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ARTICLE INFO ABSTRACT

Communicated by Mehdi Ghoreyshi Deep learning technologies are increasingly used in various applications, with significant potential in aerospace
for reduced-order modelling due to their ability to handle nonlinear systems. The effectiveness of data-driven
methods relies on the adequacy and volume of training data, which poses a challenge in a design environment.
To address this, physics-informed machine learning, which integrates physics knowledge into data-driven
frameworks, has emerged as a promising solution. Directly applying physics terms to aircraft surfaces is complex,
so this study utilizes solution gradients to effectively capture flow features. We introduce a hybrid framework
that combines geometric deep learning with gradient terms, building on a previous data-driven approach
for aerodynamic modelling on large-scale, three-dimensional unstructured grids. We evaluated various hybrid
schemes to enhance prediction accuracy. Two gradient-enhanced approaches were found to outperform the
purely data-driven model: the first integrates output differentiation into the training loss, achieving the highest
accuracy at an increased training cost; the second employs a masking technique to weight regions with large
gradients, providing a reasonable accuracy improvement at a lower training cost. This study focuses on predicting
distributed aerodynamic loads around the NASA Common Research Model wing/body configuration under
various transonic flight conditions. Our findings show that incorporating gradient information into deep learning
models significantly improves the accuracy of the predictions and can compensate for a smaller dataset without
compromising accuracy. Furthermore, the approaches proposed herein are directly applicable to any problem
with discretised spatial domain.
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1. Introduction Reduced order modelling (ROM) and model order reduction are tech-
niques for reducing the complexity of a full-order, high-fidelity model
providing a trade-off between cost/complexity and prediction accuracy.
The main features of a ROM [6,24] are: a) reduce the size and com-

plexity of the computational model; b) retain dynamic nonlinearities;

The use of three-dimensional, unstructured grids for aerodynamic
analysis of full-scale aircraft, is an established process in industry. Grids
often consist of tens of million of grid points. In the case of aircraft

aerodynamics across the flight envelope, for example, high-fidelity com-
putational fluid dynamics (CFD) are typically solved around these grids
on high-performance computing facilities [1,31]. Each flight condition
is important for design and sizing of various aircraft components, and
this is regulated by airworthiness authorities [8]. Aircraft spend most
of the flight time in the transonic regime where, for example, the target
cruise drag is set during the design process [17]. Running aerodynamic
analyses at hundreds of flight points to establish performance charac-
teristics is far from routine due to the increased computing costs. The
work presented herein is motivated by the desire to have a solution to
this long-standing problem, which is common in many other engineer-
ing fields, from the automotive industry and racing cars to the wind
energy.
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and c) recover the full-order dynamics of the system. There are two
general classes of ROMs: intrusive approaches that manipulate the gov-
erning equations; and non-intrusive approaches that only require avail-
able data. The work here presented exploits the latter category, making
progress in the deployment of deep learning algorithms.

Common nonlinear ROM approaches, including Kriging [10], are de-
signed for the prediction of (scalar) aerodynamic forces. By contrast,
modelling of 3D aerodynamic fields is more interesting for design op-
timisation purposes. This motivates the adoption of deep learning. A
fundamental problem of deep learning algorithms for the generation
of an aerodynamic ROM is that common neural network (NN) archi-
tectures are inadequate when confronted with the large-scale, unstruc-
tured grids of full-scale simulations [12]. Fully-connected NN [37,36]
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are known for poor scalability, and convolutional NN [7,28] are only
applicable to Euclidean (regular) domains. Geometric deep learning
(GDL) is an umbrella of NN approaches designed for non-Euclidean
domains [4]. GDL methods leverage the mesh connectivity to exe-
cute message-passing operations across the grid [5]. To address the
issue of scalability, a dimensionality reduction technique to compress
the large spatial domain without general loss of information is con-
venient [21,20]. Neural-network dimensionality reduction approaches,
known as autoencoders [13], compared to the classical Proper Orthog-
onal Decomposition (POD) method, provide the added benefit of non-
linear domain compressions and subsequent recovery [23].

This work builds on previous studies [25,26] that introduced a
graph-convolutional multi-mesh autoencoder framework, referred to
as GCN-MM-AE, demonstrated on a transonic aircraft. Both steady-
state and unsteady conditions have been considered. Despite a good
agreement with reference data, results highlighted a persistent problem
with data-driven models: the inability to perform well in new experi-
ments away from the training samples, a property known as generalisa-
tion [29,38]. To capture the physics correctly, data-driven NNs remain
strongly reliant on sufficient training data distributed across the entire
design space. However, the available number of training samples, in the
context of costly engineering analyses, such as CFD for aerodynamics, is
strongly limited by computing power. A new paradigm is sought to im-
prove the inference performance of data-driven models when the data
available is limited.

In contrast to purely data-driven approaches, physics-informed ma-
chine learning (Phi-ML) [41,43] integrates governing equations directly
into the model architecture. Phi-ML algorithms utilize the residuals of
partial differential equations as loss functions for model parameter op-
timization. Despite their potential, physics-informed NNs (PINNs) face
significant challenges in fluid dynamic applications [33,2], being pri-
marily limited to two-dimensional laminar flows [1] and exhibiting poor
scalability by adopting fully-connected NNs, which restricts their appli-
cability from practical aerodynamic problems. Works adopting Convolu-
tional NNs with fully embedding of the physics equations exist but these
required the non-trivial transformation of the irregular domain into a
cartesian grid, limiting the complexity of the domain shape [9,14].

Furthermore, in the case of fluid dynamics, the governing equations
apply within the fluid volume. By contrast, to maximise computational
efficiency, ROM predictions are generally tailored to address surface
predictions, where the physics equations are not applicable. For cases
with large spatial domains (e.g. aircraft design), complex physics equa-
tions (turbulent Navier-Stokes equations [31]) and the high costs associ-
ated with training data from computational fluid dynamics (CFD) simu-
lations, a hybrid approach combining data-driven and physics-informed
methods is a potential alternative. Embedding partial physics knowledge
into data-driven algorithms can enhance the performance of predictive
frameworks [42,44], particularly in under-sampled regions of the design
space. For example, multi-scale methods to enhance the model predic-
tion accuracy of distributed fields and scalar loads by constraining the
dedicated networks to shared latent features were proposed by [45,30].
However, these works dealt with 2D configurations and there is no cer-
tainty of a direct correlation between the predicted aerodynamic fields
and the predicted forces.

The challenge we address in this work is the prediction of the sur-
face flow solution, including the pressure and skin friction coefficient,
around a three-dimensional aircraft configuration at any flight point
within a pre-defined flight envelope. Our conjecture to improve the pre-
dictive capability of the model is to leverage on the surface gradients of

the solution field, V(-) = [%, %), %] . The gradient terms are a conve-

nient choice because they are:

» Computationally cost-effective, in the sense that differentiation of
distributed quantities is easier than solving partial differential equa-
tions.
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« Useful to identify flow physics characterised by a rapid variation of
the flow quantities, such as shock waves, boundary-layer separation
and flow acceleration at the leading edge.

The aim of this work is to explore the feasibility of an hybrid pre-
dictive framework whereby a purely data-driven approach is enhanced
with gradients of the surface field. Starting from the GCN-MM-AE model,
we answer the following research question: what is the best route to
embed gradients information into the model architecture? Various ap-
proaches can be considered to embed gradient terms into the model
architecture. For example, a mixed-gradient-error-based loss function
was incorporated in [39] to enhance a CNN-based model for predict-
ing the Mach field around 2D nacelles. In that study, Sobel filters were
applied to flow-field data to emphasize edges, a technique common in
image processing. However, while Sobel filters are effective for high-
lighting large gradients in structured domains, they are unsuitable for
irregular grids, necessitating alternative methods to computing gradi-
ents. Consequently, we resort to spatial differentiation of the solution
fields. In the following sections, we propose five distinct approaches
to introduce gradients into the model, enriching the predictive model
and enhancing the understanding of the underlying physics particularly
in complex and under-sampled regions. The performance assessment
is carried out on the NASA Common Research Model (CRM) [25,15]
at transonic conditions. It is worth noting that, despite the test case
addressing aerodynamic predictions, no domain-specific knowledge is
used to derive the gradients. As a result, the methodology presented
herein is adequate for any other field (in engineering and beyond) in-
volving mesh-based simulations.

The paper continues in Section 2 with a description of the method-
ology and the different routes to embed gradient terms. A description of
the test case providing a justification for the proposed hybrid approach
is given in Section 3. Section 4 contains an analysis of the results for the
various schemes. Conclusions are given in Section 5.

2. Methodology
2.1. Graph-convolutional multi-mesh autoencoder overview

First, we provide a brief description of the methodology for the
entirely data-driven architecture, which serves as reference for the hy-
brid approach implementation. A neural-network based architecture is
sought that generates a map between the vector of input conditions s
and the fields to predict Y; on the nodes i of a surface mesh S:

Y, =/\N (s’xi’®>

with the [x, y, z] coordinates x; € R"*3 where n,, the number of mesh
nodes, being also included as inputs to embed the spatial mapping. The
optimal model parameters ® are sought that minimise the mean squared
error (MSE) [3] between the predicted and the reference solutions fields:

Vies, @

ngn Lo=[1YNN— YCFD||§ 2

To leverage geometric deep learning [4] on unstructured CFD
meshes, the surface mesh is represented as a graph. Target fields Y,
and position coordinates x; are assigned on the graph nodes; and user-
defined weights e;;, on the edges of connected nodes. Fig. 1 illustrates
a graph representation from the triangular mesh of the CRM model,
including node-based features, coordinates and edge weights.

From the family of GDL methods, we adopted the GCN operator [19]:

1 1
g(y)=h<9Ti)’if4D’5 y+b> 3)

with 0 a layer-specific trainable weight vector, b a constant term and y
the node-based input vector at each node of the mesh S. A = A + I, with
A=e,;, is the adjacency matrix and D =diag(}; ¢;; + 1), the diagonal
degree matrix, i.e. the sum of the edge weights connected to target node



D. Massegur and A. Da Ronch

Fig. 1. Mesh represented as a graph with node features and edge weights.
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Fig. 2. Multi-mesh cycle, demonstrating interpolation between mesh levels of
different resolution.

i. It is convenient to arrange the connectivity matrix in sparse form Ae
R”*3 containing, for each edge, the indices of the connected node pairs
i,j and the respective weight value e; ;e The PReLU function [11] was
chosen as nonlinear activation: A(x)={x for x > =0, px otherwise},
with g a learnable parameter.

To address large spatial domains, an autoencoder approach for di-
mensionality was adopted [13]. To this aim, the GCN layers were
embedded in a multi-mesh (MM) scheme, resembling the multi-grid
method to solve partial differential equations [27]. The MM cycle
coarsens the mesh while extracting crucial features and subsequently
refines the latent states back onto the original mesh, as illustrated
in Fig. 2. To transfer the information between mesh levels, a weighted
moving least squares interpolation was implemented [32,16]. Refer to
Refs. [25,26] for complete description of this developed data-driven
framework formulation.

The reference data-driven GCN-MM-AE architecture for steady aero-
dynamic predictions is illustrated in Fig. 3. In the encoder, the input
vector is fed through a GCN block, followed by the coarsening interpo-
lation of the MM cycle and another GCN block. It follows the decoder,
consisting of a GCN block, then the refining step of the MM and a GCN
block acting on the refined mesh. Last, the network ramifies into sepa-
rate blocks for each field quantity to predict.

The methodology just described corresponds to the regular data-
driven (DD) approach, to which the gradient-guided (GG) contribution
is embedded.

2.2. Gradient-guided schemes

Five different hybrid gradient-guided data-driven approaches were
investigated, to compare and identify the best suited hybrid scheme for
aerodynamic field predictions.
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2.2.1. Gradients as target predictions
The gradients of the target fields are also included as predicted quan-
tities alongside the respective fields. Therefore, the NN-based model fyn
predicts as outputs both the target fields and the gradients:

(Y. VY Iy = fan, (5.%,0)  Vies, 4

The model parameters ® are consequently optimised with minimi-
sation of the loss against the CFD solution and gradient data:

min £, = [|1Y, VY lyy = 1Y, VY legp |13 (5)

This first approach is illustrated in Fig. 4 Panel (a). The implemen-
tation remains identical to the data-driven framework in Fig. 3 but with
additional output quantities. The idea here is leveraging more informa-
tion in terms of outputs to assist the model towards a more physical
solution.

2.2.2. Model output gradient loss

With the output quantities Y; from the NN model, the respective
surface gradients are subsequently computed by spatial differentia-
tion [22]:

V/\', &4
Yinn = S, (S,x;,®)—y> VY;\n ViES, 6)

The error between these computed gradients from the model predictions
and the ground-truth gradients from CFD is incorporated as a second loss
term for the model optimisation. As a result, the model parameters are
optimised with this composed loss function:

ngn L= 1Y = Yerpll3 + AlIVY i = VY epl 13 )

where 4, is a lagrange multiplier to calibrate the contribution between
the DD loss, related to the target fields, and the gradient loss follow-
ing the differentiation operation. Note that the spatial differentiation
implementation must be compatible with the back-propagation execu-
tion [35] from the gradient loss for the model parameter optimisation.
The complete gradient-loss framework, now featuring separate DD and
GG embeddings, is illustrated in Fig. 4 Panel (b). The complete pro-
cess is only required during model training. To execute new predictions,
the gradient-guided block is not required but just the usual data-driven
block is called.

2.2.3. Gradients as model latent states

The NN-based model is imposed to compute the gradients as latent
states at the end of the decoder, before the architecture bifurcates for
each target quantity. As a result, the predicted fields are constrained by
the solution gradients being predicted at an interim stage:

VY15 = fan, (8:%:0a8) = Y NN
= fang, (5% VY 15, Opanen)  VIiES, ®)

The autoencoder parameters, i.e. before the model bifurcates to each
quantity in Fig. 3, are optimised with the composed loss function, using a
lagrange multiplier for calibration between the two terms. By contrast,
the parameters in the final branches are trained with the single data-
driven loss relevant to the target fields:

{ ming . L£3;=||Yxn—Yerpll + 4311Y1s = VY crpll3

i - 2 ©)
mln@branch ["3,2 - ”YNN - YCFD”2

This gradient-guided latent-state implementation is shown in Fig. 4
Panel (c). The idea is to embed the gradients into the latent states of the
model to obtain a more physical inference system.

2.2.4. Gradient weighted model output loss

Reducing the prediction error where the solution gradients are larger
is key to capturing the flow features. To achieve this, the idea is to pe-
nalise the loss further in the regions of the domain with larger variation
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Fig. 3. Schematic of the data-driven steady-state GCN-MM-AE model architecture, introduced in previous work [25] used as baseline configuration for the gradient-

guided schemes.

of the solution. We use the reference gradients to weight the target loss
during the optimisation of the model. This scheme is illustrated in Fig. 5
Panel (a), where the Hadamard product is used to scale the loss by the
gradient value. The model loss is therefore penalised (magnified) where
the solution presents larger variation. Note that we chose as weights
the derivative in the streamwise direction ? only, as this is the most
interesting of the three components from a physical standpoint. Alter-
natively, weighting for the remaining two derivatives is also possible
through a linear combination. This GG loss is added to the original DD
loss via a lagrange multiplier:

2
Wer) (10
0x

. 2
min Ly=1YNn—Yerpll; + 44 (YNN - YCFD)

2.2.5. Gradient masked model output loss

To emphasise the regions with larger solution variation, a mask filter
is applied to select only the grid points that exceed a fixed derivative
threshold or excluded otherwise. The masked loss is added to the main
loss again with a lagrange multiplier for calibration, useful to further
penalise the mesh nodes with derivative values above a chosen limit:

ngn £5:||YNN—YCFD||§+/15||M®(YNN_YCFD)||§ an
where the mask matrix is defined as:

_J 1 if |VYcppl > 65
M= { 0 else a2

with §5 a fixed threshold, which is manually calibrated to encapsulate
the regions with large solution gradients. The gradient-guided masking
process is shown in Fig. 5 Panel (b).

2.3. Additional methodology remarks

The proposed hybrid schemes differ by concept and complexity. This
motivates the aim to leverage the various embeddings and assess their
ability to assist the model towards understanding the physics better.
Note also that these schemes are not exclusive but they are actually
combinable together. As a result, and to the best of our knowledge, our
work is novel on these fronts:

1. Development of a cost-effective hybrid data-driven and physics-
guided approach to improve the machine-learning modelling per-
formance of aerodynamics systems.

2. Embedding of the proposed gradient-guided approach into a geo-
metric deep learning based framework for large and unstructured
domains.

3. Investigation of distinct schemes to embed physics knowledge,
leveraging the solution gradients, into the geometric deep learning
based framework for direct prediction of the aerodynamic solution
fields on the aircraft surfaces.

The various neural-network frameworks were implemented using Py-
Torch 1.13,' an optimised deep-learning library in Python, and
PyTorch Geometric,” a user-friendly graph neural-network library
built upon PyTorch. Regarding the solution gradient computations, the
MeshGradientPy® package was adopted because of being embeddable
with PyTorch’s back-propagation scheme. This package’s gradient im-
plementation is based on the formulation from [22]. The widely used
pyvista® package was preferred for post-processing of the gradients.

3. NASA common research model

We adopted a relevant problem in the aerodynamics field as test case.
Nevertheless, the advantage of our proposed gradient-based approaches
is that they are directly applicable to any other discipline, independently
of the underlying physics, wherein the spatial domain is discretised as
a mesh.

3.1. Reference CFD dataset

To demonstrate our models we used the NASA Common Research
Model (CRM) [40,34], which consists of the wing/body model illus-
trated in Fig. 6 Panel (a). Reference geometric chord is ¢ =0.1412 m,
surface area S'=0.0727 m? and the origin for moment calculations
Xeq/c=0.5049. We address steady-state prediction of the pressure
and wall shear stress coefficients on the nodes of the surface mesh,
Y,=[Cp.C,.C, .C. ], € R"*4, given the mesh node coordinates x;
and the envelope of Mach numbers M € [0.70,0.84] and angles of
attack a,, € [0.0,5.0], at constant Reynolds number Re=5 - 10% and
freestream temperature 7, =311 K. We used 70 steady-state RANS CFD
solutions from a companion paper [25] to sample the envelope, shown
in Fig. 6 Panel (b), of which 40 were used to train the models (circles
with black labels) and 30 left for final testing (triangles with red labels).

The CFD model involved 50 million cells, of which 74k on the walls,
shown in Fig. 6 Panel (a), one-equation Spalart-Allmaras RANS turbu-
lence model and the SU2 solver was used. Full details on the generation

https://pytorch.org/.
https://pytorch-geometric.readthedocs.io/en/latest/.
https://github.com/DonsetPG/MeshGradientPy.
https://docs.pyvista.org/.
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(a) Approach 1: gradients predicted by the data-driven model, together with the target quantities.
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(b) Approach 2: gradients computed via differentiation of the model predictions and added to the
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(c) Approach 3: solution gradients imposed as latent states at the autoencoder output before the

model bifurcation to each quantity field.

Fig. 4. Schematics of the various gradient-guided approaches. The blue block is for
block is for the gradient-guided embedding. (For interpretation of the colours in the

of the CFD simulations are in Ref. [15]. Fig. 6 Panel (b) illustrates the
variation of the lift coefficient C; with the sampled freestream condi-
tions, obtained by integration of the pressure and shear stresses results
from the reference CFD solutions. The lift coefficient correlates nonlin-
early with the angle of attack a, and there is also a dependency across
the Mach range M.

Table 1 clarifies the input and output variables involved in the CRM
test case, including the dimensions of the tensors. The inputs also involve
the coordinates of the mesh x, aimed at inferring the spatial mapping,
and the connectivity A, required to embed the information across from
neighbouring nodes in the GCN layers. The physics embedding terms,
consisting of the solution gradients, are embedded at different stages
of the training framework depending on the specified approach, as de-
scribed in Section 2.2. Despite this test case deals with the envelope of

the GCN-MM-AE, corresponding to the data-driven model in Fig. 3; the green
figure(s), the reader is referred to the web version of this article.)

Table 1

Relation of inputs, outputs and physics embeddings in-
volved in the CRM framework. The predicted quantities
involves the pressure coefficient Y:[C,,,C,X,C,y,CT:],
global inputs are the s=[a,, M ] and x=[x,y,z] the
mesh coordinates.

Inputs Outputs Physics Terms

[s,x]€ Rn,‘x(2+3)’ AecRX3 Y € R4 VY € Rm>4x3

Mach number and angle of attack conditions, the framework is suitable
to other types of input conditions (side slip or Reynolds number) and
include design parameters in design optimisation tasks.
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Fig. 5. Gradient-guided approaches continued from Fig. 4. Operator ® denotes Hadamard (element-wise) product.
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(a) Surface mesh representation of the CRM model. (b) Lift coefficient Cp, results from CFD of the
envelope sampling. Values are also labelled for
clarity. Circles with black labels are the samples
chosen to train our models, and triangles with red
labels are only used for testing.

Fig. 6. Reference dataset of the Common Research Model test case.



D. Massegur and A. Da Ronch

Aerospace Science and Technology 160 (2025) 110037

(a) Moo=0.71, aco=4.72 deg.

(b) Moo=0.84, aoo=4.98 deg.

(¢) Moc=0.71, aco=0.57 deg.

(d) Moo=0.83, atoo=0.25 deg.

Fig. 7. Pressure coefficient Cj distribution for the CFD samples labelled with the same letters in Fig. 6 Panel (b).

(a) Mx=0.71, doo=4.72 deg.

(¢) Moo=0.71, aco=0.57 deg.

(d) Moo=0.83, acc=0.25 deg.

Fig. 8. Streamwise derivative of the pressure coefficient % distribution for the same selected CFD cases.

3.2. Background physics

From the reference CFD database, we analysed the results at the
extremes of the envelope, labelled with letters a to d in Fig. 6 Panel
(b). Labelled samples e to g will be used for analysis of results in Sec-
tion 4. Fig. 7 shows the pressure coefficient Cp for the selected samples,
arranged by low a, on the bottom Panels and high M, on the right Pan-
els. Significant variation of the pressure distribution with the freestream
conditions occur. At lower Mach numbers, left Panels, we observe a tran-
sition of the shock wave towards the leading edge with increasing the
angle of attack, as well as an intensity increase. By contrast, increasing
the Mach number, the peak pressure distribution flattens and the shock

wave becomes stronger. Furthermore, the shock-wave location remains
stable independently of the angle of attack, right panels.

In this work, we also leverage the gradients of the distributed aero-
dynamic quantities. Fig. 8 illustrates the derivative in the streamwise
direction %. The streamwise derivative is typically the dominant com-
ponent to capture the most crucial flow features, e.g. flow acceleration
along the leading edge of the wing or the shock waves on the upper
and lower surfaces. Derivatives along the crosswise direction a{%’, typi-

cally useful to capture tip vortices, or the vertical direction % , are also

reported in Appendix A. Furthermore, the gradients for the wall shear

stress components [VCTX, VCTy, VCTZ], are also computed but not re-
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ported here for brevity. We observe how the adC—XP clearly identifies the
location of the shock wave on the wing on the various samples. In lower
M ., (left panels), a significant variation in shock location and intensity
is visible. By contrast, at the higher Mach numbers (right panels), the
shock wave remains stable, as expected.

Fig. 7 showcases how the range of flight conditions chosen (transonic
regime) is particularly challenging because small variations of operat-
ing conditions cause large variations in the flow field [25]. The distinct
physics phenomena observed in this preliminary analysis justifies the
implementation of a method based on geometric deep learning for the
prediction of aerodynamic fields on the surface of the aircraft. Further-
more, the behaviour of the solution gradients motivates investigation of
hybrid approaches which leverage these terms to enrich the reduced-
order modelling inference.

4. Results

To address the comparison of the various frameworks, we laid out
different analyses based on three scenarios prescribed via variation of
the dataset and model sizes:

1. Large model and original dataset: to start with, a similar
model architecture from the steady-state framework developed in
Refs. [25,26] is adopted, featuring the same kernel size prescrip-
tion. The dataset includes 40 CFD solutions for training, with the
remaining 30 as test set. This scenario considers the situation where
enough resources are available, both for a more in-depth prelimi-
nary scan of the design space and for computationally sizeable ROM
memory.

2. Large model and reduced dataset: the model size is preserved but
the dataset is reduced to 20 training samples, resulting in 50 for
testing. This is the scenario where the amount of data is limited.

3. Small model and original dataset: based on the same multi-mesh
architecture, the number of kernels (channels) in each layer is
halved. The original dataset split of 40 training and 30 test sam-
ples is preserved. This is the scenario where the computing memory
capacity is limited.

Each of these scenarios are frequent in aerospace related tasks. Hence
the interest in demonstrating the adequacy of the various approaches
at each of these distinctly possible events. To this aim, we assessed the
performance of the proposed frameworks for each scenario by analysing
the predicted distributed fields as well as the integrated scalar quantities
across the sampled envelope. Note that a fourth scenario involving a
small model and a reduced dataset, i.e. combining scenarios 2 and 3, is
also interesting but was not considered here for brevity.

The definitive steady-state GCN-MM-AE model implementation,
Fig. 3, adopted a mesh-resolution compression ratio of 16 (from 78k
to 5k nodes). The first-order gradient-based algorithm Adam [18] and
the mean squared error (MSE) loss function [3] were adopted for the
optimisation of the model parameters. The inputs were standardised
with the mean fields and normalised with the standard deviation to en-
sure a more efficient training process. Full details of the steady-state
GCN-MM-AE model architecture and hyper-parameters are reported in
Appendix B. The developed GCN-MM-AE framework from that work is
used here as the purely data-driven baseline for comparison with the
various hybrid approaches proposed in this study. Furthermore, Ap-
pendix C reports the choice of hyper-parameter values relevant to the
proposed gradient-based approaches.

The various frameworks are designed to predict the pressure Cp
and the three shear-stress [CTX s Cry, sz] fields. No bespoke ROMs were
dedicated to directly obtain the resulting forces and moments. Load re-
sultants are instead obtained by surface integration of the distributed
quantities.
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4.1. Scenario 1: large model size and original dataset

This analysis is for the large model size (reported in Table B.7 of the
Appendix) trained with the original training dataset of 40 samples out
of the 70. For brevity, we report results on lift C; and pitching moment
coefficients C M,» 3S these are the most interesting resultants in aircraft
design, with drag typically being an order of magnitude lower. Fig. 9
reports the relative error in percentage for the C; (left) and the CMy
(right) obtained with the original data-driven model architecture across
the entire dataset. Reported errors are classified by training (circles) and
test (triangles), to assess model generalisation to unseen conditions. The
traffic-light colour scheme, convenient for visual judgement, displays
errors below 5% in green, below 10% in amber and above 10% in red.
We observe how lift (left panel) is very well predicted across the entire
dataset, with all errors consistently below 5%.

The errors on the pitching moment (right panel) were found, by
contrast, considerably larger. Slight discrepancy of the shock wave can
cause significant variations of the pitching moment. Not surprisingly,
the error is larger towards higher angles of attack, where the response
becomes nonlinear. In particular, we focus on the sample at M =0.76
and a, =4.42 deg, sample e in Fig. 6(b). This test sample proved to
be the most complicated to predict due to the lack of training samples
in the vicinity to adequately learn that region of the envelope. These
prediction results represent the benchmark to assess the performance
of the proposed gradient-guided schemes. Figs. 10 to 14 illustrate the
same analyses for the five distinct GG frameworks. The traffic-light clas-
sification results convenient to identify the best suited embeddings for
enhanced modelling accuracy. The error on the lift coefficient, left pan-
els, remained low among all the models. Observing the right panels,
we identified three out of five GG models that outperformed the pitch-
ing moment coefficient predictions: adding the gradient of the model
outputs to the loss function, Fig. 11; using the gradients for loss weight-
ing, Fig. 13; and the masking, Fig. 14. By contrast, adding the gradients
as target predictions, Fig. 10, or imposing them as latent states, Fig. 12,
were not found as interesting.

To complete the error analysis, Table 2 reports a statistical summary
of the lift, drag and pitching moment coefficient errors on the test set,
represented by triangles in Figs. 9 to 14, to verify model performance in
flow conditions not seen during model training. For each approach, the
average error, the standard deviation and the worst sample are reported.
Furthermore, for the various GG models, the variation with respect to
the baseline data-driven implementation is also reported for each met-
ric. We observe how, despite there are large variations on the C; and Cp,
errors compared to the baseline values, the average errors are actually
significantly low. The average error was found instead an order of mag-
nitude larger for the CMy and, therefore, more significant. To remark
that the pitching moment is strongly influenced by the location of the
shock wave, a flow feature that the gradient embedding should crucially
capture. Three of the proposed GG frameworks were found to improve
the average error on the pitching moment by at least 16%. These are for
the gradient loss, the weighting and the masking approaches. By con-
trast, the gradient targets and the latent state approaches were not found
to improve the baseline data-driven accuracies. In the case of the target
approach (GG model 1), the worse performance could be attributed to
the fact that the same model size was adopted to predict a larger num-
ber of target variables. Improvements might be possible with increasing
the size of the model layers, impacting on the computing memory. We
conclude that embedding physics terms as direct variables to predict,
either in interim layers or as outputs, does not seem adequate.

4.2. Scenario 2: large model size and reduced dataset

New ROMs were generated with only 20 dataset samples as opposed
to 40 but keeping the same model size. The idea is to demonstrate the
performance of the GG frameworks in tasks with limited data availabil-
ity. From the three best candidates identified in the previous section, the
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Table 2
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Prediction error statistics on the test samples of the CRM test case; comparison for the various modelling approaches
based on the large model and original training dataset (scenario 1).

£c, [%] £c, [%] eCM) [%]

mean std dev worst mean stddev  worst  mean std dev  worst
DD model (baseline) 0.8 0.7 3.2 0.8 0.8 3.6 3.7 7.1 38.9
GG model 1 (grad. targets) 0.8 0.5 2.0 1.0 0.9 3.5 4.9 6.7 23.7
A to baseline [%] 7.5 26.5 10.1 32.8
GG model 2 (grad. loss) 0.6 0.4 1.7 0.9 1.1 5.2 2.5 3.6 19.1
A to baseline [%] 23.0 33.7 45.2
GG model 3 (grad. latent state) 0.7 0.6 3.0 1.1 1.0 3.9 4.0 7.0 38.6
A to baseline [%] 41.5 21.9 8.5 7.2
GG model 4 (grad. weighting) 0.7 0.5 1.8 1.0 1.2 5.8 2.9 4.9 27.8
A to baseline [%] 27.9 48.8 63.7
GG model 5 (grad. masking) 0.5 0.5 2.6 0.9 0.8 3.6 3.1 5.9 33.6
A to baseline [%] 21.5 3.2 0.3

Table 3

Prediction error statistics on the test samples of the CRM test case; comparison for selected modelling approaches
based on the large model and reduced training dataset (scenario 2).

ec, [%] e, [%] ec, %]

mean  stddev  worst mean stddev  worst mean stddev  worst
DD model (baseline) 1.1 0.8 3.7 1.5 1.5 8.2 7.0 8.9 41.2
GG model 2 (grad. loss) 0.6 0.4 2.2 1.6 1.8 10.3 3.8 5.8 33.7
A to baseline [%] 12.5 22.1 26.2
GG model 4 (grad. weighting) 1.1 1.0 4.2 1.9 2.3 12.9 6.2 9.2 37.8
A to baseline [%] 4.0 26.8 13.6 31.8 49.4 58.2 2.5
GG model 5 (grad. masking) 1.3 1.6 7.0 1.7 2.5 11.3 4.5 4.6 25.8
A to baseline [%] 23.4 99.1 90.6 15.1 62.9 38.9

Table 4

Prediction error statistics on the test samples of the CRM test case; comparison for selected modelling approaches
based on the reduced model and original training dataset (scenario 3).

£c, [%] ¢, [%] eCM) [%]

mean stddev  worst  mean std dev  worst mean std dev worst
DD model (baseline) 1.0 1.1 5.3 1.1 1.3 6.7 4.8 7.1 33.8
GG model 2 (grad. loss) 0.8 0.5 1.8 1.2 1.1 4.9 3.4 5.8 32.4
A to baseline [%] 4.7
GG model 4 (grad. weighting) 1.2 0.8 3.6 1.3 1.2 5.7 5.2 6.8 26.4
A to baseline [%] 20.4 16.6 10.1
GG model 5 (grad. masking) 0.9 1.1 4.9 1.5 1.6 6.7 4.2 6.5 31.9
A to baseline [%] 3.6 31.5 19.1

output differentiation (GG method 2) and the masking (GG method 5)
approaches were found the better candidates here. To keep brevity, from
now on we present results for these two schemes only, and compared
their contribution against the baseline data-driven model. Figs. 15 to 17
illustrate the prediction error on the C; (left panels) and the C M, (right
panels) for the baseline DD model, the output gradient and the mask-
ing approaches, respectively; adopting the same traffic-light criteria as
before. Once again, the lift is adequately predicted by all the models.
Regarding the pitching moment, with less training data, we found sig-
nificant degradation of the prediction accuracy, Fig. 15 against Fig. 9.
This outcome is expected given that the model was trained with half the
data size. However, significant improvements are observed with both
GG schemes, Figs. 16 and 17, consistent with the observations from the
analysis of the first scenario. We also observe how the worst predictions
are for the test samples, i.e. most red and amber samples are triangles,
not included in the training dataset. This evidences that the design space

11

is not sufficiently sampled. In this scenario, our gradient-guided imple-
mentations manage to improve the confidence by the model. By lever-
aging the gradients better, the resulting ROM outperforms the baseline
implementation in regions not covered by training samples, successfully
achieving our objective.

The statistical summary of the prediction error across the test set,
now comprising 50 samples instead of 30, is reported in Table 3 for the
two selected GG approaches compared to the DD baseline results. The
results for the weighted method are also included, justifying the choice
of the masking over this scheme. We found the gradient loss model only
to improve the C;, while the C}, was found worse for all selected GG
approaches. However, again, the magnitude of the errors are low across
the envelope (on the range of 1 —2%) and, consequently, small varia-
tions cause large percentages. Therefore, this degradation is less critical.
Furthermore, the Cp, performance is an order of magnitude lower than
the C;, contributing to larger percent errors. Focusing now on the C M,
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forces on the entire dataset.
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the best two GG approaches resulted in significant improvements of over
45% and 35% respectively. Note also how the worst case prediction is
significantly improved as well.

4.3. Scenario 3: small model size and original dataset

We investigated the performance of our various frameworks with a
reduced model size. New ROMs were generated by halving the number
of channels at each NN layer. As reported in Appendix B, the overall
model size was reduced by a factor of 4, resulting in an equivalent re-
duction of GPU memory requirements. Figs. 18 to 20 report the error
on the integrated loads for the baseline DD and the best two GG ap-
proaches. Focusing on the pitching moment error (right panels), for the
baseline data-driven model, Fig. 18, the accuracy of the prediction di-
minishes at higher angles of attack, where a larger nonlinear response
occurs. Again, larger errors can be expected since the size of the model
(number of regression parameters) is significantly smaller, limiting the
capacity of the model to learn the physics. In contrast to the previous set-
ting involving limited training data, where worst predictions comprised
test samples (triangles), now we also observe training samples being
wrongly predicted (red and amber circles). This is consequence of the
smaller model not having enough capacity to accommodate the nonlin-
ear response across the envelope. Nevertheless, with the gradient-based
methods, the C, error is visibly improved, Figs. 19 and 20 respec-
tively. With either model, no training samples and fewer test samples
were found with error larger than 10%. Embedding the gradients into
the data-driven framework enhances a model of smaller capacity to per-
form closer to a larger model.

As with the previous scenarios, Table 4 reports the statistical compar-
ison on the prediction error for the test set among the selected modelling
frameworks. Again, the results for the weighted scheme are also added,
further justifying the choice for the gradient loss and the masking ap-
proaches. In this configuration, we observe similar trends compared to
the previous analyses. The best two gradient-based schemes were found
to improve the pitching moment C,, error statistics on the test set by
29% and 11% respectively. Therefore, the output gradient loss model
was found to outperform the other frameworks. Although the mask-
ing scheme showed a slight improvement, the weighted scheme, on
the contrary, did not provide a significant increment over the baseline
DD model. This indicates that a simpler boolean masking is more effec-
tive for highlighting high-gradient regions compared to a variable-field
mask.

4.4. Sensitivity to training set size

To further demonstrate the advantage of gradient-guided data-driven
approaches while reducing the dataset size, we generated new models
for the selected approaches with an interim scenario of 30 training sam-
ples. In combination with the first two scenarios, Tables 2 and 3, we
addressed a sensitivity analysis of the model accuracy with the train-
ing dataset size for the various modelling approaches. Fig. 21 illustrates
the evolution of the prediction errors for the C; (left panel), Cp (mid
panel) and C,, (right panel). The average errors on the test set are
in black and on the left axis, while the worst predictions are in red
and on the right axis. Results are reported for the baseline data-driven
model (O), the gradient loss approach ([]) and the masking approach
(/\). For the various coefficients, the prediction accuracy generally im-
proves with increasing the dataset, which is expected. Observe how the
slope of the curves, particularly the average values, are deeper with
the baseline model. This confirms that the purely data-driven model is
more sensitive to dataset size. By contrast, the gradient models, par-
ticularly the gradient-loss approach, present slightly shallower curves,
which means that there is less degradation of the accuracy with reduc-
ing the data. This result demonstrates the adequacy of our proposed
physics-enhanced approach. Furthermore, when comparing against the
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DD model errors, improvements are consistent for the gradient loss ap-
proach (GG 2) across the various training set cases, particularly for the
lift and pitching moment coefficients. On the other hand, the masking
approach (GG 5) was found only to improve the C; predictions at the
smallest train set size, whereas improvements on CM), were found in
every case.

4.5. Aerodynamic field predictions and gradients

The analysis for the predicted integrated loads is useful to broadly as-
sess the performance across the operating envelope and compare among
the various frameworks and scenarios. However, analysis of the dis-
tributed fields is more interesting, as these are actually the quantities
predicted by the models. Distributed fields are more challenging to pre-
dict accurately compared to scalar loads and are more useful for aircraft
design development. For brevity, only the results for the pressure predic-
tions are reported here. Shear stress results are provided in Appendix D
as their contribution to the resulting aerodynamic forces is less signif-
icant. In addition, we report analysis of only the approaches already
selected in the previous results.

4.5.1. Pressure field predictions

Figs. 22 to 24 illustrate comparisons of the pressure coefficient distri-
bution obtained with the various models for each scenario, respectively.
The flight condition corresponds to sample e labelled in Fig. 6(b). This
sample is interesting for being the worst predicted, due to the lack of
training samples in the vicinity. In each panel, the various modelling ap-
proaches are arranged in columns, with the ground-truth CFD solution
on the left. The upper panels are for the Cp prediction, while the lower
panels are for the error (difference) against the CFD reference. The error
values on the integrated forces are also reported in the captions, corre-
sponding to the values shown within the respective dataset error plots
in the previous sections.

For the first scenario, Fig. 22, we observe a discrepancy on the shock-
wave prediction with the data-driven model compared to the CFD refer-
ence. These results are the benchmark for the two selected GG-based
frameworks. We found that the prediction error improved along the
shock line (more faded blue) and at the root of the wing (diminished red
portions). The Cp remained well captured elsewhere. Fig. 23 is for the
reduced dataset scenario. With the purely data-driven implementation,
the shock wave was found slightly better captured from ~ 30% of the
span but worse at the root. The gradient loss model (GG approach 2) was
again found to improve the shock-wave prediction. Furthermore, the in-
crement with the masking method (GG approach 5) was smaller than
with the gradient-loss approach and a degradation is observed towards
the trailing edge of the wing. The reason for this is that the masking
filter prioritises regions containing large gradients rather than smooth
solution variations, i.e. shock waves and the trailing edge, respectively.
Observing the comparisons for the last scenario, Fig. 24, similar trends
are observed but the improvements are less visible than with the first
scenario. Despite with the GG masking method the worst-case predic-
tion was not significantly improved, the analysis on the integrated forces
across the entire dataset demonstrated to outperform the DD implemen-
tation. Regardless, these comparisons confirmed the gradient-loss as the
best predictive method.

The GG models were found to provide significantly greater improve-
ments in the scenario of limited training samples, Section 4.2. Fig. 25
reports the pressure coefficient prediction comparison for sample f in
Fig. 6(b) with the large model and reduced training dataset. The same
panel row (prediction and error) and column arrangements (modelling
approaches) is adopted. We observe that with limited data, the DD
model (second column) predicted the location of the shock wave ex-
cessively downstream. The prediction was found considerably improved
with the gradient-loss model (third column). By contrast, the masking
model overpredicted the suction peak towards the leading of the wing,
despite the pitching moment error is successfully improved.
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Fig. 22. Pressure coefficient comparison of the various methods against CFD reference at M, =0.76, a,, =4.42 deg, C;  =0.414 and Cty e = -0.019 (sample e in

Fig. 6(b)), for the large model and original dataset scenario.

To complete the analysis on the Cp distribution, we analysed the
performance of the GG models in the case of limited model size, Sec-
tion 4.3. Fig. 26 illustrates a similar comparison for training sample g in
Fig. 6(b) with the small model and the original 40 training samples. The
DD model in second column, predicted the shock wave slightly more up-
stream. By contrast, the gradient-loss and the masking models were both
found a significant improvement.

4.5.2. Streamwise pressure gradient predictions

For post-processing of the results, gradients are computed with
the pyvista package from the modelled quantities. We analyse here
the streamwise derivative of the pressure coefficient only, as Section 3.2
demonstrated being the most relevant gradient component. Figs. 27 to
29 provide a similar analysis of the various ROM approaches with the
different scenarios arranged as in the previous section, again for sam-
ple e. Observing the CFD reference, the shock-wave location is clearly
identified along the span of the upper surface of the wing. In Fig. 27
regarding the first scenario, the error distribution clearly shows the loca-
tion of the shock wave predicted further downstream by the data-driven
model compared to the CFD ground truth (mid left panels). Regarding

the gradient loss embedding (mid right), the % field was found bet-
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ter captured (more faded blues and reds), particularly on the inboard
side. The streamwise derivative was also marginally better predicted by
the masking model (right) but to a lower extend than with the gradient-
loss approach. These observations are in agreement with the Cp results
above. The small dataset scenario of Fig. 28 evidences similar trends
as before. The gradient along the shock-wave is slightly improved ex-
cept towards the root. Improvements are observed with the gradient-loss
method but a larger discrepancy was observed towards the trailing edge
of the wing for the masking method, in line with the Cp results. Fig. 29 is
for the limited model memory case, suggesting that the increments are
not as obvious as with the other scenarios. The masking method was
considerably easier to implement than the output-gradient scheme (see
Section 4.6) and it still proved capable of marginally outperforming the
regular DD approach. Nevertheless, the gradient-loss method was found
to consistently outperform all the other frameworks in all the scenarios.

Fig. 30 illustrates the streamwise derivative comparison for sam-
ple f with the reduced dataset scenario. The second column evidences
how the regular DD model mispredicted the shock wave location further
downstream. This discrepancy is improved with the GG models (third
and last columns). However, the masking model introduced derivative
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Fig. 23. Pressure coefficient comparison of the various methods against CFD reference at M, =0.76, a,, =4.42 deg, C; _ =0.414 and Cht, gy =0.019 (sample e in

Fig. 6(b)), for the large model and reduced dataset scenario.
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Fig. 24. Pressure coefficient comparison of the various methods against CFD reference at M, =0.76, a,, =4.42 deg, C; _ =0.414 and CMycm =-0.019 (sample e in

Fig. 6(b)), for the small model and original dataset scenario.

error towards the leading edge of the wing. Regarding sample g for
the limited model size case, Fig. 31 illustrates the % comparison for
the various models. The plots evidence the upstream prediction of the
shock wave with the baseline DD model. Both GG models again man-
age to rectify this error. In these distinct scenarios, especially with a
limited number of training samples, there is a significant sensitivity of
prediction accuracy to the data distribution across the envelope. The
incorporation of physics contributions has been found to significantly al-
leviate this effect. These results confirm that embedding of the gradients
into the data-driven framework becomes significantly more convenient
with limited data available and/or limited model capacity.

The results herein presented are for surrogate modelling of CFD-
based solutions. By contrast, in experimental testing (e.g. wind tunnel)
complete flow-field information is generally unavailable but discrete
sensor measurements are more common instead. Reconstruction meth-
ods can be considered to obtain complete distributed fields from sensor
measurements. Adequate approaches must be adopted to ensure smooth
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solution fields. Our proposed GCN-MM-AE framework, embedding a
multi-mesh scheme, can be adapted to address this problem. Using the
reconstructed fields, it is then possible to use the gradient-guided ap-
proaches proposed herein, with the inclusion of a low-pass filter to
exclude regions of noisy gradient values.

4.6. Computing cost remarks

We conclude with a remark on the computing efficiency for the
various modelling approaches. Table 5 provides a summary of the com-
puting cost involved with the generation of the ROM framework and
the benefit against high-fidelity simulations. Steady-state CFD simula-
tions in Ref. [15] were solved with a 120-core HPC, requiring about
28,000 CPU-h for the 70 CFD dataset samples. The ROMs were gener-
ated using a conventional 8GB GPU. Tables B.7 and B.8 of the Appendix
provide details of the model architecture and the training strategy. Once
the models are generated, simulation time is invariant to the various
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Fig. 25. Pressure coefficient comparison of the various methods against CFD reference at M, =0.81, a,, =4.34 deg, C; _ =0.417 and Cht, g, =-0:029 (sample f in
Fig. 6(b)), for the large model and reduced dataset scenario.

(a) Cp CFD reference. (b) DD model (baseline) (c) Grad. loss model (d) Grad. masking
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(f) DD model (baseline) (g) Grad. loss model (h) Grad. masking
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ec =1.2%, €0, = 13.6%. Cp error against CFD. Cp error against CFD.
0= 1.2%, 20y, =3.7%.  £0,=2.9%, 20y, =4.0%.

Fig. 26. Pressure coefficient comparison of the various methods against CFD reference at M, =0.79, a,, =3.24 deg, C; __ =0.384 and CMycm =-0.038 (sample g in
Fig. 6(b)), for the small model and original dataset scenario.

Table 5
Summary of the computing costs involved in steady-state simulations of
the CRM.
Computing Task Cost
1 steady-state CFD run [CPU-h] ~ 400
Dataset of 70 CFD runs [CPU-h] ~ 28,000
ROM training (see Table 6) [GPU-h] ~29-70
1 steady-state ROM prediction [GPU-h] ~1.0x107*
Dataset of 70 ROM predictions [GPU-h] ~0.006
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Fig. 27. Pressure coefficient streamwise derivative comparison of the various methods against CFD reference at M, =0.76, a,, =4.42 deg, C; =0.414 and
CMycm =-0.019 (sample e in Fig. 6(b)), for the large model and original dataset scenario.
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Fig. 28. Pressure coefficient streamwise derivative comparison of the various methods against CFD reference at M, =0.76, a,, =4.42 deg, C; =0.414 and
CMycm =-0.019 (sample e in Fig. 6(b)), for the large model and reduced dataset scenario.
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Fig. 29. Pressure coefficient streamwise derivative comparison of the various methods against CFD reference at M, =0.76, a,, =4.42 deg, C; =0.414 and
CMycm =-0.019 (sample e in Fig. 6(b)), for the small model and original dataset scenario.
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Fig. 30. Pressure coefficient streamwise derivative comparison of the various methods against CFD reference at M, =0.81, a,,=4.34 deg, C; =0.417 and
CM,»cm =-0.029 (sample f in Fig. 6(b)), for the large model and reduced dataset scenario.
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Fig. 31. Pressure coefficient streamwise derivative comparison of the various methods against CFD reference at M, =0.79, a,, =3.24 deg, C;  =0.384 and
CMycm =-0.038 (sample g in Fig. 6(b)), for the small model and original dataset scenario.

frameworks, as the gradient-guided embedding is just involved in the
training process and only the DD model is called in new predictions. As
a result, each new aerodynamic prediction is obtained in less than a sec-
ond, rather than approximately 3 hours in CFD, leading to a speed-up
of well over 99.9% for the pure predictive step.

The training cost varied depending on the dataset, model size and
GG approach. Table 6 reports details of the cost involved for the distinct
ROM approaches. The reported values are based on the worst case, con-
sisting of the large model and the original training samples (scenario
1). The number of epochs were dictated by ensuring the convergence
of each model training. Note how the better performing gradient-loss
method (GG approach 2) was also found more computationally intensive
than the others. However, the additional burden from the GG embedding
is only involved during the training phase. Finally, the computing cost
to train the models for scenarios 2 (large model and reduced dataset)
and 3 (small model and original dataset) were in general reduced to
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~ 48% and ~ 74%, respectively, compared to the cost required in the
first scenario.

5. Conclusions

Deep learning-based data-driven models are renowned for their in-
ference capabilities in highly nonlinear spaces. However, these methods
depend heavily on sufficient data to adequately capture trends across the
entire design space. In engineering analyses, for example CFD simula-
tions, generating the preliminary data required to train these models
is computationally expensive. Incorporating physics terms into data-
driven models enhances their ability to understand physical solutions,
thereby reducing the need for extensive preliminary data without com-
promising accuracy. To achieve this, we developed five formulations to
embed solution gradients into our previously implemented geometric
deep-learning multi-resolution framework. Leveraging gradients is ad-
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Training strategies for the various GG modelling approaches. Training
cost is for the large model size and original dataset. The training process
comprised 800 epochs unless otherwise stated.

Parameter

Value

DD model (baseline)
training cost [GPU-h]

GG model 1 (grad. targets)
training cost [GPU-h]

GG model 2 (grad. loss)
Training epochs
training cost [GPU-h]

GG model 3 (grad. latent state)
training cost [GPU-h]

GG model 4 (grad. weighting)
training cost [GPU-h]

GG model 5 (grad. masking)
training cost [GPU-h]

~29

~45

1150
~170

~3.0

~3.0

~3.0

vantageous because they efficiently extract critical surface flow features
while remaining computationally cost-effective.

To investigate the five distinct gradient-informed models and assess
their predictive capability, we considered three scenarios differing in
dataset size and model architecture. The first scenario involved a sub-
stantial dataset (in the context of costly preliminary simulations) and a
large model architecture. In the second scenario, the number of training
samples was significantly reduced while maintaining the same model
architecture as in the first scenario. The third scenario featured a re-
duced model size compared to the first scenario. As a relevant engineer-
ing application, we addressed the aerodynamic prediction of the NASA
CRM wing/body configuration under a range of transonic flow condi-
tions. Nonetheless, our methodology is advantageous for its adequacy
to a wide range of problems, particularly in spatial domain discretisa-
tions.

The interpretation of the results led to the following conclusions.
In scenarios with access to a large dataset and the capability to build
a large model architecture, a good predictive model can be obtained
without the necessity of embedding gradient terms into the model ar-
chitecture. This aligns with expectations and is consistent with many
applications involving significantly more extensive datasets (millions
of data). However, in typical engineering design environments, where
large datasets are rare, the findings from the other two scenarios become
more relevant to the aeronautical sector. Significant improvements were
observed with the inclusion of gradient terms in cases with limited
data (second scenario) or constrained GPU memory (third scenario).
Regular data-driven models exhibited poor performance under these
conditions, whereas models incorporating gradient terms performed sat-
isfactorily.

Among the various gradient-informed models, two approaches stood
out: the output-gradient loss (approach 2) and the loss masking (ap-
proach 5). The gradient-loss model consistently outperformed all other
models, demonstrating significant prediction improvements across the
three scenarios, albeit at a higher training cost. Consequently, the
gradient-loss method is preferred when optimal prediction accuracy is of
primary concern. The loss masking approach can provide slightly better
accuracy than the purely data-driven model, particularly for the pitch-
ing moment, although clearly not to the same extent as the gradient-loss
model. Due to the lower computational demand for model generation,
the loss masking approach is the recommended choice when a balance
between improved prediction accuracy (with respect to the purely data-
driven model) and rapid implementation (with respect to the gradient-
loss model) is desired.
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This work demonstrates on a relevant use case the practical benefits
of integrating data-driven models with physical terms. The enhanced
predictive accuracy highlights how the incorporation of physical infor-
mation can compensate for smaller datasets. As an exploratory study, it
sets the stage for further investigations into other forms of physics-based
terms or simplified equations, for application in fluid dynamics, struc-
tural analysis or any field where mesh-based simulations are involved.
Although these approaches may currently seem elusive, continued ef-
forts in this direction are well justified.
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Appendix A. Extended CFD gradient analysis

P ‘)CP

Figs. A.32 and A.33 illustrate the crosswise ? and vertical

derivatives for the first four selected samples of the reference dataset
These correspond to the other two components of the pressure gradi-
ent on the CRM surface. The streamwise 0— derivative was reported
in Fig. 8. We observe how the fields for these two derivatives are less
interesting, especially on the wing. This comparison justifies the choice
of the streamwise derivative for the analysis of the results.
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Fig. A.32. Crosswise derivative of the pressure coefficient % distribution for the CFD samples labelled with the same letters in Fig. 6 Panel (b).
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Fig. A.33. Vertical derivative of the pressure coefficient % distribution for the same selected CFD cases.
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Table B.7

Architecture of the steady-state GCN-MM-AE model to construct the aero-
dynamic envelope for the CRM model. Refer to Fig. 3 for the diagram of
this NN architecture.

Layer Dimension Kernel

Input: [M,a,], x;, Ag mx 78829 x 5

Encoder:

GCN Enc0.1 mx 78829 x 72 SXT72+72
PReLU Enc0.1 mXx 78829 x 72 72

GCN Enc0.2 mx 78829 x 144 72 x 144 + 144
PReLU Enc0.2 mx 78829 x 144 144

MM A, —A4, mx 5000 x 144

GCN Encl.1 m X 5000 x 144 144 x 144 + 144
PReLU Encl.1 mx 5000 X 144 144

GCN Encl.2 mx 5000 x 288 144 x 288 + 288
PReLU Encl.2 mx 5000 x 288 288

Decoder:

GCN Decl.1 mx 5000 x 144 288 x 144 + 144
PReLU Decl.1 mx 5000 x 144 144

GCN Decl.2 m % 5000 x 144 144 x 144 + 144
PReLU Decl.2 mx 5000 x 144 144

MM 4, =4, mx 78829 x 144

GCN Dec0.1 mXx 78829 x 72 144 %72+ 172
PReLU Dec0.1 mx 78829 x 72 72

GCN Dec0.2 mx 78829 x 72 72x72+72
PReLU Dec0.2 mx 78829 x 72 72

Repeat: y;, = [y;, ¥y, ¥, ¥l mXx 78829 x 72 x 4

GCN Dec0.3 mx 78829 x72 x4 T2XT72x4+72%x4
PReLU Dec0.3 mx 78829 x 72 x4 72x4

GCN Dec0.4 mx 78829 x 1 x4 72x1x4+1x4

Output: [Cp;, C,;, C,y[, C...l mXx 78829 x 4

Table B.8
Training strategy adopted to generate the steady-state
GCN-MM-AE model.

Parameter Value

Trainable parameters 174,460, 44,464

Dataset samples 70
Training set 40, 20
Batch size 1

Loss function MSE
Optimiser Adam

0.0009
0.333 / 100 epochs
NVIDIA GeForce RTX 2070

Starting learning rate
Learning rate schedule
GPU machine

Appendix B. Data-driven model architecture and
hyper-parameters

The baseline data-driven model architecture was based on the GCN-
MM-AE developed in Ref. [25]. In Table B.7 we report the final archi-
tecture adopted for the analysis of the CRM test case. A diagram of the
model architecture is reported in Fig. 3. The layers involving sequen-
tial GCN and MM blocks for the encoder and decoder branches are laid
out. The PReLU nonlinear activation function was used at the output of
each GCN layer, except for the last layer, which outputs the target fields.
The tensor dimensions at each layer output are also provided, arranged
in m X ny, X ¢;, with m the batch size, n, the grid size at the corre-
sponding MM level and ¢, the state size (or channels) from each layer
output.

The learnable parameters (kernel size) involved in each NN layer (ei-
ther GCN or PReLU) are for the original model size adopted in the results
sections 4.1 and 4.2. The reduced model adopted in section 4.3 was con-
structed by halving the number of channels at each NN layer. The total
number of ROM parameters decreased from 174,460 to 44,464, result-
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Table C.9
Training strategies for the various GG mod-
elling approaches. Training cost is for the
large model size and original dataset. The
training process comprised 800 epochs un-
less otherwise stated.

Parameter Value
GG model 2 (grad. loss)

lagrange multiplier 4,, Eq. (7) 0.001
GG model 3 (grad. latent state)

lagrange multiplier 45, Eq. (9) 0.001

GG model 4 (grad. weighting)
lagrange multiplier 4,, Eq. (10) 1.0

GG model 5 (grad. masking)
lagrange multiplier A5, Eq. (11) 0.01
mask threshold 5, Eq. (12) 2.0

ing in a reduction of the GPU memory requirement by a factor of ~ 4
approximately.

Table B.8 reports more details on the training and optimisation
strategies adopted. The first-order gradient-based algorithm Adam [18]
was chosen to minimise the mean squared error (MSE) loss functions [3].
Both the inputs and the gradients were standardised with the mean fields
and normalised with the standard deviation to ensure better training
convergence.

Appendix C. Gradient-based hyper-parameters

The only hyper-parameters involved in each GG approach are the la-
grange multipliers to combine the physics and the data-driven terms
in the respective loss functions, as described in Section 2.2, as well
as the number of epochs reported in Section 4.6. In particular, the
lagrange multipliers were fine tuned in order that the values of the sep-
arate data-driven and physics loss terms were of similar magnitude. The
adopted hyper-parameter values for each GG method are reported in
Table C.9.

Appendix D. Skin-friction predictions

Section 4.5 presented a comprehensive analysis of the distributed
pressure predictions, which is the most interesting aerodynamic quan-
tity. We now present results for the skin friction, which is computed
as the norm of the shear-stress components predicted by the models:
Cr= ||[CTX,CTy,CTZ]||2. Fig. D.34 illustrates a comparison of the skin
frictions for sample e again for the various modelling approaches and
baseline scenario. Furthermore, Fig. D.35 is for the streamwise deriva-
tive of the predicted skin friction. For reference, the Cp analysis for the
same configurations are in Figs. 22 and 27. We observe how the skin
friction variations are two orders of magnitude lower than the pressure,
which also reflect on the magnitude of the gradients. As a result, the skin
friction predictions are in good agreement with the reference solution
and no significant differences are observed among the various models.
We conclude that, for this case, the shear-stress gradients have less in-
fluence in the model training because of being less significant than the
pressure gradients.

Data availability

Data will be made available on request.
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Fig. D.34. Skin friction coefficient comparison of the various methods against CFD reference at M, =0.76, a,, =4.42 deg, C;  =0.414 and C M, e = 0019 (sample

e in Fig. 6(b)), for the large model and original dataset scenario.
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Fig. D.35. Skin friction coefficient streamwise derivative comparison of the various methods against CFD reference at M, =0.76, a,,=4.42 deg, C; _=0.414 and
CMycm =-0.019 (sample e in Fig. 6(b)), for the large model and original dataset scenario.
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