

Performance Evaluation of ESP32 Random Number
Generator for LoRa Communication Security

Papat Hidayatulloh
Research Center for Smart Mechatronics

National Research and Innovation

Agency (BRIN)

Bandung, Indonesia
0009-0004-5939-8516

Husneni Mukhtar
School of Electrical Engineering

Telkom University
Bandung, Indonesia

husnenimukhtar@telkomuniversity.ac.id

Nada Syifa Qolbiyah
School of Electrical Engineering

Telkom University

Bandung, Indonesia
nadasyifaqolbiyah@telkomuniversity.ac

.id

Irwan Purnama
Research Center for Smart Mechatronics

National Research and Innovation

Agency (BRIN)

Bandung, Indonesia
0000-0002-5490-2822

 Asep Nugroho
Research Center for Smart Mechatronics

National Research and Innovation

Agency (BRIN)

Bandung, Indonesia
0000-0001-5021-1154

Firman Mangasa Simanjuntak
School of Electronics and Computer

Science
University of Southampton

Southampton, United Kingdom
0000-0002-9508-5849

Abstract—We exploit an ESP32-based random number

generator (RNG) on LoRa to secure peer-to-peer (P2P)

communication. Employing the built-in ESP32 in LoRa could

simplify security system designs with no additional RNG

hardware required as the security layer. The generated random

numbers are a nonce for the initialization vector setup in AES-

CTR to enhance the randomness of the ciphertext. It is found

that the generated random numbers pass the National Institute

of Standards and Technology statistical test suite. This method

provides insight into improving the semantic security of the

encrypted message by making unique ciphertexts and using

AES-Counter modes and AES-Cipher-based message

authentication codes as the two layers of LoRa security to check

the authenticity and integrity of the message.
Keywords—LoRa, ESP32, random number generator,

encryption, data security.

I. INTRODUCTION

In recent years, the application of wireless sensor
networks (WSNs) consisting of sensor nodes interconnected
by a network has become popular [1] due to its wide
implementation in various sectors, such as agriculture,
military, healthcare, etc. The Internet of Things (IoT) and
Low Power Wide Area Networks (LPWAN) infrastructure
development contribute to WSN implementation. One of the
most used LPWAN technologies in WSN applications is
LoRa.

LoRa, which stands for long range, is a low-powered
physical layer of LPWAN technology that employs Chirp-
Spread Spectrum modulation [2–6] and operates on
unlicensed industrial, scientific and medical bands [2],[4],[7].
Its coverage range is up to 15 km in rural areas and 5 km in
urban areas [7],[8]. However, LoRA lacks data transmission
security since it uses radio frequency bands accessible to
everyone.

Several strategies have been proposed to enhance LoRa
security, and most studies implemented the advanced
encryption standard (AES) encryption method [9–12] via
LoRaWAN (LoRa-based LPWAN protocol) [13–15].
LoRaWAN employs AES-CTR (counter modes) to encrypt
the payload and AES-CMAC (cipher-based message
authentication code) to ensure packet integrity [13],[14],[16].

Abboud et al. implemented and evaluated the AES-256
encryption mode to enhance the security of the LoRaWAN
protocol [10]. The implementation of AES-256 provides
stronger protection against threats than that of AES-128;

however, the transmission time and energy consumption are
higher than that of AES-128. The choice between AES-128,
and AES-256 depends on the transmitted data. AES-256 is
suitable for data transmission that needs superior security,
such as healthcare and defense, while AES-128 is less secure
but more energy efficient.

Tsai et al. proposed the Secure Low Power
Communication method, implemented for AES-128
LoRaWAN IoT environments [12]. In this method, the
encryption key and lookup table are updated periodically in
the end device and server for security enhancement. The
AES-128 round process was also reduced to 5 rounds to
reduce the computational complexity and save encryption
power. However, it is only applied to the application layer,
and the key for the MIC code does not update periodically.

The AES method has also been implemented to secure
LoRa peer-to-peer (P2P) communication. P2P is beneficial
for simple applications that do not need a gateway, making
the system easy to build, low cost and efficient [6], [17]. Iqbal
et al. implemented AES encryption in ESP32 and point-to-
point LoRa, employing 64-bit MAC for SCADA applications
[18]. Another approach was proposed by Amelia et al. [8],
which was to implement AES-256 for LoRa-based Asset
Tracking. The system was implemented on Arduino Uno and
LoRa RFM95. However, this research does not have a
message authentication check. Manuel et al. proposed LoRa-
based secured P2P communications to control and monitor
robots [17] by mounting individual LoRa on the robot and
using the encrypt-then-MAC (EtM) method to secure the
data, which the location information was encrypted with
AES-128 and SHA-256 was used for HMAC calculation
[17]. However, none of these proposed methods exploits the
random number generator (RNG) for securing LoRa
communication. RNG is important for encryption in network
security [19].

In this work, we increased the security of LoRa
communications by adding randomness to encrypt the
message, thus providing semantically secure communication.
We evaluated the performance of a random number generator
(RNG) based on ESP32 for LoRa security. The random
number was implemented into 128-bit AES to encrypt the
message transmitted over LoRa P2P communication.
Moreover, we employed AES-CMAC to authenticate the
received message, and the generated random number was
used as an AES-CTR initialization vector (IV).

II. COMPONENTS AND METHODS

To enhance the security of LoRa P2P communication, this
study uses an ESP32-based random number generator (RNG)
to generate an initialization vector (IV) for AES-CTR
message encryption. Additionally, AES-CMAC is
implemented to verify the integrity and authenticity of the
messages. The system workflow is depicted in the flowchart
shown in Fig. 1.

A. Hardware Setup

 Cosmic Lora Aurora board V2 made by Cosmic.id [20],
was used in this study. This board is ready to use and contains
LoRa and ESP32 modules. This study uses two LoRa Aurora
boards as shown in Fig. 2. First LoRa is set as a transmitter
and the second board is set as a receiver. Both of LoRa are
connected via 433 MHz radio frequency. This frequency band
is allowed for LPWAN applications by The Ministry of
Communication and Informatics of The Republic of Indonesia
[21].

B. Random Number Generator

ESP32 has a hardware RNG capability that generates
random numbers based on physical noise sources [22], hence
it can provide true random numbers. To get a physical noise
source in the ESP32 RNG, SAR ADC and high-speed ADC
are enabled. High-speed ADC is enabled automatically when
the Wi-Fi or Bluetooth is activated [22]. Fig. 3 illustrates the
block diagram of RNG on ESP 32, which consists of SAR or
a high-speed analog-to-digital converter (ADC) to capture the
thermal noise. Another noise source is the RC fast clock.
Utilizing XOR logic would produce an asynchronous clock

Fig. 2. System setup

mismatch between ADC serial data streams and the RC fast
clock, generating a 32-random bit [22].

The random number generated by ESP32 is up to 32-bit
by calling the esp_random() function [22]. The National
Institute of Standards and Technology statistical test suite
(NIST STS) was used to evaluate the randomness of the
generated number. It is a comprehensive set of statistical tests
designed to assess the randomness of binary sequences
produced by random or pseudorandom number generators
[23]. It has become a standardized method for evaluating the
quality of random number generators used in cryptographic
applications, simulations, and other fields that require high-
quality random data. The source code of the NIST STS is
open-source, written in C, and can be modified into another
programming language. In this study, the NIST STS
evaluation was conducted using MATLAB.

The esp_random() function is called multiple times to
generate a 96-bit random number. The generated random
number was used as an initialization vector (IV) in the AES-
CTR encryption process. This number was combined with a
32-bit counter to initialize the 128-bit counter block in the
AES-CTR, adding randomness to the encrypted message and
increasing security.

C. Message Encryption and Message Authentication Code

This method implemented 128-bit AES and used two
security layers: message encryption using AES-CTR and
MAC with AES-CMAC. For this purpose, two secret keys
were used: "keyCTR” for AES-CTR and “keyCMAC” for
AES-CMAC. These keys are predefined and used for the
entire encryption and decryption process. Message
encryption provides data confidentiality, while MAC ensures
that the authorized receiver only proceeds with authenticated
messages.

1) AES-CTR

The AES-CTR symmetric encryption algorithm was used
to encrypt the message. It employs parallel processing during
the encryption and decryption process [24]. The steps in the
AES-CTR encryption process are initialization setups, block
counter generation, counter block encryption, XOR operation
and counter block increment [24]. The simplified block
diagram of AES-CTR encryption is shown in Fig. 4.

Fig. 4. Block diagram of AES-CTR encryption

Fig. 3. Block diagram of RNG ESP32 based on physical noise source [22]

Fig. 1. Flowchart of the system

The IV was combined with a counter to ensure each block
counter was unique. AES algorithm encrypts the counter
blocks sequentially, resulting in a stream of pseudo-random
key stream blocks. XOR operations were applied between the
generated key stream block and plaintext to produce secure
ciphertext [25]. To prevent the reuse of the same keystream,
the counter block was incremented for each subsequent. The
counter in the decryption process was initialized to the same
value as in encryption and was incremented for each block to
maintain synchronization. Each counter block was processed
using the forward cipher function, generating blocks of the
same size as the plaintext. These blocks were then XORed
with the corresponding ciphertext blocks to recover the
original plaintext blocks [24].

Getting unpredictable and unique IV is essential to
prevent potential vulnerabilities and ensure data security
[24], [26]. Reusing the same IV may enable an attacker to
detect patterns within the ciphertext [24]. Hence, ESP32-
based RNG was used as a nonce or IV. This IV was utilized
in both the encryption and decryption processes. However,
this IV did not need to be secret and may be sent with
ciphertext [24]. The ciphertext result was encoded into
Base64 format before it was transmitted.

2) AES-CMAC

The AES-CMAC method was applied to the random
number and the encrypted message for message
authentication. Both transmitter and receiver calculate the
MAC. AES-CMAC provides stronger data integrity than a
checksum or an error-detecting code; it is designed to detect
intentional and accidental data modifications [27], [28].
CMAC algorithm relies on a symmetric key block cipher. The
key used in AES-CMAC should be secret [28]. MAC
calculation process using AES-CMAC including
initialization, padding, subkey generation, message
processing, XOR operations and finalizations [28]. AES-
CMAC can be used efficiently over a broad range of message
sizes. The data is padded as necessary to align with the block
size of the AES algorithm. AES-CMAC does not require an
IV during its operation [27]. AES-CMAC generates a MAC
by inputting a secret key, a message, and message length in
octets [27].

After the MAC calculations process, the hexadecimal
MAC value was concatenated with the random number,
encrypted message and packet number. The structure of
transmitted data is shown in Fig. 5. On the receiver side,
payload data were extracted to get the random number,
encrypted message, MAC value, and packet number. This
information was required to decrypt the message. Before the
message decryption process, MAC values were calculated to
validate the message. This value is then compared with the
received MAC value to check the integrity of the message. If
those values were identical, the message was stated as
authentic and proceeded to decrypt. Different MAC values
made the MAC check fail, and the message will not proceed
to decrypt. This ensures that the receiver only processes the
message from an authorized transmitter.

III. RESULTS AND DISCUSSIONS

A. Random Number Generator Test

At least 1 million bits of data were generated by ESP32
RNG, and the data passed seven over eight NIST test items,
indicating the generated bit stream has sufficient randomness
for cryptography operations, as summarized in Table I. In this
case, ESP32-based RNG failed the rank test which means it
still has a dominant linear dependence between subsequences
of the generated numbers. However, it is still acceptable for
implementation in cryptography operations.

The generated random number is uniformly distributed,
as shown in Fig. 6. This means that each possible outcome is
equally likely. Uniform random number distribution ensures
unpredictability in cryptographic applications. Additionally,
the scatter plot of 1000 RNG data points, shown in Fig. 7,
reveals no distinct pattern, indicating that the data is
unpredictable and demonstrates good randomness.

The 96-bit fixed-length random number was implemented
as an IV in the encryption process. Based on ten times of IV
generation tests, the execution time is about 98 µs, as shown
in Table II. However, enabling a Radio Frequency (RF)
subsystem (Wi-Fi or Bluetooth) to get entropy sources may
increase power consumption.

TABLE I. NIST STS RESULTS

Item Result p-value

Frequency Test Pass 0.856

Block Frequency test Pass 0.242

Cumulative Sums test Pass 0.957

Runs test Pass 0.301

Longest Run of Ones test Pass 0.191

Rank test Not Pass 0.12e-8

Discrete Fourier Transform test Pass 0.238

Non Overlapping Templates test Pass 0.524

Fig. 5. Payload structure

Fig. 6. Histogram of Random Number Distribution

Fig. 7. Scatter plot of 1000 RNG data

TABLE II. EXECUTION TIME

B. Message Encryption and Message Authentication Code

Test

The random numbers were employed as an initialization
vector or IV for message encryption to add randomness to the
ciphertext output. Without the random IV, Identical plaintext
resulted in identical ciphertext, as shown in Fig. 8(a). On the
other hand, using the random IV even on the identical
plaintext will result in unique ciphertext, as shown in Fig.
8(b). The ciphertext and the key are extremely hard to guess
since the ciphertext results are unique. This ensures that no
information about the plaintext or key can be obtained by
knowing the ciphertext, thus making the encrypted message
semantically secure.

Ten times of encryption, decryption and MAC calculation
were performed to evaluate the execution time of those
processes. This experiment was applied to different plaintext
and IV. Each plaintext is 128-bit size. The results are shown
in Table II. The average execution time of message
encryption is about 36 µs, and the decryption is about 19 µs.
Meanwhile, the MAC calculation time is about 43 µs.

C. System Test

To evaluate the implementation of LoRa security, several
experiments were conducted. The experiment was done by
several scenarios, which are: 1) the receiver knows both keys
and IV 2) the keyCMAC used by the transmitter and the
receiver are different 3) the receiver does not know the
keyCTR 4) the receiver does not know IV. A 10-digit random
number was employed as a dummy message for simulation
purposes.

Based on the experiment results as shown in Fig. 9–12,
AES-CTR and AES-CMAC were successfully implemented
for securing LoRa. The receiver checks the message's
authenticity and integrity by calculating the MAC. The
decryption process is performed only on the authentic
message, which means that the message was sent by an
authorized transmitter and has never been modified.
To decrypt the message, the receiver must know the key and
initialization vector (IV). The success of MAC validation and
message decryption is shown in Fig. 9.

The wrong keyCMAC led to an invalid MAC and failed
decryption process as shown in Fig. 10. This indicates that
the message was sent by an unauthenticated user. The wrong
keyCTR also resulted in the wrong decryption as shown in
Fig. 11. The decryption result appears random, with some
characters being unknown and not displayable on the serial
monitor. The output does not correspond to the secret
message. Even if the receiver knows the keyCMAC and the
message validation is successful, the encrypted message
cannot be decrypted correctly without keyCTR. Hence, the
message confidentiality is guaranteed. On the other hand, the
wrong IV led to an invalid MAC check and failed message
decryption process as shown in Fig. 12. Besides that, the
random IV generated by the ESP32 RNG also contributes to
LoRa security since it adds the randomness of the ciphertext.
This made it extremely hard for unauthorized users to guess
the keys and recover the message. It ensures that the only way
to decrypt the message is with the correct keyCTR and IV.

Fig. 8. Encryption of identical plaintext (a) without random IV (b) with random IV

Fig. 9. Scenario 1: successful MAC validation and message decryption with correct keyCMAC, keyCTR and IV (a) transmitter (b) receiver

No.
Execution time (µs)

RNG Encryption Decryption MAC

1 98 36 19 44

2 98 36 19 44

3 99 37 20 43

4 99 36 19 43

5 98 37 19 44

6 98 37 19 43

7 99 36 19 44

8 98 36 20 43

9 98 36 20 44

10 99 37 20 42

Fig. 10. Scenario 2: incorrect keyCMAC causes Invalid MAC and failed message decryption (a) transmitter (b) receiver

Fig. 11. Scenario 3: incorrect keyCTR causes incorrect message decryption (a) transmitter (b) receiver

Fig. 12. Scenario 4: incorrect IV causes invalid MAC and failed message decryption (a) transmitter (b) receiver

IV. CONCLUSION

We studied random number generator (RNG) based on
ESP32 for LoRa security. The NIST STS results show that
the random number generated by ESP32 has good
randomness and can be utilized in cryptography for securing
LoRa communications. Two security layers of LoRa were
successfully implemented using AES-CTR for message
encryption and AES-CMAC for message authentication
code. The generated random number employed as an IV for
AES-CTR improves LoRa security by adding randomness to
the encrypted message, thus improving the semantic security
of the system. This method demonstrated that the built-in
ESP32-based RNG for LoRa security implementation is
promising. Although the RF subsystem (Wi-Fi or Bluetooth)
is not an ideal entropy source, other low-power RNG sources
could adopt this method to realize a low-powered security
system.

ACKNOWLEDGMENT

 We would like to thank the National Research and
Innovation Agency (BRIN) for funding and supporting this
research through Rumah Program Purwarupa Sistem
Pendukung Keputusan Berdasarkan Analisis Citra Satelit
2024, and Program Visiting Researcher 2024 Batch 2.

REFERENCES

[1] M. Faris, M. N. Mahmud, M. F. M. Salleh, and A. Alnoor, “Wireless
sensor network security: A recent review based on state-of-the-art
works,” Int. J. Eng. Bus. Manag., vol. 15, p. 184797902311572, Jan.
2023, doi: 10.1177/18479790231157220.

[2] Martin Bor, John Vidler, and Utz Roedig, “LoRa for the Internet of
Things,” in Proceedings of the 2016 International Conference on

Embedded Wireless Systems and Networks, in EWSN ’16. USA:
Junction Publishing, 2016, pp. 361–366.

[3] N. El Rachkidy, A. Guitton, and M. Kaneko, “Collision Resolution
Protocol for Delay and Energy Efficient LoRa Networks,” IEEE

Trans. Green Commun. Netw., vol. 3, no. 2, pp. 535–551, Jun. 2019,
doi: 10.1109/TGCN.2019.2908409.

[4] K. Mekki, E. Bajic, F. Chaxel, and F. Meyer, “A comparative study
of LPWAN technologies for large-scale IoT deployment,” ICT
Express, vol. 5, no. 1, pp. 1–7, Mar. 2019, doi:
10.1016/j.icte.2017.12.005.

[5] C. Zhang, J. Yue, L. Jiao, J. Shi, and S. Wang, “A Novel Physical
Layer Encryption Algorithm for LoRa,” IEEE Commun. Lett., vol. 25,
no. 8, pp. 2512–2516, Aug. 2021, doi:
10.1109/LCOMM.2021.3078669.

[6] G. Callebaut and L. Van Der Perre, “Characterization of LoRa Point-
to-Point Path Loss: Measurement Campaigns and Modeling
Considering Censored Data,” IEEE Internet Things J., vol. 7, no. 3,
pp. 1910–1918, Mar. 2020, doi: 10.1109/JIOT.2019.2953804.

[7] Z. Sun, H. Yang, K. Liu, Z. Yin, Z. Li, and W. Xu, “Recent Advances
in LoRa: A Comprehensive Survey,” ACM Trans. Sens. Netw., vol.
18, no. 4, pp. 1–44, Nov. 2022, doi: 10.1145/3543856.

[8] F. Amelia and M. F. Ramadhani, “LoRa-Based Asset Tracking
System with Data Encryption Using AES-256 Algorithm,” in 2022

International Conference on Radar, Antenna, Microwave,

Electronics, and Telecommunications (ICRAMET), Bandung,
Indonesia: IEEE, Dec. 2022, pp. 194–199. doi:
10.1109/ICRAMET56917.2022.9991210.

[9] D. Heeger and J. Plusquellic, “Analysis of IoT Authentication Over
LoRa,” in 2020 16th International Conference on Distributed

Computing in Sensor Systems (DCOSS), Marina del Rey, CA, USA:
IEEE, May 2020, pp. 458–465. doi:
10.1109/DCOSS49796.2020.00078.

[10] S. Abboud and N. Abdoun, “Enhancing LoRaWAN Security: An
Advanced AES-Based Cryptographic Approach,” IEEE Access, vol.
12, pp. 2589–2606, 2024, doi: 10.1109/ACCESS.2023.3348416.

[11] A. Rizzardi, S. Sicari, and A. Coen-Porisini, “Analysis on
functionalities and security features of Internet of Things related
protocols,” Wirel. Netw., vol. 28, no. 7, pp. 2857–2887, Oct. 2022,
doi: 10.1007/s11276-022-02999-7.

[12] K.-L. Tsai, Y.-L. Huang, F.-Y. Leu, I. You, Y.-L. Huang, and C.-H.
Tsai, “AES-128 Based Secure Low Power Communication for
LoRaWAN IoT Environments,” IEEE Access, vol. 6, pp. 45325–
45334, 2018, doi: 10.1109/ACCESS.2018.2852563.

[13] O. Seller, “LoRaWAN Security,” J. ICT Stand., Apr. 2021, doi:
10.13052/jicts2245-800X.915.

[14] K.-L. Tsai, F.-Y. Leu, I. You, S.-W. Chang, S.-J. Hu, and H. Park,
“Low-Power AES Data Encryption Architecture for a LoRaWAN,”
IEEE Access, vol. 7, pp. 146348–146357, 2019, doi:
10.1109/ACCESS.2019.2941972.

[15] J. de Carvalho Silva, J. J. P. C. Rodrigues, A. M. Alberti, P. Solic and
A. L. L. Aquino, "LoRaWAN — A low power WAN protocol for
Internet of Things: A review and opportunities," 2017 2nd

International Multidisciplinary Conference on Computer and Energy

Science (SpliTech), Split, Croatia, 2017, pp. 1-6.
[16] F. Kuntke, V. Romanenko, S. Linsner, E. Steinbrink, and C. Reuter,

“LoRaWAN security issues and mitigation options by the example of
agricultural IoT scenarios,” Trans. Emerg. Telecommun. Technol.,
vol. 33, no. 5, p. e4452, May 2022, doi: 10.1002/ett.4452.

[17] M. P. Manuel and K. Daimi, “Implementing cryptography in LoRa
based communication devices for unmanned ground vehicle
applications,” SN Appl. Sci., vol. 3, no. 4, p. 397, Apr. 2021, doi:
10.1007/s42452-021-04377-y.

[18] A. Iqbal and T. Iqbal, “Low-cost and Secure Communication System
for Remote Micro-grids using AES Cryptography on ESP32 with
LoRa Module,” in 2018 IEEE Electrical Power and Energy

Conference (EPEC), Toronto, ON: IEEE, Oct. 2018, pp. 1–5. doi:
10.1109/EPEC.2018.8598380.

[19] M. Aljohani, I. Ahmad, M. Basheri and M. O. Alassafi, "Performance
Analysis of Cryptographic Pseudorandom Number Generators,"
in IEEE Access, vol. 7, pp. 39794-39805, 2019, doi:
10.1109/ACCESS.2019.2907079

[20] “Cosmic LoRa Aurora.” Accessed: Jun. 14, 2024. [Online]. Available:
https://github.com/cosmic-id/cosmic-lora-aurora

[21] Ministry of Communication and Informatics of The Republic of
Indonesia, “Peraturan Menteri Komunikasi Dan Informatika Republik
Indonesia Nomor 2 Tahun 2023 Tentang Penggunaan Spektrum
Frekuensi Radio Berdasarkan Izin Kelas,” p. 17, 2023.

[22] Espressif Systems, “ESP32 Technical Reference Manual,” 2024.
[23] Lawrence E. Bassham, Andrew L. Rukhin, Juan Soto, James R.

Nechvatal, Miles E. Smid, Elaine B. Barker, Stefan D. Leigh, Mark
Levenson, Mark Vangel, David L. Banks, Nathanael Alan Heckert,
James F. Dray, and San Vo. 2010. SP 800-22 Rev. 1a. A Statistical
Test Suite for Random and Pseudorandom Number Generators for
Cryptographic Applications. Technical Report. National Institute of
Standards & Technology, Gaithersburg, MD, USA.

[24] M. Dworkin, “Recommendation for Block Cipher Modes of
Operation Methods and Techniques,” Dec. 2001.

[25] R. Housley, “Using Advanced Encryption Standard (AES) Counter
Mode With IPsec Encapsulating Security Payload (ESP),” Jan. 2004.

[26] S. J. H. Pirzada, A. Murtaza, T. Xu, and L. Jianwei, “Initialization
Vector Generation for AES-CTR Algorithm to Increase Cipher-text
Randomness,” in 2019 2nd International Conference on Information
Systems and Computer Aided Education (ICISCAE), Dalian, China:
IEEE, Sep. 2019, pp. 138–142. doi:
10.1109/ICISCAE48440.2019.221605.

[27] JH. Song, R. Poovendran, J. Lee, and T. Iwata, “The AES-CMAC
Algorithm,” RFC Editor, RFC4493, Jun. 2006. doi:
10.17487/rfc4493.

[28] M. J. Dworkin, “Recommendation for block cipher modes of
operation : the CMAC mode for authentication,” National Institute of
Standards and Technology, Gaithersburg, MD, NIST SP 800-38b,
2016. doi: 10.6028/NIST.SP.800-38b.

