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With the increasing interdependency of advanced information and communication
technologies, power systems are undergoing a rapid transition to cyber-physical
power systems (CPPS). This interdependency introduces cross-layer cyber threats that
propagate their effects from the cyber layer to the physical layer, disrupting power
system operations and potentially causing widespread blackouts. This research
investigates two cyber challenges affecting CPPS security from two aspects: (1)
degraded communication quality of service (QoS), which compromises data
availability, and (2) false data injection attacks (FDIAs), which target data integrity.

Degraded QoS poses a critical cross-layer threat to CPPS by disrupting the timely and
accurate transmission of control signals or measurements. Such disruptions
undermine key functions such as frequency, voltage regulation in a cross-layer
fashion. To address this, a novel technique is proposed, comprising (1) a CPPS model
for quantitatively analyzing the cross-layer impact of resource allocation on physical
states, specifically frequency, voltage, and (2) a multi-objective optimization
framework to develop an optimal resource allocation strategy that minimizes
disruptions to physical state regulation while enhancing QoS. The proposed strategy
achieves a 13.74% reduction in frequency deviation and a 4.57% reduction in voltage
deviation in the test system.

Another type of cyberattack, FDIAs, also pose critical cross-layer threats to CPPS by
targeting data integrity. By compromising multiple measurement devices and
cooperatively manipulating their measurements, FDIAs can construct stealthy attack
vectors that evade residue-based bad data detection (BDD), mislead power system
state estimation (PSSE), and ultimately cause market instability and economic losses.
With the increasing integration of electricity markets and carbon trading markets, the
cross-layer threats posed by FDIAs are further exacerbated due to additional
vulnerabilities in energy price calculation mechanisms. Traditional approaches that
assess economic risks based solely on electricity markets are no longer sufficient. This
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research represents the first effort to extend the investigation of economic risks
induced by FDIAs beyond the electricity market, incorporating the impacts of carbon
emission costs. Simulations reveal an economic risk increase of up to 201.61 ($/MWh)
on a certain transmission line in the PJM test system, compared with the traditional
risks assessment only considering electricity costs.

Following the economic risk analysis of FDIA, this research further investigates
mitigation strategies by disrupting its stealthiness, which depends on their capability
of propagating across the system and manipulating a sufficient number of
measurements. To address this, this research introduces the concept of zero-trust
architecture (ZTA) and develops a novel security architecture based on a
micro-segmentation technique. This technique divides measuring devices into finer
security segments, restricting lateral attack propagation within the cyber layer while
reducing FDIA stealthiness in the physical layer. To optimize the micro-segmentation
strategy, a cyber-physical-BDD-enhancement-metric and a Graph Attention Network
(GAT) combined with a reinforcement learning (RL) algorithm are proposed,
evaluating the technique’s effectiveness in enhancing BDD detection capability and
mitigating the impact of FDIAs. Simulations demonstrate a significant improvement
in the BDD detection rate against FDIAs, increasing from 5.23% to 94.02% with the
proposed technique.
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y, ŷ Actual and predicted output from the LSTM network
aB

ini Initial action of the follower during pre-training
Norm(·) Normalization operator
tanh(·) Hyperbolic tangent activation function

∥ · ∥2 ℓ2-norm operator, defined as ||x||2 =
√︂

∑i x2
i

◦ Hadamard (element-wise) product operator
diag(·) Diagonal matrix constructed from a vector
ρ Parameter for updating target network weights
v̂RT

a,t , ∆vRT
a,t Predicted and adjusted trading volume of attackers

◦ Hadamard (element-wise) product operator
E(·) Expected function





1

Chapter 1

Introduction

With the rapid advancement of Information and Communication Technology (ICT),
traditional power systems have evolved further beyond smart grids into sophisticated
Cyber-Physical Power Systems (CPPS), distinguished by their deep interdependence
between cyber and physical domains. While this transformation has substantially
enhanced the efficiency and intelligence of power infrastructures, it also introduces
unforeseen and multifaceted security threats. In particular, certain threats, defined as
cross-layer threats in this research, despite originating in the cyber layer, have the
capability to propagate across layers and compromise physical components, leading
to highly destructive impacts in CPPSs. This research explores both offensive and
defensive dimensions, exploring the cross-layer security threats inherent to CPPS.

1.1 Motivation

The evolution of power systems has progressed from traditional infrastructures to
smart grids and, ultimately, to CPPS, reflecting significant advancements in efficiency,
technology, and security. To begin with, traditional power systems rely on centralized
generation and unidirectional electricity flow, with security concerns primarily
focused on physical infrastructure, such as equipment failures, vandalism, and
natural disasters [1]. The transition to smart grids, driven by advancements in ICT,
enabled traditional power systems to utilize bidirectional data flow, enhancing
efficiency and reliability [2, 3]. However, this digital integration also introduced new
vulnerabilities, including cyber threats and communication disruptions. As the
interaction between cyber and power systems becomes increasingly interdependent,
CPPS has evolved to replace the smart grid, representing a tightly integrated system
that combines physical and digital infrastructures [4].
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CPPS typically includes power equipment, sensor networks, actuators,
communication units, and computing facilities, with two critical data flows:
measurements and control commands. Measurements, such as voltage, active power,
and current, are collected by sensors from power equipment and transmitted to the
computation system. This system processes these measurements to generate control
commands, which are subsequently dispatched to actuators for the regulation of
power equipment [5, 6]. The secure and stable operation of CPPS heavily relies on the
availability and integrity of these data flows. By leveraging advanced information
technologies, including real-time data analytics, artificial intelligence, and
autonomous decision-making, CPPS enhances system performance, resilience, and
adaptability [7]. However, the growing interdependence between cyber and physical
layers in CPPS also introduces significant security challenges. Unlike traditional
power components, which are often insulated from external access, cyber components
are interconnected with external networks. This connectivity makes CPPS vulnerable
to cyberattacks, thereby resulting in undesired power communication interruptions
and even blackouts [8].

For example, on 23 December 2015, a synchronized and coordinated cyber-attack
compromised three Ukrainian regional electric power distribution companies,
resulting in power outages affecting approximately 225,000 customers for several
hours [9]. In this case, the malicious attackers delivered BlackEnergy 3 malware via
spear phishing emails and were granted an initial access vector to the internal
network (e.g., SCADA system). Afterward, the virtual private network credentials of
the authorized users were successfully stolen for further penetration and destruction.
These malicious events reveal the critical risks associated with cross-layer propagation
within CPPS. Such cross-layer threats are particularly severe due to their capability to
propagate to the physical layer, intensifying their impact. Specifically, certain threats
in CPPS are no longer confined to traditional data security risks; their potential for
cross-space propagation must also be considered, as they can cause failures in power
equipment. For instance, degraded QoS within communication networks can disrupt
the transmission of control signals, thereby impairing the operation of actuators in
power plants. Therefore, addressing the issue of cross-space risk propagation has
become an urgent priority.

However, when confronting cross-layer threats within CPPS, a universal solution
remains absent. Each specific threat requires tailored defensive measures. Some
researchers focus on data processing and analysis in the control center to enable
effective state estimation and decision-making under emergency conditions. Other
research highlights the protection of data transmissions, employing techniques such
as Intrusion Detection Systems (IDS) [10], secure communication protocols, and
network segmentation [11] to safeguard data transmission pathways and prevent
unauthorized access. In addition, some advanced control algorithms [12, 13] are
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proposed to maintain system stability and operational robustness while mitigating the
impact of data corruption and malicious attacks. Moreover, researchers are
developing strategies such as edge measurement device protection [14] and
admittance-adjustment-based moving target defense (MTD) [15]. Although each
existing defensive approach has shown feasibility and effectiveness in addressing
specific threat scenarios, each approach has inherent limitations, leaving certain
vulnerabilities unaddressed.

More critically, the complexity of components and functionalities in CPPS poses
significant challenges for investigating cross-layer threats. The tight integration of
numerous information devices (e.g., Internet of Things (IoT) devices [16]) and
physical assets (e.g., renewable energy technologies [17]) has significantly heightened
the complexity of CPPS. This large-scale expansion renders CPPS highly dynamic and
nonlinear, complicating modeling and prediction efforts. Consequently, monitoring
and real-time security decision-making face considerable challenges [18]. In addition,
the cross-layer interdependence in CPPS enhances the integration between market
mechanisms and power functionalities, such as economic dispatch. This integration,
driven by mechanisms such as carbon trading and renewable energy credits alongside
low-carbon policies, increases the economic sensitivity of power nodes to market
fluctuations [19], thereby introducing novel economic vulnerabilities. Overall, the
interdependence within CPPS expands the attack surface, complicates real-time
monitoring and security responses, and introduces novel vulnerabilities from other
operational functions, which pose significant challenges for future security measures.

Confronting the aforementioned challenges, several innovative techniques have
gained attention to address security issues of CPPS based on their unique
characteristics. Some researchers have initiated investigations into coordinated
security defense strategies that simultaneously leverage integrated state data and
feedback from both the cyber and physical layers [20]. These defense mechanisms are
specifically designed to mitigate cross-space risk propagation. For instance, in power
system state estimation (PSSE), operators not only detect and eliminate the falsified
measurements that do not conform to physical system operation rules but also
evaluate the potential impact of seemingly legitimate measurements on generator
dispatch. This evaluation involves assessing whether such measurements might lead
to system overloads or economic consequences by compromising the operation of
generators in a cross-layer manner. In addition, machine learning (ML) techniques
have been widely adopted for monitoring, threat detection, and system control within
CPPS [21]. These techniques excel at processing vast amounts of data and can provide
real-time defensive decision-making strategies following model training.
Furthermore, the expanding attack surfaces and lateral threat propagation have
increasingly challenged the traditional defensive capabilities of CPPS. To address
these challenges, many researchers have turned to Zero Trust Architecture (ZTA) [22]
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as a promising approach for cross-layer security defense. Although the application of
ZTA in CPPS has only been preliminarily explored, its potential has been extensively
demonstrated in other systems. ZTA hinders lateral movement within networks,
ensuring that even if an attacker gains access to a specific resource, further access to
additional resources is effectively restricted. These innovative defense strategies,
which integrate coordinated approaches, machine learning, and zero trust principles,
represent significant advancements in addressing the unique vulnerabilities of CPPS.
However, current research remains in its infancy, with many of these approaches
remaining under initial investigations.

1.2 Overview of Degraded QoS and False Data Injection
Attacks

While many defensive approaches and innovative techniques have been developed to
explore potential solutions for these vulnerabilities in CPPS from different aspects,
two representative cross-layer threats, degraded QoS and FDIAs, remain critical
cross-layer threats that require further investigation. This research aims to explore
these two cross-layer threats and their corresponding countermeasures within CPPS.
This section provides an overview of existing research on these two threats, beginning
with a brief introduction of the mechanisms underlying degraded quality of service
(QoS) and False data injection attacks (FDIAs), with further details in Section 2.2.2 and
2.2.3, respectively. It then offers a concise review of their impacts and associated
defensive approaches.

FIGURE 1.1: Simplification of data flow and cross-layer threats in CPPS.

Generally, as shown in Figure 1.1, the data flow in CPPS primarily comprises two key
components: control signals, generated by the cyber system and transmitted through
actuators to regulate the physical system, and measurements, collected by sensors and
sent to the cyber system for decision-making.
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1.2.1 Overview of Degraded Quality of Service

Degraded QoS typically refers to communication network issues, such as limited
bandwidth, communication delays and packet loss, which can disrupt the
transmission of measurements and control signals. Such disruptions can result in
erroneous control signals, potentially causing cross-layer impacts on critical physical
processes such as frequency regulation, voltage regulation, and load balancing,
thereby compromising the overall stability and reliability of the power system. For
example, during the 2015 Ukraine cyberattack, in addition to targeting the primary
power systems, a DDoS was also launched to flood customer service lines, disrupting
communication with citizens regarding the outages. This communication breakdown
hindered the capability of the control center to respond promptly to customer
inquiries, amplifying confusion during the crisis.

These cases underscore the potential threats posed by degraded QoS. Generally, QoS
requirements for ensuring the secure and stable operation of CPPS vary according to
specific functionalities and applications. Demand response management, for instance,
can tolerate high latencies, ranging from 500 milliseconds to several minutes [23], as it
does not require immediate adjustments. In contrast, real-time monitoring and control
systems, such as SCADA, require lower latency and higher reliability to ensure
immediate responses to system changes. For example, voltage and frequency
regulation secondary control loops in microgrid, which are tasked with restoring
equilibrium after disturbances, are particularly sensitive to delays. Even
millisecond-level delays can disrupt the delicate balance of power systems, leading to
instability [24]. Hence, the cross-space impacts caused by degraded QoS are
particularly critical in high-demand systems, such as microgrids, where precise and
timely communication is essential for maintaining stability.

To address the challenges posed by degraded QoS, some existing research has focused
on designing advanced control algorithms aimed at improving CPPS resilience
against communication latency [25]. However, the effectiveness of such algorithms is
typically ensured only when QoS degradation is minor. When the degradation
becomes severe and exceeds the thresholds of these algorithms, their effectiveness
diminishes significantly, particularly under extremely constrained communication
resources, such as excessively long time delays and extremely low throughput. For
instance, when centralized base stations are compromised due to natural disasters or
cyberattacks, bandwidth limitations can lead to data packet delays or losses,
adversely affecting control algorithms and physical system stability, particularly in
isolated microgrids. Beyond improving control algorithms, other research efforts have
aimed at mitigating QoS degradation by enhancing communication network
architectures. These approaches include optimal sampling time strategies [26], routing
selection mechanisms [27], and communication resource allocation techniques [27, 28].
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However, these approaches often prioritize enhancing data transmission performance
while often neglecting the broader cross-layer impacts on the stability of physical
systems. Advancements in wireless communications for microgrids, particularly D2D
techniques, have shown promise for supporting remote microgrids by optimizing
subcarrier allocation and transmit power [29]. However, only a few studies [28, 30]
have integrated QoS improvements with physical system stability considerations in
D2D communication strategies. Literature [28] incorporates the tolerable latency
constraints of physical state variables as additional constraints when optimizing D2D
resource allocation strategies. Alternatively, literature [30] pre-allocates optimal D2D
communication resources for controllers to ensure reliable and timely data
transmission.

1.2.2 Overview of False Data Injection Attack

FDIAs involve attackers injecting bad data into measurements. Such falsified
measurements can be transferred to the cyber layer components, such as the control
center, ultimately damaging the accuracy of the PSSE and leading to incorrect control
signals. As one of the first known cyberattacks targeting SCADA systems, Stuxnet,
discovered in 2010 [31], reveals the potential vulnerabilities that attackers can exploit
to manipulate measurements. In the past, the false data can be detected by the
residue-based traditional (BDD) referring to the constraints of the power flow
equation. However, a type of completely stealthy (unobservable) FDIA has been first
proposed in [32], which can bypass the residue-based BDD on the premise that
attackers can gain sufficient information about network topology and branch
parameters. While such stealthy FDIAs are effective at evading detection, they might
not cause destructive cross-layer impacts on the CPPS. Therefore, researchers have
further investigated the balance between the stealthiness of FDIAs with their potential
damage.

A specialized form of FDIA, known as observability attacks, has been proposed [33]
and further refined [34, 35], where strategically designed attack vectors render the
control center incapable of distinguishing between unobservable states and malicious
activities. Unlike purely stealthy attacks, observability attacks deliberately manipulate
the PSSE in the control center, misleading it into making erroneous control decisions.
For instance, by injecting false data, attackers can deceive the control center into
perceiving an increase in certain loads. This misleading can result in incorrect
dispatch instructions, causing transmission line overloads and jeopardizing the
stability of the power system. The ability of observability attacks to actively mislead
system operations underscores their significant threat, enabling economic exploitation
or operational disruptions while evading detection.
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In addition to the implication of FDIAs to damage stability, another type of FDIAs,
profit-oriented FDIA, has been widely explored [36, 37, 38, 39], which can manipulate
energy pricing and execute arbitrage strategies [40]. Literature [36] proposes the
profit-oriented FDIA model, which demonstrates that attackers can make profits by
using a buy-low and sell-high locational marginal price (LMP) strategy in the
day-ahead (DA) and real-time (RT) market, respectively. Nowadays, the
interdependence in CPPS enhances the integration between market mechanisms and
economic dispatch, introducing novel economic vulnerabilities utilized by
profit-oriented FDIAs. As global focus on environmental protection grows, carbon
trading mechanisms have been incorporated into integrated C&E markets and LMP
calculation mechanisms. The LMP calculation is transitioning from being solely based
on fossil fuel costs in the generation system to considering charges tied to carbon
emissions exceedances, also known as carbon-aware LMP [41, 42, 19, 43]. In this
context, fluctuations in carbon prices can lead to variations in energy prices, i.e., LMP,
thereby disrupting supply-demand dynamics and destabilizing electricity market
operations. For instance, a sharp rise in carbon prices may compel high-emission
power plants to reduce output, resulting in supply shortages and increased electricity
costs. In addition, the inherent characteristics of electricity markets make them
particularly susceptible to cyberattacks, such as data manipulation, which can
undermine market integrity and propagate cascading disruptions into the carbon
trading system. In extreme weather events, such as the 2019 Texas event, deregulation
was implemented to encourage competition in response to a sharp increase in
electricity demand, which provides arbitrage opportunities for attackers to make
profits.

Although FDIAs are highly stealthy, their successful launch requires satisfying two
key conditions: (i) sufficient knowledge of the structural network and parameters to
construct a stealthy attack vector, and (ii) access to a sufficient number of
measurements for collaborative manipulation. Due to the aforementioned cross-layer
threats induced by FDIAs, various defensive approaches have been proposed for the
detection, localization, and mitigation of FDIAs by obstructing these two
preconditions, which can be categorized into several approaches [44]: securing
measurement sensors [14], implementing moving target defense strategies [45],
employing temporally and spatially relevant detection mechanisms, and adopting
data-driven approaches. Although these methods can significantly enhance the
accuracy of BDD and mitigate the impact of FDIAs, their practical implementation
remains challenging due to the high costs associated with deploying Phasor
Measurement Units (PMUs) and Distributed Flexible AC Transmission Systems
(D-FACTS). Moreover, the design of such security techniques requires stringent
conditions to eliminate the existence of stealthy attack vectors. For instance, literature
[46] highlights that protecting all buses in the IEEE-14 system would necessitate
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perturbing approximately 61.9% of transmission lines, which is economically
infeasible given the substantial costs associated with D-FACTS deployment.

1.3 Research Gap

In a microgrid with a D2D communication network, a typical CPPS, degraded QoS
due to limited communication resources can disrupt the stability of frequency and
voltage regulation in a cross-layer fashion. As discussed in overview 1.2.1, most
research has explored optimal D2D communication allocation strategies to mitigate
degraded QoS on data transmission, with the primary objective of maximizing QoS.
In this context, QoS metrics are insufficient, as the stability of the power system is also
a critical factor for optimizing allocation strategies. A superior communication
strategy regarding QoS does not always result in superior physical stability. Although
some advanced works consider both QoS and its cross-layer impact on physical
stability, they typically treat QoS as an intermediate objective when analyzing the
cross-layer effects of communication resource allocation strategies on physical
stability. Consequently, they either optimize communication reliability alone or focus
solely on physical stability. In summary, this research gap underscores the necessity
for designing co-optimization strategies for D2D communication resource
allocation that simultaneously enhances QoS and mitigates its cross-layer
influences on frequency and voltage regulation, thereby improving overall system
stability under conditions of degraded QoS.

As discussed in literature review 1.2.2, the integration of electricity and carbon
markets introduces new economic risks to CPPS, exposing the limitations of
traditional vulnerability assessments against FDIAs. Specifically, the integration of
carbon emission costs has significantly increased the complexity of Locational
Marginal Pricing (LMP) calculations. This added complexity introduces constraints
for managing carbon cost exceedances, rendering traditional node vulnerability
assessments ineffective. Furthermore, it creates opportunities for attackers to inject
false data, manipulate LMP calculations, disrupt carbon market transactions, and
compromise the fairness and security of single-market systems. Existing research has
primarily focused on vulnerabilities in traditional electricity markets, often
overlooking the specific challenges that arise from carbon market integration. The
research gap lies in the fact that traditional vulnerability assessment approaches for
FDIAs fail to identify the economic risks posed by the integration of the electricity
and carbon markets, which requires a new vulnerability assessment approach to
assess the economic risks of transmission lines and guide defensive approaches.

As discussed in literature review 1.2.2, the principle of FDIA lies in designing a
completely stealthy attack vector capable of bypassing the BDD. However,
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constructing such attack vectors requires attackers to penetrate a sufficient number of
measuring devices and manipulate their measurements cooperatively. Once attackers
can lateral spreading across the measuring devices in the sensor network, most
existing non-data driven defensive approaches such as securing measurement sensors
and MTD are not always feasible. This limitation arises from two primary challenges.
First, the implementation of these defense techniques is impractical due to the high
cost and limited scalability of deploying PMUs and D-FACTS. Second, the
effectiveness of these defense techniques relies on satisfying stringent constraints to
obtain the objective that there exists no stealthy attack vectors. For example, literature
[46] indicates that in order to protect all buses in IEEE-14 system, almost 61.9%
transmission lines must be perturbed, which is unrealistic due to the high costs of
D-FACTS. The research gap lies in the urgent need for a scalable cybersecurity
defense mechanism to disrupt the lateral movement of FDIAs, thereby
undermining the stealthiness of FDIAs.

1.4 Research Objective and Contribution

The interdependency between cyber and power components in CPPS has intensified
the risks posed by cyber threats. While some threats may initially manifest as
localized or minor anomalies at the cyber layer, their cross-layer propagation to the
power system can lead to large-scale instability or even blackouts. To mitigate the
cross-layer propagation of threats in CPPS, our research investigates two
representative cross-layer risks: Degraded QoS and FDIAs, and develops
corresponding countermeasures. Specifically, we address these challenges by focusing
on three key research objectives: 1) developing a D2D communication resource
allocation strategy to simultaneously mitigate QoS degradation and its cross-layer
disruptions to physical state regulation, 2) assessing the novel economic
vulnerabilities of power nodes under FDIA induced by carbon constraints, and 3)
designing a micro-segmentation technique to enhance the detection rate of FDIAs
and mitigate their cross-layer impacts. In alignment with these objectives, this
research makes the following contributions:

• Contributions to Research Objective 1:

In a microgrid with D2D communication network, a typical CPPS, degraded
QoS due to limited communication resources can disrupt the stability of
frequency and voltage regulation in a cross-layer fashion. To address this
challenge, a novel technique is proposed, comprising (1) a CPPS model for
quantitatively analyzing the cross-layer impact of resource allocation on
physical states, specifically frequency and voltage, and (2) a multi-objective
optimization framework to develop an optimal resource allocation strategy that
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minimizes disruptions to physical state regulation while enhancing QoS. Instead
of analyzing all variables in the system, this CPPS model extracts
interdependent cyber and physical states to reduce system complexity. Based on
this model, a multi-objective optimization problem is formulated to identify the
optimal communication resource allocation strategy, balancing QoS in
communication and microgrid stability. To efficiently tackle this optimization
problem, a weight-adjusted model reference adaptive search (AW-MRAS)
algorithm is proposed, which significantly reduces the search space by
leveraging the unique characteristics of the CPPS model. Compared to
state-of-the-art strategies that only optimize QoS indices, the proposed strategy
achieves a 13.74% and 4.57% reduction in frequency and voltage deviations,
respectively, with only a minor compromise in QoS performance. In addition,
the AW-MRAS algorithm demonstrates superior performance in balancing
population diversity and convergence when compared to five other
multi-objective optimization algorithms.

• Contributions to Research Objective 2:

An attack model based on the Stackelberg game is proposed, making the first
attempt to analyze the threats introduced by carbon emissions in the integrated
carbon-electricity market. In this model, the attackers act as leaders, leveraging
multi-transaction arbitrage and FDIAs to maximize attack profits, while the
operators act as followers, calculating the LMP in response to the attackers’
strategies. This interaction can also be viewed as an optimization problem,
where the optimal attack strategies are derived using the proposed Hierarchical
Multi-Agent Deep Deterministic Policy Gradient (H-MADDPG) algorithm.
Building upon the previously identified most threatening attack strategy, a novel
vulnerability assessment framework is developed for each power node, focusing
on arbitrage opportunities driven by carbon cost considerations. The
effectiveness of the proposed attack model and the H-MADDPG algorithm is
evaluated against other algorithms using a modified version of the PJM test
system. This framework provides crucial insights into the vulnerabilities of
low-carbon initiatives and offers practical guidance for designing corresponding
defensive measures.

• Contributions to Research Objective 3:

A novel security architecture based on micro-segmentation technique is
proposed, which restricts lateral attack propagation, and reduces the stealthiness
of FDIAs. In addition, its effectiveness against FDIAs is proven under the direct
current (DC) model. The optimization of micro-segmentation strategy is
formulated as a multi-objective optimization problem, leveraging a
cyber-physical-BDD-enhancement metric and a Graph Attention Network
(GAT) combined with a reinforcement learning (RL) algorithm to improve its
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effectiveness. Within this framework, a GAT-based feature extraction algorithm
is introduced to capture cross-layer characteristics of both cyber and power
components. Simulations demonstrate that the proposed micro-segmentation
technique significantly enhances the detection rate of residual-based BDD
against FDIAs, increasing from 5.23% to 94.02%, and highlights the effectiveness
of the GAT+RL optimization algorithm, which considerably outperforms
state-of-the-art algorithms in computing time while maintaining solution
quality.

1.5 Structure of Thesis

The rest of this thesis is organized as follows.

• Chapter 2 provides the foundational background for this research. It begins by
introducing the core concepts and hierarchical structure of CPPS, detailing the
interconnections among its layers and components. Subsequently, this chapter
explores the implications of cross-layer threats in CPPS and examines the
existing fundamental defensive approaches. In addition, it illustrates the
mechanisms and implications of two representative cross-layer threats within
the scope of this research: degraded QoS and FDIAs, respectively. Finally, it
illustrates the techniques adopted in this research, including ZTA and machine
learning methodologies.

• Chapter 3 presents an optimal D2D communication resource allocation strategy
designed to mitigate the impact of QoS and its cross-layer effects on microgrid
stability. Section 3.2 introduces the system model. Section 3.3 presents the
proposed CPPS model, focusing on the cross-layer impacts of D2D
communication allocation strategies on microgrid stability. A joint
multi-objective optimization problem is formulated to minimize degraded QoS
disruptions and their cross-layer effects on frequency and voltage regulation.
Section 3.4 details the AW-MRAS algorithm developed to optimize the proposed
D2D strategy. Section 3.5 provides the simulation results and analysis, while
Section 3.6 concludes the chapter by summarizing the key findings. The content
of this chapter corresponds to the work detailed in Publication 4.

• Chapter 4 designs a novel economic vulnerability assessment framework for
power nodes, incorporating the unique vulnerabilities induced by low-carbon
policies. Section 4.2 introduces the profit-oriented FDIA and its properties.
Section 4.3 discusses the Stackelberg-based FDIA model and its components,
including multi-transaction strategies and LMP with carbon considerations.
Section 4.4 introduces the optimization of the Stackelberg-Game-Based attack



12 Chapter 1. Introduction

FIGURE 1.2: Structure of the thesis

using hierarchical multi-agent reinforcement learning, focusing on LMP
pre-training and constrained action search. Section 4.5 examines the economic
vulnerability of transmission lines under the optimal attack strategy. Section 4.6
presents the simulation results, including the evaluation of the proposed attack
strategy, the validation of the H-MADDPG algorithm, and the analysis of
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arbitrage opportunities. Finally, Section 4.7 concludes the chapter by
highlighting the main findings. The content of this chapter corresponds to the
work detailed in Publication 2 and Publication 3.

• Chapter 5 proposes an innovative micro-segmentation technique to enhance the
detection rate of residual-based BDD against FDIAs. Section 5.2 introduces the
PSSE and the stealthiness of FDIAs. Section 5.3 explores the implementation of
the proposed micro-segmentation technique in CPPS and demonstrates its
effectiveness against FDIAs. Section 5.4 formulates the optimal
micro-segmentation strategy as a combinatorial optimization problem and
introduces a cyber-physical-BDD-enhancement-metric to evaluate the impact of
the strategy on lateral spreading capability and BDD detection probability.
Section 5.5 describes the GAT+RL algorithm developed to solve this
optimization problem. Section 5.6 provides simulation results and analysis,
while Section 5.7 concludes the chapter with a summary of the findings. The
content of this chapter corresponds to the work detailed in Publication 5 and 1.

• Chapter 6 outlines the conclusions and future works.
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Chapter 2

Background

2.1 Basics of Cyber-Physical Power System

2.1.1 Concept of Cyber-Physical Power System

Cyber-Physical Systems (CPS) are engineered systems that integrate computational
elements with physical processes for seamless interaction, emphasizing their
interdependence. This term originated around 2006 by Helen Gill at the National
Science Foundation (NSF) in the United States [47]. CPSs have unique features
including real-time monitoring, feedback loops, robust connectivity, and autonomous
decision-making using sensors and actuators.

The transition from general Cyber-Physical Systems to CPPS represents a specialized
application of CPS principles within the energy sector. This evolution involves
integrating traditional power system components, such as generators and
transformers, with advanced computational technologies to enhance monitoring,
control, and optimization capabilities [4]. While the deep interconnection of digital
networks facilitates secure and stable power system operation, this interdependency
makes CPPS more vulnerable to cyber threats. Therefore, cybersecurity becomes a
critical concern for ensuring the reliability and resilience of modern power systems.

2.1.2 Hierarchical Structure for Cyber-Physical Power System

Generally, the cyber-physical power model is composed of the physical power layer
and the corresponding cyber layer, including the computation layer, the
communication layer and the power control layer. The data flow and the
interconnection between different layers are displayed in Figure 2.1 [4].
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The physical power layer encompasses key power infrastructure and components,
including systems for generation, transmission, and distribution, as well as
distributed generators, transformers, power lines, loads, and breakers. To model these
power components and network, many existing works have discussed mathematical
equations and accurate simulations [16, 48, 6].

FIGURE 2.1: Hierarchical structure for cyber-physical power system.

The power control layer, including measuring devices, local controllers, sensors,
actuators and other terminal devices with similar functionalities, is responsible for
direct interaction. Measuring devices, such as PMU and phasor data concentrators
(PDCs), sample real-time power measurements such as voltage, current, circuit
breakers status and frequency. Correspondingly, after receiving the control signals
from the control center, the local controllers such as generator controllers and breakers
can directly launch the control signals to regulate the state operating of the power
components.

The communication layer is responsible for exchanging information between the
control layer and the computation layer, which is composed of devices such as
switches, routers, and so on. Generally, measuring devices collect real-time power
measurements and then send them into the EMS located in the power computation
layer through the communication layer. Correspondingly, after selecting and
analyzing these measurements, the EMS can estimate the operating state of the power
system and launch control signals into the local controllers transmitted by the
communication layer. Such information exchange can be wired or wireless depending
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on requirements. The quality of service is the main index to evaluate the performance
of the power communication infrastructures, which can also impact the physical
system in a cross-layer fashion.

The computation layer can be viewed as the brain of the framework of CPPS, which is
responsible for monitoring, controlling and making decisions to ensure the security
and stability of the operating of the power system, including SCADA system, and the
EMS. Through receiving numerous measuring data for the control layer via the
communication infrastructure, the computation layer decides on which control signal
to be executed in the following time step.

2.2 Cross-Layer Threats in Cyber-Physical Power Systems

CPPSs are characterized by a high degree of interdependence between their cyber and
physical layers, wherein impacts in one layer can significantly cascade to the other.
This interdependence creates novel cross-layer threats, which refer to vulnerabilities
that originate in the cyber layer and propagate to the physical layer, resulting in
blackouts and substantial economic losses.

In this section, we classify cross-layer threats in CPPSs and explore the concepts and
impacts of two representative cross-layer threats: degraded QoS and FDIAs,
providing a foundational understanding for the subsequent chapters.

2.2.1 Classification of Cross-layer Threats

These threats are analyzed based on their origins into two primary categories [49]:
non-malicious threats, such as performance degradation caused by communication
delays or data loss, which arise due to unintentional system inefficiencies, and
malicious threats, including sophisticated and targeted attacks designed to exploit
system vulnerabilities.

2.2.1.1 Non-Malicious Threats

Non-malicious threats in CPPS arise from natural causes, system limitations, and
operational factors rather than intentional attacks. These threats pose significant
challenges to system reliability and performance, which potentially result in gradual
performance degradation or unexpected failures triggered by various internal and
external factors. Human Errors can occur at any stage of system operation. For
instance, an operator may incorrectly configure system parameters or input erroneous
data, resulting in incorrect control signals that disrupt the functionality of the power
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system. Similarly, maintenance personnel may inadvertently damage critical
infrastructure during repair or upgrade processes, leading to system downtime and
operational interruptions.

In addition to human errors, degraded QoS in communication networks can pose
significant cross-layer threats. As highlighted in [50], degraded QoS compromises the
ability to monitor and control corresponding power devices effectively. Although
power devices might operate normally in the short term based on predefined electrical
operating rules, they are prone to failure under abnormal conditions such as overload.

2.2.1.2 Malicious Threats

Generally, the existing works on the cyberattacks in CPPS mainly focus on
eavesdropping, data manipulation and traffic abnormity [51, 52]. Different from other
systems, the power system has its own characteristics and physical constraints, upon
which the malicious attackers will adjust existing attacking methods. This chapter
illustrates three cyberattacks which are widely analyzed in the research field in the
power system, to emphasize the process which these cyberattacks impact the power
components in a cross-layer fashion. However, the process and mechanism of the
cyberattacks are not discussed; they are beyond the scope of this research.

• Eavesdropping attack

Eavesdropping attack is a type of passive attack, in which the malicious
attackers observe the confidential information of component nodes, such as
location, public key, private key and password. Subsequently, the observed
information can be utilized by the succeeding attacks to penetrate to the
terminal measuring devices and control devices in the power control layer,
thereby inducing the abnormality or even deteriorations in CPPS.

• False data injection attack

The principle of FDIA is to manipulate the data collected/stored at the terminal
power components or the control center to impact the state estimation. For
example, it can cause estimation errors of power system states through
manipulating bus load and line flow measurements simultaneously.
Consequently, the control center may launch the falsified control signals, which
further propagates the falsified load distribution strategies in a cascaded fashion
[53]. The traditional data modification methods in cyber systems mainly focus
on deceiving the detection mechanisms. In contrast, the FDI attack in CPPS
targets on state estimation, thereby causing damage to the power grid. Due to
this reason, cyberattack are identified as a critical underlying threat to the power
system.
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• Distributed denial of service (DDoS)

In CPPS, DDoS interferes the communication functionalities of cyber devices
through broadcasting invalid packages or jamming communication channels
with random noise. In the power system with hierarchical control architecture,
the timeliness of information exchange should be rigorously guaranteed to
ensure the performance of the controllers. In this case, the objective of DDoS
attack is to affect the timeliness and success rate of data exchange of the cyber
components, which subsequently induces time delay [54] and packet loss [55].
Concrete examples of DDoS are depicted in [56].

2.2.2 Basics of Degraded Quality of Service: Mechanisms and Impacts

This section briefly outlines the potential threats to data flows within CPPS posed by
degraded QoS to and examines how these compromised data flows can propagate
across layers, ultimately impacting the physical system.

FIGURE 2.2: A simplified illustration of QoS impact on CPPS.

2.2.2.1 Mechanisms of Degraded Quality of Service

The critical data flow in CPPS is discussed in Fig. 2.2, with the physical system
described by a difference equation and the cyber system mainly based on the control
algorithm and communication network to transmit the data flows. The physical
system is expressed using the following difference equations:

x[k + 1] = f
(︁
x[k], u′[k]

)︁
,

y[k] = g
(︁
x[k], u′[k]

)︁
,

(2.1)

where x[k] represents the state vector of the physical system at time step k, such as
voltage or frequency. u[k] denotes the original control signal, while u′[k] denotes the
control signal received by the physical system after transmission through the
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communication network, which may be corrupted due to degraded QoS. y[k]
represents the output vectors, which is derived from the state vector x[k] and u′[k]. In
this subsection, z[k] represents the measurement, while and z′[k] denotes the
measurement received by the cyber system after transmission through the
communication network, which may be corrupted due to degraded QoS. The
functions f (·) and g(·) describe the functions of the system dynamics and the
relationship between the system state and output.

The control algorithm, implemented within the cyber system, is defined as

u[k] = π(z′[k], r[k]), (2.2)

where u[k] is the control signal generated by the controller at time step k. This signal is
calculated based on the current system state x[k] and the reference signal r[k], which
represents the desired target state, such as a reference voltage or frequency level. The
function π(·) represents the control policy that determines the high-performance
control action required to maintain system stability and achieve the desired
performance.

The communication network is responsible for transmitting control signals and
measurements. However, as illustrated in Fig. 2.2, the degraded QoS might
compromise the reliability of the communication network by introducing packet loss,
data delays, and other related disruptions. Consequently, deviations arise in the
transmitted signals and measurements. Specifically, the control signal received by the
physical system, u′[k], deviates from the intended signal, u[k], such that u′[k] ̸= u[k].
Similarly, the measurement received by the controller, z′[k], differs from the actual
output, z[k], resulting in z′[k] ̸= z[k].

2.2.2.2 Impacts of Degraded Quality of Service

The interaction between the physical and cyber systems highly relies on ensuring
accurate and effective control signals[57]. As previously discussed, deviations in
measurement z′[k]-z[k] might disrupt the feedback loop and impair the controller’s
ability to generate accurate control signals. Therefore, the inaccurate u′[k] can damage
the secure and stable operations of physical systems.

For example, the primary impact of degraded QoS is manifested in communication
delays. The delay in measurements can be expressed as

z′[k] = z[t− τ], (2.3)

where z′[k] represents the delayed measurements transferred via the communication
network. τ represents the delay time. Such deviations in z′[k] can misestimate the
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system state in the cyber system, thereby introducing additional errors into the
generated control signals, denoted as u′[k]-u[k]. Furthermore, the degraded QoS in the
communication network can also delay the transmission of control signals, which can
be

u′[k] = u[k− τ], (2.4)

where u′[k] denotes the control signal received by the physical system compromised
by time delays. As a result, u′[k] leads to inaccurate adjustments by the actuator to the
physical system. These issues compromise the stability and performance of the
physical system, posing a significant cross-layer threat to its reliable operation.

2.2.3 Basics of False Data Injection Attacks: Mechanisms and Impacts

This section briefly outlines the potential threats to data flows within CPPS posed by
FDIAs and examines how these compromised data flows can propagate across layers,
ultimately impacting the physical system.

FIGURE 2.3: A simplified illustration of FDIAs impact on CPPS.

Although the deep interaction between the industrial infrastructures and the
information and communication technology considerably facilitates the control and
monitor of CPPS, it still poses new attack surfaces for intruders. Especially for the
edge physical devices, they represent highly attractive targets to attacks due to the
limited defense resources and complex interconnections. In this scenario, the FDIA,
which aims to penetrate the edge measuring devices and falsify the measurements,
has drawn much attention. Generally, power measurements are utilized to estimate
the states of the power system. Through falsifying the measurements, FDIA can cause
errors in the PSSE, and thus mislead the grid operators to take the actions.

2.2.3.1 Mechanisms of False Data Injection Attack

• DC State Estimation and bad data detection

Power system state estimation aims to estimate state variables with the
measurements collected by the SCADA, which is a significant function in



22 Chapter 2. Background

maintaining the secure operation of the power system. Define that N′ power
system state variables x = (x1, x2, · · · , xN′)

T are evaluated M (N′ ≪ M)
measurements z = (z1, z2, · · · , zM)T, where N′ = N − 1. It yields z = Hx + e,
where H ∈ RM×N′ is the measurement matrix and e ∈ RM is the independent
noise. When e is the independent noise, the estimated state is
x̂ =

(︁
HTWH

)︁−1 HTWz ≜ Kz. W = diag
(︁
σ−2

i , 0
)︁

is the diagonal matrix, where
σ2

i is the variance of the measurement errors associated with the i-th
measurement. In this DC model, the state variables x are {θ1, θ2, . . . , θN′} and the
estimated states x̂ = {θ̂1, θ̂2, . . ., θ̂N′}.

To localize and identify the abnormal measurements, the BDD based on
measurement residual is widely utilized to localize and remove the abnormal
measurements. The residual is r = (I−HK)z, where I is the identity matrix. To
bypass the BDD, the measurements are required to satisfy the following
condition:

∥r∥2 = ∥z−Hx̂∥ < τr, (2.5)

where τ is the predetermined threshold. || · ||2 is the L2 norm. To simplify
notation, || · ||2 is replaced by || · || in the following.

• False Data Injection Attack

An emerging attack model, false data injection has been widely explored in
many existing work, which can bypass the BDD through constructing a type of
completely stealthy attack vector [32]. This type of BDD-bypassing attack vector
is designed as a = Hc, where c ∈ RN′ is an arbitrary vector. Without regarding
to the measurement noise e, such an attacker vector can satisfy the condition in
Eqn. (2.5) in the following form [32]:

∥r∥ = ∥za −Hx̂bad ∥

=

⃦⃦⃦⃦
z + a−H

(︃
x̂ +

(︂
HTWH

)︂−1
HTWa

)︃⃦⃦⃦⃦
= ∥z−Hx̂ + (Hc−Hc)∥ = ∥z−Hx̂∥ ≤ τr,

(2.6)

where za = z + a is compromised measurement and x̂bad is the estimated results
calculated from za.

Lemma 2.1. [32] If the attack vector can satisfy a ∈ col(H), and then it can bypass the
BDD.

2.2.3.2 Profit-oriented FDIA and its Economic Impact

• Two-Settlement electricity market

Two-settlement electricity markets are organized by independent system
operators (ISOs) or regional transmission organizations (RTOs), which consist of
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DA and RT markets [58]. Generally, the DA unit dispatches and DA LMPs are
computed by solving unit commitment and DA economic dispatch. With these
DA LMPs, ISOs facilitate the aggregation of offers and bids between generators
and load aggregators, thereby economically clearing the market.

DA Market Model:

minimize
PDA

gi

∑N
i=1 Ci(PDA

gi
) (2.7)

subject to ∑N
i=1 PDA

gi
= ∑N

j=1 PDA
dj

,

Pmax
gi
≤ PDA

gi
≤ Pmin

gi
, ∀i ∈ N ,

Fmin
l ≤∑N

i=1 GSFli(PDA
gi
− PDA

di
) ≤ Fmax

l , ∀l ∈ L.

To solve the optimal generator output PDA
g , Eqn. (2.7) is reformulated into an

unconstrained Lagrangian relaxation problem to facilitate the solution process.
The DA LMP at bus i models the effect of incremental load on the fuel cost
function [58].

RT Market Model:

Due to unforeseen load variations, the real-time power states PRT
g , PRT

d diverge
from the optimal estimated states Pĝ, Pd̂ based on the RT economic dispatch.
The purpose of the RT market is to provide compensatory adjustments for the
differences in optimal estimation between DA and RT markets, as formulated by

minimize
∆PRT

gi

∑N
i Ci(∆PRT

gi
+ P̂gi) (2.8)

subject to ∑N
i=1 ∆PRT

gi
= ∑N

j=1 ∆PRT
dj

, (2.8a)

∆Pmax
gi
≤ ∆PRT

gi
≤ ∆Pmin

gi
, ∀i ∈ N , (2.8b)

σFmin
l ≤∑N

i=1 GSFli(∆PRT
gi
− ∆PRT

di
) ≤ σFmax

l , ∀l ∈ L, (2.8c)

where σ is a small positive factor, typically around 0.001 [59]. ∆Pmax
gi

and ∆Pmin
gi

are generally set as 0.1 MWh and -2 MWh, respectively [59]. To solve this
optimization, Lagrange multipliers are established for each constraint to
formulate the Lagrange function. The multipliers for the constraint (2.8c) can be
used to calculate the RT LMP, reflecting the effect of incremental load on the cost
function, as shown in

λRT
i = γRT −∑ GSFliη

RT
l + ∑ GSFliζ

RT
l . (2.9)

• Profit-Oriented FDIA in Electricity Market
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Attackers can exploit electricity markets by executing arbitrage attacks and FDIAs.
Specifically, arbitrage attacks enable attackers to sell electricity at high prices and
purchase it at low prices. Under normal conditions, LMPs in DA and RT markets are
predictable. However, attackers can strategically manipulate estimated power states
through FDIAs. Such manipulation can induce line congestion, distort LMPs, and
widen the price gap between DA and RT markets, ultimately increasing the attack
profits.

The process of this attack is summarised as [58]:

1. Engage in virtual power transactions, purchasing and selling a certain amount of virtual
power va at bus i and j at price λDA

i and λDA
j , respectively.

2. Launch FDIA to the measurements and then manipulate the nodal LMPs in the RT market.

3. Buy and sell the same amount power va on the bus j and i at price λRT
j and λRT

i ,
respectively.

The attack profits can be given as

RPro f it =
(︂

λRT
i − λRT

j + λDA
j − λDA

i

)︂
· va. (2.10)

2.3 Defensive Approaches in Cyber-Physical Power Systems

Various defensive mechanisms have been developed to address cross-layer threats in
CPPS [60]. Based on their implementation approaches, these mechanisms can be
categorized into two approaches: Layer-specific defense approach and machine
learning-based defense approach. Each approach provides unique capabilities for
safeguarding CPPS against cross-layer threats.

2.3.1 Overview of Defensive Approaches

• Computation Layer Defense Approaches

The computation layer defensive approaches play a critical role in enhancing
real-time data processing and advanced analytics to enable effective anomaly
and decision-making, particularly under emergency conditions and in response
to cyber threats. Real-time data processing is pivotal for effective anomaly
detection, especially integrated with advanced machine learning algorithms. By
exploiting periodic data patterns, it can significantly improve the speed and
accuracy of anomaly detection. In addition, the computation layer
functionalities further support decision-making by generating actionable
insights from processed data, which are crucial for rapid and effective risk
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mitigation during emergencies. The computation layer defensive approaches
play a critical role in enhancing real-time data processing and advanced
analytics to enable effective anomaly and decision-making, particularly under
emergency conditions and in response to cyber threats. Real-time data
processing is pivotal for effective anomaly detection, especially integrated with
advanced machine learning algorithms. By exploiting periodic data patterns, it
can significantly improve the speed and accuracy of anomaly detection. In
addition, the computation layer functionalities further support decision-making
by generating actionable insights from processed data, which are crucial for
rapid and effective risk mitigation during emergencies.

• Communication Layer Defense Approaches

Some researchers highlights communication layer defensive approaches,
employing techniques such as Intrusion Detection Systems (IDS) [10], secure
communication protocols, and network segmentation [11] to safeguard data
transmission pathways and prevent unauthorized access. IDS is an effective
approach for continuously monitoring network traffic to identify and prevent
malicious activities, such as DdoS attacks and data breaches. Literature [10]
proposes a novel IDS tailored for cybersecurity of IEC 61850 based substations.
Unlike the traditional IDS, the proposed IDS integrates physical knowledge,
protocol specifications, and logical behavior to provide a comprehensive and
effective solution that is able to mitigate various cyberattacks in CPPS. Secure
communication protocols also serve as a protection to sensitive data protecting
critical systems like AMI and SCADA. This is crucial for maintaining the
confidentiality and integrity of information exchanged between components in
CPPS, including smart meters and control systems. In addition, network
segmentation can effectively restrict malware and prevent lateral movement
across critical infrastructure systems. For example, literature [11] proposes a
network segmentation approach to distribute the trust nodes in SCADA systems
to enhance the resilience of CPPS. An emerging security isolation architecture,
known as ZTA, further enhances security by enforcing strict access controls and
isolating critical cyber components into distinct security zones. This emerging
approach shows significant potential for securing CPPS by mitigating risks
through effective isolation and verification mechanisms.

• Control Layer Defense Approaches

Control layer defenses enhance the robustness and stability of systems by
utilizing advanced control algorithms to mitigate cross-layer threats. For
example, model-based strategies, such as Weighted Least Squares (WLS) and
Kalman Filters [12], are utilized for state estimation to detect FDIAs. In addition,
predictive and robust control methods are used to mitigate communication
delays by compensating for time-lagged feedback or event-trigger feedback [13].
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• Physical Layer Defense Approaches

Physical layer defenses prioritize safeguarding critical infrastructure and
equipment from physical threats such as natural disasters and unauthorized
access. To mitigate cross-layer impacts in CPPS, protecting edge measurement
devices is a key strategy [14], as it prevents tampering with physical
measurements. Another effective approach is a novel moving target defense
[15], which dynamically alters physical network parameters, such as admittance,
to prevent attackers from accurately obtaining power network parameters,
thereby reducing the likelihood of successful attacks.

2.4 Microgrid with Device-to-Device Communication

To analyze the impact of degraded QoS on cross-space voltage and frequency
regulation, this section introduces the foundational concepts related to a
representative CPPS. Specifically, it focuses on microgrid secondary Control with D2D
communication. The discussion covers the D2D communication allocation strategy
and microgrid secondary control.

2.4.1 Device-to-Device Communication

Cellular networks are an essential communication tool for smart grids, which is
typically used to support real-time data exchange among power communication
components such as smart meters, sensors, and control centers. However, their
limitations, including resource allocation limitations, high latency, and scalability
challenges during peak usage, hinder their capability to meet the requirements for the
secure operations of smart grids [61].

Existing technologies such as Qrthogonal Frequency Division Multiple Access
(OFDMA) and D2D communication present potential solutions to these challenges
[29]. OFDMA optimizes resource allocation by dividing the spectrum into
sub-channels, thereby reducing latency and improving bandwidth utilization to
support multiple simultaneous communications. When Integrated with OFDMA,
D2D cellular-assisted underlay D2D communication enables direct device-to-device
interactions without routing via base stations, further reducing latency. However,
such D2D transmissions are susceptible to interference from concurrent cellular
transmissions, which can significantly impact the reliability of data exchange,
particularly between RTUs and NUEs as discussed in this research. Therefore, some
research [62, 63] has explored optimal strategies for allocating communication
resources, including the set of binary variables indicating channel assignments ξ and
transmission power Pd, with the multi-objectives of maximizing the sum capacity of
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all D2D pairs and minimizing power consumption. In addition, these optimal
strategies aim to satisfy constraints related to power, bandwidth, and interference.
This optimization is generally modeled as

max
Pd,ξ

∑Ld2d
l=1 ∑Icha

i=1 ξl,iBc log2 (1 + γl,i)

∑Ld2d
l=1 ∑Icha

i=1 ξl,i pd
l,i

,

s.t.
Ld2d

∑
l=1

ξl,i ≤ 1, ∀i ∈ {1, . . . , Icha},

0 ≤ pd
l,i ≤ Pd

max, ∀l ∈ {1, . . . , Ld2d},

(2.11)

where the objective function is defined as the ratio of the sum capacity of all D2D
pairs to the total power consumption. ∑Nd2d

l=1 ∑Icha
i=1 ξl,i pd

l,i represents the total power
consumption of all D2D links. pd

l,i is the transmission power of D2D link l on channel
i, which is constrained within the feasible limits [0, Pd

max]. ξl,i = 1 represents the D2D l
is assigned to channel i; otherwise, ξl,i = 0 indicates that l is not assigned to i.

∑Ld2d
l=1 ∑Icha

i=1 ξl,iBc log2(1 + γl,i) represents the total throughput of all D2D links, where
Bc is the bandwidth of each channel. Bc log2(1 + γl,i) is the capacity of a D2D link l,
which depends on their signal-to-interference-and-noise-ratio (SINR). The SINR for
D2D link l is defined as

γl,i = log2

(︄
1 +

gl,iPd
l,i

σ2 + Il

)︄
, (2.12)

where Il represents the interference experienced by D2D l. Il = ∑Ld2d
l′=1,l′ ̸=l ξl′,igl′,l pd

l′,i,
where gl′,l is the channel gain from D2D link l′ transmitter to and link l receiver. σ2 is
the noise power.

The optimization problem aims to achieve trade-offs in D2D communication, ensuring
efficient resource allocation while maintaining communication quality and
minimizing energy usage.

2.4.2 Microgrid with Secondary Control

This section provides a detailed discussion of the widely implemented hierarchical
microgrid structure, as presented in [64].

2.4.2.1 Primary Droop Control System

Generally, the primary control is leveraged to achieve power sharing through the
droop controller. For the i-th distributed generator, the droop controller in the
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primary frequency control system is modelled as [65]

ωi = ω∗ −mi (pi − p∗i ) + Φi (k) ,

vi = v∗ − ni (qi − q∗i ) + Ωi (k) ,
(2.13)

where ωi is the nodal frequency, ω∗ is the rated frequency, pi is the output active
power, p∗i is the rated active output power, vi is the voltage, v∗i is the rated voltage, qi

is the output reactive power and q∗i is the rated reactive output power. mi and ni are
the P−ω and the Q−V droop coefficients, respectively. ϕi and Ω are the auxiliary
power variable that are utilized to eliminate frequency deviation resulting from the
droop controller.

2.4.2.2 Secondary Frequency Control System

The frequency and voltage deviation from the rated frequency and voltage subjected
to the primary droop control can be eliminated through the secondary control [65],
which is

Φi (k + 1) =Φi (k)− hkω
1 (ω (k)−ω∗)− hkω

2 ∑
j∈Ndg

aij

(︄
pi (k)

p∗i
−

pj (k)
p∗j

)︄
,

Ωi (k + 1) =Ωi (k)− hkv
1 (vi (k)− v∗)− hkv

2 ∑
j∈Ndg

aij

(︄
qi (k)

q∗i
−

qj (k)
q∗j

)︄
,

(2.14)

where kω
1 and kv

1 are the frequency recovery coefficients for frequency and voltage,
respectively. Similarly, kω

2 and kv
2 are the active power sharing recovery coefficient for

frequency, and reactive power sharing for voltage, respectively. aij is the weight of the
communication edge between distributed generator i and distributed generator j. h is
the control time instant and Ndg is the number of distributed generators.

2.4.3 Power Flow Analysis

The power flow analysis in power system is responsible for guaranteeing the stability
of the system, which is widely modelled as the solution of nonlinear algebraic
equations [66]

pi =
N

∑
j=1
|vi|

⃓⃓
vj
⃓⃓ (︁

Gij cos δij + Bij sin δij
)︁

,

qi =
N

∑
j=1
|vi|

⃓⃓
vj
⃓⃓ (︁

Gij sin δij − Bij cos δij
)︁

,

(2.15)
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where δ is the phase angle. Yij = Gij + Bij is the inductive admittance for the line
between bus i and bus j. G and B represent the conductance and susceptance,
respectively.

This section introduces the concept of a microgrid with D2D communication as a
representative CPPS for analyzing the impact of optimal allocation strategies on
voltage and frequency regulation. Microgrids are fundamental components of CPPS,
which maintains power quality by ensuring stable voltage and frequency levels. In
addition, D2D wireless communication is an emerging power communication
technology, offering enhanced flexibility and efficiency in CPPS.

2.5 Basics of Reinforcement Learning

RL serves as an effective heuristic approach for multi-objective optimization, offering
significant advantages in security approach development. By interacting with the
environment, RL algorithms autonomously learn and adapt to evolving threats,
enabling dynamic strategy adjustments to improve security approaches. In addition,
well-trained RL models improve the efficiency of incident response and enable the
simulation of adversarial scenarios, optimizing strategies through attack-defense
modeling. Therefore, this section introduces the foundational concepts of RL and its
emerging applications in CPPS compared with other machine learning approaches.

2.5.1 Concept of Reinforcement Learning

RL is a powerful machine learning framework where an agent learns to make
sequential decisions and receive feedback by interacting with the environment with
the aim to maximize cumulative rewards. The process is formalized as a Markov
Decision Process (MDP), which can be represented by a 4-triple (S ,A, P, r), as shown
in Fig. 2.4.

• S = {sI , sI I , ..., sNs} is the set of all states of the power system with s ∈ S .

• A = {αI , αI I , ..., αNα} is the set of attacking actions and each state S has a relevant
set of available actions A(s) with α ∈ A.

• P(st+1|st, αt) denotes the probability when the state changes from st to st+1 after
taking action α.

• r(s, α) denotes the immediate reward that the system starts from state s by
adopting an action α.
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The objective of the agent is to derive an optimal policy that maps states to actions to
maximize the expected cumulative reward, often referred to the return as

E

[︄
∞

∑
k=0

γkrt+k | st = s, αt = a

]︄
, (2.16)

where γ ∈ [0, 1) represents the discount factor to balance the future reward and the
immediate rewards.

FIGURE 2.4: Basic of reinforcement learning.

Policy Definition: Two main types of policies are analyzed, including deterministic
policy αt = µ(st) and stochastic policy. Specifically, a deterministic policy assigns a
unique action to each state, expressed as: at = µ(st), where µ is the policy function
and st is the state at time t. Comparatively, a stochastic policy defines a probability
distribution over possible actions for each state, rather than selecting a single
deterministic action. It is expressed as: αt ∼ π(·|st), where π represents the
probability of selecting action αt given the state st.

Value functions and optimization: The state-value function Vπ(s) represents the
expected return starting from state s and following policy π, which is defined as
Vπ(s) = Eπ

[︂
∑∞

k=0 γkr(sk, ak)
⃓⃓⃓
s0 = s

]︂
, where Eπ is the expected value under policy π.

Comparatively, the action-value function Qπ(s, a) represents the expected return
starting from state s, taking action a, and following policy π, which is
Qπ(s, a) = Eπ [r(s, a) + γVπ(s′)]. The optimal policy π∗ maximizes the function as
π∗(a|s) = arg maxa Q∗(s, a), where Q∗(s, a) is the optimal action-value function.

Policy and Value-Based Methods: There are two types of approaches to policy
improvement. Policy optimization methods directly optimize the policy πθ(a|s)
parameterized by θ using gradient-based approaches as
∇θ J (πθ) = Eπ [∇θ log πθ(a | s)Qπ(s, a)]. Value-based methods use Bellman
equations to iteratively compute value functions as Vπ(s) = Eπ [R(s, a) + γVπ (s′)].
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2.5.2 Application of Deep Reinforcement Learning in Combinatorial
Optimization

Many combinatorial optimization problems are difficult to solve within an efficient
polynomial time. Hence, the heuristic algorithm is favorable in practical scenarios,
since they can usually get a feasible solution faster compared with the approximate or
exact algorithms. One of the new trends in these years to solve combinatorial
optimization is to leverage the reinforcement learning technique [67].

Take the novel architecture ”end-to-end neural combinatorial optimization
pipeline”[68] as an example. The dataset corresponding to a specific optimization
problem can processed by machine learning algorithms to produce embeddings for
various instances. Afterward, the trained model is used to approximate and extract
information for this specific optimization problem. The process of searching for the
optimal solution can be viewed as a Markov decision process, where the agent can
search for an optimal action sequence (i.e., solution) to optimize the reward (i.e.,
objective).

A combinatorial optimization problem can be described using the following formula:

min
x∈X

f (x), (2.17)

s.t. gi(x) ≤ 0, i = 1, . . . , m,

hj(x) = 0, j = 1, . . . , n,

where the objective function f (x) defines the goal of the optimization problem, such
as minimizing costs or maximizing efficiency. The decision variable x is chosen from
the solution space X , which represents all possible discrete combinations or
arrangements. The constraints gi(x) ≤ 0 and hj(x) = 0 restrict the feasible region by
enforcing inequality and equality conditions, respectively. Since the solution space X
is discrete, combinatorial optimization problems are often computationally
challenging as the size of X increases, leading to exponential growth in potential
solutions.

The relationship between combinatorial optimization and reinforcement learning is
given in Table. 2.1.

2.5.3 Application of Hierarchical Multi-agent Deep Deterministic Policy
Gradient Algorithm in Stackelberg Game

Chapter 4 proposes a H-MADDPG algorithm to address multi-agent problems
involving attackers and operators within the Stackelberg game framework.
H-MADDPG facilitates the optimization of policies through the interactions between
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TABLE 2.1: Mapping combinatorial optimization to reinforcement learning.

Combinatorial Optimization Reinforcement Learning
Objective function f (x) Reward function R(s, α)

Solution space X Set of all states S
Decision variable x Set of all actions A

Constraint conditions g/h Invalid action penalties and constraints
Optimal solution x∗ Optimal policy π∗(α|s)

Optimization process Policy-Based/Value-Based Approaches

attackers and operators. This section introduces the key concepts of H-MADDPG and
Stackelberg game theory to facilitate a better understanding.

Stackelberg Game: A Stackelberg game is a strategic framework characterized by a
hierarchical leader-follower relationship. Within this model, the leader acts first by
making an initial decision, which is subsequently observed by the follower. The
follower then optimizes their strategy in response to the reader’s actions. This
sequential decision-making process enables the leader to influence the follower’s
actions, thereby establishing a strategic advantage [69], which is formulated as(︂

xA∗, xB∗
)︂
= arg max

(xA,xB)∈ΩA×ΩB
U
(︂

xA, xB∗
)︂

(2.18)

s.t. xB∗ = arg max
xB∈ΩB

L
(︂

xA, xB
)︂

,

where the leader solves xA∗ = arg maxxA∈ΩA U
(︁
xA, xB∗)︁ with the leader’s objective

function U
(︁

xA, xB)︁. Comparatively, the follower solves
xB∗ = arg maxxB∈ΩB L

(︁
xA, xB)︁ utilizing the follower’s objective function L

(︁
xA, xB)︁.

The solution
(︁
xA∗, xB∗)︁ forms the Stackelberg equilibrium, where the leader and

follower’s strategies are mutually optimal.

Hierarchical Multi-Agent Deep Deterministic Policy Gradient: The Actor-Critic
architecture is a type of RL that integrates policy optimization and value estimation.
The Actor selects actions based on the current policy to maximize expected rewards,
while the Critic evaluates these actions by estimating the value and generating
feedback to the Actor. The Deep Deterministic Policy Gradient (DDPG) is an
off-policy algorithm suitable for continuous action spaces based on the actor-critic
framework. Building on DDPG, the Multi-Agent Deep Deterministic Policy Gradient
(MADDPG) adapts it for multi-agent environments, where each agent has its own
actor network, and a centralized critic evaluates joint actions to optimize strategies in
the presence of other agents [70].

The H-MADDPG algorithm extends the MADDPG to address hierarchical agent
structures, particularly in contexts such as Stackelberg games. By optimizing policies
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across multiple levels of agents, H-MADDPG facilitates behaviors in complex
environments, allowing for strategic interactions.

2.5.4 Emergence of Reinforcement Learning in Defensive Approaches in
Cyber-Physical Power Systems

The growth of CPPS has generated vast datasets, posing challenges in analysis, insight
extraction, and security [21]. ML has emerged as a critical tool in addressing CPPSs
security concerns, primarily leveraging three approaches: supervised learning, GANs,
and RL [21]. Supervised learning excels at extracting patterns from historical data,
making it highly effective for anomaly detection and threat identification. When
labeled datasets are insufficient, GANs can generate labeled data, addressing data
scarcity. In addition, RL offers a distinct advantage by learning directly from
interactions with the environment, without relying on pre-existing datasets or models.
This adaptability enables systems to develop rapid defensive decision-making
strategies and facilitate real-time responses to evolving cyber threats.

Supervised learning leverages labeled datasets to train models, enabling them to learn
the relationship between input features and output labels. This approach is effective
in anomaly detection in CPPSs, including detecting FDIAs)and identifying abnormal
traffic patterns. Literature [71] formulates FDIA detection as a supervised learning
classification problem, leveraging observed measurements as features and
incorporating prior system knowledge to address sparsity constraints. Building on
this, [72] incorporates semi-supervised, online learning, and fusion algorithms within
a generic attack construction framework for diverse attack scenarios.

The limited availability of sufficient samples and labeled data from power system
operation poses a significant challenge for many ML-based approaches in CPPS. To
address this problem, an unsupervised learning approach, generative adversary
network (GAN), has been increasingly applied in CPPS security since it can
supplement sufficient samples utilizing generative learning. As contrast to solely
relying on sampling data for the power system state estimation, GAN has been used
in [73] to fill in missing measurements caused by cyberattacks or failures, improving
data completeness in power system state estimation. Moreover, [74] judiciously
combines traditional power models with GANs to improve data reliability. In this
approach, the compromised measurements generated by the power model, induced
by FDIAs, are subsequently repaired by the GAN to achieve high accuracy.

Reinforcement learning focuses on developing optimal policies through interactions
with the environment, leveraging states, actions, rewards, and policies. In CPPS,
many defensive decision-making problems can be transformed as sequential
decision-making tasks, which are challenging to solve within polynomial time. To
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address this challenge, RL models these tasks as MDPs, optimizing action sequences
(i.e., solutions) to maximize rewards (i.e., objectives) through interactions with the
environment. Once the model is trained, RL enables the optimization of defensive
decision-making strategies during inference time, making it well-suited for immediate
security responses [67].

Generally, due to limited resources, attackers can launch attacks in a finite number of
times to do as much damage as possible [75], which can be considered as an
optimization problem. On the basis, intelligent attackers can be viewed as an agent to
adjust its attack actions to optimize the attacking rewards. An approach based on
Q-learning is proposed in [76] to optimize the attack sequences against the topology
attack. Literature [77] utilizes the Markov decision process to simulate the risk
propagation process of a CPPS, which seeks to maximize deviation from the estimated
states by optimizing the attack sequence and targets. Moreover, from the perspective
of defenders, the effectiveness of a defense strategy is highly associated with the
dynamic attack-defense interactions instead of purely focusing on the intentions from
attackers. Literature [78] model the DDoS attack-defense architecture in the real-time
energy market as a Markov decision process, where attackers and defenders alter the
target link selection sequentially to achieve their objectives. The attackers aim to
maximize the market price decline from the true to the depressed value, whilst the
defenders aim to decrease it. Literatures [79, 80, 81] have modeled the process of
attack-defense interaction under the FDI attack scenario as a zero-sum stochastic
game. The Nash equilibrium strategy for both defenders and attackers is solved and
utilized to guide the defense resource allocation.

2.6 Basics of Zero Trust Architecture

In this section, the concept of ZTA, the framework of ZTA, and the existing techniques
for ZTA are discussed, respectively.

2.6.1 Concept of Zero Trust Architecture

A ZTA leverages zero trust principles and security philosophy to deploy industrial
workflows and infrastructure. Conventional network security architecture divides the
single and interconnected network into smaller network zones, which are isolated
through virtual firewalls. According to the predefined level of trust of each network
zone, the network resources are determined whether granted or denied permission to
access, upon which this conventional architecture is always provided with a strong
defense perimeter. In other words, once the hackers have penetrated into the network
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zone through achieving the trust level of this network zone, almost all the resources in
this zone will be vulnerable.

ZTA addresses this issue through focusing on resources, asset and entities, instead of
network zones, since for one resource, its specific location in network is no longer
deemed as the main factor to evaluate the security. The main assumption of zero trust
(ZT) is that there is no implicit trust granted to assets or user accounts based only on
their physical or network location or based on asset ownership. ZTA is responsible for
the novel network trends which consist of terminal devices, cloud computing
technique, bringing your own devices and so on, since these devices and techniques
are not located in an exact perimeter of the network. In addition, the ZTA pays more
attention to protecting resources, such as workflows, services, network assets,
database and so on, as the location of both subject and resource in the network is no
longer deemed as the main factor to the evaluate security of the resource [82].

To establish a zero trust network requires the following five essential assertions:

• The entire network is assumed to be hostile at any time.

• The potential threats may occur inside the network or outside the network every
time.

• Network locality is not sufficient for deciding trust in a network.

• To access network, each user, device and asset must be authenticated and
authorized.

• Numerous sources of data are used to calculate and update the access
assignment policies.

2.6.2 Logical Components of Zero Trust Architecture

As shown in Figure 2.5, there are five main components for ZTA, including subjects,
policy enforcement point (PEP), resources, policy decision point (PDP), and other
supplements [22]. Subjects are defined as the user or any device which request being
granted access the resources. A policy decision point is used to deciding to grant or
deny access to the resources. In this way, the communication between the resource
being requested and the subject will be established or terminated. PDP consist of two
components: policy engine (PE) and policy administrator (PA). PE is responsible for
making decisions and PA is responsible for communication management. In this
framework, the concept of resource represents the resources which is requested by the
subjects. PEP is responsible for forwarding the request information for PDP, and
direct control the communication between the subjects and the requested resources. In
addition, PEP can also monitor the incoming network traffic between the resources
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and the subjects. Finally, supplement is responsible for offering reference information,
such as network traffic logs, threat intelligence information and so on, to the PE. By
referring to this information, PE can make decisions more accurately and correctly,
thereby improving the security of the overall system.

Generally, while a subject request to access one resource, it can first issue a request to
access this resource. Subsequently, the PEP will receive this request and then transmit
it into PDP, which decides whether to grant this request or not. This decision made in
PDP will be transmitted into PEP, which will establish or terminate the
communication referring to the request.

FIGURE 2.5: Core zero trust logical components.

2.6.3 Variations of Zero Trust Architecture Techniques

There are various approaches for designing ZTA for workflows through using the
existing software and hardware as possible, which vary in using ZT components and
the main policy rules. Even though each method is on the basis for the tenets of ZT,
they may leverage one or two ZT components as their core policies. Generally, one
complete ZT solution will include elements of all three methods, consisting of
enhanced identity governance–driven, logical micro-segmentation, and
network-based segmentation. The main determination for which method to apply is
the requirement for minimizing the fundamental changes to the current workflows.

• Enhanced Identity Governance:

As the core component of policy engine, the improved identity governance
approach is to assign the dynamical access mainly based on the identity of
actors. For example, if one subject was not requesting access for the resource, it
would not be assigned any access authorization. The core objective is to access
the least privileges granted the set of subjects for accessing the resources.
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• Micro-Segmentation

The principle of this approach is to design a unique network segment to support
the functionalities in ZTA, which is isolated by one gateway security part. The
main challenge of this approach is the deployment cost and large changes while
it is deployed in the novel system.

• Software-Defined Perimeter

The above approaches are based on concepts from Software Defined Networks,
where PA works as the network controller which can launch and reconfigure the
network according to the decisions launched from the PE. The subjects can then
request the accessing authentication through PEP, which is controlled by the PA
part.

This research investigates the impact of two representative cross-layer threats in
CPPS: QoS and FDIAs. To analyze these threats and their impacts for CPPS, this
chapter provides a literature review covering the definitions and impacts of QoS and
FDIAs, examines existing defense mechanisms, identifies research gaps, and presents
the preliminaries of the relevant technologies employed in the following chapters.

2.6.4 Applications of ZTA in Industrial Systems

In recent years, an emerging security technique known as ZTA has gained more
attention in industrial systems. Referring to the National Institute of Standards and
Technology (NIST) report [22], the key principle for ZTA is continuous authentication
and dynamic access control. In May 2021, the U.S. president issued an executive order
on strengthening the Nation’s Cybersecurity [83], which guides agencies to
implement ZTAs. In February 2022, the OMB Acting Director issued [84] that federal
government agencies are required to meet five Zero-Trust goals in strategy [85] until
the end of 2024. According to Okta’s report ”The State of Zero Trust Security 2022”
[86], 55% of the organizations surveyed had a Zero-Trust plan and the majority (97%)
intended to have one in the future. These incidents imply that ZTA became
mainstream while replacing the legacy network and security standards.

In fact, the increasing attack surfaces and lateral spreading of industrial systems have
challenged the capabilities of traditional CPS security architectures [87]. Take the
CPPS as an example. In a CPPS, the majority of power components are controlled by
various cyber systems such as SCADA and EMS. Any vulnerability in these cyber
systems can serve as a gateway for attackers to penetrate. The reason is that the
traditional perimeter-based security architecture has trust zones where users are
granted redundant privileges to access other resources. In case the weakest endpoint
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is compromised, attackers can utilize it to spread laterally and further penetrate the
physical system in a cross-layer fashion, thereby causing large damage.

The key solution to the aforementioned issues is continuous authentication and
making access control policies for each access request inside the perimeter, which can
be achieved by the standard ZTA. The main principle of the standard ZTA is that
every network component cannot be trustworthy without authenticating and
authorizing, thereby restricting the lateral movement [82]. Many researchers have
investigated designing and implementing ZTA and its variants to several industrial
architectures, including the IoT platform, power IoT [88, 89], Cloud platform
[90, 91, 92] and Smart Healthcare [93, 94], to enhance or provide security posture.
Meanwhile, many organizations have already implemented ZTA into their
infrastructure in practice, including Google and Microsoft. In addition, while research
into ZTA is still ongoing, a majority of organizations and corporations have already
implemented ZTA in their existing security architectures in practice, as shown in
TABLE. 2.2.

TABLE 2.2: The development of ZTA in industrial infrastructures and corporations.

2014

2019

2020

2021

2022

2024

Google: BeyondCorp program is initiated to use ZTA in
internal network infrastructure [95].

Microservices: Designing eZTrust, a network-
independent ZT perimeterization [96].

Netskope: A cloud-based ZT network access is issued
to general availability [97].

Microsoft: A ZT maturity model is published [98].

5G Edge Computing: Constructing a dual-layer ZTA to
improve 5G multi-access edge computing [99].

Power IoT: Designing the power IoT security defensive
architecture based on ZT principles [88].

GitLab: A roadmap for ZTA is built [100].

Cloud Computing: Comparing novel requirement-
specific features for ZT cloud networks [92].

Virtual Power Plants: Illustrating ZTA flow in prosumer
requests to plant operator [89].

Palo Alto: Using ZT with Palo-Alto Networks [101].

These cases suggest that ZTA has the potential to develop from a novel concept to a
widely used architecture to secure industrial architecture security in the future.
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Chapter 3

Cross-Layer Optimization of
Microgrid Secondary Control and
Communication QoS for
Cyber-Physical Power Systems

.

3.1 Introduction

As the advanced information technologies are gradually deployed in CPPS, the power
system is increasingly vulnerable to malicious attacks. In addition, extreme weather
conditions might disrupt the normal operation of CPPS, thereby resulting in
undesired power communication interruptions and even blackouts [8]. For instance,
in 2012, over 8 million customers were left without power supplies and $70 billion
losses in total when Hurricane Sandy damaged energy infrastructure in the United
States [102]. Similarly, in 2015, three Ukrainian energy companies were damaged by a
sophisticated cyber-attack, leading to power outages for several hours impacting
around 225,000 customers [9]. Therefore, enhancing the communication reliability and
power system stability under abnormal situations is a crucial requirement for the
CPPS.

3.1.1 Overview

To address the challenges posed by degraded QoS, many existing works have
designed advanced control algorithms and achieved success in making the CPPS
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Communication QoS for Cyber-Physical Power Systems

intelligent against communication latency [25]. However, such control algorithms
require high QoS of communication with low latency and high throughput but they
have limited communication resource. Specifically, in the control processing, the
sensor will send the sampled data to a controller to calculate the control output, which
is then forwarded to the actuators. For example, when the centralized base stations
that support the communication resources are damaged by the natural disasters or the
cyberattacks, the limited bandwidth cannot satisfy the requirement of each
transmission link. In this case, the data packets in transmission are dropped off or
delayed, the performance of the control algorithms, and even the stability of the
physical system will be impacted, especially for island Microgrids away from the
main grid.

One might think that degraded QoS could be mitigated by communication
technologies in the cyber layer before the interrupted or falsified data packets are
transmitted to controllers or actuators. These techniques can be classified into three
categories, namely, optimal sampling time selection [26], optimal routing selection
[27], and optimal communication resource allocation [27, 28]. These works aim to
mitigate the cyber failures through enhancing the QoS of data transmission, such as
maximizing throughput and minimizing time delay. Literature [26] designs the
control period as a state variable to analyze the input-to-state stability of this
closed-loop system, to mitigate the influence of the time delay. In addition, to improve
the performance of smart grids with hierarchical control framework in the face of
possible cyber-physical coupling failures, literature [27] proposes an optimal routing
strategy to maximize the accessibility of data transmission. However, these two
techniques are more applicable as pre-event methods since they use wired
communication, in contrast to post-event methods, which requires wireless
communication.

For wireless communication, a popular D2D communication technique can be
leveraged as a support for remote Microgrids away from main base stations [30]. The
existing works aim to improve the QoS of communication through designing the
optimal communication resource strategy to assign subcarriers and transmit power of
users [29]. According to our knowledge, there are several works focusing on using
D2D communication in industrial control systems, considering the cross-layer impact
from the communication system on the industrial physical systems. [28] designs the
optimal communication resource allocation strategy that not only minimizes power
consumption but also, for the first time, introduces an optimal sampling approach to
ensure the cross-layer impact of this strategy on the QoS requirement of the control
subsystem. In addition, [30] designs a cyber-physical coordinative mitigation
framework that pre-allocates the communication resource to minimize the time delay
while also analysing the impact of this time delay on the frequency control of the
power system within the control algorithm. [103] proposes a post-disaster restoration
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framework that achieves the goal of load recovery by simultaneously designing D2D
communication and active distribution networks.

Although these works consider both communication reliability and its cross-layer
impact on physical stability, they leverage communication reliability as the
intermediate objective when analyzing the cross-layer impact of communication
resource allocation strategy on physical stability. That is, they either optimize the
communication reliability alone or optimize the physical stability alone. However, a
superior communication strategy in terms of QoS does not always lead to superior
physical stability. For example, for certain insignificant measurements, low
communication delays do not necessarily lead to a well-performing control algorithm.
As above mentioned, in addition to the QoS, the power system stability needs to be
considered as a key factor when designing communication resource strategies, as such
a strategy can impact physical stability in a cross-layer fashion. However, it is
challenging to consider multiple factors simultaneously in optimization strategies. As
indicated in [104], even simultaneously optimizing voltage regulation and frequency
regulation can lead to complex Pareto-optimal solutions.

3.1.2 Contribution

This chapter explores the CPPS structure including a microgrid and a wireless
communication network with limited bandwidth as the communication network to
support its hierarchical control architecture framework to regulate frequency and
voltage in failure situations. In the extreme scenario, communication facilities may be
compromised, wherein the QoS which supports the information exchange in the
distributed control is degraded. In this case, the performance of distributed secondary
control will be impacted, resulting in the frequency and voltage deviation. To mitigate
such cross-layer impact induced by degraded QoS, this chapter designs a D2D
communication resource allocation strategy that can minimize both QoS disruptions
and their cross-layer impacts on microgrid stability. The main contributions of this
chapter are as follows.

1. A specialized CPPS model is proposed to evaluate the cross-layer impact of the
communication resource allocation strategy on the physical states. This model
extracts the interdependent cyber and physical states instead of all the variables,
to reduce the complexity of this joint system.

2. A joint multiobjective optimization problem is formulated to determine the
optimal communication resource allocation strategy (i.e., channel selection and
transmit power allocation) to find the tradeoff between the QoS in
communication and the Microgrid stability, simultaneously. In addition, an
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AW-MRAS algorithm is designed to solve the proposed problem, which can
prune the search space based on the unique characteristics of our CPPS model.

3. Compared with the state-of-the-art strategy for the single objective problem that
only optimizes the QoS index, our proposed optimal strategy results in 13.74%
and 4.57% decrease in frequency and voltage deviation with a slight
compromise in the QoS index, respectively. In addition, the proposed
AW-MRAS algorithm has superiority in balancing population diversity and
convergence, compared with four multiobjective optimization algorithms.

3.1.3 Structure of Chapter

The remainder of this chapter is organized as follows. Section 3.2 outlines the system
model. Section 3.3 introduces the proposed CPPS model, analyzing the cross-layer
impacts of D2D communication allocation strategies on microgrid stability. A joint
multi-objective optimization problem is formulated to derive the optimal D2D
communication strategy that minimizes degraded QoS disruptions and their
cross-layer impacts on frequency and voltage regulation. Section 3.4 presents the
AW-MRAS algorithm designed to optimize the proposed D2D strategy. Section 3.5
provides the simulation results and analysis. Finally, Section 3.6 concludes this
chapter with a summary of findings.

3.2 System Model

Generally, the QoS for the information exchange between local controllers in the
hierarchical control [64] of an islanded Microgrid can be supported by the wireless
communication or wired communication. Such communication technology, however,
might become unstable in regard to the extreme scenario. In this case, the bandwidth
resource, which is previously used to support other communication services such as
the mobile communication, can be multiplexed by the power services. Considering
such a scenario, a structure of CPPS is designed as shown in Fig. 3.1, including a
Microgrid with a set of DGs and a wireless communication network with a set of D2D
communication links and normal cell users [105, 28]. To simplify the expression, this
chapter defines the set of DGs and D2D links as Ndg = {1, 2, . . . , Ndg}, and the
Ld2d = {1, 2, . . . , Ld2d}, respectively. Each DG is deployed with the sensor, actuator
communicating with local controllers and remote terminal units (RTU). The
information exchange between the RTUs of DG z and its adjacent DGs is transmitted
via D2D links in the communication network. Users in communication network are
classified into two types: Normal users equipments (NUE) i and D2D link users l,
where l = (j, z) ∈ Ld2d, j ∈ Ndg and z ∈ Ndg. l = (j, z) supports the D2D link
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transmitted from RTU of DG j to the RTU of its adjacent DG z. The total bandwidth
dedicated to users is divided into Icha channels in the set Icha = {1, 2, . . . , Icha} and
each channel is assumed to pre-allocate to one NUE. These channels allocated to
NUEs are multiplexed by D2D links. Note that wireless network handles all
information exchange, including the D2D links between RTUs of adjacent DGs
(supporting the secondary control), and intercommunications among NUEs. In
details, the system model can be described in two aspects:

FIGURE 3.1: The topology of the CPPS system model.

3.2.1 The Cyber Layer

The SINR for the D2D link l = (j, z) on channel i (supporting the information
exchange from RTU j to RTU z) is determined as

γl(k) =
∑Icha

i=1 ξl,i pd
l,i(k)gd

l

σ2
0 + ∑Icha

i=1 ξl,i

(︂
pc

i gc
i,l + ∑Ll′=1,l′ ̸=l ξl′,i pd

l′,i(k)gd
l′,l

)︂ , (3.1)

where σ0 is the Gaussian noise. pc
i is the transmits power for NUE i on channel i. gd

l is
channel gains for D2D link l, and gc

i,l and gd
l′,l represent channel gains from NUE i

transmitter to D2D link l receiver, and from the D2D link l′ transmitter to D2D link l
receiver, which can be modeled as gc

i,l = di,l
−3u

(︂
gd

l′,l = dl′,l
−3u

)︂
, respectively. da,b is

the distance between the transmitter a to receiver b and u is the loss factor.



44
Chapter 3. Cross-Layer Optimization of Microgrid Secondary Control and

Communication QoS for Cyber-Physical Power Systems

Given an SINR, based on the well-known Shannon formula, the transmission rates,
also termed as throughput, for D2D link l = (j, z) on can be modeled as

Rl(k) = Bc log2 (1 + γl(k)) , (3.2)

where Bc is the bandwidth of each channel. Generally, due to various uncertainties in
data communication, theRl(k) is the throughput in an ideal scenario, which will
impact the QoS of data communication for the control systems.

3.2.2 The Physical Layer

The microgrid system model adopted in this section is widely used among
experimentalists, which consists a set of DGs and the dynamics of each DG z can be
given as [65]

δz(k + 1) = δz(k) + h · (ωz(k)−ωsys)

ωz(k + 1) = ωz(k) + h ·mωη1(Pez(k)− Pz(k)) + Ωz(k + 1)−Ωz(k)

vz(k + 1) = vz(k) + h ·mvη2(Qez(k)−Qz(k)) + Φz(k + 1)−Φz(k)

Pz(k + 1) = Pz(k) + h · η1 (Pez(k)− Pz(k))

Qz(k + 1) = Qz(k) + h · η2 (Qez(k)−Qz(k)) ,

(3.3)

where η1 and η2 are the low-pass time constant of power filter [106]. Rl is the received
variable by local controller of z from the RTU j via the communication network. Ωz

and Φz are the control input, which is calculated by controllers, relying on the QoS in
the cyber layer.

Pez(k) =
N

∑
j=1
|vz||vj|(Gzj cos(δzj(k)) + Bzj sin(δzj(k)),

Qez(k) =
N

∑
j=1
|vz||vj|(Gzj cos(δzj(k))− Bzj sin(δzj(k)).

(3.4)

where δzj(k) = δz(k)− δj(k) and Yzj is the inductive admittance for the inductive line
between DG i and DG j.

3.3 Joint Optimization for D2D Communication Resource
Allocation Strategy

Based on the system model, this section presents a CPPS model for quantitatively
analyzing the cross-layer impact of resource allocation on frequency and voltage, and
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proposes a multi-objective optimization framework to minimize physical state
disruptions while improving QoS.

3.3.1 CPPS Model: Cross-Layer Impact of D2D Communication Strategies
on Microgrid

In this section, the relationship between the throughputRl(k) in Eqn. (3.2) in the
cyber layer and the control input Ωz and Φz in Eqn. (3.3) in the physical layer is
formulated. Based on this relationship, the joint CPPS structure including the
Microgrid with the distributed secondary control via the communication network can
be modeled as ⎡⎢⎢⎣

xc
Ld2d

(k + 1)
xu

Ndg
(k + 1)

xp
Ndg

(k + 1)

⎤⎥⎥⎦ = F

⎡⎢⎢⎣
xc

Ld2d
(k)

xu
Ndg

(k)

xp
Ndg

(k)

⎤⎥⎥⎦+ G

[︄
Pd

Ld2d×Icha
(k)

ξLd2d×Icha(k)

]︄
, (3.5)

where xc
l := [El , Tl , Sl , B0

l , · · · BM
l , Rl ] is defined as the cyber states for D2D link l, and

xp
l := [δz, ωz, vz, Pz, Qz] is the physical states. Sl = [Sω

l , Sv
l ], Bl = [Bω

l , Bv
l ] and

Rl = [Rω
l , Rv

l ] are the transmitted variable, the buffer variable and received variable,
respectively. In addition, δz, ωz, vz, Pz and Qz are the state variables of the power
system. In this structure, the interaction between the cyber and physical layer relies on
the secondary control input xu := [Ω, Φ]. Specifically, at time step k, physical states for
DG j are measured by the sensors, and then transmitted to the local controller and
RTU. Next, these state variables can be transmitted from RTU j to the RTU and local
controller of z. Afterwards, the control input xu can be calculated according to these
state variables, and then transmitted to actuators to regulate the frequency and
voltage. Pd := [pd

l,i (l ∈ Ld2d, i ∈ Icha)] is defined as the transmit power allocation
matrix, where pd is the transmit power for D2D links on channels.
ξ := [ξl,i (l ∈ Ld2d, i ∈ Icha)] denotes the channel selection matrix. k is the discrete time
step.

Define Ps as the probability of a successful packet transmission, which is related with
the SINR [107] and given as

Ps,l(k) =
(︃

1− 1
2

erfc(
√︂

γl(k))
)︃Lp

, (3.6)

where erfc(·) is the complementary error function. Hence, the expected throughput
can be reformulated as

El(k) = Ps,l(k) · Rl(k). (3.7)
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Afterwards, Tl(k), the sum of throughput over time from k0 to k, is given by

Tl(k + 1) = Tl(k) + El(k). (3.8)

The transmission process of D2D link l in communication network, is shown at the
right side of Fig. 3.1. During each period, the calculated state variables P/P∗ and
Q/Q∗ are reformulated as the sent variable Sω

l and transmitted to the send buffer
before accessing the communication network. It means that the value of Sl = [Sw

l , Sv
l ]

is updated within each period, which is given as

Sw
l (k + 1) =

Ndg

∑
j=1

bl j ·
Pj(k + 1)

P∗j
,

Sv
l (k + 1) =

Ndg

∑
j=1

bl j ·
Qj(k + 1)

Q∗j
,

(3.9)

where bl j is the incidence matrix, where bl j =1 if l = (j, ·); otherwise, bl j = 0. The
content of Sl is encapsulated as data packets, which are then split into several
segments and queued in the buffer. Afterwards, these segments are transmitted via
D2D links in communication network to the receiver of RTU z, where they are
integrated into the original packet.

The buffer is used to temporarily record the latest transmission data with limited
storage capacity, inside which the storage is divided into M blocks. Each block holds
one transmitted data Sl , which is updated as the new data are collected and
calculated. Using FIFO, at time step k, once Sl(k) is inserted into the block queue and
there are no empty blocks, Sl(k−M) is dropped due to the fixed number of blocks.
The buffer variable Bl = [Bω

l , Bv
l ] is modelled as

Bω,m
l (k + 1) =

{︄
ε · ((k−m + 2) · Lp − T(k + 1)) · Bω,m−1

l (k), if m ̸= 0
Sω

l (k + 1), if m = 0

Bv,m
l (k + 1) =

{︄
ε · ((k−m + 2) · Lp − T(k + 1)) · Bv,m−1

l (k), if m ̸= 0
Sv

l (k + 1), if m = 0

(3.10)

where ε is the Step function and Bm
l ̸= 0 means that block m contains one data packet

and Bm
l = 0 means that block m is empty). Without loss of generality, Eqn. (3.10) can

deal with buffer overflow and empty buffer according to FIFO strategy.

Afterwards, the RTU z can receive this packet and the receive variable Rl = [Rω
l , Rv

l ]

can be modelled as
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Rω
l (k + 1) =

M

∑
m=0

Bω,m
l (k + 1)(ε · (Tl(k + 1)− (k−m) · Lp)

− ε · (Tl(k + 1)− (k + 1−m) · Lp),

Rv
l (k + 1) =

M

∑
m=0

Bv,m
l (k + 1)(ε · (Tl(k + 1)− (k−m) · Lp)

− ε · (Tl(k + 1)− (k + 1−m) · Lp).

(3.11)

Then, the control input xu = [Ω, Φ] can be calculated using Rl , which are obtained as

Ωz(k + 1) = Ωz(k)− h · k1
ω (ωz(k)−ω∗z )− h · k2

ω ∑
z∈Ndg,l∈Ld2d

azl

(︃
Pz(k)

P∗z
− Rω

l (k)
)︃

,

Φz(k + 1) = Φz(k)− h · k1
v (vz(k)− v∗z )− h · k2

v ∑
z∈Ndg,l∈Ld2d

azl

(︃
Qz(k)

Q∗z
− Rv

l (k)
)︃

,

(3.12)
where Ωz and Φz are also termed as the auxiliary power variable whose derivative is
delivered to the primary control from the secondary control, which is used to
compensate for the frequency deviation induced by the droop controller. azl is the
incidence matrix of the DG z, and D2D link l transmitted from its adjacent DGs.

In normal operating scenario, at time step k, the RTU z can receive the latest
information P/P∗(k) and Q/Q∗(k) transmitted from adjacent RTUs, and then
calculate control input Ωz(k) and Φz(k), when Rl(k) is equal to Sl(k). However, in the
extreme scenario, the reliability of information exchange for distributed control cannot
be ensured, i.e., the latest information P/P∗(k) and Q/Q∗(k) cannot be received by
RTU z at time step k. In this case, Rl(k) will be kept as the last received variable Sl(k′),
which will be used to calculate the control input Ωz(k) and ξz(k), k′ ≤ k. Take note
that Sl(k′) is out of date, and thus the Ωz(k) and ξz(k) are not accurate. Therefore, the
performance of control method will be impacted.

To further illustrate the relationships between these variables, a simple example is
given in Fig. 3.2, where the time interval between time step k and k + 1 is defined as h.
At time step k∗=3, the Rl(k∗) is expected to be equal to Sl(k∗). However, due to the
uncertainty of communication in the extreme scenario, assume that
Tl(k∗) ∈ [2Lp, 3Lp), where Lp is the size of one transmission data which stores one
piece of complete exchange information. In this case, only two pieces of complete
exchange information are successfully transmitted, and received by the RTU z. That is,
the current received transmission variable Rl(k∗) is equal to the value of Sl(k′ = 2). In
this case, the control input Ωz(k∗ = 3) and ξz(k∗ = 3) are calculated using the last
received calculated state variables P/P∗(k′ = 2) and Q/Q∗(k′ = 2), which will
mitigate the performance of control method. To solve this problem, the AW-MRAS
algorithm is designed, combined with a search space reduction technique.
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FIGURE 3.2: A simple example to illustrate the transmission variables.

3.3.2 Joint Optimization for D2D Communication Allocation Strategy

In this section, a joint optimization problem is formulated to obtain a tradeoff between
the QoS in communication, and the stability in Microgrid. In this joint optimization
problem, the QoS index is defined as the energy-efficient of radio resource allocation,
which takes both the maximization of the communication system capacity and the
minimization of transmit power into consideration at the same time [62, 63]. In
addition, the Microgrid stability is defined as the frequency and voltage deviation
[108]. Correspondingly, there are three objectives of the proposed formulation:
Obtaining the optimal resource allocation strategy with the maximal energy efficiency
f c
1 in the cyber layer, and the minimal frequency deviation f ω

2 and voltage deviation
f v
3 subject to the secondary control in the physical layer. Based on the power balance

and the stability in the Microgrid, and the QoS and the channel constraints in
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communication network, this multiobjective problem is stated as

max
Pd,ξ

f c
1(P

d, ξ) =
Rc(Pd, ξ)

P c(Pd, ξ)
(3.13)

min
Pd,ξ

f ω
2 (Pd, ξ) =

T

∑
k=1

Ndg

∑
z=1

((ωz(k)−ω∗))

max
Pd,ξ

f v
3 (P

d, ξ) =
T

∑
k=1

Ndg

∑
z=1

((vz(k)− v∗z ))

s.t. C1 :
Icha

∑
i=1

ξl,i ≤ 1, ∀ l ∈ Ld2d,

C2 : ξl,i ∈ {0, 1}, ∀ l ∈ Ld2d, ∀ i ∈ Icha,

C3 : 0 ≤ pd
l,i < pmax

l,i , pmax
l,i = min

{︄
pd

max,
pc

i

γi
thgd

l,i
− σ2

0

gd
l,i

}︄
,

C4 : Vz ≤ Vz(k) ≤ Vz,

C5 : Pz ≤ Pz(k) ≤ Pz,

where the energy efficiency metric f c
1 is defined as the ratio of the total throughputR

and the total power consumption P , given in the following Eqn. (3.14) and Eqn.
(3.15), respectively. In addition, constrains C1 to C3 ensure the QoS of NUE user i and
the D2D link l, respectively. C4 and C5 represents the power requirements of the
Microgrid. γi

th is the signal noise ratio requirement for the NUE i on the channel i,
which satisfies γi

th ≤ γc
i =

pc
i gc

i
σ2

0+∑Ll=1 ξl,i pd
l,i g

d
l,i

. The voltage and active power of each DG

are required to be inside the allowable voltage margin and active power margin,
respectively. Allowable lower and upper bounds of the voltage and active power are
defined as Vz and Vz, and Pz and Pz, respectively.

Rc
(︂

Pd, ξ
)︂
=

Icha

∑
i=1
Rc

i +
Icha

∑
i=1

Ld2d

∑
l=1

ξl,iRl , (3.14)

P c
(︂

Pd, ξ
)︂
=

1
2

(︄
Icha

∑
i=1

pc
i + pBS

)︄
+

Icha

∑
i=1

Ld2d

∑
l=1

ξl,iϵl pd
l,i, (3.15)

whereRc
i = Bc log2

(︁
1 + γc

i
)︁

is the throughput of NUE i. pBS is the power
consumption of the base station, and ϵ is amplifier inefficiency for D2D link l.

Obviously, the feasible solution that can optimize three objective functions for the
proposed multiobjective optimization problem simultaneously cannot be obtained
[109]. Hence, the concept of the Pareto solution set can be used for this problem.

Definition 3.1. Assume that in a multiobjective optimization problem, fi(x),
i ∈ 1, 2, 3, · · · , k are all to be minimized. In this case, the solution x′ can be dominated
by another feasible solution x∗ if the following conditions can be satisfied:
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fi (x∗) ≤ fi (x′) for all i ∈ 1, 2, 3, · · · , N;

fi (x∗) < fi (x′) for at least one j ∈ 1, 2, 3, · · · , N.

x∗ is defined as the Pareto optimal solution if no other solutions can dominate x∗.

3.4 AW-MRAS Algorithm for Optimal D2D Communication
Allocation Strategy

To solve the aforementioned joint optimization problem, the AW-MRAS algorithm is
designed, combined with a search space reduction technique. The optimization
problem (3.13) is a multiobjective mixed integer nonlinear problem with high
complexity, which indicates that the feasible solution set of this problem comprises
discrete and nonlinear forms, and requires to balance the weights of different
objectives. To solve this problem, the AW-MRAS algorithm combined with a search
space reduction technique is designed, which includes a decomposition-based
algorithm, and an advanced stochastic optimization technique, MRAS algorithm. The
decomposition-based algorithm shows its capability for balancing different objectives
with complicated Pareto sets [112]. The MRAS is verified to be effective for solving
such an optimization problem with almost no characteristics, such as differentiability
and convexity [113]. In addition, the search space reduction technique is designed to
accelerate the optimization. This technique can prune the search space wherein the
solutions are dominated by other nondominated optimal solutions, based on the
characteristics for this proposed CPPS model.

FIGURE 3.3: The correlation between the total energy efficiency and the transmit
power for one D2D link in the proposed CPPS.
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Algorithm 1: AW-MRAS with search space reduction technique
1. Initialization: Set the initial p.d.f f (x; θ0) ≥ 0 and the sample size S0. λ ∈ (0, 1],

ρ, ε ≥ 0. Set k=0, K = Nk, tk = 0, ΦR = ∅ and initialize a set of normalized weight
vectors w0 = (w1

0, w2
0, w3

0).
2. Sampling: Generate samples

{︁
xi

k

}︁S
i=1 from f̃ (·; θk) = (1− λ) f (·; θk) + λ f (·; θ0)

3. Sorting:
{︁

xi
k

}︁S
i=1 = fast-non-dominated-sort (

{︁
xi

k

}︁S
i=1) based on the fast

nondominated sorting approach referring to [110].
4. Pruning:
foreach i < S do

Judging whether xi
k ∈ ΦR. If yes, remove this infeasible solution xi

k; else,
continue.

foreach Communication link in sample xi
k do

Calculating the new peak point and the infeasible set Ξ according to Lemma
3.2.

Adding Ξ into ΦR .
If the number of remaining generated samples exceeds S0 or the loop times

tk < T, then go to step 5 and tk is set as 0; else, tk = tk + 1 go to step Sampling.
5. Evaluating Functions: Evaluate objective functions in the candidate solutions{︁

xi
k

}︁S
i=1, and set γ̂k as the sample (1− ρ)− quantile function of

{︁
J
(︁
xi

k

)︁}︁S
i=1

6. Reconstructing Sampling set: To reduce the code complexity, an updated
sampling set S′′ is reconstructed to estimate the parameter θk+1. The details of
constructing S′′ can be seen in Appendix A.1.1.

7. Updating: Update parameters by estimating the parameter θ from the sampling
set S′′ [111]. I is the indicator function.

θk+1 = arg max
θ∈Θ

∫︂
X
[S(J (x))]k I{J (x)≥γ̄k+1} ln f (x, θ)ν(dx),

wj
k+1 =

wj
k × ( f j,max

k − f j,min
k )

∑|w|j=1(w
j
k × ( f j,max

k − f j,min
k ))

, j = 1, 2, . . . , |w|.

8. Stopping: If k >= Nk, then stop; else, set k := k + 1 and then go to the step
Sampling.

3.4.1 Search Space Reduction Technique

The characteristics of the proposed CPPS model are utilized to prune the invalid
search space for solving Enq. (3.13). Specifically, with the fixed channel matrix and
transmit powers on other channels, the total energy efficiency f c

1 varies as transmit
power for a D2D link l on channel i increases, as depicted in Fig. 3.3. Here, pd′

l,i and pd′′
l,i

are on the two sides of the peak point pd∗
l,i , which is proved in A.1.3. In addition, given

limited communication resources, both frequency deviation f ω
2 and voltage deviation

f v
3 decrease as transmit power increases. This is because as transmit power increases,

the total throughput increases, enhancing the quality of information exchange in the
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distributed secondary control. This analysis leads to a lemma that underscores the
unique features of our CPPS model in solving problems (3.13).

Lemma 3.2. Given Ξ is a subset of feasible solutions of problem (3.13). If there exists at least
one solution D = {Pd, ξ} ∈ Ξ with element pd

l,i in matrix Pd satisfying pd
l,i ≤ pd∗

l,i , and there
exists one solution D∆ with pd∆

l,i > pd∗
l,i . In this case, D is not a solution for (3.13), and Ξ is

thus not a subset of the Pareto solution set.

Proof: This lemma is proved by contradiction. Assume that D is a solution in the
Pareto solution set for (3.13). In this case, there exists a solution D∆ = {Pd∆

, ξ∆} with
the same parameters as D except for the elements pd∆

l,i > pd∗
l,i , where the total energy

efficiency with pd∆

l,i is not lower than pd
l,i. In other words, f c

1(D) ≤ f c
1(D∆). In addition,

since pd∆

l,i ≥ pd
l,i, the total throughput of D∆ is higher than D. By increasing the total

throughput, the second and third objectives of the formulated problem are decreasing
and thus f w

2 (D) ≥ f w
2 (D∆), and f v

3 (D) ≥ f v
3 (D∆). Therefore, D∆ dominates D, and the

previous assumption that D is a solution of the Pareto solution set for the problem
(3.13) is contradicted.

Hence, according to this Lemma, the search space Ξ with D = {Pd, ξ} can be
dynamically pruned when there exists the entry pd

n,i of channel matrix Pd, where
pd

n,i ≤ pd∗
n,i.

3.4.2 Weight Adjustment Technique for Single-Objective Reformulation

To simplify solving the multi-objective optimization problem (3.13), it is transformed
into a single-objective function by assigning weights to each objective and aggregating
them.

x∗ = arg min
x∈X

J (x), (3.16)

where x∗ is the non-dominated solution, consisting of decision variables Pd and ξ. X
is the space of solutions and a nonempty compact set. Eqn. (3.16) is the reformulated
optimization from the J (x) = ∑|w|i wi · fi(x), where f = (− f c

1 , f ω
2 , f v

3 ) and
w = (w1, w2, w3) is the weight vector, which is updated in Algorithm 1.

Here, MRAS is used to solve the reformulated problem (3.16), including two phases
[113]. The first is to generate candidate solutions based on a specified probabilistic
model. The second is to update parameters for the previous probabilistic model under
the premise of evaluation functions based on previous candidate solutions. Define
{gk} as the parameterized sequence of the reference distributions, which is updated by

gk+1(x) =
S(∑|w|i wi fi(x))gk(x)∫︁

X S(∑
|w|
i wi fi(x))gk(x)v(dx)

, ∀x ∈ X , (3.17)
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where S(·) : R → R+ is a positive strictly decreasing function to make sure
Eqn. (3.17) is a valid distribution. v represents the counting measure defined on X
[111]. By minimizing the KL divergence between the sampling distribution f (x; θ)

and the referenced distribution g(x), the parameters of the sampling distribution can
be updated. By weighting the reference distribution gk+1(x) based on the objective
function J , Eqn. (3.17) improves the expected performance as follows:

Egk+1 [S(∑
|w|
i wi fi(x))] =

∫︂
gk+1(x)S(∑|w|

i wi fi(x))dx

=

∫︁
S(∑|w|i wi fi(x))2gk(x)dx∫︁
S(∑|w|i wi fi(x))gk(x)dx

≤ Egk [S(∑
|w|
i wi fi(x))].

(3.18)

Referring to [113], the parameter θk+1 is updated by

θk+1 = arg max
θ∈Θ

Eθk [
[S(J (X))]k

f (X, θk)
I{J (X)≥γ̄k+1} ln f (X, θ)]. (3.19)

Intuitively, it is difficult to estimate the parameter θk+1 in Eqn. (3.19) using existing
optimization tools. To reduce the coding complexity and make the development
process faster, the solution of Eqn. (3.19) can be converted into an equivalent problem.

FIGURE 3.4: Simplication of code development.

Lemma 3.3. The solution of Eqn. (3.19) is equivalent to estimate the parameter θ of p.d.f
f (x, θ) from the reconstructed sample set S′′.

Given the reconstructed sampling set S′′ in Appendix A.1.1, the equivalent problem is
defined as

θk+1 = arg max
θ∈Θ

∫︂
X
[S(J (x))]k I{J (x)≥γ̄k+1} ln f (x, θ)ν(dx). (3.20)

This equivalent problem, a well-known statistical task of estimating parameters of
f (x, θ) via a sampling set, can be directly solved with existing tools in multiple
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development platforms, thereby significantly reducing coding complexity in practice.
Refer to A.1.2 for the proof of 3.3.

To provide a clear and concise illustration of the simplification process for the coding
process of Algorithm 1, the process is illustrated in Fig. 3.4.

3.4.3 Analysis of Computational Complexity

The computational complexity of the proposed AM-MRAS mainly consists of three
parts: 1) Sorting, 2) Pruning, and 3) Calculating the weights. Sorting takes
O(T · |S| · log2(|S|)) to sort the non-dominated set, where |S| is the number of
generated solutions at one iteration and T(T ≪ |S|) is the predetermined maximum
number of iterations. Pruning takes O(T · |S| · n), where n is the number of decision
variables. Calculating weights takes O(2 · |w| · (|S| − 1)), where |w| is the number of
the objectives.

Remark: In total, the computational complexity of AW-MRAS is
O(T · |w| · |S| · log2(|S|)) in the worst case.

3.5 Simulation Results and Analysis

In this section, the effectiveness of the communication resource allocation proposed
strategy is assessed in a test CPPS structure, as shown in Fig. 3.5. Our algorithm was
implemented in the PlatEMO v3.0 and Matpower v7.1 on an Intel Core i7 PC with 16
GB of memory. This structure consists of an islanded 33-bus Microgrid including 8
DGs with the hierarchical control, and a communication network supporting the fully
distributed communication with 24 D2D links. The detailed parameters are presented
in Table 3.1.

TABLE 3.1: Simulation parameters of DGs and the D2D communication.

Parameter Value Parameter Value
Rated Frequency 50 Hz Rated Active Power 33 kW
Nominal Voltage 220 V Rated Reactive Power 9 kVAr
P-ω Droop Coeff 4.5e− 5 Hz

W Q-V Droop Coeff 1.8e− 4 V
VAr

k1
ω&k2

ω 1000 k1
V&k2

V 100&0.1
Noise power σ0 -125 dBm Length of D2D links L 84 bit

Number of channels 18 Channel Bandwidth 180 KHz
Distance d 50-80 m Maximum power pmax 65 dBm

Transmit power pc 30-50 dBm SINR requirement γth 25 dBm
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FIGURE 3.5: The CPPS including Microgrid and a communication network.

3.5.1 Evaluation of Optimal Resource Allocation Strategy with AW-MRAS
Algorithm

In this section, the proposed AW-MRAS algorithm is used for solving the
multiobjective optimization problem (3.13) to achieve the tradeoff between QoS in
communication (i.e., the energy efficiency) and the Microgrid stability (i.e., frequency
and voltage deviation). Among numerous possible combinations of decision variables
for the test system, the Pareto solution set is obtained, wherein three nondominated
solutions are selected as shown in Table 3.2, with the optimal objective f c

1 , f w
2 and f v

3 ,
respectively. Within this set, three critical non-dominated solutions (i.e., technique
A− C) are selected to capture the characteristics of this set. Each solution within this
set is selected for its optimal achievement in a single objective: technique A for f c

1 ,
technique B for f w

2 and technique C for f v
3 , respectively. technique A is selected for

optimizing f c
i disregarding f w

2 and f v
2 .

TABLE 3.2: Comparisons of different solutions in optimal solution set for the average
results within 0.02s.

Strategy Energy Efficiency f c
1 Frequency deviation f w

2 Voltage deviation f v
3

A 285.51 0.0930004 4.90756
B 186.93 0.0930054 4.89726
C 265.26 0.0929835 4.92

In fact, the main objective of this chapter is to analyze the tradeoff between the energy
efficiency and the deviation of the physical states. To intuitively analyze these two
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parts, the problem (3.13) can be reformulated as a new multi-optimization problem
with objective f c

1 and the reformulated objective f ′2 = f ω
2 + Γ · f v

3 with the weight
value Γ.

3.5.2 Comparisons with Single-objective Optimization under Cyber and
Physical Failure Situations

Due to the high interdependence of components in CPPS, potential failures in both
communication network and the Microgrid in the extreme events can damage the
operation of the entire system. As a result, this subsection conducts a comparative
analysis between two algorithm solutions addressing Eqn. (3.13). The first solution,
strategy D, is solved by the proposed AW-MRAS for the reformulated multi-objective
optimization, targeting objectives f c

1 and f ′2. It is a non-dominated solution chosen
from the Pareto optimal set, specifically selected for its maximal achievement in
objective f1. In contrast, the second solution, strategy E, is solved by MRAS for a
single-objective optimization for optimizing QoS index ( f c

1 ). In the subsequent
sections, techniques E and D are analyzed under cyber and physical failure scenarios,
respectively.

3.5.2.1 Senario I (Cyber Contingency):

In a real-world scenario, external attackers can utilize exposed cyber vulnerabilities as
targets to induce breakage in Microgrid in a cross-layer fashion. Hence, the
effectiveness of the proposed strategy under cyber contingency is evaluated for the
test system. Initially, the hierarchical control for the CPPS structure in Fig. 3.5 relies on
sufficient bandwidth resource. At t = 1 s, malicious attackers send large number of
invalid or illegitimate data packages via the communication network; as a result, D2D
communication links between DG 1 and DG 2, and DG 1 and DG 3 are interrupted.
During 1s ≤ t ≤ 1.2s, a 1.5kW and -1kVar load is plugged in bus 3. In this case, a set of
Pareto optimal solutions is generated by the proposed AW-MRAS algorithm, wherein
the optimal strategy D with the maximal objective f1 (i.e., energy efficiency) is
selected. Comparatively, the optimal strategy E is obtained by the MRAS algorithm
for the single optimization problem only considering the energy efficiency. The
variations of the Microgrid with strategy D and strategy E are shown in Fig. 3.6,
respectively.

The simulation results reveal that the proposed optimal strategy D outperforms the
strategy E in frequency and voltage deviation, even though its energy efficiency is
slightly compromised. Specifically, in the case with the strategy D, the observed
frequency regulation and voltage regulation improvements are 13.74% (0.0041440%/
0.003
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6473%−1) and 4.57% (4.3198%/4.1310%−1) compared with the strategy E,
respectively. Clearly, the output frequency and voltage of each DG reach to the
reference value and keep close to each other under the strategy D in a shorter time,
compared with these variations under the strategy E. In addition, considering QoS
index, in the case with strategy D, the energy efficiency decrease is 0.34% compared
with the strategy E. That is, the strategy D can effectively mitigate the deviation of
physical states with limited communication resources, while maintaining satisfactory
communication QoS. Comparatively, even though the optimal strategy E has the
optimal energy efficiency, it cannot eliminate the deviation of the physical states. In
conclusion, optimal strategy D is more suitable to be selected by operators during
such a failure situation. It concludes that, within the context of our proposed
multi-objective optimization framework, the solved strategy D offers a better trade-off
between physical-layer stability and communication QoS compared to strategies E
that focus solely on QoS under the cyber contingency scenario.

3.5.2.2 Scenario II (Power Emergency):

Extreme events might cause damage to transmission and distribution lines. Hence,
the effectiveness of the proposed strategy under physical emergency is evaluated for
the test system. From t = 0.5 s to 0.7 s, a 15kW and -10kVar load is plugged in bus 27
and the remaining loads in other buses are maintained. In this case, the Pareto optimal
set can be obtained by our proposed AW-MARS algorithm, then the optimal strategy
D corresponding to the maximal f c

1 can be selected in the Pareto set. Comparatively,
the optimal strategy E is computed by the MRAS algorithm for the single
optimization problem only considering the energy efficiency.

The variations of Microgrid with the optimal strategy D and the strategy E are shown
in Fig. 3.7, respectively. The simulation results reveal that proposed strategy D has a
better performance in frequency and voltage deviation, compared with strategy b,
even though its energy efficiency is slightly compromised.

More specifically, in the case with the optimal strategy D, the observed frequency
regulation and voltage regulation improvements are 6.23% (0.012369%/
0.011644%−1) and 3.29% (3.9980%/3.8707%−1) compared with the strategy E,
respectively. In addition, the strategy D reduce the energy efficiency by 0.78%
compared with strategy E. Despite the fact that the strategy E has ideal energy
efficiency, it has limited frequency and voltage regulation effectiveness. Overall,
strategy D, as identified by the proposed multi-objective optimization framework,
offers a more balanced trade-off between system stability and energy efficiency
compared to strategies that optimize a single criterion, and is therefore the preferred
choice for operators under physical emergency conditions.
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FIGURE 3.6: D2D throughput and microgrid Variations: (a)-(b) D2D throughput
(Kb/s), (c)-(d) frequency (Hz), (e)-(f) active power (p.u.), and (g)-(h) voltage (V) under
Strategy D and Strategy E, respectively in Scenario I.

3.5.3 Comparison with State-of-the-Art Multi-objective Algorithms

To validate the performance of the proposed AW-algorithm, we select the four
multiobjective algorithms, namely, NSGA-II, NSGA-III [114], SPEA2, and MOPSO to
compare with the proposed AW-MRAS algorithm. Each of them has run 30 time
independently under the two scenarios to mitigate the impact of uncertainties. During
each iteration, the number of generation samples is |S|=100, and the maximum
number of generations is set as 10000. First, nondominated solutions are shown by the
five compared algorithms. Then, the generational distance (GD), the hypervolume
ratio (HV) and inverted generational distance (IGD) [115] are utilized to evaluate the
convergency, diversity and proximity of the obtained solutions, respectively.



3.5. Simulation Results and Analysis 59

Throughput (Kb/s) (a) Throughput (Kb/s) (b)

Frequency (Hz) (c) Frequency (Hz) (d)

Active power (p.u.) (e) Active power (p.u.) (f)

Voltage (V) (g) Voltage (V) (h)

FIGURE 3.7: D2D throughput and microgrid Variations: (a)-(b) D2D throughput
(Kb/s), (c)-(d) frequency (Hz), (e)-(f) active power (p.u.), and (g)-(h) voltage (V) under
Strategy D and Strategy E, respectively in Scenario II.

The Pareto results for these algorithms are shown in Fig. 3.8. Note that the proposed
CPPS model is close to a realistic system, so it is difficult to obtain the true Pareto
front. In this case, the nondominated solutions found by the five compared methods
are viewed as the near Pareto set. This approximate approach to find nondominated
solutions refers to [116], which is marked in Fig. 3.8.

It concludes that the proposed AW-MRAS algorithm can obtain most of the Pareto
solutions under these two scenarios with the same times of iterations, even though the
diversity of generation samples of AW-MRAS algorithm is not ideal under scenario I.

The GD, HV and IGD results obtained by the five algorithms after 30 independent
runs under the two scenarios are illustrated in Fig. 3.9 (a) and Fig. 3.9 (b), respectively.
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FIGURE 3.8: Pareto results of the compared algorithms under the reformulated objec-
tives f c

1 and f ′2( f ω
2 + Γ · f v

3 ), tested in Scenario I (Cyber Contingency) and Scenario II
(Physical Emergency)

The trend shows that these algorithms can converge quickly according to these metric
values except for MOPSO.

Note that extreme events are unpredictable and destructive, so it seems that purely
relying on the allocation strategy is not enough for regulating the deviation of
physical states. Even though these deviations induced by extreme events cannot be
entirely recovered, mitigating such deviations by adjusting the allocation strategy is
also significant. This is because the operators can take more urgent treatments during
the short period that the control approach still works.

3.6 Summary

This chapter presents a CPPS model developed to quantitatively assess the cross-layer
impacts of communication resource allocation strategies on deviations in physical
states. Based on this model, a joint multi-objective optimization problem is proposed
to derive the optimal D2D communication resource allocation strategy, with the
objectives of co-optimizing QoS and minimizing deviations in physical states. To
solve this optimization problem, the AW-MRAS algorithm is proposed, which
leverages the unique characteristics of the CPPS model to efficiently prune the search
space, thereby enhancing computational efficiency. Simulation results demonstrate
that the proposed D2D allocation strategy reduces frequency and voltage deviations
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FIGURE 3.9: Performance metrics: (a)-(b) present HV, (c)-(d) present GD, and (e)-(f)
present IGD for Scenario I (Cyber Contingency) and Scenario II (Physical Emergency),
respectively.

by 13.74% and 4.57%, respectively. In addition, the AW-MRAS algorithm
demonstrates superior performance compared to state-of-the-art heuristic
optimization algorithms, achieving an ideal solution quality in a reduced time. In
conclusion, the proposed D2D communication resource allocation strategy effectively
mitigates the degraded QoS disruptions and significantly minimizes frequency and
voltage deviations within CPPS. By co-optimizing QoS and physical state deviations,
the proposed strategy not only enhances the QoS but also ensures that physical
systems safe and secure operation. These findings highlight the potential of
integrating the proposed communication resource allocation techniques into CPPSs to
improve system resilience and overall operational performance.
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Chapter 4

A Vulnerability Assessment of
Economic Risks in
Carbon-Electricity Integrated
Trading Systems

4.1 Introduction

The integration of information systems in electricity markets significantly enhances
operational efficiency and facilitates market adjustments. However, this integration
introduces cybersecurity vulnerabilities that can be exploited by profit-oriented FDIAs
to manipulate energy pricing for arbitrage. In addition, in extreme weather, such as
the 2019 Texas event, deregulation was implemented to encourage competition in
response to a sharp rise in electricity demand, thereby inadvertently creating an
unconstrained price gap. In real-world conditions, although extreme weather events
are quite infrequent, FDIAs can replicate their impacts on power states by injecting
attack vectors. Consequently, this incident underscores the necessity to address
potential arbitrage risks within the electricity market.

4.1.1 Overview

Literature [36] proposes the profit-oriented FDIA model, which demonstrates that
attackers can make profits by using a buy-low and sell-high LMP strategy in the DA
and RT market, respectively. More specifically, adversaries can utilize FDIAs to
manipulate LMP in RT market, creating the price gap (i.e., the difference between RT
and DA LMP) on a specific virtual transaction. The profit function is then designed as
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the price gap per unit trading volume. To clearly explore the attack profits, literature
[37] has been conducted to quantify the relationship between the attack vector and the
sensitivity of LMP calculation. Furthermore, many research refine the models of the
profit function, encompassing features and additional information, such as limited
resources due to compromised sensors, as detailed in literature [38]. Literature [39]
extends the analysis by incorporating RT market clearing processes. This approach
enables the anticipation of market clearing outcomes and facilitates the exploration of
the interactions among market participants.

As discussed above, the final arbitrage by attackers is settled by the ISOs in
two-settlement markets, which is determined by both the transaction volume and
price gap. Our previous work initially investigated adjustable transaction volumes in
profit-oriented FDIAs, executing multiple virtual transactions compared to single
virtual transactions. This approach allowed for a more comprehensive analysis of the
threat posed by attackers. In contrast to transaction volumes, which are actively
manipulated by attackers, price gaps are calculated by system operators based on
economic dispatch in real-time power states. The LMP calculation mechanism and the
accuracy of power states can impact the LMP gap, consequently making it complex to
analyze.

As global focus on environmental protection grows, carbon trading mechanisms have
been incorporated into traditional electricity markets and LMP calculation
mechanisms. Over the past decade, the Paris Agreement has been globally adopted,
with its focus on controlling carbon emissions to mitigate the impacts of climate
change. Notably, in 2021, the U.S. government issued a target of zero-carbon
electricity by 2025 [117]. These instances underscore a marked shift in the LMP
calculation: transitioning from being solely based on fossil fuel costs in the generation
system to accounting for charges tied to carbon emissions exceedances, also known as
carbon-aware LMP. In recent years, carbon-aware LMP mechanisms have been widely
discussed to promote both low-carbon and economic operations. The research
presented in [41, 42] incorporates the carbon emission cost factors into the economic
dispatch problems, treating these as either emission constraints or objective functions.
Based on the cap-and-trade principles of the carbon trading market, [19] incorporates
carbon emissions within an inequality constraint. The literature [43] also presents a
carbon-aware optimal power flow (COPF) model, crafted to derive an operational
service pricing framework that encompasses both the Nodal Usage Charge (NUC)
and the nodal carbon tax allowance price.

While many existing studies have explored the profit-oriented FDIAs and
carbon-aware LMP in the integrated C&E market separately, the security challenges
associated with carbon cost considerations remain unaddressed. Integrating carbon
emission costs has significantly increased the complexity of LMP calculations,
introducing additional constraints for managing carbon cost exceedances and
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rendering traditional node vulnerability assessments ineffective. In addition, attackers
can exploit these complexities by injecting false data to manipulate LMP calculations
[118], disrupt carbon market transactions, and compromise the fairness and security
of traditional single-market systems.

4.1.2 Contribution

To address this problem, this chapter conducts the first investigation into the security
challenges of the integrated carbon-electricity market. This research emphasizes the
novel arbitrage opportunities arising from carbon cost considerations and introduces
an advanced framework for assessing the economic risks associated with each power
node. This framework provides a foundation for developing robust defense strategies
against these emerging threats. To address these problems. The main contributions in
this chapter are as follows:

• This chapter proposes an attack model based on the Stackelberg game, which is
the first to analyse the threats introduced by carbon emissions in the integrated
C&E market, exploring arbitrage opportunities through FDIAs and
multi-transaction strategies.

• Under this model, an H-MADDPG algorithm is designed to optimize the attack
strategies, leveraging pre-training to enhance convergence and computational
efficiency.

• Building upon the previously identified most threatening attack strategy, a novel
vulnerability assessment framework is proposed to analyze economic risks
induced by carbon emission considerations. The framework is demonstrated on
a PJM test system, revealing an up to 201.61 ($/MWh) on a certain transmission
line in the PJM test system, compared with the traditional risks assessment only
considering electricity costs.

4.1.3 Structure of Chapter

The remainder of this chapter is organized as follows: Section 4.2 illustrates the
profit-oriented FDIA and its properties. Section 4.3 illustrates the Stackelberg-based
FDIA model and its components: multi-transaction strategies, and LMP with carbon
considerations. Section 4.4 presents the optimization of the proposed
Stackelberg-Game-Based attack using hierarchical multi-agent reinforcement learning,
covering the LMP pre-training and constrained action search. Section 4.5 analyzes
economic vulnerability analysis of transmission line under optimal attack strategy.
Section 4.6 provides simulation results, including the performance of the proposed
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attack strategy, validation of the H-MADDPG algorithm and evaluation of arbitrage
opportunities. Finally, Section 4.7 concludes the chapter with key findings.

4.2 Attack Model

In the background section 2.2.3, the stealthiness of FDIA and its impact on PSSE are
briefly discussed. This section briefly introduces the profit-oriented FDIA and its
properties.

Attackers can exploit electricity markets by executing arbitrage attacks and FDIAs.
Specifically, arbitrage attacks enable attackers to sell electricity at high prices and
purchase it at low prices, as shown in Fig. 4.1 (a). Moreover, the integration of FDIAs
allows attackers to falsify LMP predictions, resulting in additional and unpredictable
profits [119], as depicted in Fig. 4.1 (b). Under normal conditions, LMPs in DA and RT
markets are predictable. However, attackers can strategically manipulate estimated
power states through FDIAs. Such manipulation can induce line congestion, distort
LMPs, and widen the price gap between DA and RT markets, ultimately increasing
the attack profits.

(a) (b)

FIGURE 4.1: An example of attacker’s participation in transactions between A and B:
(a) Transaction flow and (b) Profit extraction.

The process of this attack is summarised as [58]:

1. Engage in virtual power transactions, purchasing and selling a certain amount of virtual
power va at bus i and j at price λDA

i and λDA
j , respectively.

2. Launch FDIA to the measurements and then manipulate the nodal LMPs in the RT market.

3. Buy and sell the same amount power va on the bus j and i at price λRT
j and λRT

i ,
respectively.
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The attack profits can be given as

RPro f it =
(︂

λRT
i − λRT

j + λDA
j − λDA

i

)︂
· va. (4.1)

4.3 Stackelberg-Game-based FDIA Model with
Multi-transaction and Carbon-Aware Locational Marginal
Price

A Stackelberg-based Profit-oriented FDIA is proposed to target the integrated the
C&E trading system. It comprises two key components: (i) an attack model that
formulates a profitable attack strategy by leveraging FDIAs and multi-transaction
arbitrage, and (ii) an LMP calculator embedded within the optimal power flow
function in EMS, which considers carbon emission costs.

4.3.1 Stackelberg-Game-Based FDIA Model

FIGURE 4.2: Leader-Follower stackelberg game.
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This Stackelberg game is illustrated in Fig. 4.2. Attackers (i.e., leaders) maximize
profits by optimizing their strategy, while system operators (i.e., followers) respond
by minimizing costs and simultaneously updating RT market LMPs. These updated
values are transmitted to attackers, facilitating iterative optimization in subsequent
stages.

In the first stage, attackers, acting as leaders, utilize power states sRT and LMP prices
λRT to execute actions a and va. Here, a represents false data injected to system states,
while va corresponds to purchased power volume. These actions are processed by the
environment to calculate rewards rA = U (·), defined as the product of the purchased
power volume va and the price gap λRT − λDA by executing FDIAs a. The computed
rewards are then used by attackers to adjust their strategies and determine
subsequent actions.

In contrast, in the second stage, system operators, acting as followers, receive the false
data a and power states sRT. Operators aim to minimize operational costs by solving
an economic dispatch optimization problem G(·). The actions, including the RT LMP
λRT, the generation output adjustment ∆Pgi , and carbon emission right ∆Eco, yield
rewards rB = G(·) through interaction with the environment. These rewards guide
operators in refining their actions to maintain system stability and operational
efficiency.

The Stackelberg equilibrium is defined as follows.

(xA∗, xB∗) = arg max
(xA,xB)∈ΩA×ΩB

U (xA, xB∗)

s.t. xB∗ = arg max
xB∗∈ΩB

L(xA∗, xB∗),

ΩA =
{︂

al , v̂RT
a,l , ∆vRT

a,l | (4.3a)− (4.3d)
}︂

,

ΩB =
{︂

∆Pgi , ∆Eco, λRT
i | (4.4a)− (4.4g)

}︂
.

(4.2)

4.3.2 Multi-Transaction FDIA Model

In this section, the DC state estimation is discussed since a full AC model is not
presently possible in the real world due to its complexity. Based on this, attackers can
make profits from two aspects: (i) by compromising a set of measuring devices and
manipulating corresponding measurements (i.e., FDIA) and (ii) by engaging in the
virtual transaction, wherein they strategically design both the volume of trade and the
selection of trading counterparties.

The attacker is assumed to have the following capabilities:

1. The attacker knows the underlying system model (i.e., network topology and power
measurements), trading model and price model.
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2. The attacker knows the estimated power states Pĝ and Pd̂ given by the RT market.

Contrasting with the conventional attack profit function in (4.1), which calculates the
profit from a single transaction between nodes i and j at a fixed trading amount va,
our proposed model extends this model to calculate the attack profits from multiple
transactions at adjustable trading amounts. Specifically, it aggregates the profits from
all the potential target transactions l ∈ L for the attack. In addition, it assumes that
attackers can adjust virtual demand and supply amounts in DA and RT markets,
represented by v̂DA

a and v̂RT
a , respectively. When v̂a > 0, it indicates attackers sell

power, whereas when v̂a < 0, they buy power. The attack profit is modeled as

max
a,v̂RT

a ,∆vRT
a ,λRT

U (a, v̂RT
a , ∆vRT

a , λRT) (4.3)

= ∑
lij∈L

λDA
i (−Til)vDA

a,l + λDA
j (−Tjl)vDA

a,l + λRT
i TilvRT

a,l + λRT
j TjlvRT

a,l

= (λDA)(−T)vDA
a + (λRT)TvRT

a

= (λRT − λDA)TvRT
a = (λRT − λDA)(Tv̂RT

a + T∆vRT
a )

= (λRT − λDA)(Tv̂RT
a + BKa)

s.t. T∆vRT
a − BKa = 0, (4.3a)

∥(I−HK)(FRT + a)∥2 ≤ ε, (4.3b)

Fmin
l − vRT

a ≤ 0, ∀l ∈ L, (4.3c)

vRT
a − Fmax

l ≤ 0, ∀l ∈ L. (4.3d)

where Bij = −1/Xij if i and j are connected and i ̸= j; Bii = ∑N
j=i,j ̸=i 1/Xij if i and j are

connected; otherwise, Bij = 0. BKa = Bx̂bad − Bx̂ = Bθ̂bad − Bθ̂ represents the
deviation in active power injection estimates caused by FDIA. Based on the
requirement of the market participant as discussed in 4.3.2.2, vDA

a = vRT
a . However,

owing to the capacity of FDIA to deceive system operators, leading them to make
biased estimations, there is a deviation ∆vRT

a = vRT
a − v̂RT

a between the settlement
trading volume of aT

RT the system operator and the real trading volume v̂RT
a executed

by the attacker. Note that the attack profit is settled by the system operator. The
attacker must comply with market regulations when buying and selling in both
markets according to Eqn. (4.1) with v̂RT

a = v̂DA
a . T is a incidence matrix where the

element Til represents the relationship between node i and line l. If line l starts at node
i and ends at node j, then Til = 1 and Tjl = −1. All other elements of T are 0.

4.3.2.1 Price Gap between DA and RT Market

In normal operational scenarios, both the DA LMP and RT LMP can be obtained
from (2.7), as discussed in Section 2.2.3.2. Based on accurate load forecasts and stable
DA operational conditions, the price gap tends to be sufficiently small to be ignored.
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This is mainly due to the secure and efficient dispatch mechanisms that prevent line
congestion. However, when attackers intervene, a significant price gap between the
DA and RT markets may arise. Specifically, attackers can induce state estimation
errors by injecting false data vectors, leading to artificial line congestion, which in turn
results in a considerable price gap.

4.3.2.2 Market Requirements for Virtual Bidding Mechanisms

Virtual bidding mechanisms are implemented in market operators, such as ISO-New
England, to enhance market competition and liquidity within the electricity markets.
Generally, market participants are not necessarily required to have actual generation
or electricity consumption. Consequently, if attackers purchase and sell a certain
amount of virtual power at bus i in the DA market, they are obligated to sell and
purchase an equivalent amount of virtual power at bus i in the RT market, to maintain
the stable operation of the power system.

4.3.3 LMP Calculation with Carbon Considerations

In this proposed framework, the attack vector a is injected into RT measurements to
compromise the accuracy of the economic dispatch process, thereby manipulating the
LMPs. Notably, the objective of the optimal economic dispatch in this section
incorporates carbon emission costs, with a comprehensive analysis ensuring
alignment with low-carbon system operation principles.

4.3.3.1 Problem Formulation

The carbon-aware LMP calculation models are presented in the following sections.

min
∆Pgi ,∆Eco

G(∆Pgi , ∆Eco) (4.4)

= ∑N
i=1 Ci(BKa + ∆Pgi + P̂gi) + It(∆Eco + Êco

) · (∆Eco + Êco
)

s.t. ∑N
i=1(∆Pgi + P̂gi)−∑N

i=1(P̂di) = 0, (4.4a)

∑N
i=1(ei(∆Pgi + P̂gi))− α ∑N

d=1(P̂dd)− (∆Eco + Êco
) = 0, (4.4b)

∆Pmin
gi
− ∆Pgi ≤ 0, ∀i ∈ N , (4.4c)

∆Pgi − ∆Pmax
gi
≤ 0, ∀i ∈ N , (4.4d)

σFmin
l − ∆Fl ≤ 0, ∀l ∈ L, (4.4e)

∆Fl − σFmax
l ≤ 0, ∀l ∈ L, (4.4f)

∆Eco + Êco − Emax
i ≤ 0 ∀i ∈ N , (4.4g)
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where ∆Pmax
gi

and ∆Pmin
gi

are usually chosen to be 0.1 MWh and -2 MWh respectively
[38]. Emax

i = CSFi P̂di is the carbon emission quota. Typically, the optimization problem
is reformulated as a Lagrangian function, with the resulting Lagrange multipliers
used to compute the LMP. While this section employs a reinforcement learning
approach rather than the Lagrangian method for problem-solving, the subsequent
analysis of nodal economic risks requires the computation of carbon-aware LMP
based on Lagrange multipliers. Therefore, this section introduces the Lagrangian
function to enable a comparative analysis of carbon-aware LMP and traditional LMP
according to Eqn. (2.9).

max
γ,ρ,µ−i ,µ+

i ,η,ζ,ιi
L(γ, ρ, µ−i , µ+

i , η, ζ, ιi) (4.5)

= ∑N
i=1 Ci(BKa + ∆Pgi + P̂gi)

+ It(∆Eco + Êco
) · (∆Eco + Êco

)

+ γ(∑N
i=1(P̂di)−∑N

i=1(∆Pgi + P̂gi))

+ ρ(∑N
i=1(ei(∆Pgi + P̂gi))− α ∑N

i=1(P̂di)

− (∆Eco + Êco
)) + ∑N

i=1 µ−i (∆Pmin
gi
− ∆Pgi)

+ ∑N
i=1 µ+

i (∆Pgi − ∆Pmax
gi

)

+ ∑L
l=1 ζl(σFmin

l − ∆Fl) + ∑L
l=1 ηl(∆Fl − σFmax

l )

+ ∑N
i=1 ιi(∆Eco + Êco −CSFi P̂di).

To satisfy the Karush-Kuhn-Tucker (KKT) conditions, it yields constraints as

∇∆Pgi
L(∆Pgi , ∆Eco, γ, ρ, µ−i , µ+

i , η, ζ) = 0, (4.5a)

∇∆EcoL(∆Pgi , ∆Eco, γ, ρ, µ−i , µ+
i , η, ζ) = 0, (4.5b)

µ−i (∆Pmin
gi
− ∆Pgi) = 0, µ−i ≥ 0, ∀i ∈ N , (4.5c)

µ+
i (∆Pgi − ∆Pmax

gi
) = 0, µ+

i ≥ 0, ∀i ∈ N , (4.5d)

ζl(σFmin
l − ∆Fl) = 0, ζl ≥ 0, ∀l(i, j) ∈ L, (4.5e)

ηl(∆Fl − σFmax
l ) = 0, ηl ≥ 0, ∀l(i, j) ∈ L, (4.5f)

ιi(∆Eco + Êco −CSFi P̂di) = 0, ιi ≥ 0, ∀i ∈ N , (4.5g)

where the constraints and can be derived from the Lagrangian function, which is as

∇∆Pgi
L = 2a∆Pgi + b− γ + ρ · ei − µ−i + µ+

i + ∑M
l GSFl−i

(︂
ηRT

l − ζRT
l

)︂
. (4.6)

∇∆Eco
i
L = 2κ∆Eco + 2κÊco − κEmin + Imin − ρ− ιiCSFi. (4.7)

Based on the previous equations, the carbon-aware LMP is

λRT
i = γRT −∑ GSFliη

RT
l + ∑ GSFliζ

RT
l − ρ · α− ιi ·CSFi, (4.8)
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where are ηRT, ζRT, ρ and α are derived from the lower-level economic dispatch
problem in (4.5). Compared to the Eqn. (2.9), an additional term −ρ · α− ιi ·CSFi is
included, which introduces complexities of the price gap.

4.3.3.2 Price of Carbon Emissions Trading

In economic theory, the electricity price would increase with the increased demand of
consumers with the constrained supply. Given the limited carbon emission rights, a
rise in the carbon price, corresponding to the growing demand for carbon emission
rights, can penalize high-emission users while promoting the users with low
emissions [43]. Without loss of generalization, the model for carbon emission pricing
can be given as

It =
Imax − Imin

Emax − Emin (∆Eco + Êco − Emin) + Imin

= κ(∆Eco + Êco − Emin) + Imin,
(4.9)

where κ denotes the coefficient, quantifying the relationship between changes in
carbon emission rights and corresponding changes in the carbon price in the specific
power system. When the carbon emission of the whole system does not exceed the
allocated limitation, the surplus emission rights can be introduced into the carbon
trading market. Consequently, the carbon emission right E is represented as a
negative value.

4.4 Optimization of Stackelberg-based FDIA model based on
Hierarchical Multi-agent deep deterministic policy
gradient algorithm

FIGURE 4.3: Hierarchical multi-agent deep deterministic policy gradient algorithm.
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To solve the Stackelberg game, H-MADDPG enables hierarchical agents, such as
leaders and followers, to focus on their roles while accounting for the strategies and
actions of other levels.

4.4.1 Mapping Stackelberg game to Markov Decision Process

The optimization process of interactions between attackers and system operators
follows MDP properties, mapping the Stackelberg game to an MDP framework with
two types of agents: the attackers as the leader agents and the system operators as
follower agents. The main elements of the agents are listed as follows.

• State: For the leader agent, the power states sRT = [Fl , P̂di , P̂gi , Êco
] and the RT LMP

are considered as the environment. The actual power states are observed by attackers,
while the RL LMPs are calculated by ISO and provided as the feedback to attackers.
Based on the above information, the attacker agent seeks the optimal action aA∗. For
the follower agent, ISO, can observes the power states and the injected false data from
the leader to determine the optimal action aB∗.

The states of the leader and the follower are denoted as sA = [sRT, cB] and
sB = [sRT, cA], respectively. sRT represents that environment state. cB = λRT represents
the received message for attackers from operators and cA = [a, v̂RT

a , ∆vRT
a ] represents

the message to attackers.

• Action: The actions of the leader and follower are a = [aA, aB], where aA ∈ ΩA and
aB ∈ ΩB.

• Reward: In RL, the action space is typically unconstrained and may include actions
that fail to meet certain constraints. However, in real-world power system
applications, the actions of attackers and operators must satisfy specific physical
constraints. To address this challenge effectively, the algorithm restricts actions in two
primary ways: by designing specific penalty functions and developing the
actor-network architectures in section 4.4.3. This section details the design of two
distinct reward functions for the agents. Each function incorporates a penalty function
to discourage out-of-bound actions by reducing their values, thereby guiding agents
toward high-value strategies within defined physical boundaries.

For a variable x, if the constraint f (x) is bounded by [xmin, xmax], the penalty function
is defined as ϕ(·) = ln |x−xmax|+|x−xmin|

(xmax−xmin)
. Similarly, when f (x) = 0 is required, the

penalty function is defined as ϕ′(·) = | f (x)|2.

The constraints in Eqn. (4.3a) and Eqn. (4.3b) are incorporated into the reward
function rA as penalty functions ϕA

1 and ϕA
2 to penalize violations of these constraints,

respectively. The constraints in Eqn. (4.3c) and Eqn. (4.3d) are directly enforced by
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applying restrictions to the action outputs of the leader’s actor-network, ensuring that
they satisfy these constraints, as detailed in Eqn. (4.17). The immediate reward
function for attackers is

rA
t = U (sA

t , aA
t )−ωA

a · ϕA
1 −ωA

b · ϕA
2 . (4.10)

The constraints in Eqn. (4.4c), (4.4d) and (4.4g) are implemented by applying
restrictions to the action outputs of the actor-network of the follower, as detailed in
Eqn. (4.22). Subsequently, the constraints in Eqn. (4.4a)-(4.4b) and (4.4e)-(4.4f) are
formulated as penalty functions and incorporated into the reward function,
respectively, which is defined as

rB
t = G(sB

t , aB
t )−ωB

a ϕB
a −ωB

b ϕB
b −ωB

e ϕB
e −ωB

f ϕB
f , (4.11)

where ωA and ωB are the penalty coefficients. If all constraints are satisfied, the leader
and follower agents can obtain actions that correspond to high-value rewards.

4.4.2 Supervised Pre-training for the Actor-Network of the Follower

Effective feature capture is crucial for RL algorithms. Pre-training, particularly using
supervised learning techniques, can improve the quality of feature extraction.
However, the lack of historical attack data limits the availability of labeled data for
supervised pre-training of the leader model. In contrast, the follower model is based
on the well-studied optimal economic dispatch problem in power systems. Existing
simulators can generate optimal dispatch solutions and calculate LMPs. These
outputs can be utilized to construct a pre-training database, enabling supervised
learning-based pre-training for the follower model. This section details the
pre-training process for the follower model, emphasizing its ability to leverage
pre-training datasets to improve performance. This enhanced performance
subsequently facilitates the training of the leader model through interactions.

4.4.2.1 Data Generation and Labeling

This subsection outlines the process of using the Matpower simulator to generate the
pre-training dataset, thereby pre-training the actor-network of the follower. The
pre-training dataset is constructed based on the output of the optimal power flow
function in Matpower simulator, defined as y = usim(sRT) = y = [∆Pg, ∆Eco, λRT].
Based on this, the input-output pairs for the dataset are defined as

D = {(sRT
t , yt)}

Npre
n=1. (4.12)
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Afterward, a neural network uB
pre(:; θB

u,pre) based on Long Short-Term Memory (LSTM)
is designed to predict the target vector ŷ, which is as

ŷt = uB
pre(s

RT
t ; θB

u,pre). (4.13)

4.4.2.2 Pre-training

The LSTM-based neural network uB
pre(:; θB

pre) is trained by minimizing the error
between predicted ŷi and actual output yi using mean squared error (MSE) loss
fucntion:

Lpre(θ
B
pre) =

1
Npre

Npre

∑
i=1

(ŷi − yi)
2. (4.14)

To update the model parameters θpre, stochastic gradient descent (SGD) is applied as
θB

pre,t = θB
pre,t − ηpre∇θB

pre,t
Lpre(θB

pre,t), where ηpre is the learning rate.

In multi-agent systems, where the actions of each agent are influenced by the
decisions of others, the rapid learning of one agent can accelerate the training time to
achieve the optimal policy. As the follower agent quickly finds an optimal action from
the pre-training in the initial training as aB

ini = uB
pre(:; θB

pre), the leader can adjust their
actions by referencing their behavior, creating a feedback mechanism that promotes
faster overall learning.

4.4.3 H-MADDPG with Constrained Action Search

H-MADDPG is employed to address the Stackelberg game problem proposed in
Section 4.3.1 due to its two primary advantages: 1) its capability to optimize policies
within continuous action spaces, and 2) its effectiveness in managing interactions
between agents with limited information about each other. The fully distributed
characteristics of MADDPG are particularly well-suited for scenarios involving
attackers and operators, where these agents can independently optimize their policy
function based on partial observations.

4.4.3.1 Attacker Architecture

The objective of attackers is to optimize the policy function µA
t to maximize the final

profits:

JA
t (θ

A
µ,t) = EsA

t ∼µA
t ,aA

t ∼µA
t
[QA

t (s
A
t , aA

t )] (4.15)

= [QA
t (s

RT
t , λRT

t , at, v̂RT
a,t , ∆vRT

a,t )].
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• Training of Actor-Network: A Transformer-based neural network parameterized by
θA

µ,t to capture the attackers’ actions is defined as
aA

t = uA
t (s

A
t ; θA

u,t) = Transformer(sA
t ; θA

u,t), which is updated using the Monte-Carlo
method as

∇θA
µ,t

JA
t (θ

A
µ,t) ≈

1
N ∑n∈N{∇θA

µ,t
QA

t (s
A
t , aA

t )}. (4.16)

where the parameter θA
µ,t is updated by the Adam optimizer

θA
µ,t = θA

µ,t + ηA∇θA
µ,t

JA
t (µ

A
t ).

Targeted Adjustment of Action Range: The intermediate output of actor-network is
hA ∈ RB×dK×1, where dK = 3L and each element is denoted as hA[b, k, 0]. According to
Eqn. (4.3d) and (4.3c), hA[:, k, 0] is contained within [Fmin

k , Fmax
k ], where

k ∈ (L + 1 : 2L). To implement this constraint, the layer normalization Norm(·) is
used to normalize the ĥ

A
[b, k, 0] = Norm(hA[b, :, 0])k=L+1:2L. Next, the tanh activation

function is used to constrain the output ĥ
A
[:, k, 0] within [−1, 1]. Subsequently, a linear

transformation is applied to map the ĥ
A
[b, k, 0] to [Fmin

i , Fmax
i ] by the following

function:

aA[b, k, 0] =
(Fmax

k − Fmin
k )

2
(tanh(ĥ

A
[b, k, 0]) + 1) + Fmin

k , ∀k ∈ L. (4.17)

• Training of Critic-Network: The critic network is trained by minimizing MSE in
estimating the Q-function QA

t :

LA(θA
q,t) =

1
N ∑n∈N(r

A
t −QA

t (s
A
t , aA

t ; θA
q,t))

2, (4.18)

where QA
t (s

A
t , aA

t ; θA
q,t) = LSTM(sA

t ⊕ aA
t ; θA

q,t). rA
t is updated from the Eqn. (4.10). and

θA
q is updated as

θA
q ← θA

q − α∇θA
q

LA(θA
q ). (4.19)

4.4.3.2 Independent System Operator Architecture

The objective of system operators is to optimize the policy function µB
t to minimize the

optimal economic dispatching in Eqn. (4.4):

JB
t (θ

B
µ,t) = ERB

t ∼µB
t ,aB

t ∼µB
t
[QB

t (s
B
t , aB

t )−
⃦⃦⃦

aB
t − uB

pre(s
B
t ; θB

pre)
⃦⃦⃦2
] (4.20)

= [QB
t (s

RT
t , at, v̂RT

a,t , ∆vRT
a,t , ∆Pgt , ∆Eco

t , λRT
t )−

⃦⃦⃦
aB

t − uB
pre(s

B
t ; θB

pre)
⃦⃦⃦2
].

• Training of Actor-Network: The actor-network is modeled as a Transformer
parameterized by θB

µ,t to capture the operators’ actions as
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aB
t = uB

t (s
B
t ; θB

u,t) = Transformer(sB
t ; θB

u,t), which is updated as:

∇θB
µ,t

JB
t (θ

B
µ,t) ≈

1
N ∑n∈N{∇θB

µ,t
QB

t (s
B
t , aB

t )}, (4.21)

where the parameter θB
µ,t is updated by θB

µ,t = θB
µ,t + ηB∇θB

µ,t
JB
t (µ

B
t ).

Targeted Adjustment of Action Range: hB ∈ RB×d′K×1, where d′K = 2N + 1 and each
element is denoted as hB[b, k, 0]. According to Eqn. (4.4c) and (4.4d), hB[b, k, 0] is
contained within [∆Pmin

gk
, ∆Pmax

gk
], where k ∈ (1 : N). Then, hB[b, N + 1, 0] is

constrained within [0, Emax
i − Êco

] where i ∈ N according to the constraint in
Eqn. (4.4g). Norm(·) is used to normalize the ĥ

B
[b, k, 0] = Norm(hB[b, :, 0])k=1:N+1.

Next, a linear transformation is applied to map the ĥ
B
[b, k, 0] to satisfy these

constraints using the formula:

aB[b, k, 0] =
(∆Pmax

gk
− ∆Pmin

gk
)

2
(tanh(ĥ

B
[b, k, 0]) + 1) + ∆Pmin

gk
, ∀k ∈ L. (4.22)

aB[b, N + 1, 0] =
Eco − Emax,i

2
(tanh(ĥ

B
[b, N + 1, 0]) + 1), ∀i ∈ N .

• Training of Critic-Network: The critic network is trained by minimizing MSE in
estimating the Q-function QB

t :

LB(θ
qB

t ) =
1
N ∑n∈N(r

B
t −QB

t (s
B
t , aB

t ))
2, (4.23)

where QB
t (s

B
t , aB

t ; θB
q,t) = LSTM(sB

t ⊕ aB
t ; θB

q,t). rB
t is updated from the Eqn. (4.11). and θB

q

is updated as
θB

q ← θB
q − β∇θB

q
LB(θB

q ). (4.24)

4.5 Economic Vulnerability Assessment of Transmission Line

Traditional FDIA requires certain conditions to be stealthy for BDD. Moreover, to
induce errors in state estimation that could lead to incorrect operational commands,
such as load shedding, more stringent conditions are necessary, such as a sufficiently
large magnitude of the attack. However, considering scenarios where attackers derive
profit-oriented FDIAs, even minimal-intensity FDIAs that sufficiently relax congestion
in transmission lines can be profitable. Consequently, profit-oriented FDIA poses a
greater risk. Particularly after the introduction of carbon emission constraints, the
congestion caused by these constraints could further expand the manipulation scope
for attackers, thereby increasing the feasibility and potential benefits.

This section discusses the economic risk of each transmission line l while attackers
engage in RL-market trading between nodes i and j. The risk analysis introduces, for



78
Chapter 4. A Vulnerability Assessment of Economic Risks in Carbon-Electricity

Integrated Trading Systems

the first time, the risks caused by carbon emission constraints, which are more
applicable to a future low-carbon-oriented societal framework.

4.5.1 Vulnerability Analysis under Attack Profit Model

A model for market traders to profit from the DA market and the RT market on the
trading between bus i and j is formulated as

Payoffl = PayoffRT
l − PayoffDA

l (4.25)

= (λRT
i − λRT

j )− (λDA
i − λDA

j ) · vRT
a

= ∑l∈L η+
l (GSFl,j −GSFl,i) + ∑l∈L ζ−l (GSFl,i −GSFl,j)

− (ιiCSFi − ιjCSFj)− (λDA
i − λDA

j ) · vRT
a .

Given that the subsequent discussion focuses on the sign, vRT
a is set to 1 for

simplification. Herein, the payoff is always positive if the subsequent three conditions
are satisfied [120]:

λDA
i − λDA

j < 0, (4.25a)

Fl < Fl
max, ∀l ∈

{︁
GSFl,j −GSFl,i < 0

}︁
, (4.25b)

Fl > Fl
min, ∀l ∈

{︁
GSFl,i −GSFl,j < 0

}︁
, (4.25c)

Êco
< CSFi−∆Eco, ∀i ∈ N . (4.25d)

Specifically, when GSFl,j −GSFl,i < 0, if Fl,t > Fmin
l , the constraint Eqn. (4.5e) is slack.

Therefore, η+
l is set to zero, and ∑l∈L η+

l (GSFl,j −GSFl,i) ≥ 0. Similarly,

∑l∈L ζ−l
(︁
GSFl,i −GSFl,j

)︁
≥ 0. In addition, ιi = 0 while Êco

< CSFi−∆Eco. Hence, the
traders earn a positive profit from markets.

4.5.2 Vulnerability Analysis under Attack Profit Model with FDIAs

In addition to meeting the conditions specified in Eqn. (4.25a)-(4.25c) to conduct
profits via virtual bidding in markets, attackers can also gain more profits than
ordinary traders by injecting false data. This manipulation leads to a differential in
payoff, which is expressed as
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Payoffl = PayoffRT
l,att − PayoffRT

l

= (λRT
i,att − λRT

j,att)− (λRT
i − λRT

j )

= Σl∈L(η
+
l,att − η+

l )(GSFl,j −GSFl,i)

+ Σl∈L(ζ
−
l,att − ζ−l )(GSFl,i −GSFl,j)

+ (−ιi,att + ιi)CSFi + (ιj,att − ιj)CSFj.

(4.26)

Here, the discussion is restricted to the case where GSFl,j −GSFl,i < 0, under which
η+

l,att = 0 and ιi,att = 0. To ensure Eqn. (4.26) is always positive, there are three cases: 1)
ζ−l,att = ζ−l = 0 and η+

l > 0; 2) ζ−l,att > ζ−l > 0; 3) ζ−l,att > 0 and ζ−l = 0.

Case 2 requires that the constraint in Eqn. (4.5e) is tight both with FDIAs and without
FDIAs. Furthermore, these constraints must be even tighter when under attack.
However, effectively implementing such measures in real-time scenarios proves
challenging. Case 3 requires that the originally tight constraint in Eqn. (4.5e) is relaxed
subject to FDIAs. Hence, if GSFl,j −GSFl,i < 0, the FDIA necessitates relaxing
Eqn. (4.5e) to ensure a positive payoff. Similarly, when GSFl,j −GSFl,i > 0, the FDIA
requires the relaxation of Eqn. (4.5f) to ensure a positive payoff.

In addition, if the following conditions are satisfied, the constraints caused by carbon
emissions are always positive: 1) ιj,att = ιj = 0 and ιi > 0; 2) ιj,att > ιj > 0; 3)
ιj,att > 0 and ιj = 0. In practice, both case 1 and case 2 necessitate the constraint in
Eqn. (4.5g) for j to be tight and relaxed, respectively, both with and without the FDIAs.
However, the profits from case 1 are minimal, and case 2 requires a stronger tightness
post-attack, which is challenging to achieve. Therefore, case 3 is the preferred
condition for attackers.

To ensure that attackers gain benefits, the following constraints, based on
Eqns. (4.25a)–(4.25d), need to be satisfied:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(4.25a), (4.25d)
Fl > Fmin

l and Fl = Fmin
l , ∀l ∈

{︁
GSFl,j −GSFl,i < 0

}︁
,

Fl < Fmax
l and Fl = Fmax

l , ∀l ∈
{︁

GSFl,j −GSFl,i > 0
}︁

,
Fl,att < Fmax

l ,
Fl,att > Fmin

l .

(4.27)

4.6 Simulation Results and Analysis

The proposed multi-transaction profit-oriented FDIA is tested on a modified version
of PJM 5-bus system. All simulations are conducted using MATLAB 2022 and Python
on a PC with an Intel Core i7-10750H CPU (2.60 GHz) and 32 GB of RAM.
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The attack profits of various strategies are analyzed and compared under two
scenarios: with and without consideration of carbon emissions. In addition, the unit
attack profit for each node is analysed to guide the vulnerability assessment for
defenders.

4.6.1 System Setup

FIGURE 4.4: The modified version of PJM 5-bus test system.

The system parameters and topology of the PJM 5-bus system are detailed in [121]. To
facilitate an intuitive comparison of the carbon allocation constraints for each bus, one
generator was moved from bus 2 to bus 3. In addition, the load capacities for buses 2,
3, and 4 were configured in both the DA and RT markets in Table 4.1, and the limits of
the generation capacity were specified for each plant.

TABLE 4.1: Load values for RT and DA markets at different times.

Time (t) Market Bus 2 (MW) Bus 3 (MW) Bus 4 (MW)
t = 5h RT 2.2308 2.2308 3.0308

DA 2.1808 2.1808 2.9808
t = 10h RT 3.0516 3.0516 3.8516

DA 3.0016 3.0016 3.8016
t = 16h RT 3.0070 3.0070 3.8070

DA 2.9570 2.9570 3.7570

4.6.2 Validation of the H-MADDPG algorithm with Supervised
pre-training

The proposed algorithm is investigated on the Modified version of PJM test system
with the actual load profile of NYISO [122] for January 2023 with 15-minute time
intervals. As shown in Fig. 4.5, the proposed algorithm significantly improves
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performance in two aspects: the quality of the rewards and the efficiency of training
time.

Hyperparameters Configurations: The proposed Actor-Critic model utilizes a
Transformer-based Actor-network and an LSTM-based Critic-network as detailed in
Table 4.2. The model is trained using mini-batches of 64 instances. The Actor-network
employs 6 Transformer encoder layers with 2 attention heads, while the
Critic-network uses an LSTM architecture with a hidden dimension of 128. The model
is trained using mini-batches of 64 instances and conducted over 60 epochs, with each
epoch comprising 40960 instances.

TABLE 4.2: Hyperparameters Configurations.

Hyperparameters Value Hyperparameters Value

Batch size 64 No. of epochs 60

Learning rate 1e-4 Instances per epoch 40,960

Transformer-based Actor Network

No. of encoder layers 6 No. of attention heads 2

Optimizer Adam Hidden dimension 128

LSTM-based Critic Network

Hidden dimension 128 Optimizer Adam

In the multi-agent system modeled as a Stackelberg games, the independent objective
functions of the leader and follower introduce challenges in identifying equilibrium
points. The iterative updating of actions by both agents depends on the responses of
the counterpart, adding complexity to the interaction and exploration of the solution
space. Within this framework, the follower model integrates both discrete and
continuous feature learning, which can pose significant challenges when performance
is not ideal. These limitations in the follower model significantly impede the
exploration capabilities of the attacker with the interactions. Pre-training the follower
model effectively enhances its initial performance, thereby improving the leader’s
ability to navigate the solution space, as shown in Fig. 4.5. This enhancement enables
the leader to communicate precise, real-time messages to the follower model,
significantly accelerating the convergence rate of the entire system model.

4.6.3 Comparison of Our Proposed Attack Strategy with Other Strategies
in Carbon and Non-Carbon Scenarios

This section presents a comparative analysis of the proposed multi-transaction and
carbon-aware FDIA strategy against other attack strategies, including the
multi-transaction arbitrage, the single-transaction FDIA and the single-transaction
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FIGURE 4.5: Validation curves.

arbitrage under two scenarios: Scenario I (with carbon emission considerations) and
Scenario II (without carbon emission considerations). The features of each attack
strategy are detailed in Table 4.3.

TABLE 4.3: Features of various attack strategies.

Attack Strategy Multi-Transaction FDIA
Proposed Strategy (A) + +

Multi-Transaction Arbitrage (B) + -
Single-Transaction FDIA (C) - +

Single-Transaction Arbitrage (D) - -

In both scenarios, Strategy A consistently outperforms Strategies B, C, and D,
especially as load increases. This is analyzed from three aspects.

4.6.3.1 Impact of Transaction Types (Multi-transaction or Single-transaction)

Multi-transaction strategies (A and B) allow attackers to engage in multiple
transactions, fully exploiting price gaps across the market. For example, Strategy A
outperforms Strategy C by 2.06× 104$ with carbon costs and 1.13× 104$ without
carbon costs at time step 6h, indicating that participating in multiple transactions
significantly increases profit potential.

4.6.3.2 Impact of FDIA

The introduction of FDIA allows attackers to further exploit market vulnerabilities by
manipulating power states, which leads to more drastic price fluctuations and greater
arbitrage opportunities. As a result, Strategy A exceeds Strategy B by 4.78× 104$ and
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FIGURE 4.6: Comparison of various strategies in scenario I (a) and II (b).

1.97× 104$ with carbon costs and without carbon costs at time step 6h, respectively. It
shows that FDIA expands the space for price manipulation, thereby increasing profits.

4.6.4 Arbitrage Opportunities induced by Carbon Emission Costs

As illustrated in Fig. 4.6, attackers can achieve higher profits with carbon emission
costs compared to without such carbon costs. This section provides a detailed analysis
of the arbitrage opportunities arising from carbon emission costs under two scenarios:
with and without carbon emissions considerations.

4.6.4.1 Arbitrage Opportunities in Scenario I

The LMPs for each bus in the DA and RT market with carbon cost considerations are
presented in Fig. 4.7 (a), along with real-time LMP calculation parameters at
three-time points (t = 5 10 and 16) in Table 4.4. To analyze the DA and RT price gap
induced by attackers under different loads, the LMPs at three time points (t = 5, 10,
and 16) were compared, which are illustrated in Fig. 4.9.
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FIGURE 4.7: Comparison of LMPs in scenario I (a) and II (b).

In the DA market at t = 5, congestion on transmission line 1 results in a significant
increase in the LMP at Bus 2. Conversely, in the RT market, the relaxation of this
constraint, with only the carbon constraints remaining strict, which results in
consistent LMPs across all buses. At t = 10, congestions on both transmission line 1
and the carbon constraint at Bus 3 raise LMPs in the DA market, while the relaxation
of these constraints in the RT market reduces the LMP at Bus 2 and increases it at Bus
3, thereby creating arbitrage opportunities. By t = 16, congestion on transmission lines
1 and 6, along with the carbon constraint at Bus 3, elevates LMPs in the DA market,
whereas the relaxation of line 6 in the RT market induces an LMP increase at Bus 2.

4.6.4.2 Arbitrage Opportunities in Scenario II

The LMPs for each bus in both DA and RT markets under the proposed attack
strategy are shown in Fig. 4.7 (b), along with real-time LMP calculation parameters at
two-time points (t = 5 and 10) in Table 4.5. At t = 5h, in the DA market, transmission
lines 1 and 6 are congested. The attacker exploits this by injecting false data,
misleading operators into perceiving these congested lines as relaxed, thereby creating
arbitrage opportunities. At t = 10h, the attacker relaxes the previously congested line
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TABLE 4.4: LMP comparisons between DA and RT markets in scenario I.

T Bus LMPATT
RT γRT −∑ GSFη ∑ GSFζ −ρα−ιCSF LMPDA γRT −∑ GSFη ∑ GSFζ −ρα−ιCSF

5h

1 41.0877 + - - + - 36.4367 + + - + -
2 41.0877 + - - + - 96.9367 + + - + -
3 41.0877 + - - + - 85.4741 + + - + -
4 41.0877 + - - + - 53.9520 + + - + -
5 41.0877 + - - + - 39.5419 + + - + -

10h

1 39.5058 + + - + - 33.2406 + ++ - + -
2 103.778 + + - + - 206.5691 + ++ - + -
3 91.6008 + + - + - 2.6325 + ++ - + +
4 58.1133 + + - + - 83.4208 + ++ - + -
5 42.8046 + + - + - 42.1368 + ++ - + -

16h

1 39.4063 + + - + - 47.9635 + + + + -
2 103.556 + + - + - 92.6081 + + + + -
3 91.4021 + + - + - 90.1134 + + + + -
4 57.9783 + + - + - 83.2528 + + + + -
5 42.6988 + + - + - 42.0125 + + + + -

TABLE 4.5: LMP comparisons between DA and RT markets in scenario II.

T Bus LMPATT
RT γRT −∑ GSFη ∑ GSFζ LMPDA γRT −∑ GSFη ∑ GSFζ

1 14 + - - 14.0000 + + +
2 14 + - - 29.4609 + + +

5h 3 14 + - - 30.0000 + + +
4 14 + - - 31.4825 + + +
5 14 + - - 10.0000 + + +
1 8.6479 + + - 16.9774 + - +
2 34.9911 + + - 26.3845 + - +

10h 3 30.0000 + + - 30.0000 + - +
4 16.2745 + + - 39.9427 + - +
5 10.0000 + + - 10.0000 + - +

6, altering the LMP calculation structure and enabling arbitrage opportunities
between the DA and RT markets.

Consequently, without carbon constraints, the attacker can only manipulate power
states to obscure the transition of transmission line constraints from congested to
relaxed or mask relaxed constraints as tightened. However, when carbon emission
costs are considered, the attacker can additionally obscure carbon constraints, thereby
expanding the potential scope for LMP manipulation.
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4.6.5 Vulnerability Analysis based on Carbon Emission Costs

Without an attack strategy, fluctuations between the DA and RT markets are minimal,
resulting in negligible differences in system constraints and a relatively small price
gap at t = 10h and t = 16h, both with and without carbon considerations, as shown in
Fig. 4.8 (a) and Fig. 4.9 (a).

Under attack strategy A, attackers can alter measurements and then mislead operators
to perceive the constraints on transmission line 1 as relaxed instead of constrained.
This manipulation results in price gaps, as depicted in Fig. 4.8 (a) and Fig. 4.9 (a).

In scenarios where carbon costs are not considered, at t = 10 and t = 16, attackers can
easily alter measurements, misleading operators to perceive the constraints on
transmission line 1 as relaxed instead of constrained. This manipulation results in
price gaps, as shown in Fig. 4.9. With minor load fluctuations, and transitioning from
the DA market to the RT market, it is difficult for attackers to induce price gaps
without launching the FDIA.

(a) (b)

FIGURE 4.8: Vulnerability analysis for each transmission line at t = 10h without (a)
and with (b) carbon emission consideration.

As depicted in Fig. 4.8 (b), when there is no attack, the carbon emission-related LMP
constraints and power transmission constraints in both the DA and RT markets
remain unchanged due to minimal load fluctuations. Consequently, the price gap
remains relatively consistent under no-attack conditions. In contrast, when strategy A
is implemented, it causes relaxation of carbon emission-related LMP constraints at bus
3, significantly increasing the vulnerability on this bus. This results in a large price
gap in transactions involving transmission line 4 between bus 3 and bus 2.

At t = 16h, in both attack and non-attack scenarios, the previously tightened
constraints in the DA market change to relax in the RT market due to load
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(a) (b)

FIGURE 4.9: Vulnerability analysis for each transmission line at t = 16h without (a)
and with (b) carbon emission consideration.

fluctuations. This results in a large price gap in transactions involving transmission
line 4 between bus 3 and bus 2. Consequently, the space of constraints that attackers
can manipulate (i.e., originally tightened constraints misrepresented as relaxed) is
nearly non-existent. Consequently, under both attack and no-attack scenarios, the
price gap remains relatively unchanged.

The analysis concludes that when carbon emissions are not considered, transmission
lines 5 and 6 are vulnerable due to the tightened constraints on transmission lines 1
and 6 in the DA market, which attackers can manipulate to appear relaxed from the
operators’ perspective in the RT market. In contrast, when carbon emissions are
considered, the vulnerability of transmission line 4 increases, necessitating prioritized
protection due to the non-critical facilities at bus 3 and the reduced allocation of
carbon emissions allowances. Notably, this vulnerability provides opportunities for
pure arbitrage attackers, even without FDIAs.

4.7 Summary

In conclusion, this chapter represents the first attempt to broaden the scope of
exploring profit-oriented FDIAs, extending beyond the traditional LMP calculation
that only focuses on electricity costs to include carbon emission costs. A
Stackelberg-Game-based profit-oriented FDIA model is proposed, which can analyze
the attack behavior and the interaction with ISO operators through LMP calculations.
To optimize attack strategies, an H-MADDPG algorithm is developed, employing
pre-training to improve convergence rates and computational efficiency. Building
upon the most threatening attack strategy identified, a novel vulnerability assessment
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framework is proposed to evaluate economic risks associated with carbon emissions.
Simulation results reveal that this framework can identify increases in economic losses
of up to $201.61/MWh on certain transmission lines, highlighting the heightened
vulnerabilities introduced by integrating carbon considerations into electricity
markets. This research underscores the significant economic risks posed by carbon
emission considerations and highlights the need to protect the integrity of integrated
C&E markets while advancing low-carbon energy goals.



89

Chapter 5

Micro-segmentation to mitigate
False Data Injection in
Cyber-Physical Power Systems

5.1 Introduction

As mobile devices, IoT devices, and Cloud computing platforms are increasingly
integrated into CPPS, traditional perimeter-based security approaches are becoming
less effective in isolating suspicious components that are already inside the network.
Moreover, the interaction between the cyber and power layers within a CPPS exposes
the latter to a wider attack surface, thereby facilitating the lateral spreading of
attackers across the whole network. Indeed, once an adversary breaches the CPPS
perimeter, it can easily spread laterally and compromise several components to launch
sophisticated attacks. Therefore, it is critical to secure each network component in a
finer-grained manner, rather than focusing solely on perimeter protection.

5.1.1 Overview

Among the various types of cyberattacks targeting CPPS, FDIA has been recognized
as a highly threatening attack [123]. FDIA aims to mislead the PSSE [32] by
manipulating power measurements in a correlated way to bypass the residual-based
BDD, which relies on measuring residues to identify bad data. To be successful, an
FDIA requires two preconditions: (i) sufficient knowledge of the structural network
and parameters for constructing a stealthy attack vector and (ii) a sufficient number of
measurements for collaborative manipulation.
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Several approaches have been proposed to mitigate FDIA by targeting those
preconditions [44]. One of these involves providing measurement redundancy in SE
by deploying PMUs [14], which can identify the measurement manipulations the
adversary needs to meet precondition (i). Another attractive security approach is the
MTD [124, 125], which utilizes distributed flexible AC transmission system
(D-FACTS) devices. MTD can proactively alter impedance perturbations and hide the
measurement matrix information, thereby hindering precondition (ii). Although these
two approaches can effectively increase the accuracy of the BDD and mitigate FDIA,
their implementation in power systems is impractical due to the high cost and limited
scalability of deploying PMUs and D-FACTS. For example, protecting all the buses in
the IEEE-14 system requires almost 61.9% of the transmission lines to be deployed
with D-FACTS [46], which is infeasible due to the high costs involved.

Existing techniques against FDIA assume that the adversary has already
compromised the required measuring devices. The previous penetration stages of the
attack are therefore not considered at all, neglecting further opportunities for
detection and prevention. Indeed, before executing a stealthy FDIA, the attacker
needs to get access to the sensor network and spread laterally across it to infect other
devices. Hampering the penetration stage would prevent the attacker from taking
control of enough devices. This can be achieved using a ZTA, where authentication
and authorization are required for each access request of every network
component [22], regardless of whether it is located within or outside the perimeter. In
this way, the lateral movement of an attacker within the network can be prevented,
thereby reducing the number of compromised devices and making it more difficult to
satisfy precondition (ii) for executing an FDIA. Furthermore, this solution would not
incur the costs and scalability issues of deploying PMUs and D-FACTS.

5.1.2 Contribution

In prior research [126], a cyber-physical ZTA designed for CPS was proposed, and the
challenges of implementing ZTA in CPS were analyzed. Although this Cyber-Physical
ZTA shows its potential against FDIAs, assessment and refinement of its effectiveness
are essential due to limited security resources and evolving threats in real-world
scenarios. Consequently, this chapter proposes a novel micro-segmentation technique
to secure CPPS from FDIAs by enhancing its residual-based BDD detection capability.
To assess the effectiveness of the micro-segmentation strategy, a new combined
cyber-physical metric is devised, and a combinatorial optimization problem is
formulated to optimize it. However, this problem is challenging to solve in
polynomial time. Given the critical nature of power systems, a very short response
time is required (e.g., load-shedding decisions for operators within milliseconds) to
effectively mitigate potential cross-layer cascading risks. Therefore, a novel heuristic
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optimization algorithm based on GAT+RL is designed to search for a near-optimal
micro-segmentation strategy within the inference time. The main contributions of this
chapter are summarized below.

1. A novel micro-segmentation technique based on the concept of ZTA; it restricts
lateral attack propagation, reduces the stealthiness of FDIAs, and is proven
effective against FDIAs under the DC model.

2. An optimization of the proposed micro-segmentation technique; it leverages a
cyber-physical metric and a GAT+RL algorithm to enhance its effectiveness.

3. A GAT-based extraction algorithm; it captures cross-layer features of both cyber
and power components.

4. Simulation-based evaluation showing that deploying the proposed
micro-segmentation technique significantly improves the detection rate of
residual-based BDD against FDIAs, increasing from 5.23% to 94.02%, and
highlights the effectiveness of the GAT+RL optimization algorithm, which
considerably outperforms state-of-the-art algorithms in computing time while
maintaining solution quality.

5.1.3 Structure of Chapter

The chapter is organized as follows: Section 5.2 illustrates the PSSE and the
stealthiness of FDIAs. Section 5.3 introduces the implementation of the proposed
micro-segmentation technique in CPPS and proves its effectiveness against FDIAs.
Section 5.4 formulates the optimal micro-segmentation as a combinatorial
optimization problem and proposes a cyber-physical-BDD-enhancement-metric that
simultaneously considers the impact of the micro-segmentation strategy on lateral
spreading capability and BDD detection probability. Section 5.5 presents a GAT+RL
algorithm designed to solve the proposed combinatorial optimization problem.
Section 5.6 provides simulation results and analysis, and Section 5.7 concludes the
chapter.

5.2 System Model and Attack Model

In the background section 2.2.3, the stealthiness of FDIA and its impact on PSSE was
briefly discussed. This section briefly introduces the stealthiness of FDIA and its
properties.
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5.2.1 System Model

As illustrated in Fig. 5.1, the SCADA system collects power measurements via
measuring devices (i.e., sensors) and transmits them to the EMS for PSSE.
Residual-based BDD ensures data reliability by detecting abnormal measurements.
The refined states are used to determine control signals for other EMS functions, such
as optimal economic dispatch.

5.2.1.1 Power system state estimation (PSSE)

The PSSE aims to estimate state variables with the measurements [127]. Assume that
N′ power system state variables x = (x1, x2, · · · , xN′)

T are evaluated M (N′ ≪ M)
based on measurements z = (z1, z2, · · · , zM)T. This yields z = Hx + e, where
H ∈ RM×N′ is the measurement matrix and e ∈ RM is the independent noise. When e
is normally distributed with zero means, the estimated state is
x̂ = (HTWh)−1HTWz ≜ Kz, where W is a diagonal matrix.

5.2.1.2 Bad data detector

In PSSE, the residual-based BDD is widely utilized to localize and detect abnormal
measurements. Specifically, the residual r = (I−HK)z is used to detect bad data,
where I is the identity matrix. If ∥r∥2 = ∥z−Hx̂∥2 > τr, bad data are successfully
detected.

5.2.2 Attack Model: Mechanisms and Properties

We consider the stealthy FDIA targeting PSSE proposed in [32], which can bypass the
BDD by constructing a completely stealthy attack vector, rather than random bad data.

5.2.2.1 Stealthy FDIAs

The BDD-bypassing attack vector is defined as a = Hc, where c ∈ RN′ is an arbitrary
vector. Without considering measurement noise e, this attack vector should satisfy the
following condition [32] to bypass the BDD:

∥r∥ = ∥za −Hx̂bad ∥
= ∥z−Hx̂ + (Hc−Hc)∥ = ∥z−Hx̂∥ ≤ τr,

(5.1)

where za = z + a is the measurement after FDIA and x̂bad is the estimated results
calculated from za.
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Lemma 5.1. If the attack vector can satisfy a ∈ col(H), then it can bypass the BDD [32].

5.2.2.2 Attack Properties

Assume that attackers have the following properties:

• Accessibility: Attackers can inject false data via compromised sensors, disrupting
PSSE accuracy. Following the initial compromise, the attack can spread laterally,
disrupting adjacent devices.

• Attack Target: When inaccurate state estimates x̂bad caused by FDIAs are
transmitted to the EMS, they result in suboptimal control signals, leading to
operational issues such as voltage instability, frequency fluctuations, blackouts,
and financial losses [128].

• Attack Knowledge: The knowledge of attackers is analyzed in two scenarios. In
Scenario I, attackers possess sufficient knowledge, including the power network
topology, parameters, and the indicator matrix Bi for the targeted i-th security
segment. In Scenario II, attackers do not have access to Bi.

5.3 ZTA in CPPS: Leveraging Micro-Segmentation

The ZTA discussed in this chapter is a security architecture rather than a standalone
detector. When integrated into the SCADA system, it enhances the detection
capability of the existing residual-based BDD against stealthy FDIAs.

5.3.1 Implementation of ZTA within CPPS Architecture

Traditional perimeter-based security architectures only analyse the traffic flowing
between the external (untrusty) and the internal networks (trusty) [129], therefore
cannot prevent lateral movement within their perimeters. Once attackers breach the
perimeter, e.g., by exploiting a vulnerability, they can access any trusted components.
To address this issue, ZTA has been proposed, shifting the focus from perimeter-based
to internal, resource-centric defense strategies.

As shown in a NIST report [22], ZTA addresses the aforementioned limitations by
prioritizing the protection of resources, assets, and components, instead of the
perimeter [82]. When one component (the subject) requests access to another
component (the resource), this architecture determines whether the request can be
served. PAPs define and manage access control policies used by PDPs to evaluate and
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decide on access requests. PEPs enforce these policies, acting as gateways between
components, either at security boundaries or before specific components. To support
PAPs, supplementary modules provide contextual data, including risk assessments,
traffic logs, and threat intelligence.

FIGURE 5.1: Architectural framework for implementing ZTA in CPPS.

In CPPS, SCADA systems are pivotal in connecting sensors, controllers, and actuators.
Traditional security architectures cannot mitigate lateral spreading within SCADA
systems, posing risks like the spread of corrupted sensor data to control signals. With
reference to Fig. 5.1, integrating ZTA into SCADA systems can restrict attack spread
between internal components, thereby enhancing the overall security of CPPS. The
next section presents the proposed micro-segmentation technique to enable a
ZTA-based mitigation of FDIAs.

5.3.2 Micro-Segmentation technique against FDIA

Fig. 5.2 shows an example to highligh the differences between a network without ZTA
(above in Fig. 5.2) and one with ZTA (below in Fig. 5.2). The sensor network with ZTA
is segmented into several security segments, and the access requests between devices
in different segments are monitored by the policy engine. In scenarios where an
attacker has breached breach device A, the micro-segmentation technique restricts
their ability to extend this breach to devices C, D, E, and F via device A. This hinders
FDIA precondition (ii) for cooperative measurement manipulation, thereby enhancing
the BDD detection capability for identifying attack behavior.

We define the sensor network as a weighted graph G = G(E, V) with node set V,

|V| = M, edge set E and communication adjacent matrix AM∗M =
{︂

a0
ij

}︂M

i,j=1
. A
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FIGURE 5.2: Illustrative example of micro-segmentation mechanism.

micro-segmentation strategy segments the network into K segments, represented by
an indicator matrix BM∗K = [h1, h2, · · · , hK]

T. Each indicator vector
hk = [h1,k, h2,k, · · · , hM,k]

T specifies the assignment of nodes to segments, where hij = 1
if the i-th node is in the j-th segment; otherwise, hij = 0. Suppose the
micro-segmentation strategy with the indicator matrix BM,K = [B1, B2, · · · , BK]

T is
implemented in the sensor network, where M measuring devices are logically
segmented into K = {N1, · · · ,NK} security segments. During each attack period, the
attack vector a = Hc will be reconstructed as a′ = BiHc = H′ic, where Bi = diag(Bi)

and i = 1, 2, · · · , K. Note that H = H′1 + H′2 + · · ·+ H′k. Given a matrix H′i, let H′i
−0 be

the matrix obtained by deleting all-zero rows from H′i. It follows that
rank(H′i

−0) = rank(H′i).

The effectiveness of the micro-segmentation technique under the DC model is
demonstrated in two scenarios that differ in the attacker’s knowledge.

5.3.2.1 Scenario I Sufficient knowledge

Despite possessing sufficient knowledge, including power network topology,
parameters, and the indicator matrix Bi for the i-th security segment, attackers can
design a stealthy attack vector only if Bi satisfies a specific condition, which is
analyzed subsequently. If this condition is unsatisfied, attackers cannot design the
stealthy a to bypass the BDD, resulting in an increased detection rate.

Lemma 5.2. If and only if the security segment matrix B satisfies the rank(H−H′i) < N‘
for any i, attackers can construct a completely stealthy attack vector to bypass the BDD, i.e.,
there exist solutions for a′ = Hc = H′ici and a′ ̸= 0.

Proof. (Sufficiency) The condition that there exists solution for a′ = Hc = H′ici ̸= 0 can
be transformed into the equal condition that there exists c′′ = [c ci]T satisfying



96
Chapter 5. Micro-segmentation to mitigate False Data Injection in Cyber-Physical

Power Systems

[ H H′i ][
c
ci

] = 0. Define H−H′i as H′−i. Equally, the original condition is further

reconstructed as [
H′−0

i H′−0
i

H′−0
−i 0

][
c
ci

] = 0, a′ ̸= 0 and c ̸= 0.

Here, if the rank(H−H′i) = rank(H′−0
−i ) < N′, there exists non-zero solution for

H′−0
−i c = 0. Thus, given any exact non-zero solution c′ ̸= 0 and c′i = −c′ ̸= 0, it yields

that H′−0
i c′ + H′−0

i c′i = 0. Next, we need to prove that a′ ̸= 0. Referring to H′−0
−i c = 0,

H′−0
i c′i ̸= 0 should be proved consequently. Here, we resort to a contradiction.

Assuming that there exists an non-zero element c satisfying H′−0
i c = −H′−0

i ci = 0. It
yields there exists non-zero solution for Hc = 0. However, since rank(H) = N, there
exists no non-zero solutions for Hc = 0. There is a contradiction. Hence, H′−0

i c ̸= 0,
i.e. , a′ = Hc = H′ici ̸= 0. In this case, after launching an attack in security segment i,
attackers can construct a completely stealthy attacker vector to bypass the BDD.

(Necessity) Suppose there exists solution for a′ = Hc = H′ici and a′ ̸= 0. That is, there

exist non-zero solutions c = [c ci]T satisfying

[︄
H′−0

i H′−0
i

H′−0
−i 0

]︄ [︄
c
ci

]︄
= 0. Given one

exact solution c′ = [c′ c′i]
T, it yields that H′−0

i c′i ̸= 0 and c′ = −c′i ̸= 0. Hence, the
non-zero solution c′ can satisfy H′−0

−i c′ = 0. Thus, it yields that rank(B−0
−i ) < N‘.

Remark: Under the deployment of micro-segmentation, the penetration capability of
attackers is restricted. The attack vector a′ injected into measurements differs from the
originally attack-constructed vectors a. The corresponding expected residual E(∥r∥)
induced by a′ cannot satisfy the Lemma 5.1. Consequently, a′ cannot eliminate the
increase of E(∥r∥), leading to a higher detection rate of the BDD.

5.3.2.2 Scenario II Insufficient knowledge

When attackers lack knowledge of the deployed micro-segmentation strategy Bi, they
cannot design and execute a completely stealthy attack vector a. A less effective attack
vector a′ is injected, resulting in an increased detection rate.

Proposition 5.3. After implementing the micro-segmentation technique, the practical attack
vector a′ cannot bypass the BDD in a completely stealthy fashion. In other words, there exists
no solution for a′ = Hc = H′ici where c ∈ RN′ , ci ∈ RN′ and a′ ̸= 0. Without a stealthy
attack vector, the attack actions are easily detected by the BDD, resulting in an expected
increase in the detection rate.

Proof. Assuming that the network is divided into two segments with matrix H′1 and
H′2, there exists c1 and c2 satisfying a′ = H′1c1 = H′2c2, c1, c2 ∈ RN′ . It equals that there
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exists c′ = [c1c2]T satisfying
[︂

H′1 H′2
]︂ [︄ c1

c2

]︄
= 0, a′ ̸= 0 and c′ ̸= 0. Referring to

H′i = BiH and H = H′1 + H′2, the assumption is transferred into[︄
H′−0

1 0
0 H′−0

2

]︄ [︄
c1

c2

]︄
= 0. Note that exchanging the rows of H′i has no impact on

the solutions of this equation, and thus it yields that H′−0
2 c2 = 0 and H′−0

1 c1 = 0. Thus,
H′2c2 = 0 and H′1c1 = 0. There exists a contradiction with the assumption. Hence, the
proposition has been proved. That is, there exists no solution for ci can satisfy
H′ici ∈ col(H) besides ci = 0. Thus, attackers cannot construct such attack vector
a′ = Hc = H′ici which can bypass the BDD under the micro-segmentation. In this
case, under the micro-segmentation technique, FDIA vectors cannot bypass the BDD
in a stealthy fashion, and the practical attack vector can be detected by chance.

5.4 Optimization of Micro-Segmentation Strategies with
Cyber-Physical-BDD-Enhancement Metrics

The previous discussion shows that micro-segmentation B results in a practical attack
vector a′, diverging from the attacker-constructed vector a. This deviation enhances
the detection capability of the BDD, thereby reducing lateral spread in the sensor
network. Specifically, the micro-segmentation B enhances the detection probability of
BDD by raising the expected residue E (∥r∥), as stated in Eqn. (5.1).

Consequently, defenders aim to maximize E (∥r∥) by deploying B, treating this
problem as a combinatorial optimization problem. Given the sequential nature of
attack propagation in the sensor network and its cross-layer impacts on the power
system, a combined cyber-physical metric is proposed as the optimization objective,
which conjointly integrates impacts on both cyber and power systems. This metric is
used to assess the effectiveness of B, compared with two standard metrics (i.e.,
physical metric and cyber metric), as illustrated in Section 5.4.2 and 5.4.3. This section
elaborates on the problem definition and formulation of the combined cyber-physical
metric, followed by an in-depth analysis of the physical and cyber metrics,
respectively.

5.4.1 Objective Definition: Cyber-Physical-BDD-Enhancement Metric

A residual-based metric is discussed in Section 5.4.2 to evaluate the increase in E (∥r∥)
after deploying strategy B. However, this metric has limitations as it assumes that
attackers can only manipulate measurements on devices they have already
compromised, leaving those from uncompromised devices unaltered [130]. In
practice, the process of attacker penetration is sequential and dynamic, rather than
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fixed, making such assumptions impractical. Therefore, the E (∥r∥) is not only
affected by the physical measuring matrix H, but also by the lateral spreading
capability of attackers prior to the cooperative measurement manipulation, as
depicted in Fig. 5.1. This capability can be quantified using the infection probability of
devices, which depends on their locations, neighboring devices, and the entire
network topology, as discussed in Section 5.4.3. To solve this issue, a combined
cyber-physical metric, denoted as Lcp, is formulated which integrates the infection
probability into the standard residue-based metric. This is formulated as

Lcp = max
B

E

(︃⃦⃦⃦⃦
(I−HK)

(︃
z +

a′′

∥a′′∥

)︃⃦⃦⃦⃦)︃
(5.2)

= E

(︃⃦⃦⃦⃦
(I−HK)

(︃
z +

diag(P ′)a
∥diag(P ′)a∥

)︃⃦⃦⃦⃦)︃

= E

⎛⎝⃦⃦⃦⃦⃦⃦Q(z +
diag

(︂
ρ∗ − T(G0 −G0 ◦ (BB⊤ − E))ρ∗

)︂
a⃦⃦⃦

diag
(︂

ρ∗ − T(G0 −G0 ◦ (BB⊤ − E))ρ∗
)︂

a
⃦⃦⃦
⃦⃦⃦⃦
⃦⃦
⎞⎠

s.t.
K

∑
j=1

hij = 1, ∀ i ∈ V (5.2a)

M

∑
i=1

hij = 1, ∀ j ∈ K. (5.2b)

This metric can consider the impact of B on the lateral spreading capability and the
BDD detection probability simultaneously. It can be used to guide defenders to obtain
an effective B against FDIA. Specifically, it models the trade-off between mitigating
the lateral spreading capability at the cyber layer and reducing the magnitude of
injected false data at the physical layer. The explanations for each symbol can be
found in the following Sections 5.4.2 and 5.4.3. In addition, the solution to this
optimization problem is discussed in Section 5.5.

5.4.2 Increasing the detection capability of BDD: Physical Metric

According to Proposition 5.3, it proves that after deploying micro-segmentation,
attackers cannot execute the attack vector in a stealthy fashion as they intended.
However, it is worth mentioning that the BDD has a tolerance level for the
predetermined threshold τ > 0. In certain scenarios, a practical attack vector can still
bypass the BDD by chance if it satisfies ∥r∥ ≤ τ in Eqn. (5.1). This situation poses a
challenge in terms of localizing the security group where the malware is launched and
identifying the precise attack vector, which leads to a malicious threat to the CPPS.

To solve this problem, micro-segmentation designed in this section aims to maximize
the expected residue E(∥r∥). In this way, a minor attack vector can result in a large
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residue after deploying the strategy, which improves the detection capability of the
BDD. The relationship between residue r and attack vector a referring to Eqn. (5.1) is
given as:

r = (I−HK)(z + a). (5.3)

By segmenting the measuring devices with strongly correlated measurements into
different segments, these measurements can be detected with a high detection
probability. In other words, when measurement zi in the first group is injected with
the attack vector ai, the BDD can detect this attack with a high probability, relying on
the correct measurements (correlative with zi) in other groups referring to lemma 2 in
[46]. Here, the residue after micro-segmentation for security segment i can be defined
as:

ri = (I−HK)

(︃
z +

diag(B:,i)a
∥diag(B:,i)a∥

)︃
, (5.4)

where diag(B:,i)a represents the practical attack vector injected into measurements
after the micro-segmentation scheme. It is worth noting that with the increase of
attack strength (i.e., the number of attack vectors injected into measurements), the
probability of success of detection increases [131]. To effectively compare the
effectiveness of various micro-segmentation strategies, it is crucial to maintain
consistent attack strengths. This ensures that any differences in security performance
are attributed to the micro-segmentation strategies, rather than to variations in attack
strength. In this metric, the attack vector diag(B:,i)a is set with the unit attack strength

diag(B:,i)a
∥diag(B:,i)a∥ = 1. Here, the physical metric is modeled as:

Lp = max
B

min
i∈K

E(∥ri∥)

= E

(︃⃦⃦⃦⃦
(I−HK)

(︃
z +

diag (B:,i) a
∥diag (B:,i) a∥

)︃⃦⃦⃦⃦)︃
.

(5.5)

Incorporating this physical metric into micro-segmentation increases the system’s
sensitivity to FDIA vectors. Specifically, even smaller FDIA vectors can cause a
significant residue to be detected with |r| > τ, thereby narrowing the attack space of
FDIA vectors. Hence, the level of security architecture in CPPS increases.

5.4.3 Limiting the lateral spreading capability: Cyber Metric

The effectiveness of strategies on the BDD detection capability has been analyzed in
Sections 5.3.2 and 5.4.2. However, the attack vector a′ = diag(B:,i)a

∥diag(B:,i)a∥ after deploying
the strategy is constructed in an ideal scenario, assuming that all measuring devices
within the compromised security segment are accessible to attackers, while devices in
other segments are inaccessible. In fact, the PEP deployed on the security segment is
incapable of isolating the lateral spreading with a 100% probability. Specifically, there



100
Chapter 5. Micro-segmentation to mitigate False Data Injection in Cyber-Physical

Power Systems

is a negligible probability that malware targeting one security segment might laterally
spread to other segments. In contrast, within a compromised security group, certain
measuring devices might remain uninfected since the malware propagation follows a
Susceptible-Infected-Susceptible (SIS) dynamics model [132].

Consequently, the infection probability is used to represent the infection state of each
measuring device, rather than relying on their locations within or outside security
segments. In a fully connected cyber network, the sum of infection probabilities for all
devices is a general metric for evaluating the spreading capability of a network, which
is mainly determined by its topology. By deploying the micro-segmentation strategy,
the links between different security segments are inaccessible to attackers, resulting in
an updated topology as expected by the attackers.

The original network topology and updated topology after the strategies are defined

as G0 =
{︂

g0
ij

}︂M

i,j=1
and G′, respectively. The change of topology is ∆G = G0 −G′,

where G′ = G0 ◦ (BB⊤ − E). Given that malware spreading relies on the correlation
between neighboring nodes, the SIS model of a correlated complex network is
discussed to analyze the malware spreading dynamics, which is given as [132]:

dρi(t)
dt

= −ρi(t) + β [1− ρi(t)]
M

∑
j=1

g0
ijρj(t), (5.6)

where ρi is the infection probability of node i and β is the infection rate. In the steady
state, at t→ ∞, the infection probability ρ∗i ≡ ρi(∞) with topology G0 can be
approximated as:

ρ∗i = β (1− ρ∗i )
M

∑
i=1

g0
ijρ
∗
j . (5.7)

Eqn. (5.7) can be rewritten as:

ρ∗ = β (1− ρ∗) ◦
(︁
G0ρ∗

)︁
, (5.8)

where ρ∗ = [ρ∗1 , ρ∗2 , . . . , ρ∗M]T, ◦ is the Hadamard product, and 1 = [1, 1, . . . , 1]T.
Deploying the micro-segmentation strategy, the infection probability distribution is
updated as P ′ = [ρ′1, ρ′2, . . . , ρ′M]T, which is formulated as:

P ′ = ρ∗ − ∆ρ∗ = ρ∗ − (E− βX)−1Y

= ρ∗ − (E− βX)−1β diag (1− ρ∗)∆Gρ∗

= ρ∗ − T(G0 −G0 ◦ (BB⊤ − E))ρ∗,

(5.9)

where ∆ρ∗ = 1T(E− βX)−1Y referring to lemma 1 in [133].

X = diag (1− ρ∗)G0 − diag(G0ρ∗), Y = β diag (1− ρ∗)∆Gρ∗.
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After deploying the micro-segmentation strategy, the lateral spreading capability in
the sensor network becomes restricted, leading to a decrease in the infection
probability of each node. Note that the decrease in infection probability can be used as
a cyber metric when only evaluating the impact of the strategy on lateral spreading
capability within the sensor network, which is defined as:

Lc = 1T∆ρ∗. (5.10)

The metric is discussed in the comparative simulations in the following sections.

5.5 GAT+RL-based Algorithm for Optimizing
Micro-Segmentation Strategies

The process of searching for the optimal micro-segmentation strategy B∗ is modeled
as an NP-hard combinatorial optimization problem, as stated in Eqn. (5.2). To simplify
the discussion, we refer to this problem as the MSC problem in the following
discussion. It can be solved by exact methods, approximate methods or heuristic
methods [134]. In real-world scenarios, it is essential to select the algorithms that can
balance the quality of solutions and the computation time. In terms of the smart grid
security events, an effective optimization algorithm is expected to respond promptly,
minimizing the malicious consequences, and preventing a cascade of cross-layer
impacts. Among the three types of methods, since heuristic methods can usually get a
feasible solution with a faster speed, they are favorable for optimizing
micro-segmentation strategies.

In this section, an optimization algorithm that combines a GAT-based [135]
encoder-decoder model and the reinforcement learning (RL) algorithm is proposed to
produce good timeliness and generalization. Within the algorithm, the
encoder-decoder model is utilized to extract features of the MSC problem while the
RL algorithm is utilized to maximize the objective in Eqn. (5.2) by searching for the

FIGURE 5.3: Structure of GAT+RL optimization algorithm for the MSC problem.
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optimal solution Bπ∗ = {π∗1 , π∗2 , . . . , π∗M}, which is defined as:

L(Bπ∗ | s) = Lcp, (5.11)

where the state s is defined as all the features of measuring devices, including power
measurements, the topology of the power electric grid, cyber features (i.e., infection
probability), and the topology of the sensor network. A solution
Bπ = {π1, π2, . . . , πM} is a permutation with repetition of the security group index
{1, 2, . . . , K}, and each measuring device should be divided into one security group.
Note that Bπ has the same meaning as B, albeit represented with a different symbol.
Specifically, πi represents the column index of the element 1 in row i in B.

Based on the formulation of the MSC problem, an encoder-decoder model with
parameters θ is designed, which takes the state s as input, and outputs Bπ . Concretely,
given s, this model defines a stochastic policy pθ (Bπ | s) for searching for Bπ :

pθ(Bπ | s) =
M

∏
i=1

pθ (πi | s,Bπ
1∼i−1) . (5.12)

In detail, the encoder takes the original state s as input and outputs the encoder
embeddings. Afterward, decoding happens sequentially from i = 1 and stops until all
the measuring devices have been divided into the security group, the output of which
is a probability distribution. Afterward, the exact solution Bπ is selected according to
this distribution. In this way, the procedure of searching for the optimal solution for
the MSC problem is translated to seeking an optimal set of θ∗, with which the model
can produce the optimal Bπ∗.

5.5.1 Encoder-Decoder Model

For an MSC problem, two types of features are significantly informative, namely
sequential information and relation information between neighbors. The encoder
maps a sequence of measuring device representations to a sequence of security group
representations v = (v1, . . . , vK), where the above two types of features are included.
Given v, the decoder outputs a sequence p = (p1, . . . , pM), where each element
represents the probability of segmenting each of the M measuring devices to the
target security group (see Eqn. (5.20)).

The original state s = {G, x} consists of both the node features and the structural
information. Generally, the electric grid network and the sensor network cannot be
modeled in the Euclidean space effectively due to the graph-based topology [136]. A
graph-type architecture is required to capture the spatial correlations in the electric



5.5. GAT+RL-based Algorithm for Optimizing Micro-Segmentation Strategies 103

grid network and the sensor network, respectively. Hence, a GAT-based encoder is
designed in this subsection to extract structural information.

5.5.1.1 Encoder

As shown in the first column of Fig. 5.3, the encoder of the proposed model is
composed of a linear transformation layer, L1 encoder layers, and a convolutional
layer.

For the input of the encoder, the features of each node are mapped to the
dh-dimensional node embeddings:

H(0) = W(0)x + b, (5.13)

where x = [xc, xp] is the input vector. W(0) and b are learnable parameters of the fully
connected layer. b(0) is the initial node embeddings.

Afterward, H(0) is processed through L1 encoder layers and updated as the output
embeddings. For each encoder layer, the multi-head graph attention network [135] is
introduced to compute dh-dimensional representations for both sequential
information learning and structural information refining. Here, the multi-head
attention (MHA) is used to stabilize the learning capability of self-attention [137],
where the self-attention with an identical structure is performed NK times. The
attention coefficients can be expressed as:

αij =
exp

(︂
ReLU

(︂
W ′T

[︂
Wh(0)i ∥Wh(0)j

]︂)︂)︂
∑k∈Gi

exp
(︂

ReLU
(︂

W ′T
[︂
Wh(0)i ∥Wh(0)k

]︂)︂)︂ , (5.14)

where [·∥·] denotes the concatenation operation. Gi denotes the set of first-order
neighbors of i, which is obtained from the inputted graph features G. The mechanism
can acquire structural information by performing masked attention during the
learning process. LeakyReLU is used as the activation operation. The computed NK

embeddings are concatenated as the output embeddings Hℓ
enc of the ℓth encoder layer,

which can be defined as:

hℓi = Normℓ

(︄
σ

(︄
1

NK

NK

∑
nk=1

∑
j∈Gi

αnk
ij Wnk h(ℓ−1)

j

)︄)︄
. (5.15)

The final embeddings of the encoder H(out)
enc ∈ RH×M×dh is derived from the L1-th layer

embedding HL1 ∈ RH×M×dk via a 1D convolutional neural network. H(out)
enc is the

representation for each security group k.
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FIGURE 5.4: Cross-layer feature embedding via graph attention network.

To effectively analyze the security of each cyber node in CPPS, it is crucial to capture
not only its node features and structural information at the cyber layer but also its
cross-layer relationship with power nodes. Graph-structured Neural Networks
provide a promising solution by allowing the stacking of multiple layers to learn more
complex representations of the graph structure. This approach enables the
representation of each cyber node to capture its cross-layer relationship with power
nodes, even if they are not immediately apparent in the local neighborhood of this
node. As shown in Fig. 5.4, by stacking two layers, the representation vc

1 of cyber node
1 in the third layer can capture its cross-layer relationship with power nodes 1, 2, and
3. Specifically, the representation vp

1 of power node 1 in the second layer captures the
features of power nodes 2 and 3 in the first layer. By leveraging vp

1 , vc
1 in the third

layer can also capture the features of power nodes 2 and 3 in the first layer. As a result,
the representation vc

1 of cyber node 1 captures the cross-layer relationships of power
nodes 1, 2, and 3, thereby leading to a more effective security analysis for cyber node 1.

5.5.1.2 Decoder

As shown in the second column of Fig. 5.3, similar to the decoder in the Transformer,
the decoder of the proposed model is composed of a stack of decoder layers (L2

layers) and a fully connected layer.

In each decoder layer, two MHAs are used for both sequential information learning
and relation information refining, three ”Add & Norm” layers, and an FF layer are
also used.

Specifically, the first MHA in the first decoder layer takes the H(0) as input, while the
first MHA in the subsequent L2 decoder layers takes the output from the former
decoder layer as input. The output embeddings can be defined as:

Htmp = Normℓ
(︂

H′(ℓ−1) + MHAℓ
1

(︂
H′(ℓ−1)

)︂)︂
, (5.16)

Htmp1 = Normℓ
(︂

Htmp + FFℓ
(︁
Htmp)︁)︂ . (5.17)
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The output Htmp1 is the representation of each measuring device i. Different from the
first MHA in each decoder layer, the second MHA in each decoder layer takes inputs
from different modules. Specifically, it takes Htmp1 as the query and takes H(out)

enc as the
key and value. In this module, more attention is obtained by a value if its key is more
compatible with the query. That is, each measuring device i is sequentially segmented
into one security group k. For each device i, among the features of all security groups
(keys {keyk}K

k=1), the one that matches the features of measuring device i (Querys
{queryi}M

i=1) most is selected as the segmentation group for device i. The output
embeddings of this MHA can be defined in the following manner:

H′ℓ = MHAℓ
2

(︂
Q = H(out)

enc , K = Htmp1, V = Htmp1
)︂

. (5.18)

After L2 decoder layers, the output of the fully connected layer in the last of the
decoder, i.e., H(out)

dec , is defined as:

H(out)
dec = W ′decH′(L2) + b′, (5.19)

where W ′dec and B′ are learnable parameters of the layer.

Intuitively, for a given measuring device i, a probability distribution {p′1, p′2, · · · , p′K}

is obtained, where p′k = e
H(out)

dec,ik

∑j≤K e
H(out)

decc,ij

. This distribution represents the probability of

segmenting measuring device i into each of the K security groups. Assuming a greedy
strategy is leveraged, the k-th security group with the largest probability p′i is selected
as the target group that device i is segmented into, denoted as Bπ

i = k. The final
probability pi of the proposed model is obtained via a softmax function, which is
defined as:

pi = pθ (Bπ
i = k | s,Bπ

1∼i−1) =
eH(out)

dec,ik

∑j≤K eH(out)
dec,ij

. (5.20)

5.5.2 Training with Reinforcement Learning

Given an MSC problem with state s, the proposed encode-decoder model with
parameters θ can provide the probability distribution pθ(Bπ | s) for each measuring
device in each segment according to Eqn. (5.12). Afterward, by sampling from the
probability, a set of solutions Bπ at state s can be obtained. Following Eqn. (5.11), the
objectives L for each solution can be obtained.

Since the objective is to minimize L, the rewards for reinforcement learning can be
computed via the Monte Carlo rollout. Then, the agent learns to improve itself toward
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the solution with minimal rewards by a state-action-reward tuple. The parameters θ

can be updated using the policy gradient methodology:

∇θL(θ) = Epθ(Bπ |s) [∇ log pθ(Bπ | s)L(Bπ)]

θ ← θ +∇θL(θ).
(5.21)

The rewards used to update the parameters θ during each training step correspond to
the total objectives of a set of solutions. Note that the micro-segmentation strategy for
each measuring device in these solutions is sampled from the probability function.
This sampling approach effectively mitigates the occurrence of high variance that may
arise due to the uncertainty of the sampling process. This high variance can slow
down the rate of convergence by giving the model contradictory descent directions to
learn. It is necessary to introduce the baseline b(s) to reformulate the policy gradient
by Eqn. (5.21):

∇θL(θ) = Epθ(Bπ |s) [∇ log pθ(Bπ | s)(L(Bπ)− b(s))] . (5.22)

Generally, b(s) can be computed by many methods, such as the critic network, the
greedy rollout of policy, and so on. Different methods are appropriate to different
scenarios. The baseline functions b(s) in the proposed problem are computed from the
average value of all solutions selected greedily in the first epoch.

Scenario-Specific Reward Functions: The reward function, aimed at optimizing the
metric specified in Eqn. (5.2), incorporates penalty terms to enforce the constraints
detailed in Section 5.3.2 from Scenarios I and II, which make some solutions infeasible.
These penalties guide the agent towards feasible solutions with scenario-specific
micro-segmentation strategies.

In Scenario I, constraints in Eqn. (5.2a) and (5.2b) must be satisfied as detailed in
Eqn. (5.2). For constraint Eqn. (5.2a), the decoder outputs a probability distribution
vector for each device. The solution search module then selects the one with the
highest probability. This selection process ensures that each device is allocated into a
single security group and, thus, satisfies constraint Eqn. (5.2a). Concerning
Eqn. (5.2b), it is equivalent to rank(B⊤B) = K. To guide the RL exploration towards
satisfying this constraint, a penalty function, denoted as L1 = f (rank(B⊤B) < K), is
designed. Herein, f functions as an indicator, taking a value of 1 when the inequality
holds true and 0 otherwise. Consequently, the reward function in Scenario I is
reformulated to L1 (Bπ∗ | s) = Lcp − λ1L1, employing the penalty coefficient λ1 to
modulate the intensity of L1.

In Scenario II, according to Lemma 5.1, the number of security groups i for which the
rank(H− BiH) = N represents the number of security groups that there are no
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stealthy FDIA vectors. Based on this, a penalty function denoted as
L2 = ∑k

i [ f (rank (H− BiH) < N)] is integrated into rewards to guide the solutions
towards satisfying this constraint. Simultaneously, constraints Eqn. (5.2a) and (5.2b) in
Scenario I should also be satisfied. Consequently, the reward function in Scenario I is
redesigned as L2 (Bπ∗ | s) = Lcp − λ21L1 − λ22L2, where λ21 and λ22 are penalty
coefficients.

5.6 Simulation Analysis and Results

In this section, the effectiveness of the designed micro-segmentation technique is
tested on a CPPS network as shown in Fig. 5.5. This network consists of an IEEE
30-Bus system, with parameters cited in MATPOWER[138], and a 39-node sensor
network. In addition, the performance of the GAT+RL algorithm is demonstrated and
compared with other optimization algorithms.

5.6.1 FDIA Vector Generation

FIGURE 5.5: Measuring devices deployment of the IEEE-30 bus system.

To demonstrate the effectiveness of the proposed micro-segmentation technique, the
FDIA attacking pool [139] is generated with 10000 attack vectors. Specifically, the bias
c utilized to generate a is randomly sampled referring to a uniform distribution
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U(-0.1, 0.1). Assume that the variance of the measurement noise is σ2 = 0.01, and the
predetermined threshold is σ

√︂
χ2

m−n,α. Note that with the increase of attack strength
(i.e., the number of attack vectors injected into measurements), the probability of
success of detection increases [131]. Thus, this section does not compare the
effectiveness of micro-segmentation strategies with different attack strengths. In this
case, a coefficient ρ is set to limit the ∥a′ = ρ · a∥ to a unit of value. In addition, the
actual load profile of NYISO [122] for January 2023 with 15-minute time intervals is
used to generate a realistic power-state dataset using MATPOWER.

The detection probability is defined as the ratio of the number of unsuccessful attack
vectors to 10000. This rate serves as an indicator of BDD detection capability, thereby
evaluating the effectiveness of strategies in this section.

5.6.2 Comparisons of the Proposed Cyber-Physical-BDD-Enhancement
Metric with other Metrics in Two Scenarios

Under the FDI attacks discussed above, the performance of the proposed
cyber-physical metric Lcp (CP-Metric) is demonstrated by comparing its results with
standard residue-based physical metric Lp (P-Metric) and cyber metric Lc (C-Metric)
in Scenario I and Scenario II, respectively. It is unrealistic to obtain the exact optimal
solution for each metric due to the complexity of MSC the problem. Hence, we select
the near-optimal solutions found by the four compared heuristic algorithms, namely
SA, SD, GA, and PSO as the optimal solutions discussed in this section. To reduce the
impact of uncertainties, each algorithm has been independently run 30 times and
during each iteration, 10000 is set as the maximum number of generations. In
addition, the impact of several setting parameters of micro-segmentation strategies on
the detection probability is discussed. These parameters specifically include the
number of security groups and the missing alarm rate.

5.6.2.1 Number of the Security Groups

In this subsection, the near-optimal segmentation scheme is tested with the increasing
number of security groups, K in both scenarios I and II. As shown in Fig. 5.6, the
detection rate without micro-segmentation is approximately 5.23%, which increases to
82.97%, 82.06%, and 42.18% for the CP-Metric, C-Metric, and P-Metric in Scenario I,
and from 10.28% to 94.02%, 93.03%, and 55.18% in Scenario II, respectively. Notably,
the CP-Metric outperforms the C-Metric and P-Metric in both scenarios. The detection
rates of the C-Metric and CP-Metric initially increase with K and then fluctuate, with
the CP-Metric reaching over 82.4% and 94.02% at K = 6 in Scenario I and II,
respectively. In contrast, the P-Metric continues to increase slightly.
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FIGURE 5.6: The detection probability with the number of security groups.

This can be attributed to the increasing degree of network isolation as K grows.
Initially, when K is small, the network is weakly segmented, and the degree of
network isolation is relatively low. In this case, each security segment contains more
nodes, allowing greater potential for attack propagation within each group. Under
such conditions, metrics that incorporate network structural information, such as the
CP-Metric and C-Metric, demonstrate stronger detection performance due to their
sensitivity to internal connectivity and spread dynamics. As K gradually increases,
the intensity of segmentation grows, resulting in higher levels of network isolation.
However, this finer segmentation might separate critical power-correlated nodes into
different security groups, thereby reducing the capability of CP-Metric and C-Metric
to effectively assess segmentation strategies. In contrast, the P-Metric, which focuses
solely on power correlations while neglecting the global network structure, shows
limited effectiveness in evaluating the segmentation strategy.

Overall, the increasing number of security groups can increase the effectiveness of
micro-segmentation against FDIAs in both scenarios. Among the three metrics, the
CP-Metric consistently achieves superior results by balancing network isolation and
critical node correlations, making it a robust metric for segmentation assessment. In
contrast, the P-Metric shows limited sensitivity to network structure, resulting in
relatively weaker performance improvements.

5.6.2.2 Missing Alarm Rate of the PEPs

In practice, the missing alarm rate (MAR) of a PEP is defined as the ratio of actual
malicious access requests that are undetected by the PEP to the total number of
malicious requests monitored. In this subsection, the near-optimal
micro-segmentation strategy is tested using three metrics with 1e-4 and 1e-5 MAR in
two scenarios, respectively. In this subsection, the near-optimal micro-segmentation
strategy is tested using three metrics with 1e− 4 and 1e− 5 MAR in two scenarios,
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respectively. As shown in Fig. , the detection rate without micro-segmentation is close
to 0% in both scenarios. With the increase in the number of security groups K, the
detection performance improves significantly across all metrics and MAR values.
Specifically, in Scenario I, when K=6, the detection rates for the CP-Metric are 80.81%,
79.6%, and 75.1% under MAR = 0, 1e− 5, and 1e− 4, respectively. The C-Metric
achieves 78.7%, 76.10%, and 76.3%, while the P-Metric yields 37.39%, 37.17%, and
36.97% under the same conditions. In Scenario II, the detection rates at K=6 reach
91.68%, 90.24%, and 88.89% for CP-Metric, 90.82%, 90.97%, and 89.47% for C-Metric,
and 52.57%, 51.88%, and 52.03% for P-Metric, respectively. The detection rate
decreases as MAR increases, particularly for CP-Metric and C-Metric. In addition, the
CP-Metric consistently outperforms the other metrics across all MAR levels..

This is primarily due to the inherent enforcement limitations of the PEP, which are
often constrained by hardware factors such as gateway configurations, resulting in a
non-negligible probability of attack propagation between security segments. As a
result, metrics that incorporate the degree of network isolation, such as CP-Metric and
C-Metric, are more susceptible to the impact of MAR. In contrast, the P-Metric, which
focuses on power correlations, remains relatively unaffected.
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FIGURE 5.7: The detection probability with MAR 0, 1e− 5 and 1e− 4.

5.6.3 Validation of the GAT-RL Algorithm

The presented algorithm is investigated on the IEEE-30 system to demonstrate the
performance in terms of time complexity and learning ability.
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5.6.3.1 Experiment Setup

Implementations: All simulations are conducted using Python on a PC with an Intel
Core i7-10750H CPU (2.60 GHz) and 32 GB of RAM.

Hyperparameters Configurations: The proposed model employed mini-batches of 64,
as outlined in TABLE 5.1. The architecture consists of a GAT encoder, configured with
3 layers and 8 heads, and a similar setup for the solution decoder. Both components
are optimized using SGD. The model, with 128 hidden dimensions, was trained for 50
epochs, with each epoch comprising 10,240 examples.

TABLE 5.1: Hyperparameters configurations.

HyperParameters Value HyperParameters Value

Batch size 64 No.of epoch 100

Learning rate 1e-4 No. of instances per epoch 10240

GAT-based Encoder

No. of GAT layers 3 No. of heads 8

Optimizer SGD Hidden dimension 128

Multi-Head Attention Decoder

No. of Decoder layers 3 No. of heads 8

Optimizer SGD Hidden dimension 128

5.6.3.2 Comparisons against Other Algorithms on Execution Time and Gap

The section models the micro-segmentation strategy optimization problem as a
combinatorial optimization problem. In this optimization problem, the contributions
of decision variables and their impact on the objective are not additive, making it
challenging to apply existing specialized heuristic algorithms. Hence, some general
non-learned heuristic algorithms are included as competitors, especially for the
MHA+RL algorithm referring to [134].

In addition, to demonstrate the quality of the solved solutions, the presented
approach is also compared with the state-of-the-art exact optimization solvers.
TABLE 5.2 depicts the performance of the GAT+RL and the compared algorithms in
terms of both running time and optimality gap.
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TABLE 5.2: GAT+RL vs state-of-the-art heuristic algorithms.

Method Obj.↑ Gap ↓ Time ↓

Cplex - 0.00% >1h

Exact OR-tools
- 0.00% >1h

Algorithm (CP-SAT)

Gurobi - 0.00% >1h

Scenario I II I II I II

GAT+RL 0.2543 0.1932 9.38% 9.72% 1.91s 2.23s

MHA+RL 0.2540 0.1903 9.42% 11.07% 1.56s 1.84s

Heuristic SA 0.2532 0.1729 9.70% 19.20% 16.18min 20.44min

Algorithm GA 0.2545 0.1882 9.24% 12.06% 12.58min 18.42min

PSO 0.2542 0.1835 9.34% 14.25% 15.50min 19.60min

SD 0.2531 0.1792 9.74% 16.26% 12.91min 15.88min

Performances over the running time: Concerning the running time, our proposed
algorithm significantly outperforms other compared exact algorithms and
non-learned heuristic algorithms in terms of running time. The exact algorithms are
inappropriate for the MCS problem as they take over one hour to search for the exact
solution in the test system. In practice, the security strategy must be provided as fast
as possible to prevent malicious cascading damage in the power system during attack
emergencies. In addition, without compromising the quality of the results, our
proposed algorithm significantly outperforms non-learned heuristic algorithms,
reducing running time from minutes to seconds.

Performances over the optimality gap: It is obvious that the GAT+RL algorithm can
reach significantly closer optimality (except for GA) than other classical non-learned
heuristic algorithms within 10000 iterations. Although there is still an optimality gap
with the exact algorithm (no more than 10%), the GAT+RL algorithm shows
significant advantages in running time as aforementioned.

It is worth mentioning that the GAT+RL algorithm is trained on a dataset consisting of
different trained MSC problem instances without supervision. The results are derived
by generalizing the model with trained parameters to an MSC problem with different
states s. Hence, it is reasonable that there is a slight optimality gap between the
GAT+RL algorithm and compared heuristic algorithms. Another concern is that our
objective is not to design a specialized, properly designed heuristic algorithm to
outperform others in terms of both the running time and the quality of solutions.
Instead, our objective is to investigate an appropriate algorithm across all the solvers
(exact algorithm, classical non-learned, heuristic algorithm, and so on) to resolve the
proposed problem under urgent circumstances. Obviously, the reinforcement learning
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algorithm demonstrates its superior performance in terms of the inference time in the
MSC problem.

5.6.3.3 Comparisons Against Deep Learning Baselines on Training

The point network (PN) model [140] is the first deep learning model capable of solving
combinatorial optimization issues effectively, which is a common baseline method.
The learning ability of our proposed GAT+RL algorithm in the training process is
evaluated compared with the state-of-the-art algorithm in [134] across Scenario I and
Scenario II, where MHA replaces RNN. The performance comparisons of the
proposed method and compared baseline method are shown in Fig. 5.8. It is observed
that our proposed method definitely outperforms the state-of-the-art baseline in terms
of convergence speed. Although MHA can effectively capture sequential information,
the GAT mechanism used in the proposed method is more effective at capturing the
structural information of measuring devices in the MSC. For the large-scale power
grid in the real world, the proposed method shows perspectives on running time.
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FIGURE 5.8: Validation curves of GAT-RL.

5.7 Summary

In this chapter, a novel micro-segmentation technique against the FDIA is designed,
which can be deployed in SCADA and enhance the detection capability of the
traditional BDD. This technique segments measuring devices into multiple security
groups, effectively restricting lateral attack propagation and significantly improving
the accuracy of residual-based BDD mechanisms. Theoretical analysis demonstrates
that attackers cannot construct completely stealthy attack vectors to bypass BDD, even
with sufficient system knowledge, due to the stringent conditions imposed by the
deployment of micro-segmentation configuration.
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To obtain a highly effective micro-segmentation strategy in polynomial time, a
GAT+RL optimization algorithm is designed to seek the micro-segmentation strategy
to maximize the combined cyber-physical metric. Simulations demonstrate the
effectiveness of the proposed micro-segmentation technique, with a significant
improvement in BDD detection rates against FDIAs, increasing from 5.23% to 94.02%.
In addition, it also demonstrates the computational efficiency of the GAT+RL
algorithm, which outperforms state-of-the-art methods while maintaining solution
quality. These findings underscore the effectiveness of the proposed
micro-segmentation technique in enhancing the security and robustness of modern
CPPS.
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Conclusions and Future Works

This research investigates the problem of analyzing and defending two representative
cross-layer threats in CPPS, including degraded QoS and FDIAs. Several defensive
approaches are designed and enhanced to evaluate and mitigate the cross-later impact
of QoS and FDIAs. In this chapter, the findings and limitations identified in the
previous chapters are first summarized, and then potential future directions are
discussed.

6.1 Conclusions

• Conclusions to Research Objective 1:

Chapter 3 proposes a joint optimization framework to optimize the D2D
communication resource allocation strategy, with the objectives of minimizing
QoS disruptions and mitigating their cross-layer impacts on microgrid stability.
To enhance the effectiveness of this optimization, the AW-MRAS algorithm is
introduced, which efficiently identifies effective D2D allocation strategies.

• Conclusions to Research Objective 2:

Chapter 4 proposes an economic vulnerability assessment to assess the
economic risks induced by carbon emission costs, which can effectively identify
the vulnerability power nodes while considering carbon cost. To assess node
vulnerability under the most threatening scenarios, an attack strategy
optimization framework is proposed, enabling the prediction of the most
threatening attack behaviors while considering interactions with ISO operators.

• Conclusions to Research Objective 3:

Chapter 5 proposes a micro-segmentation technique to strategically restrict
lateral attack spreading among measuring devices, thereby disrupting the
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stealthiness conditions of FDIA and improving the accuracy of residual-based
BDD. To enhance the effectiveness of this technique, a
cyber-physical-BDD-enhancement metric and a GAN+RT algorithm are
developed. These developments facilitate the design of segmentation strategies
that achieve polynomial-time efficiency and real-time responsiveness.

6.2 Future Work

In the summary sections of Chapters 3, 4 and 5, this research briefly discusses the
limitations and future work. In addition to the future work mentioned in these
chapters, additional limitations and directions for further exploration are highlighted
as follows.

In Chapter 3, the effectiveness of optimal D2D communication allocation strategy
cannot be ensured under extreme bandwidth limitations conditions, where time
delays might exceed the tolerance of control algorithms, posing significant challenges
to the proposed solutions. It is essential to fundamentally resolve bandwidth
limitations, such as repairing damaged base stations to mitigate the challenges posed
by such extreme scenarios.

In Chapter 4, the integration of market mechanisms, such as carbon emission credits,
expands the attack surface and increases the dynamic characteristics of CPPS. This
challenges both the predictive accuracy of attacker behavior and the effectiveness of
the vulnerability assessment framework. In such scenarios, in addition to the
vulnerability assessment, it is also necessary to strengthen market regulatory
mechanisms to constrain attackers’ abnormal arbitrage behavior.

In Chapter 5, the proposed micro-segmentation technique primarily targets cyber
devices within sensor networks, simplifying the analysis by considering only
transmission and measurement functions. However, in practice, the communication
nodes are often heterogeneous, featuring diverse functions and network topologies,
which leads to significant challenges for modeling and analysis of micro-segmentation
techniques. This simplification limits the applicability of the proposed model in
practical scenarios, which remains an open problem arising from the inherent
interdependence of CPPS.

In Chapters 3, 4 and 5 propose optimization framework incorporates both discrete
and continuous features, presenting challenges for efficient resolution within
polynomial time. As a result, heuristic algorithms are often preferred in practical
applications, as they typically yield feasible solutions more rapidly than approximate
or exact algorithms [67]. While the proposed heuristic algorithm facilitates prompt
defensive decision-making, it has limitations in balancing solution quality with
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computational efficiency during both the solving and training processes. Enhancing
the solution quality of heuristic algorithms remains an open area of research.

In summary, CPPSs are complex systems with inherent interdependencies and
cascading failures. Nowadays, no universal solution exists, as each specific cross-layer
threat requires tailored defensive measures. Future research should focus on
addressing these complexities by developing defensive approaches that
comprehensively analyze multi-layer node interactions and collaboratively leverage
strategies from all layers to design rapid response mechanisms that enhance
scalability and adaptability in CPPSs. These unresolved challenges offer significant
opportunities to advance the resilience and security of CPPS.
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Appendix A

A.1 Supporting Materials for Chapter 3

A.1.1 Generation of Reconstructing sampling set S”

The generation of reconstructing the new sampling set S′′ from the original set S is
given as follows.

• The unique elements {x′ik}N′
i=1 are selected from the sampling set S = {xi

k}N
i=1 in

step 2 in Algorithm 1.

• These elements {x′ik}N′
i=1 are in a new set S′ with |S′| = N′.

• For each element x′ik in set S′, it is sampled ni times. ni is proportional to the
value of S(J (x′ik)).

• After repetitively sampling, these elements {yi
k}N′′

i=1 are used to generate a new
sampling set S′′. |S′′| is defined as N′′ = n1 + n2 + · · ·+ nN′ .

A.1.2 Proof of Lemma 3.3

Referring to [113], the parameter θk+1 is updated by

θk+1 = arg max
θ∈Θ

Eθk [
[S(J (X))]k

f (X, θk)
I{J (X)≥γ̄k+1} ln f (X, θ)],

= arg max
θ∈Θ

∫︂
X
[
[S(J (X))]k

f (x, θk)
I{J (x)≥γ̄k+1} ln f (x, θ) · f (x, θk)]ν(dx),

= arg max
θ∈Θ

∫︂
X
[S(J (x))]k I{J (x)≥γ̄k+1} ln f (x, θ)ν(dx),
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The equal problem of estimating the parameters θ in f (x, θ) from sampling set
S′′ = {yi

k}N′′
i=1 can be formulated as

θk+1 = arg max
θ∈Θ

N
′′

∏
i=1

f (yi
k, θ)

= arg max
θ∈Θ

[ln
N′′

∏
i=1

f
(︂

xi
k, θ
)︂
] = arg max

θ∈Θ
ln{[∏

n1

f (Y = x′1k , θ)

·∏
n2

f (Y = x′2k , θ) · · ·∏
nN′

f (Y = x′N
′

k , θ)]}

= arg max
θ∈Θ

ln[ f (Y = x′1k , θ)
S(J (x′1k))]k I{J (x′1k)≥γ̄k}

· f (Y = x′2k , θ)
S(J (x′2k))]k I{J (x′2k)≥γ̄k}

· · · f (Y = x′N
′

k , θ)
S(J (x′N

′
k ))]k I

{︂
J (x′N

′
k )≥γ̄k

}︂
]

= arg max
θ∈Θ

[S(J (x′1k))]
k I{J (x′1k) ≥ γ̄k} ln f (Y = x′1k , θ)

+ S(J (x′2k))]
k I{J (x′2k) ≥ γ̄k} ln f (Y = x′2k , θ)

· · · S(J (x′N
′

k ))]k I{J (x′N
′

k ) ≥ γ̄k} ln f (Y = x′N
′

k , θ)]

= arg max
θ∈Θ

∫︂
X
[S(J (x))]k I{J (x)≥γ̄k} ln f (x, θ)ν(dx).

Hence, the optimization problem of Eqn. (3.19) can be converted to the problem of
estimating the probability distribution function f (x, θ) from sampling set S′′ via
Eqn. (3.20).

A.1.3 Analysis of the Optimal Transmit Power

The asymptotic analysis is conducted to explore the relationship between energy
efficiency and transmit power. Specifically, it investigates the energy efficiency in
scenarios where the transmit power is either very small or very large. This analysis
reveals that energy efficiency initially increases and then decreases as transmit power
pd rises, indicating the presence of an optimal transmit power.

Specifically, the energy efficiency is defined as f c
1(P

d, ξ) = Rc(Pd,ξ)
P c(Pd,ξ) , where the total

throughput isRc(Pd, ξ) = ∑I
i=1Rc

i + ∑I
i=1 ∑L

l=1 ξl,iRl and the total power
consumption is P c(Pd, ξ) = 1

2 (∑
I
i=1 pc

i + pBS) + ∑I
i=1 ∑L

l=1 ξl,iϵl pd
l,i.

To simplify the description and facilitate the discussion, some constants are
consolidated for ease of representation. Furthermore, once a specific power allocation
matrix ξ is given, this energy efficiency in D2D linked l can be expressed as
f c
1 = Rc(pd)

P c(pd)
, whereRc = Rcsum

i +R = Rcsum
i + Bc log2(1 + γ) and P c = PBS+c + ϵ · pd.

γl =
∑Ii=1 ξl,i pd

l,i(k)gd
l

σ2
0+∑Ii=1 ξl,i

(︂
pc

i gc
i,l+∑Ll′=1,l′ ̸=l ξl′ ,i p

d
l′ ,i(k)gd

l′ ,l

)︂ is simplified as γ = pdgd

(σ2
0+Ic+I′) .
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(1) Low Transmit Power pd Case: When pd is very small, the SINR is also very small.
Using the linear approximation for small SINR, it yields
R = Bc log2

(︂
1 + pdgd

σ2
0+Ic+I′

)︂
≈ Bc pdgd

σ2
0+Ic+I′ · log2 e. Then, the energy efficiency is

f c
1 ≈

Bc·log2 e· pd gd

σ2
0+Ic+I′

+Rcsum
i

pd+PBS+c . When pd is very small and much smaller than PBS+c, the
energy efficiency approximates to:

f c
1 ≈

B·log2 e· pd gd

σ2
0+Ic+I′

+Rcsum
i

PBS+c ≈ Bc·pd·gd·log2 e+Rcsum
i ·(σ2

0+Ic+I′)
(σ2

0+Ic+I′)·PBS+c . Therefore, the energy efficiency

increases linearly with a small pd.

(2) High Transmit Power pd Case: When pd is large, the SINR γ is also large. Using the
logarithmic approximation for large SINR, it yieldsR ≈ Bc log2

(︂
pdgd

σ2
0+Ic+I′

)︂
. Then, the

energy efficiency is f c
1 ≈

Bc log2

(︃
pd gd

σ2
0+Ic+I′

)︃
+Rcsum

i

PBS+c+ϵ·pd . Since the logarithmic function grows

more slowly while the total power consumption (PBS+c + ϵ · pd) increases linearly, the
energy efficiency f c

1 will start to decrease when pd is large. Based on the analysis,
when pd is relatively small, the initial value of energy efficiency is relatively low, and
it increases as pd rises. Conversely, when is pd becomes substantially large, the initial
energy efficiency is higher, but it begins to decrease with further increases. Without
loss of generality, the complex relationship between energy efficiency and transmit
power can be represented by the curve trend shown in Fig. 3.
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[71] Mete Ozay, Iñaki Esnaola, Fatos T. Yarman Vural, Sanjeev R. Kulkarni, and
H. Vincent Poor. Smarter security in the smart grid. In 2012 IEEE Third
International Conference on Smart Grid Communications (SmartGridComm), pages
312–317, 2012.
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