise power counting,
in contrast to the Weinberg power counting. This approach
has not been without controversy, shown in [35] to not
converge for spin-triplet channels such as 3S1, where two-
pion-exchange contributions are large. One resolution to
this quandary has been to apply KSW counting only in the
1S0 partial wave, where the distinctive hard-core interaction
between nucleons facilitates a perturbative treatment of pion
exchanges [36]. Because the singular tensor component of
the pion potential in higher partial waves seeded the failure
of the KSW counting in these cases, a direct regularization
of the pion propagator [37] is another route to perturbative
pion physics beyond 1S0. A more modern approach that has
been shown to be scalable through N4LO in the chiral
expansion is a for-purpose regularization of contact inter-
actions by nonlocal Gaussian cutoffs, while pion-range
interactions are regularized at the level of the propagator—
thus, semilocal momentum-space regularization [38].
Although the renormalization of pionic NN forces has been
thoroughly computed in higher partial waves [39,40], this
will play only a small role in our analysis—the enhanced
contact term for 0νββ to be discussed will only appear in the
1S0 partial wave.
We have now introduced all the primary tools

and methodologies that facilitate [5] in treating the

leading-order divergent diagrams of 0νββ in χEFT—these
will prove essential to our refined estimate of the contact
term. The unifying feature that binds all these EFT-driven
nuclear computations together, whether in the symmetry-
constrained framework of χEFT or the satisfying simplic-
ity of =πEFT, is that each and every observable quantity
comes with a quantitative estimate of error. As in any EFT
with a consistent power counting, this bound emerges from
the truncation in the chiral expansion, which can be either
treated somewhat approximately [41] or formalized as a
Bayesian inference procedure [42–44] such that any prior-
assumption dependence, regarding the coefficients of the
chiral expansion of the observable, is controlled. Without
such tools, nuclear theorists have historically had to rely
upon variations of cutoffs and fit parameters to indirectly
estimate the theoretical uncertainty of a computation.
Although informative, such estimates are not statistically
rigorous and, unlike an EFT power counting, do not allow
the practitioner to anticipate at what scale higher-order
mechanisms may become relevant to a process.

III. RENORMALIZATION ENHANCEMENT
AND THE 0νββ CONTACT TERM

We have now overviewed the development of χEFT-
derived nuclear potentials and, in particular, their applica-
tion to shallow two-nucleon bound states. Now we will
present the state of the field in applying this ab initio
technology to the 0νββ transition in the two-nucleon
system, following the seminal works by Cirigliano et al.
[5–8]. To our knowledge, this is the first thorough review of
the Cirigliano group’s approach in print outside of their own
publications, and as such we will aim to present the core
results simply, but with an emphasis on how they represent a
general viewpoint toward calculations of nuclear amplitudes
[both Standard Model (SM) and beyond SM (BSM)], which
is very much in the spirit of systematically improvable
effective theories. We will also highlight the explicit and
implicit assumptions that are manifest in this approach, the
most numerically significant of which we will attempt to
expand upon in Sec. IV.
The procedure for realizing the two-nucleon contribution

to 0νββ decay at LO in the χEFT expansion has three stages.
First, a “neutrino potential” corresponding to the ΔL ¼ 2
NN → NN operator of choice must be defined between any
relevantNN partial waves, as first performed in [5]. Second,
in the style of the NN scattering computations presented in
Sec. 2.2 [18], this potential must be dressed with resummed
contact and pion-exchange potential operators and renor-
malized where divergences appear to produce a consistent
nonperturbative amplitude. The key result of [6] is that this
renormalization enhances a doubly LNV dimension-nine
contact counterterm to LO in the chiral power counting,
which is not accounted for in standard phenomenological
nuclear calculations of the decay. Third and finally, although
the contact term contribution to the full two-nucleon
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amplitude depends on an unknown LEC that will ultimately
require input from lattice QCD (LQCD), its size may be
estimated by a matching analysis as illustrated in [8].

A. Neutrino potential in χEFT

In order to evaluate the T matrix for an NN neutrino
exchange, the neutrino-lepton vertex on a single nucleon
must first be specified. Given that Lorentz invariance
severely constrains the form of this vertex, an efficient
approach is to first decompose the vertex into all permitted
Lorentz structures, whose unknown kinematic dependence
is encoded in form factors. In purely phenomenological
approaches to nuclear theory, these form factors are derived
from experiment using simple parametrizations such as

dipoles; in an ab initio approach, each form factor is
computable from χEFT.
Following [45], the effective single-β-decay Hamiltonian

is

Hβ ¼
GFffiffiffi
2

p ½eγμð1 − γ5Þνe;L�Jμ†L þ H:c:; ð3:1Þ

where the expression in square brackets is the usual
leptonic weak current, which is left handed (V − A)—note
that full details of neutrino potentials for “leptonic” BSM
operators of all Lorentz structures may be found in [46].
Taking the impulse approximation for nucleon-level cal-
culations, the hadronic current consists of six independent
Lorentz structures [47],

JμL ¼ JμV − JμA ¼ N̄τþ
�
gVðq2Þγμ þ gMðq2Þ

σμν

2MN
qν þ igSðq2Þqμ

−gAðq2Þγμγ5 − gTðq2Þ
σμν

2MN
qνγ5 − gPðq2Þqμγ5

�
N; ð3:2Þ

where σμν ¼ i
2
½γμ; γν�. Imposing hermiticity and time-reversal invariance, scalar and tensor terms gSðq2Þ ¼ gTðq2Þ ¼ 0, and

the other form factors are guaranteed to be real [47]. It is convenient to write this current in the nonrelativistic limit [45]

JμL;NR ¼ N̄τþ
�
gμ;0gVðq2Þ þ gμ;i

�
igMðq2Þ

ϵijkσ
jqk

2MN
þ gAðq2Þσi − gPðq2Þ

qiσ · q
2MN

��
N: ð3:3Þ

While the above separation is guided by phenomenological
simplicity, symmetry properties also support the conserved
vector-current (CVC) hypothesis and partially conserved
axial-current (PCAC) hypothesis. CVC allows one to set
gVð0Þ ¼ 1 regardless of host isotope and to assign dipole
approximations to both gV and gM [45],

gVðq2Þ ¼ gVð0Þ
m2

V

q2 þm2
V
; ð3:4Þ

gMðq2Þ ¼ ð1þ κ1ÞgVðq2Þ: ð3:5Þ

PCAC connects the divergence of the axial current to
measurable pion decay, allowing both gP and gA to be
expressed in terms of the same phenomenological vertex
form factor FANNðq2Þ accurate up to q2 ∼ 1 GeV,

gAðq2Þ ¼ gAð0ÞFANNðq2Þ
m2

A

q2 þm2
A
; ð3:6Þ

gPðq2Þ ¼
2MNgAðq2Þ
q2 þm2

π

�
1 −

m2
π

m2
A

�
; ð3:7Þ

which take the functional form of a dipole because they
emerge from a single graph mediated by an axial meson.

Sample values for the constants in this model are [45]
gV ¼ 1, gA ¼ 1.27, κ1 ¼ 3.7, mV ¼ 0.84 GeV, and
mA ¼ 1.09 GeV. Although the CVC/PCAC hypotheses
predate the modern EFT approach and indeed QCD itself,
their predictions generically hold at the first nontrivial
leading orders of χEFT [13] with small corrections at
higher chiral orders.
Separate from the determination of form factors, we can

construct the neutrino potential by taking a product of two
copies of the nonrelativistic one-body current JμL;NR,
contracted over the index of exchange momentum q.
Those product terms that do not evaluate to zero are
collected in Table I, where notably the vector term
decouples in the nonrelativistic limit, and hðM;AÞ ¼
hðM;PÞ ¼ 0 by symmetrization. Of these, only hðV;VÞ is a
Fermi contribution and is purely so; hðA;AÞ is purely
Gamow-Teller, and all other terms include both Gamow-
Teller and tensor contributions. We define the Gamow-
Teller and tensor contributions as the respective coefficients
of Pauli inner product σ12 ≡ σ⃗1 · σ⃗2 and Pauli quadrupole
moment S12 ≡ 3ðσ⃗1 · q̂σ⃗2 · q̂Þ − σ12.
Finally, to make contact with χEFT predictions for the

couplings of nucleons to external currents, [46] computes
the single-nucleon form factors at LO in the chiral
expansion, obtaining
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gVðq2Þ ¼ 1; gMðq2Þ ¼ 1þ κ1 ¼ 4.7;

gAðq2Þ ¼ gA ¼ 1.27; gPðq2Þ ¼ −gA
2MN

q2 þm2
π
; ð3:8Þ

where κ1 encodes the difference between the proton and
neutron magnetic moments [47]. Form factors have also
been derived at higher order in χEFT, for example, to
next-to-next-to-leading order (NNLO) in [48], but these
will be beyond the requirements of our precision. It is
noteworthy that LO χEFT reproduces the pseudoscalar
form factor “induced” by the axial coupling in PCAC.
Then the resultant expression for each Lorentz product
is given in the right-hand column of Table I. Factoring
out global constants and the lepton bilinear as Vν ¼
ð4G2

FV
2
udÞūðk1ÞPRCūTðk2ÞV̂ν, we can now write the neu-

trino potential induced by light Majorana-neutrino
exchange [45,46],

V̂νðqÞ ¼
τð1Þþτð2Þþ

q2
½hFðq2Þ − σ12hGTðq2Þ − S12hTðq2Þ�

≃
τð1Þþτð2Þþ

q2

�
1 −

2g2A
3

σ12

�
1þ m4

π

2ðq2 þm2
πÞ2

�

−
g2A
3
S12

�
1 −

m4
π

ðq2 þm2
πÞ2

��
: ð3:9Þ

Coordinate-space realizations of the above are presented
in [6]. Our primary interest will be the insertion of the
neutrino potential between 1S0 NN states, where S12 ¼ 0
and σ12 ¼ −3, the above expression simplifying to

V̂
1S0
ν ðqÞ ¼ τð1Þþτð2Þþ

q2

�
1þ 2g2A þ g4Am

4
π

ðq2 þm2
πÞ2

�
: ð3:10Þ

When q ≫ mπ , the quantity in brackets has a limiting
behavior of 1þ 2g2A, while it is enhanced to 1þ 3g2A if
mπ → ∞ as in =πEFT.

B. Resummation, the leading divergence,
and its counterterm

With the NN potential corresponding to doubly LNV
light neutrino exchange in hand, the naive expectation
might be that the amplitude between well-defined NN
states should be directly calculable. More precisely, if we
write [6]

AνðE;E0Þ ¼ −1S0
hΨppðE0ÞjV1S0

ν ðqÞjΨnnðEÞi1S0 ð3:11Þ

for center-of-mass energies E ¼ p2=mn and E0 ¼ p02=mp,
with momentum transfer q⃗ ¼ p⃗ − p⃗0, the naive expectation
is that Aν should be finite for all physical kinematics and
represent the LO perturbation theory of this weak operator,
naturally regularized by the leading q−2 dependence of the
neutrino potential. This expectation fails as a consequence
of the enhanced contact counterterms required to renorm-
alize Aν, after the strong interactions intrinsic to ΨNN are
accounted for.
In agreement with the analysis of shallow bound-state

NN scattering reviewed in Sec. II B, the χEFT jΨNNi
differs from a free nucleon pair state jp⃗i by the iteration to
all orders of both contact and pion-exchange terms in VNN .
In the 1S0 channel, we therefore have three potentials to be
combined,

pp;1S0
hp⃗0jVνjp⃗inn;1S0 ¼

1

ðp⃗ − p⃗0Þ2

×

�
1þ 2g2A þ g4Am

4
π

ððp⃗ − p⃗0Þ2 þm2
πÞ2

�
;

1S0
hp⃗0jVCjp⃗i1S0 ¼ C;

1S0
hp⃗0jVπjp⃗i1S0 ¼ −

g2A
4F2

π

m2
π

ðp⃗ − p⃗0Þ2 þm2
π
: ð3:12Þ

Although they appear two orders suppressed in the
chiral expansion, we should have in mind the leading local
ΔL ¼ 2 structures in the χEFT Lagrangian [49],

TABLE I. Allowed pairs of Lorentz structures, their contributions to the NN neutrino potential, and LO χEFT
evaluation.

hð·;·Þ N̄1N̄2τ
1þτ2þð…ÞN2N1 LO χEFT

(V, V) g2Vðq2Þ 1
(A, A) g2Aðq2Þσ⃗1 · σ⃗2 g2A
(P, P) g2Pðq2Þ 1

4M2
N
½σ⃗1 · q⃗σ⃗2 · q⃗�q2 g2A

3
½S12 þ σ12� q4

ðq2þm2
πÞ2

(M, M) gMðq2Þ −1
M2

N
½σ⃗1 · σ⃗2q2 − σ⃗1 · q⃗σ⃗2 · q⃗� ð1þκ1Þ2

3
½S12 − 2σ12� q2

M2
N

(A, P) gAðq2ÞgPðq2Þ 1
2MN

σ⃗1 · q⃗σ⃗2 · q⃗ g2A
3
½S12 þ σ12� q2

q2þm2
π
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Lð2Þ
ΔL¼2 ¼

2G2
FV

2
udmββ

ð4πFπÞ2
�
5

6
F2
πgππν ∂μπ

−
∂
μπ−

þ
ffiffiffi
2

p
gAFπgπNν p̄Sμn∂μπ− þ gNN

ν p̄np̄n

�
ēLCēTL;

ð3:13Þ

where gππν , gπNν , and gNN
ν are Oð1Þ LECs corresponding to

respective tree-level amplitudes π−π− → e−e−, nπ− →
pþe−e−, and nn → pþpþe−e−. Because the latter is the
trivial counterterm topology for our neutrino potential
amplitude, we can make the ansatz

pp;1S0
hp⃗0jVνjp⃗inn;1S0 ↦ pp;1S0

hp⃗0jVν − 2gNN
ν ðμSÞjp⃗inn;1S0

ð3:14Þ

to adjust for any regulator dependence of Aν, where μS is
the regulator scale that separates any short-range ΔL ¼ 2
physics.
The earliest evidence that the size of this counterterm is

larger than anticipated by the chiral power counting comes
from a =πEFT analysis in [49]. The argument ultimately
parallels that of [18] in the pure NN-scattering case; the
large scattering length requires that any contact NN
interaction be enhanced if the iteration of the interaction
is to reflect nonperturbative nuclear physics. The gNN

ν

interaction itself cannot be iterated because it includes
leptonic final states, but intuitively it can induce the iteration
of both incoming and outgoing C interactions, resulting in
two orders of enhancement. To see this explicitly, [49]
employs dimensional regularization with the PDS scheme,
with the result

gNN
ν ðμSÞ ¼ ð4πFπÞ2

�
MNCRðμSÞ

4π

�
2

g̃NN
ν ðμSÞ; ð3:15Þ

where g̃NN
ν ðμSÞ is Oð1Þ and the quantity in square

brackets is the inverse scattering length a−1. Thus,
gNN
ν ∼ Λ2

χa2 ∼ ðQΛχ
Þ−2. This amplitude and its counterterm

diagram are shown in Fig. 4. To see how this back-of-the-
envelope calculation generalizes to χEFT, [5,6] construct a
geometric series in the style of [18]. Recall that, in the pure
strong-interaction case, it was possible to decompose the
T matrix as TχEFT

∞ ðEÞ ¼ Tπ
∞ðEÞ þ χp⃗ð0ÞKEχp⃗ð0Þ, where

KE ≡ ½1C þ G̃E�−1 is the iteration of the NN contact
interaction to all orders, with each r⃗ ¼ 0 to r⃗0 ¼ 0 bubble
dressed by iterated one-pion exchange. Analogously, an
insertion of the LO Vν can be dressed by contact strong
interactions on either or both side, which are then summed
coherently,

Aν ¼ AA þ χp⃗0 ð0ÞKE0AB þ ĀBKEχp⃗ð0Þ

þ χp⃗0 ð0ÞKE0

�
AC þ 2gNN

ν

C2

�
KEχp⃗ð0Þ; ð3:16Þ

where all A implicitly have incoming E and outgoing E0

two-nucleon kinematics, and the constant factors on gNN
ν

account for the two C interactions that are absorbed
compared to the bubble diagram, as well as the symmetry
of the counterterm. Because both the scattering states
χp⃗ð0Þ and KE can be regularized in a scheme-independent
manner [18], it is sufficient to separately evaluate and
regulateAA;B;C to obtainAν. As it happens,AA andAB are
UV finite and so do not require regularization. This can be
seen exactly in =πEFT [6],

AA ¼
1þ3g2A
2pp0 tanh−1

�
−2pp0

p2þp02

�
;

AB ¼ ĀB ¼
iMN

4π

1þ3g2A
2p0 log

pþp0

p−p0 þ imν
þOðmνÞ; ð3:17Þ

where dimensional regularization and the Feynman integral
trick have been applied, analogous to Coulomb corrections
to nucleon scattering in [50]. The apparent IR divergence in
both cases is controlled by including some small neutrino
mass mν ∼ 0þ in the propagator. AC, on the other hand,
exhibits a logarithmic divergence at d ¼ 4, for example in
the MS regularization scheme [6,50],

FIG. 4. Leading ΔL ¼ 2 NN-scattering amplitude (left) and its counterterm diagram (right) in pionless EFT (πEFT).
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AC ¼ −M2
Nð1þ 3g2AÞ
2 · ð4πÞ2

�
1

ε
− γE þ log 4π þ 1

þ log
μ2

−ðpþ p0Þ2
�
; ð3:18Þ

where γE ∼ 0.577 is the Euler-Mascheroni constant and μ
is the chosen regularization scale. In alignment with the
PDS subtraction scheme proposed in [18] and defined in
Sec. II B, one can also observe that AC is finite at d ¼ 3,
and so should be consistent with cutoff regularization—in
other words, the calculation performed here should not fall
victim to the same energetic cancellations that plagued the
1S0 NN-scattering state.
Recalling that the scale-dependent amplitude was

defined with normalization ACðμÞ þ 2gNN
ν ðμÞ
C2 , the counter-

term has β function

βgNN
ν

≡ dgNN
ν

d ln μ
¼ 1þ 3g2A

2
; ð3:19Þ

which can be satisfied, e.g., by coupling gNN
ν ðμÞ ¼

1þ3g2A
2

lnðμ=μ0Þ þ gNN
ν ðμ0Þ.

All of the above calculations have been performed in
=πEFT, and the critical reader might reasonably expect that
proceeding to χEFT could substantively modify the struc-
ture of divergences. Diagrammatically, this corresponds to
inserting an iterated pion exchange of the form in Eq. (2.22)
into every two-nucleon reducible component of each dia-
gram in Fig. 5. However, the difference is minor, for the
convenient reason that each pion-exchange potential
inserted between the two nucleons contributes

R
d3k
ð2πÞ3

1
k4

[6] and therefore improves the convergence of a diagram
by one order. Therefore, only the leading diagram of type C
with no pion exchanges could require an enhanced counter-
term. Following [8], the divergent contribution is denoted
Asin g

C , while the convergent part of these diagrams and any
pion-iterated convergent diagrams are collected in δAC.
Asin g

C itself is modified in passing from =πEFT to χEFT in
two ways. First, as before, the pion-exchange potential
induces a correction in the NN contact coupling,

FIG. 5. Decomposition of NN 0νββ diagrammatic series in pionless EFT (πEFT), adapted from [6]. The leading (leftmost) AA and
AB ≃AB̄ diagrams are evaluated in the text and shown to be finite to all orders of contact iteration, while the leading diagram AC is
divergent and requires regularization through contact ΔL ¼ 2 diagram gNN

ν .

IMPROVED PRECISION CALCULATION OF THE … PHYS. REV. D 111, 055033 (2025)

055033-13



C ↦ C̃ ¼ Cþ g2A
2f2π

, wherever it appears in a diagram.

Second, the coefficient of the neutrino potential recovers
its induced pseudoscalar component: 1þ 3g2A ↦

1þ 2g2A þ g2Aþm2
π

k2þm2
π
. For the same reason as the pion-exchange

insertions above, this additional term can only improve the
convergence of diagrams, and its effects are absorbed into
δAC. A

sin g
C is then recovered in χEFT by means of the

simple substitution 1þ 3g2A ↦ 1þ 2g2A, and the β function
of gNN

ν is similarly adjusted.
Overall, we see that the leading-order χEFT renormal-

ization requirements on neutrino exchange in an NN
system can be extracted from a =πEFT analysis. We could
interpret this to mean that the separation of nuclear forces
into short- and pion-range interactions remains appropriate
for a process such as 0νββ decay—but that some short-
range physics specific to neutrino exchange is not captured
by the naive truncation of the short-range diagrams and so
must be encoded in gNN

ν . Our more precise investigation of
the extent to which short- and pion-range physics can be
separated will play a central role in Sec. IV.

C. Quantitative estimates for the contact contribution

Having established that a sizable two-nucleon contact
term enters into the χEFT description of 0νββ decay, it
remains to quantify its size. A preliminary attempt at this
estimation was made in [5], based on a comparison to the
I ¼ 2 charge-independence-breaking (CIB) NN process,
with a more thorough and systematically improvable
estimate made in [7,8], based on a generalization of the
Cottingham approach to electromagnetic hadron-mass
corrections [51]. In this section, we will summarize the
former approach and detail the latter, which we will then
expand upon in Sec. IV E.

1. Approximating gNNν from CIB scattering data

In the midterm, precise LQCD computations of NN
systems are expected to become possible to the effect that
quantities like gNN

ν may be extracted from a matching
between =πEFT=χEFT and LQCD [52]. At present, a
substitute is to consider nuclear processes similar in top-
ology to 0νββ decay for which experimental scattering data
are available. Reference [5] makes the first such comparison

with CIB, or isospin-breaking, NN scattering. Just as in the
ΔL ¼ 2 case discussed above, the leading diagrams of this
process require renormalization by a contact counterterm.
Two such four-nucleon contact operators are available [5],
which correspond to the insertion of currents with handed-
ness LL=RR orLR, associated with respective LECsC1 and
C2. In the electromagnetic case, theLH and RH currents are
identical and so the process can only probe the sum
C1 þ C2, which [5] reports to have regularization scale
dependence,

dðC1 þ C2Þ
d logμ

¼ 1þ g2A
m2

πþ −m2
π0

e2F2
π

: ð3:20Þ

Choosing μ ¼ mπ as the natural regularization scale within
χEFT, experimental scattering lengths imply the dimension-

less value C̃1 þ C̃2 ¼ ðC1 þ C2Þ½MNC̃
4π �2 ≃ 5.0. For 0νββ

decay, however, the weak-current insertion can only occur
with LL handedness, and so gNN

ν ¼ C1. Thus, Ref. [5]
makes the assumption that C1 ¼ C2 to arrive at estimate

g̃NN
ν ¼ C̃1þC̃2

2
≃ 2.5. More conservatively assuming that jC1j

and jC2j differ at most by an order of magnitude, one can
conclude that −0.5 < g̃NN

ν < 5.5.
Once gNN

ν is determined, the magnitude of its contribution
to the amplitude can be assessed by comparing the divergent
amplitude Aν

ΔL¼2ðμÞ and counterterm ACT
ΔL¼2ðμÞ, the sum

of which is seen to be scale invariant. Reference [5] finds
that RCT ≡ACT

ΔL¼2ðμÞ=Aν
ΔL¼2ðμÞ ∼ 10% for μ ∼ 350 MeV,

increasing to RCT ∼ 30% for μ ∼ 2 GeV, although beyond
the chiral symmetry-breaking scale Λχ one can expect these
results to come with significant uncertainties. Further
computational estimates on A ¼ 6, 12 nuclei affirm this
substantial impact, with RCT ∼ 25%–60% depending on the
choice of CIB contact potential and the fit of C1 þ C2.

2. Aside: The neutron-proton mass difference
á la Cottingham

The second, more thorough estimate of the contact
contribution by [7,8] is conceptually based on a classic
dispersive calculation of the electromagnetic nucleon mass
correction [51], which we will now briefly review.
The forward Compton scattering amplitude for a virtual

photon with momentum q⃗ and polarization ε⃗ may be
written

εμενTμνðq⃗Þ ¼ iπεμεν
Z

d4xeiq
μxμhNjT fjμðx⃗Þ; jνð0Þg þ T fjνðx⃗Þ; jμð0ÞgjNi; ð3:21Þ

where T is the time-ordering operator and jμ is the electromagnetic current. By inserting a complete set of intermediate
nuclear states and performing the Fourier integrals in the nucleon rest frame, one obtains

Tμνðq⃗Þ ¼
ð2πÞ4
2

X
κ

hNjjμð0Þjκihκjjνð0ÞjNi
�

δð3Þðk − qÞ
k0 − q0 −M − iϵ

þ δð3Þðkþ qÞ
k0 þ q0 −M − iϵ

�
þ ðμ ↔ νÞ: ð3:22Þ
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Dispersive analysis relies on the examination of analyticity
constraints when a real function fðq0Þ or fðq2Þ is continued
to complex-valued q0 or q2. In general, two-point functions
in quantum field theories may be written in the Källén-
Lehmann spectral representation [53]

fðq2Þ ¼
Z

∞

0

ds
ρðsÞ

s − p2 − i0þ
; ð3:23Þ

where the analogous representation for fðq0Þ may be
obtained by taking q2 as a fixed parameter. Unitarity
requires that the spectral function ρðsÞ is positive definite,
and it frequently may be decomposed as

ρðsÞ ¼ Zδðs −m2Þ þ θðs − s0ÞσðsÞ; ð3:24Þ

where the pole term (first) represents a one-particle state of
total energy m2, and the branch-cut term (second) repre-
sents a continuum of multiparticle states beginning at
threshold energy s0. For a single nucleon in χEFT, m2 ¼
M2

N and s0 ¼ ðMN þmπÞ2 imply the following poles and
branch cuts in q0 [51]:

� q0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

N þ q2

q
−MN − iϵ;

� q0 ≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMN þmπÞ2 þ q2

q
−MN − iϵ: ð3:25Þ

Cottingham’s essential observation is that the one-loop
electromagnetic correction to the nucleon mass is simply
the forward Compton scattering amplitude with the photon
line contracted. This is not immediately useful. However,
the absence of any poles or branch cuts from the þþ
quadrant of the complex plane (including the new photon
pole �q0 ¼ q2 − iϵ) allows for a rotation to Euclidean
four-momentum, i.e.,

ΔM ¼ i
8π2

Z
d4q

ημν

qμqμ − iϵ
Tμνðq⃗Þ

¼ −
1

8π2

Z
d4q

ημν

q2 þ q20
Tμνðiq0;qÞ: ð3:26Þ

This result is very consequential, because the now-space-
like virtual “photons” of energy iq0 are equivalent to those
that mediate measurable electron-nucleon scattering.
Reference [51] decomposes Tμνðiq0;qÞ into two indepen-
dent Lorentz structures ti, which can be further decom-
posed into elastic pole contributions fi and inelastic cut
contributions hi (which must be integrated along the cut).
In modern incarnations of the Cottingham approach,

elastic photon contributions are able to quantitatively
capture the final result for the electromagnetic nucleon
mass difference within 30% error [54,55]. Determinations
of the inelastic contribution between dispersive and lattice
methods disagree: in contrast to the elastic term mel

p−n ¼
0.72ð2Þ MeV approaching percent-level precision [8,55],
the dispersive evaluation gives minel

p−n ¼ −0.17ð16Þ MeV
[55], while the lattice gives minel

p−n ¼ 0.28ð11Þ MeV [8,56].
A resolution of this tension at some intermediate value
would thus only improve the 30% error of an elastic-only
calculation. It is noteworthy that calculations for electro-
magnetic meson-mass corrections do not show the same
elastic dominance, with the vector and axial-vector reso-
nances first applied by [57] delivering over 93% of the
experimental pion mass difference in a modern calculation
[58], while elastic diagrams give only 10%, the excess
being negated by other inelastic corrections.

3. Extracting contact contribution
from matching procedure

On the above grounds, [7,8] argue that there is no
conceptual reason why a loop correction to a two-nucleon
system cannot be treated according to Cottingham’s
approach, and furthermore that the nominal error from only
including elastic contributions should be taken to be ∼30%.
A more rigorous dispersive derivation would likely verify
and clarify this claim, but to date has not been attempted. In
the following, we will see how the Cottingham representa-
tion of the two-nucleon 0νββ-decay amplitude allows for a
controlled estimate of the impact of the contact counterterm.
The construction begins by defining the factorized

amplitude [Eq. (2.9) in [8] ]

A ¼ ð2πÞ4δð4Þðpe1 þ pe2 þ pf − piÞð4G2
FV

2
udmββūLðp1ÞucLðp2ÞÞ ×Aν; ð3:27Þ

where the hadronic amplitudeAν encodes the nuclear evaluation that is our focus. The neutrino propagator becomes that of
a massless boson while mass effects are absorbed intomββ. With the further assumption that the outgoing electron momenta
are sufficiently similar that their Dirac algebra may be approximated as γμγν → ημν,Aν is reduced to the form necessary for
the Cottingham approach,

Aν ¼ 2

Z
d4k
ð2πÞ4

ημν

k2 þ iϵ
TðνÞ
μν ðk; pi; pfÞ

¼ 2

Z
d4k
ð2πÞ4

ημν

k2 þ iϵ
hNNfðpfÞj

Z
d4reik·rT fJLμ ðr=2ÞJLν ð−r=2ÞgjNNiðpiÞi; ð3:28Þ
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where Tμν is now a forward two-nucleon neutrino scattering amplitude. Just as for forward Compton scattering, one can
insert a complete set of intermediate nuclear states and perform not just the Fourier integrals, but the k0 integral as well,
obtaining [Eq. (2.22) in [8] ]

TðνÞ
μν ðk; pi; pfÞ ¼ −

X
κ

hNNfðpfÞjJLμ ð0ÞjκðqÞihκðqÞjJLν ð0ÞjNNiðpiÞi
qþ EκðqÞ − 1

2
ðp0

i þ p0
fÞ − iϵ

·
1

jkj ½δ
ð3Þðk − qÞ þ δð3Þðkþ qÞ�: ð3:29Þ

jNNii and jNNfi are scattering states, i.e., these two-
nucleon wave functions must take into account the strong
interactions, both short- and pion-range, which bind the
system together. They can be described by making contact
with the NN-scattering results discussed in [18,27]
reviewed in Sec. II B, which imply

jNNiiðpiÞ ¼ ð1þ ĜðEÞV̂Þjp⃗ii ¼ ð1þ Ĝ0ðEÞT̂ðSÞðEÞÞjp⃗ii;
ð3:30Þ

for plane-wave state jp⃗ii, where the scattering operator is
defined T̂ðSÞðEÞ ¼ V̂ðI þ Ĝ0ðEÞV̂Þ−1 in the notation of [8].

While both representations are convenient in their separa-
tion of the free and interacting components, the latter is
perhaps more intuitive, because T̂ðSÞðEÞ contains all iter-
ated strong interactions, while Ĝ0ðEÞ simply encodes the
free two-nucleon propagator at energy E.
This transition to a Euclidean spatial-momentum picture,

and, in particular, the smoothness of the resultant single-
current amplitudes and energy denominators, is the prac-
tical benefit of having treated 0νββ decay through the
Cottingham lens. Again inserting complete sets of nuclear
states between all defined operators, [8] decomposes the
amplitude into four parts,

Aν ¼
Z

d3k
ð2πÞ3

�
hpfjTðνÞðkÞjpii þ

X
κ0
hpfjT̂ðSÞðE0Þjκ0ihĜ0ðE0Þiκ0 hκ0jT̂ðνÞðkÞjpii

þ
X
κ

hpfjT̂ðνÞðkÞjκihĜ0ðEÞiκhκjT̂ðSÞðEÞjpii

þ
X
κ0

X
κ

hpfjT̂ðSÞðE0Þjκ0ihĜ0ðE0Þiκ0 hκ0jT̂ðνÞðkÞjκihĜ0ðEÞiκhκjT̂ðSÞðEÞjpii
�
; ð3:31Þ

where the Green’s function expectation is hĜ0ðEÞiκ ¼
1

E−E0
κþiϵ. This expression is directly useful, giving the full

two-nucleon 0νββ-decay amplitude so long as one can
calculate matrix elements of the strong T matrix and the
neutrino-exchange T matrix between relevant nuclear
states. However, obtaining even those single-operator
expectation values for a large selection of nuclear states
is highly nontrivial. One simplification arises from the
fortunate circumstance that only the neutrino-exchange
potential in the 1S0 partial wave requires a contact counter-
term at LO in the chiral power counting [6], i.e., this entire
procedure need only be performed with jp⃗i;fi in that partial
wave. However, this still leaves an unbounded nuclear state
space from which intermediate states κ and κ0 are to be
selected. For this reason, [7,8] restrict to elastic intermedi-
ate states, i.e., pure jNNi states. Conservation of angular

momentum then restricts both intermediate states purely to
the 1S0 partial wave.
If we take the spatial momentum to have magnitude

jk⃗j < mπ such that LO χEFT is certainly valid, then the
above construction is exactly equivalent to the result (3.16)
computed by [5,6]. Indeed, since AA;B;B;C were distin-
guished from one another by the absence or presence of
NN rescattering before and after the insertion of the
neutrino-exchange potential, the four terms in Eq. (3.16)
exactly correspond to the decomposition of Eq. (3.32). As a
consequence, the target of this matching-based analysis
need only be the divergent part of AC ¼ Adiv

C þ δAC.
After much preamble, we can now define the matching

procedure conceived by [7,8]. As presented earlier and
in [6], Adiv

C was calculated in LO χEFT to have real
component
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Adiv
C ðμχÞ ¼

�
4π

MN

�
2
�
−
1þ 2g2A

2
þ
Z

μχ

0

dkaχðkÞ
�

¼
�
4π

MN

�
2
�
−
1þ 2g2A

2
−
Z

μχ

0

dkð1þ 2g2AÞ
1

k
θðk − 2pÞ

�
; ð3:32Þ

where the role of μχ is apparent as a cutoff on the validity of
this EFT amplitude. It is precisely the ignorance of short-
range physics beyond μχ that our enhanced contact term
parametrizes. As such, [8] conceives of a hypothetical
Aexact

C ðμχÞ that integrates accounts for all 0 < k < ∞ and is
finite. χEFT, of course, cannot provide such an amplitude;
however, QCD may be treated perturbatively at scales
above some Λ ∼ 1.5 GeV, allowing us to compute some
partial amplitude A>

C such that

Aexact
C ¼A<

C þA>
C ¼

Z
Λ

0

dka<ðkÞþ
Z

∞

Λ
dka>ðkÞ: ð3:33Þ

Perturbative methods are valid for QCD in the jkj > Λ
regime because asymptotic freedom ensures that the
effective strong coupling is small, i.e., αs ≪ 1 [59]. If
we were modeling the interactions of free, high-energy
quarks and gluons, direct perturbative computation would
be largely sufficient. However, our quarks and gluons are
quanta of a nuclear (ground) state, as opposed to the QCD
vacuum, and so our model clearly requires input from
nonperturbative nuclear scale around ΛQCD. In fact, even in
the free vacuum case, QCD vacuum condensates of both
quarks and gluons are present due to the nonlinearities of
the QCD Lagrangian [59], and some nonperturbative input
is eventually necessary.
A clean way to decompose these perturbative and

nonperturbative QCD inputs in the case of a two-point
correlator is by constructing a Wilsonian operator product
expansion (OPE) [60,61], first performed in this context by
[62]. Formally, this expansion may be written

lim
x→0

h0jT fO1ðxÞO2ð0Þgj0i ¼
X
d

CdðxÞh0jOðdÞð0Þj0i;

ð3:34Þ

where T is the time-ordering symbol, O1;2 are two
particular local operators, OðdÞ are (typically other) local
operators of dimension d, and Cd are their respective
coefficients. Note that there may well be distinct operators
OðdÞ of the same dimension requiring independent coef-
ficients, although this will not occur in our case. There is
typically a unit operator O0 with vacuum expectation value
1 (in our case it will instead have expectation
hNNfjūLγμdLūLγμdLjNNii), such that C0ðxÞ encodes the
usual perturbative expansion of QCD diagrams. This

perturbative series is only the first term in the summation
over vacuum condensates h0jOðdÞð0Þj0i seen in Eq. (3.34),
whose lowest-order nontrivial terms include the quark
condensate ψ̄ψ and the gluon condensate Ga

μνGa;μν. We
will follow [8] in restricting ourselves to d ¼ 0, but note that
the subleading corrections would arise from the gluon
condensate. Implicitly, the separation between perturbative
and nonperturbative QCD has occurred at a chosen scale μ,
where physics at scales greater than μ is explicitly calculated
in coefficients CdðxÞ, and physics at scales less than μ is
absorbed into the QCD vacuum condensates.
A full derivation of C0ðk2Þ leads to the following

amplitude truncated at the first term of the OPE [8]:

A> ¼ 3αS
2π

hNNfjūLγμdLūLγμdLjNNii
Z

∞

Λ
dk

1

k3
; ð3:35Þ

where the condensate contains all contributions softer than
Λ. From Eq. (3.13), those contributions are encoded in the
local LECs gππν ; gπNν ; gNν ∼Oð1Þ, which together contribute

a factor 2
C2 ðgNN

ν þ g2A
2
ð5
6
gππν − gπNν ÞÞ. For simplicity and

since gNN
ν is poorly constrained, [8] elects to set the latter

term in parentheses to zero, absorbing any inaccuracy into
the uncertainty assessment of gNN

ν . Because the share of
AC from the k > Λ regime is vanishingly small compared
with uncertainties of this approach, only a very unnaturally
large gNN

ν or other LECs would confound this assumption.
Altogether, the integrand for the matching analysis is
therefore written

a>ðkÞ ¼
3αS
π

gNN
ν

C2

1

k3
: ð3:36Þ

Model-independent information about a<ðkÞ is not so
readily available as it is about a>ðkÞ in the perturbative
QCD limit. A multitude of hadronic states not included in
χEFT are accessible between μχ and Λ, including strange
pseudoscalar mesons η; η0 and Kþ;0;−, vector mesons ρþ;0;−,
ω, ϕ, and baryonic Δþþ;þ;0;− resonances. Rather than
account for these effects directly, [8] treats the intermediate
momentum regime as a perturbation on the low-momentum
regime already computed in χEFT. To the extent that
nucleons are still appropriate degrees of freedom for the
interaction, the topology of the bubble diagrams and
therefore the decomposition equation (3.32) is retained.
Thus, A<

C can be obtained from AχEFT
C by some appropriate
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generalizations of T̂ðSÞðEÞ and T̂ðνÞðEÞ, i.e., by introducing
form factors, which are accurate up to Λ ∼ 1.5 GeV.
The modification of T̂ðνÞðEÞ can be expected to proceed

smoothly, since for larger momentum exchange the NN
state should be at least as separable as in the χEFT regime.
Therefore nucleon-level form factors at the neutrino ver-
tices are an appropriate generalization; [8] chooses to
include the form factors for all pairs of Lorentz structures
compatible with the product of two left-handed currents:
AA, PP, AP, andMM. However, the induced pseudoscalar
current only contributes to the convergent part of the
amplitude, so we need not include it in A<

C . Therefore
this form factor contribution amounts to a substitution,

ð1þ 2g2AÞ ↦ g2Vðk2Þ þ 2g2Aðk2Þ þ
k2

2M2
N
g2Mðk2Þ; ð3:37Þ

where the form factors were defined in Sec. III A and
depend on scales ΛV ¼ 0.84 and ΛA ¼ 1.0 GeV.
Reference [8] demonstrates that the dependence on the
amplitude on these precise scales is a “by far subdominant
uncertainty” in contrast to, for example, the truncation of
nuclear states.
The modification of T̂ðSÞðEÞ is somewhat more subtle,

because it directly relies upon a choice of phenomenological
short-range potential between nucleons. These data are
encoded in a so-called “half-off-shell” form factor on the
iterated strong-interaction vertex represented by T̂ðSÞ, i.e.,
TðSÞ
< ðq; pÞ≡ TðSÞðp; pÞ × fSðq; pÞ. Part of the appeal of

this parametrization is that fSðq; pÞ ¼ 1 in LO χEFT [8], so
the form factor will specifically encode deviations from the
low-momentum amplitude. Simply extending χEFT to NLO
gives

fχEFTS ¼ 1 −
C2

2C
ðp2 − q2Þ; ð3:38Þ

where the two form factors together deliver a real-valued
suppression factor rNLOðkÞ ¼ 1 − 8C2

MNC2 k to A<
C . The ratio

of constants C2=C2 evaluates to 0.52 in =πEFT and 0.38 on
χEFT. To obtain more precision at momenta up to
Λ ∼ 1.5 GeV, Ref. [8] calculates the form factor fSðq; pÞ
using three popular phenomenological NN potentials: the
Kaplan-Steele potential [63], the Reid potential [64], and the
AV18 potential [65], which match very well to NLO χEFT
below k ¼ 200 MeV, and all show a suppression rðkÞ ∼ 0.1
before k ¼ 400 MeV. Model dependencies for momenta
larger than this are thus highly suppressed in their con-
tribution to the overall amplitude, whose integrand is written

a<ðkÞ ¼ −
�
g2Vðk2Þ þ 2g2Aðk2Þ þ

k2

2M2
N
g2Mðk2Þ

�

×
rðkÞ
k

θðk − 2pÞ: ð3:39Þ

aχðkÞ, a<ðkÞ, and a>ðkÞ are plotted in Fig. 13, adapted from
Fig. 6 in [8], alongside the corrected integrands from the
NNπ analysis in Sec. IVD. These pieces together are
sufficient to estimate the size of the enhanced contact
counterterm gNN

ν ðμÞ, since the scale-invariant amplitude

ACðμÞ þ 2gNN
ν ðμÞ
C2 should have equal value to our constructed

Aexact
C ¼ A<

C þA>
C . Here we note some ambiguity in the

notation; the constant gNN
ν that appears in the OPE is more

precisely the μ → ∞ limit of gNN
ν ðμÞ, and performing the

matching analysis is equivalent to determining the action of
the renormalization group on this constant. In terms of the
integrands [8],

2gNN
ν ðμÞ ¼ 1þ 2g2A

2
−
Z

μ

0

dkaχðkÞ þ
Z

Λ

0

dka<ðkÞ

þ
Z

∞

Λ
dka<ðkÞ; ð3:40Þ

which is plotted as the pure NN comparison point for our
later NNπ analysis in Figs. 14 and 15 for a range of
matching scales Λ, where the dependence on the latter is
comfortingly weak. Reference [8] selects the value gNN

ν ðμ ¼
mπÞ ¼ 1.32 as a representative value, which is essentially
independent of Λ between 1 and 4 GeV. However, this
number by itself is not especially meaningful, because it is
specific to a decomposition of the amplitude into convergent
and divergent parts, i.e., theMS/PDS regularization scheme.
Section 7 of [8] performs the analogous matching calcu-
lation for several choices of momentum and coordinate-
space cutoff regulators. The material point is that the relative
importance of light neutrino exchange and the contact
counterterm is scheme dependent and therefore nonphysi-
cal; however, one can expect that the total Aν will be
scheme independent and, in general, have been modified
with a significance similar to the ∼15% adjustment seen in
the MS scheme. To facilitate other groups in evaluating the
contact contribution within their own chosen regularization
scheme, [7,8] provide “synthetic data” by computing Aν in
full at a kinematic point relevant to the many-body nuclear
community, p ¼ 25 and p0 ¼ 30 MeV.
However, our primary interest is in the two-nucleon

matrix element and, in particular, the improvement of the
leading uncertainty on the matching calculation that arises
from truncating the sum over intermediate nuclear states to
elastic NN states only. Reference [8] demonstrates that this
uncertainty is dominant primarily by constraining all other
sources of uncertainty. The impact of model-dependent
form factors for the strong interactions in the intermediate
momentum range is assessed by parameter variation and
contributes an uncertainty of �0.2 to δgNN

ν , only �0.05 of
which arises from the less well-described but suppressed
region 0.4 < k < 1.5 GeV. A further �0.05 (at most)
enters δgNN

ν from numerical parameter selections, especially
the scales ΛA;V entering the single-nucleon form factors.
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However, a rough evaluation of one divergent diagram with
a NNπ intermediate state, which can be interpreted as a
leading inelastic correction, contributes between −0.1 and
0.35 to δgNN

ν ; this, of course, is just one of numerous
possible diagrams containing the first accessible inelastic
state, and [8] consequently assigns an uncertainty of�0.5 in
the absence of further information. This source of uncer-
tainty, its more precise quantification, and steps toward its
improvement will be the focus of the following section.

IV. QUANTIFYING THE NNπ
INTERMEDIATE STATE

In the Cottingham procedure for studying loop correc-
tions from nuclear operators, the superposition principle
directly requires the completeness of the intermediate set of
nuclear states. Taking a perturbative viewpoint of the
nuclear state space, these intermediate states need not have
the same particle content as the external NN states—such
states are called inelastic. At the scales well modeled by
χEFT, this will mean that dynamical fluctuations of the
nucleon field induce fluctuation quanta in “nearby”
strongly interacting fields, most accessibly the pseudo-
Goldstone pion fields. Of course, all this is a convenient
perturbative realization of systems that are more precisely
nonperturbative bound configurations of QCD fields,
where, as the particle number of a nucleon state is a
distribution rather than a single value, the line between
elastic and inelastic nuclear states is blurred. We are able to
take advantage of a truncation between elastic and inelastic
nuclear states in the case of 0νββ for two fortunate reasons:
the bulk of the neutrino-momentum transfer occurs well
below energy scales that probe the internal structure of
nucleons, and chiral symmetry is sufficiently broken such
that, roughly speaking, momentum at the order of the
transferred neutrino is required to induce even a single
(virtual) excitation of the pion field.
For these same reasons, we take a further truncation of

inelastic nuclear states between jNNπi and jNNπþi (all
other inelastic states) to be well defined. As [8] is careful to
note, the two-particle kinematics of this process greatly
complicate a direct relation between elastic states of the
forward scattering amplitude and the Cottingham-style
loop correction, and we accept the same limitation in
framing our jNNπi intermediate states. We retain the state
decomposition of [8] from Eqs. (3.29) and (3.32), where
jκi; jκ0i now are summed over both elastic and NNπ states.
We will also refer to the leading elastic correction as the
difference ΔANNπ

ν ¼ Aν −ANN
ν . ΔANNπ

ν receives contri-
butions from diagrams (1) where only one of jκi; jκ0i is
inelastic (distinguished by isospin breaking) and (2) where
both jκi and jκ0i are inelastic.
A significant complication regarding NNπ states is that

both angular momentum and isospin may now be distrib-
uted between the component particles in multiple ways, and
strong scattering T̂ðSÞ will transfer these quantum numbers.

We cannot therefore retain the 1S0 partial wave or some
NNπ equivalent throughout our analysis as [8] does, and
the principles of angular momentum, isospin, and parity
conservation will constrain our result via selection rules.
We will proceed as follows. First, the role of selection

rules in constraining the angular momentum and isospin
properties of our intermediate states will be reviewed.
Then, hNNjT̂ðSÞjNNπi will be characterized within
χEFT and compared to the broader literature on threshold
pion production from nucleon pairs. hNNjT̂ðνÞjNNπi and
hNNπjT̂ðνÞjNNπi will also be characterized with the
derivation of ππ and πN neutrino potentials within
χEFT. Combining these two building blocks will lead to
the complete diagrammatic structure of the divergent
contributions to ΔANNπ

ν . Naive dimensional analysis á la
Weinberg will be used to estimate the size of each diagram
in comparison to ANN

ν ; finally, the leading divergences will
be evaluated in the dimensional regularization scheme such
that a numerical adjustment to the elastic computation of
contact term gNN can be claimed.

A. Selection rules for NN → NNπ transitions

An excellent description of the selection rules for NN →
NNx transitions is given in the review [66] and the thesis
[67]. First, let us state the relevant quantum numbers.
Two-nucleon systems may have total spin S ¼ 0, 1, total
isospin T ¼ 0, 1, and total orbital angular momentum
L ¼ 0; 1; 2;…, while a pion in an NNπ system has spin
Sπ ¼ 0, total isospin Tπ ¼ 1, and angular momentum lπ ¼
0; 1; 2;… about the center of mass of the NN component.

Total isospin T and total angular momentum J ¼ jL⃗þ S⃗j
are conserved by strong interactions, which may be thought
of as the zeroth selection rule. It is crucial that L and S
combine vectorially, so a given J can arise from any L and
S satisfying jL − Sj ≤ J ≤ jLþ Sj.
Nucleons, as fermions, obey Pauli statistics, so the wave

function of an NN system (including as a component of an
NNπ system) must be antisymmetric under particle
exchange. Orbital angular momentum contributes ð−1ÞL
to this antisymmetry, while spin and isospin contribute
ð−1ÞSþ1 and ð−1ÞTþ1, respectively. As a result, we have
the first selection rule ð−1Þ ¼ ð−1ÞLþSþT on both initial
and final NN states, satisfied, for example, by 1S0 nn
and pp states (S ¼ 0; L ¼ 0; T ¼ 1). Here we make use of
the NN-spectroscopic notation 2Sþ1XðLÞJ, where XðLÞ is
the conventional mapping 0 → S; 1 → P; 2 → S; 3 → F
(lowercase will be used for pions).
Parity, the eigenvalue of a physical system under reversal

of all spatial coordinates, is another quantum number that is
at least approximately conserved under strong interactions
[68]. Spin/isospin do not influence parity as they do not
contribute to the spatial wave function, but each angular
momentum quantum contributes (−1) to parity, which
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together with the intrinsic parities of field quanta implies
the second selection rule [66],

ð−1ÞLi ¼ ππ · ð−1ÞLfþlπ ⇒ ð−1ÞΔSþΔT ¼ ππð−1Þlπ ; ð4:1Þ

where ππ ¼ −1 is the intrinsic parity of the pion (relative to
the proton, by convention), and the implication holds only
in the presence of Pauli statistics.
As an example application of these rules, consider the

NN → NNπ processes of an initial 1S0 state. Since
Ji ¼ 0 ¼ Jf, conservation implies Jf ¼ lπ ¼ 0; 1; 2;…,
with each choice allowing for a multiplet of ðLf; SfÞ
selections. NN isospin T ¼ 0, 1, and Pauli statistics require
that Ti ¼ 1 (nn or pp) as well as that Tf ¼
Sf þ Lf þ 1ðmod 2Þ.
If Tf ¼ 1 (ΔT ¼ 0), Pauli statistics require Sf þ Lf to be

even. Meanwhile, parity conservation requires Sf þ lπ to be
odd. For example, we could take Sf ¼ 1 and lπ ¼ 0. Then
Jf ¼ 0, so Lf ¼ 1 and the process is 1S0 → 3P0 þ s. We
might also try Sf ¼ 0 and lπ ¼ 1, so Jf ¼ 1 and again
Lf ¼ 1; but now Sf þ Lf is odd, so this combination is
deselected. The next lowest-order candidates are Sf ¼ 2 and
lπ ¼ 1, which gives Jf ¼ 1 and Lf ¼ 2 (1S0 → 5D1 þ p);
and Sf ¼ 1 and lπ ¼ 2, which gives Jf ¼ 2 and Lf ¼ 1, 3
(1S0 → 3P2 þ d, 1S0 → 3F2 þ d).
If Tf ¼ 0 (ΔT ¼ −1), Pauli statistics require Sf þ Lf to

be odd, and parity conservation requires Sf þ lπ to be even.
For example, we might try Sf ¼ 0 and lπ ¼ 0, so Jf ¼ 0

and Lf ¼ 0, but now Sf þ Lf is even, so this combination is
deselected. Next we could take Sf ¼ 1 and lπ ¼ 1, so Jf ¼
1 and LF ¼ 1, selecting the process 1S0 → 3S1 þ p. The
next lowest-order candidates are Sf ¼ 3 and lπ ¼ 1, which
gives Jf ¼ 1 and Lf ¼ 2, 4 (1S0 → 7D1 þ p,1S0 →
7G1 þ p); and Sf ¼ 1 and lπ ¼ 3, which gives Jf ¼ 3

and Lf ¼ 2, 4 (1S0 → 3D3 þ f, 1S0 → 3G3 þ f).
The above results are summarized in Table II. Overall,

Pauli statistics and the conservation of angular momentum
and parity impose quite strong restrictions on what NN →
NNπ channels can contribute (virtually) to our process.
Presuming suppression of higher angular momentum pion
states, we will restrict ourselves to (ΔT ¼ 0) 1S0 → 3P0 þ s
and (ΔT ¼ −1) 1S0 → 3S1 þ p. Significantly, the neutrino-
exchange insertion cannot occur in any 1S0 þ x NNπ state
for 1S0 external NN states. Note that only ΔT ¼ 0 can
contribute to neutral-pion production, while both isospin
channels contribute to charged-pion production.

B. Off-shell pion production from nucleon pairs

There exists a long and thorough literature on “thresh-
old” pion production from nucleon pairs in connection to
low-energy scattering experiments. This literature will
provide us with the necessary tools to account for virtual

NN → NNπ processes in our T̂ðSÞ. As we are only
interested in the divergent part of our 0νββ-decay ampli-
tude and will ultimately compute this through MS at the
diagram level, it will not be necessary to explicitly
compute T̂ðSÞ as a matrix operator. Instead, here we will
identify the leading partial diagrams for both s- and p-
wave pion production through dimensional analysis and
bound the subleading uncertainties through a comparison
to the threshold scenario.
Early works such as [69,70] generally made use of the

distorted-wave Born approximation (DWBA), where the
process is decomposed into initial- and final-state strong
interactions around a fixed, perturbative pion-production
core. The three-parameter model described in [69], based on
the [71] effective-range approach to p-wave pion-nucleon
resonances, was the first to achieve broad agreement with
scattering data, ranging from near threshold (where s-wave
pion production becomes relevant) to ∼600 MeV (beyond
which d-wave pion production becomes relevant).
Reference [70] attempts to model higher-energy production
using a one-pion-exchange model without final-state inter-
actions, appropriate since deuteron formation is suppressed
above ∼800 MeV. This approach is quite prescient of the
later role one-pion exchange will play in χEFT-based NN
and NNπ theory. In conceptual agreement with the methods
of [8], we will also pursue a DWBA-like separation, but a
review of early works that instead made use of fully
nonperturbative, coupled-channel computations can be
found in [66].
References [72,73] developed a formalism for s-wave

pion production near threshold, based on a phenomeno-
logical pion-nucleon interaction Hamiltonian that is rem-
iniscent of later χEFT Lagrangians and is accurate within
10% for the process pp → dþ πþ while agreeing with
limited experimental data on pp → ppþ π0. Crucially,
p- and s-wave pion production arise from distinct inter-
action terms, of respective size fπ

mπ
and 1

2MN
, as well as two

TABLE II. NN → NNπ processes permitted by Pauli statistics,
conservation of angular momentum, and conservation of parity
for an initial 1S0 state, derived in the text and truncated at
JF ¼ lπ ≤ 3.

NN → NNπ process ΔT Jf ¼ lπ Sf Lf

1S0 → 3P0 þ s 0 0 1 1
1S0 → 5D1 þ p 0 1 2 2
1S0 → 3P2 þ d 0 2 1 1
1S0 → 3F2 þ d 0 2 1 3

1S0 → 3S1 þ p −1 1 1 1
1S0 → 7D1 þ p −1 1 3 2
1S0 → 7G1 þ p −1 1 3 4
1S0 → 3D3 þ f −1 3 1 2
1S0 → 3G3 þ f −1 3 1 4
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rescattering coefficients fit from πN scattering lengths.
Reference [74], focusing on pion absorption, extends this
methodology to include virtual ρ- and ω-meson diagrams in
an attempt to explain discrepancies with experimental pion
absorption in heavier nuclei, ultimately concluding that
the fault lies with irreducible three-nucleon contributions.
Such additional meson diagrams did, however, account
for discrepancies with threshold pp → ppπ0 as better
data became available [75], albeit in conflict with
similarly sized corrections from off-shell πN-rescattering
contributions [76].
The first χEFT- and therefore QCD-based computations

of pp → ppπ0 near threshold were presented in [77,78].
As we have seen for NN scattering, the systematic
organization of diagrams via a power counting facilitates
a concrete calculation with controlled errors, with typical
expansion parameter ε ∼mπ=MN ∼ 0.1. This typical power
counting arises from treating both the typical three-momen-
tum exchange and the typical nucleon three-momentum of
a process as being of the order of the pion mass:
Q ∼ pN ∼mπ . Reference [77] observes that, at threshold,
this approximation is not kinematically sound, since at
minimum pN ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
MNmπ

p
is required to produce a real pion

excitation. Then one expects also Q ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
MNmπ

p
, and the

revised expansion parameter is εthr ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mπ=MN

p
∼ 0.4; a

significantly slower perturbative expansion results, and we
will see that in many cases the ordering of diagrams is
changed substantially. This detail is relevant to us not
because we will use εthr; in fact, for off-shell pions,
Q ∼ pN ∼mπ is still a valid expectation, so we will use
the standard ε power counting. However, most of the
subsequent threshold literature has been expressed in
εthr, and it will be necessary to carefully convert between
the two.
At this point, it is useful to define the dominant

irreducible diagrams which in some order will fill out the
LO through NNLO classes of contributions. The impulse or
Born diagram is evidently the simplest, with a single πNN
vertex facilitating the process. At threshold, this diagram is
kinematically forbidden, as one of the external NN pairs
must be off shell by mπ; Ref. [77] resolves this by defining
connected impulse diagrams with a single (contact or pion-
range) strong interaction, which together may be thought of
as the impulse contribution. Equivalently, the connected

impulse diagrams are irreducible because no kinematical
two-nucleon unitary cut is permitted [66]. Of course, in our
application, both the produced pion and the final NN state
are expected to be off shell, so we can treat these subsidiary
strong interactions as part of the scattered NN wave
functions.
Several irreducible diagrams may be seen as modifica-

tions of the impulse diagram. The Δ-excitation impulse
diagrams provide for an excited nucleon state between the
pion-production vertex and the subsidiary strong interac-
tion. The recoil diagrams have distinct kinematics to their
one-pion-exchange impulse counterparts. Furthermore, as
mentioned previously, there exist two distinct NNπ vertices
corresponding to p- and s-wave pion production, the latter
of which is suppressed; impulse diagrams with both vertices
are shown in Fig. 6. The seagull or pion-rescattering
diagram arises from the inclusion of the NNππ or
Weinberg-Tomozawa (WT) interaction vertex and is irre-
ducible, as seen in Fig. 6. Irreducible diagrams containing
higher-dimensional vertices, of course, can be constructed,
but are surfeit to our needs. A collection of one-loop
irreducible diagrams generically prove to be more relevant
[66,77].
The power counting of [77] for s-wave pion production

places impulse and Δ-excitation contributions at leading
order, with recoil corrections, the seagull diagram, and all
one-loop diagrams subleading by a ratiomπ=MN . However,
numerical calculations with phenomenological NN wave
functions reveal that the seagull contribution is approx-
imately equal (and opposite in sign) to the impulse
contribution, which the authors attribute to some combi-
nation of spin/isospin factors and off-shell behavior. They
also reveal a suppression of the Δ-excitation contributions
that is strongly dependent on the choice of NN potential.
Overall, the calculated result is much too small to agree
with experiment, and so [77] is taken as a methodological
point of comparison rather than a generalizable result.
Reference [78] similarly realizes the cancellation between
impulse contributions, attributing the mismatch with
experiment to unaccounted-for heavy-meson exchange
diagrams.
The fully relativistic approach of [79] delivered near

percent-precision cross sections for s-wave pp → ppπ0

and pp → pnπþ at threshold, including a verification of

FIG. 6. NN → NNπ production via the p-wave NNπ vertex (left), the suppressed s-wave NNπ vertex (middle), and the NNππ
Weinberg-Tomozawa vertex (right).
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the importance of heavy-meson exchange diagrams. The
decomposition of an amplitude into perturbative diagrams
is (always) model dependent, in the sense that we cannot
take this relativistic computation as a comparable break-
down for the power counting of diagrams in χEFT with
nonrelativistic nucleons. However, [79] also presents an
excellent spin-operator decomposition of both processes,

Tcom
thr ðpp → ppπ0Þ ¼ Aðiσ⃗1 − iσ⃗2 þ σ⃗1 × σ⃗2Þ · p⃗;

Tcom
thr ðpp → pnπþÞ ¼ Affiffiffi

2
p ðiσ⃗1 − iσ⃗2 þ σ⃗1 × σ⃗2Þ · p⃗

−
ffiffiffi
2

p
Biðσ⃗1 þ σ⃗2Þ · p⃗; ð4:2Þ

where two complex-valued coefficients A, B are then
evaluated within one’s chosen model and correspond,
respectively, to 3P0 → 1S0 þ s and 3P1 → 3S1 þ s transi-
tions [80]. References [66,80] employ the same represen-
tation in a demonstration that, with the modified power
counting introduced by [77], the perturbative expansion of
χEFT for threshold pion production does indeed converge.
It is easier to show this for p-wave pion production

because irreducible loop diagrams should only appear at
N3LO [81]; the impulse term alone gives agreement within
experimental error bars for pπ < 0.7mπ, with seagull and
subleading NNπ vertex contributions entering at NNLO
and pushing agreement up to pπ ∼ 0.9mπ . For s-wave pion
production, irreducible loop diagrams enter at NLO, but
Ref. [80] shows an exact cancellation between divergences
of these diagrams, which in the neutral-pion case has zero
finite part. This is to be expected from consistency of the
power counting, Ref. [66] explains, because there is no
NNLO counterterm diagram to absorb NLO divergences.
To NLO, A is then built only from the impulse and
Δ-excitation terms, while B is built from the impulse,
seagull, and finite-loop terms.
NNLO p-wave pion-production amplitudes were pro-

duced by [82] for three experimentally comparable channels
(pn → ppπ−, pp → dπþ, and pp → pnπþ), with a com-
fortable fit to data with pπ < 0.4mπ . Later, [83,84] followed
a similar formalism in computing the first complete NNLO
s-wave pion-production amplitude, employing a χEFT
Lagrangian with explicit Δ degrees of freedom. Order-of-
magnitude expectations from the modified power counting
of [77] were again verified. Later still, [85] performed the
phenomenological NN wave function convolution neces-
sary to compare the NNLO s-wave pp → dπþ amplitude to
experimental data, finding a 10%–20% deficit for cutoffs
between 600 and 1000 MeV which is attributed to short-
range processes, e.g., ρ- and ω-meson exchanges.
All this has been a rather roundabout way of justifying

the application of LO and NLO χEFT to the virtual pion
production and absorption within our TðSÞ operators. In the

absence of an on-shell requirement for our intermediate
NNπ state, we will follow the Weinberg power counting
with small parameter ε ∼mπ=MN ∼ 0.1.
For p-wave charged-pion production, the leading

terms [66] are the impulse and seagull diagrams of size
pπ=mπ ∼ 1 and pπmπ=p2

N ∼ 1, with error estimate
pπ=MN ∼ 0.1 provided by the same topologies with sub-
leading pion vertices.
For s-wave neutral- and charged-pion production, we

need only consider partial amplitude A since we require
one 1S0 external NN state. The seagull term vanishes
regardless of kinematics as the WT vertex is isovector,
so the leading contributions are, in fact, NLO, arising from
the subleading impulse and Δ-excitation diagrams of
size pN=MN ∼ 0.1.

C. ππ and πN neutrino potentials from χEFT

Now that we have determined the TðSÞ physics relevant
to the NNπ intermediate-state contribution, we must also
compute the relevant neutrino potential contributions
corresponding to hNNπjTðνÞjNNi. Intuitively, one expects
that hNNπjTðνÞjNNπi will be dominated by three chan-
nels: the usual neutrino insertion between two nucleon
lines (but in the presence of a pion state), an insertion
between a pion line and a nucleon line, and a double
insertion on the same pion line. The leading irreducible
contribution to hNNπjTðνÞjNNi also includes a neutrino
insertion between one nucleon line and a πνNN vertex;
all these diagrams are displayed in Fig. 7. We already
discussed the Lorentz decomposition of neutrino couplings
to a single nucleon line in Sec. IV B, in particular, Eq. (3.3)
and the following χEFT-derived form factors, but in order
to quantify these channels we must first perform a similar
analysis of ΔL ¼ 2 couplings to one, two, and three pions
and to a πνNN vertex.
All pion couplings are derivable from the generic chiral

Lagrangian, which with external vectorlike couplings can
be parametrized as follows [46]:

Lπ ¼
F2
π

4
Tr
h
ðDμUÞ†DμU

i

¼F2
π

4
Tr

��
∂μU†þ iU†lμ− irμU

�
ð∂μU− ilμUþ iUruÞ

�
;

ð4:3Þ

where lμ and rμ will facilitate a coupling to the leptonic
states via a W propagator and therefore have an associated
isospin operator τþ. Here we show the extraction of the πν
vertex Feynman rule as an example. To compute the
coupling to an axial-vector leptonic current 2aμ ≡ lμ − rμ,
we set −lμ ¼ rμ ¼ aμ and find
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Lπ ¼
iF2

π

4
Tr

�
−i
Fπ

∂μϕ⃗ · τ⃗ð2aμτþÞ þ ð−2aμτþÞ
i
Fπ

∂
μϕ⃗ · τ⃗

�

¼ Fπ

2
Tr

�	
⃗∂μϕ · τ⃗; τþ


�
aμ

¼ Fπ

ffiffiffi
2

p
∂μ½π−�aμ; ð4:4Þ

where the quantity in square brackets indicates the isospin
constraints on the Feynman vertex, amounting to charge
conservation (i.e., only a π− may decay to an e−). Strictly
speaking, this pion field is factored away from the coupled
current at the vertex, so this notation serves only to
indicate which diagrams are permitted. If instead, one
takes lμ ¼ rμ ¼ vμ, a trivial cancellation reveals that the π
coupling to a vector leptonic current vanishes. Similar
computations reveal the patterned structure of Nπν ver-
tices, where we display only those relevant for our NNπ
diagrams,

JμV;π ¼ 0;

JμA;π ¼ −iFπ

ffiffiffi
2

p
qμ½π−�;

JμV;ππ ¼ −
ffiffiffi
2

p
qμ½π−π0�;

JμA;ππ ¼ 0;

JμV;πππ ¼ 0;

JμA;πππ ¼ i
1

Fπ

ffiffiffi
2

p
qμ½π−π0π0 þ 2π−πþπ−�: ð4:5Þ

Also derivable from the above Lagrangian is the Feynman
rule for the four-pion vertex, which we will later need to
connect the πππ − π neutrino potential into a loop dia-
gram. In our case, this vertex will connect two momenta
�k and two momenta �l and has amplitude

iAππππ ¼
−2
3F2

π
ðk2 þ l2 − 2M2Þ; ð4:6Þ

FIG. 7. Diagrams for the neutrino interaction potentials relevant forNNπ intermediate states. The solid dots denote interaction vertices
from the chiral Lagrangian. (a) NN − ππ. (b) NNπ − π. (c) NNπ − NN. (d) NNπ − NNπ. (e) π − π. (f) ππ − ππ. (g) πππ − π.
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where M2 is a mass parameter generated by the explicit
chiral symmetry breaking of the quark masses, which at
LO is simply m2

π [13].
To study the πνNN vertex, we also follow [46] in

introducing an NLO nucleonic chiral Lagrangian,

LπN;LO ¼ iN̄V ·DN þ gAN̄S · uN;

LπN;NLO ¼ 1

2MN
ðVμVν − ημνÞðN̄DμDνNÞ

þ igA
2MN

N̄fS ·D;V · ugN; ð4:7Þ

where a static nucleon approximation has been made with
velocity Vμ ¼ ð1; 0⃗Þ and spin Sμ ¼ ð0; σ⃗Þ. Dμ is the chiral-
covariant derivative derived in terms of covariant vector Γμ,
and uμ is the contravariant vector counterpart,

Γμ ¼ Dμ − ∂μ ¼
1

2

h
u†ð∂μ − ilμÞuþ uð∂μ − irμÞu†

i
;

uμ ¼ i
h
u†ð∂μ − ilμÞu − uð∂μ − irμÞu†

i
: ð4:8Þ

Note that this is the same chiral order to which the neutrino
potential forNN states has been presented here as well as in
[8]. We will see that those terms in the Lagrangian that
contributed to the vector coupling for an NN state will
contribute only to the axial-vector coupling here, and vice
versa. Again setting −lμ ¼ rμ ¼ aμ for the axial-vector
contribution, we find at LO

iN̄VμD⃗μN ¼ iN̄VμΓμN

¼ i
2
N̄Vμ

�
u†ðiAμτ

þÞuþ uð−iAμτþÞu†
�

¼ −1
2

N̄Vμ i
Fπ

Aμ

h
τþ; ϕ⃗ · τ⃗

i
N

¼ −i
2Fπ

VμAμ½
ffiffiffi
2

p
p̄π−p −

ffiffiffi
2

p
n̄π−n − 2p̄π0n�;

ð4:9Þ
and at NLO

iN̄ D⃖μ D⃗νN ¼ Nð∂⃖μΓν þ Γμ∂⃗νÞN

¼ −i
2Fπ

pμ þ p0μ

2MN
Aμ

×
h ffiffiffi

2
p

p̄π−p −
ffiffiffi
2

p
n̄π−n − 2p̄π0n

i
: ð4:10Þ

Setting lμ ¼ rμ ¼ vμ for the vector contribution, we find
at LO

gAN̄S · uN ¼ gAN̄Sμ
�
u†vμτþu − uvμτþu†

�

¼ igA
Fπ

N̄Sμ;
h
τþ; ϕ⃗ · τ⃗

i
vμN

¼ igA
Fπ

Sμvμ; ½
ffiffiffi
2

p
p̄π−p −

ffiffiffi
2

p
n̄π−n − 2p̄π0n�;

ð4:11Þ

and at NLO

−
igA
2MN

fS ·D;V · ugN ¼ gA
2FπMN

N̄
n
Sμ∂μ; Vνvν½τþ; ϕ⃗ · τ⃗�

o
N

¼ −igA
Fπ

Vμ

2MN
S · ðpþ p0Þvμ;

h ffiffiffi
2

p
p̄π−p −

ffiffiffi
2

p
n̄π−n − 2p̄π0n

i
; ð4:12Þ

as well as the vector current induced by the pseudoscalar NNπ vertex and the π − ν coupling derived above,

JμV;induced ¼
igA
Fπ

�
1

q2 þm2
π
qμS · q

�
; ½

ffiffiffi
2

p
p̄π−p −

ffiffiffi
2

p
n̄π−n − 2p̄π0n�: ð4:13Þ

Thus, in total, we have for the currents at the πνNN vertex,

JμV;NNπ ¼
igA
Fπ

�
Sμ −

Vμ

2MN
S · ðpþ p0Þ þ 1

q2 þm2
π
qμS · q

�
;

·

� ffiffiffi
2

p
p̄π−p −

ffiffiffi
2

p
n̄π−n − 2p̄π0n

�
;

JμA;NNπ ¼
−i
2Fπ

�
vμ þ pμ þ p0μ

2MN

�
;

h ffiffiffi
2

p
p̄π−p −

ffiffiffi
2

p
n̄π−n − 2p̄π0n

i
: ð4:14Þ
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With all vertex-level building blocks defined, we can now
contract them to form completeΔL ¼ 2 potentials forNNπ
states. Let us first consider the neutrino interaction between
a nucleon line and a pion line, shown diagrammatically in
Fig. 7(a). Since we have seen that the latter only couples via
a vector current, the NN − ππ potential is given by

JμV;NN · JμV;ππ ¼
�
Vμ þ pμ þ p0μ

2MN

�
ð−

ffiffiffi
2

p
qμÞ

¼ −
ffiffiffi
2

p �
q0 þ

q · ðpþ p0Þ
2MN

�

¼ −
ffiffiffi
2

p
q0½nπ0 → pπþ; nπ− → pπ0�; ð4:15Þ

where the final simplification results from observing that
q · ðpþ p0Þ ¼ ðp − p0Þ · ðpþ p0Þ ¼ p2 − p02 ≃ E2

1;2.
Following [46], we count the electron energies at NNLO in
the chiral power counting, specifically E1;2 ∼mπðQΛχ

Þ2, and
therefore such terms can be safely neglected from our NLO
potentials.

The neutrino interaction between a πνNN vertex and a
single π, shown in Fig. 7(b), proceeds only via an axial-
vector current, but delivers a very similar potential to the
above [this is less surprising comparing the diagram to that
of Fig. 7(a)],

JμA;NNπ · JμA;π ¼ −
ffiffiffi
2

p

2
q0;

� ffiffiffi
2

p
pπ− → pπþ;

−
ffiffiffi
2

p
nπ− → nπþ;−2nπ− → pπ0

�
: ð4:16Þ

In fact, this pair of potentials very clearly exhibits the
importance of carrying through all isospin algebra; although
their kinematic dependence differs only by a constant factor,
they share only one isospin channel and discriminate
between three others. The neutrino interaction between a
πνNN vertex and a nucleon line NN, shown in Fig. 7(c),
exhibits more complexity, as both vector V − V and axial-
vector A − A channels may contribute. Fortunately, these
two components turn out to be identical, and the static
nucleon approximation leads to significant simplification,

JμV;NNπ · JμV;NN ¼ JμA;NNπ · JμA;NN

¼ igA
Fπ

�
Sμ −

vμ

2MN
S · ðpþ p0Þ þ 1

q2 þm2
π
qμS · q

��
vμ þ

pμ þ p0
μ

2MN

�

¼ igA
Fπ

�
1

q2 þm2
π
q0S · q −

1

4M2
N
ðp0 þ p00ÞS · ðpþ p0Þ þ 1

q2 þm2
π

1

2MN
q · ðpþ p0ÞS · q

�

¼ igA
Fπ

�
1

q2 þm2
π
q0

1

2
σ⃗ · q⃗ −

σ⃗ · ðp⃗þ p⃗0Þ
4MN

�� ffiffiffi
2

p
np → ppπþ;−

ffiffiffi
2

p
nn → pnπþ;−2nn → ppπ0

�
: ð4:17Þ

Similarly, the neutrino interaction between two πνNN vertices, shown in Fig. 7(d), receives contributions from both vector
V − V and axial-vector A − A channels. The current algebra matches that of the NN neutrino exchange, albeit with vector
and axial-vector contributions interchanged, and an additional constant factor −1

F2
π
,

JμV;NNπ · JμV;NNπ ¼
−4g2A
F2
π

�
Sμ −

vμ

2MN
S · ðpþ p0Þ þ 1

q2 þm2
π
qμS · q

�
2

¼ −4g2A
F2
π

�
S · Sþ 2

q2 þm2
π
ðS · qÞ2 þ q2

ðq2 þm2
πÞ2

ðS · qÞ2
�

¼ g2A
F2
π

�
σ⃗1 · σ⃗2 −

q2 þ 2m2
π

ðq2 þm2
πÞ2

σ⃗1 · q⃗σ⃗2 · q⃗

�

¼ g2A
F2
π

�
2

3
σ⃗1 · σ⃗2

�
1þ m4

π

2ðq2 þm2
πÞ2

�
þ 1

3
S12

�
1 −

m4
π

ðq2 þm2
πÞ2

��
;

½nn → ppπ0π0�; ð4:18Þ

and

JμA;NNπ · JμA;NNπ ¼
−1
F2
π

�
Vμ þ

pμ þ p0
μ

2MN

�
2

¼ −1
F2
π
þO

�
Q2

Λ2
χ

�
; ½nn → ppπ0π0�: ð4:19Þ
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Here we have only included the isospin factors for the
double-neutral-pion case, as this is the only one relevant for
our later analysis. The charged-pion channels are slightly
suppressed by factors of either � ffiffiffi

2
p

or �2.
Finally, we have three pion-only potentials, of the forms

π − π, ππ − ππ, and πππ − π, which are shown in Figs. 7
(e)–7(g), respectively. The first and third of these involve
only axial-vector couplings because both vertices connect
an odd number of pions; the second conversely involves
only vector couplings. Contracting our previously calcu-
lated currents, we have

JμA;π · JμA;π ¼ ð−iFπ

ffiffiffi
2

p
qμÞð−iFπ

ffiffiffi
2

p
qμÞ

¼ −2F2
πq2; ½π− → πþ�; ð4:20Þ

JμV;ππ · JμV;ππ ¼ ð−
ffiffiffi
2

p
qμÞð−

ffiffiffi
2

p
qμÞ

¼ 2q2; ½π−π− → π0π0; π−π0

→ π0πþ; π0π0 → πþπþ�; ð4:21Þ

JμA;πππ · JμA;π ¼
�
−i
Fπ

ffiffiffi
2

p
qμ
�
ð−iFπ

ffiffiffi
2

p
qμÞ

¼ 2q2; ½π0 → π0πþπþ; 2π− → π−πþπþ�:
ð4:22Þ

To express these products of currents as bona fide two-
nucleon potentials, we must include the neutrino propaga-
tor 1

q2 as well as the leptonic structure (and dimensionful

constants) that apply equally to all topologies. The resultant
potentials are collected in Table III.
In computing these NLO potentials, we experience the

full benefits of the χEFT formulation of nuclear forces. The
highly symmetric interactions permitted for pions deliver
simple kinematics for all permitted ν interactions. Indeed,
only the JμV;NNπ · JμV;NN potential has any spin or pion-mass

FIG. 8. Dimensional analysis of leading NN neutrino-exchange diagrams. They are all at LO in the chiral power counting.

TABLE III. Neutrino interaction potentials Vν
ðX;YÞ ¼

JμV;X · JμV ;Y þ JμA;X · JμA;Y as functions of exchange momentum
q. These potentials correspond to the diagrams of Fig. 7.

Potential Vν
… G2

FV
2
udmββ (…) uðk1ÞP̂RCūTðk2Þ

ðNN; ππÞ −
ffiffiffi
2

p q0
q2

ðNNπ; πÞ −
ffiffi
2

p
2

q0
q2

ðNNπ; NNÞ igA
Fπ

1
q2

�
1

q2þm2
π
q0

1
2
σ⃗ · q⃗ − σ⃗·ðp⃗þp⃗0Þ

4MN

�
ðNNπ; NNπÞ −1

F2
π

1
q2 ð1 − σ⃗1 · σ⃗2 −

q2þ2m2
π

ðq2þm2
πÞ2 σ⃗1 · q⃗σ⃗2 · q⃗Þ

ðπ; πÞ −2F2
π

ðππ; ππÞ 2
ðπππ; πÞ 2
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dependence up to NLO, a fact that will dramatically ease the
estimation of our leading 0νββ diagrams.

D. Diagrammatics and power counting
of the leading NNπ divergences

With both off-shell pion production/absorption NN →
NNπ and NNπ → NN and neutrino potentials connecting
NNπ and NN states characterized, we can now present the
complete set of diagrams whose divergences will contribute
to the size of the contact 0νββ counterterm. These are
shown in Fig. 9, alongside the workings that demonstrate
their (order-of-magnitude) NLO status in the chiral power
counting; the diagrams with only NN intermediate states
are also presented in Fig. 8.
We largely follow the power counting formalized in [86].

As is standard in chiral perturbation theory, pion propa-
gators (being light compared to the cutoff scale) contribute
1=Q2, while nucleon propagators (being heavy compared to
the cutoff scale and therefore static) contribute 1=Q. Loop
integrals generically contribute Q4=ð4πÞ2, where the factor
ð4πÞ−2 arises from angular integrations of dq4

ð2πÞ4. From the

exponential form of U in the chiral Lagrangian, a vertex
with d derivatives, p-pion fields, and n-nucleon fields can
be expected to contribute QdF2−p−b

π Λ2−d−b=2
χ . At this point,

two large scales enter into the power counting: Fπ and Λχ ;
Manohar and Georgi’s “naive dimensional analysis” pro-
cedure [15] shows that, in order for the leading non-
renormalizable four-pion vertex to be sufficiently and
naturally suppressed, Λχ can be at most 4πFπ , and in the
chiral power counting we take this bound to be saturated.
For multinucleon interactions, [20] showed that one must

treat nucleon propagators and loops differently when they
appear as reducible subdiagrams, i.e., elastic intermediate
states. When integrating over these internal nucleon lines,
pole contributions effectively restrict the nucleon from a
static treatment, with the result [32,86,87] that the nucleon
propagator is enhanced to ∼MN=Q2. The loop integral
contribution is adjusted to Q5=ð4πMNÞ, but since in the
power counting MN ∼ Λχ ∼ 4πQ, is of the same order as
the irreducible loop integral.
An additional feature of the chiral power counting

specific to our application is that it distinguishes between
p- and s-wave pion production from/absorption to NN
states. As discussed in Sec. IV B and in [66], the leading
NNπ vertex in the chiral Lagrangian only gives nonzero
contributions for p-wave pion production and is assigned
size gA

2
Q
Fπ

in agreement with the generic vertex expression
from [86] (we choose to retain simple constant factors since
they prove substantial for certain NNπ diagrams). The first
vertex to contribute to s-wave pion production is sup-
pressed by 1 chiral order, specifically by a ratio ωπ

2MN
where

ωπ is the pion energy. We recall that neutral-pion produc-
tion receives no contribution from the p wave.

We conduct our power counting in the manner appro-
priate for comparison to the integrand aχðkÞ in the match-
ing expression [8]

2gNN
ν ðμÞ ¼ 1þ 2g2A

2
−
Z

μ

0

dkaχðkÞ þ
Z

Λ

0

dka<ðkÞ

þ
Z

∞

Λ
dka<ðkÞ: ð4:23Þ

Thus, the factor M2
N

ð4πÞ2 arising from the two NN contact

interactions on either side of each bubble diagram is
neglected, and we implicitly include the neutrino-momen-
tum measure djkj such that each estimate is formally
dimensionless. As a proof of concept, Fig. 8 shows the
application of our chosen power counting to the elastic
diagrams AC containing divergences; we separate these
diagrams to make explicit the contributions from the
pseudoscalar-induced axial NNν coupling, whose presence
will play a more direct role in the NNπ-inelastic diagrams
to follow. As expected, all three diagrams enter at leading
chiral order ðQΛχ

Þ0.
In Fig. 9, a complete classification is presented of NN

0νββ diagrams whose neutrino exchange occurs in an NNπ
hadronic intermediate state. From the six neutrino poten-
tials exhibited and two competing pion production/absorp-
tion channels (charged and neutral), one might naively have
expected as many as 24 distinct topologies. However,
isospin symmetry places severe restrictions on these
combinatorics, leaving only the eight families of diagrams
illustrated in Fig. 9. Note that we show only one repre-
sentative of each family, whose pion production and
absorption occur via the impulse diagram defined in
Sec. IV B. As described there, each p-wave charged-pion
production/absorption can occur either via an impulse or a
seagull (pion-rescattering) diagram, both at leading order.
In our power counting estimate, we will neglect the seagull
diagrams, as simple power counting shows that the pres-
ence of an additional loop integral suppresses such dia-
grams by 2 chiral orders. Each s-wave neutral-pion
production likewise can occur either via an impulse
diagram or a Δ-excitation diagram, both at subleading
order. We elect not to include these Δ-excitation diagrams
in our estimate for the reason of consistency with our
truncation of the inelastic hadronic states to NNπ.
Including Δ degrees of freedom in one stage of our
calculation would necessitate their inclusion throughout,
in particular, in the intermediate hadronic state present for
neutrino exchange, which lies beyond the scope of this
work. Furthermore, each charged-pion production/absorp-
tion diagram also includes a subleading s-wave component;
we do not explicitly consider these, but they serve as a
reminder that, generically, diagrams that enter the chiral
power counting at some particular order may also experi-
ence contributions at any or all higher orders.
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FIG. 9. Dimensional analysis of leading NNπ neutrino-exchange diagrams. Diagram (a) is the “eye” diagram evaluated in Eq. (4.35),
diagrams (b)–(d) are the “surfer” diagrams evaluated in Eqs. (4.27)–(4.34), and diagrams (e)–(h) give significantly subleading
contributions, as explained in the text.
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This classification reveals four broader types of NNπ
diagrams according to the isospin properties of their virtual
pion. First, the lone “eye” diagram in Fig. 9(a) simply inserts
a pion exchange at the same vertices of the neutrino
exchange, as captured by our NNπ − NNπ neutrino poten-
tial. The pion production vertices contribute near unity
factors of Q

Fπ
, but the integration of the pion loop suppresses

Fig. 9(a) to NNLO in the chiral counting, 2 orders below the
NN contributions. The eye diagram topology was fully
evaluated in Appendix C of [8] and forms the basis of the
NNπ uncertainty estimate quoted in that work. Second, three
“surfer” diagrams [Figs. 9(b)–9(d)] are distinguished by both
charged-pion production and absorption, as well as by
neutrino exchange via a purely pionic potential; these
diagrams are also suppressed to NNLO. However, all the
other families of diagrams will experience additional sup-
pressions. Next, three “mountain” diagrams [Figs. 9(e)–9(g)]
involve a lone neutral-pion interaction (some with an
additional charged-pion interaction), with the neutrino
exchanged via a mixed pion-nucleon potential; all these
diagrams are suppressed to N3LO due to the s-wave
interaction of the neutral pion. Note that each of these
diagrams has a further multiplicity of 2 since the neutral pion
could interact on either nucleon line, not impacting the
power counting estimate but giving a distinct momentum
routing. Finally, the lone “bridge” diagram [Fig. 9(h)] is
present, whose virtual pion experiences 1 order of suppres-
sion at both the production and absorption ends, while
neutrino exchange occurs via a purely nucleonic potential,
just as in the NN contribution of [8]. This diagram is thus
suppressed to N4LO, along with a family of variations
depending on the placement of the pion-production vertices
on the nucleon lines. Overall, one expects from the power
counting that the surfer diagrams will dominate with the
mountain diagrams subleading.
Before proceeding to the integrals, we can now give a

power-counting-driven estimate of the error bar that 0νββ
diagrams with an NNπ intermediate-state place on the
elastic contact term size. Summing all diagrams construc-
tively alongside the aforementioned multiplicities for each
family, approximating Q

Λχ ∼
1
7.5, and comparing with the

estimate gNNðμχ ¼ mπÞ ≃ 1.32 from [8], we find

ΔgNNπ ∼ ð4.2þ 2 · 2þ 2 · 2þ 2 · 2Þ
�
Q
Λχ

�
2

þ ð8 · 0.3þ 8 · 0.15þ 8 · 0.4Þ
�
Q
Λχ

�
3

þ ð4 · 0.4Þ
�
Q
Λχ

�
4

¼ 0.288NNLO þ 0.016N3LO þ 0.0005N4LO;

ΔgNNπ

gNN
¼ 21.8%NNLO þ 1.2%N3LO þ 0.04%N4LO: ð4:24Þ

This estimate is in agreement with the error bars allocated
by [8], suggesting that we can expect as much as a 22%
modification to the size of contact counterterm gNN

ν through
the inclusion of our NNLO corrections (the eye and surfer
diagrams). Even further, our estimate shows that, if all four
described NNLO diagrams [Figs. 9(a)–9(d)] are taken into
account in a complete regularization analysis, the remain-
ing NNπ contributions only induce uncertainties on the
order of 1%.

E. Dimensional regularization of the NNLO
NNπ divergences

In the preceding subsection, we identified a collection
of four neutrino-exchange diagrams, the “eye” diagram
[Fig. 9(a)] and “surfer” diagrams [Figs. 9(b)–9(d)], as
encoding the leading NNπ contribution to NN 0νββ decay.
These diagrams and their power counting are shown in the
top four rows of Fig. 9 and were expected to enter at NNLO
in the chiral power counting, with as much as a 8%
modification to the elastic contact coefficient anticipated.
Here we will test that hypothesis by evaluating the
divergent part of all four diagrams in the dimensional
regularization framework and follow the matching strategy
of [8] in order to compute the corrected contact term.
We first consider the surfer diagrams in Figs. 9(b)–9(d),

which require novel calculation. All three give a general-
ized amplitude with the structure

δAS;i¼−iK
Z

d4l
ð2πÞ4

i
l2−m2

πþ iϵ
i

l2−m2
πþ iϵ

ICðl2;p2;p02ÞIS;iðl2Þ; i¼1;2;3; ð4:25Þ

where ICðl2; p2; p02Þ is the two-nucleon bubble integral,
shown in [8] to have asymptotic (p ∼ p0) real component
1
8l θðjlj − 2jpjÞ, the partial amplitudes IS;iðl2Þ encode the
kinematics of the distinct pion-neutrino subdiagrams, and
K encodes constant factors. We will see momentarily that
the leading divergences of IS;iðl2Þ in which we are
interested will resolve to the form Al2 þ B, and so, very
fortunately, we can factorize the internal one- and external
two-loop integrals.
However, first, one further factorization can be per-

formed, as all of the IS;i enjoy the same spin structure at the
NNπ vertices. Following the normalization of [66,88], this
p-wave charged-pion vertex is determined by the following
term of the LO chiral Lagrangian:

LπN ∋
gA
2Fπ

Nτaσ
j∇jπaN: ð4:26Þ

The isospin algebra (index a) is implicitly accounted for in
our enforcement of charge conservation at each NNπ
vertex; however, the spin algebra requires more thought.
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Each IS;i will include an operator σ1 · lσ2 · l, where σi
indicates the vector of Pauli spin operators on nucleon i.
This operator may be decomposed into a spherical com-
ponent 1

3
l · lσ1 · σ2, which we will need, and a tensor

component − 1
3
S12, which vanishes since we are only

considering 1S0 NN partial waves on the external legs.
In this partial wave, σ1 · σ2 ¼ −3, so the total spin algebra
factor is simply −l2.

Now we perform the external integration separately for
both IS;i ¼ 1 and IS;i ¼ l2, a complete basis for our
solution. Because we are working within a static nucleon
approximation, pion-exchange momentum l needs only be
treated withinD ¼ 3, averting the usual Wick rotation step.
For IS;i ¼ 1, the resultant Euclidean integral is logarithmi-
cally solvable and divergent, and following [8] we regulate
it with a cutoff scale μπ ∼ Λχ ,

δAS;i;1 ¼ −
1

8

�
gA
2Fπ

�
2
Z

d3l
ð2πÞ3

l2

ðl2 þm2
πÞ2

1

jlj θðjlj − 2jpjÞ

¼ −
1

8

1

8π2

�
gA
2Fπ

�
2
Z

μπ

2jpj
dl

l3

ðl2 þm2
πÞ2

¼ −
1

8

1

2π2
1

2

�
gA
2Fπ

�
2
�
−

m2
π

m2
π þ 4p2

þ m2
π

m2
π þ μπ

2
þ log

�
m2

π þ μπ
2

m2
π þ 4p2

��

¼
p→0

−g2A
128π2F2

π

�
−1þ m2

π

m2
π þ μπ

2
þ log

�
1þ μπ

2

m2
π

��
: ð4:27Þ

For IS;i ¼ l2, the Euclidean integral is solvable but naively appears quadratically divergent. The situation is analogous to the
NN one-pion-exchange potential as treated in [18], whose momentum-space integral is proportional to

g2A
4F2

π

Z
d3l
ð2πÞ3

l2

l2 þm2
π

1

jlj ¼
g2A
4F2

π

Z
d3l
ð2πÞ3

�
1 −

m2
π

l2 þm2
π

�
1

jlj : ð4:28Þ

In the above, the latter term gives a convergent contribution to the one-pion-exchange bubble diagram (seen in Fig. 3). The
former term is linearly divergent, but has the same form as the four-nucleon contact interaction C; in spatial coordinates,

they are both δð3ÞðrÞ potentials. Thus, by setting the contact interaction C ↦ C̃ ¼ Cþ g2A
4F2

π
, the linear divergence is absorbed

into an existing, observable constant encoding short-range physics.
We assume, perhaps liberally, that our leading quadratic divergence can be absorbed into short-range parameters in a

similar fashion; we isolate and subtract the linear term from the integrand, assuming that it can absorbed into the coefficient
of the χEFT NNNNππ vertex, which will only contribute to our process at a much lower order. This leaves only a
logarithmic divergence, regularized as follows:

δAS;i;l2 ¼ −
1

8

�
gA
2Fπ

�
2
Z

d3l
ð2πÞ3

l4

ðl2 þm2
πÞ2

1

jlj θðjlj − 2jpjÞ

¼ −
1

8

1

8π2

�
gA
2Fπ

�
2
Z

μπ

2jpj
dl

l5

ðl2 þm2
πÞ2

→
subtraction

−
i
8

1

8π2

�
gA
2Fπ

�
2
Z

μπ

2jpj
dl

m4
π

lðl2 þm2
πÞ2

−
2m2

π

lðl2 þm2
πÞ

¼ −
1

8

1

2π2
1

2

�
gA
2Fπ

�
2

m2
π

�
−

m2
π

m2
π þ μπ

2
þ m2

π

m2
π þ 4p2

þ 2 log
�
m2

π þ 4p2

m2
π þ μπ

2

��

¼
p→0

−g2Am2
π

128π2F2
π

�
1 −

m2
π

m2
π þ μπ

2
− 2 log

�
1þ μπ

2

m2
π

��
: ð4:29Þ

Now we apply dimensional regularization to each of the IS;i, making use of standard integration results similar to those
shown by [13] in computing the one-loop chiral correction to the nucleon mass. IS;1, corresponding to Fig. 9(b), is
regularized as follows:
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IS;1 ¼ 2

Z
d4k
2π4

1

ðk − lÞ2 −m2
π þ iϵ

k2

k2 −m2
ν þ iϵ

¼ 2

Z
d4k
2π4

1
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þ 2
1
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π þ iϵ

·
m2

ν
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¼ 2m2
π

16π2

�
2

ε
þ γE − 1 − logð4πÞ − log

�
μν

2

m2
π

��
þOðm2

νÞ; ð4:30Þ

where μν is the scale of dimensional regularization, and where we employ a finite mν as a regulator, but find that such

contributions are suppressed by m2
ν

m2
π
. Thus, applying the MS scheme such that 2

ε þ γE − logð4πÞ − 1 is absorbed into the

coupling constants of the Lagrangian [i.e., gA ↦ gðrÞA , Fπ ↦ FðrÞ
π ] overall we find

δAS;1 ¼
M2

N

ð4πÞ2
g2Am

2
π

64π2F2
π

�
−1þ m2

π

m2
π þ μ2ν

þ log

�
1þ μ2ν

m2
π

���
log

�
μ2π
m2

π

��
: ð4:31Þ

Examining Fig. 9(c), we find that IS;2 ¼ IS;1 up to corrections of Oðm2
ν

m2
π
Þ, since

Z
d4k
2π4

1

k2 −m2
π þ iϵ

k2

k2 −m2
ν þ iϵ

¼
Z

d4k
2π4

1

k2 −m2
π þ iϵ

þ 1

k2 −m2
π þ iϵ

m2
ν

k2 −m2
ν þ iϵ

ð4:32Þ

is equivalent to the integrand of IS;1 after a shift in k [sans corrections of Oðm2
ν

m2
π
Þ]. This equivalence is facilitated by chiral

symmetry, via the equivalence of the ππ − ππ and πππ − π potentials seen in Table I.
Now considering Fig. 9(d), we will see that the four-pion vertex ∼ −2

3F2
π
ðk2 þ l2 − 2m2

πÞ will facilitate a demarcation into

terms that are proportional either to l2 or to a constant. Regularizing,

IS;3 ¼
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where in the final steps we have enforced the MS scheme and canceled all but the divergent term proportional to l2. Then,
combining with the result of the l2 external integration Eq. (4.29), the regularized amplitude is

δAS;3 ¼
M2

N

ð4πÞ2
g2Am

2
π

96π2F2
π

�
1 −

m2
π

m2
π þ μπ

2
− 2 log

�
1þ μπ

2

m2
π

���
log

�
μν

2

m2
π

��
: ð4:34Þ

All of the calculated AS;i are displayed as functions of μν and μπ in Fig. 10, where the remarkable cancellation between the
logarithmic divergences of 2AS;1 þ 2AS;2 and 2AS;3 is apparent. Shown alongside are enhanced models, where gA is
replaced with the dipole form factor defined in Eq. (3.6) with scale ΛA ¼ 1.0 GeV, with the intention of making the
amplitudes more valid for the intermediate momenta betweenmπ and Λχ . These enhanced models will prove essential for a
matching analysis analogous to that performed by [8] in the NN case. In addition to these contributions, we quote the
amplitude for the eye diagram (top row in Fig. 8) as computed in Appendix C of [8],
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and where we have made the substitution 1þ 3g2A ↦ 1þ
2g2A in accordance with the induced pseudoscalar compo-
nent of the NN neutrino potential in χEFT. Note that the
final integration in neutrino momentum k for this diagram
has not been analytically solved; in order to compare apples
to apples with our analytically regulated amplitudes for the
surfer diagrams, we define partial amplitudes

as;iðμνÞ≡ d
dμν

As;iðμνÞ: ð4:36Þ

Strictly speaking, these distributions are not physically
meaningful; they encode the density of an amplitude that
one obtains while increasing the dimensional regularization
scale, rather than amplitude densities over loop momentum
k defined before regularization. However, we will only use
them for visualization purposes and to verify our power
counting, instead applying As;iðμνÞ directly when we
compute the contact counterterm coefficient.
Recall that three adjustable scales appear in this pro-

cedure: the neutrino loop regularization scale μν appearing
above, which is the running renormalization scale of the
counterterm coefficient gνNN ; the pion loop regularization
scale μπ , which we treat with a simple momentum cutoff, as
does Appendix C of [8]; and the matching scale Λ, which

was seen in [8] to introduce negligible error into the
counterterm estimate for 1 < Λ < 4 GeV. We will follow
[8] in choosing the renormalization point μν ¼ mπ for
quoted values of gνNN , but emphasize that the entire function
gνNNðμνÞ is the physical quantity that this analysis aims to
predict.
The partial amplitudes for all three surfer diagrams are

shown in Figs. 11(b)–11(d) for example pion regularization

FIG. 10. Dimensionless amplitudes for surfer diagrams 1 and 2 (orange), 3 (blue), and their sum (green), as functions of regularization
scales μν (left) and μπ (right), with the respective other scale set to μπ ¼ 0.5 GeV. In both plots, the solid lines show the direct χEFT
result, while the dashed lines show the enhanced model defined in the text, where gA is replaced with its dipole form factor.

FIG. 11. Partial amplitudes (defined in text) for surfer diagrams
1 and 2 (orange), 3 (blue), and their sum (green), as functions of
regularization scale μν with μπ ¼ 0.5 GeV. The solid lines show
the direct χEFT result, while the dashed lines include a dipole
form factor for gA.
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point μπ ¼ 0.5 GeV, where again the significant cancella-
tion is apparent, as well as some indication that virtual
momenta above nuclear scales contribute diminishing
amounts to these diagrams. To illustrate sensitivity of
our results to the pion regularization point, Fig. 12 again

shows the partial amplitudes for the surfer diagrams as well
as for the eye diagram treated in [8], for a range of μπ values
between 0.5Λχ and 1.5Λχ . One notices immediately that,
although the partial amplitude for the eye diagram suffers
from some significant pion regularization scale depend-
ence, the sum of partial amplitudes for the surfer diagrams
is nearly vanishing across a broad range of both μπ and μν;
in fact, the total surfer diagram contribution exactly
vanishes at μν ¼ mπ (the representative nuclear scale
chosen here and by [8]), regardless of μπ . We can say
roughly that the chiral symmetry inherent in our treatment
of this nuclear system has enforced a natural smallness of
pion loops through both the permitted neutrino currents and
the combinatorics. This exact cancellation will be broken
by electromagnetic effects that separate mπ0 and mπ� , but
these should only be relevant 1 chiral order lower than our
diagrams, at N3LO.
To illustrate the size of these contributions relative the

partial amplitudes aχ , a<, and a> needed for the matching
analysis of [8], we interpret our χEFT result as a correction
on aχ , while we interpret its enhanced gA form factor
counterpart as a correction on a<. In a more complete
analysis, phenomenological pion-nucleon form factors
would be included in a corrected a< alongside an appro-
priate extension of the half-off-shell form factors used in [8]
to improve the robustness of the NN contact interactions.
We will treat these possible extensions as falling within the
uncertainties accorded to the choice of the short-range
potential and see that this simple parametrization of
intermediate-momentum behavior is enough to deliver a
corrected matching result with expected scale dependence
properties. There is certainly no need to adjust a> within the
precision desired in this analysis, since as discussed in [8]

FIG. 12. Partial amplitudes for the eye diagram (red), surfer
diagrams 1 and 2 (orange), 3 (blue), their sum (green), as
functions of regularization scale μν shown linearly (top) and
logarithmically (bottom). μπ is varied between 0.5Λχ and 1.5Λχ ,
and the dipole gA form factor is included throughout.

FIG. 13. Total partial amplitudes for the matching analysis following Fig. 6 of [8], where aχ is accurate in the low-momentum
exchange region up to ∼mπ , a< is the enhanced model for the intermediate-momentum exchange region, a> is the high-momentum
exchange OPE from perturbative QCD, and the pion regularization scale is fixed at μπ ¼ Λχ . The solid lines include all four NNπ partial
amplitudes, while the dotted lines include only the NN results of [8].

IMPROVED PRECISION CALCULATION OF THE … PHYS. REV. D 111, 055033 (2025)

055033-33



the role of this partial amplitude is primarily to enforce
finiteness in the UV, and at any rate, the quark-level
diagrams used in its calculation already include at least
some inelastic intermediate nuclear states.
In Fig. 13 the corrected partial amplitudes for the

matching analysis are plotted (solid) in comparison to
the NN-only partial amplitudes from [8] (dotted). Viewed
globally, these corrections are almost invisible to the eye,
certainly smaller than say 5%, showing the most discrep-
ancy in the 0.1 < μν < 0.5 GeV range where the eye partial
amplitude is strongest.

With these partial amplitudes in hand, we can perform a
preliminary matching analysis analogous to that of [8] to
estimate the corrected size of the contact counterterm gNN

ν .
In practice, this amounts to implementing Eq. (3.40) on our
corrected partial amplitudes, and in particular, we propose a
hybrid matching scheme where the pure χEFT corrections
and those including a gA form factor are applied separately
to aχ and a<, thus preserving the demarcation between low-
and intermediate-momentum physics. However, other
schemes are plausible: naively, one might assume that
due to our incomplete knowledge of the intermediate-
momentum range, we should only apply our corrections
to aχ , either with a hard cutoff or with the softer inclusion of
the gA dipole form factor (FF). The results of all three
approaches, at μν ¼ mπ , μπ ¼ Λχ , and as a function of
matching scale Λ, are displayed in Fig. 14. We find that, in
our hybrid matching scheme, the size of gNN

ν ðμν ¼ mπÞ is
enhanced from 1.35 to 1.40, an increase of just under 4%,
while generic independence of sufficiently large matching
scale Λ is preserved. The suppression of 1% in the naive
cutoff and form factor schemes, in our view, neglects
relevant intermediate-momentum-scale physics that is
present in our analysis. However, at the very least, it
provides an additional confirmation that theNNπ correction
gNN
ν is small, well below the 38% uncertainty allocated by
[8]. Note also that our value of 1.35 for the NN-only
counterterm size differs from the value of 1.34 quoted by
[8]; this difference appears to be entirely attributable to
updated measurement of mπ and so does not represent a
correction but rather an update on the NN-only result.
In Fig. 15, we illustrate the dependence of these results on

the neutrino regularization scale μν. As expected, the size of

FIG. 14. Computed low-energy constant gNN
ν from combined

NN and NNπ amplitudes using the naive low-momentum
schemes described in the text (purple), a more robust low- and
intermediate-momentum scheme (green), in comparison with the
NN-only result following [8] (orange). The weak dependence of
gNN
ν on matching scale Λ is seen, and all computations are
performed at pion regularization scale μπ ¼ Λχ and neutrino
regularization scale μν ¼ mπ .

FIG. 15. Computed low-energy constant gNN
ν from combined NN and NNπ amplitudes using the naive low-momentum schemes

described in the text (purple), a more robust low- and intermediate-momentum scheme (green), in comparison with the NN-only result
(orange). The logarithmic dependence of gNN

ν on neutrino regularization scale μν is seen, and all computations are performed at pion
regularization scale μπ ¼ Λχ and matching scale Λ ¼ Λχ . Global similarity of the running coupling is demonstrated on the left, while the
right shows the NNπ corrections ΔgNN

ν by scheme, where the values at chosen scale μν ¼ mπ correspond to Fig. 14.
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the correction remains small across all μν and, globally, we
can state that the shape of the renormalization group of gNN

ν

is adjusted very little. However, the total corrections to gNN
ν

are scale dependent; in the hybrid scheme they vary between
−0.06 < ΔgNN

ν < 0.07 for scales 0.05 < μν < 0.6 GeV.
The results according to the naive cutoff and form factor
schemes diverge from one another as one moves away from
μν ¼ mπ and the surfer diagram contributions become
larger; however, all three schemes exhibit decreasing scale
dependence of ΔgNN

ν . In other words, accounting for NNπ
diagrams has served to improve the scale dependence of
gNN
ν , albeit very slightly.
In total, we quote the following NNπ-corrected result for

the size of the ΔL ¼ 2 contact counterterm first estimated
by [8], representing a ∼4% increase in its size:

gNN
ν ≃ 1.40ð20ÞVS

ð5Þparametersð3Þinelastic ¼ 1.4ð3Þ: ð4:37Þ

Regarding our uncertainties, we retain the short-range
potential and parameter uncertainties claimed by [8], since
we have not sought to make improvements on the
calculation in either of these areas, and since we have
not introduced any dramatically different short-range
physics or physical parameters into the picture that would
be more prone to uncertainty. In addition, we have checked
that reasonable variation of our model parameters (namely,
ΛA in the gA dipole form factor) does not exceed δ ¼ 0.05.
Our remaining inelastic uncertainty is derived from

the power counting performed in Fig. 9, from which all
unaccounted for, subleading NNπ diagrams are expected
to contribute not more than 0.016 uncertainty to the total
correction amplitude. NNππ and more-pion intermediate
states only begin to contribute at N4LO in our power
counting and can be expected to be safely subpercentile.
We suggest that the inclusion of Δ and heavier resonance
intermediate states in our analysis, because it would
require a full extension of the underlying χEFT framework
to include explicit heavier degrees of freedom, is already
accounted for in the short-range potential uncertainty
δVS

¼ 0.20. To account for any N3LO Δ-resonance dia-
grams that might contribute at N3LO to our power
counting of diagrams, we conservatively double our
remaining inelastic uncertainty to give δinelastic ¼ 0.03.
Therefore, in addition to identifying a ∼5% increase in

the size of the contact counterterm owing to NNπ inter-
mediate states, our χEFT framework demonstrates a reduc-
tion of inelastic uncertainties from the ∼38% of [8] to ∼3%,
corresponding to a total uncertainty improvement from
∼46% to ∼21%. Thus, the dominant source of contact
counterterm uncertainty, rather than inelastic states, is the
selection of a short-range internucleon potential for inter-
mediate momenta.

V. DISCUSSION

The complexity of the nuclear many-body problem and
resultant wide spread in estimates of NMEs remains the
primary obstacle to improving the precision of our theo-
retical understanding of 0νββ decay. While development
continues for a variety of computational methods based on
phenomenological nuclear theory, a growing proportion of
the nuclear theory community has come to view ab initio,
first principles nuclear theory as the most promising way
forward. Uncertainty quantification in ab initio nuclear
theory is more rigorous than in phenomenological models,
granting insights into disagreements between calculations
and ultimately the systematic improvement of many-body
methods as well as the NMEs they predict [89].
In this work, we have attempted to expand upon the

calculation of the contact counterterm contribution to 0νββ
decay, as first noted in Ref. [5] and quantified for elastic
intermediate states in Refs. [7,8]. At renormalization point
μ ¼ mπ , this estimate was

gNN
ν jNN ≃1.32ð50Þinelasticð20ÞVS

ð5Þparameters¼ 1.3ð6Þ; ð5:1Þ

where a total of ∼46% uncertainty is present, dominated by
the ∼38% uncertainty arising from the choice to only
account for elastic intermediate hadronic states. By
accounting for NNπ intermediate states, we have generated
an improved estimate of the contact coefficient

gNN
ν jNNþNNπ ≃ 1.40ð20ÞVS

ð5Þparametersð3Þinelastic ¼ 1.4ð3Þ;
ð5:2Þ

where a total of ∼21% uncertainty is present, only ∼3%
now stemming from the intermediate-state truncation (an
order of magnitude reduction). As indicated in Sec. IV E,
additional work will be required to ensure the robustness of
this intermediate-state correction through intermediate-
momentum scales. Further improvements in precision
could mainly be obtained through careful characterization
of the short-range nuclear potentials employed in modeling
that intermediate-momentum scale.
A distinct verification of the size of the contact counter-

term, justifying in part the relation to charge independence
breaking low-energy constants made in [5], was recently
performed by [90,91] using a large-Nc analysis. We note
that their determination, like ours, favors a slightly larger
gNN
ν than the elastic truncation, and that our results agree
within uncertainties.
Recently, the author became aware of a new and

alternative approach by [92], in which the 0νββ-decay
amplitude is computed using the manifestly Lorentz-
invariant chiral Lagrangian of [93]. Just as Ref. [93] shows
how to absorb all UV divergences for S-wave NN scatter-
ing, Ref. [92] claims that this relativistic Lagrangian leads
to an 0νββ-decay amplitude that requires no counterterm at
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LO. The resultant LO amplitude is numerically compatible
with the nonrelativistic approach with a counterterm and,
therefore, our improved precision estimate as well; it would
be interesting to consider whether the subleading correc-
tions presented here have an analogous effect in the
relativistic setting.
To obtain an ab initio estimate of the NME for 0νββ

decay in a given isotope, input from the two- and few-
nucleon scale must be provided to an appropriate many-
body method; popular contenders include the self-consistent
Green’s function approach [94], the in-medium similarity
renormalization group (IMSRG) [95], coupled-cluster
methods [96], and the in-medium generator coordinate
method (IM-GCM) [97]. NME estimates from these
approaches, built upon long-range few-nucleon inputs only,
skew smaller than estimates from most phenomenological
nuclear models, with the consequence that a given 0νββ-
decay search will probe less of new-physics parameter
space. The most recent calculation based on IMSRG [98]
suggested as much as an order-of-magnitude decrease in
experimental reach or, rather, that biased estimates based on
phenomenological nuclear models have overinflated exper-
imental reach by this amount.
Reference [99] was the first to produce NME esti-

mates that include the contact counterterm as input,
demonstrating (within a no-core shell model) a ∼15%
enhancement in 6He compared to the long-range-only
estimate. References [98,100] similarly applied IMSRG
and IM-GCM incorporating the contact counterterm to
experimentally relevant isotopes such as 76Ge; compared to
the long-range-only NME estimates, these results show
40%–90% enhancements depending on the isotope. As a
result, a significant portion of the experimental reach that
was lost in proceeding from a phenomenological to an
ab initio nuclear model is restored. Since our improved
precision estimate of the contact term has resulted in only a
very small adjustment of the central value, within even the

improved uncertainties, we should therefore anticipate a
tightening of the ab initio NME estimates, without much
movement.
Clearly, it is essential both to the interpretation and

design of future 0νββ-decay searches that the remaining
theoretical uncertainties embedded in these ab initio esti-
mates be suitably resolved. As [98] explains, many of these
theoretical uncertainties will arise from neglected many-
body effects, e.g., in IMSRG; these are beyond the scope of
this work and represent significant future endeavors of the
nuclear theory community. However, other theoretical
uncertainties arise from the two-nucleon scale, and it is
precisely those uncertainties on the contact counterterm
that we have here reduced by a factor of 2.
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