
Contents lists available at ScienceDirect

Aerospace Science and Technology

journal homepage: www.elsevier.com/locate/aescte

Augmenting mesh-based data-driven models with physics gradients

David Massegur ,∗, Andrea Da Ronch

Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO16 7QF, United Kingdom

A R T I C L E I N F O A B S T R A C T 

Communicated by Mehdi Ghoreyshi

Keywords:

Geometric deep learning

Physics informed

Gradient guided

Computational fluid dynamics

Transonic aerodynamics

Graph convolutional network

Multi mesh

Autoencoder

Hybrid approach

Common research model

Deep learning technologies are increasingly used in various applications, with significant potential in aerospace 
for reduced-order modelling due to their ability to handle nonlinear systems. The effectiveness of data-driven 
methods relies on the adequacy and volume of training data, which poses a challenge in a design environment. 
To address this, physics-informed machine learning, which integrates physics knowledge into data-driven 
frameworks, has emerged as a promising solution. Directly applying physics terms to aircraft surfaces is complex, 
so this study utilizes solution gradients to effectively capture flow features. We introduce a hybrid framework 
that combines geometric deep learning with gradient terms, building on a previous data-driven approach 
for aerodynamic modelling on large-scale, three-dimensional unstructured grids. We evaluated various hybrid 
schemes to enhance prediction accuracy. Two gradient-enhanced approaches were found to outperform the 
purely data-driven model: the first integrates output differentiation into the training loss, achieving the highest 
accuracy at an increased training cost; the second employs a masking technique to weight regions with large 
gradients, providing a reasonable accuracy improvement at a lower training cost. This study focuses on predicting 
distributed aerodynamic loads around the NASA Common Research Model wing/body cofiguration under 
various transonic flight conditions. Our findings show that incorporating gradient information into deep learning 
models significantly improves the accuracy of the predictions and can compensate for a smaller dataset without 
compromising accuracy. Furthermore, the approaches proposed herein are directly applicable to any problem 
with discretised spatial domain.

1. Introduction

The use of three-dimensional, unstructured grids for aerodynamic 
analysis of full-scale aircraft, is an established process in industry. Grids 
often consist of tens of million of grid points. In the case of aircraft 
aerodynamics across the flight envelope, for example, hig-fidelity com

putational fluid dynamics (CFD) are typically solved around these grids 
on high-performance computing facilities [1,31]. Each flight condition 
is important for design and sizing of various aircraft components, and 
this is regulated by airworthiness authorities [8]. Aircraft spend most 
of the flight time in the transonic regime where, for example, the target 
cruise drag is set during the design process [17]. Running aerodynamic 
analyses at hundreds of flight points to establish performance charac

teristics is far from routine due to the increased computing costs. The 
work presented herein is motivated by the desire to have a solution to 
this long-standing problem, which is common in many other engineer

ing fields, from the automotive industry and racing cars to the wind 
energy.
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Reduced order modelling (ROM) and model order reduction are tech

niques for reducing the complexity of a full-order, hig-fidelity model 
providing a trade-off between cost/complexity and prediction accuracy. 
The main features of a ROM [6,24] are: a) reduce the size and com

plexity of the computational model; b) retain dynamic nonlinearities; 
and c) recover the full-order dynamics of the system. There are two 
general classes of ROMs: intrusive approaches that manipulate the gov

erning equations; and non-intrusive approaches that only require avail

able data. The work here presented exploits the latter category, making 
progress in the deployment of deep learning algorithms.

Common nonlinear ROM approaches, including Kriging [10], are de

signed for the prediction of (scalar) aerodynamic forces. By contrast, 
modelling of 3D aerodynamic fields is more interesting for design op

timisation purposes. This motivates the adoption of deep learning. A 
fundamental problem of deep learning algorithms for the generation 
of an aerodynamic ROM is that common neural network (NN) archi

tectures are inadequate when confronted with the large-scale, unstruc

tured grids of full-scale simulations [12]. Fully-connected NN [37,36] 
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are known for poor scalability, and convolutional NN [7,28] are only 
applicable to Euclidean (regular) domains. Geometric deep learning 
(GDL) is an umbrella of NN approaches designed for non-Euclidean 
domains [4]. GDL methods leverage the mesh connectivity to exe

cute message-passing operations across the grid [5]. To address the 
issue of scalability, a dimensionality reduction technique to compress 
the large spatial domain without general loss of information is con

venient [21,20]. Neural-network dimensionality reduction approaches, 
known as autoencoders [13], compared to the classical Proper Orthog

onal Decomposition (POD) method, provide the added benfit of non

linear domain compressions and subsequent recovery [23].

This work builds on previous studies [25,26] that introduced a 
graph-convolutional multi-mesh autoencoder framework, referred to 
as GCN-MM-AE, demonstrated on a transonic aircraft. Both steady

state and unsteady conditions have been considered. Despite a good 
agreement with reference data, results highlighted a persistent problem 
with data-driven models: the inability to perform well in new experi

ments away from the training samples, a property known as generalisa

tion [29,38]. To capture the physics correctly, data-driven NNs remain 
strongly reliant on sufficient training data distributed across the entire 
design space. However, the available number of training samples, in the 
context of costly engineering analyses, such as CFD for aerodynamics, is 
strongly limited by computing power. A new paradigm is sought to im

prove the inference performance of data-driven models when the data 
available is limited.

In contrast to purely data-driven approaches, physics-informed ma

chine learning (Phi-ML) [41,43] integrates governing equations directly 
into the model architecture. Phi-ML algorithms utilize the residuals of 
partial differential equations as loss functions for model parameter op

timization. Despite their potential, physics-informed NNs (PINNs) face 
significant challenges in fluid dynamic applications [33,2], being pri

marily limited to two-dimensional laminar flows [1] and exhibiting poor 
scalability by adopting fully-connected NNs, which restricts their appli

cability from practical aerodynamic problems. Works adopting Convolu

tional NNs with fully embedding of the physics equations exist but these 
required the non-trivial transformation of the irregular domain into a 
cartesian grid, limiting the complexity of the domain shape [9,14].

Furthermore, in the case of fluid dynamics, the governing equations 
apply within the fluid volume. By contrast, to maximise computational 
efficiency, ROM predictions are generally tailored to address surface 
predictions, where the physics equations are not applicable. For cases 
with large spatial domains (e.g. aircraft design), complex physics equa

tions (turbulent Navier-Stokes equations [31]) and the high costs associ

ated with training data from computational fluid dynamics (CFD) simu

lations, a hybrid approach combining data-driven and physics-informed 
methods is a potential alternative. Embedding partial physics knowledge 
into data-driven algorithms can enhance the performance of predictive 
frameworks [42,44], particularly in under-sampled regions of the design 
space. For example, multi-scale methods to enhance the model predic

tion accuracy of distributed fields and scalar loads by constraining the 
dedicated networks to shared latent features were proposed by [45,30]. 
However, these works dealt with 2D cofigurations and there is no cer

tainty of a direct correlation between the predicted aerodynamic fields 
and the predicted forces.

The challenge we address in this work is the prediction of the sur

face flow solution, including the pressure and skin friction coefficient, 
around a three-dimensional aircraft cofiguration at any flight point 
within a pre-defined flight envelope. Our conjecture to improve the pre

dictive capability of the model is to leverage on the surface gradients of 
the solution field, ∇(⋅) =

[
𝜕(⋅)
𝜕𝑥 ,

𝜕(⋅)
𝜕𝑦 ,

𝜕(⋅)
𝜕𝑧 

]
. The gradient terms are a conve

nient choice because they are:

• Computationally cost-effective, in the sense that differentiation of 
distributed quantities is easier than solving partial differential equa

tions.

• Useful to identify flow physics characterised by a rapid variation of 
the flow quantities, such as shock waves, boundary-layer separation 
and flow acceleration at the leading edge.

The aim of this work is to explore the feasibility of an hybrid pre

dictive framework whereby a purely data-driven approach is enhanced 
with gradients of the surface field. Starting from the GCN-MM-AE model, 
we answer the following research question: what is the best route to 
embed gradients information into the model architecture? Various ap

proaches can be considered to embed gradient terms into the model 
architecture. For example, a mixed-gradient-error-based loss function 
was incorporated in [39] to enhance a CNN-based model for predict

ing the Mach field around 2D nacelles. In that study, Sobel filters were 
applied to flo-field data to emphasize edges, a technique common in 
image processing. However, while Sobel filters are effective for high

lighting large gradients in structured domains, they are unsuitable for 
irregular grids, necessitating alternative methods to computing gradi

ents. Consequently, we resort to spatial differentiation of the solution 
fields. In the following sections, we propose five distinct approaches 
to introduce gradients into the model, enriching the predictive model 
and enhancing the understanding of the underlying physics particularly 
in complex and under-sampled regions. The performance assessment 
is carried out on the NASA Common Research Model (CRM) [25,15] 
at transonic conditions. It is worth noting that, despite the test case 
addressing aerodynamic predictions, no domain-specific knowledge is 
used to derive the gradients. As a result, the methodology presented 
herein is adequate for any other field (in engineering and beyond) in

volving mesh-based simulations.

The paper continues in Section 2 with a description of the method

ology and the different routes to embed gradient terms. A description of 
the test case providing a justfication for the proposed hybrid approach 
is given in Section 3. Section 4 contains an analysis of the results for the 
various schemes. Conclusions are given in Section 5.

2. Methodology

2.1. Graph-convolutional multi-mesh autoencoder overview

First, we provide a brief description of the methodology for the 
entirely data-driven architecture, which serves as reference for the hy

brid approach implementation. A neural-network based architecture is 
sought that generates a map between the vector of input conditions 𝒔
and the fields to predict 𝒀 𝑖 on the nodes 𝑖 of a surface mesh n:

𝒀 𝑖 = 𝑓NN
(
𝒔,𝒙𝑖,𝚯

)
∀ 𝑖 ∈ n (1)

with the [𝑥, 𝑦, 𝑧] coordinates 𝒙𝑖 ∈ℝ𝑛𝑛×3, where 𝑛𝑛 the number of mesh 
nodes, being also included as inputs to embed the spatial mapping. The 
optimal model parameters 𝚯 are sought that minimise the mean squared 
error (MSE) [3] between the predicted and the reference solutions fields:

min
𝚯 0 = ||𝒀 NN − 𝒀 CFD||22 (2)

To leverage geometric deep learning [4] on unstructured CFD 
meshes, the surface mesh is represented as a graph. Target fields 𝒀 𝑖
and position coordinates 𝒙𝑖 are assigned on the graph nodes; and user

defined weights 𝑒𝑖𝑗 , on the edges of connected nodes. Fig. 1 illustrates 
a graph representation from the triangular mesh of the CRM model, 
including node-based features, coordinates and edge weights. 

From the family of GDL methods, we adopted the GCN operator [19]:

𝑔(𝒚) = ℎ
(
𝜽𝑇 𝑫̂

− 1
2 𝑨̂ 𝑫̂

− 1
2 𝒚 + 𝑏

)
(3)

with 𝜽 a layer-specific trainable weight vector, 𝑏 a constant term and 𝒚
the node-based input vector at each node of the mesh  . 𝑨̂=𝑨+𝑰 , with 
𝑨= 𝑒𝑖𝑗 , is the adjacency matrix and 𝑫̂ =diag

(∑
𝑗≠𝑖 𝑒𝑖𝑗 +1

)
, the diagonal 

degree matrix, i.e. the sum of the edge weights connected to target node 

Aerospace Science and Technology 160 (2025) 110037 

2 



D. Massegur and A. Da Ronch 

Fig. 1. Mesh represented as a graph with node features and edge weights. 

Fig. 2. Multi-mesh cycle, demonstrating interpolation between mesh levels of 
different resolution.

𝑖. It is convenient to arrange the connectivity matrix in sparse form 𝑨̂ ∈
ℝ𝑛𝑒×3 containing, for each edge, the indices of the connected node pairs 
𝑖, 𝑗 and the respective weight value 𝑒𝑖𝑗 . The PReLU function [11] was 
chosen as nonlinear activation: ℎ(𝑥) = {𝑥 for 𝑥 > =0, 𝛽𝑥 otherwise}, 
with 𝛽 a learnable parameter.

To address large spatial domains, an autoencoder approach for di

mensionality was adopted [13]. To this aim, the GCN layers were 
embedded in a multi-mesh (MM) scheme, resembling the multi-grid 
method to solve partial differential equations [27]. The MM cycle 
coarsens the mesh while extracting crucial features and subsequently 
rfines the latent states back onto the original mesh, as illustrated 
in Fig. 2. To transfer the information between mesh levels, a weighted 
moving least squares interpolation was implemented [32,16]. Refer to 
Refs. [25,26] for complete description of this developed data-driven 
framework formulation.

The reference data-driven GCN-MM-AE architecture for steady aero

dynamic predictions is illustrated in Fig. 3. In the encoder, the input 
vector is fed through a GCN block, followed by the coarsening interpo

lation of the MM cycle and another GCN block. It follows the decoder, 
consisting of a GCN block, then the rfining step of the MM and a GCN 
block acting on the rfined mesh. Last, the network ramfies into sepa

rate blocks for each field quantity to predict.

The methodology just described corresponds to the regular data

driven (DD) approach, to which the gradient-guided (GG) contribution 
is embedded.

2.2. Gradient-guided schemes

Five different hybrid gradient-guided data-driven approaches were 
investigated, to compare and identify the best suited hybrid scheme for 
aerodynamic field predictions.

2.2.1. Gradients as target predictions

The gradients of the target fields are also included as predicted quan

tities alongside the respective fields. Therefore, the NN-based model 𝑓NN
predicts as outputs both the target fields and the gradients:

[𝒀 𝑖,∇𝒀 𝑖]NN = 𝑓NN1

(
𝒔,𝒙𝑖,𝚯

)
∀ 𝑖 ∈ n (4)

The model parameters 𝚯 are consequently optimised with minimi

sation of the loss against the CFD solution and gradient data:

min
𝚯 1 = ||[𝒀 ,∇𝒀 ]NN − [𝒀 ,∇𝒀 ]CFD||22 (5)

This first approach is illustrated in Fig. 4 Panel (a). The implemen

tation remains identical to the data-driven framework in Fig. 3 but with 
additional output quantities. The idea here is leveraging more informa

tion in terms of outputs to assist the model towards a more physical 
solution. 

2.2.2. Model output gradient loss

With the output quantities 𝒀 𝑖 from the NN model, the respective 
surface gradients are subsequently computed by spatial differentia

tion [22]:

𝒀 𝑖 NN = 𝑓NN2

(
𝒔,𝒙𝑖,𝚯

) ∇𝑥,𝑦,𝑧
←←←←←←←←←←←←←←←←←←←←←←→∇𝒀 𝑖 NN ∀ 𝑖 ∈ n (6)

The error between these computed gradients from the model predictions 
and the ground-truth gradients from CFD is incorporated as a second loss 
term for the model optimisation. As a result, the model parameters are 
optimised with this composed loss function:

min
𝚯 2 = ||𝒀 NN − 𝒀 CFD||22 + 𝜆2||∇𝒀 NN −∇𝒀 CFD||22 (7)

where 𝜆2 is a lagrange multiplier to calibrate the contribution between 
the DD loss, related to the target fields, and the gradient loss follow

ing the differentiation operation. Note that the spatial differentiation 
implementation must be compatible with the back-propagation execu

tion [35] from the gradient loss for the model parameter optimisation. 
The complete gradient-loss framework, now featuring separate DD and 
GG embeddings, is illustrated in Fig. 4 Panel (b). The complete pro

cess is only required during model training. To execute new predictions, 
the gradient-guided block is not required but just the usual data-driven 
block is called.

2.2.3. Gradients as model latent states

The NN-based model is imposed to compute the gradients as latent 
states at the end of the decoder, before the architecture bifurcates for 
each target quantity. As a result, the predicted fields are constrained by 
the solution gradients being predicted at an interim stage:

∇𝒀 𝑖 LS = 𝑓NN3,1

(
𝒔,𝒙𝑖,𝚯AE

)
→ 𝒀 𝑖 NN

= 𝑓NN3,2

(
𝒔,𝒙𝑖,∇𝒀 𝑖 LS,𝚯branch

)
∀ 𝑖 ∈ n (8)

The autoencoder parameters, i.e. before the model bifurcates to each 
quantity in Fig. 3, are optimised with the composed loss function, using a 
lagrange multiplier for calibration between the two terms. By contrast, 
the parameters in the final branches are trained with the single data

driven loss relevant to the target fields:{
min𝚯AE

3,1 = ||𝒀 NN − 𝒀 CFD||22 + 𝜆3||𝒀 LS − ∇𝒀 CFD||22
min𝚯branch

3,2 = ||𝒀 NN − 𝒀 CFD||22 (9)

This gradient-guided latent-state implementation is shown in Fig. 4
Panel (c). The idea is to embed the gradients into the latent states of the 
model to obtain a more physical inference system.

2.2.4. Gradient weighted model output loss

Reducing the prediction error where the solution gradients are larger 
is key to capturing the flow features. To achieve this, the idea is to pe

nalise the loss further in the regions of the domain with larger variation 
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Fig. 3. Schematic of the data-driven steady-state GCN-MM-AE model architecture, introduced in previous work [25] used as baseline cofiguration for the gradient

guided schemes.

of the solution. We use the reference gradients to weight the target loss 
during the optimisation of the model. This scheme is illustrated in Fig. 5
Panel (a), where the Hadamard product is used to scale the loss by the 
gradient value. The model loss is therefore penalised (magnfied) where 
the solution presents larger variation. Note that we chose as weights 
the derivative in the streamwise direction 𝜕(⋅)

𝜕𝑥 only, as this is the most 
interesting of the three components from a physical standpoint. Alter

natively, weighting for the remaining two derivatives is also possible 
through a linear combination. This GG loss is added to the original DD 
loss via a lagrange multiplier:

min
𝚯 4 = ||𝒀 NN − 𝒀 CFD||22 + 𝜆4 ||||

||||
𝜕(𝒀 CFD)
𝜕𝑥 

⊙
(
𝒀 NN − 𝒀 CFD

)||||
||||
2

2
(10)

2.2.5. Gradient masked model output loss

To emphasise the regions with larger solution variation, a mask filter 
is applied to select only the grid points that exceed a fixed derivative 
threshold or excluded otherwise. The masked loss is added to the main 
loss again with a lagrange multiplier for calibration, useful to further 
penalise the mesh nodes with derivative values above a chosen limit:

min
𝚯 5 = ||𝒀 NN − 𝒀 CFD||22 + 𝜆5||𝑴 ⊙

(
𝒀 NN − 𝒀 CFD

) ||22 (11)

where the mask matrix is dfined as:

𝑴 =
{

1 if |∇𝒀 CFD| ≥ 𝛿5
0 else

(12)

with 𝛿5 a fixed threshold, which is manually calibrated to encapsulate 
the regions with large solution gradients. The gradient-guided masking 
process is shown in Fig. 5 Panel (b).

2.3. Additional methodology remarks

The proposed hybrid schemes differ by concept and complexity. This 
motivates the aim to leverage the various embeddings and assess their 
ability to assist the model towards understanding the physics better. 
Note also that these schemes are not exclusive but they are actually 
combinable together. As a result, and to the best of our knowledge, our 
work is novel on these fronts:

1. Development of a cost-effective hybrid data-driven and physics

guided approach to improve the machine-learning modelling per

formance of aerodynamics systems.

2. Embedding of the proposed gradient-guided approach into a geo

metric deep learning based framework for large and unstructured 
domains.

3. Investigation of distinct schemes to embed physics knowledge, 
leveraging the solution gradients, into the geometric deep learning 
based framework for direct prediction of the aerodynamic solution 
fields on the aircraft surfaces.

The various neural-network frameworks were implemented using Py
Torch 1.13,1 an optimised deep-learning library in Python, and

PyTorch Geometric,2 a user-friendly graph neural-network library 
built upon PyTorch. Regarding the solution gradient computations, the

MeshGradientPy3 package was adopted because of being embeddable 
with PyTorch’s back-propagation scheme. This package’s gradient im

plementation is based on the formulation from [22]. The widely used

PyVista4 package was preferred for post-processing of the gradients.

3. NASA common research model

We adopted a relevant problem in the aerodynamics field as test case. 
Nevertheless, the advantage of our proposed gradient-based approaches 
is that they are directly applicable to any other discipline, independently 
of the underlying physics, wherein the spatial domain is discretised as 
a mesh.

3.1. Reference CFD dataset

To demonstrate our models we used the NASA Common Research 
Model (CRM) [40,34], which consists of the wing/body model illus

trated in Fig. 6 Panel (a). Reference geometric chord is 𝑐 =0.1412 m, 
surface area 𝑆 =0.0727 m2 and the origin for moment calculations 
𝑥𝑒𝑎∕𝑐 =0.5049. We address steady-state prediction of the pressure 
and wall shear stress coefficients on the nodes of the surface mesh, 
𝒀 𝑖 = [𝐶𝑃 ,𝐶𝜏𝑥 ,𝐶𝜏𝑦 ,𝐶𝜏𝑧 ]𝑖 ∈ ℝ𝑛𝑛×4, given the mesh node coordinates 𝒙𝑖
and the envelope of Mach numbers 𝑀∞ ∈ [0.70,0.84] and angles of 
attack 𝛼∞ ∈ [0.0,5.0], at constant Reynolds number 𝑅𝑒 =5 ⋅ 106 and 
freestream temperature 𝑇∞ =311 K. We used 70 steady-state RANS CFD 
solutions from a companion paper [25] to sample the envelope, shown 
in Fig. 6 Panel (b), of which 40 were used to train the models (circles 
with black labels) and 30 left for final testing (triangles with red labels).

The CFD model involved 50 million cells, of which 74k on the walls, 
shown in Fig. 6 Panel (a), one-equation Spalart-Allmaras RANS turbu

lence model and the SU2 solver was used. Full details on the generation 

1 https://pytorch.org/.
2 https://pytorch-geometric.readthedocs.io/en/latest/.
3 https://github.com/DonsetPG/MeshGradientPy.
4 https://docs.pyvista.org/.
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Fig. 4. Schematics of the various gradient-guided approaches. The blue block is for the GCN-MM-AE, corresponding to the data-driven model in Fig. 3; the green 
block is for the gradient-guided embedding. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

of the CFD simulations are in Ref. [15]. Fig. 6 Panel (b) illustrates the 
variation of the lift coefficient 𝐶𝐿 with the sampled freestream condi

tions, obtained by integration of the pressure and shear stresses results 
from the reference CFD solutions. The lift coefficient correlates nonlin

early with the angle of attack 𝛼∞ and there is also a dependency across 
the Mach range 𝑀∞.

Table 1 clarfies the input and output variables involved in the CRM 
test case, including the dimensions of the tensors. The inputs also involve 
the coordinates of the mesh 𝒙, aimed at inferring the spatial mapping, 
and the connectivity 𝑨̂, required to embed the information across from 
neighbouring nodes in the GCN layers. The physics embedding terms, 
consisting of the solution gradients, are embedded at different stages 
of the training framework depending on the specfied approach, as de

scribed in Section 2.2. Despite this test case deals with the envelope of 

Table 1
Relation of inputs, outputs and physics embeddings in

volved in the CRM framework. The predicted quantities 
involves the pressure coefficient 𝒀 = [𝐶𝑃 ,𝐶𝜏𝑥 ,𝐶𝜏𝑦 ,𝐶𝜏𝑧 ], 
global inputs are the 𝒔= [𝛼∞,𝑀∞] and 𝒙= [𝑥, 𝑦, 𝑧] the 
mesh coordinates.

Inputs Outputs Physics Terms 
[𝒔,𝒙] ∈ℝ𝑛𝑛×(2+3), 𝑨̂ ∈ℝ𝑛𝑒×3 𝒀 ∈ℝ𝑛𝑛×4 ∇𝒀 ∈ℝ𝑛𝑛×4×3

Mach number and angle of attack conditions, the framework is suitable 
to other types of input conditions (side slip or Reynolds number) and 
include design parameters in design optimisation tasks.

Aerospace Science and Technology 160 (2025) 110037 
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Fig. 5. Gradient-guided approaches continued from Fig. 4. Operator ⊙ denotes Hadamard (element-wise) product. 

Fig. 6. Reference dataset of the Common Research Model test case. 
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Fig. 7. Pressure coefficient 𝐶𝑃 distribution for the CFD samples labelled with the same letters in Fig. 6 Panel (b). 

Fig. 8. Streamwise derivative of the pressure coefficient 𝜕𝐶𝑃
𝜕𝑥 distribution for the same selected CFD cases. 

3.2. Background physics

From the reference CFD database, we analysed the results at the 
extremes of the envelope, labelled with letters a to d in Fig. 6 Panel 
(b). Labelled samples e to g will be used for analysis of results in Sec

tion 4. Fig. 7 shows the pressure coefficient 𝐶𝑃 for the selected samples, 
arranged by low 𝛼∞ on the bottom Panels and high 𝑀∞ on the right Pan

els. Significant variation of the pressure distribution with the freestream 
conditions occur. At lower Mach numbers, left Panels, we observe a tran

sition of the shock wave towards the leading edge with increasing the 
angle of attack, as well as an intensity increase. By contrast, increasing 
the Mach number, the peak pressure distribution flattens and the shock 

wave becomes stronger. Furthermore, the shock-wave location remains 
stable independently of the angle of attack, right panels.

In this work, we also leverage the gradients of the distributed aero

dynamic quantities. Fig. 8 illustrates the derivative in the streamwise 
direction 𝜕𝐶𝑃

𝜕𝑥 . The streamwise derivative is typically the dominant com

ponent to capture the most crucial flow features, e.g. flow acceleration 
along the leading edge of the wing or the shock waves on the upper 
and lower surfaces. Derivatives along the crosswise direction 𝜕𝐶𝑃

𝜕𝑦 , typi

cally useful to capture tip vortices, or the vertical direction 𝜕𝐶𝑃
𝜕𝑧 , are also 

reported in Appendix A. Furthermore, the gradients for the wall shear 
stress components 

[
∇𝐶𝜏𝑥 ,∇𝐶𝜏𝑦 ,∇𝐶𝜏𝑧

]
, are also computed but not re

Aerospace Science and Technology 160 (2025) 110037 

7 



D. Massegur and A. Da Ronch 

ported here for brevity. We observe how the 𝜕𝐶𝑃
𝜕𝑥 clearly identfies the 

location of the shock wave on the wing on the various samples. In lower 
𝑀∞ (left panels), a significant variation in shock location and intensity 
is visible. By contrast, at the higher Mach numbers (right panels), the 
shock wave remains stable, as expected.

Fig. 7 showcases how the range of flight conditions chosen (transonic 
regime) is particularly challenging because small variations of operat

ing conditions cause large variations in the flow field [25]. The distinct 
physics phenomena observed in this preliminary analysis justfies the 
implementation of a method based on geometric deep learning for the 
prediction of aerodynamic fields on the surface of the aircraft. Further

more, the behaviour of the solution gradients motivates investigation of 
hybrid approaches which leverage these terms to enrich the reduced

order modelling inference.

4. Results

To address the comparison of the various frameworks, we laid out 
different analyses based on three scenarios prescribed via variation of 
the dataset and model sizes:

1. Large model and original dataset: to start with, a similar 
model architecture from the steady-state framework developed in 
Refs. [25,26] is adopted, featuring the same kernel size prescrip

tion. The dataset includes 40 CFD solutions for training, with the 
remaining 30 as test set. This scenario considers the situation where 
enough resources are available, both for a more in-depth prelimi

nary scan of the design space and for computationally sizeable ROM 
memory.

2. Large model and reduced dataset: the model size is preserved but 
the dataset is reduced to 20 training samples, resulting in 50 for 
testing. This is the scenario where the amount of data is limited.

3. Small model and original dataset: based on the same multi-mesh 
architecture, the number of kernels (channels) in each layer is 
halved. The original dataset split of 40 training and 30 test sam

ples is preserved. This is the scenario where the computing memory 
capacity is limited.

Each of these scenarios are frequent in aerospace related tasks. Hence 
the interest in demonstrating the adequacy of the various approaches 
at each of these distinctly possible events. To this aim, we assessed the 
performance of the proposed frameworks for each scenario by analysing 
the predicted distributed fields as well as the integrated scalar quantities 
across the sampled envelope. Note that a fourth scenario involving a 
small model and a reduced dataset, i.e. combining scenarios 2 and 3, is 
also interesting but was not considered here for brevity.

The definitive steady-state GCN-MM-AE model implementation, 
Fig. 3, adopted a mesh-resolution compression ratio of 16 (from 78k 
to 5k nodes). The first-order gradient-based algorithm Adam [18] and 
the mean squared error (MSE) loss function [3] were adopted for the 
optimisation of the model parameters. The inputs were standardised 
with the mean fields and normalised with the standard deviation to en

sure a more efficient training process. Full details of the steady-state 
GCN-MM-AE model architecture and hyper-parameters are reported in 
Appendix B. The developed GCN-MM-AE framework from that work is 
used here as the purely data-driven baseline for comparison with the 
various hybrid approaches proposed in this study. Furthermore, Ap

pendix C reports the choice of hyper-parameter values relevant to the 
proposed gradient-based approaches.

The various frameworks are designed to predict the pressure 𝐶𝑃
and the three shear-stress [𝐶𝜏𝑥 ,𝐶𝜏𝑦 ,𝐶𝜏𝑧 ] fields. No bespoke ROMs were 
dedicated to directly obtain the resulting forces and moments. Load re

sultants are instead obtained by surface integration of the distributed 
quantities.

4.1. Scenario 1: large model size and original dataset

This analysis is for the large model size (reported in Table B.7 of the 
Appendix) trained with the original training dataset of 40 samples out 
of the 70. For brevity, we report results on lift 𝐶𝐿 and pitching moment 
coefficients 𝐶𝑀𝑦

, as these are the most interesting resultants in aircraft 
design, with drag typically being an order of magnitude lower. Fig. 9
reports the relative error in percentage for the 𝐶𝐿 (left) and the 𝐶𝑀𝑦

(right) obtained with the original data-driven model architecture across 
the entire dataset. Reported errors are classfied by training (circles) and 
test (triangles), to assess model generalisation to unseen conditions. The 
tra˙ic-light colour scheme, convenient for visual judgement, displays 
errors below 5% in green, below 10% in amber and above 10% in red. 
We observe how lift (left panel) is very well predicted across the entire 
dataset, with all errors consistently below 5%.

The errors on the pitching moment (right panel) were found, by 
contrast, considerably larger. Slight discrepancy of the shock wave can 
cause significant variations of the pitching moment. Not surprisingly, 
the error is larger towards higher angles of attack, where the response 
becomes nonlinear. In particular, we focus on the sample at 𝑀∞ =0.76
and 𝛼∞ =4.42 deg, sample e in Fig. 6(b). This test sample proved to 
be the most complicated to predict due to the lack of training samples 
in the vicinity to adequately learn that region of the envelope. These 
prediction results represent the benchmark to assess the performance 
of the proposed gradient-guided schemes. Figs. 10 to 14 illustrate the 
same analyses for the five distinct GG frameworks. The tra˙ic-light clas

sfication results convenient to identify the best suited embeddings for 
enhanced modelling accuracy. The error on the lift coefficient, left pan

els, remained low among all the models. Observing the right panels, 
we identfied three out of five GG models that outperformed the pitch

ing moment coefficient predictions: adding the gradient of the model 
outputs to the loss function, Fig. 11; using the gradients for loss weight

ing, Fig. 13; and the masking, Fig. 14. By contrast, adding the gradients 
as target predictions, Fig. 10, or imposing them as latent states, Fig. 12, 
were not found as interesting. 

To complete the error analysis, Table 2 reports a statistical summary 
of the lift, drag and pitching moment coefficient errors on the test set, 
represented by triangles in Figs. 9 to 14, to verify model performance in 
flow conditions not seen during model training. For each approach, the 
average error, the standard deviation and the worst sample are reported. 
Furthermore, for the various GG models, the variation with respect to 
the baseline data-driven implementation is also reported for each met

ric. We observe how, despite there are large variations on the 𝐶𝐿 and 𝐶𝐷
errors compared to the baseline values, the average errors are actually 
significantly low. The average error was found instead an order of mag

nitude larger for the 𝐶𝑀𝑦
and, therefore, more significant. To remark 

that the pitching moment is strongly ifluenced by the location of the 
shock wave, a flow feature that the gradient embedding should crucially 
capture. Three of the proposed GG frameworks were found to improve 
the average error on the pitching moment by at least 16%. These are for 
the gradient loss, the weighting and the masking approaches. By con

trast, the gradient targets and the latent state approaches were not found 
to improve the baseline data-driven accuracies. In the case of the target 
approach (GG model 1), the worse performance could be attributed to 
the fact that the same model size was adopted to predict a larger num

ber of target variables. Improvements might be possible with increasing 
the size of the model layers, impacting on the computing memory. We 
conclude that embedding physics terms as direct variables to predict, 
either in interim layers or as outputs, does not seem adequate. 

4.2. Scenario 2: large model size and reduced dataset

New ROMs were generated with only 20 dataset samples as opposed 
to 40 but keeping the same model size. The idea is to demonstrate the 
performance of the GG frameworks in tasks with limited data availabil

ity. From the three best candidates identfied in the previous section, the 
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Fig. 9. Baseline: data-driven only model (Fig. 3), scenario 1: large model size and original training samples. Prediction error of aerodynamic forces on the entire 
dataset. Classfied by training (circles) and test (triangles) samples. Green: error below 5%, amber: between 5% and 10%, red: above 10%.

Fig. 10. GG model 1: gradients predicted as model outputs (Fig. 4(a)), scenario 1: large model size and original training samples. Prediction error of aerodynamic 
forces on the entire dataset.

Fig. 11. GG model 2: gradient loss from model outputs (Fig. 4(b)), scenario 1: large model size and original training samples. Prediction error of aerodynamic forces 
on the entire dataset.
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Fig. 12. GG model 3: gradients predicted as latent states (Fig. 4(c)), scenario 1: large model size and original training samples. Prediction error of aerodynamic forces 
on the entire dataset.

Fig. 13. GG model 4: loss weighted by streamwise derivative (Fig. 5(a)), scenario 1: large model size and original training samples. Prediction error of aerodynamic 
forces on the entire dataset.

Fig. 14. GG model 5: loss masked by a gradient threshold (Fig. 5(b)), scenario 1: large model size and original training samples. Prediction error of aerodynamic 
forces on the entire dataset.
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Table 2
Prediction error statistics on the test samples of the CRM test case; comparison for the various modelling approaches 
based on the large model and original training dataset (scenario 1).

𝜀𝐶𝐿 [%] 𝜀𝐶𝐷 [%] 𝜀𝐶𝑀𝑦
[%]

mean std dev worst mean std dev worst mean std dev worst 
DD model (baseline) 0.8 0.7 3.2 0.8 0.8 3.6 3.7 7.1 38.9

GG model 1 (grad. targets) 0.8 0.5 2.0 1.0 0.9 3.5 4.9 6.7 23.7 
Δ to baseline [%] 7.5 -28.8 -38.7 26.5 10.1 -3.1 32.8 -5.1 -39.1

GG model 2 (grad. loss) 0.6 0.4 1.7 0.9 1.1 5.2 2.5 3.6 19.1 
Δ to baseline [%] -23.3 -38.8 -47.6 23.0 33.7 45.2 -31.3 -48.9 -51.0

GG model 3 (grad. latent state) 0.7 0.6 3.0 1.1 1.0 3.9 4.0 7.0 38.6 
Δ to baseline [%] -9.4 -17.3 -6.2 41.5 21.9 8.5 7.2 -1.7 -0.9

GG model 4 (grad. weighting) 0.7 0.5 1.8 1.0 1.2 5.8 2.9 4.9 27.8 
Δ to baseline [%] -12.4 -33.2 -42.9 27.9 48.8 63.7 -21.7 -31.2 -28.6

GG model 5 (grad. masking) 0.5 0.5 2.6 0.9 0.8 3.6 3.1 5.9 33.6 
Δ to baseline [%] -36.5 -31.8 -20.0 21.5 3.2 0.3 -15.7 -16.9 -13.8 

Table 3
Prediction error statistics on the test samples of the CRM test case; comparison for selected modelling approaches 
based on the large model and reduced training dataset (scenario 2).

𝜀𝐶𝐿 [%] 𝜀𝐶𝐷 [%] 𝜀𝐶𝑀𝑦
[%]

mean std dev worst mean std dev worst mean std dev worst 
DD model (baseline) 1.1 0.8 3.7 1.5 1.5 8.2 7.0 8.9 41.2

GG model 2 (grad. loss) 0.6 0.4 2.2 1.6 1.8 10.3 3.8 5.8 33.7 
Δ to baseline [%] -46.5 -44.5 -39.2 12.5 22.1 26.2 -44.9 -35.4 -18.2

GG model 4 (grad. weighting) 1.1 1.0 4.2 1.9 2.3 12.9 6.2 9.2 37.8 
Δ to baseline [%] 4.0 26.8 13.6 31.8 49.4 58.2 -11.5 2.5 -8.4

GG model 5 (grad. masking) 1.3 1.6 7.0 1.7 2.5 11.3 4.5 4.6 25.8 
Δ to baseline [%] 23.4 99.1 90.6 15.1 62.9 38.9 -35.4 -48.8 -37.5 

Table 4
Prediction error statistics on the test samples of the CRM test case; comparison for selected modelling approaches 
based on the reduced model and original training dataset (scenario 3).

𝜀𝐶𝐿 [%] 𝜀𝐶𝐷 [%] 𝜀𝐶𝑀𝑦
[%]

mean std dev worst mean std dev worst mean std dev worst 
DD model (baseline) 1.0 1.1 5.3 1.1 1.3 6.7 4.8 7.1 33.8

GG model 2 (grad. loss) 0.8 0.5 1.8 1.2 1.1 4.9 3.4 5.8 32.4

Δ to baseline [%] -18.9 -49.5 -66.3 4.7 -16.4 -26.7 -28.9 -19.0 -4.3 
GG model 4 (grad. weighting) 1.2 0.8 3.6 1.3 1.2 5.7 5.2 6.8 26.4

Δ to baseline [%] 20.4 -22.8 -32.4 16.6 -7.5 -15.8 10.1 -4.0 -22.1 
GG model 5 (grad. masking) 0.9 1.1 4.9 1.5 1.6 6.7 4.2 6.5 31.9

Δ to baseline [%] -8.1 3.6 -7.8 31.5 19.1 -0.9 -11.1 -9.1 -5.8 

output differentiation (GG method 2) and the masking (GG method 5) 
approaches were found the better candidates here. To keep brevity, from 
now on we present results for these two schemes only, and compared 
their contribution against the baseline data-driven model. Figs. 15 to 17

illustrate the prediction error on the 𝐶𝐿 (left panels) and the 𝐶𝑀𝑦
(right 

panels) for the baseline DD model, the output gradient and the mask

ing approaches, respectively; adopting the same tra˙ic-light criteria as 
before. Once again, the lift is adequately predicted by all the models. 
Regarding the pitching moment, with less training data, we found sig

nificant degradation of the prediction accuracy, Fig. 15 against Fig. 9. 
This outcome is expected given that the model was trained with half the 
data size. However, significant improvements are observed with both 
GG schemes, Figs. 16 and 17, consistent with the observations from the 
analysis of the first scenario. We also observe how the worst predictions 
are for the test samples, i.e. most red and amber samples are triangles, 
not included in the training dataset. This evidences that the design space 

is not sufficiently sampled. In this scenario, our gradient-guided imple

mentations manage to improve the cofidence by the model. By lever

aging the gradients better, the resulting ROM outperforms the baseline 
implementation in regions not covered by training samples, successfully 
achieving our objective. 

The statistical summary of the prediction error across the test set, 
now comprising 50 samples instead of 30, is reported in Table 3 for the 
two selected GG approaches compared to the DD baseline results. The 
results for the weighted method are also included, justifying the choice 
of the masking over this scheme. We found the gradient loss model only 
to improve the 𝐶𝐿, while the 𝐶𝐷 was found worse for all selected GG 
approaches. However, again, the magnitude of the errors are low across 
the envelope (on the range of 1 − 2%) and, consequently, small varia

tions cause large percentages. Therefore, this degradation is less critical. 
Furthermore, the 𝐶𝐷 performance is an order of magnitude lower than 
the 𝐶𝐿, contributing to larger percent errors. Focusing now on the 𝐶𝑀𝑦

, 
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Fig. 15. Baseline: data-driven only model (Fig. 3), scenario 2: large model size and reduced training samples. Prediction error of aerodynamic forces on the entire 
dataset. Classfied by training (circles) and test (triangles) samples. Green: error below 5%, amber: between 5% and 10%, red: above 10%.

Fig. 16. GG model 2: gradient loss from model outputs (Fig. 4(b)), scenario 2: large model size and reduced training samples. Prediction error of aerodynamic forces 
on the entire dataset.

Fig. 17. GG model 5: loss masked by a gradient threshold (Fig. 5(b)), scenario 2: large model size and reduced training samples. Prediction error of aerodynamic 
forces on the entire dataset.
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Fig. 18. Baseline: data-driven only model (Fig. 3), scenario 3: limited model size and original training samples. Prediction error of aerodynamic forces on the entire 
dataset. Classfied by training (circles) and test (triangles) samples. Green: error below 5%, amber: between 5% and 10%, red: above 10%.

Fig. 19. GG model 2: gradient loss from model outputs (Fig. 4(b)), scenario 3: limited model size and original training samples. Prediction error of aerodynamic 
forces on the entire dataset.

Fig. 20. GG model 5: loss masked by a gradient threshold (Fig. 5(b)), scenario 3: limited model size and original training samples. Prediction error of aerodynamic 
forces on the entire dataset.
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the best two GG approaches resulted in significant improvements of over 
45% and 35% respectively. Note also how the worst case prediction is 
significantly improved as well.

4.3. Scenario 3: small model size and original dataset

We investigated the performance of our various frameworks with a 
reduced model size. New ROMs were generated by halving the number 
of channels at each NN layer. As reported in Appendix B, the overall 
model size was reduced by a factor of 4, resulting in an equivalent re

duction of GPU memory requirements. Figs. 18 to 20 report the error 
on the integrated loads for the baseline DD and the best two GG ap

proaches. Focusing on the pitching moment error (right panels), for the 
baseline data-driven model, Fig. 18, the accuracy of the prediction di

minishes at higher angles of attack, where a larger nonlinear response 
occurs. Again, larger errors can be expected since the size of the model 
(number of regression parameters) is significantly smaller, limiting the 
capacity of the model to learn the physics. In contrast to the previous set

ting involving limited training data, where worst predictions comprised 
test samples (triangles), now we also observe training samples being 
wrongly predicted (red and amber circles). This is consequence of the 
smaller model not having enough capacity to accommodate the nonlin

ear response across the envelope. Nevertheless, with the gradient-based 
methods, the 𝐶𝑀𝑦

error is visibly improved, Figs. 19 and 20 respec

tively. With either model, no training samples and fewer test samples 
were found with error larger than 10%. Embedding the gradients into 
the data-driven framework enhances a model of smaller capacity to per

form closer to a larger model.

As with the previous scenarios, Table 4 reports the statistical compar

ison on the prediction error for the test set among the selected modelling 
frameworks. Again, the results for the weighted scheme are also added, 
further justifying the choice for the gradient loss and the masking ap

proaches. In this cofiguration, we observe similar trends compared to 
the previous analyses. The best two gradient-based schemes were found 
to improve the pitching moment 𝐶𝑀𝑦

error statistics on the test set by 
29% and 11% respectively. Therefore, the output gradient loss model 
was found to outperform the other frameworks. Although the mask

ing scheme showed a slight improvement, the weighted scheme, on 
the contrary, did not provide a significant increment over the baseline 
DD model. This indicates that a simpler boolean masking is more effec

tive for highlighting high-gradient regions compared to a variabl-field 
mask.

4.4. Sensitivity to training set size

To further demonstrate the advantage of gradient-guided data-driven 
approaches while reducing the dataset size, we generated new models 
for the selected approaches with an interim scenario of 30 training sam

ples. In combination with the first two scenarios, Tables 2 and 3, we 
addressed a sensitivity analysis of the model accuracy with the train

ing dataset size for the various modelling approaches. Fig. 21 illustrates 
the evolution of the prediction errors for the 𝐶𝐿 (left panel), 𝐶𝐷 (mid 
panel) and 𝐶𝑀𝑦

(right panel). The average errors on the test set are 
in black and on the left axis, while the worst predictions are in red 
and on the right axis. Results are reported for the baseline data-driven 
model (�), the gradient loss approach (□) and the masking approach 
(△). For the various coefficients, the prediction accuracy generally im

proves with increasing the dataset, which is expected. Observe how the 
slope of the curves, particularly the average values, are deeper with 
the baseline model. This cofirms that the purely data-driven model is 
more sensitive to dataset size. By contrast, the gradient models, par

ticularly the gradient-loss approach, present slightly shallower curves, 
which means that there is less degradation of the accuracy with reduc

ing the data. This result demonstrates the adequacy of our proposed 
physics-enhanced approach. Furthermore, when comparing against the 

DD model errors, improvements are consistent for the gradient loss ap

proach (GG 2) across the various training set cases, particularly for the 
lift and pitching moment coefficients. On the other hand, the masking 
approach (GG 5) was found only to improve the 𝐶𝐿 predictions at the 
smallest train set size, whereas improvements on 𝐶𝑀𝑦

were found in 
every case.

4.5. Aerodynamic field predictions and gradients

The analysis for the predicted integrated loads is useful to broadly as

sess the performance across the operating envelope and compare among 
the various frameworks and scenarios. However, analysis of the dis

tributed fields is more interesting, as these are actually the quantities 
predicted by the models. Distributed fields are more challenging to pre

dict accurately compared to scalar loads and are more useful for aircraft 
design development. For brevity, only the results for the pressure predic

tions are reported here. Shear stress results are provided in Appendix D
as their contribution to the resulting aerodynamic forces is less signif

icant. In addition, we report analysis of only the approaches already 
selected in the previous results.

4.5.1. Pressure field predictions

Figs. 22 to 24 illustrate comparisons of the pressure coefficient distri

bution obtained with the various models for each scenario, respectively. 
The flight condition corresponds to sample e labelled in Fig. 6(b). This 
sample is interesting for being the worst predicted, due to the lack of 
training samples in the vicinity. In each panel, the various modelling ap

proaches are arranged in columns, with the ground-truth CFD solution 
on the left. The upper panels are for the 𝐶𝑃 prediction, while the lower 
panels are for the error (difference) against the CFD reference. The error 
values on the integrated forces are also reported in the captions, corre

sponding to the values shown within the respective dataset error plots 
in the previous sections.

For the first scenario, Fig. 22, we observe a discrepancy on the shock

wave prediction with the data-driven model compared to the CFD refer

ence. These results are the benchmark for the two selected GG-based 
frameworks. We found that the prediction error improved along the 
shock line (more faded blue) and at the root of the wing (diminished red 
portions). The 𝐶𝑃 remained well captured elsewhere. Fig. 23 is for the 
reduced dataset scenario. With the purely data-driven implementation, 
the shock wave was found slightly better captured from ∼ 30% of the 
span but worse at the root. The gradient loss model (GG approach 2) was 
again found to improve the shock-wave prediction. Furthermore, the in

crement with the masking method (GG approach 5) was smaller than 
with the gradient-loss approach and a degradation is observed towards 
the trailing edge of the wing. The reason for this is that the masking 
filter prioritises regions containing large gradients rather than smooth 
solution variations, i.e. shock waves and the trailing edge, respectively. 
Observing the comparisons for the last scenario, Fig. 24, similar trends 
are observed but the improvements are less visible than with the first 
scenario. Despite with the GG masking method the worst-case predic

tion was not significantly improved, the analysis on the integrated forces 
across the entire dataset demonstrated to outperform the DD implemen

tation. Regardless, these comparisons cofirmed the gradient-loss as the 
best predictive method. 

The GG models were found to provide significantly greater improve

ments in the scenario of limited training samples, Section 4.2. Fig. 25

reports the pressure coefficient prediction comparison for sample f in 
Fig. 6(b) with the large model and reduced training dataset. The same 
panel row (prediction and error) and column arrangements (modelling 
approaches) is adopted. We observe that with limited data, the DD 
model (second column) predicted the location of the shock wave ex

cessively downstream. The prediction was found considerably improved 
with the gradient-loss model (third column). By contrast, the masking 
model overpredicted the suction peak towards the leading of the wing, 
despite the pitching moment error is successfully improved. 
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Fig. 21. Sensitivity of the prediction error on the test set to the number of training samples. Mean errors are in black on left axis, and worst predictions are in red 
on right axis. Models correspond to data-driven (BL) in �, gradient loss (GG 2) in □ and gradient mask (GG 5) in △.

Fig. 22. Pressure coefficient comparison of the various methods against CFD reference at 𝑀∞ =0.76, 𝛼∞ =4.42 deg, 𝐶𝐿CFD
=0.414 and 𝐶𝑀𝑦 CFD = -0.019 (sample e in 

Fig. 6(b)), for the large model and original dataset scenario.

To complete the analysis on the 𝐶𝑃 distribution, we analysed the 
performance of the GG models in the case of limited model size, Sec

tion 4.3. Fig. 26 illustrates a similar comparison for training sample g in 
Fig. 6(b) with the small model and the original 40 training samples. The 
DD model in second column, predicted the shock wave slightly more up

stream. By contrast, the gradient-loss and the masking models were both 
found a significant improvement.

4.5.2. Streamwise pressure gradient predictions

For post-processing of the results, gradients are computed with 
the Pyvista package from the modelled quantities. We analyse here 
the streamwise derivative of the pressure coefficient only, as Section 3.2

demonstrated being the most relevant gradient component. Figs. 27 to 
29 provide a similar analysis of the various ROM approaches with the 
different scenarios arranged as in the previous section, again for sam

ple e. Observing the CFD reference, the shock-wave location is clearly 
identfied along the span of the upper surface of the wing. In Fig. 27

regarding the first scenario, the error distribution clearly shows the loca

tion of the shock wave predicted further downstream by the data-driven 
model compared to the CFD ground truth (mid left panels). Regarding 
the gradient loss embedding (mid right), the 𝜕𝐶𝑃

𝜕𝑥 field was found bet

ter captured (more faded blues and reds), particularly on the inboard 
side. The streamwise derivative was also marginally better predicted by 
the masking model (right) but to a lower extend than with the gradient

loss approach. These observations are in agreement with the 𝐶𝑃 results 
above. The small dataset scenario of Fig. 28 evidences similar trends 
as before. The gradient along the shock-wave is slightly improved ex

cept towards the root. Improvements are observed with the gradient-loss 
method but a larger discrepancy was observed towards the trailing edge 
of the wing for the masking method, in line with the 𝐶𝑃 results. Fig. 29 is 
for the limited model memory case, suggesting that the increments are 
not as obvious as with the other scenarios. The masking method was 
considerably easier to implement than the output-gradient scheme (see 
Section 4.6) and it still proved capable of marginally outperforming the 
regular DD approach. Nevertheless, the gradient-loss method was found 
to consistently outperform all the other frameworks in all the scenarios. 

Fig. 30 illustrates the streamwise derivative comparison for sam

ple f with the reduced dataset scenario. The second column evidences 
how the regular DD model mispredicted the shock wave location further 
downstream. This discrepancy is improved with the GG models (third 
and last columns). However, the masking model introduced derivative 

Aerospace Science and Technology 160 (2025) 110037 

15 



D. Massegur and A. Da Ronch 

Fig. 23. Pressure coefficient comparison of the various methods against CFD reference at 𝑀∞ =0.76, 𝛼∞ =4.42 deg, 𝐶𝐿CFD
=0.414 and 𝐶𝑀𝑦 CFD = -0.019 (sample e in 

Fig. 6(b)), for the large model and reduced dataset scenario.

Fig. 24. Pressure coefficient comparison of the various methods against CFD reference at 𝑀∞ =0.76, 𝛼∞ =4.42 deg, 𝐶𝐿CFD
=0.414 and 𝐶𝑀𝑦 CFD = -0.019 (sample e in 

Fig. 6(b)), for the small model and original dataset scenario.

error towards the leading edge of the wing. Regarding sample g for 
the limited model size case, Fig. 31 illustrates the 𝜕𝐶𝑃

𝜕𝑥 comparison for 
the various models. The plots evidence the upstream prediction of the 
shock wave with the baseline DD model. Both GG models again man

age to rectify this error. In these distinct scenarios, especially with a 
limited number of training samples, there is a significant sensitivity of 
prediction accuracy to the data distribution across the envelope. The 
incorporation of physics contributions has been found to significantly al

leviate this effect. These results cofirm that embedding of the gradients 
into the data-driven framework becomes significantly more convenient 
with limited data available and/or limited model capacity.

The results herein presented are for surrogate modelling of CFD

based solutions. By contrast, in experimental testing (e.g. wind tunnel) 
complete flo-field information is generally unavailable but discrete 
sensor measurements are more common instead. Reconstruction meth

ods can be considered to obtain complete distributed fields from sensor 
measurements. Adequate approaches must be adopted to ensure smooth 

solution fields. Our proposed GCN-MM-AE framework, embedding a 
multi-mesh scheme, can be adapted to address this problem. Using the 
reconstructed fields, it is then possible to use the gradient-guided ap

proaches proposed herein, with the inclusion of a low-pass filter to 
exclude regions of noisy gradient values.

4.6. Computing cost remarks

We conclude with a remark on the computing efficiency for the 
various modelling approaches. Table 5 provides a summary of the com

puting cost involved with the generation of the ROM framework and 
the benfit against hig-fidelity simulations. Steady-state CFD simula

tions in Ref. [15] were solved with a 120-core HPC, requiring about 
28,000 CPU-h for the 70 CFD dataset samples. The ROMs were gener

ated using a conventional 8GB GPU. Tables B.7 and B.8 of the Appendix 
provide details of the model architecture and the training strategy. Once 
the models are generated, simulation time is invariant to the various 
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Fig. 25. Pressure coefficient comparison of the various methods against CFD reference at 𝑀∞ =0.81, 𝛼∞ =4.34 deg, 𝐶𝐿CFD
=0.417 and 𝐶𝑀𝑦 CFD = -0.029 (sample f in 

Fig. 6(b)), for the large model and reduced dataset scenario.

Fig. 26. Pressure coefficient comparison of the various methods against CFD reference at 𝑀∞ =0.79, 𝛼∞ =3.24 deg, 𝐶𝐿CFD
=0.384 and 𝐶𝑀𝑦 CFD = -0.038 (sample g in 

Fig. 6(b)), for the small model and original dataset scenario.

Table 5
Summary of the computing costs involved in steady-state simulations of 
the CRM.

Computing Task Cost 
1 steady-state CFD run [CPU-h] ∼ 400
Dataset of 70 CFD runs [CPU-h] ∼ 28,000
ROM training (see Table 6) [GPU-h] ∼ 2.9 − 7.0
1 steady-state ROM prediction [GPU-h] ∼ 1.0 × 10−4
Dataset of 70 ROM predictions [GPU-h] ∼ 0.006
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Fig. 27. Pressure coefficient streamwise derivative comparison of the various methods against CFD reference at 𝑀∞ =0.76, 𝛼∞ =4.42 deg, 𝐶𝐿CFD
=0.414 and 

𝐶𝑀𝑦 CFD = -0.019 (sample e in Fig. 6(b)), for the large model and original dataset scenario.

Fig. 28. Pressure coefficient streamwise derivative comparison of the various methods against CFD reference at 𝑀∞ =0.76, 𝛼∞ =4.42 deg, 𝐶𝐿CFD
=0.414 and 

𝐶𝑀𝑦 CFD = -0.019 (sample e in Fig. 6(b)), for the large model and reduced dataset scenario.

Fig. 29. Pressure coefficient streamwise derivative comparison of the various methods against CFD reference at 𝑀∞ =0.76, 𝛼∞ =4.42 deg, 𝐶𝐿CFD
=0.414 and 

𝐶𝑀𝑦 CFD = -0.019 (sample e in Fig. 6(b)), for the small model and original dataset scenario.
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Fig. 30. Pressure coefficient streamwise derivative comparison of the various methods against CFD reference at 𝑀∞ =0.81, 𝛼∞ =4.34 deg, 𝐶𝐿CFD
=0.417 and 

𝐶𝑀𝑦 CFD = -0.029 (sample f in Fig. 6(b)), for the large model and reduced dataset scenario.

Fig. 31. Pressure coefficient streamwise derivative comparison of the various methods against CFD reference at 𝑀∞ =0.79, 𝛼∞ =3.24 deg, 𝐶𝐿CFD
=0.384 and 

𝐶𝑀𝑦 CFD = -0.038 (sample g in Fig. 6(b)), for the small model and original dataset scenario.

frameworks, as the gradient-guided embedding is just involved in the 
training process and only the DD model is called in new predictions. As 
a result, each new aerodynamic prediction is obtained in less than a sec

ond, rather than approximately 3 hours in CFD, leading to a speed-up 
of well over 99.9% for the pure predictive step.

The training cost varied depending on the dataset, model size and 
GG approach. Table 6 reports details of the cost involved for the distinct 
ROM approaches. The reported values are based on the worst case, con

sisting of the large model and the original training samples (scenario 
1). The number of epochs were dictated by ensuring the convergence 
of each model training. Note how the better performing gradient-loss 
method (GG approach 2) was also found more computationally intensive 
than the others. However, the additional burden from the GG embedding 
is only involved during the training phase. Finally, the computing cost 
to train the models for scenarios 2 (large model and reduced dataset) 
and 3 (small model and original dataset) were in general reduced to 

∼ 48% and ∼ 74%, respectively, compared to the cost required in the 
first scenario.

5. Conclusions

Deep learning-based data-driven models are renowned for their in

ference capabilities in highly nonlinear spaces. However, these methods 
depend heavily on sufficient data to adequately capture trends across the 
entire design space. In engineering analyses, for example CFD simula

tions, generating the preliminary data required to train these models 
is computationally expensive. Incorporating physics terms into data

driven models enhances their ability to understand physical solutions, 
thereby reducing the need for extensive preliminary data without com

promising accuracy. To achieve this, we developed five formulations to 
embed solution gradients into our previously implemented geometric 
deep-learning multi-resolution framework. Leveraging gradients is ad
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Table 6
Training strategies for the various GG modelling approaches. Training 
cost is for the large model size and original dataset. The training process 
comprised 800 epochs unless otherwise stated.

Parameter Value 
DD model (baseline)

training cost [GPU-h] ∼ 2.9

GG model 1 (grad. targets)

training cost [GPU-h] ∼ 4.5

GG model 2 (grad. loss)

Training epochs 1150 
training cost [GPU-h] ∼ 7.0

GG model 3 (grad. latent state)

training cost [GPU-h] ∼ 3.0

GG model 4 (grad. weighting)

training cost [GPU-h] ∼ 3.0

GG model 5 (grad. masking)

training cost [GPU-h] ∼ 3.0

vantageous because they efficiently extract critical surface flow features 
while remaining computationally cost-effective.

To investigate the five distinct gradient-informed models and assess 
their predictive capability, we considered three scenarios differing in 
dataset size and model architecture. The first scenario involved a sub

stantial dataset (in the context of costly preliminary simulations) and a 
large model architecture. In the second scenario, the number of training 
samples was significantly reduced while maintaining the same model 
architecture as in the first scenario. The third scenario featured a re

duced model size compared to the first scenario. As a relevant engineer

ing application, we addressed the aerodynamic prediction of the NASA 
CRM wing/body cofiguration under a range of transonic flow condi

tions. Nonetheless, our methodology is advantageous for its adequacy 
to a wide range of problems, particularly in spatial domain discretisa

tions.

The interpretation of the results led to the following conclusions. 
In scenarios with access to a large dataset and the capability to build 
a large model architecture, a good predictive model can be obtained 
without the necessity of embedding gradient terms into the model ar

chitecture. This aligns with expectations and is consistent with many 
applications involving significantly more extensive datasets (millions 
of data). However, in typical engineering design environments, where 
large datasets are rare, the findings from the other two scenarios become 
more relevant to the aeronautical sector. Significant improvements were 
observed with the inclusion of gradient terms in cases with limited 
data (second scenario) or constrained GPU memory (third scenario). 
Regular data-driven models exhibited poor performance under these 
conditions, whereas models incorporating gradient terms performed sat

isfactorily.

Among the various gradient-informed models, two approaches stood 
out: the output-gradient loss (approach 2) and the loss masking (ap

proach 5). The gradient-loss model consistently outperformed all other 
models, demonstrating significant prediction improvements across the 
three scenarios, albeit at a higher training cost. Consequently, the 
gradient-loss method is preferred when optimal prediction accuracy is of 
primary concern. The loss masking approach can provide slightly better 
accuracy than the purely data-driven model, particularly for the pitch

ing moment, although clearly not to the same extent as the gradient-loss 
model. Due to the lower computational demand for model generation, 
the loss masking approach is the recommended choice when a balance 
between improved prediction accuracy (with respect to the purely data

driven model) and rapid implementation (with respect to the gradient

loss model) is desired.

This work demonstrates on a relevant use case the practical benfits 
of integrating data-driven models with physical terms. The enhanced 
predictive accuracy highlights how the incorporation of physical infor

mation can compensate for smaller datasets. As an exploratory study, it 
sets the stage for further investigations into other forms of physics-based 
terms or simplfied equations, for application in fluid dynamics, struc

tural analysis or any field where mesh-based simulations are involved. 
Although these approaches may currently seem elusive, continued ef

forts in this direction are well justfied.
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Appendix A. Extended CFD gradient analysis

Figs. A.32 and A.33 illustrate the crosswise 𝜕𝐶𝑃
𝜕𝑦 and vertical 𝜕𝐶𝑃

𝜕𝑧 
derivatives for the first four selected samples of the reference dataset. 
These correspond to the other two components of the pressure gradi

ent on the CRM surface. The streamwise 𝜕𝐶𝑃
𝜕𝑥 derivative was reported 

in Fig. 8. We observe how the fields for these two derivatives are less 
interesting, especially on the wing. This comparison justfies the choice 
of the streamwise derivative for the analysis of the results.
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Fig. A.32. Crosswise derivative of the pressure coefficient 𝜕𝐶𝑃
𝜕𝑦 distribution for the CFD samples labelled with the same letters in Fig. 6 Panel (b). 

Fig. A.33. Vertical derivative of the pressure coefficient 𝜕𝐶𝑃
𝜕𝑧 distribution for the same selected CFD cases. 
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Table B.7

Architecture of the steady-state GCN-MM-AE model to construct the aero

dynamic envelope for the CRM model. Refer to Fig. 3 for the diagram of 
this NN architecture.

Layer Dimension Kernel 
Input: [𝑀∞, 𝛼∞], 𝒙𝑖, 𝑨̂0 𝑚 × 78829 × 5
Encoder: 
GCN Enc0.1 𝑚 × 78829 × 72 5 × 72 + 72
PReLU Enc0.1 𝑚 × 78829 × 72 72 
GCN Enc0.2 𝑚 × 78829 × 144 72 × 144 + 144
PReLU Enc0.2 𝑚 × 78829 × 144 144 
MM 𝑨̂0 𝑨̂1 𝑚 × 5000 × 144
GCN Enc1.1 𝑚 × 5000 × 144 144 × 144 + 144
PReLU Enc1.1 𝑚 × 5000 × 144 144 
GCN Enc1.2 𝑚 × 5000 × 288 144 × 288 + 288
PReLU Enc1.2 𝑚 × 5000 × 288 288

Decoder: 
GCN Dec1.1 𝑚 × 5000 × 144 288 × 144 + 144
PReLU Dec1.1 𝑚 × 5000 × 144 144 
GCN Dec1.2 𝑚 × 5000 × 144 144 × 144 + 144
PReLU Dec1.2 𝑚 × 5000 × 144 144 
MM 𝑨̂1 𝑨̂0 𝑚 × 78829 × 144
GCN Dec0.1 𝑚 × 78829 × 72 144 × 72 + 72
PReLU Dec0.1 𝑚 × 78829 × 72 72 
GCN Dec0.2 𝑚 × 78829 × 72 72 × 72 + 72
PReLU Dec0.2 𝑚 × 78829 × 72 72 
Repeat: 𝐲𝑖 [𝐲𝑖 ,𝐲𝑖 ,𝐲𝑖 ,𝐲𝑖] 𝑚 × 78829 × 72 × 4
GCN Dec0.3 𝑚 × 78829 × 72 × 4 72 × 72 × 4 + 72 × 4
PReLU Dec0.3 𝑚 × 78829 × 72 × 4 72 × 4
GCN Dec0.4 𝑚 × 78829 × 1 × 4 72 × 1 × 4 + 1 × 4
Output: [𝐶𝑃 𝑖, 𝐶𝜏𝑥𝑖, 𝐶𝜏𝑦𝑖, 𝐶𝜏𝑧𝑖] 𝑚 × 78829 × 4

Table B.8

Training strategy adopted to generate the steady-state 
GCN-MM-AE model.

Parameter Value 
Trainable parameters 174,460, 44,464 
Dataset samples 70
Training set 40 , 20
Batch size 1
Loss function MSE 
Optimiser Adam 
Starting learning rate 0.0009
Learning rate schedule 0.333 / 100 epochs 
GPU machine NVIDIA GeForce RTX 2070

Appendix B. Data-driven model architecture and 
hyper-parameters

The baseline data-driven model architecture was based on the GCN

MM-AE developed in Ref. [25]. In Table B.7 we report the final archi

tecture adopted for the analysis of the CRM test case. A diagram of the 
model architecture is reported in Fig. 3. The layers involving sequen

tial GCN and MM blocks for the encoder and decoder branches are laid 
out. The PReLU nonlinear activation function was used at the output of 
each GCN layer, except for the last layer, which outputs the target fields. 
The tensor dimensions at each layer output are also provided, arranged 
in 𝑚 × 𝑛mml × 𝑐𝑙 , with 𝑚 the batch size, 𝑛mml the grid size at the corre

sponding MM level and 𝑐𝑙 the state size (or channels) from each layer 
output.

The learnable parameters (kernel size) involved in each NN layer (ei

ther GCN or PReLU) are for the original model size adopted in the results 
sections 4.1 and 4.2. The reduced model adopted in section 4.3 was con

structed by halving the number of channels at each NN layer. The total 
number of ROM parameters decreased from 174,460 to 44,464, result

Table C.9

Training strategies for the various GG mod

elling approaches. Training cost is for the 
large model size and original dataset. The 
training process comprised 800 epochs un

less otherwise stated.

Parameter Value 
GG model 2 (grad. loss)

lagrange multiplier 𝜆2, Eq. (7) 0.001

GG model 3 (grad. latent state)

lagrange multiplier 𝜆3, Eq. (9) 0.001

GG model 4 (grad. weighting)

lagrange multiplier 𝜆4, Eq. (10) 1.0

GG model 5 (grad. masking)

lagrange multiplier 𝜆5, Eq. (11) 0.01 
mask threshold 𝛿5, Eq. (12) 2.0 

ing in a reduction of the GPU memory requirement by a factor of ∼ 4
approximately.

Table B.8 reports more details on the training and optimisation 
strategies adopted. The first-order gradient-based algorithm Adam [18] 
was chosen to minimise the mean squared error (MSE) loss functions [3]. 
Both the inputs and the gradients were standardised with the mean fields 
and normalised with the standard deviation to ensure better training 
convergence.

Appendix C. Gradient-based hyper-parameters

The only hyper-parameters involved in each GG approach are the la

grange multipliers to combine the physics and the data-driven terms 
in the respective loss functions, as described in Section 2.2, as well 
as the number of epochs reported in Section 4.6. In particular, the 
lagrange multipliers were fine tuned in order that the values of the sep

arate data-driven and physics loss terms were of similar magnitude. The 
adopted hyper-parameter values for each GG method are reported in 
Table C.9.

Appendix D. Skin-friction predictions

Section 4.5 presented a comprehensive analysis of the distributed 
pressure predictions, which is the most interesting aerodynamic quan

tity. We now present results for the skin friction, which is computed 
as the norm of the shear-stress components predicted by the models: 
𝐶𝑓 = ||[𝐶𝜏𝑥 ,𝐶𝜏𝑦 ,𝐶𝜏𝑧 ]||2. Fig. D.34 illustrates a comparison of the skin 
frictions for sample e again for the various modelling approaches and 
baseline scenario. Furthermore, Fig. D.35 is for the streamwise deriva

tive of the predicted skin friction. For reference, the 𝐶𝑃 analysis for the 
same cofigurations are in Figs. 22 and 27. We observe how the skin 
friction variations are two orders of magnitude lower than the pressure, 
which also rflect on the magnitude of the gradients. As a result, the skin 
friction predictions are in good agreement with the reference solution 
and no significant differences are observed among the various models. 
We conclude that, for this case, the shear-stress gradients have less in

fluence in the model training because of being less significant than the 
pressure gradients. 

Data availability

Data will be made available on request.
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Fig. D.34. Skin friction coefficient comparison of the various methods against CFD reference at 𝑀∞ =0.76, 𝛼∞ =4.42 deg, 𝐶𝐿CFD
=0.414 and 𝐶𝑀𝑦 CFD = -0.019 (sample 

e in Fig. 6(b)), for the large model and original dataset scenario.

Fig. D.35. Skin friction coefficient streamwise derivative comparison of the various methods against CFD reference at 𝑀∞ =0.76, 𝛼∞ =4.42 deg, 𝐶𝐿CFD
=0.414 and 

𝐶𝑀𝑦 CFD = -0.019 (sample e in Fig. 6(b)), for the large model and original dataset scenario.
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