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Abstract: Rolling element bearings (REBs) are critical components in rotating machin-
ery and a leading cause of machine failures. Traditional fault detection methods rely on
signal processing, but advances in machine learning (ML) and deep learning (DL) have
dramatically improved diagnostic accuracy. However, existing DL models struggle with
data availability, generalization, and domain adaptation, making industrial applications
challenging. This study proposes a convolutional neural network (CNN) model trained
on numerically simulated vibration data generated for a wide range of bearing designs.
A novel hybrid signal processing method is employed to enhance feature extraction and
reduce domain shifts between simulated and real-world data. The optimized CNN model,
trained on simulated data, is tested using experimental and real-world vibration signals
from laboratory bearings and jet engine components. The results show high classification
accuracy using data from the Case Western Reserve University experimental dataset and
successful fault detection in real-world Safran jet engine ground tests. The findings demon-
strate the effectiveness of the developed CNN-based model for bearing fault classification,
tackling training data scarcity and generalizability challenges while contributing to the
development of intelligent fault diagnosis models for several industrial applications.

Keywords: bearing fault diagnosis; data scarcity; generalisability; simulated vibration data;
convolutional neural network (CNN)

1. Introduction
Rolling element bearings (REBs), as one of the most prevalent components in rotating

machines, are also the predominant causes of machine failures [1]. For example, 30–40%
of all failures in induction machines [2,3] and about 7% in gas turbines [4] are caused by
bearing failures. Condition monitoring of REBs has increasingly played a significant role,
especially in high-value and high-impact machines [5,6].

Rolling element bearings can fail in various ways, often affecting specific components.
Common failure modes include inner race (IR) failure, outer race (OR) failure, rolling
element or ball failure, and cage failure. IR failure occurs due to fatigue cracks initiating
at the inner raceway surface, leading to spalling and eventual fracture. Excessive radial
load, misalignment, and inadequate lubrication are common causes. OR failure is similar,
with fatigue cracks developing on the outer raceway surface. Overloading, misalignment,
and contamination are primary causes. Ball failure, affecting balls or rollers, can result in
surface pitting, spalling, fracture due to excessive load, poor lubrication, and contamination.
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Finally, the cage, which separates the rolling elements, can experience fatigue, wear, and
fracture due to inadequate lubrication, excessive vibration, and misalignment [7].

Early-stage fault detection has traditionally relied on signal processing techniques in
the time, frequency, and time-frequency domains. However, since 2010, machine learning
(ML)-based methods have gained popularity for improving diagnostic accuracy [8,9].
Initially, traditional machine learning (ML) methods, such as statistical approaches and
basic classification techniques, relied on manually extracted features combined with linear
classification models [10]. While these methods offered modest improvements in diagnostic
accuracy, their capabilities remained limited. Nevertheless, they laid the groundwork
for more advanced techniques. Traditional ML approaches have encountered two major
challenges. First, they require extensive data for model training, significant computational
resources, a complex feature extraction process, and substantial domain expertise. Second,
they depend on training and testing data from identical machines operating under similar
conditions, which restricts their generalizability and limits their applicability in real-world
industrial settings [11].

Traditionally, vibration-based bearing fault detection has relied on classical signal
processing techniques for feature extraction. One of the most widely used methods is
the high-frequency resonance technique (HFRT), which detects bearing characteristic fre-
quencies (BCFs), such as BPFO, BPFI, BSF, and FTF [12]. While HFRT effectively enhances
fault-related features, it requires the careful selection of a band-pass filter [13]. This pro-
cess is challenging without human expertise, as resonance frequencies vary depending on
machine type and operating conditions. Moreover, HFRT’s performance can be affected
by background noise and unrelated frequency components, potentially compromising
fault detection accuracy [14]. To overcome these limitations, this study introduces a novel
hybrid approach [15] that automates HFRT by integrating cepstrum pre-whitening (CPW),
high-pass filtering, moving quartile averaging, and amplitude normalization. These en-
hancements help suppress background noise, remove irrelevant frequency components,
and mitigate domain shifts between simulated and real-world vibration signals, ultimately
improving fault detection accuracy.

In recent years, deep learning (DL) has emerged as a transformative approach, intro-
ducing neural network architectures capable of automatically learning complex feature
representations from raw data. Models such as convolutional neural networks (CNNs)
have significantly improved fault classification accuracy in bearing monitoring by directly
processing raw vibration signals and capturing intricate patterns that traditional methods
might miss.

Despite their enhanced pattern recognition capabilities, DL-based models still face
critical challenges. Like classic ML methods, they struggle with data availability, particu-
larly in obtaining labelled and structured data. Additionally, they face challenges in data
distribution for generalized model development. Current DL models typically assume
that training and testing data share similar distributions [16]. However, this assumption
often does not hold when transitioning from laboratory settings to real-world applications,
which involve a much wider range of bearing designs and operating conditions. These
variations can lead to significant discrepancies, reducing diagnostic accuracy and limiting
the practical application of ML models in industrial bearing condition monitoring [17]. The
effectiveness of DL models heavily depends on large volumes of labelled data for train-
ing. However, collecting such data is labour-intensive, time-consuming, and impractical
in real machines. This is especially true because machines do not intentionally operate
under faulty conditions due to the risk of severe equipment damage and safety hazards for
operators [18].
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In recent years, the introduction of transfer learning (TL) techniques has marked a
significant milestone in intelligent bearing fault diagnosis models [18]. TL addresses chal-
lenges related to data availability and domain adaptation by transferring knowledge from
one domain to another to enhance model performance. When effective, TL-based models
can monitor machines with similar configurations under different operating conditions
to a certain extent [19], providing some degree of generalizability. Although TL-based
approaches have significantly advanced bearing condition monitoring, their real-world
implementation remains limited due to the complexities of industrial machines. Model
performance tends to drop significantly when tested on entirely new data sources, such
as machines with different specifications or operating environments. Additionally, TL
methods require access to a target-domain dataset during training—whether labelled or
unlabelled—to analyse distribution discrepancies. However, in industrial settings, obtain-
ing a comprehensive target-domain dataset that includes all health states is particularly
challenging, further complicating the deployment of TL-based models [20].

In 2019, Yang et al. [20] proposed a feature-based transfer neural network (FTNN) that
leveraged transfer learning to diagnose bearing health by transferring knowledge between
different bearings. A CNN was used to extract transferable features from vibration data, in-
corporating domain adaptation and pseudo-labelling techniques. The model was validated
on three transfer tasks (Tasks A–D, B–D, and C–D), where datasets A, B, and C served as
source domains and dataset D as the target domain. It achieved an average classification
accuracy of 84.32%, outperforming six existing methods. However, when dataset C was
used as the source domain, accuracy dropped to 76%. This study emphasized the critical
role of unlabelled data quantity and health state diversity in effective pseudo-labelling.
Guo et al. [21] introduced a deep convolutional transfer learning network (DCTLN) for
diagnosing rolling element bearing (REB) faults using unlabelled target data. Their model
integrated a 16-layer 1D CNN for feature extraction and health classification with a domain
adaptation module based on maximum mean discrepancy (MMD) to minimize domain
discrepancies. Tested on six transfer tasks across datasets from CWRU, IMS, and locomotive
bearings, DCTLN achieved classification accuracies exceeding 82%, with some surpassing
89%. The study underscored the importance of diverse datasets and comprehensive test
class coverage for reliable model evaluation and practical industrial application.

Bearing vibration data simulation has emerged as a valuable solution for addressing
data availability challenges, particularly in the development of bearing fault detection
models. Numerical models are used to generate vibration data based on a physical bearing
model, which has been instrumental in training fault diagnosis systems [20]. This approach,
which relies on simulated data, is especially useful in scenarios where acquiring sufficient
real-world data is difficult, such as in bearing fault classification. Simulated data provide a
controlled environment to create diverse fault scenarios, allowing models to learn robust
fault representations. Studies, such as [22], emphasize the effectiveness of this method,
as simulated vibration signals can closely replicate real-world machine dynamics under
various operating conditions, making them well-suited for bearing fault diagnosis.

This study aims to develop a generalized machine learning (ML) model capable of
detecting bearing faults that were not included in the training process by utilizing simulated
vibration data for training a CNN. The trained model will be tested and evaluated using
both experimental and real-world test data.

CNNs are chosen for their parameter efficiency, automatic feature extraction, and hier-
archical representation learning capabilities, which have been shown to enhance accuracy
and robustness in bearing fault classification [23]. The simulated data, generated based
on a diverse range of bearing designs defined by manufacturer specifications [24], are
further refined by incorporating controlled noise under various operating conditions. Once
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successfully trained, the CNN model is validated using vibration data from experimental
setups and real-world applications to assess its effectiveness.

This paper is organized in the following sections. Section 2 outlines the methodology,
encompassing an overview of the model architecture, the simulation of bearing vibration
signals, and the CNN algorithm employed. Section 3 delves into the training and testing
outcomes. Finally, Section 4 presents the conclusions drawn from this research.

2. Methodology
Figure 1 illustrates a flow-chart outlining the methods used in this study to develop

a generalised ML model for bearing fault diagnosis. Model development begins with
extracting bearing geometry information from manufacturers’ catalogues [24], considering
a wide range of bearings designs. These specifications are then used to generate bearing
vibration signals using numerical models developed by [15]. From the simulated vibration
signals, 33 values are extracted as input features for ML model development, including
BCF harmonics and their corresponding sidebands, as defined in [25]. These features have
been shown to capture essential characteristics associated with typical bearing faults [19].
The root mean square (RMS) values of background noise in the signal is derived and used
as the 34th feature, representing signal characteristics without BCFs. These 34-feature
vectors serve as inputs for CNN model development. This study investigates three types
of bearing faults: OR faults, IR faults, and ball faults. Simulated data are used to train
and validate CNN models, and the optimised CNN model is then tested using vibration
signals collected from various laboratory experiments and engine tests. Fine-tuning may
also be performed to enhance model performance, ensuring high accuracy and robust
generalization for bearing fault diagnosis [26].
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Figure 1. Diagram illustrating the bearing fault classification model using simulated bearing vibration
data, the novel hybrid method, and a CNN algorithm.

2.1. Bearing Vibration Signal Simulation

Due to the challenges of obtaining high-quality vibration signals from experimental
testing and real-world machines—especially across a broad range of bearing designs and
operating conditions—this study utilizes numerically simulated vibration data to address
these limitations.
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First, based on the bearing manufacturer’s catalogue, 137 bearing designs are consid-
ered, with IR diameters ranging from 10 mm to 150 mm and OR diameters from 19 mm
to 320 mm, covering a wide range of applications [24]. Simulated vibration signals with
bearing faults on the OR, IR, and ball or roller elements are generated using the formulas
outlined in [15]. To enhance realism, various signal-to-noise ratio (SNR) values, shaft
speeds, and sampling rates are randomly selected within a predefined range, as shown
in Table 1. These values are based on observations from experimental and real-world
datasets within the field [27–29], including data from electric motors, dynamometers, civil
jet engines, and subscale jet engine test rigs.

Table 1. Ranges of SNR values, shaft speed, and frequency sampling rate used for the signal
simulation to provide the training data for the CNN model.

Time-Domain SNR Shaft Speed (Hz) Sampling Rate (kHz)

[−5,−10] [25, 50] [20, 50]

A total of 1200 one-second data samples have been generated, with 400 samples for
each of the three bearing fault types. Figure 2, presents examples of these time-series signals
alongside their corresponding frequency domain plots after being processed using the
novel hybrid method developed by the authors [15]. The figure highlights relevant faults
in both the time domain (impulses) and the frequency domain (BCF components).

For ball faults, two scenarios are considered: one where the fault contacts both the IR
and OR and another where it contacts only one of the races [30]. Based on the frequency
spectra, a feature vector of 34 parameters is constructed for each signal. This includes
33 BCF-related features and the root mean square (RMS) value of background noise, calcu-
lated from the spectrum after removing the BCF components to isolate noise characteristics.
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2.2. Convolutional Neural Network (CNN) Algorithm 

With the defined input feature vector of 34 elements, this study employs a one-di-
mensional convolutional neural network (1D-CNN) architecture. 1D-CNNs are a special-
ized variant of standard CNNs designed for processing sequential data, such as one-di-
mensional vectors and time-series signals. While they follow a similar structure to 2D-
CNNs, their convolution operations are performed along a single spatial dimension [31]. 
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converts the multi-dimensional output of these convolutional layers into a one-dimen-
sional vector, making it suitable for processing by the dense layers. The dense layer, which 
may consist of multiple hidden layers, acts as a classifier, learning non-linear feature rep-
resentations to map the extracted features to the desired output in the final normalized 
layer. 
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Figure 2. Simulated vibration signals and corresponding spectra generated using the novel hybrid
method. (a) Simulated time signal depicting a bearing with an OR fault. (b) Spectrum obtained using
the novel hybrid method for the OR fault. (c) Simulated time signal representing a bearing with an
IR fault. (d) Spectrum obtained using the novel hybrid method for the IR fault. (e) Simulated time
signal of a bearing with a ball fault where the fault contacts one of the races. (f) Spectrum derived
using the novel hybrid method for the ball fault contacts one of the races. (g) Simulated time signal
of a bearing with a ball fault where the fault contacts both races. (h) Spectrum obtained using the
novel hybrid method for the ball fault contacts both races.

2.2. Convolutional Neural Network (CNN) Algorithm

With the defined input feature vector of 34 elements, this study employs a one-
dimensional convolutional neural network (1D-CNN) architecture. 1D-CNNs are a spe-
cialized variant of standard CNNs designed for processing sequential data, such as one-
dimensional vectors and time-series signals. While they follow a similar structure to 2D-
CNNs, their convolution operations are performed along a single spatial dimension [31]. As
illustrated in Figure 3, the convolutional layers utilize a set of 1D convolutional kernels that
slide across the input feature vector to generate feature maps. The flatten layer then converts
the multi-dimensional output of these convolutional layers into a one-dimensional vector,
making it suitable for processing by the dense layers. The dense layer, which may consist
of multiple hidden layers, acts as a classifier, learning non-linear feature representations to
map the extracted features to the desired output in the final normalized layer.

During training, the kernel weights in the convolutional layers and the weights in the
dense layers are optimized to detect and activate specific local patterns in the input data,
improving the model’s ability to classify bearing faults accurately.

For a 34-element input vector, an appropriate 1D kernel size ranges from 2 to 5 ele-
ments. During training, multiple convolutional layers are stacked, with batch normalization
applied after each convolutional layer. Batch normalization [32] helps stabilize and ac-
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celerate training by normalizing activations within each mini-batch, allowing for higher
learning rates and improving the model’s robustness against poor initialization.
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To optimize the 1D-CNN architecture, hyperparameters such as the number of filters
per convolutional layer, the number and size of fully connected layers, dropout rates (DRs),
and other regularization parameters are fine-tuned throughout the training process.

3. Model Development and Test Results
The development of a generalized CNN model involves simultaneously perform-

ing training and validation while optimizing hyperparameters using the grid search
method [33]. Initially, five convolutional layers and five dense layers are predefined.
From these, 25 possible layer combinations are selected for separate training and validation.

Each convolutional layer employs an increasing number of filters. The first layer starts
with 3 filters, followed by 6 filters in the second layer. The third layer increases to 12 filters,
the fourth to 24 filters, and the fifth incorporates 48 filters. Each of these layers uses a kernel
size of 2, enabling detailed feature extraction at progressively deeper levels of the network.

The number of neurons in each dense layer is determined based on the output dimen-
sion of the flattening layer following the final convolutional layer. Figure 4 illustrates the
architectures of the first and last CNN models used during the random grid optimization
process, while Table 2 summarizes the number of convolutional layers (CLs) and dense
layers (DLs) for each model.

Throughout the optimization process, key hyperparameters, such as activation func-
tions, learning rate (fixed at 10−4), kernel size, and dropout rate (DR, set at 0.1 or 10%),
were kept constant to maintain consistency.

To enhance model robustness and prevent overfitting, batch normalization was applied
after each convolutional layer, while dropout regularization was used after each dense
layer. Additionally, early stopping was implemented using TensorFlow’s EarlyStopping
callback, which monitored validation loss and halted training if no improvement was
observed for 10 consecutive epochs. This approach ensured that the model restored the
weights corresponding to the lowest validation loss, optimizing its performance.
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Table 2. Summary of the number of convolutional layers (CLs) and dense layers (DLs) for each CNN
model during the grid search.

Model Number CLs DLs Model Number CLs DLs Model Number CLs DLs

1 1 1 10 2 5 19 4 4

2 1 2 11 3 1 20 4 5

3 1 3 12 3 2 21 5 1

4 1 4 13 3 3 22 5 2

5 1 5 14 3 4 23 5 3

6 2 1 15 3 5 24 5 4

7 2 2 16 4 1 25 5 5

8 2 3 17 4 2

9 2 4 18 4 3

3.1. Training Results

To evaluate model accuracy and loss more effectively, each model was trained 10 times
with randomly split training and validation data. Specifically, 75% of the simulated sam-
ples were allocated for training, while the remaining 25% were used for validation. The
performance of each model—including accuracy and loss values—is presented with error
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bars, where each bar represents the average, the standard deviation below the average, and
the standard deviation above the average, based on the 10 training and validation runs.
The summarized results are shown in Figure 5.
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The first five models, which contain only a single convolutional layer, exhibit lower
accuracy and higher loss values. As the number of dense layers increases, accuracy declines
further, accompanied by a relatively high variation across different training and validation
data clusters. However, introducing a second convolutional layer leads to a significant
accuracy improvement and a substantial reduction in loss values for both training and
validation datasets.

Among all models, model six demonstrates consistently high accuracy for both training
and validation, along with the lowest loss value. Additionally, the short length of its error
bars indicates minimal deviation across different data clusters, highlighting its stability
and robustness.

Among the 10 models trained using this architecture, the model with the highest
accuracy and lowest loss—referred to as Model 6—was selected for further testing on
additional data. Along with its minimal standard deviation in accuracy and loss values,
Model 6 demonstrated superior overall performance. As shown in Figure 6 and the
corresponding table, its architecture consists of two convolutional layers and one dense
hidden layer.

Figure 7 illustrates the accuracy and loss values of the selected optimized model
throughout the training process. Based on the EarlyStopping callback criteria defined
during model development, the training process concluded after 320 epochs. At this point,
the model achieved a training accuracy of 97.23% and a validation accuracy of 96.67%.
Additionally, the training loss was minimized to 0.15, while the validation loss decreased
to 0.14, confirming the effectiveness of the CNN model.
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3.2. Test Results

To evaluate the generalization ability of the best-performing CNN model (Model 6)
trained on simulated vibration data, it was tested on vibration signals collected from three
different machines. The two primary test data sources included experimental data from the
CWRU database [27] and ground test data from a Safran jet engine [29].

The CWRU dataset consists of vibration data obtained from two different bearing test
rigs with seeded faults introduced into bearing components. In contrast, the Safran jet
engine dataset includes real-world vibration signals recorded during engine tests conducted
under both constant and run-up speed conditions, where faults were observed to develop
naturally over time. These diverse test conditions provide a robust evaluation of the
model’s ability to generalize beyond simulated training data.
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3.3. CWRU Bearing Fault Diagnosis Results

The CWRU dataset includes three distinct classes of faulty bearings, with seeded
faults introduced in the OR, IR, and ball at varying severity levels. These faults were
applied to two separate bearings: the drive-end (DE) bearing and the fan-end (FE) bearing.
During data collection, the test rig had to be repeatedly disassembled and reassembled to
modify the fault type or severity by replacing faulty components. However, this process
inadvertently introduced an additional mechanical fault, which distorted some vibration
samples and masked the bearing fault signatures in the collected signals.

In a benchmark study, Randall et al. [34], analysed the dataset using three different
bearing fault diagnosis methods and identified mechanical looseness as the likely cause
of these distortions. This issue introduced sharp impacts in the vibration signals, evident
in the frequency spectrum through the presence of numerous shaft harmonics. These
harmonics could attenuate or even obscure the actual bearing fault signatures.

To address this, Randall et al. classified the collected vibration samples into three
categories: diagnosable, partially diagnosable, and non-diagnosable. Each category was
further divided into two levels, as specified in Table 3. The percentage distribution of these
health states within the dataset is presented in Table 4.

Table 3. CWRU data categorisation of diagnosis outcomes based on the literature results [34].

Diagnosis Category Diagnosis Success Explanation

Y1 Yes Data clearly diagnosable and showing classic characteristics for the
given bearing fault in both the time and frequency domains.

Y2 Yes Data clearly diagnosable but showing non-classic characteristics in
either or both of the time and frequency domains.

P1 Partial
Data probably diagnosable, e.g., envelope spectrum shows discrete
components at the expected fault frequencies but they are not
dominant in the spectrum.

P2 Partial Data potentially diagnosable, e.g., envelope spectrum shows smeared
components that appear to coincide with the expected fault frequencies.

N1 No Data not diagnosable for the specified bearing fault but with other
identifiable problems (e.g., looseness).

N2 No Data not diagnosable and virtually indistinguishable from noise, with
the possible exception of shaft harmonics in the envelope spectrum.

Table 4. Percentage of diagnosable, partial diagnosable, and non-diagnosable vibration samples in
CWRU dataset [25].

Bearing Health State Diagnosable
(%)

Partial Diagnosable
(%)

Non-
Diagnosable

Drive end

OR fault 78.5 12.2 9.3

IR fault 73.4 14.1 12.5

Ball fault 10.9 10.9 78.2

Fan end

OR fault 46.6 18.33 35

IR fault 52.78 36.11 11.11

Ball fault 30.5 44.5 25

Following the classification framework proposed by Randall et al. [30], the CNN
model developed in this study was tested using different categories of data. The results,
shown in Figure 8, provide a comparative analysis. For the DE bearing (Figure 8, top row),
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when tested on the entire dataset, the model achieved an average classification accuracy
of 88.42%, with high classification rates for OR faults (94.28%) and IR faults (89.06%).
However, the model struggled to classify ball faults, achieving only 75% accuracy.
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When the dataset was refined to include only “diagnosable and partially diagnosable”
samples, the model’s performance significantly improved. The classification accuracy
increased to 98.42% for OR faults and 96.36% for IR faults. However, the accuracy for ball
fault classification dropped slightly to 71.43%, likely due to the small sample size (only
15 samples in this category). Further narrowing the dataset to include only “diagnosable”
samples resulted in the highest classification performance. The model achieved 99.09%
accuracy for OR faults, 97.82% for IR faults, and 83% for ball faults. The relatively lower
accuracy for ball faults can be attributed to poor data quality, as indicated in Table 4.

For the FE bearing (Figure 8, bottom row), the model exhibited similar trends to
those observed for the DE bearing across the three data categories. However, its overall
performance was notably lower, particularly for OR and ball faults.

One key exception was the model’s classification accuracy for IR faults, where it
achieved 100% accuracy across all three categories. This result highlights the model’s
generalizability and robustness to noise and variations in data quality.

Overall, the trend in results aligns with the data quality observations in Table 4, yet
with significant improvements. When compared to the classifications by Randall et al. [34]
in Table 4, the CNN model in this study demonstrates a strong ability to detect OR and IR
faults. Specifically, it correctly diagnosed 94.28% of OR faults in the DE bearing and 55.55%
of OR faults in the FE bearing when using all data, outperforming Randall et al.’s reported
detection rates of 78.5% and 46.6%, respectively.

Guo et al. [21] developed a transfer learning model using vibration samples from the
CWRU dataset, specifically from a 2 HP motor operating at a shaft speed of 1750 rpm. Their
model, which emphasized domain adaptation and distribution discrepancy metrics during
fine-tuning, achieved an average accuracy of 86.6%. Additionally, when tested on the DE
bearing using the full dataset, their model attained an average classification accuracy of
88.42%. In contrast, the CNN model developed in this study achieved significantly higher
bearing fault classification accuracies, despite not using CWRU data for training. This
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demonstrates the model’s superior generalization ability and effectiveness in classifying
faults across different datasets.

3.4. Safran Jet Engine Bearing Fault Diagnosis Results

To further assess the generalisability of the CNN model developed in this study,
vibration data collected from an accessory gearbox of a Safran jet engine during a ground
test were used as input. Vibration and tachometer signals were continuously recorded
for 180 s as the engine gradually accelerated from idle to full power (see speed profile
in Figure 9a). During the test, two faults were reported: an outer ring (OR) fault and a
cage fault in the rolling element bearing (REB) located on a shaft within the accessory
gearbox [29].
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To diagnose bearing faults in the vibration signals using the CNN model developed
in this study, the 180-s continuous vibration signal was segmented into 180 one-second
samples. The diagnosis results are presented in Figure 9b, where the model clearly detected
both outer ring (OR) faults and ball/cage faults.

During the first 50 s, when the shaft speed was constant and low, the CNN model
successfully identified both faults. Throughout the speed run-up period (approximately 40
to 140 s), the model predominantly detected OR faults, along with a few segments showing
ball/cage faults. In the high-speed phase (after 140 s), nearly all signals indicated an OR
fault, with only one segment (around 165 s) showing a ball/cage fault.

Overall, the CNN model accurately classified 86.03% of the samples as OR faults,
aligning with the data labels provided by Safran [29]. Additionally, 13.97% of the samples
were classified as ball/cage faults, primarily occurring during the ground test.

This highlights that as shaft speed increases, OR fault-related features exhibit a higher
signal-to-noise ratio (SNR) compared to cage fault features. As a result, the CNN model—



Sensors 2025, 25, 2378 14 of 16

designed for single-fault diagnosis—primarily detected the OR fault during the run-up
and high-speed conditions.

These findings clearly demonstrate the model’s ability to detect multiple faults under
noisy and transient operating conditions, without requiring additional training. Notably,
the model’s ability to identify faults during the speed run-up stage is particularly significant
for real-world applications, where early fault detection can enhance maintenance strategies
and prevent severe machine failures.

4. Conclusions
This study has developed a CNN-based bearing fault diagnosis model trained on nu-

merically simulated vibration data covering a wide range of bearing designs, demonstrating
high generalizability. The model leverages input features based on bearing characteristic
frequencies (BCFs), identified using a novel hybrid method developed by the authors, to
reduce domain shifts and automate feature extraction.

By generating a large volume of bearing vibration data with diverse fault scenarios
using well-established numerical methods, the model effectively overcomes key challenges
in ML-based learning, particularly data scarcity and domain adaptation.

Following extensive training, which involved tuning numerous hyperparameters, an
optimized 1D CNN model with two convolutional layers and one dense layer (see Figure 6)
was developed for bearing fault diagnosis. The model’s generalizability was rigorously
tested using real-world data from both laboratory experiments and a jet engine.

The results demonstrate an average accuracy of 95.73% for diagnosable DE and FE
vibration samples from the CWRU dataset, significantly outperforming the 86.6% accuracy
reported in benchmark studies using transfer learning (TL)-based models.

Also, compared to our previous work [25] with classical ML models like SVM and
logistic regression, the CNN-based approach achieved better accuracy and robustness in
bearing fault diagnosis.

When applied to the Safran jet engine test data, the model accurately identified
existing faults. Although it was designed for single-fault diagnosis, it successfully detected
ball/cage faults in 13.97% of samples, demonstrating robust performance in high-noise, non-
stationary operating conditions and reinforcing its reliability for real-world applications.

This study makes a significant contribution to the field of intelligent bearing fault
classification by introducing a generalized model that effectively addresses training data
scarcity in real-world scenarios. Future work will focus on enhancing the model’s capabili-
ties to achieve a generalised classification of both healthy and faulty bearing states across
diverse operational conditions and various machine types.
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