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Abstract—We exploit an ESP32-based random number 

generator (RNG) on LoRa to secure peer-to-peer (P2P) 

communication. Employing the built-in ESP32 in LoRa could 

simplify security system designs with no additional RNG 

hardware required as the security layer. The generated random 

numbers are a nonce for the initialization vector setup in AES-

CTR to enhance the randomness of the ciphertext. It is found 

that the generated random numbers pass the National Institute 

of Standards and Technology statistical test suite. This method 

provides insight into improving the semantic security of the 

encrypted message by making unique ciphertexts and using 

AES-Counter modes and AES-Cipher-based message 

authentication codes as the two layers of LoRa security to check 

the authenticity and integrity of the message.  
Keywords—LoRa, ESP32, random number generator, 

encryption, data security. 

I. INTRODUCTION 

In recent years, the application of wireless sensor 
networks (WSNs) consisting of sensor nodes interconnected 
by a network has become popular [1] due to its wide 
implementation in various sectors, such as agriculture, 
military, healthcare, etc. The Internet of Things (IoT) and 
Low Power Wide Area Networks (LPWAN) infrastructure 
development contribute to WSN implementation. One of the 
most used LPWAN technologies in WSN applications is 
LoRa.  

LoRa, which stands for long range, is a low-powered 
physical layer of LPWAN technology that employs Chirp-
Spread Spectrum modulation [2–6] and operates on 
unlicensed industrial, scientific and medical bands [2],[4],[7]. 
Its coverage range is up to 15 km in rural areas and 5 km in 
urban areas [7],[8]. However, LoRA lacks data transmission 
security since it uses radio frequency bands accessible to 
everyone. 

Several strategies have been proposed to enhance LoRa 
security, and most studies implemented the advanced 
encryption standard (AES) encryption method [9–12] via 
LoRaWAN (LoRa-based LPWAN protocol) [13–15]. 
LoRaWAN employs AES-CTR (counter modes)  to encrypt 
the payload and AES-CMAC (cipher-based message 
authentication code) to ensure packet integrity [13],[14],[16]. 

Abboud et al. implemented and evaluated the AES-256 
encryption mode to enhance the security of the LoRaWAN 
protocol [10]. The implementation of AES-256 provides 
stronger protection against threats than that of AES-128;  

however, the transmission time and energy consumption are  
higher than that of AES-128. The choice between AES-128, 
and AES-256 depends on the transmitted data. AES-256 is 
suitable for data transmission that needs superior security, 
such as healthcare and defense, while AES-128 is less secure 
but more energy efficient.  

Tsai et al. proposed the Secure Low Power 
Communication method, implemented for AES-128 
LoRaWAN IoT environments [12]. In this method, the 
encryption key and lookup table are updated periodically in 
the end device and server for security enhancement. The 
AES-128 round process was also reduced to 5 rounds to 
reduce the computational complexity and save encryption 
power. However, it is only applied to the application layer, 
and the key for the MIC code does not update periodically.  

The AES method has also been implemented to secure 
LoRa peer-to-peer (P2P) communication. P2P is beneficial 
for simple applications that do not need a gateway, making 
the system easy to build, low cost and efficient [6], [17]. Iqbal 
et al. implemented AES encryption in ESP32 and point-to-
point LoRa, employing 64-bit MAC for SCADA applications 
[18]. Another approach was proposed by Amelia et al. [8], 
which was to implement AES-256 for LoRa-based Asset 
Tracking. The system was implemented on Arduino Uno and 
LoRa RFM95. However, this research does not have a 
message authentication check. Manuel et al. proposed  LoRa-
based secured P2P communications to control and monitor 
robots [17] by mounting individual LoRa on the robot and 
using the encrypt-then-MAC (EtM) method to secure the 
data, which the location information was encrypted with 
AES-128 and SHA-256 was used for HMAC calculation 
[17]. However, none of these proposed methods exploits the 
random number generator (RNG) for securing LoRa 
communication. RNG is important for encryption in network 
security [19]. 

In this work, we increased the security of LoRa 
communications by adding randomness to encrypt the 
message, thus providing semantically secure communication. 
We evaluated the performance of a random number generator 
(RNG) based on ESP32 for LoRa security. The random 
number was implemented into 128-bit AES to encrypt the 
message transmitted over LoRa P2P communication. 
Moreover, we employed AES-CMAC to authenticate the 
received message, and the generated random number was 
used as an AES-CTR initialization vector (IV). 



II. COMPONENTS AND METHODS 

To enhance the security of LoRa P2P communication, this 
study uses an ESP32-based random number generator (RNG) 
to generate an initialization vector (IV) for AES-CTR 
message encryption. Additionally, AES-CMAC is 
implemented to verify the integrity and authenticity of the 
messages. The system workflow is depicted in the flowchart 
shown in Fig. 1. 

A. Hardware Setup 

 Cosmic Lora Aurora board V2 made by Cosmic.id [20], 
was used in this study. This board is ready to use and contains 
LoRa and ESP32 modules. This study uses two LoRa Aurora 
boards as shown in Fig. 2. First LoRa is set as a transmitter 
and the second board is set as a receiver. Both of LoRa are 
connected via 433 MHz radio frequency. This frequency band 
is allowed for LPWAN applications by The Ministry of 
Communication and Informatics of The Republic of Indonesia 
[21]. 

B. Random Number Generator 

ESP32 has a hardware RNG capability that generates 
random numbers based on physical noise sources [22], hence 
it can provide true random numbers. To get a physical noise 
source in the ESP32 RNG, SAR ADC and high-speed ADC 
are enabled. High-speed ADC is enabled automatically when 
the Wi-Fi or Bluetooth is activated [22]. Fig. 3 illustrates the 
block diagram of RNG on ESP 32, which consists of SAR or 
a high-speed analog-to-digital converter (ADC) to capture the 
thermal noise. Another noise source is the RC fast clock. 
Utilizing XOR logic would produce an asynchronous clock  

 

 
Fig. 2. System setup 

mismatch between ADC serial data streams and the RC fast 
clock, generating a 32-random bit [22]. 

The random number generated by ESP32 is up to 32-bit 
by calling the esp_random( ) function [22]. The National 
Institute of Standards and Technology statistical test suite 
(NIST STS) was used to evaluate the randomness of the 
generated number. It is a comprehensive set of statistical tests 
designed to assess the randomness of binary sequences 
produced by random or pseudorandom number generators 
[23]. It has become a standardized method for evaluating the 
quality of random number generators used in cryptographic 
applications, simulations, and other fields that require high-
quality random data. The source code of the NIST STS is 
open-source, written in C, and can be modified into another 
programming language. In this study, the NIST STS 
evaluation was conducted using MATLAB. 

The esp_random( ) function is called multiple times to 
generate a 96-bit random number. The generated random 
number was used as an initialization vector (IV) in the AES-
CTR encryption process. This number was combined with a 
32-bit counter to initialize the 128-bit counter block in the 
AES-CTR, adding randomness to the encrypted message and 
increasing security. 

C. Message Encryption and Message Authentication Code 

This method implemented 128-bit AES and used two 
security layers: message encryption using AES-CTR and 
MAC with AES-CMAC. For this purpose, two secret keys 
were used: "keyCTR” for AES-CTR and “keyCMAC” for 
AES-CMAC. These keys are predefined and used for the 
entire encryption and decryption process. Message 
encryption provides data confidentiality, while MAC ensures 
that the authorized receiver only proceeds with authenticated 
messages. 
 

1) AES-CTR 

The AES-CTR symmetric encryption algorithm was used 
to encrypt the message. It employs parallel processing during 
the encryption and decryption process [24]. The steps in the 
AES-CTR encryption process are initialization setups, block 
counter generation, counter block encryption, XOR operation 
and counter block increment [24].  The simplified block 
diagram of AES-CTR encryption is shown in Fig. 4. 
 

 

 
Fig. 4. Block diagram of AES-CTR encryption 

Fig. 3. Block diagram of RNG ESP32 based on physical noise source [22] 

Fig. 1. Flowchart of the system 



The IV was combined with a counter to ensure each block 
counter was unique. AES algorithm encrypts the counter 
blocks sequentially, resulting in a stream of pseudo-random 
key stream blocks. XOR operations were applied between the 
generated key stream block and plaintext to produce secure 
ciphertext [25]. To prevent the reuse of the same keystream, 
the counter block was incremented for each subsequent. The 
counter in the decryption process was initialized to the same 
value as in encryption and was incremented for each block to 
maintain synchronization. Each counter block was processed 
using the forward cipher function, generating blocks of the 
same size as the plaintext. These blocks were then XORed 
with the corresponding ciphertext blocks to recover the 
original plaintext blocks [24].  

Getting unpredictable and unique IV is essential to 
prevent potential vulnerabilities and ensure data security 
[24], [26]. Reusing the same IV may enable an attacker to 
detect patterns within the ciphertext [24]. Hence, ESP32-
based RNG was used as a nonce or IV. This IV was utilized 
in both the encryption and decryption processes. However, 
this IV did not need to be secret and may be sent with 
ciphertext [24]. The ciphertext result was encoded into 
Base64 format before it was transmitted. 
 

2) AES-CMAC 

The AES-CMAC method was applied to the random 
number and the encrypted message for message 
authentication. Both transmitter and receiver calculate the 
MAC. AES-CMAC provides stronger data integrity than a 
checksum or an error-detecting code; it is designed to detect 
intentional and accidental data modifications [27], [28]. 
CMAC algorithm relies on a symmetric key block cipher. The 
key used in AES-CMAC should be secret [28].  MAC 
calculation process using AES-CMAC including 
initialization, padding, subkey generation, message 
processing, XOR operations and finalizations [28]. AES-
CMAC can be used efficiently over a broad range of message 
sizes. The data is padded as necessary to align with the block 
size of the AES algorithm. AES-CMAC does not require an 
IV during its operation [27]. AES-CMAC generates a MAC 
by inputting a secret key, a message, and message length in 
octets [27].  

After the MAC calculations process, the hexadecimal 
MAC value was concatenated with the random number, 
encrypted message and packet number. The structure of 
transmitted data is shown in Fig. 5. On the receiver side, 
payload data were extracted to get the random number, 
encrypted message, MAC value, and packet number. This 
information was required to decrypt the message. Before the 
message decryption process, MAC values were calculated to 
validate the message. This value is then compared with the 
received MAC value to check the integrity of the message. If 
those values were identical, the message was stated as 
authentic and proceeded to decrypt. Different MAC values 
made the MAC check fail, and the message will not proceed 
to decrypt. This ensures that the receiver only processes the 
message from an authorized transmitter. 

III. RESULTS AND DISCUSSIONS 

A. Random Number Generator Test 

At least 1 million bits of data were generated by ESP32 
RNG, and the data passed seven over eight NIST test items, 
indicating the generated bit stream has sufficient randomness 
for cryptography operations, as summarized in Table I. In this 
case, ESP32-based RNG failed the rank test which means it 
still has a dominant linear dependence between subsequences 
of the generated numbers. However, it is still acceptable for 
implementation in cryptography operations. 

The generated random number is uniformly distributed, 
as shown in Fig. 6. This means that each possible outcome is 
equally likely. Uniform random number distribution ensures 
unpredictability in cryptographic applications. Additionally, 
the scatter plot of 1000 RNG data points, shown in Fig. 7, 
reveals no distinct pattern, indicating that the data is 
unpredictable and demonstrates good randomness. 

The 96-bit fixed-length random number was implemented 
as an IV in the encryption process. Based on ten times of  IV 
generation tests, the execution time is about 98 µs, as shown 
in Table II. However, enabling a Radio Frequency (RF) 
subsystem (Wi-Fi or Bluetooth) to get entropy sources may 
increase power consumption. 

TABLE I.  NIST STS  RESULTS 

 

Item Result p-value 

Frequency Test Pass 0.856 

Block Frequency test Pass 0.242 

Cumulative Sums test Pass 0.957 

Runs test Pass 0.301 

Longest Run of Ones test Pass 0.191 

Rank test Not Pass 0.12e-8 

Discrete Fourier Transform test Pass 0.238 

Non Overlapping Templates test Pass 0.524 

Fig. 5. Payload structure 

Fig. 6. Histogram of Random Number Distribution 

Fig. 7. Scatter plot of 1000 RNG data 



TABLE II. EXECUTION TIME 

 

B. Message Encryption and Message Authentication Code  

Test 

The random numbers were employed as an initialization 
vector or IV for message encryption to add randomness to the 
ciphertext output. Without the random IV, Identical plaintext 
resulted in identical ciphertext, as shown in Fig. 8(a). On the 
other hand, using the random IV even on the identical 
plaintext will result in unique ciphertext, as shown in Fig. 
8(b). The ciphertext and the key are extremely hard to guess 
since the ciphertext results are unique. This ensures that no 
information about the plaintext or key can be obtained by 
knowing the ciphertext, thus making the encrypted message 
semantically secure.  

Ten times of encryption, decryption and MAC calculation 
were performed to evaluate the execution time of those 
processes. This experiment was applied to different plaintext 
and IV. Each plaintext is 128-bit size. The results are shown 
in Table II. The average execution time of message 
encryption is about 36 µs, and the decryption is about 19 µs. 
Meanwhile, the MAC calculation time is about 43 µs. 

C. System Test  

To evaluate the implementation of LoRa security, several 
experiments were conducted. The experiment was done by 
several scenarios, which are: 1) the receiver knows both keys 
and IV 2) the keyCMAC used by the transmitter and the 
receiver are different 3) the receiver does not know the 
keyCTR 4) the receiver does not know IV. A 10-digit random 
number was employed as a dummy message for simulation 
purposes.  

Based on the experiment results as shown in Fig. 9–12, 
AES-CTR and AES-CMAC were successfully implemented 
for securing LoRa. The receiver checks the message's 
authenticity and integrity by calculating the MAC. The 
decryption process is performed only on the authentic 
message, which means that the message was sent by an 
authorized transmitter and has never been modified.  
To decrypt the message, the receiver must know the key and 
initialization vector (IV). The success of MAC validation and 
message decryption is shown in Fig. 9.  

The wrong keyCMAC led to an invalid MAC and failed 
decryption process as shown in Fig. 10. This indicates that 
the message was sent by an unauthenticated user. The wrong 
keyCTR also resulted in the wrong decryption as shown in 
Fig. 11. The decryption result appears random, with some 
characters being unknown and not displayable on the serial 
monitor. The output does not correspond to the secret 
message. Even if the receiver knows the keyCMAC and the 
message validation is successful, the encrypted message 
cannot be decrypted correctly without keyCTR. Hence, the 
message confidentiality is guaranteed. On the other hand, the 
wrong IV led to an invalid MAC check and failed message 
decryption process as shown in Fig. 12. Besides that, the 
random IV generated by the ESP32 RNG also contributes to 
LoRa security since it adds the randomness of the ciphertext. 
This made it extremely hard for unauthorized users to guess 
the keys and recover the message. It ensures that the only way 
to decrypt the message is with the correct keyCTR and IV.  
 

 
Fig. 8. Encryption of identical plaintext (a) without random IV (b) with random IV 

 
Fig. 9. Scenario 1: successful MAC validation and message decryption with correct keyCMAC, keyCTR and IV (a) transmitter (b) receiver  

No. 
Execution time (µs) 

RNG Encryption Decryption MAC 

1 98 36 19 44 

2 98 36 19 44 

3 99 37 20 43 

4 99 36 19 43 

5 98 37 19 44 

6 98 37 19 43 

7 99 36 19 44 

8 98 36 20 43 

9 98 36 20 44 

10 99 37 20 42 



 

 
Fig. 10. Scenario 2: incorrect keyCMAC causes Invalid MAC and failed message decryption (a) transmitter (b) receiver 

 
Fig. 11. Scenario 3: incorrect keyCTR causes incorrect message decryption (a) transmitter (b) receiver 

 
Fig. 12. Scenario 4: incorrect IV causes invalid MAC and failed message decryption (a) transmitter (b) receiver 

IV. CONCLUSION 

We studied random number generator (RNG) based on 
ESP32 for LoRa security. The NIST STS results show that 
the random number generated by ESP32 has good 
randomness and can be utilized in cryptography for securing 
LoRa communications. Two security layers of LoRa were 
successfully implemented using AES-CTR for message 
encryption and AES-CMAC for message authentication 
code. The generated random number employed as an IV for 
AES-CTR improves LoRa security by adding randomness to 
the encrypted message, thus improving the semantic security 
of the system. This method demonstrated that the built-in 
ESP32-based RNG for LoRa security implementation is 
promising. Although the RF subsystem (Wi-Fi or Bluetooth) 
is not an ideal entropy source, other low-power RNG sources 
could adopt this method to realize a low-powered security 
system. 
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