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Worldtube excision is a method of reducing computational burden in Numerical Relativity simulations of
binary black holes in situations where there is a good analytical model of the geometry around (one or both of)
the objects. Two such scenarios of relevance in gravitational-wave astronomy are (1) the case of mass-disparate
systems, and (2) the early inspiral when the separation is still large. Here we illustrate the utility and flexibility
of this technique with simulations of the fully self-consistent radiative evolution in the model problem of a scalar
charge orbiting a Schwarzschild black hole under the effect of scalar-field radiation reaction. We explore a range
of orbital configurations, including inspirals with large eccentricity (which we follow through to the final plunge
and ringdown) and hyperbolic scattering.

Introduction—The LIGO-Virgo-KAGRA (LVK) public
catalog of gravitational-wave transients lists around a hun-
dred candidate events from merging compact binaries con-
sisting primarily of black holes (BHs) [1]. Over 200 events
are expected to have been observed by the end of the fourth
observing run in 2025 [2]. These observations begin to re-
veal a population of compact binaries with a large mass
asymmetry. The most extreme example so far is candidate
event GW191219 163120, with inferred component masses
of 31.1+2.2

−2.8𝑀⊙ and 1.17+0.07
−0.06𝑀⊙ , suggestive of BH and neu-

tron star progenitors [1]. The LVK analysis notes that the
source’s mass ratio of ∼ 1 : 26 “is extremely challenging for
waveform modeling, . . . with the bulk of the posterior prob-
ability distribution [lying] outside the range of calibration of
the waveforms” and cautions about systematic uncertainties in
results for this candidate. Indeed, we are reaching a situation
where the quality of data extractable from gravitational-wave
measurements is in some scenarios dictated by the limited ac-
curacy of waveform models [3], diminishing the return from
technological advance. The problem will inevitably become
increasingly more acute as detector sensitivity improves and
as we probe deeper into poorly modeled regions of the bi-
nary parameter space [4–9]. The problem of modelling mass-
asymmetric mergers stands out as particularly urgent [10, 11].

Numerical Relativity (NR) simulations of mass-asymmetric
binaries are challenging due to the scale disparity inherent in
the problem: One has to resolve small-scale features associ-
ated with the lighter object concurrently with features whose
lengthscale is set by the larger (or total) mass—like gravita-
tional waves near merger. This leads to a stringent demand on
the time resolution of the simulation, dictated by the Courant-
Friedrichs-Lewy (CFL) condition. To make matters worse,
the number of observable radiative inspiral cycles increases

time

space

Figure 1. Illustration of worldtube excision. The left shows a space-
time diagram of an eccentric inspiral. The red line represents the
trajectory of the small object orbiting a black hole represented by
the black cylinder. The cyan region around the trajectory represents
the worldtube, within which a perturbative analytical solution is em-
ployed. The field equations outside the worldtube are solved with
full 3+1 dimensional NR, extending through the BH horizon to an
inner excision boundary shown in grey. The right shows an enlarge-
ment of the last few orbits and merger.

with mass asymmetry, necessitating a longer evolution time.
In terms of the mass ratio 𝑞 ≤ 1, the combined effect is a com-
puting cost that scales approximately like 𝑞−2 [12], in prac-
tice making full simulations prohibitive for 𝑞 much smaller
than ∼ 1/10. The most ambitious simulation so far tracked
the last 13 orbital cycles prior to merger of a system with
𝑞 = 1/128 [13, 14], with even smaller mass ratios attempted
in head-on collision scenarios [15, 16]. However, the com-
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putational cost of such simulations remains extremely high,
and they are yet to be developed for long inspirals or to in-
clude essential astrophysical features such as spin and orbital
eccentricity.

Our worldtube excision approach aims to provide a system-
atic mitigation of the problem, by directly alleviating scale
disparity in binary simulations. The basic idea is simple: A
large region around the smaller object is excised from the
numerical domain, and the spacetime metric inside it is re-
placed with an approximate analytical expression (e.g., one
representing a tidally perturbed BH geometry). The smallest
lengthscale is now that of the excised sphere (a “worldtube” in
spacetime), instead of the scale of the smaller body. The CFL
stability limit on the timestep of the numerical simulation is
relaxed, allowing a commensurate reduction in run time. In
principle, worldtube excision can be usefully applied in any
situation where a good analytical approximation for the met-
ric around the smaller (or both) objects is available, including
the early inspiral stage where the gravitational interaction is
relatively weak. In this letter, however, we maintain focus on
the case of near-merger binaries with a large mass disparity,
which provides our main motivation.

The basic construction is illustrated in Fig. 1, displaying
actual results from one of our NR simulations, as detailed be-
low. The spacetime diagram shows the eccentric inspiral orbit
of the small object (red trajectory) around the worldtube of the
larger object (a BH, in black), with the blue region represent-
ing the excised worldtube, whose radius is dynamically ad-
justed in accordance with a certain algorithm to be explained
below. This simulation tracks the inspiral all through to the
final merger, zoomed onto in the right panel.

Initial development of the worldtube excision technique be-
gan in Ref. [12] and was later implemented and tested using
simple configurations in Refs. [17, 18]. Here we report a cul-
mination of this program, in the form of a versatile NR im-
plementation on the SpECTRE platform [19], whose utility
and flexibility we illustrate with fully self-consistent evolu-
tion simulations for a range of orbital configurations. These
include inspirals with eccentricity as high as 𝑒∼0.9, which we
follow through to merger and ringdown, as well as hyperbolic
scattering with large scattering angles—a scenario of much
recent interest, e.g. [20–32].

As in [12, 17, 18], our binary system is made up of a
Schwarzschild BH (the “large object”) and a pointlike, non-
spinning scalar charge of negligible gravitational mass. The
particle is assumed to source a massless, minimally-coupled
scalar field, and the back-reaction from the scalar field onto
the charge drives the radiative inspiral; gravitational back-
reaction is ignored for simplicity. This setting retains many
of the pertinent challenges of the astrophysical compact bi-
nary problem, while postponing the need to tackle the fully
nonlinear Einstein’s field equations. At the end of this Letter
we preview initial work towards the final step of replacing the
scalar charge with a small BH, our ultimate goal.

In this work we present the first (to our knowledge) fully
self-consistent solutions of the BH-scalar-charge inspiral-

merger problem with eccentricity (the special case of a quasi-
circular inspiral was presented in [18]). They are fully self-
consistent in that, unlike the standard waveform-generation
frameworks used in self-force theory [33–41], they do not rely
on a two-timescale expansion and hence do not incur the ap-
proximation errors associated with it. Our numerical solutions
do incur error from the finite accuracy of the analytical model
applied inside the worldtube, but this error is readily tractable
and controllable by adjusting the worldtube radius [17, 18].

Binary model—We consider a Schwarzschild BH of mass
𝑀 , orbited by a pointlike particle carrying a charge 𝑄 and
mass 𝜇 ≪ 𝑀 . The particle sources a test scalar field Ψ, as-
sumed to satisfy the massless Klein-Gordon equation

𝑔𝜇𝜈∇𝜇∇𝜈Ψ = −4𝜋𝑄
∫

𝛿4 (𝑥𝛼 − 𝑥𝛼𝑝 (𝜏)) (−𝑔)−1/2𝑑𝜏, (1)

with boundary conditions corresponding to no radiation com-
ing out of the BH or in from infinity. The background ge-
ometry is represented by the Schwarzschild metric 𝑔𝜇𝜈 , with
inverse 𝑔𝜇𝜈 , determinant 𝑔, and compatible covariant deriva-
tive ∇𝜇. The particle’s worldline 𝑥𝛼𝑝 (𝜏) is parametrized by
proper time 𝜏, and throughout this letter we use units in which
𝐺 = 1 = 𝑐. In this setup, the dimensionless small parameter
is 𝜖 := 𝑄2/(𝜇𝑀) ≪ 1, analogous to 𝑞 ≪ 1 in the binary BH
problem. In the limit 𝜖 → 0 (with 𝜇/𝑄 → constant), 𝑥𝛼𝑝 (𝜏)
describes a geodesic orbit in the Schwarzschild geometry of
the BH, whereas for finite 𝜖 , the particle experiences a weak
self-force due to back-reaction from Ψ, which slowly acceler-
ates it away from geodesic motion. Concretely, the particle’s
equation of motion reads [42–44]

𝑢𝛽∇𝛽 (𝜇𝑢𝛼) = 𝑄∇𝛼ΨR , (2)

where 𝑢𝛼 := 𝑑𝑥𝛼𝑝/𝑑𝜏, and ΨR is the Detweiler-Whiting reg-
ular piece of Ψ [45] (a certain smooth function satisfying
𝑔𝜇𝜈∇𝜇∇𝜈ΨR = 0), whose gradient here is evaluated at the
particle. Note Eq. (2) implies 𝑑𝜇/𝑑𝜏 = 𝑄(𝑑ΨR/𝑑𝜏), with
variation in the particle’s rest mass representing exchange of
energy with the scalar field.

To obtain the binary evolution and scalar-wave emission,
one’s task is to solve the coupled equations (1) and (2), with
the above boundary conditions for Ψ and given initial values
for 𝑥𝛼𝑝 and 𝑢𝛼.

Worldtube excision method—Introducing standard Kerr-
Schild (KS) coordinates on the Schwarzschild background,
we define the worldtube Γ as a KS coordinate sphere centered
on the charge on each hypersurface of constant KS time 𝑡. In
Ref. [18] we constructed an approximate analytical solution to
(1), valid in the vicinity of the charge inside Γ, for a generic
𝑥𝛼𝑝 (𝜏). The approximation has the form ΨP + ΨR , where
the “puncture field” ΨP is an approximate particular solution
of the inhomogeneous equation (1), given explicitly in [18]
as a truncated expansion of the Detweiler-Whiting singular
field [45] in powers of coordinate distance from the charge;
analogously, we approximate the smooth field ΨR with a trun-
cated Taylor expansion. Our analytical approximant thus con-
tains a set of a-priori unknown coefficients coming from the
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Figure 2. Simulation of an eccentric binary. Left: orbital trajectory for the simulation starting from the point at which the self-force is turned
on. Right: some important waveform modes. Highlighted in orange is one radial period in both panels. The ringdown is shown enlarged in
the rightmost panel. This simulation starts with initial eccentricity 𝑒 = 0.9 at apoapsis, 𝑟 = 100𝑀 , and uses 𝜖 = 0.02.

Taylor expansion of ΨR and its time derivative at the charge.
An NR evolution in KS time 𝑡 is then set up (see below),
which matches the numerical solution outside Γ to the analyt-
ical field on Γ mode by mode in a multipole expansion around
the particle. The matching fixes the unknown coefficients in
the analytical field, and hence also the value of ∇𝛽Ψ𝑅 at the
charge. This, in turn, determines the self-forcing term in (2),
allowing us to evolve the worldline in time, as well as provid-
ing boundary data to the NR evolution outside the worldtube.
See [18] for full detail.

A complication is that ΨP itself depends on the charge’s
self-acceleration, which is a-priori unknown, leading to im-
plicit matching conditions. We resolve this by applying an
iteration procedure using the small magnitude of the self-
acceleration as a perturbative parameter [18]. This introduces
additional error, but one that is easily controllable and made
subdominant in practice.

NR method—Our method is implemented in SpEC-
TRE [19], which employs a Discontinuous Galerkin (DG)
method to evolve Eq. (1). In standard black hole excision [46–
49], the motion of the excision spheres in the computational
domain is controlled using a series of time-dependent maps
which track the apparent horizons. We use this infrastructure
to adjust the time-dependent maps at each time step accord-
ing to the acceleration of the pointlike particle obtained from
Eq. (2).

The choice of worldtube radius trades off between compu-
tational saving (larger 𝑅) and accuracy of the analytical ap-
proximation (smaller 𝑅). In the case of quasicircular orbits,
the choice 𝑅(𝑡) ∝ 𝑟

3/2
𝑝 (𝑡) (where 𝑟𝑝 (𝑡) is the KS orbital ra-

dius at time 𝑡) is motivated from an examination of how the
estimated error in our local approximation to Ψ on Γ depends
on 𝑟𝑝 [18]. Once the worldtube radius becomes so large that
the CFL limit is set by a different part of the computational

domain (like the vicinity of the BH of size ∼ 𝑀), there is no
benefit from increasing it further. Therefore, for the eccentric
and scattering orbits considered in this work, we introduce an
upper bound 𝑅∞ for the worldtube radius by taking

𝑅(𝑡) = 𝑅∞

(
𝑟𝑝 (𝑡)
𝑟0

)3/2 [(
1 +

(
𝑟𝑝 (𝑡)/𝑟0

)1/Δ)]−3Δ/2
, (3)

which transits smoothly between 𝑅(𝑡) ∼ 𝑟
3/2
𝑝 (𝑡) for 𝑟𝑝 ≪ 𝑟0

and 𝑅(𝑡) ∼ const = 𝑅∞ for 𝑟𝑝 ≫ 𝑟0. The simulations pre-
sented here use 𝑅∞ =3𝑀 and a transition parameter Δ=0.05;
𝑟0 is chosen to achieve a worldtube radius 𝑅6𝑀 at the distance
𝑟𝑝 =6𝑀 , typically 𝑅6𝑀 = 0.2–0.8𝑀 . Adjustments were made
also to the DG domain itself by tuning the fixed polynomial
order of the elements to accommodate large changes in grid
spacing for highly eccentric orbits and hyperbolic encounters.

Simulations of eccentric orbits—We begin each evolution
with a “burn-in” stage, where the motion of the scalar charge
is fixed to a geodesic. After ∼4 orbits, the impact of the initial
conditions (arbitrarily chosen to be zero) has decayed and we
turn on the self-force term smoothly (during an apoapsis pas-
sage, where it is relatively small). Subsequently, the system is
evolved self-consistently as described above.

The left panel of Fig. 2 shows the orbit of a typical evo-
lution, with 𝜖 = 0.02 and initial apoapsis and periapsis at
𝑟+ = 100𝑀 and 𝑟− = 5.26𝑀 , respectively, corresponding
to initial eccentricity 𝑒 := (𝑟+ − 𝑟−)/(𝑟+ + 𝑟−) = 0.9. The
particle traces out 27 orbits before it plunges into the cen-
tral black hole. Both periapsis distance and periapsis advance
change throughout the simulation, creating an irregular pat-
tern. The worldtube radius of the depicted simulation was set
according to 𝑅6𝑀 = 0.2𝑀 . We additionally ran an evolution
with 𝑅6𝑀 = 0.4𝑀 , from which we estimate a total accumu-
lated phase error of 0.24 radians up to the light ring crossing
at 𝑟𝑝 = 3𝑀 (out of ∼170 radians). The right panel displays a
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Figure 3. Eccentric inspirals for different strength-parameter 𝜖 of
the self-force. The main panel plots eccentricity 𝑒 vs. semi-latus rec-
tum 𝑝, where each system starts in the top right corner and moves
toward smaller 𝑝. All simulations oscillate about approximately the
same line in the 𝑝𝑒 plane, with systems at larger 𝜖 exhibiting fewer
oscillations of a larger amplitude during their faster inspiral. The
𝑝𝑒 tracks end at the separatrix (dashed black) where geodesic or-
bits transition to trajectories plunging into the black hole. The inset
shows the periastron advance 𝛿 of the simulations, measured in radi-
ans per radial cycle. The initial four grey points represent the burn-in
stage where the particle’s trajectory is fixed to a geodesic.

few multipole modes of the corresponding scalar-field wave-
form during the final stage of evolution, plotted against re-
tarded KS time; we use notation whereby Ψ𝑙𝑚 represents the
real part of the (𝑙, 𝑚) spherical-harmonic mode of 𝑟Ψ/𝑄, here
extracted at 𝑟 = 450𝑀 . The monopole Ψ00 oscillates around a
constant value with the radial frequency. Higher modes show
more complex behavior due to strong precession and other
relativistic effects.

The simulation used 2.3 million grid points distributed over
560 computational cores. Between simulation start and event-
horizon crossing, it ran for 41000𝑀 with a wall time of 27
hours. While the scalar wave equation solved here is less com-
putationally demanding than the full Einstein equations, these
speeds provide a good indication of the power inherent in the
worldtube excision method combined with a modern, scalable
NR code.

Figure 3 shows the evolution of the two principal or-
bital elements—eccentricity 𝑒 and semi-latus rectum 𝑝 :=
2𝑟+𝑟−/(𝑟+ + 𝑟−)—in a series of simulations with different
values of the inspiral parameter 𝜖 . All simulations start on
the same initial geodesic with 𝑒 = 0.5 and 𝑝 = 10𝑀 (corre-
sponding to apoapsis 20𝑀 and periapsis 6.66𝑀) and end at
the innermost stable orbit, 𝑝/𝑀 = 6 + 2𝑒 (beyond which the
𝑝, 𝑒 parametrization ceases to be valid). The radiative evolu-
tion decreases 𝑝 monotonically, and generally circularizes the
orbit—except very near the plunge, where 𝑒 picks up again
(a phenomenon familiar from previous calculations in black-
hole perturbation theory [50, 51]). The inset shows the evolu-
tion of periapsis advance 𝛿 (radians per radial period) for the
same inspiral orbits. Once the self-consistent evolution be-

gins (after the burn-in), the rate of periapsis advance increases
monotonically. Just before the plunge, more than 5𝜋 radians
of azimuthal phase are traversed each radial period.

Simulations of hyperbolic encounters—With modest adap-
tation, we can also apply our worldtube technique and code
to unbound binaries, where the incident particle starts at in-
finite separation with velocity 𝑣∞ ≥ 0, and then either scat-
ters back to infinity or gets captured by the black hole. For
unbound trajectories, we modify our burn-in stage. The par-
ticle’s large initial separation from the BH means that we can
initialize the scalar field with the leading-order expression for
ΨP (the “1/distance”, Coulomb-like field of an isolated scalar
charge). We then evolve the scalar field by Eq. (1) while forc-
ing the particle to follow an incoming geodesic from its ini-
tial separation 𝑟𝑝 = 200𝑀 . Around 𝑟𝑝 = 100𝑀 , we smoothly
turn on the self-force terms, and subsequently proceed with
the self-consistent evolution. In the simulations presented
here, the outer boundary of the numerical domain is placed
at 𝑟 = 1200𝑀 .

Figure 4 displays a few representative simulations, all with
𝑣∞=0.1 and impact parameter 𝑏=40.21𝑀 , just above the crit-
ical value where a geodesic particle would be captured by the
BH in the absence of self-force. The simulations differ only in
the value of 𝜖 , i.e. the strength of self-acceleration experienced
by the particle. For reference, we show also the geodesic case,
with no self-force (𝜖 = 0), which completes almost two full
revolutions before scattering off to infinity (“zoom-whirl” be-
havior). For 𝜖 > 0, the particle loses energy and angular mo-
mentum through scalar-wave emission and the scattering an-
gle increases. The scattering angles in the simulations shown
are approximately 12.29 radians in the geodesic case, 13.08
radians for 𝜖 = 0.01, and 14.85 radians for 𝜖 = 0.02. Partic-
ularly interesting is the simulation with 𝜖 = 0.03, in which
the charge loses enough energy to be captured by the BH.
The inset enlarges the region around the central hole, showing
how the four worldlines are almost identical as they approach
(counter-clockwise) but begin to separate as they lose energy
at different rates.

The worldtube radius of the simulations shown here is set
as 𝑅6𝑀 = 0.4𝑀 . We repeated each simulation with a larger
worldtube radius of 𝑅6𝑀 = 0.8𝑀 , allowing us to make error
estimates. We find this changes the scattering angle by 0.1%
and 0.6% for 𝜖 = 0.01 and 𝜖 = 0.02, respectively, indicating
increased sensitivity near the critical capture orbit. The er-
ror in the dissipated energy is more stable at 2.3% and 2.9%,
respectively.

The right panel of Fig. 4 shows the corresponding wave-
form modes, as extracted at 𝑟 = 950𝑀 . For 𝜖 = 0.03, the
scattering signal is replaced with a rapid ringdown. These
waveforms provide a stark illustration of the critical behavior
near the capture threshold.

Summary and outlook—We have presented a highly ver-
satile implementation of the worldtube excision method for
compact binary systems with disparate scales, showcasing its
computational efficiency and flexibility with very long simula-
tions in computationally challenging setups including highly-
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Figure 4. Scattering/capture of a scalar charge around a black hole. Left: trajectories approaching from the positive x-axis, and separating
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of important waveform modes illustrating the qualitatively different behavior between scatter and capture. All simulations start on a geodesic
with 𝑣∞ = 0.1 and impact parameter 𝑏 = 40.21𝑀 .

eccentric binaries and scattering orbits. Although we have
confined ourselves to a model problem, there are encourag-
ing conclusions to be drawn about the efficacy of the method
in resolving scale disparity in actual BH binary simulations:
replacing the scalar charge with a small black hole (at fixed
𝜖 = 𝑞) would incur additional computational overhead from
having to solve the full Einstein equations, but hardly more
beyond that.

Our code also represents the first means of simulating
generic, fully self-consistent self-forced binary evolutions.
This can provide powerful benchmarking for perturbative ap-
proaches based on expansions in 𝜖 or on separations of time
scales, such as the multiscale method underpinning current
self-force waveform generation frameworks for bound inspi-
rals [10] (as applied to scalar-field evolutions in Ref. [52]),
the self-force method of Ref. [53] for scattering orbits, or
the multiple-scale transition-to-plunge analysis methods of
Refs. [54, 55]. We intend to use our code to pursue such anal-
yses in forthcoming work.

We have also begun work to implement worldtube excision
in binary BH simulations, our ultimate goal. In this pure-
gravity case, we solve the full Einstein’s equations in vac-
uum, with an excised worldtube inside which the metric is pre-
scribed analytically using a model of a tidally perturbed black
hole [56–62]. The key step is the matching of the metric on
the surface of the worldtube at each timestep. Two approaches
are being explored. One involves matching both the gauge and
the a-priori unknown tidal deformation parameters of the in-
ternal BH. Another, more elegant approach is based on match-
ing a suitable set of curvature invariants. These methods will
be fleshed out and numerically implemented in forthcoming
work.
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