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ARTICLE INFO ABSTRACT

Keywords: Pile load tests have been utilized to reduce the uncertainty of pile resistance, thus leading to a higher resistance
Resistance factor factor used in the Load and Resistance Factor Design (LRFD). Previous studies have primarily focused on cali-
Pile group

Random finite difference method

Bayes’ theorem

brating resistance factors for single piles based on load tests. This calibration hinges upon the resistance bias
factor of single piles, defined as the ratio of measured resistance to predicted resistance. Due to the redundancy in
the pile group system, it is conventionally assumed that if the individual piles within the group achieve a lower
reliability index (e.g., 2.0-2.5), the pile group as a whole attains the target reliability index of 3. However, the
approach is empirical as it does not consider system redundancy directly. Moreover, this empirical approach
disregards the correlation between resistance bias factors of individual piles, which is inherently influenced by
the spatial variability of soils. In this study, the random finite difference method (RFDM) is employed to evaluate
the correlation between resistance bias factors of individual piles in spatially variable soils. The resultant cor-
relation matrix is subsequentially employed in Bayes’ theorem to update resistance bias factors using individual
pile load test results and their corresponding test locations. The updated resistance bias factors are then used for
the direct calibration of resistance factors for pile groups within the framework of LRFD. A pile group subject to
vertical loading in undrained clays is adopted for illustration. Comparative analyses between the proposed
approach and the empirical approach demonstrate that the latter tends to overestimate the resistance factor.
Furthermore, the proposed approach enables the determination of optimal locations for conducting subsequent

load tests based on previous test results.

1. Introduction

In the Load and Resistance Factor Design (LRFD), resistance factors
are utilized to account for uncertainties associated with pile resistances.
Nevertheless, the determination of resistance factors within design
codes predominantly relies on engineering judgment, especially when
load tests are performed [1]. For example, the Australian Standard for
Piling-Design and Installation [2] outlines a formula to calculate the
resistance factor, taking into account the overall risk rating, system
redundancy, types of load tests and percentage of piles tested. However,
the values assigned to parameters within the formula, such as the basic
geotechnical strength reduction factor and the intrinsic test factor,
which respectively represent the overall risk and types of load tests,
primarily depend on expert judgment [3].

Several studies have been conducted to calibrate the resistance factor
of single piles based on load test results [4-6]. Zhang and Tang [7]
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evaluated the resistance factor of single piles based on load tests con-
ducted to failure, and revealed that the resistance factor was increased
by 30 % with only one load test conducted. Similar results were
observed by Zhang, Li [8]. Zhang, Huang [1] proposed a probabilistic
approach that integrates the First Order Reliability Method and the
Bayesian approach to calibrate the resistance factor of H-piles using
proof load tests. This approach also accommodates the consideration of
site variabilities and design methods. Generally, the resistance factor of
single piles is calibrated based on the statistics of the resistance bias
factor, which is defined as the ratio of measured resistance to predicted
resistance [4]. The statistics of resistance bias factors for single piles are
typically derived from comprehensive load test databases, given the
abundance of available data [9,10]. When load tests are conducted, test
results are used to update the resistance bias factor, which is sub-
sequentially adopted for recalibrating resistance factors of single piles.
However, the extension of this approach to the realm of pile groups is
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not straightforward. Establishing the statistics of resistance bias factor
for pile groups proves challenging due to the scarcity of field load tests
conducted on the entire pile group. In practice, load tests are typically
carried out on individual piles within a group, while load tests on the
entire pile group are seldom performed owing to the complexity, high
costs, time constraints, and limitations of the capacity of the loading
equipment [11]. Consequently, there has been limited attention given to
calibrating resistance factors of pile groups with load tests.

Currently, the determination of the resistance factor of pile groups
mainly relies on empirical approaches. For instance, due to the redun-
dancy in the pile group system, previous studies [12-20] recommended
calibrating the resistance factor for individual piles within the group to
achieve a reliability index of 2.0-2.5. This calibrated value is then
assigned as the resistance factor for the pile group, aiming to attain the
desired reliability index of 3. However, the approach is empirical as it
does not consider system redundancy directly. Furthermore, this
empirical approach disregards the correlation among resistance bias
factors of individual piles, which is inherently influenced by the spatial
variability of soils [21]. As a result, this empirical approach may yield
unrealistic evaluations of resistance factors for pile groups. Alterna-
tively, Oudah, El Naggar [22] and Alhashmi, Oudah [23] employed the
system-based approach to calibrate resistance factors for pile groups.
This approach utilized the binomial distribution to describe the proba-
bility of failure of the pile group if M or more out of N piles fail. M
represents the maximum number of failed piles that can occur without
causing pile group failure and N denotes the total number of piles in the
group. However, these studies failed to consider the correlation among
individual piles. Moreover, the determination of the value of M presents
a significant challenge due to the intricate failure mode exhibited by pile
groups. Additionally, results obtained from individual pile load tests
cannot be utilized for recalibrating resistance factors.

In this paper, a rigorous framework based on the random finite dif-
ference method (RFDM) and Bayes’ theorem is proposed to calibrate
resistance factors of pile groups with individual pile proof load tests. The
proposed approach enables a direct calibration of resistance factors for
pile groups, while also accounting for the correlation among resistance
bias factors associated with individual piles. To achieve this, the RFDM
is utilized to evaluate resistance bias factors of individual piles and their
corresponding correlations in spatially variable soils. With individual
pile load tests conducted, Bayes’ theorem is employed to update the
resistance bias factors using the test outcomes and their respective lo-
cations. Within the framework of LRFD, a limit state function of pile
groups is formulated, and the updated resistance bias factors are inte-
grated into this limit state function to directly calibrate resistance factors
for pile groups. Notably, the proposed approach also facilitates the
consideration of load test locations by integrating the correlation matrix
of resistance bias factors into the Bayesian updating process. The paper
is organized as follows: Section 2 introduces the methodology, eluci-
dating the proposed approach in detail. Section 3 demonstrates the
proposed approach using a 3 x 3 pile group subjected to vertical load-
ings in spatially variable soils. The results are presented and discussed in
section 4, where the influence of various factors, such as the number of
load tests, spatial variability of soils, and load test locations on resistance
factors, is investigated. Moreover, this section highlights how the pro-
posed approach is employed to identify the optimal location for con-
ducting subsequent load tests based on previous test results. Finally,
major findings are summarized in section 5.

2. Methodology

The proposed framework comprises three components: 1) the cali-
bration of resistance factors for pile groups within LRFD, 2) the updating
of the resistance bias factor based on individual pile load test results and
their corresponding test locations, and 3) the determination of the
resistance bias factors of individual piles and their corresponding cor-
relations using RFDM. Further detailed explanations and discussions on
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these three components are provided in the subsequent subsections.

2.1. Calibrating resistance factors of pile groups in LRFD

In LRFD, the resistance and load factors are employed to address the
uncertainties related to resistance and loads, respectively. The design
equation for pile groups is defined as the factored resistance is equal to
or larger than the factored loads [24]:

PR > > 7,Qn ¢3)

where ¢ is the resistance factor, Ry, is the nominal pile group resistance.
7; is the load factor, Q;, is the nominal load.

For the purpose of calibration, Eq. (1) is of interest when the factored
resistance and factored loads are equal. In this paper, only dead and live
loads are considered, leading to a simplification of the design equation
as follows:

PRgn = ypQon +71,Qn )

where y, and y; are the dead load factor and live load factor, respec-
tively. Qp, and Qq, are the nominal dead load and nominal live load,
respectively.

In Eq. (2), load factors are adopted from AASHTO [24] and are
assigned specific values corresponding to different limit states. For
example, y, = 1.25 and y; = 1.75 if the Strength I limit state is consid-
ered, while y, =y, = 1.0 if the Service I limit state is considered. Qpn
and Qy, represent the nominal loads transferred from the superstructure
to the substructure, and these values are obtained through structural
analysis. For the pile group resistance, the concept of group efficiency, 7,
is adopted, which has been traditionally employed in engineering
practice [25]. 5 is defined as the ratio of the pile group resistance, R, to
the summation of the individual pile resistance, Zfi 1Ri, [26]. Therefore,
for a pile group containing N piles, R, is calculated as: Ry = r]Zfi JR;. Ttis
worth noting that the assessment of 5 in this paper involves the
consideration of spatially variable soils, as described in section 2.3, in
contrast to previous studies that predominantly assumed uniform soil
properties [27]. Given the consideration of soil spatial variability herein,
n should be treated as a random variable instead of a constant value, as it
is inherently influenced by the soil properties [28]. It is assumed that the
mean group efficiency, #,, is used to derive the nominal pile group
resistance. Therefore, Ry, is determined as follows:

N

Ry =1,y Ran 3)

i=1

where R;, is the nominal resistance of the ith pile, defined as the mean
pile resistance obtained by RFEM. Thus, the nominal resistances of in-
dividual piles are identical, R, =Rj, = . .. = Rpnp.

The limit state function, g, is defined as the pile group resistance
equals the sum of loads transferred from the superstructure:

N
§=R;—Q-Q =1 R-Q-Q=0 )

i=1

where R, Qp and Q; are the measured resistance, dead load and live load,
respectively.

In engineering practice, empirical design methods are commonly
employed to estimate resistance and loads by utilizing simplified models
and assumed model parameters. This often leads to predicted values that
deviate from actual measurements. Furthermore, the idealization of soil
layers, the assignment of constant soil properties within each layer, and
the uncertainty introduced during the evaluation of soil properties via
bivariate correlations can exacerbate the discrepancies between pre-
dicted and measured pile resistances. To address these discrepancies in
resistance, dead load, and live load, three random variables are intro-
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duced: the resistance bias factor, Az, dead load bias factor, ip, and live
load bias factor, 4;. For a pile group contains N piles, A is a vector that
contains1g , . . ., Anr,Ar = (kiR , . . ., Angr). There bias factors
are defined as the ratio of the measured value to the predicted one.
Additionally, it is assumed that the predicted value is employed as the
nominal value in designs. Therefore, the relationship between the
nominal values and the corresponding measured values is specified by
the following transformations [17]:

Ri=ArRn Qo =1pQon Q=4Qn (5)

By substituting Egs. (2), (3) and (5) into Eq. (4) and introducing the ratio
of dead to live load, denoted as k = Qpn/Qqn, the limit state function of
pile groups is derived as follows:

My
N¢

8= )—(Apk+ ) =0 (6)

where 1, is defined as the ratio of the group efficiency and the mean of
group efficiency, 4, = n/,.

In Eq. (6), « exhibits variability across diverse superstructures,
typically spanning values within the range of 2 to 5 [29]. Nevertheless, it
has been demonstrated that « exerts a negligible impact on resistance
factors [12]. As aforementioned, that 4, is defined as the group effi-
ciency normalized by its mean. In the presence of spatially variable soils,
the group efficiency itself is considered a random variable, thereby
making 4, a random variable as well. The RFEM is employed to deter-
mine 4,, as explained in section 2.3. For the purpose of foundation
design, 1p and A, are assumed to follow lognormal distributions, and
their mean values (i.e., y; and y; ) and standard deviations (i.e., 0;, and
0;,) are adopted from Paikowsky [13]. Consequently, the main task of
calibrating resistance factors is to determine the distribution and cor-
responding statistics of 4z, i =1 , 2, . .. , N. The process of
determining Ag = (A1r , . . . , Ang) using the RFDM is outlined in
section 2.3. The obtained results of Az serve as prior information for
calibrating the resistance factor. Furthermore, if load tests are conducted
on individual piles within the group to verify their resistance, Ag is
updated by load test results, leading to adjustments in the resistance
factor to attain the target reliability index. The framework for updating
Ar using load test results is presented in section 2.2.

In order to calibrate resistance factors based on Eq. (6), a pre-
determined target reliability index of the pile group, fsr, is required.
Extensive research efforts have been undertaken to explore the reli-
ability indices of foundations. Meyerhof [30] reported reliability indices
ranging from 3.0 to 3.6 for foundations, while Tang, Woodford [31]
revealed reliability indices in the range of 1.4 to 3.0 for offshore piles. In
the realm of pile foundation designs, a target reliability index of 3 is
commonly employed [21,32], and it is also adopted in this study.
Consequently, the resistance factor of pile groups is calibrated to attain a
reliability index of 3 based on the statistics of 4, Az, 4p, and .

2.2. Updating resistance bias factors with load test results

The resistance bias factor is commonly assumed to follow a
lognormal distribution, as indicated by Park, Kim [4]. Prior to con-
ducting the load test, the mean and standard deviation of resistance bias
factors for individual piles within the group are identical, denoted as 4
and o) , respectively. Furthermore, the correlation coefficient between
the resistance bias factor of pile i and pilej (i.e., Az and A;z) is denoted as
rj,iandj=1, 2, ... , N. Therefore, the joint probability
density function of the resistance bias factors for N piles is described as
follows:

T
InAig — i, InAg — 4,
F o — x exp| — 3 (ot ~Hinin ) g1 (AR v @
[T 2 Ol Olnig
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where uiw and aimk are the mean and standard deviation of Ini,

2
respectively. o}, = \/ In (1 + (a’ZR //llR) ) and i, = Iy, —1/262, .

C is a N by N correlation matrix with the diagonal terms equal to unity
and the off-diagonal terms equal to ry.

With the completion of proof load tests on individual piles, the test
outcomes are used to update the resistance bias factor. The test load is
denoted as T, and Ar = T/R,. It is important to acknowledge that the
load test measurements are subject to inherent errors and uncertainties.
To account for these factors, the measurement error, denoted as ¢, is
assumed to follow a normal distribution with a mean of y, and a stan-
dard deviation of o.. Therefore, the actual load applied to tested piles is
T —¢. However, it should be noted that limited guidance is available on
how to quantify the magnitude of the measurement error. Hence, further
research efforts are necessary to address this crucial issue. For simpli-
fication, it is assumed that y, = 0 and o, exhibits a proportional rela-
tionship with the corresponding measurements, denoted as 6, = aT. The
value of « is contingent upon the specific load test techniques employed
as well as the methodologies applied for the interpolation of test results.
Under these assumptions, the likelihood function of pile i passes the
proof load test is derived as follows:

L(/‘L,_RlRl >T—é’)0<P(Ri > T—:E’M,;R) :P(€>T—R1M,'_R>:1

_q _P(E*ﬂe <(T=R)—p,
o, o,

—P(E‘ST—RiMfR)

zm)
:1_P<E_ﬂe<(T/R —Ri/Rn) — f1./Rn /L‘R)
0, 0¢/Rn
:17p<€77m§l lmim>:17¢(M)
a a
o(5:2)
a

where @ is the cumulative distribution function of the standard normal
distribution.

The individual piles within the group are sequentially numbered as
1, 2,..., N. Considering the proof load test performed on a total of n piles,
where m piles fail, the number associated with the failed pile is denoted
asf = (fi, fa.-.fm),and the number associated with the passed pile is
denoted as p = (pi1, D2,',Pn-m). Thus, the observations are:
Ry <T—¢ Ry, <T—¢,..., R, <T—¢, and Ry, > T—¢, Ry, > T —¢,...,
Ry, . > T —e. The likelihood function for m tests fail among n tests is

expressed as follows:
i=py

The posterior distribution of Az = (41r
employing Bayes’ theorem [33]:

(3

fm
L(Ag|Observations ) H (1
if

., Anr) is obtained by

f" (Ar|Observations )«L(Ag|Observations)f (Ag)

=110 d’(“ ) ()

i=fi i=p;

T ’
Nl exp Indig — iy, c! Iniig /_ Hioig
H i=1 Air 2 O-IMR Olnig

(10)

It is noted that the Eq. (10) are complex and impossible to solve
analytically. Thus, the Markov chain Monte Carlo [34] is adopted to
sample the posterior distribution.
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2.3. Determining Ag, G, and 1, by RFDM

The RFDM, which integrates the FD analysis with random field
theory in conjunction with Monte Carlo simulation (MCS) is employed
to evaluate Ag, C, and 4, in spatially variable soils. In the context of pile
foundations situated in undrained clay, the pile resistance is predomi-
nantly influenced by the undrained shear strength, c,, [35,36]. There-
fore, only c, is modelled as stationary random fields in this paper, while
other parameters (e.g., shear modulus) are treated as constant. The
random field theory is employed to generate a 3D spatially distributed
undrained shear strength, c,, based on specified statistical parameters,
including mean, . , coefficient of variation, COV,,, and spatial corre-
lation length, 6. The FD software FLAC3D [37] is utilized to compute the
resistances of both the pile group and individual piles in spatially vari-
able soils. For each set of statistical parameters of c,, MCS is performed.
These involve 100 realizations of the undrained shear strength random
field and the subsequent FD analysis of pile resistances. Statistical ana-
lyses demonstrate that the mean and standard deviation of desired pa-
rameters (e.g., Ag and 1,) stabilize after 70 simulations, supporting the
sufficiency of 100 simulations.

In each simulation, the individual pile resistances are determined.
Initially, a single pile FD model is constructed. Subsequently, a small
incremental displacement is applied to the pile top at each step, while
the vertical load on the pile is obtained using the embedded function
‘force’. The load-displacement curve of the pile is then generated after
executing a substantial number of steps (e.g., 50000). The pile resistance
is determined based on the load-displacement curve and the prescribed
failure criterion (e.g., ISSMFE criterion [38]). It is worth noting that the
pile resistance defined by different failure criteria can vary significantly
[39]. For demonstration, the ISSMFE criterion [38] is adopted in this
paper, which corresponds to the displacement of piles is 10 % of the pile
diameter. The mean and standard deviation of the individual pile re-
sistances are then calculated based on the outcomes of 100 simulations.
It is assumed that the resistance obtained from a rigorous 3D FD analysis
is unbiased and equivalent to the measured resistance when the soil
parameters are known precisely, and the variability in A, primarily
arises from the spatial variability in soil strength. As a result, Az is
computed as the ratio of the individual pile resistance obtained by FD
analysis and nominal resistance, where the nominal resistance is ob-
tained by FD analysis based on the mean soil strength. The mean and
standard deviation of Az obtained through the RFDM serve as prior in-
formation (i.e., 4, , 6; ), as elaborated in section 2.2.

After completing the RFDM analysis, 100 sets of Ag = (A1 , . . . ,
Anr) are obtained. Consequently, correlation analyses are performed to
establish the correlation matrix, C.

Furthermore, the pile group resistance is obtained in each simula-
tion. For the purpose of simplification, a rigid pile cap is assumed.
Moreover, only vertical displacement is permitted when subjected to
vertical loads, while the rotation of the cap is not considered. These
assumptions restrict all piles to undergo equal head displacements under
vertical loads. This approach aligns with the simplifications commonly
employed in previous studies concerning rigid footings and pile group
foundations [40,41] situated in spatially variable soils and subjected to
vertical loads. The consideration of cap rotation may lead to complex
failure modes due to induced bending moments and shear forces in in-
dividual piles [42,43], which falls beyond the scope of this paper. In the
FD analysis, a pile group FD model is initially constructed. Subsequently,
the same displacement is applied to the top of individual piles at each
step, while the vertical loads on individual piles are obtained using the
embedded function ‘force’. The load-displacement curves of individual
piles within the group are generated after executing a substantial
number of steps (e.g., 50000). The total load acting on the pile group is
calculated as the sum of the loads on individual piles [44], and the
displacement of the pile group is equivalent to that of individual piles.
Consequently, a load-displacement curve for the pile group is obtained,

Structural Safety 111 (2024) 102517

and the same failure criterion utilized for individual piles is employed to
determine the pile group resistance. 7 is computed by dividing the pile
group resistance by the sum of individual pile resistances. Subsequently,
the mean and standard deviation of 5 are determined based on 100
values of 5. As for 4,, it is computed as the ratio of 7 and its mean value.

2.4. Procedure of the proposed approach

The procedure of the proposed approach is summarized as follows:

Step 1: Generate stationary random fields of ¢, based on specified
statistical parameters. Map the value of c, to the corresponding soil
element in the FD model.

Step 2: Compute the resistances of both the pile group and individual
piles using the same soil property.

Step 3: Determine 4, and C, and prior distribution of Az, as described
in section 2.3.

Step 4: Evaluate the posterior distribution of Az by utilizing the
number of tests, test outcomes and their respective locations. This
evaluation is performed following the procedure outlined in section 2.2.

Step 5: Generate Ny (i.e., ten million) sets of samples for Ap, 41, and
Ay, while the samples generated in step 4 are utilized for Ag.

Step 6: Steps 6-9 describe the optimization of ¢ based on the
Bisection method. To guarantee convergence, a broader initial range for
¢, specifically [0, 2], has been selected. The midpoint of this range, 1, is
then adopted as the trail ¢ for evaluating the limit state function, g, (i.e.,
Eq. (6)) for each set of samples.

Step 7: Count the number of cases where g < 0, Ny. Calculate the
probability of failure, py = Ny/Nr.

Step 8: Calculate the reliability index, # = ®~!(1 — ps), where @' is
the inverse cumulative distribution function of the standard normal
distribution.

Step 9: Compare f with the target reliability index, fsr. If > fgr, it
suggests that the trial ¢ is conservatively low, and hence, the range is
adjusted to [1, 2] with a new trail ¢ of 1.5. Conversely, if § < fgy, it
indicates that the trial ¢ is overly high, necessitating a revision of the
range to [0, 1] with a new trail ¢ of 0.5. This iterative process is
continued until | — fgr| < 0.01.

3. Example

To demonstrate the proposed approach, a 3 x 3 pile group under
vertical loading in undrained clay is employed. The arrangement of the
pile group is shown in Fig. 1 (a), where individual piles are sequentially
numbered from 1 to 9. Additionally, Fig. 1 (b) depicts the representative
FD model of the pile group in spatially variable soils. The soil medium is
modelled as a cuboid with dimensions of 30 x 30 x 20 m. To facilitate
the generation of a random field and the mapping of soil properties to
individual elements, the soil medium is discretized into 8-noded cubic
elements with a uniform side length of 1 m. The pile-element represents
the pile as a linear structural element with interface properties, elimi-
nating the need for explicit modelling of the physical geometry of piles
[27,45]. Given that the analysis is focused on free-standing pile groups,
there is no necessity to include a pile cap in the FD model. The pile
geometry parameters, as well as the relevant pile and soil properties
employed in FD models, are summarized in Table 1.

The undrained shear strength, c,, is modelled as a lognormal distri-
bution to prevent negative values for the soil property [46]. The spatial
correlation length, 6, is nondimensionalized by the embedded length (1),
and the normalized spatial correlation length is expressed as ©® = /L.
The generation of a 3D stationary random field of ¢, is accomplished
using the randomization method described in HeBe, Prykhodko [47],
based on yi,, = 20kPa, while COV,, and © vary within the ranges of 20 to
100 %, and 0.15 to 5, respectively. This study adopts the isotropic spatial
correlation length for demonstration purposes, motivated by several
considerations: 1) the application of isotropic spatial correlation lengths
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Undrained shear strength, (Pa)

3.6835E+04
3.5000E+04
3.2500E+04
3.0000E+04
2.7500E+04
2.5000E+04
2.2500E+04
2.0000E+04
1.7500E+04
1.5000E+04
1.2500E+04
1.0000E+04
7.5000E+03
6.0890E+03
B Pie

(b) pile group in spatially variable soils

Fig. 1. The FD model of pile groups. (a) plan view of the pile group (b) pile group in spatially variable soils.

Table 1

The properties of pile and soil in the FD model.
Pile Value
Length,L 10.5m
Embedded length,l 10m
Diameter,D 1.0m
Spacing,d 3.0m
Elastic modulus,Ep 2.2 x 107 kPa
Poisson ratio 0.3
Soil Value

Mean of undrained shear strength,u,, 20 kPa

Coefficient of variation of undrained shear 20 %, 30 %, 50 %, and 100
strength,COV,, %

Normalized spatial correlation length,® 0.15,0.5,1, 2, and 5

Shear modulus,G 1.3 x 10° kPa

Bulk modulus,K 6.0 x 10° kPa

remains prevalent in the most recent research regarding the reliability
analysis of piles [48-50]; 2) illustrating the impact of load test locations
becomes challenging with the use of a large horizontal correlation
length. Nonetheless, it should be noted that the proposed approach can
be utilized to consider anisotropic spatial correlation lengths.

The load factors are adopted from AASHTO [24] with y;, = 1.25 and
v = 1.75. The statistics of load bias factors are obtained from Pai-
kowsky [13] with y, =1.05, 4, =1.15,0;, =0.105,and 5;, = 0.23.
The ratio of dead to live load, «, is assumed to be 2, while the target
reliability index, f¢r, is set to 3. In proof load tests, it is assumed that the
test load corresponds to the nominal resistance of individual piles, T =
R;. The standard deviation of measurement error is assumed to be 0.1T,
denoted as 6, = 0.1T.

4. Results
4.1. Effect of the number of tests and test outcomes

This subsection aims to investigate the impact of the number of tests,
n, and the number of failed tests, m, on the resistance factor, ¢. The
resistance factors are obtained using both the proposed approach and
the empirical approach to facilitate a comprehensive comparison. The
tests are assumed to be performed in accordance with the sequential
numbering of individual piles, and it is further assumed that the negative
tests (i.e., tested piles fail) are observed prior to the positive tests (i.e.,
tested piles pass). For instance, n = 4 and m = 2 denotes that pile 1, pile
2, pile 3 and pile 4 are tested sequentially, where pile 1 and pile 2 fail
while pile 3 and pile 4 pass. It should be noted that, while different test
outcome combinations influence the absolute values of resistance fac-
tors, they do not alter the overall trend of resistance factors nor the
comparative analysis between the proposed and empirical approaches.
Consequently, for the purpose of clarity in this subsection, a single

permutation (i.e., negative tests are observed prior to the positive tests)
has been selected for demonstration, with a detailed investigation of
various combinations for specified values of n and m to be conducted in
sections 4.4 and 4.5.

Fig. 2 illustrates the variation of resistance factors with respect to n
and m, for ® = 2 and COV,, = 50%. As expected, for a fixed value of n, ¢
decreases as m increases. Fig. 2 reveals that ¢ obtained using the
empirical approach are generally higher than those generated by the
proposed approach, indicating that the empirical approach may lead to
unconservative designs. This discrepancy can be attributed to two pri-
mary factors. Firstly, the empirical approach relies on the subjective
selection of the target reliability index for individual piles, f¢;. A lower
value of g yields a higher ¢, whereas a higher value of fs; corresponds
to a lower ¢. In this example, a commonly accepted value of fg; = 2.33
is utilized, which leads to an overestimated ¢. Secondly, the empirical
approach disregards the spatial variability of soils, resulting in the
assumption of perfect correlation among individual piles. With load tests
performed, the variation of the resistance bias factors for untested piles
is reduced to the same value as tested piles. In contrast, the proposed
approach considers the spatial variability of soil strength and the rela-
tive positions of individual piles, leading to imperfect correlation among
the piles. As a result, if the untested piles are uncorrelated with the
tested piles, the variation of the resistance bias factors for untested piles
remains unchanged, resulting in a lower ¢ that can be used for the pile
group to achieve the target reliability.

In Fig. 2, points A, B and C are obtained by the empirical approach,
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Fig. 2. Resistance factors for different n and m, with ® = 2 and COV,, = 50%.
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denoting that one among two tests fails, two among three tests fail and
three among four tests fail, respectively, while points A’, B’ and C’ are
obtained by the proposed approach. It is worth noting that, in the
empirical approach, ¢ associated with A, B and C gradually decreases
owing to the increase in m. In contrast, ¢ corresponding to A’, B’ and C’
does not exhibit a monotonic trend due to consideration of load test
locations. A’ indicates pile 1 fails and pile 2 passes, B’ signifies pile 1 and
pile 2 fail while pile 3 passes, and C’ represents pile 1, pile 2 and pile 3
fail while pile 4 passes. The higher ¢ associated with point B’ compared
to that of point C’ suggests that pile 4 (i.e., the edge pile) provides more
significant information regarding the reliability of pile groups than pile
3 (i.e., the corner pile), which aligns with common engineering practice.
The observations reveal a limitation of the empirical approach in failing
to account for the influence of load test locations, unlike the proposed
approach. To investigate the significance of load test locations and their
impact on ¢, a comprehensive analysis is provided in sections 4.4 and
4.5.

4.2. Effect of the spatial correlation length

The effect of © on resistance factors for n = 4 and COV,, = 50% is
illustrated in Fig. 3. Once again, the load tests are performed in accor-
dance with the sequential numbering of individual piles, with the
negative tests being observed prior to the positive tests. Fig. 3 shows
that, irrespective of the value of m, ¢ initially decreases and subse-
quently increases as © increases from 0.15 to 5. For example, whenm =
2, ¢ decreases from 0.95 to 0.82 as © increases from 0.15 to 1, and then
slightly increases to 0.84 as © further increases to 5. In all cases depicted
in Fig. 3, a worst-case spatial correlation length of ® = 1 is observed
where ¢ attains its minimum value. In practice, the worst-case spatial
correlation length could serve conservative design purposes, particu-
larly in situations where data limitations impede the accurate estimation
of ®. It is imperative to highlight that ¢ exhibits relatively higher values
when ® = 0.15. Under this circumstance, the correlation coefficient of
the resistance bias factor among individual piles remains lower than
0.25, indicating that the failure of certain piles has a limited impact on
untested ones. In this context, the presence of weaker piles can be
compensated by stronger ones, thereby enhancing the overall reliability
of the entire pile group. Consequently, the rationale behind adopting a
higher ¢ becomes substantially justifiable.

1.0+ .\I\-/I/.
0.9 1
ASS
g . :
Q
&8 0.8 1
(]
=
<
2074 v
3 — =0 2,
< i 0§ 9
0.6 4 — m:1 éﬁ‘) 1o @ Tested piles
+m_2 4 5 6 (O Untested piles
—— s e e
05 T T T T T
0 1 2 3 4 5
®

Fig. 3. Resistance factors for different ® and m, with n = 4 and COV,, = 50%.
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4.3. Effect of the coefficient of variation

The influence of COV,, on resistance factors forn =4 and ® =5 is
presented in Fig. 4. Similar to the assumption in sections 4.1 and 4.2, the
load tests are performed following the sequential numbering of indi-
vidual piles, with the negative tests being observed before the positive
tests. Fig. 4 demonstrates that, for a fixed value of m, ¢ exhibits an
increasing trend as COV,, decreases. For instance, when m = 2, ¢ shows
an increase from 0.71 to 0.90 as COV,, decreases from 100 % to 20 %.
This phenomenon is attributed to the fact that pile resistance is primarily
influenced by c,, and a high variability in ¢, induces a greater variability
in pile resistance, leading to a reduced reliability of the pile group.
Therefore, a lower ¢ is necessary to attain the target reliability. Addi-
tionally, Fig. 4 reveals a decreasing trend in ¢ as m increases. Specif-
ically, when COV,, = 100%, ¢ decreases from 0.89 to 0.57 as m
increases from zero to three.

4.4. Effect of load test locations

The purpose of this subsection is to investigate the impact of load test
locations on resistance factors. It is noteworthy that there exist various
configurations of load test locations for a given number of tests and their
respective outcomes. For instance, when one load test is performed,
three distinct options arise irrespective of the test result: the corner pile
(i.e., pile 1, pile 3, pile 7, and pile 9), the edge pile (i.e., pile 2, pile 4, pile
6, and pile 8), or the centre pile (i.e., pile 5). In contrast, with two load
tests conducted, the potential combinations extend to eight permuta-
tions if both tests yield positive results, and twelve permutations if the
first test yields a negative result followed by a positive result in the
second test. The number of potential combinations significantly in-
creases with the number of tests. Therefore, for illustration, this sub-
section adopts the scenario involving two load tests, both yielding
positive results.

The change of ¢ with respect to the load test locations and ©, with
n =2, m=0and COV,, = 50% is shown in Fig. 5. The notation ‘Piles 1
+ 2’ signifies that the load tests are sequentially conducted on pile 1 and
pile 2. It is observed from Fig. 5 that the impact of load test locations on
¢ is negligible when ® = 0.15. In this case, the tested piles have no
influence on the untested ones, and the updated ¢ is solely affected by
the number of tests conducted and their corresponding outcomes. It is
speculated that in the extreme case, where ®— oo, the individual piles
are perfectly correlated, the test locations have a negligible impact on ¢.
However, for intermediate spatial correlation lengths, ¢ exhibits
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Fig. 5. Resistance factors for different test locations and ©, with COV,, = 50%.

dependence on the test locations, as depicted in Fig. 5. For example, ¢
ranges from 0.84 to 0.95 for ® = 2. Notably, the highest ¢ is obtained
when pile 2 and pile 8 are tested, while the lowest ¢ is obtained when
pile 1 and pile 2 are tested. These results are also reflected in Fig. 6,
which presents ¢ for different test locations and COV,,, withn = 2,m =
0 and ® = 2. Additionally, Fig. 6 indicates that the trend of ¢ with
respect to load test locations remains consistent across different values
of COV,,. Specifically, when the first load test is conducted on pile 1, ¢
progressively increases as subsequent load tests are performed on pile 2,
pile 3, pile 5, pile 6, and pile 9. Conversely, if the first load test is con-
ducted on pile 2, ¢ gradually increases with subsequent tests conducted
on pile 4, pile 5, and pile 8.

4.5. Optimal test locations based on previous test results

This subsection aims to illustrate the application of the proposed
approach in determining optimal locations for conducting subsequent
load tests based on acquired test results. Fig. 7 depicts ¢ obtained from

1.0+
_r
I
I
< 0.9+
s |
g |
§0.8 -:
g |
z ] —a— COVe,=100%
074 —o— COVe,=50%
—A— COVe,=30%
—v— COVe,=20%
06 T T T T T T T T
\xq’ ,\xn’ \><°> \x‘o \xo’ q’xb‘ ,»x(? %xoo
AL AT A AT A A AT N
Q\ Q\ Q\ Q\’ Q\ Q\ Q\ Q\

Fig. 6. Resistance factors for different test locations and COV,,, with ® = 2.
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various load test configurations, with ® =2 and COV,, = 50%. The
initial resistance factor corresponds to the scenario where no tests are
conducted. It is calibrated by utilizing the prior distribution of resistance
bias factors. The notation ‘P’ denotes that the tested piles pass the proof
test, while ‘F’ indicates that the tested piles fail. Owing to the symmetric
configuration of the pile group, three distinct scenarios emerge for
conducting the first test, namely pile 1, pile 2, or pile 5. Subsequently, ¢
is calibrated based on the specific test location and the corresponding
test result, according to the steps described in section 2.4. Depending on
the first load test, various choices emerge for determining the second test
location. Consequently, ¢ is recalibrated based on the selected location
and the second load test result. All load test configurations and their
corresponding ¢ are presented in Fig. 7, which can be readily applied in
engineering practice.

In Fig. 7, when one load test is conducted, the load test on pile 5 with
a positive result yields the highest ¢, indicating that pile 5 is the best
location to conduct the first test. However, it is also noteworthy that
when two load tests are conducted, the highest ¢ is obtained when pile 2
and pile 8 yield positive results (i.e., route 1). Thus, pile 2 emerges as
another viable choice for the first test. The observation indicates that
pile 2 and pile 5 are viable choices for conducting the first load test if
multiple tests are to be performed.

Results shown in Fig. 7 can be utilized to determine the optimal
location for conducting subsequent load tests based on obtained test
results. For example, if the first load test is performed on pile 2 with a
positive outcome, it is advisable to conduct the second load test on pile 8
to achieve the highest ¢ (i.e., route 1). Conversely, if the first load test on
pile 2 yields a negative result, the optimal location for the subsequent
load test is identified as pile 5 (i.e., route 2). In the case where the first
load test is performed on pile 5, it is recommended to conduct the second
load test on pile 2, regardless of the first test result (i.e., route 3 and
route 4). These findings contribute valuable instructions for designing
load test schemes and offer practical guidance for engineering practices.
It should be noted that the illustrative example is limited to a scenario
involving a single soil layer with spatially variable properties. The
impact of soil stratification on the optimal testing locations remains an
area for future investigation.

5. Conclusions

This paper proposes a rigorous framework to directly calibrate
resistance factors of pile groups with individual pile proof load tests. The
impact of the number of tests, load outcomes, spatial variability of soils
and test locations on resistance factors can be considered. A 3 x 3 pile
group is adopted to demonstrate the proposed approach. The following
conclusions are made from this study:

1. A comparative analysis is performed to evaluate the resistance fac-
tors obtained using the proposed approach and the empirical
approach. The findings demonstrate that the empirical approach,
which involves the subjective selection of the target reliability index
for individual piles and disregards the spatial variability of soils, may
lead to unconservative designs. In contrast, the proposed approach
overcomes these limitations by incorporating the RFDM into the
calibration process.

2. There is a worst-case spatial correlation length where the resistance
factor calibrated based on load test results is minimal. This finding
has significant implications for conservative designs, particularly
when the evaluation of the spatial correlation length is constrained
by limited site investigation data.

3. Atintermediate spatial correlation lengths, the resistance factors are
significantly influenced by load test locations. In the case of one load
test, the highest resistance factor is obtained when the test is con-
ducted on the centre pile and yields a positive result. In the case of
two load tests, the highest resistance factor is attained when the tests
are performed on the opposite edge piles and yield positive results.
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The observation indicates that the centre pile is the optimal test
location when only one test is to be performed, while both centre and
edge piles are viable choices for conducting the first load test if
multiple tests are to be performed.

4. The proposed approach provides a systematic method to identify the
optimal location for conducting subsequent load tests based on the
obtained results. For instance, if the first load test is performed on the
edge pile with a positive result, it is recommended to conduct the
subsequent load test on the opposite edge pile. Conversely, if the first

load test is performed on the edge pile with a negative result, it is
advised to conduct the next load test on the centre pile.
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