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Neutron stars are astrophysical compact objects that contain a host of extreme physics
including strong gravity, immense magnetic fields and highly dense nuclear matter.
Neutron star mergers are violent enough to probe this physics in a meaningful way
through our detection of the electromagnetic and gravitational waves we receive from
these events.

However, their complexity necessitates the use of numerical simulations to evolve the
curved spacetime, as well as the fluid used to describe the neutron stars themselves.
Most simulations to date use an ‘ideal fluid’ description - a simplification that reduces
computational cost but misses out-of-equilibrium effects like dissipation.

Here, we compare results from a number of both established and emerging models of
non-ideal hydrodynamics. This includes results from our novel formulation of
dissipative hydrodynamics, which we show is able to capture viscosity and heat
conductivity near the ideal fluid limit in a highly efficient computational way.

Even the highest resolution simulations of binary neutron star mergers are unable to
resolve all the dynamical scales of these systems, leaving unresolved, subgrid
microphysics. This can produce macroscale effects, which our field of research has
recently begun to model using explicit large-eddy simulations.

To advance this direction, we also present the first fully-covariant, Lagrangian filtering
scheme applied to relativistic turbulence. We show that a dissipative fluid prescription,
with statistically-fitted non-ideal parameters, may be used as a closure scheme to
describe the residuals introduced by explicitly filtering fine-scale fluid flow.

These pieces of work, together, will enable us to perform higher resolution simulations
of neutron star mergers that include more of the relevant physics. This will serve us
well when trying to obtain accurate gravitational waveforms and electromagnetic
signals to compare against future detections from next-generation detectors.
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IMEX scheme. c = 1 − 1√
2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1 Code run-times for our toy bulk viscous model in one dimension, simu-
lating the data seen in figure 4.3. The expected scaling of the run-time
with resolution, trun ∝ N2

x , can be seen for both the full model and
the Chapman-Enskog expansion (the latter in parentheses). Crucially,
a nearly three-fold speed-up is achieved by using the Chapman-Enskog
expansion, even with identical numerical methods. . . . . . . . . . . . . . 69

5.1 The self-convergence of a smooth sin-wave evolution using different mod-
els of non-ideal hydrodynamics and different numerical schemes. The
expected orders of convergence are seen. At very high resolution, the
first-order central differencing used in the MISCE model source’s spatial
derivatives causes the convergence order to drop to 2nd. For the MIS
model, we use lagged-updates to calculate the required time derivatives.
This similarly caps the order of convergence at first when very high reso-
lutions are used and error from other components of the numerical scheme
are tiny. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2 A comparison of computational time required for different hydrodynamic
models and time-integrators. These results are for Kelvin-Helmholtz in-
stability simulations using 40 CPU nodes and MPI memory management
on the Iridis5 supercomputer. The MISCE model gives about an order
of magnitude speed-up compared to the MIS model (when evolved with
explicit methods instead of implicit ones). RK2 refers to an operator-
split, 2nd-order Runge-Kutta scheme and SSP2(222) refers to a 2nd-order
implicit-explicit scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103





xxi

Declaration of Authorship

I declare that this thesis and the work presented in it is my own and has been
generated by me as the result of my own original research.

I confirm that:

1. This work was done wholly or mainly while in candidature for a research degree
at this University;

2. Where any part of this thesis has previously been submitted for a degree or any
other qualification at this University or any other institution, this has been
clearly stated;

3. Where I have consulted the published work of others, this is always clearly
attributed;

4. Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work;

5. I have acknowledged all main sources of help;

6. Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed myself;

7. Parts of this work have been published as: "A dissipative extension to ideal
hydrodynamics" (Hatton and Hawke, 2024), and "Covariant approach to
relativistic large-eddy simulations: Lagrangian filtering" (Celora, Hatton, et al.,
2024).





xxiii

Acknowledgements

My sincerest gratitude must go firstly to Ian for your constant guidance and wisdom in
all things physics, neutron stars and PhDs! I consider myself very lucky in having had
you as my supervisor and I hope that we can continue to work together in the future.
All the best.

Thank you also to Nils for your mentorship and leading our Gravity group so
enigmatically here at Southampton. Thanks again to Ian & Nils, as well as my other
very clever collaborators, Thomas & Greg, for bringing me on board with your vision
for the field and sharing so much knowledge through our many insightful &
entertaining discussions together.

To the rest of the Gravity group - Ian J., Andreas, Carsten, Shanshan, Tom, Yashaswi,
Grant, Rhys, Rahime, Geraint, Savvas, Orestis, Pete, Fabian and others I am no doubt
forgetting - thank you for gracefully enduring my many talks on the fine details of
numerical methods (and still asking insightful questions at the end!), for your
companionship on conference trips and for making the office and hence my PhD a
much nicer place to be than it otherwise would have.

Amina, thank you for being the most wonderful partner through it all and making my
life outside of work so bright. I look forward to our future together as a (hopefully
soon) pair of Drs! I love you lots x

To my family - my Mum, my Dad & my Aunty - thank you for all your support over
the years in everything I’ve done. We may be few in number but that just makes us
stronger! I would not have made it here without you, of course. Thank you also to
Seynosh for being so welcoming and caring - I hope you are as happy being ‘adopted’
as I am.

Lastly but certainly not least, thank you to all the friends I’ve made in Southampton.
In particular, “The Bests” (you know who you are) for making my time so fun and
entertaining. It is a great joy to make friends with whom you are able to share almost
anything, and I hope these friendships last our lifetimes.

Marcus





1

Chapter 1

Introduction

1.1 Motivation - The Physics of Neutron Stars

Neutron Stars seem more likely to be an invention of science fiction than a genuine
part of our universe. Their existence was first “tenatively” proposed in 1933 by Walter
Baade and Fritz Zwicky (Baade and Zwicky, 1934a; Baade and Zwicky, 1934b) and the
Nobel prize in physics was awarded for their discovery (Hewish, Bell, et al., 1968) over
four decades later.

Almost five decades after that, the merger of two neutron stars was simultaneously
detected in gravitational and electromagnetic waves in late 2017 (Abbott, Abbott,
et al., 2017b), giving unprecedented information on matter and gravity in extreme
cases. Prior to this, gravitational waves with no electromagnetic counterpart were seen
from a merging binary black hole (BBH) system for the first time in 2015 (Abbott,
Abbott, et al., 2016). And in 2020, the final combination of merging compact objects
was seen when GWs from a black hole merging with a neutron star (BHNS) were
detected (Abbott, Abbott, et al., 2021). To date, a total of seven signals have been
received from mergers involving neutron stars as at least one of the progenitors. These
events are currently detectable within a range from Earth of a few hundred
megaparsecs, whilst black hole mergers are detectable at distances of up to several
gigaparsecs.

Here we will give a brief summary of what is known about neutron stars. This
knowledge has been built from both theoretical grounds and observation, and has been
constrained considerably by analysis of the recent multi-messenger (combined
gravitational wave and electromagnetic) signals. For a more historic reference on
compact objects in general, see Shapiro and Teukolsky, 1983, for example.
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1.1.1 Formation

Poetically, neutron stars begin their lives following the death of other, massive stars.
When the fusion engine of a main-sequence star runs low on its light-elements fuel, it is
no longer supported against its own immense gravitational pull by thermal & radiation
pressure. Its fate is then determined by its mass. Lighter stars, like our sun, expand in
their red giant phase before shrinking again to leave a dense white dwarf, supported
primarily by electron degeneracy pressure, a quantum mechanical effect deriving from
the Pauli exclusion principle. Stars in this category have masses ≲ 8 M⊙, where M⊙ is
the solar mass unit equivalent to ≈ 2 × 1030 kg, roughly the mass of our Sun.

Heavier stars have a brief (a few millions of years...) red supergiant phase during
which they fuse heavier elements until they produce Iron-56, which sits atop the
stability ranking of nuclei. After those are burnt through, its core collapses inwards,
with a re-bouncing shock that travels back outwards but typically stalls due to
in-falling matter from the outer layers of the progenitor. The immense pressure in the
core causes protons and electrons to combine, producing both neutrons and a flood of
neutrinos, the latter of which may escape the transparent outer layers of the core.
They are then captured by the hot, dense matter behind the shock, re-powering it and
triggering a supernova explosion that blows off the outer layers, leaving behind a
remnant.

If the main-sequence progenitor had a mass in the range 8 − 25 M⊙, a neutron star is
now typically formed, with a mass loosely in the range of 1 − 2 M⊙ and a radius of
O(10 km). It is supported in part by neutron degeneracy pressure, and also by
repulsive strong nuclear forces, which together prevent further collapse to a black hole
- the usual fate of stars with masses ≳ 25 M⊙.

Binary neutron star systems are of particular interest to us. Unfortunately, only about
5% of known neutron stars exist in binary systems (Tauris and Heuvel, 2006). These
are thought to form in two main scenarios. The primary source is from a binary
system of main-sequence stars. Once one of the pair has collapsed to form a neutron
star, a ‘common envelope’ is formed that encompasses both stars. The neutron star
then briefly orbits in its partner’s extended outer atmosphere, with drag causing the
radius of the orbit to shrink rapidly until a second supernova explosion of the
remaining main-sequence star occurs. If the momentum imparted by the ejecta of this
second supernova does not unbind the pair, a binary neutron star (BNS) system is
formed. The second, narrower formation channel involves the ‘dynamical capture’ of
one isolated neutron star by another in dense stellar regions such as globular
clusters (Lee, Ramirez-Ruiz, et al., 2010).
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Figure 1.1: Neutron star structure. a: Schematic slice through a neutron star. Letters
N , n, p, e and µ refer to the presence of nuclei, fluid neutrons and protons, electrons and
muons, respectively. The inner core composition is still uncertain and various exotic
possibilities exist, including hyperons and deconfined quark matter. b: A detailed
picture of the composition of the inner crust. At lower densities, a lattice of superheavy,
neutron-rich nuclei is immersed in a fluid of neutrons (which are likely to be superfluid)
and a relativistic electron gas. At high enough densities the nuclei might deform and
connect along certain directions to form extended tubes, sheets and bubbles of nuclear
matter. These nuclear pasta phases might form a layer at the base of the neutron
star crust, sometimes referred to as the mantle; searching for observational signatures
of such phases is of great interest. Ranges of density and thickness given for each
layer represent current uncertainties in the physics of neutron star crusts. This figure
was taken from https://compstar.uni-frankfurt.de/outreach/short-articles/the-nuclear-

pasta-phase/.

1.1.2 Structure

Whilst many properties of a neutron star vary smoothly upon its traversal, one can
identify five important regions in a neutron star, as shown in the left-hand image of
figure 1.1: the atmosphere, the outer & inner crusts and the outer & inner cores. Let’s
follow the direction of increasing mystery and work our way inwards. The atmosphere
is very thin compared to main-sequence stars (due to the immense gravity) with a
thickness of only a few centimeters and a maximum density of about ρatm ≃ 1 g cm−3.
The surface of a NS is almost perfectly smooth (Abbott, Abbott, et al., 2017b): if a
NS were scaled to the size of an apple, deviations in surface height would be less than
the width of a hair. Note that this is not to say that NSs are spherical - their shape is
distorted to an oblate spheroid by the enormous angular momentum they possess,
thanks to the ‘ice skater effect’1. Next, the outer crust is about 10 − 100 m metres
thick, composed of nuclei and a degenerate electron gas and reaching a density of
ρ ∼ 1010 − 1011 g cm−3; it is important because its composition controls heat flow into
the atmosphere and, hence, the cooling of the neutron star. Cooling is an important
topic in neutron star study but one which we will not devote much attention to in this
thesis - for a review of cooling and thermal emission, see Page, Lattimer, et al., 2004.

1The ‘ice-skater effect’ refers to the spin-up of a rotating body when its moment of inertia is reduced.
For an ice-skater, this is done by retracting their limbs; for a neutron star this happens as it collapses,
shrinking its radius.

https://compstar.uni-frankfurt.de/outreach/short-articles/the-nuclear-pasta-phase/
https://compstar.uni-frankfurt.de/outreach/short-articles/the-nuclear-pasta-phase/
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Whilst neutron stars are hot in astrophysical terms, with a surface temperature of
around 6 × 105 K, a nuclear physicist would describe them as cold because their matter
is below its Fermi temperature. For a further discussion of temperature effects in
neutron star mergers see Hammond, Hawke, et al., 2021.

Once the density exceeds ≈ 4 × 1011 g cm−3 (entering the inner crust), the chemical
potential of neutrons becomes positive2 and some neutrons become unbound from
nuclei in a process known as ‘neutron drip’. The mantle, seen in the right-hand side of
figure 1.1 (and the red region on the left-hand side), is the transition region between
inner crust and outer core, with a density between about a quarter and a half of
nuclear saturation density, ρsat ≃ 2.7 × 1014 g cm−3. It is here that clusters of unusual,
non-spherically shaped nuclear matter are expected to form due to the competing
(strong) nuclear force and Coulomb interaction (Ravenhall, Pethick, et al., 1983). A
phase transition occurs upon entering the outer core, where nuclei have dissolved
almost completely to form a superconducting fluid and the density ρ ≈ ρsat/2 whilst
the proton fraction Yp ≈ 0.02 − 0.04.

It is not known whether another phase transition occurs at the ‘boundary’ between the
outer & inner cores. The proton fraction follows an opposite trend to that within the
crust, generally increasing with density in the core. Many exotic states of matter have
been predicted (see e.g. Kovensky and Schmitt, 2020 and Spinella, 2017 for a review)
to exist in the inner core of a neutron star such as hyperons, condensed kaons, or pions
in addition to nucleons, or deconfined quark matter in a pure phase or a mixed phase
with hadrons.

Quantum chromodynamics (QCD) is the standard model’s gauge theory used to
describe the strong-force interactions between quarks mediated by gluons. Based on
perturbative quantum chromodynamics (pQCD) calculations, it is expected that
matter at very high densities consists of asymptotically free quark matter. However,
since these calculations are valid only at densities larger than about 40ρsat, and the
maximum density in a neutron star is less than about 10ρsat, it is not yet clear
whether such a phase exists in the interiors of neutron stars. At lower densities, lattice
QCD may be used to investigate non-perturbative phenomena such as confinement and
quark–gluon plasma formation.

1.1.3 Equation of State

The first pair of questions that one might ask when thinking about any star’s physical
properties are: What is its mass? And what is its radius? So it is no surprise that
these questions have been continually asked about neutron stars since their inception.

2Strictly, in the relativistic convention, it exceeds the neutron mass: µn > mn.
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As early as 1939, the exact, spherically-symmetric, general-relativistic equations of
hydrostatic equilibrium were derived (Oppenheimer and Volkoff, 1939)

dp

dr
= − G

r2

(
ρ +

p

c2

)(
m(r) + 4πr3 p

c2

)(
1 − Gm(r)

c2r

)−1
(1.1)

where m(r) is the total mass enclosed inside radius r. When paired with an equation
of state (EoS) relating the pressure p to the density ρ, the
Tolman-Oppenheimer-Volkov (TOV) equation (1.1) completely determines the
structure of a spherically symmetric body of isotropic material in equilibrium.

Unsurprisingly then, much work both theoretical (e.g. Potekhin, Fantina, et al., 2013;
Gandolfi, Carlson, et al., 2014; Raduta, Nacu, et al., 2021; Burgio, Schulze, et al.,
2021; Kovensky, Poole, et al., 2022) and observational (e.g. Lattimer, 2004; Lattimer,
2012; Özel and Freire, 2016; Hanauske, Steinheimer, et al., 2019; Baiotti, 2019;
Lattimer, 2021) has gone into providing increasingly reliable equations of state for the
dense nuclear matter found in neutron stars. These fall into a number of classes, with
some being purely hadronic and hence the only particles present are nucleons (protons,
neutrons) and leptons (electrons, muons) with the interactions described by relativistic
mean-field theory, or chiral effective field theory. Others include hyperons as additional
degrees of freedom, which typically softens the equation of state and lowers the
maximum neutron star mass. At ultra-high densities, there may be a transition to a
deconfined quark phase that can be described as a color-superconducting quark-gluon
plasma. If these exotic states exist, they will alter the transport properties of the
neutron star and may even be detectable in gravitational wave signals.

The maximum mass of neutron stars lies somewhere in the range of 2.0 − 2.5 M⊙ with
a radius at that mass of 10 − 14 km. Often, the radius of a neutron star with a ‘typical’
mass of 1.4 M⊙ is quoted for comparison and this generally falls in the range
11 − 12.5 km, depending on the EoS. The stiffness (pressure:density gradient) of a
given nuclear EoS affects the predicted mass–radius relationship of the neutron star.
Therefore, terrestrial experiments aimed at constraining the variation of the pressure
with respect to other parameters of nuclear matter are being carried out (Baldo and
Burgio, 2016; Mammei, Horowitz, et al., 2024).

Some equations of state include finite-temperature (non-zero) effects. These are
particularly relevant when describing the hot nuclear matter found in proto-neutron
stars formed in core-collapse scenarios, or for remnant neutron stars left by merger
events. For these, the pressure is often given as a function of temperature, T , baryon
number density, nB, and electron fraction, Ye. In this thesis, investigating
equation-of-state effects is not our focus. We make use of a simple, two-parameter EoS
such that there is a function F (ρ, p, n) = 0 which defines the relationship between the
(equilibrium) energy density, pressure and baryon number density at any given point
in the fluid.
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For drawing quantitative inference about the EoS from simulations, one may turn to
CompOSE, the CompStar Online Supernovae Equations of State, which is “a database
of equations of state with detailed information on the thermodynamic, compositional
and microscopic properties of dense matter that can be used in astrophysical
simulations” (Typel, 2021). From CompOSE, we may obtain EoSs, both in tabulated
and fitted form. This would enable us in the future to perform quantitative assessment
of varying the equation-of-state.

1.1.4 Magnetic Fields

Neutron stars are endowed with incredibly strong magnetic fields, the strongest of
which are known as ‘magnetars’ and have field strengths of 1014-1015 G (Baiotti and
Rezzolla, 2017). This class of neutron star likely represents at least 10% of the total
population of young neutron stars and various theoretical explanations for how these
immense fields develop have been presented. Amplification of the progenitor star’s
magnetic field through magnetic compression alone during its collapse is not sufficient
to explain how it grows so large. Instead, other non-linear growth mechanisms must be
present. For the central compact object, these typically involve dynamo effects -
see Raynaud, Guilet, et al., 2020, Thompson and Duncan, 1993, and Barrère, Guilet,
et al., 2022. Similarly, non-linear magnetic field amplification may occur in the matter
surrounding the proto-neutron star through the action of magnetohydrodynamic
instabilities such as the Kelvin-Helmholtz instability (KHI) and the magneto-rotational
instability (MRI) (Reboul-Salze, Guilet, et al., 2021; Miravet-Tenés and Pessah, 2024).

Magnetars exhibit a plethora of phenomena related to their fields. Unsurprisingly, they
emit strongly in the electromagnetic spectrum, and were initially classified as soft
gamma repeaters or anomalous X-ray pulsars due to the regular, periodic nature of our
detections of them. Magnetars that display this ‘lighthouse’ effect3 are known as
pulsars and pulse with time periods ranging from seconds to milliseconds. Emissions
are often coupled with interesting timing behavior including enhanced spin-down,
glitches, anti-glitches and glitch/anti-glitch candidates. Only around 30 magnetars
have been detected as yet but their study has lead to over 1000 publications due to the
exotic signals we receive from them and their importance in understanding the isolated
neutron star population. See, for instance, Kaspi and Beloborodov, 2017 for a review
of magnetars.

A neutron star’s field decays throughout its lifetime such that those of older, merging
neutron stars are commonly in the range 108-1010 G. Still, electromagnetism is
expected to play a powerful role in the dynamics of neutron star mergers. Similarly

3A spinning magnetar whose magnetic field axis is misaligned with its spin axis will emit a constant
flux of electromagnetic radiation in a beam. This beam will rotate with the magnetar, causing us to
receive regular pulses of this radiation whenever it is incident on the Earth, creating a ‘lighthouse’ effect.

https://compose.obspm.fr
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instabilities and dynamo effects (as in proto-neutron stars) can create very strong
magnetic field in the merger’s neutron star remnant (Shibata, Fujibayashi, et al., 2021;
Aguilera-Miret, Viganò, et al., 2021; Most, 2023; Kiuchi, Reboul-Salze, et al., 2024).
These fields can power electromagnetic transients signals such as short gamma-ray
bursts (Rezzolla, Giacomazzo, et al., 2011). Much work has been done on simulating
magnetic fields in neutron star mergers - for a modern review, see Ciolfi, 2020.

1.1.5 Transport

Transport describes how conserved quantities such as energy, momentum, particle
number, or electric charge are transferred from one region to another. Such a transfer
occurs if the system is out of equilibrium, for instance through a temperature gradient
or a non-uniform chemical composition. Different theoretical methods are used to
understand transport, depending on how far the system is away from its equilibrium
state. If the system is close to equilibrium locally and perturbations are on large scales
in space and time, hydrodynamics is a powerful technique. When considering
transport due to microphysical particle interactions, kinetic theory is most useful, and
can be used to provide forms for the transport coefficients included in the
hydrodynamic equations to model dissipation.

In this thesis, we will be particularly concerned with transport properties because it is
their addition to, and modification of, ideal hydrodynamics that we will be modelling
numerically. Whilst we do not directly model the underlying microphysics that gives
rise to these non-ideal transport properties (it occurs on both timescales and
lengthscales below those we can resolve in simulations), we take results and expressions
from fundamental descriptions of transport in neutron stars to constrain our
simulation parameters to sensible values.

Theoretical work (Chugunov and Yakovlev, 2005; Manuel and Tolos, 2011; Potekhin,
Pons, et al., 2015; Schmitt and Shternin, 2018) and numerical
investigations (Hammond, Hawke, et al., 2021) have been undertaken into the
out-of-equilibrium state of matter and its transport properties in neutron stars. For
example, Urca and reverse-Urca nuclear reactions4 operate at an atomic scale and may
give rise to an effective bulk viscosity at the fluid scale (Celora, Hawke, et al., 2022)
that quantitatively affects the gravitational wave signal we obtain from the merger and
its remnant’s ringdown (Alford, Bovard, et al., 2018; Most, Harris, et al., 2021; Most,
Haber, et al., 2022; Hammond, Hawke, et al., 2023). Similarly, work has been done to
investigate the possible effects of both shear viscosity (Duez, Liu, et al., 2004) and heat
transport (Alford, Bovard, et al., 2018) in binary neutron star mergers, particularly for
modulating the turbulence that ensues post-merger, both in the remnant itself, and its

4These are weak nuclear reactions that alter the proton fraction to restore beta-equilibrium in the
matter.
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associated accretion disk. Viscous braking redistributes momentum in a
differentially-rotating remnant, removing centrifugal support which can aid in the
collapse of the core into a black hole. It is also able to provide thermal support from
viscous heating, negating this effect. This viscous heating can enhance mass ejection,
particularly in the outer regions of the disk.

The strength and timescale of these dissipative effects depends strongly on the
thermodynamic conditions of the matter they act in. At low temperatures, direct Urca
processes are slow and their timescales exceed the millisecond ones that oscillations
and gravitational waves act on (τUrca ≫ τGW , τHydro). Additionally, when the density
of the nuclear matter is below the direct-Urca threshold, kinematic constraints on the
particles’ Fermi momenta prevents these reactions from taking place. Instead,
modified-Urca reactions with a bystander nucleon, N , occur:

p + e− + N ↔ n + νe + N (1.2)

which are far less efficient at restoring beta-equilibrium. The chemical composition of
the matter is effectively ‘frozen-in’ during the merger and ringdown such that viscous
damping has little effect.

On the other hand, when the nuclear matter is hot and above this density threshold,
direct-Urca reactions happen fast compared to the other timescales of the system
(τUrca ≪ τGW , τHydro). This leads again to a weak viscous contribution to the merger
dynamics. However, in the intermediate regime, where τUrca ∼ τGW , τHydro, a
resonance between the oscillations and reactions leads to the greatest impact of viscous
damping. Even here, there is only a minor weakening of the gravitational wave signal,
and a slight shift in its phase and frequency.

On the millisecond timescale, strong interactions ensure that the neutrons, protons,
and electrons are always in thermal equilibrium, described by Fermi-Dirac momentum
distributions. However, neutrino interactions can also contribute to viscosity, especially
in the hotter, denser regions near the core, but they generally remain subdominant.

In the disk formed in the merger around the remnant, turbulent viscosity, primarily
driven by the magnetorotational instability (MRI), is expected to dominate. This
mechanism also operates with characteristic timescales of approximately 10 to 100
milliseconds, during which it efficiently redistributes angular momentum. The strength
of this viscous effect is often quantified using an effective α-viscosity parameter, with
typical values estimated in the range α ∼ 0.01 to 0.1, depending on factors such as
magnetic field strength and numerical resolution in simulations. These viscous
processes play a key role in driving accretion onto the central remnant and launching
neutrino-cooled winds that contribute to observable electromagnetic counterparts like
kilonovae. Overall, viscous transport significantly affects both the dynamical and
thermal evolution of the post-merger system.
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Figure 1.2: A schematic diagram illustrating the various stages in the evolution of
an equal-mass binary system of neutron stars as a function of the initial mass of the
binary. Depending on the initial total mass of the binary, M , and on how it relates
to the maximum mass of a non-rotating neutron star, MT OV , the binary can either
collapse promptly to a black hole surrounded by a torus (top row), or give rise to a
hypermassive (or supermassive) neutron star that ultimately collapses to a black hole
and torus (middle row), or even lead to a supramassive neutron star (first differentially
and subsequently uniformly rotating) neutron star that eventually yields a black hole
or a non-rotating neutron star (bottom row). Also indicated in red are the typical
frequencies at which gravitational waves are expected to be emitted. This figure was

taken from (Baiotti and Rezzolla, 2017).

1.1.6 Neutron Star Merger Events

1.1.6.1 In Nature

Binary neutron star (BNS) mergers are currently a rare treat for us to detect, with
only two confirmed detections to date (Abbott, Abbott, et al., 2017c; Abbott, Abbott,
et al., 2020) and a (rather unconstrained) predicted local occurrence rate of
250 − 2810 Gpc−3 yr−1.). In the first of these events, GW170817, the component masses
are constrained to lie in the range 1.16 − 1.60 M with a total mass for the system of
about 2.74M (Abbott, Abbott, et al., 2017c). Constraints on the radii, spins and tidal
deformability of the two neutron stars were also able to be placed (De, Finstad, et al.,
2018; Abbott, Abbott, et al., 2018), ruling out several equation of state models with
high confidence. The remnant left by the merger was likely a hypermassive neutron
star with a mass exceeding the maximum stable mass of a static neutron star, as
predicted by most equations of state. There is some debate over whether the collapse
to a black hole was prompt (Abbott, Abbott, et al., 2019) or occurred more than a
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second after merger (Murguia-Berthier, Ramirez-Ruiz, et al., 2021). There was an
associated detection of a γ-ray burst (GRB 170817A) 1.7 s after merger by the
Fermi-GMB satellite (Goldstein, Veres, et al., 2017), aiding in sky-localization of the
source and providing the first direct evidence of a link between these mergers and short
γ-ray bursts. Subsequent identification of transient counterparts across the
electromagnetic spectrum in the same location further supports the interpretation of
this event as a neutron star merger (Abbott, Abbott, et al., 2017c).

A summary of the stages of a BNS merger is presented in figure 1.2 for a pair of equal
mass binaries, taken from Baiotti and Rezzolla, 2017. This equal-mass assumption is
fairly robust as the difference in the masses of NSs in binary pairs are are typically
≈ 10% and are at most ≈ 30% (Baiotti and Rezzolla, 2017). Gravitational radiation
produced by the time-varying mass-quadrupole moment will shrink the initial orbit of
a bound pair of compact objects such that a merger will occur within the Hubble time
(roughly the age of the universe) if the initial orbital period Porbit ≲ 1 d (Rosswog,
2015). At the point of contact, the stars typically have an orbital period of
milliseconds, radiating ≈ 1053 erg s−1 in the form of gravitational waves (Faber and
Rasio, 2012). This radiation, detected already from two mergers, GW170817 (Abbott,
Abbott, et al., 2017b) and GW190415 (Abbott, Abbott, et al., 2020), travelled to
Earth at the speed of light with a precision exceeding 10−14. This observation alone
ruled out many alternative theories of gravity and provided Einstein’s theory of
general relativity with yet more evidence.

The multi-messenger nature of some BNS mergers allows them to be used as ‘standard
sirens’, meaning that the absolute distance to the source can be determined directly
from the gravitational-wave measurements and used as a distance calibration tool for
analysing the electromagnetic signal received alongside them. This then gives a third,
independent measurement of the Hubble constant which parametrizes the local,
current rate of expansion of our universe (Abbott, Abbott, et al., 2017a). One hopes
that this will (eventually) resolve some of the ‘tension’ that has arisen as the
uncertainties on the two other measures (from calibrated cosmic distance ladder
techniques and cosmic microwave background (CMB) data) have shrunk to the point
that they are now in disagreement (Di Valentino, Mena, et al., 2021).

Following the merger, a small delay, O(ms − s), is expected to precede a short-duration
gamma-ray burst (sGRB): an emission type of particular interest (see, for
example, Lee, Ramirez-Ruiz, et al., 2010; Rezzolla, Giacomazzo, et al., 2011). The
exact mechanism powering the sGRB is still an area of active research. It may be that,
in the prompt collapse scenario, the turbulent, hyper-accreting torus surrounding the
black hole extracts energy from it via the Blandford-Znajek process, leading to a
relativistic outflow collimated by disk winds and a highly poloidal magnetic
field (januik_black_2017 ; Janiuk and Yuan, 2010). If instead a magnetar is left by
the merger, longer-lived emission including an X-ray afterglow powered by pulsar-like
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spin-down and large-scale magnetic reconnection events will be seen (Metzger,
Giannios, et al., 2011; Lü, Zhang, et al., 2015; Bucciantini, Metzger, et al., 2012).

There is also now strong evidence that BNS mergers are responsible for the production
of much of the heavy elements (heavier than Iron-56) in our universe. This occurs in
the hot ejecta where rapid neutron capture, referred to as the r-process, should take
place. It is even possible to infer the masses and relative abundances (Freiburghaus,
Rosswog, et al., 1999) of nuclear elements synthesized in this way and, hence, the
nuclear make-up of the universe as whole. There was also observation of an optical
transient following the merger seen in 2017: a kilonova spanning the UV, optical & IR
parts of the EM spectrum, powered by the radioactive decay of by-products created in
the aforementioned r-process.

1.1.6.2 In Silico

There are still open questions, of course, in the study of BNS mergers. Numerical
modeling of the merger process via general relativistic magnetohydrodynamics
(GRMHD) simulations offers the best chance to tackle the open questions and to
establish a reliable connection between the merger & post-merger dynamics and the
observable GW and EM emission. For this, see Ciolfi and Kalinani, 2020, Rezzolla,
Giacomazzo, et al., 2011, Aguilera-Miret, Viganò, et al., 2021. In addition,
experimental work is being done to establish, more precisely, the neutron star equation
of state using simulations (Prakash, Radice, et al., 2021).

Already, people are looking ahead to the next generation of ground-based gravitational
wave detectors such as LIGO-voyager (Berti, Cardoso, et al., 2022), NEMO (Ackley,
Adya, et al., 2020), Cosmic Explorer (Reitze, Adhikari, et al., 2019) and the Einstein
Telescope (Punturo, Abernathy, et al., 2010; Maggiore, Broeck, et al., 2020). These
instruments will bring an order of magnitude improvement in gravitational wave
sensitivity, leading to a significant increase in the merger detection rate. Improved
sensitivity at higher (kHz) frequencies should also allow detection of the post-merger
signal. It is in this phase that the subtleties of modelling the remnant’s behaviour
become important for discerning the precise physics involved. With more precise data
comes the need for more accurate numerical simulations to draw meaningful inference
from the observations. In particular, the post-merger gravitational-wave emission is
sensitive to the small-scale dynamics of nuclear reactions (Alford, Bovard, et al., 2018;
Most, Haber, et al., 2022; Hammond, Hawke, et al., 2023; Chabanov and Rezzolla,
2023), electromagnetism (Aguilera-Miret, Palenzuela, et al., 2023; Most, 2023; Kiuchi,
Reboul-Salze, et al., 2024) and turbulence (Radice, 2020; Palenzuela, Aguilera-Miret,
et al., 2022).
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Figure 1.3: A visual summary of the (both current and proposed) sources and de-
tectors of gravitational waves across the spectrum of frequencies/wave-periods. Taken

from the LISA website.

Meanwhile, the Laser Interferometer Space Antenna (LISA) mission is a proposed
space-based gravitational-wave detector with very low noise and very long (5 × 106 km)
interferometer arms, giving it the ability to detect low-frequency (0.1 mHz − 1 Hz)
gravitational waves from other sources entirely. In particular, it will allow detection of
gravitational waves from the capture of compact objects by supermassive black holes
at the centres of galaxies, from the merger of these supermassive black holes
themselves, and from ultra-compact and eccentric binaries (Cornelisse, 1996;
Danzmann, 2000; Danzmann and R Diger, 2003; Bender, Begelman, et al., 2013). It
will even search for seed black holes, found at the cosmic dawn (Amaro Seoane,
Arca Sedda, et al., 2022). Figure 1.3 summarises the (both current and proposed)
sources and detectors of gravitational waves across the spectrum of frequencies.

The disparate array of dynamical time and length scales present in binary neutron star
mergers presents a major challenge for any numerical code looking to directly resolve
them all. This is, in fact, an impossibility for now and the foreseeable future. To
illustrate this quantitatively, consider that the highest simulation resolutions achieved
so far have grids with side-length O(10 m) (Kiuchi, Cerdá-Durán, et al., 2015) whilst
the molecular dissipation scale in the neutron star fluid is either O(1 cm) when set by
neutrinos, or O(1 nm) when set by electron scattering (Thompson and Duncan, 1993).
Alternatively, consider that the Reynolds number of the flows in neutron stars may
range as widely as 106 to 1015 during a merger event (Radice and Hawke, 2024).
Nuclear reactions, turbulence and neutrino processes all lead to variations in fluid
properties below the resolved length-scale. This violates the fundamental assumption
of fluid dynamics: uniformity within a fluid element. Whether we view this
discrepancy as stochastic fluctuations or as genuine microphysics may affect our
motivations and approach to the problem, but in any case it needs attention.

Turbulence, seeded by Kelvin-Helmholtz instabilities that grow in the shearing layer as

https://lisa.nasa.gov/
https://lisa.nasa.gov/
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Figure 1.4: Example of a BNS merger simulation using General Relativistic Mag-
netohydrodynamics (from the models presented in Ciolfi, Kastaun, et al., 2017). The
temporal sequence shows the bulk of the NS(s) (in white together) with color-coded
isodensity surfaces. Deformation of the neutron stars through tidal forces can be seen
pre-merger. Post-merger, the remnant neutron star is also deformed by the uneven

distribution of angular momentum within it.

the two stars come into contact, causes a cascade of kinetic energy from the largest
length scales down to the smallest, at which point viscous dissipation converts it to
heat. Unfortunately, the non-linear coupling of scales in turbulent flows means that
uncontrolled small-scale effects may spoil the large-scale behaviour. This issue is
perhaps epitomized by the non-convergence of the maximum magnetic field strength
seen in magnetohydrodynamic (MHD) simulations as resolution is increased. As a
solution to this problem, large eddy schemes (LES) which include subgrid closures
have been introduced as extensions to the usual general-relativistic MHD prescription
used in simulations. These general relativistic LES (GRLES) models were able to solve
this particular issue of magnetic field amplification and led to convergence of its
saturated strength. Following this, LES schemes are now seeing more widespread
usage (Radice, 2017; Radice, 2020; Viganò, Aguilera-Miret, et al., 2020a; Carrasco,
Viganò, et al., 2020; Palenzuela, Liebling, et al., 2022; Wang, Yuan, et al., 2022;
Izquierdo, Bezares, et al., 2024; Aguilera-Miret, Viganò, et al., 2020; Miravet-Tenés,
Cerdá-Durán, et al., 2022; Miravet-Tenés, Cerdá-Durán, et al., 2023). For an extensive
discussion of the current status of this kind of modelling, see Radice and Hawke, 2024.

1.2 Summary and Thesis Structure

In this chapter we have introduced neutron stars, their key features and their mergers
with each other. The extreme physics they exhibit clearly warrants study, and mergers
involving neutron stars are our best way of doing this. The rest of this thesis will focus
on improving the current state of numerical modelling of NS mergers, by focusing in
particular on the merits of using non-ideal, dissipative fluid models instead of the
simpler, ideal ones that are often currently employed. The motivation for this is
twofold: to simulate genuine dissipate effects; and to use a dissipative fluid description
as a subgrid closure model. The former application is particularly important in
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understanding the impact of non-ideal effects on the products of mergers: gravitaitonal
waves, electromagnetic signals and mass ejecta. The latter is crucial for modelling the
turbulence and magnetic field evolution of a neutron star remnant.

In chapter 2 we will lay out the theoretical understanding of general relativity and
relativistic hydrodynamics required for describing neutron stars and their
strong-gravity environments. In chapter 3 we will introduce the foundations of the
computational methods used to solve the equations provided by the aforementioned
theories. In chapters 4 and 5 we will present results from simulations we have
performed of relativistic, dissipative hydrodynamics using the well-established
Müller-Israel-Stewart model and our novel ‘MISCE’ model. In chapter 6 we will
introduce our covariant filtering codebase and apply it to turbulence to derive a
subgrid closure model based on a dissipative fluid description. Finally, chapter 7 covers
preliminary results from outstanding work using simulations of dissipative fluids.
Specifically, results from simulating the newly-popularised BDNK model, and from
performing large-eddy simulations using the subgrid closure model derived
in chapter 6. Chapter 8 makes concluding remarks before discussing the outlook for
using dissipative hydrodynamics in neutron star merger simulations.
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Chapter 2

Theoretical Foundation

2.1 General Relativity

Infamous thought experiments involving elevators and free-fall, as well as a great deal
of mathematical machinery drawn from the field of differential geometry, led Einstein
to a remarkably simple-looking set of equations that govern the evolution of spacetime
and the matter that resides in it:

Gµν ≡ Rµν − 1
2Rgµν =

8πG

c4 Tµν . (2.1)

Here, Gµν is known as the Einstein tensor and describes the geometry of spacetime
whilst Tµν is the stress-energy tensor describing the distribution of mass and energy
within the spacetime. In addition, Rµν is the Ricci tensor whilst R is the Ricci scalar,
both descriptions of the curvature of spacetime. The metric tensor gµν defines proper
distances between points on the 4-dimensional manifold describing spacetime, M. G is
Newton’s gravitational constant and c is the speed of light. Note that we are working
in a (3+1) spacetime convention where Greek indices run over four values (0, 1, 2, 3)
and Latin indices run over the three spatial values (1, 2, 3) only. We use Einstein
summation convention such that repeated indices must appear once ‘up’
(contravariant) and once ‘down’ (covariant) and represent a sum over their possible
values. Our spacetime metric, gµν , has a signature of (−+++). This set of ten coupled
differential equations represent the mathematical formulation of Einstein’s theory of
General Relativity (GR).

We know that general relativity is not the ‘final’ theory of gravity. It is not quantum
in nature and admits non-physical singularities where the curvature of spacetime
becomes infinite. There remain many outstanding questions regarding the nature of
dark matter, dark energy and their relation to gravity. Whether an alternative theory
would provide as yet elusive answers to these questions is still to be seen. However, GR
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has proved remarkably powerful over the last century. It has withstood stringent tests
within our solar-system (Turyshev, 2008) and galaxy (Liu, Li, et al., 2022). Its
predictive power has led to the advent of technologies such as the Global Positioning
System (GPS). So far, its predictions match observations of more extreme, distant
systems such as pulsars and black holes (Kramer, Backer, et al., 2004; Kramer, Stairs,
et al., 2006).

Neutron stars are dense enough to create a strong-field regime of gravity that will
distort spacetime sufficiently such that one must couple their description of neutron
star matter to GR. One way that this can be seen theoretically is by considering that
the Schwarzschild radius of a neutron star, rs = 2GM/c2 ∼ a few km, is of the same
order of magnitude as its physical radius (∼ 10 km). Hence, realistic neutron star
merger simulations require evolution of the background spacetime as well as the matter
itself. This is not something we have done in our simulations as yet (our formulations
are special relativistic but not general). Instead, we have focused our study on models
of fluid dynamics that describe the neutron star matter itself. Extending our
simulations to GR is one possible avenue of further work that will be discussed in more
detail in chapter 8. However, we will now give a brief introduction to the field of
numerical relativity, which is used to computationally model systems exhibiting strong
gravity.

2.1.1 Numerical Relativity Formulation

Equation 2.1 describes the interaction between matter and spacetime. It is manifestly
covariant and hence space and time are placed on an equal footing. Whilst this is
logical from a theoretical perspective, it does not immediately lend itself well to
numerical evolution in this form, where space and time are traditionally decoupled.
Instead, alternative but equivalent ways of formulating Einstein’s equations have been
developed over the last 70 or so years–ones that retain covariance and can naturally
describe non-Cartesian coordinate systems, but which are more computationally
tractable. These are typically based on the pioneering work by Arnowitt, Deser and
Misner (Arnowitt, Deser, et al., 1959) which led to the ADM formalism of general
relativity. Popular modern extensions such as that of Baumgarte, Shapiro, Shibata and
Nakamura (BSSN) (Shibata and Nakamura, 1995; Baumgarte and Shapiro, 1998) are
based on this work.

Their approach was to create a “(3+1)” split of spacetime whereby space and time are
decoupled. This approach relies on slicing the four-dimensional spacetime into a series
of three-dimensional, spacelike hypersurfaces so that the Lorentzian spacetime metric
(signature (-+++)) induces a Riemannian metric on them (signature (+,+,+)). This
allows one to formulate Einstein’s equations into first-order, balance-law forms such
that finding their solution represents an initial value problem with additional, elliptic
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Figure 2.1: Schematic representation of the 3+1 decomposition of spacetime with
hypersurfaces of constant time coordinate Σt and Σt+dt foliating the spacetime. The
four-vector t represents the direction of evolution of the time coordinate t and can be
split into a timelike component αn, where n is a time-like unit normal to the hypersur-
face, and into a spacelike component, represented by the spacelike four-vector β. Taken

from Bishop and Rezzolla, 2016

constraint equations that must remain satisfied throughout the evolution of the
system. Figure 2.1 shows a schematic representation of the formalism. The
hypersurfaces Σ are separated by time dt. In that time, the point xi(t) has been
transported along a vector t = αn + β. Here, α is the lapse scalar which measures the
proper time between successive hypersurfaces, n is the time-like normal to the
hypersurface, and β is the space-like shift 4-vector whose spatial components measure
the change in coordinates from one hypersurface to the next. The spacetime distance
ds between two points is therefore given by

ds2 = −αdt2 + γij(dxi + βidt)(dxj + βjdt) (2.2)

where γij are the spatial components of the the induced metric γµν = gµν + nµnν on
each hypersurface and the covariant & contravariant components of the normal vector
are given respectively by

nµ = (−α, 0, 0, 0); nµ =
1
α
(1, βi). (2.3)

Finally, we may relate proper time dτ intervals to spacetime separation ds and
therefore to coordinate timesteps dt by

dτ2 = −ds2 = α2dt2. (2.4)

Whilst numerical relativity is necessary for performing binary neutron star merger
simulations, it is not the focus of this thesis. Instead, we choose to focus on
hydrodynamics, which describes the matter in neutron stars. As such, our results come
from evolving a fluid in flat, stationary spacetime for which we do not need to employ
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numerical relativity.

2.2 Fluid Dynamics

Fluid dynamics is the branch of physics that originally sought to understand and
predict the behaviour of liquids, gases and plasmas in motion. Early examples of fluid
dynamics include the well-known principles of Archimedes1 and Bernoulli2. These
principles explain, for instance, how an enormous aircraft carrier, though appearing
precariously balanced, remains buoyant and stable in water; how an aircraft wing
creates lift and a sail generates forward-thrust; or why your shower curtain is sucked
inwards when you turn on the water.

The modern view of fluid dynamics is more general: it is the long-wavelength,
slow-acting limit of an underlying microphysical theory. This generality allows fluid
dynamics to be used widely in describing, for instance, terrestrial atmospheric & ocean
modelling, astrophysical compact objects & their accretion disks, and even high-energy
heavy-ion collision products at particle colliders (Del Zanna, Chandra, et al., 2013).

Their success lies in their ability to obfuscate the complex and ostensibly insignificant
details of the underlying physics occurring at scales below those of the coarse fluid
‘elements’ that comprise the fluid. The whole of the fluid within an element is then
described by physical & thermodynamic properties (such as velocity, pressure and
energy density) which together form scalar and vector fields over the fluid’s domain.
An inherent assumption, then, is that one may assign the fluid’s state variables each a
single value for all fluid within one element. This is an assumption that is not expected
to always hold true for current neutron star merger simulations because the physical
size of the domains used is of order metres to tens of metres and, hence, the fluid
elements contain significant velocity, temperature and compositional gradients. Whilst
finer-scale simulations are currently out of reach due to their high computational cost,
Large Eddy Simulations (LES) are a proposed method of capturing subgrid scale
physics, one which we will discuss in chapter 6.

In the remainder of this chapter, we will lay out the theoretical framework currently
used to describe (special) relativistic fluids. These are those whose velocity is an
appreciable fraction of the speed of light, such that their kinetic energy may be
comparable to or exceed their rest-mass energy. We will start with a brief introduction
using the typical non-relativistic, dissipative description before moving to the ideal,
relativistic case and finally covering a number of models of non-ideal, relativistic fluids

1Archimedes’ principle states that the upward buoyant force that is exerted on a body immersed in
a fluid, whether fully or partially, is equal to the weight of the fluid that the body displaces.

2Bernoulli’s principle states that an increase in the speed of a fluid occurs simultaneously with a
decrease in static pressure or a decrease in the fluid’s potential energy.
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which are those most relevant for us. We will primarily focus on gradient expansion
models of hydrodynamics, which are by far the most popular in our field and those of
primary use to us here. However, we will also briefly touch upon variational models
and smoothed particle hydrodynamics, which give alternative ways of deriving a fluid
description. The particular guiding literature for this chapter is Romatschke, 2010 and
Rocha, Wagner, et al., 2024, which provide a comprehensive overview of the field. For
an excellent summary of special relativistic hydrodynamic theory for the purpose of
modeling heavy-ion collisions, see Jaiswal and Roy, 2016.

2.2.1 Gradient Expansion Models

The first and simplest models, known as ‘zero’th-order’, describe fluids in local
thermodynamic equilibrium. Differences in thermodynamic properties between
neighbouring fluid elements equilibrate on timescales that are effectively instantaneous
compared to those that the fluid acts on, τdiss ≪ τfluid ∼ Lfluid/vfluid. Although
appropriate for some simple systems (such as stable, plane flows), higher-order
gradient expansions in these quantities, which represent a departure from equilibrium,
are necessarily included to capture more complex behaviour such as that seen in
heavy-ion collisions, black hole ejecta and certainly neutron star mergers. First-order
theories add dissipative effects expressed as first-order gradients in the ‘perfect’ (ideal)
fluid properties. These were first formulated by Eckart (Eckart, 1940) and Landau &
Lifshitz (Landau and Lifshitz, 1987) by making simple extensions to the
non-relativistic Navier-Stokes (NS) equations, which result from applying Newton’s
second law to fluids. Initially, first-order theories seemed promising until Hiscock and
Lindblom (Hiscock and Lindblom, 1985) showed that they admitted instabilities that
would allow runaway from equilibrium, as well as giving acausal behaviour due to their
parabolic nature. These pathologies were wrongly attributed to the first-order nature
of these theories, leading to the development of a number of second-order theories, for
instance by Baier & colleagues (Baier, Romatschke, et al., 2008) and Carter (Carter,
1985; Carter, 1988).

Today, we know that some first-order theories are stable, causal and do not disobey the
second law of thermodynamics. This class of models was first introduced in 2018 by
Bemfica, Disconzi and Noronha (Bemfica, Disconzi, et al., 2018) and “First-order
relativistic hydrodynamics is stable” is the triumphant title of Kovtun’s paper in
2019 (Kovtun, 2019). In section 7.1 of this thesis, we will use one of these first-order
formulations of recent popularity, named BDNK after the four aforementioned authors.
See also Bemfica, Disconzi, et al., 2019b; Bemfica, Disconzi, et al., 2021; Pandya and
Pretorius, 2021 as references. First, let us lay down some fundamental principles,
starting with fluid dynamics in the non-realistivic setting.
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2.2.1.1 The Non-Relativistic Navier-Stokes Equations

The starting point for fluid dynamics in Newtonian gravity can be obtained through
application of Newton’s second law to a fluid element, which results in the
Navier-Stokes equations for a viscous fluid:

∂tv
i + vk∂kvi = ρ−1

(
∂ip + ∂kΠki

)
(2.5a)

Πki = −η(∂kvi + ∂ivk − 2
3δki∂lv

l) − ζδik∂lv
l. (2.5b)

Here, vi(t, x) is the spatial velocity of the fluid, ρ(t, x) is its mass-density, p(t, x) is the
pressure, and Πki is the viscous stress tensor which contains contributions from both
shear and bulk viscosity and accounts for non-ideal behaviour. The strength of the
shear and bulk viscosities are modulated via their coefficients, η & ζ. Additionally, the
conservation of mass is enforced through the continuity equation

∂tρ + ∂i(ρvi) = 0. (2.6)

The system is then typically closed with an equation of state which relates the density
to the pressure: p = p(ρ). The widespread success of this equation means that any
relativistic version we derive should reduce to it in the low-velocity limit.

2.2.1.2 Ideal Fluid Equations in Relativity

In relativity we describe matter through the stress energy tensor T µν . After
demanding Lorentz invariance, and putting sensible physical requirements on its
components (see Romatschke, 2010), we arrive at the most general form allowed, for an
ideal fluid at least, which is

T µν
(0) = (ρ + p)uµuν − pgµν = ρuµuν − p∆µν (2.7)

where ρ has now been promoted to a total energy density, ∆µν .
= gµν − uµuν is a

projection operator into the space orthogonal to the 4-velocity, uµ, which is defined as

uµ =
dxµ

dT
= W (1, v) (2.8)

where W = (1 − v · v)−1/2 is the Lorentz factor and T is the proper time. For the
type of non-conformal fluids that we deal with, the SET is typically paired with a
statement about the number current of the particle species that comprises the fluid.
This is written as

Nµ = nuµ + nµ (2.9)
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where n is the number density of the species and nµ is the ‘drift-current’ which
captures the part of the number current misaligned with the fluid’s 4-velocity. This
presents one possible choice of hydrodynamic frame: to define the fluid’s 4-velocity as
that parallel to the total number current such that nµ = 0 and Nµ = nuµ. This is
known as the Eckart frame.

To obtain the fluid equations of motion, we invoke the fundamental principles of
conservation of mass, energy and momentum. These are captured by the following pair
of equations:

∇µNµ = 0, (2.10a)

∇µT µν = 0. (2.10b)

Here, ∇µ is the covariant derivative which contains contributions from two sources
related to the object it acts on: intrinsic variations in the object itself across the
spacetime; and changes arising due to variations in the spacetime coordinates by which
the object is described. The former is known as the continuity equation and enforces
the local conservation of the rest mass of particles. The latter equation, in words, says
that the covariant derivative of the stress-energy tensor (sometimes, the
energy-momentum tensor) vanishes for all matter (non-gravitational) fields. This is a
consequence of the stress-energy tensor, T µν , being the conserved Noether current for
spacetime translations. For this thesis, we concern ourselves almost entirely with
modelling fluids in flat spacetime. Hence, the covariant derivatives become partial
ones, ∇µ → ∂µ.

To obtain the equations of motion for the fluid, it is useful to project eq. (2.10) both
parallel and orthogonal to uµ:

uν∂µT µν = 0 = ∆α
ν ∂µT µν (2.11)

which for an ideal fluid leads to

Dρ + (ρ + p)∂µuµ = 0, (2.12a)

(ρ + p)Duµ − Dµp = 0. (2.12b)

We have defined the derivative operators D
.
= uµ∂µ and Dν .

= ∆µν∂µ which reduce, in
the small-velocity limit |v| ≪ 1, to

D ≃ ∂t + vi∂i + O(|v|2); Di = ∆iµ∂µ ≃ ∂i + O(|v|) (2.13)

and are hence relativistic versions of the (convective) time and space derivatives.
Together with the assumption that the energy density is dominated by the mass
density for a non-relativistic fluid (ρ ≃ p) and that a non-relativistic equation of state
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obeys p ≪ ρ, equations 2.13 reduce to the Navier-Stokes equations 2.5 in the
non-relativistic limit.

2.2.1.3 Equations of Non-Ideal, Relativistic Fluids

We may extend the relativistic SET to include dissipative effects by writing

T µν = T µν
Ideal + q(µuν) + Πµν (2.14)

where qµ is the energy-momentum diffusion current relative to uµ (now possible in
relativity) and Πµν is the viscous stress tensor that includes the contributions to T µν

stemming from viscous dissipation. For non-perfect fluids, the two vector & tensor Nµ

& T µν now together contain 14 independent variables, instead of the 5 for perfect
fluids.

Another choice of hydrodynamic frame is now possible, one which we will make here.
In the Landau frame3, the 4-velocity uµ is defined as being parallel to the
energy-momentum flow, and qµ = 0. The 3 degrees-of-freedom that this seemingly
removes are shifted into the drift term within the rest-mass current such that
Nµ = nuµ + nµ with nµ ̸= 0.

The equations of motion are then given by

Dρ + (ρ + p)∂µuµ − Πµν∇(µuν) = 0, (2.15a)

(ρ + p)Duµ − ∇µp + ∆µ
ν ∂αΠαν = 0. (2.15b)

The total viscous stress tensor is typically split into two contributions - one traceless
part, πµν , and one with non-vanishing trace, Π:

Πµν = πµν + ∆µνΠ. (2.16)

Π is the bulk viscosity (a scalar which also contributes to the total isotropic pressure)
and πµν is the shear-stress tensor with the following properties: it is symmetric
(π[µν] = 0), purely spatial (πµνuµ = 0), and trace-free (πµ

µ ≡ πµνgµν = 0).

Essentially, models of dissipative, relativistic fluid dynamics are built by setting the
hydrodynamic frame, and prescribing some form for the non-ideal contribution Πµν .
The latter of these choices is typically made either by providing a constitutive relation
or by promoting the additional degrees of freedom to independent variables with their

3Note that the Eckart and Landau frames, whilst ostensibly sensible and physically-motivated choices,
are not the only ones one can make. Indeed, the BDNK formalism discussed in section 2.2.1.6 makes use
of this degree of freedom to design a stable and causal first-order theory of dissipative hydrodynamics
in relativity.
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own evolution equations. We will give an example of each of these approaches below,
specifically for the MIS and BDNK models that we will go on to simulate in chapter 4.

2.2.1.4 Relativistic Navier-Stokes Equations

The most straightforward starting point for a relativistic description of a dissipative
fluid is made by extending the Newtonian Navier-Stokes equations 2.5. Because
dissipation is an irreversible, entropy-generating process, we consider the
thermodynamics of the fluid. The Gibbs relation describes the free-energy
contributions to the system as

ρ + p = Ts + µn, (2.17a)

dρ = Tds + µdn, (2.17b)

where T is the temperature, s is the entropy density and µ is the chemical potential of
the species with number density n. To enforce the second law of thermodynamics, that
entropy may never decrease, we stipulate in a covariant way that in local-equilibrium

∇µsµ ≥ 0; sµ = suµ (2.18)

where sµ is the entropy current carried with the fluid. Using equations 2.17 and 2.18,
as well as the fluid evolution equations 2.15 we are able to rewrite the second law as

∇µsµ =
1

2T
πµν∇<µuν> +

1
T

Π∇µuµ ≥ 0 (2.19)

where we have defined ∇<µuν>
.
= 2∇(µuν) − 2

3 ∆µν∇αuα as the traceless part of ∇(µuν).

The inequality is then guaranteed to be fulfilled if we choose the shear stress tensor
and bulk viscous pressure4 to be

πµν = η∇<µuν>, Π = ζ∇µuµ (2.20)

where their coefficients, the bulk & shear viscosities ζ, η ≥ 0. Such a choice guarantees
that sµ is a sum of positive squares. These forms also arise naturally out of kinetic
theory if systematic expansions of the fluid theory (in gradients) are considered. We
discuss this briefly in section 2.4.

This description reassuringly reduces to the regular Navier-Stokes equations in the
non-relativistic limit, but is unfortunately plagued with acausal and unstable

4Note that we have now used both the term ‘bulk viscosity’ and also the term ‘bulk viscous pressure’.
Viscosity is a non-ideal, dissipative effect that resists differentials in fluid motion and is not strictly a
pressure in the same way that the hydrostatic pressure is, for instance. However, bulk viscosity often
acts as an effective pressure due to its resistance to compression or expansion of a fluid, and appears
as a pressure contribution in the equations of motion for a viscous fluid as will be seen in chapter 4.
Therefore, we often use the terms interchangeably throughout this thesis.



24 Chapter 2. Theoretical Foundation

pathologies Hiscock and Lindblom, 1983. The source of these is the fact that we have
truncated the entropy current at first order in gradients. meaning the total entropy of
these fluids, restricted to the dynamically accessible states, has no upper
bound (Gavassino, Antonelli, et al., 2020). This motivated the development of new,
higher-order formulations of dissipative hydrodynamics, which we will continue onto
now.

2.2.1.5 The Müller-Israel-Stewart Formulation

The Müller-Israel-Stewart formalism was developed in the late 1970s Israel, 1976;
Stewart, 1977; Israel and Stewart, 1979 and inspired by the relaxation-type form of the
Maxwell-Cattaneo equation (Cattaneo, 1948) usually used for regularizing the acausal
signal propagation of the standard heat equations.

Now, the dissipative terms obey dynamical equations of a relaxation-type form with
relaxation timescales τΠ, τπ and τq given by

τΠΠ̇ + Π = ΠNS + O2, (2.21a)

τππ̇<µν> + πµν = πNS + O2, (2.21b)

τq q̇<µ> + qµ = qNS + O2, (2.21c)

where Π̇ = DΠ, q̇<µ> = ∆µ
αDqµ and π̇µν = ∆µ

α∆µ
βDπαβ and we have defined the

relativistic Navier-Stokes terms to which the dissipative variables relax as

ΠNS = −ζθ, (2.22a)

πNS = −2ησµν , (2.22b)

qNS = −κT (∇<µ> ln T + aµ), (2.22c)

where σµν ≡ 1
2∇<µuν>, θ = ∇µuµ is the expansion and aµ = uν∇νuµ is the

acceleration. We have neglected terms of higher-order than first (in gradients, Knudsen
number or inverse Reynolds number) in equations 2.21.

The relaxation timescales and dissipation strengths may be related through the
expressions

τΠ = β0ζ, (2.23a)

τq = β1κT , (2.23b)

τπ = 2β2η (2.23c)

where the β-functions have analytic expressions for certain types of gases - see
section 4.1.
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The theoretical properties of the MIS model have received thorough
investigation (Molnár, Niemi, et al., 2010; Biswas, Dash, et al., 2020; Bemfica,
Disconzi, et al., 2021; Bemfica, Disconzi, et al., 2022; Wagner and Gavassino, 2024)
and it has been used extensively in the context of high-energy, quark-gluon-plasma
(QGP) physics to model post-collision fluid evolution (Del Zanna, Chandra, et al.,
2013; Du and Heinz, 2020), as well as in the astrophysical community for modelling
viscous black-hole accretion (Chabanov, Rezzolla, et al., 2021), for example. The
stability of these models is directly related to the fact that the entropy now has a
well-defined maximum, rather than having a saddle-point as in the case of naive
first-order models discussed previously. Still, entropy conservation is only enforced
perturbatively and is therefore only valid within the regime of validity of the model.

2.2.1.6 BDNK Formulation

The BDNK formulation (Bemfica, Disconzi, et al., 2018; Kovtun, 2019) prescribes
constitutive relations for the dissipative variables at first-order in gradients of the
primitive fluid variables. The primitive fluid variables describe the fluid’s fundamental
physical properties such as its pressure, velocity, temperature and so on. Despite the
instability of other first-order models, the BDNK model stabilises the system in small
departures from equilibrium by retaining the time-like derivatives that are
systematically replaced by space-like ones in other approaches. This gives a remedy to
the problem of unbound entropy growth in other first-order theories, not by providing
a maximum, but by allowing for small violations of the second law of thermodynamics
outside its regime of strict applicability.

Whilst the causal nature and well-posedness of the MIS formalism (coupled to gravity)
has been formally shown in the presence of bulk viscosity only (Bemfica, Disconzi,
et al., 2019a), the BDNK formalism is able to describe shear & bulk viscous effects, as
well as particle and energy diffusion in a stable and causal way, when coupled to
Einstein’s equations in curved spacetime. It produces equations of motion with highly
desirable properties like strong hyperbolicity and local well-posedness of the initial
value problem (Rocha, Wagner, et al., 2024). No other formalism has been shown to
achieve all this.

The designation of hydrodynamic frame from being either Landau or Eckart is relaxed,
and an additional degree of freedom represented by the scalar A is introduced as a
result. The stress-energy tensor now reads

T µν = ρuµuν + (p + Π + A)∆µν + 2q(µuν) + πµν (2.24)
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whilst the dissipative variables are given by the expressions

A = τϵ [u
µ∇µρ + (ρ + p)∇µuµ] , (2.25a)

Π = −ζΘ + τΠ/τϵA, (2.25b)

qµ = τq(ρ + p)uν∇νuµ + βϵ∆µν∇νρ + βn∆µν∇νn, (2.25c)

πµν = −η

[
∆µα∆νβ∇αuβ + ∆µα∆νβ∇βuα − 2

3∆µν∆αβ∇αuβ

]
. (2.25d)

The BDNK formulation has already been used in earnest to simulate a fluid with
underlying conformal symmetry (Pandya, Most, et al., 2022b) and ideal gas
microphysics (Pandya, Most, et al., 2022a). However, we are unaware of simulations
using the BDNK model with a realistic equation of state for neutron star matter. We
perform simulations of this model in section 7.1 with our usual ideal (relativistic) gas
equation of state and compare the results to that of MIS. Whilst not all non-ideal
effects in BNS mergers take the BDNK form5, one avenue for future work is to perform
merger simulations using it.

2.2.2 Valencia Formulation of Balance Law Equations

The ‘Valencia formulation’ of general-relativistic hydrodynamics (GRHD) allows one to
rewrite the hydrodynamic equations of motion introduced above in a ‘flux-conservative’
form Banyuls, Font, et al., 1997; Antón, Zanotti, et al., 2006. This is done by building
upon the spacetime description laid out in section 2.1.1 for numerical relativity.

An Eulerian observer OE with 4-velocity n is at rest in slice Σt. We define an adapted
coordinate basis for this observer, using the orthonormal tetrad

e(A)
µ = {∂t, ∂i} (2.26)

where (A) is a label and
∂t = αn + βi∂i (2.27)

We also make use of the following identity for the covariant derivative of an arbitrary
vector Y µ

∇µY µ =
1√
−g

∂µ(
√

−gY µ) (2.28)

where √
−g = α

√
γ is the square-root of (minus) the determinant of the 4-metric gµν

whilst √
γ is the square-root of the determinant of the induced 3-metric γij . This

allows one to swap the total derivatives for partial derivatives in the hydrodynamic
equations of motion (conservation of energy-momentum and baryon number) such that

5Bulk viscosity sourced from Urca reactions, as discussed in section 1.1.5, is equivalent to a resumed
MIS system, for example.
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in full general relativity they become

∂µ

(√
−gT µ

ν eν
(A)

)
=

√
−gT µ

ν ∇νeν
(A), (2.29a)

∂µ (
√

−gNµ) = 0 (2.29b)

where
∇νeν

(A) = ∂νeν
(A) + Γν

µλeλ
(A) = Γν

µλeλ
(A) (2.30)

and Γµ
νλ are the Christoffel symbols given explicitly by

Γµ
νλ =

1
2gµκ (∂λgκν + ∂νgκλ − ∂κgνλ) (2.31)

whilst the orthonormal tetrad is

e(0)ν = −αδ0ν , (2.32a)

e(k)ν = gkν = (βk, γkj) (2.32b)

with δν
µ as the Kronecker-delta function.

The quantities directly measured by the Eulerian observer OE are the rest-mass
density, D, the momentum-density in all 3 spatial directions, Sj , and the total energy
density, E. We can relate these to the primitive variables w = (n, vj , ρ, p)T as

D
.
= −Nµnµ = nW , (2.33a)

Sj
.
= −T µνnµeν(j) = (ρ + p)W 2vj , (2.33b)

E
.
= T µνnµnν = (ρ + p)W 2 − p. (2.33c)

This results in the balance-law form (a conservation law in flat spacetime)

1√
−g

[
∂

√
γU(w)

∂t
+

∂
√

−gFi(w)

∂xi

]
= S(w). (2.34)

where

U(w) = (D, Sj , τ )T , (2.35a)

Fi(w) =
[
DV i, SjV i + pδi

j , τV i + pvi)T
]T

, (2.35b)

S(w) =

[
0, T µν

(
∂gνj

∂xµ
− Γδ

νµgδj

)
, α

(
T µ0 ∂ ln α

∂xµ
− T µνΓ0

νµ

)]T

(2.35c)

with V i ≡ vi − βi

α and τ ≡ E − D.
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2.2.3 Variational Models

Variational models are ubiquitous in physics and may indeed be used to model
dissipative fluids in general relativity. They begin with an extension to the
Einstein-Hilbert action to include matter contributions such that with G = c = 1 the
action reads

S =
1

16π

∫
(R + Λ)

√
−gd4x (2.36)

where R is the Ricci scalar of general relativity and Λ is the ‘master-function’
governing matter’s contribution to the action. It is this latter piece, of course, that
describes the fluid or, often, multi-fluid system. These multiple fluids may be genuine
physically-separable fluids or in-fact thermodynamic currents within a single,
continuous fluid that describe the direction and magnitude of the flow of heat, entropy
and of course particle number. These currents are not at all necessarily aligned for
dissipative fluids. Despite the success of variation models in their ability to produce
multi-fluid models of dissipative fluids (see Andersson and Comer, 2015, for example)
they do not currently form the basis of numerical simulations of BNS merger
simulations. This is because one does not generally obtain balance-law equations from
them - see Andersson, Comer, et al., 2017; Andersson, Dionysopoulou, et al., 2017;
Andersson, Hawke, et al., 2017, for example. Instead, multi-fluid models are useful for
describing neutron star cores (e.g. Haskell, Andersson, et al., 2012; Rau and
Wasserman, 2020) where the various exotic particle species and superfluidity present
must be modelled using multiple fluids. Similarly, capturing the magnetic field
evolution of neutron stars (e.g. Hoyos, Reisenegger, et al., 2008; Glampedakis,
Andersson, et al., 2012) may be done by treating the charged species as separate fluids.

2.2.4 Smoothed Particle Hydrodynamics

The smoothed particle hydrodynamics (SPH) method is not so much a theory of fluid
dynamics but rather a way of representing a fluid, particularly in numerical
simulations. It will be briefly introduced here due to its relevance to simulations of
compact objects. Using SPH was first suggested in 1977 by Gingold and Monaghan,
1977 and Lucy, 1977. Instead of existing on a Eulerian grid, fluids are modelled as
being comprised of a number of discrete Lagrangian ‘particles’6. These are not
microphysical particles but rather more like fluid elements whose properties are
(spatially) averaged over to obtain bulk fluid properties. Typically, particles have an
interaction ‘sphere’ with a radial size given by a small multiple of a ‘smoothing length’
used to set the dimensions of the averaging domain.

6An Eulerian view of a fluid focuses on a point in space and analyses the flow past that point over
time, whereas a Lagrangian view tracks with the flow of a fluid element.
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SPH has both advantages and disadvantages when compared to the traditional,
Eulerian fluid models that are more commonly used to describe compact objects and
their mergers. In particular, SPH codes exactly conserve mass, energy, momentum and
angular momentum (by construction) and can more easily handle vacuum regions of
space (which are simply the absence of particles). For merger simulations, this means
that ejecta are tracked with ease and that the neutron star surface remains
well-behaved. SPH simulations are less restrictive in terms of spatial domain as
particles are individually tracked, which also makes tracing back the history and
properties of a given particle far easier.

However, there are drawbacks to the use of SPH models: magnetohydrodynamics is
notoriously hard to include in simulations, in particular maintaining the vanishing
divergence of the magnetic field. Whilst this is not a great concern as yet for us, they
can also struggle to handle shocks and fluid instabilities due to surface tension forces
that emerge near contact discontinuities. Finally, SPH simulations can become
prohibitively costly when performing 3-dimensional simulations which require the
inclusion of many particles to accurately capture fine-scale, thermodynamic behaviour
- which is our aim! For these reasons, we will devote no further attention to SPH
methods in this thesis but direct the interested reader to Rosswog, 2015 for a thorough
review of the approach and to their recent work performing BNS merger
simulations (Rosswog, Diener, et al., 2022; Rosswog, Torsello, et al., 2023) using the
SPHINCS_BSSN code they have developed (Rosswog and Diener, 2021; Rosswog and
Diener, 2024).

2.3 Turbulence Modelling and Explicit Large Eddy
Schemes

As mentioned at numerous points already in this thesis, we are not currently able to
resolve the finest scales of physics within simulations of neutron star mergers. This has
proved problematic, for instance when trying to simulate the local, small-scale
magnetic turbulence that may explain how remnant neutron star field strengths grow
so large. Such an effect is expected to be initially driven by the Kelvin-Helmholtz
instability in the shear layer between the two neutron stars during the first few
milliseconds post-merger. The highest resolutions achieved so far have grid spacing
∆ ∼ O(10m) (Kiuchi, Kyutoku, et al., 2018) and magnetic field amplifications by a
factor of ∼ 103 due to the KHI have been seen (Kiuchi, Cerdá-Durán, et al., 2015).
Yet, even when approaching this scale, numerical convergence is not reached, meaning
the dynamically relevant scales are unresolved. Whilst the primary
magnetohydrodyanmic processes during and post-merger are qualitatively understood,
quantitative modelling and predictions are out of reach due to the wide range of
spatial and temporal scales involved, as well as the non-linearity of the equations. This



30 Chapter 2. Theoretical Foundation

is similarly true for the modelling of viscous effects and heat fluxes in BNS mergers
and the evolution of the remnant they leave behind, where the cascade of energy from
long to short length-scales will inevitably cause unresolved fluid motion.

Explicit Large Eddy Simulations (LES) have been introduced recently to our field of
research (Radice, 2017) as a computationally inexpensive way of capturing subgrid
scale (SGS) turbulence in BNS mergers. They have been developed over the last 40 or
so years and used extensively in engineering applications (see, for instance, Lu and
Rutland, 2016) where they are able to resolve complex flows in greater detail and with
more predictive power than traditional Reynolds-Averaged Navier-Stokes models that,
roughly speaking, time-average the fluid equations. Technically, all computational
models of fluid dynamics include (at least) an implicit LES scheme. This is because
the finite temporal and spatial resolution of any hydrodynamic simulation means there
are always unresolved physical scales whose contribution to the solution arises
intrinsically (and in an unphysical, uncontrolled way) through the dissipation &
dispersion of the numerical scheme employed. Fluid dynamics itself involves an
implicit spatial filtering over a local ensemble of individual particles, from which a fluid
element emerges, often with a size much greater than that the microphysical
dissipation scale but smaller than the turbulent scale. Using implicit LES models to
model turbulent flows is surprisingly effective and has been subject to a considerable
amount of development & analysis, albeit not for the purposes of neutron star merger
simulations. See, for example Margolin and Rider, 2005; Margolin, Rider, et al., 2006;
Aspden, Nikiforakis, et al., 2008.

Instead, in explicit LES, the resolvable fluid fields are (spatially) averaged or
(temporally) filtered and hence necessarily augmented with closure terms which should
account for the additional degrees of freedom introduced in this process. In reality,
whether these additional terms genuinely represent unresolved, non-ideal micro-scale
physics like particle viscosities, or are simply the result of coarse-graining an ideal fluid
is an open question for any given problem. Answering this question is the focus
of Berselli, Iliescu, et al., 2006, for instance.

In Celora, Andersson, et al., 2021, a covariant approach to filtering & averaging is
developed from first principles using a fibration of spacetime. There, it is found that
one may formulate the closure terms in an algebraic form that mimics a relativistic
analogue of heat flux and (bulk & shear) viscosity.

Let us demonstrate the basic mathematical principles for implementing an explicit
LES closure model for hydrodynamic turbulence. Following Radice, 2017, we start
from the Euler equations for conservation of baryon number, momentum and energy in



2.3. Turbulence Modelling and Explicit Large Eddy Schemes 31

flat spacetime,

∂tD + ∂iDvi = 0, (2.37a)

∂tSj + ∂i (Sjvi + pηij) = 0, (2.37b)

∂tE + ∂iSi = 0 (2.37c)

where 
D

Sj

E

 =


nW

(ρ + p)W 2vj

(ρ + p)W 2 − p

 . (2.38)

We apply an arbitrary linear filter to these equations such that a quantity A becomes a
filtered quantity A, removing features below a particular (unspecified here) scale. The
above equations transform simply into

∂tD + ∂i
(
Dvi

)
= 0, (2.39a)

∂tSj + ∂i
(
Sjvi + pηij

)
= 0, (2.39b)

∂tE + ∂iSi = 0 (2.39c)

which are exact but no longer closed as the term Sjvi can not be written solely in
terms of other, coarse-grained quantities. A closure relation is needed of the form

Sjvi = Sj vi + τij (2.40)

where τij represents SGS turbulence. Relying on numerical viscosity and setting
τij = 0 is the usual, implicit LES approach. Alternatively, we may choose, for example,
a relativistic analogue of that introduced by Smagorinsky, 1963 such that

τij = −2νT (ρ + p)W 2
[1

2 (∇ivj + ∇jvi) − 1
3∇kvkηij

]
. (2.41)

This expression has a familiar form! That of the viscous stress tensor in the
Navier-Stokes equations eq. (2.5) or its relativistic counterpart eq. (2.20) introduced
into the stress-energy tensor (and hence equations of motion) for non-ideal fluids at
first-order in a gradient expansion. Note that it is not covariant as it is written purely
in terms of spatial components and is defined at the equation of motion level rather
than a higher one - see Duez, Knight, et al., 2020 for this, and for a wider comparison
of momentum transport models used in numerical relativity.

However, there are differences: for example, the ‘viscosity’ factor νT is no longer a
physically-determinable quantity but rather dependent on both the particular filtering
operation chosen and the Eulerian observer ‘doing’ the filtering7. On dimensional

7In relativity, averaging and filtering have no global definition and instead become observer dependent
operations.



32 Chapter 2. Theoretical Foundation

Figure 2.2: Relativistic filtering of a fine-grain velocity field where black lines indicate
streamlines. The red line is the coarse-grained, ‘average’ four-velocity. If the fine-grain
field is filtered with respect to that observer, the coarse-grained field is found. This
procedure is independent of the coordinates, but its inherent non-linearity makes it

impractical for use within a simulation.

grounds, νT ∼ λmixcs where cs is the sound speed in the fluid and λmix is a
characteristic mixing length on which turbulence occurs. Because of this difference, νT

should be calibrated using comparison of filtered, high-resolution simulation results to
unfiltered, lower-resolution ones as in Carrasco, Viganò, et al., 2020; Viganò,
Aguilera-Miret, et al., 2020a. Alternatively, its value may be set using expressions for
the wavelength of instabilities such as the magneto-rotational instability and sound
speed in a neutron star as in Duez, Liu, et al., 2006. Interestingly, the introduction of
this viscous-tensor-like closure term into the filtered, relativistic Euler equations does
not induce the same pathologies that the relativistic Navier-Stokes equations suffer
from (Radice, 2017). The stability seen in practice may indicate special properties of
the filtering terms, or may only show that the numerical resolutions used introduce an
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effective frequency cut-off that artificially removes the instabilities. See Duez, Knight,
et al., 2020 for a highly pertinent discussion of instabilities arising whilst using SGS
turbulence modelling for BNS mergers.

For our interests, the good news is that we already have models coded to include terms
that may serve as a closure piece for explicit LES simulations, even if their inclusion
were initially motivated on physical grounds. However, a word of caution on applying
the sort of closure scheme introduced above, and indeed all current published
implementations of explicit LES closures for capturing unresolved dynamics in BNS
mergers. It has been applied after the standard (3+1) division of spacetime, solely to
the spatial equations of motion. It is therefore not covariant and the filtered quantities
will depend, as previously mentioned, on the observer ‘doing’ the filtering. In Celora,
Hawke, et al., 2022, a covariant formulation of filtering is developed by finding a local
observer at each point in spacetime which is aligned with the number current at the
coarse, filtered level. In chapter 6, we implement the scheme laid out therein and
model the residuals it introduces.

2.4 Kinetic Theory and the Chapman-Enskog Expansion

The Boltzmann equation provides a statistical description of atomic-scale particle
kinetics for a thermodynamic system in a state of non-equilibrium. It describes the
evolution of the one-particle distribution function, f , and may be written in its
relativistic form as

pµ∂µf(x, p) = C[f ] (2.42)

where pµ is the 4-momentum of the particle and f(x, p) is the 8-dimensional
distribution function which depends on the particle’s 4-position and 4-momentum.
Finally, C[f ] is the collision term, an integral operator (in momentum space) whose
precise form depends on the interactions and statistics of the particle ensemble being
considered. The distribution function counts the particles and is normalized such that
the number density n(x) is given by

n(x) =
∫

d3p

(2π)3 f(x, p) (2.43)

whilst familiar quantities such as the number current and stress-energy tensor are
given by

Nµ =
∫

p
pµf(x, p), (2.44a)

T µν =
∫

p
pµpνf(x, p) (2.44b)

where
∫

p · · · ≡
∫

d3p/[(2π)3p0] is the Lorentz-invariant integration measure.
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In the early 20th century, Sydney Chapman and David Enskog introduced a method
for solving the Boltzmann equation (for f), as seen in Chapman and Cowling, 1990
and Kumar, 1967. Their approach allows one to derive macroscopic descriptions of
fluids, including the familiar Euler and Navier-Stokes equations (Cercignani and
Kremer, 2002), and obtain expressions for various transport coefficients such as
thermal conductivity and bulk viscosity in the process.

One of the central assumptions of the Chapman-Enskog (C-E) analysis is that the
particle collision duration time is not only far less than the time between collisions, but
also far smaller than extrinsic timescales: the timescales associated with macroscopic
fluid behaviour. The solution is in fact obtained as an asymptotic expansion in the
closely-related Knudsen number8, where at zero’th order we have the equilibrium
solution.

2.4.1 Viscosity via Chapman–Enskog Expansion

Here we derive both the bulk and shear viscosity coefficients, ζ & η, by applying this
method to the relativistic Boltzmann equation.

The Chapman–Enskog method expands f in powers of a small parameter ϵ (e.g. the
Knudsen number) representing deviations from equilibrium:

f = f (0) + ϵf (1) + ϵ2f (2) + · · · , (2.45)

where f (0) is the local equilibrium distribution. Inserting into the Boltzmann equation
and collecting first-order terms yields

pµ∂µf (0) = −C[f (1)], (2.46)

where C is the linearized collision operator.

Shear Viscosity

To solve for f (1), we postulate the following ansatz appropriate for shear viscous
corrections:

f (1) = −f (0)ϕ(p), with ϕ(p) = A(p)p⟨µpν⟩σµν . (2.47)

Here, p⟨µpν⟩ is the symmetric, traceless part of the momentum tensor:

p⟨µpν⟩ = pµpν − 1
3∆µν(p · u)2 (2.48)

8The Knudsen number (Kn) is a dimensionless number defined as the ratio of the molecular mean
free path length to a representative physical length scale. This length scale could be, for example, the
radius of a rigid body emersed in a fluid.
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where p · u ≡ pµuµ The function A(p) depends on the particle energy and encodes the
strength of the deviation.

The shear part of the energy-momentum tensor is

πµν =
∫

d3p

p0 pµpνδf = −
∫

d3p

p0 pµpνf (0)ϕ(p). (2.49)

Substituting the ansatz for ϕ(p) and using the symmetry of σµν , we extract η via

πµν = −σαβ

∫
d3p

p0 f (0)A(p)pµpνp⟨αpβ⟩, (2.50)

= −η σµν . (2.51)

Hence,

η =
1

10T

∫
d3p

(2π)3
1
E

A(p)

(
pµpν − 1

3∆µνp2
)2

f (0). (2.52)

To find A(p), one solves the linearized Boltzmann equation

C[f (1)] = −pµ∂µf (0), (2.53)

which becomes a linear integral equation for A(p) involving the collision kernel. In
practice, this is often solved numerically or approximated via variational methods or
model collision terms (via the Anderson–Witting model, for example).

In the relaxation time approximation (RTA), we write the collision operator as

C[f (1)] = −pµuµ

τR
f (1), (2.54)

yielding
A(p) =

τR

T (pµuµ)
. (2.55)

Substituting back, we recover the RTA result for shear viscosity:

η =
τR

10T

∫
d3p

(2π)3
1
E

(
pµpν − 1

3∆µνp2
)2

f (0) (2.56)

where E = p · u. This provides the connection between the Chapman–Enskog
formalism and the RTA derivation discussed previously.

Bulk Viscosity

Bulk viscosity ζ quantifies the fluid’s resistance to isotropic expansion or compression
and arises from the scalar deviation of the energy-momentum tensor away from its
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equilibrium form. We derive ζ from the relativistic Boltzmann equation using the
Chapman–Enskog method in the relaxation time approximation.

For the bulk viscosity, we assume the deviation from equilibrium is proportional to
scalar hydrodynamic gradients, particularly the expansion scalar θ = ∂µuµ. The
appropriate ansatz for f (1) is now

f (1) = −f (0) ϕ(p), ϕ(p) = A(p) θ. (2.57)

To determine A(p), we match the kinetic theory energy-momentum tensor to its
hydrodynamic decomposition.

The first-order correction to the energy-momentum tensor is

δT µν =
∫

d3p

p0 pµpνδf = −θ

∫
d3p

p0 pµpνf (0)A(p). (2.58)

In hydrodynamics, the bulk viscous stress is given by

Π = −ζ θ, T µν = T µν
ideal + Π∆µν . (2.59)

So we identify the bulk part by taking the trace:

Π =
1
3∆µνδT µν = −θ

∫
d3p

p0

(1
3∆µνpµpν

)
f (0)A(p). (2.60)

Thus, the bulk viscosity becomes

ζ =
∫

d3p

(2π)3
1
E

(1
3∆µνpµpν

)
f (0)A(p). (2.61)

To find A(p), we return to the first-order Boltzmann equation

pµ∂µf (0) =
pµuµ

τR
f (0)A(p) θ. (2.62)

where for a local equilibrium distribution f (0) = exp[−(p · u − µ)/T ], we compute

pµ∂µf (0) = −f (0)
[

pµpν

T
∇µuν −

(
(p · u)2

T 2 − m2

T 2

)
∇ · u

]
+ · · · . (2.63)

Isolating the scalar (bulk) contribution, we match the coefficients of θ to identify

A(p) =
τR

T (p · u)

[(1
3 − c2

s

)
(p · u)2 − c2

sm2
]

, (2.64)

where c2
s = dp

dρ is the speed of sound squared.
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Substituting into the expression for ζ, we find

ζ =
τR

T

∫
d3p

(2π)3
1

E2

[(1
3 − c2

s

)
E2 − c2

sm2
]2

f (0). (2.65)

This result vanishes in the conformal limit c2
s = 1/3 and m → 0, as expected. The

nonzero value of ζ therefore reflects the breaking of conformal symmetry due to finite
mass and interaction effects.

2.4.2 Heat Conductivity via Chapman–Enskog Expansion

Heat conductivity κ quantifies the response of a fluid to temperature gradients,
corresponding to energy transport in the presence of a nonzero heat flow. In
relativistic kinetic theory, it is extracted from the first-order deviation of the
distribution function around equilibrium. We use the Chapman–Enskog expansion of
the relativistic Boltzmann equation in the relaxation time approximation (RTA).

In the Landau frame, the energy-momentum tensor satisfies T µνuν = ϵuµ, and the
particle current decomposes as

Nµ = nuµ + qµ, (2.66)

where qµ is the heat flow, orthogonal to uµ, i.e., uµqµ = 0.

The first-order correction to the particle current is

δNµ =
∫

d3p

(2π)3E
pµδf . (2.67)

To isolate the heat conductivity, we consider the linear response of the heat flow to
temperature and chemical potential gradients:

qµ = −κ

(∇µT

T
− T

h
∇µ

(
µ

T

))
, (2.68)

where h = ϵ + P is the enthalpy density, and ∇µ = ∆µν∂ν projects gradients
orthogonal to uµ.

We take the ansatz

f (1) = −f (0) ϕ(p), ϕ(p) = Bµ(p)∇µ

(
µ

T

)
. (2.69)

From the Boltzmann equation, using

pµ∂µf (0) = f (0)
[
−
(

pµuµ − µ

T

)
pν∇ν

(
µ

T

)
+ · · ·

]
, (2.70)
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we equate terms and obtain

Bµ(p) =
τR

T (p · u)
(pµ − huµ)

(
p · u − µ

T

)
. (2.71)

The heat flow is then

qµ = ∆µ
ν

∫
d3p

(2π)3E
pν δf = −∇α

(
µ

T

)∫
d3p

(2π)3E
(pµ −huµ)(pα −huα)f

(0) τR

T (p · u)

(
p · u − µ

T

)
(2.72)

such that after evaluating the tensor structure and taking into account isotropy and
orthogonality to uµ, the heat conductivity becomes

κ =
τR

3T 2

∫
d3p

(2π)3E2 (p · u − h)2 (p · u − µ)2 f (0). (2.73)

This expression vanishes in equilibrium and grows with relaxation time and particle
energy, as expected.

Our Analogous Expansion

Inspired by this method’s success, work has been done (Wright and Hawke, 2019;
Wright and Hawke, 2020; Hatton and Hawke, 2024) in applying this method to
describe a system where a dissipative source acts rapidly to relax the solution towards
equilibrium. For the MIS formulation of dissipative hydrodynamics, we may indeed
have a source of this form, provided that the relaxation timescales {τ} are small. In
this case, we consider the forms of the source terms to motivate an ansatz for the
dissipative variables which is a series expansion in the timescales on which they act.
Up to first order, this is:

q = qNS + τqq1 + O(τ2
q ) (2.74a)

Π = ΠNS + τΠΠ1 + O(τ2
Π) (2.74b)

π = πNS + τππ1 + O(τ2
π) (2.74c)

where we have chosen to omit the indices for the heat flux vector and shear viscosity
tensor and at zero’th order in the timescales we have the Navier-Stokes form for the
dissipative variables. We must solve for the form of the dissipative variables at
first-order in the timescales. Making this substitution eliminates the reciprocal
timescales that appear in the coefficients of our source terms in the MIS equations,
removing their stiffness - see section 3.5 for a discussion of why this is numerically
helpful. This substitution is only accurate when {τ} ≪ 1 and we expect deviations
from the ‘true’ solution when this is not the case.
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Numerical Methods

The complexity of the world we live in makes analytic solutions to even simple-looking
systems intractable. Even when all the underlying physics is well-understood,
accurately modelling a real-world scenario is challenging with pen and paper.
Numerical methods take on many forms but all seek to approach the ‘true’ solution to
a problem with the precision & accuracy needed to make the answer meaningful and
the method predictive. They do this whilst circumventing the parts of the problem
that make an analytical, closed-form solution impossible.

One of the oldest and most tedious examples of a numerical method is that of
Archimedes, who drew circles and regular polygons inscribed inside them with
increasingly many sides in an effort to arrive at an accurate and precise value of π.
Incredibly, mathematicians could not rid themselves of this painstaking process until
the genius of Isaac Newton produced an analytic approach using an infinite series to
arrive at a value for π - still a numerical method.

In modern science, the complexity of systems we wish to model numerically mandates
use of computers, often “supercomputers". We are grateful for access to Southampton
University’s High Performance Computing (HPC) clusters, Iridis 4 & 5. They have
allowed us to run the simulations that form the basis of the results presented in this
thesis. For the numerical evolution of our fluid models, we make heavy use of the
METHOD (https://github.com/AlexJamesWright/METHOD) codebase originally
developed by Alex James Wright as part of his PhD thesis work and extended for our
purposes here (https://github.com/MarcusJHatton/METHOD).

This codebase implements modern numerical methods in order to solve a hyperbolic,
balance-law form of the relativistic hydrodynamic equations. In the following section,
we will give a fairly pedagogical introduction to tackling these types of problems, and
then discuss in further detail their specific implementation in METHOD. For a
comprehensive review of numerical hydrodynamics in special relativity, see Marti and
Mueller, 1999.

https://github.com/AlexJamesWright/METHOD
https://github.com/MarcusJHatton/METHOD
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3.0.1 Numerical Schemes for Relativistic Viscous Hydrodynamics in
Astrophysics

Relativistic viscous hydrodynamics has become an essential framework for modeling
high-energy astrophysical phenomena, including neutron star mergers, accretion disks
around black holes, and core-collapse supernovae. In such environments, relativistic
speeds, strong gravitational fields, and dissipative processes like shear and bulk
viscosity, as well as heat conduction, must be accurately captured. Solving the
relativistic viscous equations numerically is challenging due to their
hyperbolic-parabolic structure and the stiff relaxation dynamics introduced by causal
dissipative theories. High-resolution shock-capturing (HRSC) techniques are standard,
using Riemann solvers (e.g., HLL, HLLE, HLLC) and spatial reconstruction schemes
such as MUSCL, WENO, or PPM to handle shocks and steep gradients without
generating spurious oscillations (Marti and Mueller, 1999; Rezzolla and Zanotti, 2013).

To preserve causality and stability in relativistic settings, viscous effects are often
implemented via Müller–Israel–Stewart theory or its modern generalizations, such as
the Denicol–Niemi–Molnar–Rischke (DNMR) (Denicol, Niemi, et al., 2012)formulation.
As already seen, these theories may introduce relaxation equations for the shear stress
tensor πµν , bulk viscous pressure Π, and heat flux qµ which can become stiff and often
require implicit-explicit (IMEX) Runge–Kutta schemes or operator splitting methods
to evolve them stably.

3.1 The Balance-Law Form of Hyperbolic Hydrodynamic
Equations

As discussed in section 2.2.2, the pair of equations governing conservation of mass and
stress-energy may be manipulated into a hyperbolic, flux-conservative form -
commonly, the “Valencia” formulation (Banyuls, Font, et al., 1997; Antón, Zanotti,
et al., 2006). This allows for the application of high resolution shock capturing
methods (Ma, 2001; Marti and Mueller, 1999) whose fundamental property is the
ability to accurately solve Riemann problems when discontinuous fluid data arises in
the numerical simulation1. Following the format of LeVeque, 2002, this balance-law
form reads

∂tU(w) + ∂iFi(U) = S(U) (3.1)
1Using a flux-conservative form also has important numerical implications due to a pair of powerful

theorems: Lax-Wendroff (1960) and Hou-LeFlock (1994). The first essentially guarantees that the
function to which the numerical method converges is indeed a solution to the original conservation
law. The second says that non-conservative formulations to not converge do the correct solution in the
presence of shock waves.
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where U is the conserved vector, a function of the primitive fluid variables, w, and F
and S are the flux and source vectors, respectively, which may be thought of as
functions of either the conserved variables, or directly as functions of the primitive
variables. Without loss of generality, we may assume (or rather manipulate the source
and flux vectors such that) all spatial derivatives are contained within the flux vector.
Then, when we write the balance-law as

∂tU(w) +

(
∂Fi

∂U

)
∂iU = S(U), (3.2)

where the Jacobian, J i(U) := ∂U Fi(U), governs the propagation speeds of information
within the fluid. More technically, a perturbation to the jth component of U travels at
speed λj in the ith direction within the fluid, where {λj}i is the set of eigenvalues of
the Jacobian, J i. If all these eigenvalues are real and distinct, the system is said to be
strictly hyperbolic, and the perturbation propagation or ‘sound’ speeds within the fluid
are physical. If the eigenvalues are such that |λmin| ≪ |λmax|, the system is said to be
stiff as dynamics will occur across a wide range of time and length-scales, making it
difficult to capture the full spectrum of physics involved in the problem. This issue will
come to bear in our implementations of dissipative hydrodynamics, as seen most
clearly in section 4.2.

Note that in this thesis we will work with a number of non-zero source vectors which
contain temporal & spatial derivatives. These are generally small in value when
compared to the flux vector so will make minor alterations to the characteristic speeds
of information travel from their non-sourced values. For the models of relativistic,
dissipative hydrodynamics presented in sections 2.2.1.5 and 2.2.1.6, analytic
expressions for the eigenvalues of the Jacobian cannot reasonably be found. Instead,
the effects of altered propagation speeds will be seen in the primitive values. However,
for the reduced models presented in section 4.1, analytic expressions are obtained for
the characteristic speeds.

To solve a balance-law system of Dissipative Hydrodynamic (DHD) equations
like (3.1), we apply the following series of steps:

1. Discretize our spacetime using foliations: space-like hypersurfaces with
perpendicular time-like vectors that describe the direction of evolution of time.

2. These three-dimensional hypersurfaces are then discretized themselves when
living in the memory of a computer, by a spatial grid spanning three dimensions.
In this thesis we work only with Cartesian coordinates. The grid contains
cuboid-shaped with sides of lengths ∆x, ∆y and ∆z and we take time-steps
forward of size ∆t.
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3. Across the first hypersurface at t = 0, specify initial data for the primitive
variables. From these, calculate the initial state, flux and source vectors (U, F, S).

4. Calculate the fluxes through the cell interfaces (spatial derivatives of the flux
vector, ∂iFi(U)). This typically requires reconstruction of the flux vector at the
cell edges.

5. Use a time integrator to progress the system (specifically, the state vector) to a
later time.

6. Apply boundary conditions to cells within the ‘ghost-zones’. Ghost cells are
additional cells added in the exterior of our regular (interior) domain. They allow
both boundary conditions to be applied, and derivatives to be calculated, to the
edges of the interior region.

7. Perform a conserved-to-primitive transformation to obtain updated values of the
primitive variables, allowing this iterative process to start again and continue
until an end-time is reached.

We write the series of state vectors that we obtain in this process as Un, where the
subscript is an integer label for the current iteration, i.e. Un ≡ U(tn) and
tn+1 = tn + ∆t. Similarly, Fi ≡ F(xi), where the subscript now labels a particular cell
in space and all cells together form a grid over the whole spatial domain of our
problem. How exactly the time and spatial derivatives are calculated in a numerical
way varies greatly and much work has been devoted to doing this in an efficient and
accurate manner, as one would expect when it is the crux of the numerical method.
Next, we will expand upon the series of steps described above and cover the pertinent
points for our purposes.

Below, we will introduce a finite-difference method for solving a PDE, where the
spatial derivatives are calculated by taking differences between the values of discrete
variables. An alternative is to use finite element methods, or the closely related
spectral methods. These represent the solution as a sum of basis functions
(trigonometric functions or Legendre polynomials, for instance) which is substituted
into the PDE and the coefficients of the basis functions are calculated over time to
solve the system. Whilst finite element methods typically involve compact support,
meaning that the basis functions are non-zero (and hence the variables connected) only
over local sub-domains, spectral methods have global support. Because of this,
spectral methods can give exponentially-convergent error with resolution for smooth
solutions, giving highly accurate results. However, their inability to capture shocks
renders them impractical for our desired applications here. They have been used in
codes written to solve the spacetime evolution in black hole mergers, for instance by
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the SpEC2 code employed by the Simulating Extreme Spacetimes collaboration. For a
review, see Canuto, Hussaini, et al., 2007.

3.2 A Simple Numerical Scheme

One simple finite-difference scheme is constructed using first-order-in-time
forward-differencing for the time differential and second-order-in-space
central-differencing for the spatial derivatives. Then, in one spatial dimension,

∂Un

∂t
≈ Un+1 − Un

∆t
(3.3)

and
∂Fi

∂x
≈ Fi+1 − Fi−1

2∆x
(3.4)

so that the numerical equivalent of (3.1) using this forward-time, centered-space
approximation (“FTCS”) is

Un+1,i ≈ Un,i +
∆t

2∆x
(Fn,i+1 − Fn,i−1) + ∆t Sn,i. (3.5)

This gives an explicit scheme for obtaining the solution (Un+1,i) for the i’th cell at
the (n + 1)’th timestep because it may be performed given information wholly
contained within the n’th timestep. An example of an implicit scheme is the
backward-time centered-space or “BTCS" method which has the form

Un+1,i ≈ Un,i +
∆t

2∆x
(Fn+1,i+1 − Fn+1,i−1) + ∆t Sn+1,i. (3.6)

Because this scheme requires knowing Fn+1(Un+1) to calculate Un+1, one must solve
a set of nonlinear equations at each timestep to obtain the updated solution. This is
computationally expensive. However, it is guaranteed to be stable and convergent. In
contrast, the explicit scheme is only guaranteed to be stable and convergent if the
Courant-Friedrichs-Lewy (CFL) condition is met. This can be written in a general
form as

C ≡
∣∣∣∣ ∂F
∂U

∣∣∣∣ ∆t

∆x
≤ Cmax (3.7)

where C is the Courant number and the partial differential represents the advection
velocity of the fluid. The maximum allowed Courant number, Cmax, is dependent on
the numerical method used to solve the system, with implicit schemes typically
permitting larger values then explicit ones (≈ 100 compared to ≈ 1). Meeting this
condition can force us to take very small timesteps, especially for a high-resolution grid
of cells. For example, to double the resolution of a simulation in three spatial
dimensions, the computational cost is increased by a factor of 24 (three factors of 2

2www.black-holes.org
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come from doubling the number of cells along each axis and the fourth comes from
needing to halve the timestep’s size to continue to meet the CFL condition)!

3.3 Riemann Problems

The simple schemes introduced above already present a number of questions, some
more immediate than others. Firstly, can we make better numerical approximations for
the temporal and spatial derives than simple first-order ones that converge more
sharply with increasing resolution. In mergers (and heavy ion collisions, supernovae,
jets etcetera) we expect sharp gradients in primitive quantities to form that may
present problems for the simple low-order, finite-difference approximations to spatial
derivatives introduced above. Even without the presence of physical discontinuities,
our discretization of space means that the cell-averaged values of variables will jump at
the interfaces between cells. This represents a type of Riemann problem, a class of
problems that involves two piecewise constant states separated by a sharp interface.
Given the inapplicability of the strong-form of the balance-law equation (3.1) when
discontinuities are present, we consider instead the weak-form where we integrate over
the cell’s domain from left (xL) to right (xR) interface. We continue to work in one
dimension and drop our source so that, without loss of generality,

d

dt

∫ xR

xL

U(t, x)dx = F(U(t, xL)) − F(U(t, xR)) (3.8)

Across a shock with position X(t) located between xL and xR, we then have

dX(t)

dt
(UL − UR) = (FL − FR) (3.9)

where dX/dt is the speed of propagation of the discontinuity. Riemann solvers are
usually part of modern High Resolution Shock Capturing (HRSC) methods which are
used in relativistic hydrodynamic codes - see Ma, 2001. They maintain high (2nd to
4th) order accuracy in smooth flows and preserve stability (with first order accuracy)
at discontinuities. First, the left (U(t, xL)) and right (U(t, xR)) states are
reconstructed - see section 3.4. This is often done using a Total Variation Diminishing
(TVD) scheme. The total variation (TV) of a scheme is defined as

TV (Qn) =
∑

j

∥Qj+1(t
n) − Qj(t

n)∥ (3.10)

and a TVD scheme then satisfies

TV (Qn+1) ≤ TV (Qn) (3.11)
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Figure 3.1: Wave pattern for the Riemann problem applied to a fluid with initial left
and right states (L, R) taken from Harpole, 2018. The initial discontinuity decays into
two non-linear waves (W←, W→) between which there are two new constant states (L∗,
R∗) separated by a contact discontinuity C. This wave pattern will be clearly seen in the
shocktube test cases presented in section 4. The initial data for these tests essentially
represent large-scale Riemann problems where W← is a rarefaction wave and W→ is a

shockwave.

where
Qn

i =
1

∆xi

∫ x
i+ 1

2

x
i− 1

2

U(tn, x)dx (3.12)

is the cell-averaged value of the conserved state vector. Schemes that are TVD
minimize the onset of spurious or unphysical oscillations at discontinuities Harten
(1983). Methods in which the stricter, local condition

∥∥Qn+1∥∥ ≤ ∥Qn∥ is also satisfied
are known as strong stability preserving (SSP).

Solving Riemann problems exactly is time–consuming, particularly in the case of
multidimensional special-relativistic hydrodynamics where the Lorentz factor couples
the set of equations together. Typically, as a far faster yet still highly accurate
alternative, approximate Riemann solvers are used. Early developments were made
by Roe, 1981, where an eigen-decomposition of the Jacobian is used to track the
travelling waves present in the system. This is prohibitively costly for large systems of
equations such as those used in relativistic, dissipative hydrodynamics. Many
alternatives exist, and in section 3.4 we outline the Lax-Friedrichs approach. For a
review see, for example, Marti and Mueller, 1999.
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3.4 Flux Methods

The numerical fluxes (∂iFi(U)), which are derivatives of the flux vector, are required
to evolve the system given by eq. (3.1). We can calculate the net flux through the jth

cell, Fi
j (U), by considering the fluxes that are both entering and leaving the cell

through its left and right edges. Dropping the spatial-direction index superscript, we
write these as {FL(U), FR(U)} ≡ {Fj− 1

2
(U), Fj+ 1

2
(U)}.

Because the values of the state and primitive variables are defined at cell centres, we
must perform reconstruction to be able to calculate the flux vector at the cell
interfaces where mass/energy/momentum flows between cells. This may be done either
by first reconstructing the state variables at the cell faces, Uj− 1

2
, Uj+ 1

2
, and then

calculating the fluxes from them: Fj− 1
2
= F(Uj− 1

2
), Fj+ 1

2
= F(Uj+ 1

2
); or, by directly

reconstructing the fluxes themselves at the cell faces:
Fj− 1

2
= F(. . . , Fj−1, Fj , . . . ), Fj+ 1

2
= F(. . . , Fj , Fj+1, . . . ) using interpolation.

The flux vector splitting (FVS) technique, originally proposed by Shu, 1998, opts for
the latter approach. FVS is relatively inexpensive, simple to implement and robust. It
is constructed to minimise numerical oscillations at shocks when applied with
weighted, essentially non-oscillatory (WENO) reconstruction methods which were first
introduced by Liu, Osher, et al., 1994. The specific implementation in METHOD will
be outlined here.

To calculate the inter-cell fluxes, we split the flux at the cell boundaries into upwind
(+) and downwind (−) components, which are oppsite in sign and considered to be
entirely right- and left-moving, respectively. To do this, we use the Lax-Friedrichs flux
splitting approximation, which mixes the overall contribution to the flux between the
flux vector and the state vector. We can ensure the positivity/negativity of each
contribution by writing F±j = 1

2 (Fj ± αUj) such that Fj = F+
j + F−j . The coefficient α

introduces an artificial viscosity that scales with the size of the jump in the conserved
variables–this smooths shocks and damps discontinuities. One normally defines α as
being the maximum wave-speed of the system, α = maxp |λp| with λp as the
pth-eigenvalue of the Jacobian of the system. In practice, it is therefore the fastest
wave-speed contained within the stencil used to apply the particular order of WENO
method chosen. However, for simplicity, we set α = 1, corresponding to light
propagation speed, admittedly adding some unnecessary additional diffusivity but
ensuring sufficient damping at discontinuities.

Applying this at the cell boundaries, we get

Fj+ 1
2
= F+

j+ 1
2
+ F−

j+ 1
2
, (3.13)

Fj− 1
2
= F+

j− 1
2
+ F−

j− 1
2
, (3.14)
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where we must construct both the upwind and downwind fluxes at each face using a
WENO scheme. For a second-order WENO scheme this means that

F+
j+ 1

2
= WENO(F+

j−2, F+
j−1, F+

j ), (3.15)

F−
j− 1

2
= WENO(F−j+1, F−j , F−j−1). (3.16)

Finally, we can write the total net flux through the jth cell as the difference between
the fluxes at each of its cell faces:

Fj = Fj− 1
2

− Fj+ 1
2
. (3.17)

3.5 Time Integrators

Time integrators advance the state of a numerical system forward in time. They are
applied to an ordinary differential equation (ODE) or partial differential equation
(PDE) of the form

dQ(t, x)
dt

= L(Q(t, x)) or ∂Q(t, x)
∂t

= L(Q)(t, x), (3.18)

where L(Q) is the sum of the flux and source terms, known colloquially as the
‘right-hand side’ (RHS) of the system. There are different classes of scheme used to
solve this system, useful in different regimes.

The most common distinction is that of explicit vs. implicit. If Q(t, x) is the current
state of the system, then at a small timestep ∆t later, the solution is simply
Q(t + ∆t, x). An explicit method solves the equation

Q(t + ∆t, x) = F (Q(t, x)) (3.19)

whilst an implicit method solves the equation

G (Q(t, x), Q(t + ∆t, x)) = 0. (3.20)

In words, an explicit method performs an update to the next time using an algorithm
that relies on information wholly known at the current time. Whereas an implicit
method performs an update by using a root-finding algorithm involving information at
the current and the next time. The root is then the solution at the next time.
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3.5.1 Explicit Schemes

Some of the most popular explicit schemes for discretized time integration are
Runge-Kutta (RK) methods, which involve a series of Euler substeps that together
amount to a whole timestep. Many have have proven to be strong stability
preserving (Gottlieb and Shu, 1998; Gottlieb, Ketcheson, et al., 2009) and can be
written in the general form

Q(0) = Qn, (3.21a)

Q(i) =
i−1∑
k=0

[
αikQ(k) + ∆tβikL(Q(k))

]
, (3.21b)

Qn+1 = Q(m) (3.21c)

where i = 1, 2, . . . , m and m is the number of sub-timesteps taken by the RK scheme,
whilst αik, βik are positive constants. One example of an “RK2” scheme (second-order,
Runge-Kutta) is given by

Q(0) = Qn, (3.22a)

Q(1) = Q(0) + ∆tL(Q(0)), (3.22b)

Qn+1 = Q(2) =
1
2
[
Q(0) + Q(1) + ∆tL(Q(1))

]
(3.22c)

such that the non-zero coefficients are α10 = 1, α20 = α21 = 1
2 and β10 = 1, β21 = 1

2 .
METHOD has a number of higher-order integration techniques implemented into it,
such as third-, fourth- and fifth-order RK schemes. For non-stiff sources, we may
simply sum the numerical flux approximation and source terms to form the ‘right-hand
side’ (L(Q)).

Butcher tableaus can be used to summarise Runge-Kutta methods, both explicit and
implicit. They provide a table for the coefficients of the form where for explicit

c1 a11 a12 . . . a1s

c2 a21 a22 . . . a2s
...

...
... . . . ...

c2 as1 as2 . . . ass

b1 b2 . . . bs

Table 3.1: Butcher tableau table used to concisely summarise Runge-Kutta methods.

methods the coefficient matrix [aik] is lower triangular. For example, the explicit
forward-Euler method used in section 3.2 has the Butcher tableau shown in table 3.2
whilst the implicit backward-Euler method has the tableau shown in table 3.3. A more
complex case is the ‘classic’ RK4 method which has the tableau shown in table 3.4.
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0 0
1

Table 3.2: Butcher tableau for the explicit forward-Euler method.

1 1
1

Table 3.3: Butcher tableau for the implicit backward-Euler method.

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 1/3 1/3 1/6

Table 3.4: Butcher tableau for the ‘classic’, explicit RK4 method.

3.5.2 Implicit Schemes

Firstly, let us demonstrate the power of implicit methods when the timescale that the
‘right-hand side’ (RHS) acts upon is very small. Taking our simple ODE of the form

dQ
dt

= L(Q) (3.23)

we may rewrite it as
dQ
dt

∼ −1
τ

Q (3.24)

where τ is the timescale upon which the RHS acts. A single explicit Euler step gives a
recursive update equation of the form

Qn+1 = Qn − ∆t

τ
Qn (3.25)

such that the final solution after N timesteps is

QN =

(
1 − ∆t

τ

)N

Q0. (3.26)

From this expression we can see that the solution diverges when τ ≪ ∆t and for
stability we require τ ≳ ∆t. Sometimes this necessitates us to take such small
timesteps that the computational cost of the simulation makes it unfeasible. Let us
contrast this result with that where, instead, we take implicit Euler steps. Now,

Qn+1 = Qn − ∆t

τ
Qn+1 (3.27)

which gives the final form

QN =
Q0(

1 + ∆t
τ

)N
. (3.28)
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The solution is now bounded and the scheme is stable, unconditionally. However, large
timesteps will still lead to large numerical errors. Many implicit schemes require a
root-find for the solution at each timestep because they produce a non-linear equation
for the update step. This means they can become very costly but are still generally
superior to explicit schemes for fast-acting fluxes and/or sources.

3.5.3 IMEX Schemes

In many systems, physical processes are occurring on a wide range of timescales. For
instance, the reactions taking place in the hot nuclear matter created in a BNS merger
are occurring many orders of magnitude faster than the dynamical timescales of the
bulk fluid motion. It can be difficult for numerical methods to simultaneously capture
both the fast- and slow-acting processes in a stable and accurate way. For problems
like these, a number of semi-implicit time-integrators known as IMEX
(Implicit-Explicit) schemes have been developed (Pareschi and Russo, 2005). These
evaluate the minimal required set of ‘fast terms’ using an implicit scheme and the rest
using an explicit scheme. For our purposes, this typically means evaluating the fluxes
explicitly and source terms implicitly. The large, fast-acting source terms we will
encounter are due to dissipative fluid effects. However, similar issues arise when
modelling electromagnetism or radiation paired with hydrodynamics.

Consider again the general ODE update form

dQ
dt

= L(Q). (3.29)

We can split the right-hand-side update term L(Q) into a slow-acting flux piece F(Q)

and a fast-acting source term S(Q), which acts on a timescale τ , such that

dQ
dt

= F(Q) + S(Q). (3.30)

Schematically, the IMEX update then looks like

Q(i) = Qn + ∆t

i−1∑
j=1

aijF(Q(j)) +
s∑

j=1
āijS(Q(j))

 , (3.31)

Q(i) = Qn + ∆t

 s∑
j=1

bjF(Q(j)) +
s∑

j=1
b̄jS(Q(j))

 (3.32)

where aij , āij are the elements of an s × s matrix and bj , b̄j are the elements of a vector
of length s, with s being the total number of implicit stages used in the scheme. In
general, we may classify a strong-stability-preserving IMEX scheme using the notation
SSPk(s, σ, p) where k is the order of the SSP scheme and s and σ are (respectively)
the number of implicit and explicit stages of the IMEX scheme, whilst p is its order of
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convergence in ∆t. The coefficients are derived by comparing the solution with the
Taylor expansion of the exact solution, as in other RK methods.

METHOD implements a number of higher-order IMEX schemes such as the
SSP2(2,2,2) implicit scheme which has the following tableaux for the explicit
coefficients aij , bj and the implicit coefficients āij , b̄j , respectively. These lead to the

0 0 0
1 1 0

1/2 1/2

Table 3.5: Butcher tableau of the explicit coefficients aij , bj for the SSP2(2,2,2) IMEX
scheme.

c c 0
1-c 2-c c

1/2 1/2

Table 3.6: Butcher tableau of the implicit coefficients āij , b̄j for the SSP2(2,2,2) IMEX
scheme. c = 1 − 1√

2 .

evolution equation

Qn+1 = Qn + ∆t
[
F(Q(1)) + F(Q(2))

]
+ ∆t

[
S(Q(1)) + S(Q(2))

]
(3.33)

in which

Q(1) = Qn + γ∆tS(Q(1)), (3.34a)

Q(2) = Qn + ∆tF(Q(1)) + ∆t
[
(1 − 2γ)S(Q(1)) + γS(Q(2))

]
. (3.34b)

Determining the solution to equation 3.33 requires a non-linear root-find due to the
construction of the implicit scheme. The most common tool for this purpose is an
N -dimensional secant method (Balsara, 1994; Palenzuela, Lehner, et al., 2009), where
an estimate of the stage one and two solutions are given, Q(1,2)∗ , and the Jacobian is
approximated via a finite-difference method. A satisfactory estimate for the interstage
solutions is the solution at the previous timestep, Qn.

It is important to notice that the implicit source term is a function of the guess
Q(1,2)∗ , and that the source is computed using both the values of the conserved and
primitive variables. As a result, not only must one determine the primitive variables at
each time step for the source and flux contribution of equation 3.33, but also for every
new estimate of the solution used in the root-find presented in equations 3.34 until a
root has been found. The recovery of the primitive variables is outlined in section 3.8
and model specific, but for dissipative, relativistic fluids will involve an additional
four-dimensional Newton method. As a result of this nested root-find, the IMEX
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scheme naturally requires a significant amount of additional computation compared to
fully explicit schemes.

We can see how the need for a semi-implicit integration scheme has dramatically
increased the required amount of computation for each time-step. It is also worth
noting that the size of the conserved vector is problem dependent. Models of an ideal,
single-fluid have size N = 5, whereas the non-ideal Müller-Israel-Stewart model we
consider here has size N = 15. One advantage of the other non-ideal models we
consider is that they have size N = 5 as in the ideal case, but with increased
complexity. Multi-fluid models or the inclusion of GR will increase the system size
further. For these larger systems, the scheme described above will require substantially
more computation per timestep, especially for larger systems of equations, but in stiff
regions should relax the CFL condition to such a degree that the total execution time
is still less than for explicit schemes.

See Takamoto and Inutsuka, 2011 for an example of a closely related but somewhat
different approach to evolving the stiff equations of the MIS model. There, they use a
Strang-splitting (Strang, 1968) technique to separate the equations of motion into their
inviscid and dissipative parts. The assumption that the dissipative relaxation
timescales are very short allows one to approximately solve the relaxation part of the
dissipative evolution equations analytically. This means that they can avoid using an
implicit solver for the fast-acting dissipative part of the system, and the inviscid part
of the system may also be evolved using explicit time integration as usual.

3.6 Boundary Conditions

Any computational domain is finite in size and often comes to a rather abrupt end at
the edges of the space it covers. Whilst in reality the physical system would define
what happens at its boundaries, in simulations we must try to capture these ‘boundary
conditions’ (BCs) numerically.

This typically involves padding the actual domain with a layer of several ‘ghost cells’
that are used to impose BCs in one of a number of ways. With METHOD, we make
use of two types of BCs: outflow and periodic.

Outflow BCs simply copy the final edge cell’s value within the domain into all of the
ghost cells outside that edge. Mathematically, this means that with a rectangular
domain, the ghost cells padded in the x-direction obey

U−Ng+i,j,k = U1,j,k (3.35)

at the left edge and
UNx+i,j,k = UNx,j,k (3.36)
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at the right edge, for i = 1, 2, ..., Ng and 1 ≤ j ≤ Ny, 1 ≤ k ≤ Nz where Ng is the
number of ghost zones. The same copying is performed in the y, z directions.

Periodic BCs mean that the domain effectively wraps-round onto itself, and the
boundaries of opposite sides of the domain are connected. The ghost cells of one side
are filled with the values of variables from the cells inside the domain on the opposite
side, and vice versa. Similarly, this gives

U−i,j,k = UNx−i,j,k (3.37)

at the left edge and
UNx+i,j,k = Ui,j,k (3.38)

at the right edge. The same mirroring is performed in the y, z directions.

For a one-dimensional domain, the number of ghost cells is simply 2Ng. For a
two-dimensional domain, it is 2(Nx + Ny)Ng and for a three-dimensional domain it is
2(NxNyNg + NxNzNg + NyNzNg). One can see that the amount of memory allocated
to ghost cells scales rapidly with dimensionality and domain size. Still, the total
memory allocated for the ghost cells is generally small compared to the memory
required for the bulk of the domain (∼ Ng/NX).

However, if the domain is split up into sections that are worked on separately and
concurrently by processors, the ghost zones and their memory usage present a
significant complication and problem. This is because every section needs to have
access to its neighbours’ adjacent cells, effectively increasing the number of ghost cells
dramatically and, crucially, requiring their cell values to be frequently communicated
between the processors.

3.7 Parallel Programming

The immense computational cost of BNS merger simulations necessitates the splitting
up of the total workload between multiple computer processor units (CPUs) that work
simultaneously, typically on separate patches of the spatial domain, which are then
stitched together again to produce the final output. Indeed, even the flat spacetime,
hydrodynamic-only simulations we present the results of in this thesis are run using
parallel computation such that they take hours rather than days to run.

METHOD is built with both Open Multi-Processing (OpenMP) and Message Passing
Interface (MPI) software. This means that on the Iridis5 Supercomputer here at the
University of Southampton, we may take advantage of the compute cluster architecture
to run on many multi-core nodes at once. OpenMP handles parallelism between cores
within a node, whilst MPI handles parallelism between nodes.

https://www.openmp.org/
https://www.open-mpi.org/
https://www.open-mpi.org/
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We typically perform parallel runs on 40 physical cores. Using 40 cores doesn’t quite
give a 40-fold speed-up, mainly because of the additional overheads associated with
communication between cores. In fact, for very large scale (such as exascale)
simulation, this becomes the limiting factor in achieving speed-up with parallel
computing.

METHOD also implements the Compute Unified Device Architecture (CUDA)
software to utilize the power of Graphical Processing Units (GPUs). GPUs allow one
to very efficiently perform an operation on many individual pieces of data
simultaneously - an example of the Single Instruction Multiple Data (SIMD) parallel
processing paradigm. Not all parts of a code are suitable for parallelization in this way
but METHOD implements routines to use GPUs for the conserved-to-primitive
transformation, time-integration and flux reconstruction/calculation.

3.8 Primitive Variable Recovery

Another crucial aspect of any numerical evolution scheme is known as primitive
variable recovery or, colloquially, the “C2P" (conserved-to-primitve) scheme. This is
how one recovers the primitive fluid variables, in our case
w = {p, ρ, n, v1, v2, v3, Π, qµ, πµ

ν }, from the state vector, U(w), so that we may then
calculate the succeeding flux vector, F(w). In some cases, this may be done using a
closed-form analytic expression - see Pandya and Pretorius, 2021 or Pandya, Most,
et al., 2022b for instance where, within the BDNK formulation of first-order
hydrodynamics, use of a conformal fluid with a high degree of symmetry makes this
possible. In most cases, however, it requires a numerical iteration scheme: one guesses
the value of one of the primitive variables, in our case often pressure or a pressure-like
term, p̃; next, one uses the guess and a scheme involving the conserved vector’s
elements to solve for the suite of primitive variables; this includes a calculated value for
the guessed quantity, p̄, against which one can compare the initial guess. Typically, a
gradient descent root-finding method is used that solves for the zero of f(p̃) = p̃ − p̄.
In METHOD, a Newton-secant method is used.

Unsurprisingly, much work has gone into producing primitive recovery algorithms that
are robust (stable for a wide parameter space) and computationally inexpensive
(converge in a reasonable number of iterations). Primitive recovery may be avoided
entirely by using the approach taken in Aguayo-Ortiz, Mendoza, et al., 2018, where the
C2P scheme is swapped for algebraic manipulation of the balance-law form, but this is
accurate only to first-order in the primitive variables and non-convergent at shocks.
There has also been (perhaps unsurprisingly) recent work where machine learning
methods are used to perform primitive variable recovery (Dieselhorst, Cook, et al.,
2021). This shows promising results, for the exact equation of state we use here in fact!

https://developer.nvidia.com/cuda-zone
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The form of our conserved vectors for the models studied in this thesis suggested a
simple extension to the common recovery scheme used for the Euler equations (where
the pressure is guessed) but we have also implemented (see section 4.2.1) a modified
version of an alternative scheme from Kastaun, Kalinani, et al., 2021 which is further
explored in Kalinani, Ciolfi, et al., 2022. These schemes were developed in response to
recovery schemes failing for fast flows (and/or with strong magnetic fields present) and
have the advantages of proven single-limit convergence and the existence of a root
within a known interval. We have a testing setup for our recovery schemes that checks
convergence for parameter values covering the realm of physically-plausible ones by
beginning with known conserved quantities and ensuring we arrive back at them after
primitive recovery.

3.9 Summary

More details about the precise numerical schemes we employ will be given in chapter 4
once the models of hydrodynamics that we work with have been introduced. Our main
difficulty will be in resolving the physics occurring over a wide range of spatial and
temporal scales. Macroscopic fluid motion occurs at acoustic speeds governed by the
Jacobian of the flux vector (|∂F/∂U|) and our timestep limitations here will be set by
meeting the CFL condition necessary for stable evolution.

Microscopic dissipation typically occurs on much shorter timescales. From a physical
standpoint, these timescales should be set by the specific dissipation mechanism
occurring (or at least the one being modelled) which in turn sets the parameter values
used in the dissipative fluid description. For example, in the case of shear viscosity,
causality will naturally enforce a lower bound on the dissipation timescale of
τ ∼ (ρ + p)/η.

Here, stiffness becomes the issue. The Müller-Israel-Stewart model introduced in
section 2.2.1.5 (with simulation results in section 4.2) has evolution equations for the
dissipative variables with source terms proportion to 1/τ , the reciprocal of small
timescales. As seen earlier in section 3.5.2, numerical instability is introduced
whenever ∆t < τ . Using implicit time-integration methods can provide stability, but
overstepping the dissipation timescale still leads to causality violation and inaccurate
results. The Chapman-Enskog expansion, applied to the MIS model, does remedy this
problem but is only appropriate in the small-timescale limit and is only ever an
approximate model, albeit an accurate one.

Finally, the BDNK formulation introduced in section 7.1 ostensibly avoids this latter
constraint by not evolving the dissipative variables and instead provides constitutive
expressions for them. However, the time derivatives of primitive variables are solved
for in the conserved-to-primitive procedure and are proportional to either χ ≡ {ζ, κ, η}
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(the dissipation strengths) or reciprocal timescales, 1/τX , multiplied by changes in the
conserved quantities. Because of this, the stiffness is actually moved into the
conserved-to-primitive transformation, making it far more sensitive and unreliable.
This may still force us to take shorter timesteps in order to reduce the rate of
evolution of the conserved variables, coupling the two disparate systems once again.
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Chapter 4

Simulations with the
Müller-Israel-Stewart Model

This chapter presents results from our simulations of special-relativistic, dissipative
fluids using the formalism of Müller-Israel-Stewart Israel, 1976; Israel and Stewart,
1979.

4.1 Reduced MIS Models

In section 4.2, we will simulate the ‘full’ Müller-Israel-Stewart equations of motion.
However, it is instructive to develop a series of ‘reduced’ models beforehand. These
give us stepping stones to jump to along the way and let us gain insight into the effects
of each physical mode of dissipation in turn. In order to derive these reduced models,
we must first present the full MIS equations, and then apply simplifications to them.

We follow the considerable amount of previous work, such as that of Chabanov,
Rezzolla, et al., 2021; Takamoto and Inutsuka, 2011; Del Zanna, Chandra, et al., 2013;
Du and Heinz, 2020; Peitz and Appl, 1998; Peitz and Appl, 1999, and write the
equations of motion out here in part to fix notation. A balance-law equation is of the
form

∂tU + ∂iF(i) = S, (4.1)
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and in particular for the MIS model by

U =



D

Sj

τ

U

Yj

Zjk


=



nW

(ρ + p + Π)W 2vj + W (q0vj + qj) + π0j

(ρ + p + Π)W 2 + 2q0W − (p + Π − π00) − nW

nW Π
nWqj

nWπjk


, (4.2a)

F(i) =



Dvi

Si
j

Si − Dvi

Uvi

Yjvi

Zjkvi


, (4.2b)

S =



0
0
0

n
τΠ

(ΠNS − Π)
n
τq
(qj,NS − qj)

n
τπ
(πjk,NS − πjk)


(4.2c)

where we have followed the convention of the majority of the referenced papers and
ignored second-order (in derivatives) terms in the sources. Here we have
ρ = mn(1 + ϵ) being the energy density, m the mass per baryon (set equal to unity
from now onwards as we consider only single-species fluids), n the number density, and
ϵ the specific internal energy. The hydrodynamic pressure p is given by an equation of
state to close the system - here it is most convenient to calculate it as p ≡ p(n, ρ). For
simplicity, we fix a gamma-law equation of state such that the pressure is given by

p = (Γ − 1)mnϵ

= (Γ − 1)(ρ − mn). (4.3a)

We also have the spatial three-velocity vj and the Lorentz factor W = (1 − vjvj)−1/2,
which make up the four-velocity uµ = W (1, vj). The non-ideal terms are the bulk
viscous pressure Π, the heat flux qj , and the shear viscosity πjk. The heat flux and
shear viscosity are orthogonal to the four velocity on all indices, and the shear viscosity
is trace free, implying

q0 = vkqk, (4.4a)

π0j = vkπkj , (4.4b)

πj0 = vkπjk, (4.4c)

π00 = −πk
k . (4.4d)
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We need the spatial projections of the stress-energy tensor to get the fluxes, which
gives us the remaining flux term

Si
j = (ρ + p + Π)W 2vivj + W (qivj + qjvi) + (p + Π)δi

j + πi
j . (4.5)

Two more important thermodynamic quantities of interest are the specific enthalpy
h = 1 + ϵ + p/(mn) = (ρ + p)/(mn) and the temperature which is given simply by
T = p/n for our chosen EoS. We also define the thermodynamic inverse temperature
β = m/T . From these we can link the non-ideal timescales, τX = {τΠ, τq, τπ}, to the
non-ideal coefficients χ = {ζ, κ, η} through the relations

τΠ = ζβ0, (4.6a)

τq = κTβ1, (4.6b)

τπ = 2ηβ2 (4.6c)

where (see Hiscock and Lindblom, 1983, for example)

Ω = 3Γ − 5 + 3Γ
hβ

, (4.7a)

Ω∗ = 5 − 3Γ + 3(10 − 7Γ)
h

β
, (4.7b)

Ω∗∗ = 5 − 3Γ +
3Γ2h2β2

Γ − 1 , (4.7c)

β0 =
3Ω∗

h2Ω2p
, (4.7d)

β1 =

(
Γ − 1

Γ

)2 β

hp

(
5h2 − Γ

Γ − 1

)
, (4.7e)

β2 =
1 + 6h/β

2h2p
. (4.7f)

These parameters set the scaling relations between the dissipation strengths and
timescales. Whilst we have implemented these thermodynamic expressions and used
them in earnest, we find that for the purposes of numerical exploration and a clearer
control of our simulation parameters, we set the values of the timescales and strengths
independently, by-hand.

We need to specify the first-order “Navier-Stokes” terms to which the dissipative
system relaxes. These are

ΠNS = −ζΘ, (4.8a)

qj,NS = −κT (∂j log T + aj), (4.8b)

πjk,NS = −2ησjk. (4.8c)
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These are defined in terms of the non-ideal coefficients, the temperature, and first
order derivatives of existing variables. Specifically,

Θ = ∂µuµ, (4.9a)

aµ = uν∂νuµ, (4.9b)

σµν =
(
∂µuν + ∂µuν − 2

3ηµνΘ
)

(4.9c)

are the expansion, acceleration and shear of the 4-velocity respectively.

We have studied three reduced models: one for the heat flux; another for the bulk
viscosity; and a third for the shear viscosity. For each, we make a number of simplifying
assumptions before arriving at a two-equation model with a stiff source term present in
one of the equations. We then perform the Chapman-Enskog expansion which gives a
single equation that governs the evolution of the variable of interest for that particular
reduced model. In our case, this is either the temperature or the velocity. Lastly, we
make a comparison between numerical results obtained from simulating the toy
model’s original pair of equations with its Chapman-Enskog expansion equation.

4.1.1 Heat Flux

For our first reduced model, we want to arrive at a system of equations that govern
two intrinsically linked quantities: the temperature, T , of our fluid and the heat flux,
q, within our fluid. We work with a static fluid such that the 3-velocity and, hence, the
bulk and shear viscosity all vanish. All Lorentz factors become unity and the
orthogonality relation uµqµ = 0 means that q0 = 0. We treat our particle number
current, n, and hydrostatic pressure, p, as constants and hence the density, ρ, is now
purely a function of the temperature i.e. ρ ≡ ρ(T ) and may be scaled out of the
equations. After setting any remaining constant terms to one, we arrive at

∂tT + ∂iq
i = 0, (4.10a)

∂tqj =
1
τq
(qj,NS − qj). (4.10b)

We note that the acceleration term usually present in the heat-flux’s source will vanish
so that qj,NS → −κ∂jT and we obtain a rather simple pair of equations where the first
has no source and the second, the ‘Maxwell-Cattaneo’ equation (Cattaneo, 1948), has
no flux:

∂tT + ∂iq
i = 0, (4.11a)

∂tqj = − 1
τq
(κ∂jT + qj). (4.11b)
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4.1.1.1 Limiting case

We pause briefly to analyse the equilibrium behaviour of our toy model equations. In
the limit of infinitely fast dissipation, τq → 0, the heat flux also adopts its equilibrium
value so qj → qj,NS = −κ∂jT . This means the toy model reduces to the single equation

∂tT = κ∂i∂
iT . (4.12)

This is the heat equation, which is the standard linear parabolic equation, and the
limit that we expect to find. Some key features of interest are that the solutions are
continuous for t > 0 irrespective of the initial data, and that the speed of propagation
of information is infinite. This latter point is problematic for a theory that is meant to
represent something relativistic.

4.1.1.2 Cattaneo equation

Let us examine the speeds of wave propagation more closely. If we take the original toy
model (4.11) then we can rearrange it into a single second order equation as

∂ttT = −∂tiq
i =

1
τq

(
κ∂i∂

iT − ∂tT
)

. (4.13)

This is a hyperbolic equation, the telegraph or Cattaneo equation (Cattaneo, 1948).

We can compute the wave speeds of this equation by looking for travelling wave
solutions of the form T ∝ exp

{
i(ωt + klxl)

}
. The resulting dispersion relation is

τqω2 = κk2 + iω. (4.14)

The solutions are
ω =

1
2τq

(
i ±
√

−1 + 4κτqk2
)

. (4.15)

As κ, τq > 0 this should always be stable (the imaginary part is always positive). The
wavespeed (phase velocity) is given by the real part divided by the wave number.
There are two cases. When k2 < 1/(4κτq) the real part vanishes and the mode is pure
imaginary, and damped. For larger k the wavespeed is

| Re{ω}|
k

=

√
κ

τq
− 1

4k2τ2
q

. (4.16)

We see that this is bounded by
√

κ/τq, so the wavespeed is finite as expected. At the
cross-over point (4k2κτq = 1) the wavespeed vanishes.

The outcome of this is that we should expect κ ≲ τq in order to get a physical
(subluminal) wavespeed. This looks reasonable when we consider the thermodynamic
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relation between the dissipation size coefficient, κ, and the dissipation timescale, τq,
given in equation (4.6). This finding is analogous to that found for the full MIS system
with bulk viscosity by Bemfica, Disconzi, et al., 2019a, where the existence of a
minimum (and resolved) scale for τΠ is necessary in order to have well-posed evolution
equations.

Consider the wavespeeds for the whole (T , q) system, which we find by eigenvalue
analysis of equations (4.11) – see section 4.1.2 for more detail on this method. They
are zero when only the LHS is considered and

√
κ
τq

when the derivative on the RHS in
the definition of qj,NS is included. Again, this shows why κ

τq
must be sensibly bounded.

One possible numerical approach is to pretend that the timestep limit for the
hyperbolic step is set by the left-hand-side alone, and that some semi-implicit update
scheme will allow us to bypass the limit from the source term (even though it contains
a derivative). The question, for practical cases, is whether that is true: for the tests
considered here, it does seem to be.

4.1.1.3 Chapman-Enskog expansion

Restricting to one dimension for now, we will perform the Chapman-Enskog expansion
to reduce the two-equation system given by eq. (4.10a) & eq. (4.10b) to a single
equation.

We first write the non-ideal variable qj that we wish to eliminate from the system in
terms of its equilibrium value qj,NS = −κ∂jT and a correction term of order τq, so

qj = qj,NS + τqq
(1)
j . (4.17)

We can then write the pair of equations, to first order in τq, as

∂tT + ∂iq
i
NS = −∂i

(
τqq(1),i

)
, (4.18a)

∂tqj,NS = q
(1)
j . (4.18b)

By using the explicit form for the equilibrium value qj,NS = −κ∂jT we can write this
as

∂tT = ∂i

(
κ∂iT

)
− ∂i

(
τqq(1),i

)
, (4.19a)

−∂t (κ∂jT ) = q
(1)
j (4.19b)

to obtain an expression for q
(1)
j , but one which includes a temporal derivative.

For simplicity we will first assume that κ and τq are constants in time and space. By
commuting the temporal and spatial derivatives in eq. (4.19b), we can now substitute
the leading order form (zero’th order in τq) of the equation of motion for T ,
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eq. (4.19a), into the relaxation equation eq. (4.19b), to determine the correction
q
(1)
j = κ2∂

(3)
j T as purely spatial derivatives. Inserting this result back into eq. (4.19a),

and writing the result in one spatial dimension, we finally have the CE form

∂tT = κ
[
∂(2)

x T + κ2βq∂(4)
x T

]
+ O(τ2

q ). (4.20)

Note that this result is an evolution equation written purely in terms of the
temperature, T , and is half the size of the original system given by eq. (4.11). This
reduced model is non-stiff (as the source term is multiplied by the small timescale τq,
not by its reciprocal), but may lead to other numerical problems due to the higher
derivatives. In particular, like the heat equation, this form we obtain is also
non-hyperbolic and is not Lorentz-boost invariant. These features will hold true when
we apply the CE expansion method to the full MIS equations, whereby dissipation will
be modelled using only the primitive variables and their derivatives.

Equation (4.20) is essentially a power series expansion in {κ, τ}, at least while κ and τq

are treated as constant. When we (more realistically) let the coefficients depend on T ,
we get

∂tT = ∂x (κ∂xT ) + ∂x {τq [κ∂xx (κ∂xT ) + ∂T κ∂xT∂x (κ∂xT )]} . (4.21)

The constant coefficient form is linear and in a diffusion-retention equation form. That
is to say, the second-order derivatives represent diffusive effects that spread heat
isotropically and the fourth-order derivatives retain heat locally. The numerical
significance of these higher-order terms are described well in (Bevilacqua, Galeão,
et al., 2011).

4.1.1.4 Numerical Results

We now look at numerical results for the systems developed above. We use both an
implicit and an explicit integration scheme within the METHOD codebase to generate
these results. An explicit scheme without the Chapman-Enskog expansion would not
be stable for small values of κ and τq, so an implicit scheme is used. See section 3.5.1
and section 3.5.2 for a discussion of time-integration schemes.

The generic behaviour of the full system is shown in a two dimensional simulation in
figure 4.1. To directly compare the results of the Chapman-Enskog approximation and
the full scheme, we look at a one dimensional slice through these two dimensional
results. This is shown in figure 4.2. The results are visually indistinguishable, which is
encouraging. As the Chapman-Enskog expansion has eliminated the stiff source term,
the computation is significantly sped up. This will be quantified further in the toy
model for the bulk viscous pressure, section 4.1.2.4.
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Figure 4.1: The spreading of a spherically-symmetric hot “blob" by the heat flux,
using equations (4.11). The 2D grid is 128 × 128 cells in size and the simulation runs

until tfinal = 5 with κ = 1 × 10−3 and τq = 1 × 10−3.
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Figure 4.2: The widening of a top-hat temperature profile through dissipation by
the heat flux within our toy model, both with (dotted lines) and without (continuous
lines) the Chapman-Enskog expansion. There is excellent visual agreement. This is a

1D-slice view through the 2D domain seen in figure 4.1.
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4.1.2 Bulk Viscosity

Next, we will derive a toy model for a fluid that exhibits bulk viscosity – that is one
which resists the shearless compression or expansion of a fluid. One may gain a better
visual image of the action of bulk viscosity by considering its form in the Navier-Stokes
equations: ΠNS = −ζ∂µuµ; where the negative sign indicates its resistance to
divergences in the fluid velocity, scaled by a coefficient.

We set the shear and heat terms to vanish, but rather than working with a static fluid,
we work in the slow motion limit so that W → 1, but the 3-velocity does not vanish –
a necessary condition because the bulk viscosity depends on gradients in the fluid
velocity. In addition, we assume that Π ≪ ρ + p and n, ρ, p are all constant, giving
great simplification. In this case the continuity and energy equations become trivial,
and the momentum terms reduce as: Sj → vj ; U → Π; Si

j → vivj + Πδi
j . We are left

with

∂tvj + ∂i

(
vivj + Πδi

j

)
= 0, (4.22a)

∂tΠ + ∂i(Πvi) =
1

τΠ
(ΠNS − Π). (4.22b)

Finally we note that Θ → ∂kvk, giving

∂tvj + ∂i

(
vivj + Πδi

j

)
= 0, (4.23a)

∂tΠ + ∂i(Πvi) = − 1
τΠ

(ζ∂kvk + Π). (4.23b)

This is again a closed system with the same size as the heat flux case. It is slightly
more complex as the fluxes are nonlinear.

4.1.2.1 Limiting case

Again we look at the limiting case as τΠ → 0, giving Π → −ζ∂kvk. This reduces the
toy model to

∂tvj + ∂i(v
ivj) = ζ∂ik(δ

i
jvk). (4.24)

This is essentially the viscous Burger’s equation, only missing a factor of half in the
flux compared to its canonical form. In the limit as ζ → 0 we expect the standard
behaviour of Burger’s equation – shock formation being the key feature here. The
dissipative term modifies this, reducing any gradients and leading to the standard
travelling wave solutions. Our imposed simplifications seem to be consistent.
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4.1.2.2 Chapman-Enskog expansion

We again summarize the expansion about the equilibrium Π → −ζ∂xv, which gives (to
leading order in τΠ and reducing to one dimension)

∂tv + ∂xv2 = ∂x (ζ∂xv) + τΠ∂x

{
∂x (ζv∂xv) − ζ∂xxv2

}
. (4.25)

This simplifies slightly with constant ζ:

∂tv + 2v∂xv = ζ∂xxv + τΠζ (∂xv∂xxv − v∂xxxv) . (4.26)

The first term on the right hand side is a standard dissipation whilst the others are
more complex mixed terms that contain elements of propagation (∂xv), dissipation
(∂xxv) and dispersion (∂xxxv).

4.1.2.3 Wave Speeds

Let us determine the wave speeds of our bulk viscous toy model. We cannot take the
same approach as that for the heat flux toy model because the governing equations are
now non-linear in v and so determining a phase velocity from a dispersion relation will
not work.

Instead, start by considering the limit ζ → 0 in equations (4.23), in which case the
equilibrium value of Π, ΠNS , is automatically zero. We can see that equation (4.23b),
which governs the evolution of Π, has a characteristic wavespeed of v and constantly
drives Π towards its equilibrium value of zero. Then, from (4.23a), the characteristic
wave speed for the velocity becomes 2v. Given this, we expect the additional degree of
freedom provided by the re-introduction of Π to give us two wave speeds, both
functions of (Π, v), where each speed is a deviation from the “equilibrium wave speed”
values of 2v and v.

For a system of equations written in the vector form

∂tU + Λ(i)∂iU = S. (4.27)

where Λ is in general a matrix, the characteristic speeds in the i’th direction are given
by the eigenvalues of Λ(i). With this in mind, let us take equations (4.23) and work in
just one spatial dimension so that we have

∂t

(
v

Π

)
+

(
2v 1
Π v

)
∂x

(
v

Π

)
=

(
0

− 1
τΠ
(ζ∂xv + Π)

)
(4.28)

where v ≡ vx. Notice that the source vector S contains the derivative ∂xv but has been
initially left on the RHS of (4.28) because it is the one-dimensional version of the
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divergence term, Θ, which appears as a stiff source term that happens to contain
derivatives in the velocity. Now, moving it across to be incorporated into the Λ
matrix, we have

∂t

(
v

Π

)
+

(
2v 1

Π + ζ
τΠ

v

)
∂x

(
v

Π

)
=

(
0

− 1
τΠ

Π

)
. (4.29)

Solving for the eigenvalues of Λ gives

λ± =
3v

2 ±

√
v2

4 + Π +
ζ

τΠ
. (4.30)

which are our characteristic wave speeds. Taking the ideal equilibrium limits ζ → 0,
Π → 0 gives

λ± → 2v, v (4.31)

so we do indeed recover our original wave speeds of 2v and v. Now consider the effect
of the additional terms inside the square root of (4.30). The action of bulk viscosity is
to resist motion in the fluid, specifically the shear-less compression or expansion of a
fluid, so it seems logical that it would reduce the magnitude of fluid motion, but not
necessarily sound speed(s) within the fluid. In a full non-ideal hydrodynamic theory we
would expect the dissipation timescales and magnitude coefficients (τΠ, ζ) to be of the
same sign and the same order of magnitude. This modifies the wavespeed by a positive
quantity that may not be small in size compared to the dissipation variable itself (Π,
here).

Next, we note that Π may be both positive and negative. Consider its equilibrium
value of ΠNS = −ζ∂kvk: for uniform expansion it is negative; for compression it is
positive. For our 1D wave speeds to be purely real we require

(
Π +

ζ

τΠ

)
> −v2

4 . (4.32)

We can see now why some initial conditions (those with steep, positive velocity
gradients) are prone to instability: they give ΠNS a negative value which drives Π to
be negative, too. A steep, positive velocity gradient represents a fluid where the
downstream elements are moving faster than the upstream ones. Essentially, all
elements within the fluid are moving apart and at an increasing rate, not unlike the
currently accelerating expansion of the universe. In this scenario, one does not expect
the bulk viscosity to be able to act when its speed of propagation is less than that of
the fluid motion, which is perhaps represented by the relation above.

In conclusion, we note that the additional terms (Π, ζ
τΠ

) in (4.30) are capable of both
diverging and focusing the characteristic speeds, depending on the sign of (Π + ζ

τΠ
).
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Having calculated the eigenvalues of the system, let us consider their eigenvectors. Up
to a constant factor, they are given by

v± =

 −2
v ∓

√
v2 + 4(Π + ζ

τΠ
)

 (4.33)

where the ± subscript on v corresponds to the eigenvalues defined above. We see that
the characteristic information associated with non-zero non-ideal parameter values will
appear as a modification in the contribution of the non-ideal Π term.

4.1.2.4 Numerical Results

Figure 4.3 shows the effect of including bulk viscosity on the evolution of fluid which is
initially moving with uniform velocity. The moving fluid is surrounded by still fluid,
creating a ‘top-hat’ profile for the velocity analogous to the one for the temperature
seen in figure 4.2. In particular we see the behaviour expected from a (viscous)
Burger’s model: the formation of shocks and rarefactions, with the steep gradients
being attenuated in the non-ideal case.

We also include table 4.1 which contains results concerning run-times of the code for
the simulation above. We compare the relaxation model given by eq. (4.23b) (in one
dimension) with that produced using the CE expansion, given by eq. (4.26).

This shows a few different effects. Firstly, doubling the number of grid cells demands
twice as many calculations per timestep, but also halves the timestep size due to the
CFL condition, leading to a factor four increase in run-time. This is the case for both
models. Secondly, it is seen that the Chapman-Enskog expansion leads to significantly
faster execution times, by a factor between 2 and 3, in general. This is purely because
of the reduced system size - the numerical methods used are the same. Finally, this
speed-up between models is less when the run-time of the simulations is shorter. This
is because there is some computational cost in setting up the initial data and starting
the simulation, which is similar for both models.

4.1.3 Shear Viscosity

Finally, we will model a fluid that resists shear motions within itself which arise when
neighbouring fluid elements with differing velocities move past each other. As for the
bulk viscosity, looking at the Navier-Stokes form of the shear viscous tensor,
πµν,NS = −2η(∂µuν + ∂νuµ − 2

3hµν∂γuγ), is somewhat illuminating. When there is a
gradient in a component of the fluid’s 4-velocity, a resistive force will arise, even in
directions perpendicular to that velocity component.
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Runtime [s]
Grid size tfinal Full Chapman-Enskog Scaling Speed-up

2048 0.2 1.20 0.56 – (–) 2.1
4096 0.2 5.19 2.07 4.3 (3.7) 2.5
8192 0.2 19.04 7.95 3.7 (3.8) 2.4
2048 1.0 5.40 1.60 – (–) 3.4
4096 1.0 21.92 7.77 4.1 (4.9) 2.8
8192 1.0 92.07 33.17 4.2 (4.3) 2.9

Table 4.1: Code run-times for our toy bulk viscous model in one dimension, simulating
the data seen in figure 4.3. The expected scaling of the run-time with resolution,
trun ∝ N2

x , can be seen for both the full model and the Chapman-Enskog expansion
(the latter in parentheses). Crucially, a nearly three-fold speed-up is achieved by using

the Chapman-Enskog expansion, even with identical numerical methods.

We run through the same approximations as in the bulk pressure case in section 4.1.2.
Note that the slow motion approximation means that the components π0a → 0 in the
state and flux vectors (as we assume them small compared to the constant ρ + p),
leading to

∂tvj + ∂i

(
vivj + πi

j

)
= 0, (4.34a)

∂tπjk + ∂i(πjkvi) =
1
τπ

(πjk,NS − πjk). (4.34b)

It is clear that the model is very similar to the bulk viscous pressure case, and the only
times this will give something distinct is when we consider pure shear flows. As an
example, let us work with x derivatives only, but set vx ≡ 0 whilst allowing for
non-zero flow in other directions; for simplicity, only consider vy ̸= 0 (which means
that only πx

y ̸= 0). Then we have

∂tvy + ∂xπx
y = 0, (4.35a)

∂tπxy = − 1
τπ

(2ησxy + πxy). (4.35b)

The slow motion approximation and our consideration of only x derivatives means
Θ → 0 and hjk → ηjk in the definition of πjk,NS, hence σxy → ∂xvy. This is very close
to the shear flow example of Takamoto and Inutsuka, 2011, and can be rewritten as

∂tvy = 2η∂xxvy + τπ∂txπxy, (4.36)

giving the heat equation behaviour if τπ ≪ η.

4.1.3.1 Limiting case

For completeness we give the limiting case here, although the pure shear case and bulk
viscous toy model have given us a clear idea of what to expect. We look at the limiting
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Figure 4.3: The velocity and bulk viscosity are plotted throughout our spatial domain.
The initial velocity profile was a top-hat function with vx = 0.7 for 0.3 ≤ x ≤ 0.7 and
vx = 0 otherwise. In the ideal case, the top figure shows similar behaviour to the
simple Burger’s equation, as expected. The non-ideal behaviour is given by the bulk
viscosity in the lower plot, and its impact through smoothing strong gradients is clear
in the velocity plot. The simulation ran with parameters tfinal = 0.2, ζ = 1 × 10−2 and

τΠ = 1 × 10−3.

case as τπ → 0, giving πjk → −η∂<jvk>. This reduces the toy model to

∂tvj + ∂i(v
ivj) = η∂i∂<ivj>. (4.37)

Once again this is Burger’s equation, but now the dissipation only acts on cross-terms,
not in the isotropic directions.
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4.1.3.2 Chapman-Enskog Expansion in 1D

As in the previous toy models, we perform the Chapman-Enskog expansion by setting
π to the sum of its equilibrium value and a term representing departure from
equilibrium, which is multiplied by the relevant timescale, τπ in this case.
πjk → πNS + τππ1 = −2ησjk + τππ1 where σjk =

(
∂jvk + ∂jvk − 2

3δjkΘ
)

. Restricting
to one dimension gives a great simplification: our shear tensor becomes a scalar;
σij → σxx = 4

3∂xv.

Making the substitution discussed previously in equations (4.35), we get for the first
(retaining terms of order τ0

π)

π1 =
8
3η
[
∂txv + (∂xv)2 + v∂xxv

]
. (4.38)

For the second, retaining all terms yields

∂tv + 2v∂xv − 8
3η∂xv + τπ∂xπ1 = 0. (4.39)

Note that throughout this derivation we are treating τπ and η as constants, rather
than the thermodynamic functions which they more accurately are. We need to
remove the mixed t − x derivative in equation (4.38) so we differentiate
equation (4.39), neglecting the final term of order τπ

∂txv =
8
3η∂xxv − 2(∂xv)2 − 2v∂xxv (4.40)

and substitute into (4.38) to get

π1 =
8
3η

[8
3η∂xxv − 2(∂xv)2 − 2v∂xxv + (∂xv)2 + v∂xxv

]
=

8
3η

[8
3η∂xxv − (∂xv)2 − v∂xxv

]
. (4.41)

Similarly, we can substitute the spatial derivative of π1

∂xπ1 =
8
3η

[8
3η∂xxxv − 3(∂xv)(∂xxv) − v∂xxxv

]
, (4.42)

and use the relation τπ = 2ηβ2 to link our timescale and dissipation coefficient and
arrive at

∂tv + 2v∂xv =
8
3η

[
∂xv + 2ηβ2

(
3(∂xv)(∂xxv) + v∂xxxv − 8

3η∂xxxv

)]
. (4.43)
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4.1.3.3 Chapman-Enskog Expansion in Pseudo-2D

Let us look at the 2-dimensional case with the Chapman-Enskog expansion. We will
enforce the same assumptions as in section 4.1.3 and so start with equations (4.35):

∂tvy + ∂xπxy = 0, (4.35a)

∂tπxy = − 1
τπ

(2ησxy + πxy). (4.35b)

Working through the same steps as before, we arrive at

∂tvy = 2η∂(2)
x vy − 4η2τπ∂(4)

x vy. (4.45)

This is the analogous equation to (4.36), but with the Chapman-Enskog expansion.
Again, we recover the heat equation in the limit of small τπ, in which case the wave
speed is expected to diverge nonphysically. However, the notion of a wavespeed for a
parabolic equation is tenuous. We can attempt to establish another dispersion relation
here by writing vy ∝ exp(i(ωt ± kx)) which gives

ω = i(2ηk2 + 4η2τπk4). (4.46)

Given the pure-imaginary and positive-definiteness of the above wave frequency, only
decaying velocity-waves are permitted, with a wavespeed of zero.

4.1.3.4 Wave Speeds

As in the case of the bulk viscosity, our governing equations for the shear viscosity and
the fluid velocity in this toy model are non-linear. We therefore look again at a vector
form of the equations with a Jacobian matrix pre-factor for the spatial derivatives. In
one spatial dimension this looks like

∂t

(
v

πxx

)
+

(
2v 1
πxx v

)
∂x

(
v

πxx

)
=

(
0

− 1
τπ
( 8

3η∂xv + πxx)

)
. (4.47)

We see that we have a very similar form to that for the bulk viscous pressure. Perhaps
the only difference worth noting is that in the expression linking τπ and η (τπ = 2ηβ2),
β2 is strictly positive, which will have implications for the speed(s) of sound in this
model.

Moving to two spatial dimensions may introduce more interesting behaviour, but at
the cost of much more complexity. We will now have 5 independent variables (2
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velocities and 3 components of πij). The equivalent of (4.47) is

∂t



vx

vy

πxx

πxy

πyy


+



2vx 0 1 0 0
vy vx 0 1 0
πxx 0 vx 0 0
πxy 0 0 vx 0
πyy 0 0 0 vx


∂x



vx

vy

πxx

πxy

πyy



+



vy vx 0 1 0
0 2vy 0 0 1
0 πxx vy 0 0
0 πxy 0 vy 0
0 πyy 0 0 vy


∂y



vx

vy

πxx

πxy

πyy


=



0
0

− 1
τπ
(2ησxx + πxx)

− 1
τπ
(2ησxy + πxy)

− 1
τπ
(2ησyy + πyy)


.

(4.48)

Solving for the eigenvalues of the first matrix gives

λ = vx, 3vx

2 ±

√
v2

x

4 + πxx (4.49)

and for the second gives an equivalent result but with x → y. The first eigenvalue, vx,
has multiplicity 3 and the corresponding eigenvectors represent linear waves that
advect the vy and πyy terms. These values look sensible; they are essentially the same
as those obtained for the bulk viscosity but with the shear viscosity in its place and
split into the two orthogonal directions. Let us now include the source terms’
contributions to the Jacobians of the partial derivatives. Remembering that
σij = ∂ivj + ∂jvi − 2

3ηijΘ and working in flat spacetime we have

σxx =
4
3∂xvx − 2

3∂yvy, (4.50a)

σxy =
2
3 (∂xvy + ∂yvx), (4.50b)

σyy =
4
3∂yvy − 2

3∂xvx. (4.50c)

The Jacobian for the flux in the x-direction therefore becomes

2vx 0 1 0 0
vy vx 0 1 0

πxx +
8η
3τπ

0 vx 0 0
πxy

4η
3τπ

0 vx 0
πyy − 4η

3τπ
0 0 0 vx


(4.51)

which has eigenvalues

λ =

vx, vx ±
√

4η

3τπ
, 3vx

2 ±

√
v2

x

4 + πxx +
8η

3τπ

 . (4.52)
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Figure 4.4: The evolution of the y-directed component of the velocity plotted across
the x-domain at times t = 0.0, 2.0, 10.0. The initial data for the velocity form a step
function and the viscous parameter values are η = 2 × 10−4 and τπ = 2 × 10−4. In
the left panel, two models’ results are plotted: firstly, the MIS-derived simple shear
model given by eq. (4.35) (solid lines); secondly, the model obtained applying the CE-
expansion to it, given by eq. (4.36) (dotted lines). In the right panel, the difference
between the two results is plotted. The shear viscosity damps the initial step function,
causing the velocity to develop approximately according to the analytic error-function.
There is no visual difference seen between the two models. The numerical difference is
an order of magnitude smaller than even the value of O(τπ) and is decreasing in time.

The degeneracy of the λ = vx eigenvalue has been broken and two new wavespeeds
have been created by the splitting of these linear waves.

4.1.3.5 Numerical Results

In figure 4.4, the numerical solutions to the systems given in equations (4.35)
and (4.36) are shown. The initial data form a step-function in the y-directed velocity
across the x-domain, with the discontinuity occurring at x = 0.0. The effect of shear
viscosity highlighted here is its damping of velocities in directions perpendicular to the
velocity itself. The analytic solution in the limit τπ −→ 0 is of the form
vy(t) ∼ vy(0) erf

(
|x|
ηt

)
whilst τπ > 0 introduces small deviations from this -

see appendix B for the exact solution. Excellent agreement is seen between the
numerical results with and without the C-E expansion, with the differences being
O(τπ) ∼ 1 × 10−4 or smaller, as expected.

4.1.4 Summary

From the Müller-Israel-Stewart equations of motion, we have derived simple models
describing each dissipation mechanism in turn. By applying the Chapman-Enskog
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expansion to them, we have shown its potential as an approach for efficiently
simulating non-ideal fluids. In particular, for small non-ideal parameters, the
numerical results of the approximation schemes are indistinguishable from the full
relaxation-type models, but are produced much faster.

However, the use of a truncated expansion at the equation of motion level (rather than
at the stress-energy tensor level) breaks the covariant nature of the original models,
meaning the resulting expressions are no longer Lorentz-boost invariant and are not
applicable in all frames of reference. This limits their physical applicability in
simulations.

We also made significant approximations, such as taking the low-velocity limit and
removing the coupling between many fluid variables. We improve upon this now by
simulating a fully relativistic non-ideal model - the well-studied Müller-Israel-Stewart
formalism introduced earlier.

4.2 The Full MIS Model

This section will look at results from simulations using the MIS formulation of
non-ideal hydrodynamics. Writing the system out again explicitly and aligning closely
with Chabanov, Rezzolla, et al., 2021 specifically, we have

∂tU + ∂iF(i) = S, (4.53)
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where

U =



D

Sj

E

Yj

U

Z l
j


=



nW

(ρ + p + Π)W 2vj + (qj + qkvkvj)W + π0
j

(ρ + p + Π)W 2 − (p + Π) + 2qkvkW + π0
0

nWqj

nW Π
nWπl

j


, (4.54a)

F(i) =



Dvi

Sjvi + (p + Π)δi
j + W (qivj − qkvkvjvi) + πi

j

(E + p)vi + W (qi − qkvkvi) + πi
0

Y vi

Uvi

Z l
jvi


, (4.54b)

S =



0
0
0

n
τq
(q̃j − qj)

n
τΠ
(Π̃ − Π)

n
τπ
(π̃l

j − πl
j)


. (4.54c)

All variables are consistent with their earlier definitions.

Once our numerical scheme has updated the conserved state vector
(D, Sj , τ ≡ E − D, U , Yj)T , we need to recompute the primitive variables including
velocity, temperature, number density, and all other quantities derived from them (such
as pressure, acceleration and so on). The conserved-to-primitive (C2P) scheme that we
use here is inspired by the one commonly used for ideal fluid formulations, whereby the
pressure is the guessed quantity. Here, we simply extend our guesses (there are now
four of them) to include the additional dissipative terms that must be subtracted or
divided by in order to obtain an expression for the square of the velocity. It reads

1. Calculate qj as Yj/D, Π as U/D and πl
j as Z l

j/D.

2. Guess χ = p + Π − 2qkvkW − πk
k , σj = (qj + qkvkvj)W + π0

j .

3. Compute v2 = γij(Si − σi)(Sj − σj)/(E + χ)2

4. Compute W = (1 − v2)−1/2

5. Compute n = D/W

6. Compute ρ + p = (E + χ)/W 2 − Π

7. (In general, may need to now get vj from (Sj − σj)/[(ρ + p + Π)W 2]).
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8. Invert the EoS to get p from n, (ρ + p). In the ideal case: ρ = n(1 + ϵ),
p = (Γ − 1)nϵ and so, after some manipulation, p = Γ−1

Γ (ρ + p − n).

9. Compute vj from (Sj − σj)/[(ρ + p + Π)W 2]).

10. Compute χ = p − 2qkvkW , σj = (qj + qkvkvj)W from our quantities: compare to
guesses (and root-find to minimize the difference until it is zero to with a small
tolerance, typically O(10−8).

4.2.1 An Alternative C2P Scheme

In Kastaun, Kalinani, et al., 2021, concerns are raised over the stability and accuracy
of common C2P schemes, in particular for fast-moving, highly magnetized flows (we
have no magnetic field). A new scheme is presented and analysed with desirable
features. Although rarely facing stability issues arising from our C2P scheme (for the
MIS formulation, at least, the stability is controlled strongly by the strengths and
timescales) we choose to implement a close-adaptation of this new scheme, again
adjusting the guessed quantities to account for our dissipative terms. First, we define
h̃ = (ρ + p + Π)/n = 1 + ϵ + (p + Π)/n as a modified specific enthalpy and a new,
guessed variable µ = 1/(Wh̃) in addition to, as before, σj = (qj + qkvkvj)W + π0

j .
Our conserved quantities may now be written as

D = nW , (4.55a)

Sj = DW h̃vj + (qj + qkvkvj)W + π0
j , (4.55b)

τ = D(h̃W − 1) − p − Π + 2qkvkW + π0
0. (4.55c)

And our C2P scheme becomes

1. Compute Π, qj , πl
j as usual.

2. Guess µ, σj .

3. Compute v2 = µ2γij(Si − σi)(Sj − σj)/D2.

4. Compute W , n as usual.

5. Compute vj = µ(Sj − σj)/D.

6. Compute π0
0 = vjvkπjk using orthogonality.

7. Compute p from τ , using
p = D(1/µ − 1) − Π + 2qkvkW + π0

0 − τ = D(1/µ − 1) − Π + 2qkvkW + πk
k − τ .

8. Invert our EOS to get ρ from n, p: ρ = n + p/(Γ − 1).
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Figure 4.5: The development of 4 quantities (velocity, number density, pressure and
bulk viscosity) for a shocktube setup with zero initial velocity as the bulk viscosity
coefficient ζ is varied over several orders of magnitude. One can see several prominent
features, such as the smearing of discontinuities and the acceleration of the shock-front.

9. Compute h̃ and hence µ = 1/(Wh̃) to compare to its guessed value. This is
given by h̃ = 1 + (pΓ/(Γ − 1) + Π)/n.

Next, we perform numerical tests of our implementation of the MIS model. These are
standard tests such that we may compare results against the literature and check for
agreement. These tests are also chosen to reflect the physics we are interested in
capturing for actual neutron star mergers. In particular,

• Shocktubes are simple, one-dimensional tests useful for closely analysing the
behaviour of the model & its numerical implementation when there are
discontinuities present. These will occur at the point of merger, and also if there
exists a sharp phase (and hence density & pressure) transition inside the neutron
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Figure 4.6: The development of a Kelvin-Helmholtz unstable fluid with negligible
viscosity until t = 6.25. The number density is shown in colour, as is the case for
all KHI plots here. The initial perturbation grows rapidly until the interface breaks
and large-scaling mixing occurs, followed by the onset of turbulent behaviour which

produces shocks and smaller-scale vortices.
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Figure 4.7: The development of the Kelvin-Helmholtz instability until t = 30.0, for
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formation.
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Figure 4.8: The short-term evolution of the Kelvin Helmholtz instability using the
MIS model of non-ideal hydrodynamics with a shear viscosity parameter of η = 1 × 10−3

and timescale τπ = 5 × 10−3.
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Figure 4.10: The power spectrum, Pû(kx), for the kinetic energy density in the Kelvin-
Helmholtz instability at t = 15.0 and t = 30.0, for both an inviscid and a viscous fluid.
In the viscous cases, The expected Kolmogorov scaling in the inertial range is also
plotted and matches the data well. In the viscous cases, dissipation has reduced the
total kinetic energy present. It has also smoothed the minor oscillations present in the
ideal curves which stem from the small-scale mixing modes at the interface which are

suppressed by viscosity.

star core. They also involve advection of the fluid, which will be important for
the inspiral phase of the merger as tidal forces will drag fluid around the star as
they orbit their mutual centre of mass.

• The Kelvin Helmholtz instability (KHI) is a shearing instability that results
when two (or more) fluid regions flow in opposite directions past each other, each
usually of a differing density. A wide range of behaviours can be observed
depending on the parameter values - we will be varying the shear viscosity only.
The KHI is known to play an important role in post-merger dynamics where it
moderates the cascade of energy between macroscopic and microscopic scales
through the action of shear viscosity in the fluid. This is important in the
spin-down of the remnant where the rotational energy of the fluid is converted to
small-scale turbulence. We will also analyse the integrated power spectrum of
kinetic energy resulting from turbulence induced by the KHI. This has famously
been shown by Kolmogorov to have a universal scaling relation with wavenumber
(essentially inverse wavelength) for at least part of its spectrum (the ‘inertial
sub-range’) and generalized by Qian, 1994.
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See figure 4.5 for results from a shocktube setup where an ideal fluid is compared to a
viscous one with several different strengths of dissipation. The initial data for this test
is similar to those of Takamoto and Inutsuka, 2011 but with zero initial velocity. We
also share the same equation of state, allowing for a favourable quantitative
comparison to be made. A domain of one spatial dimension is initially split into
bordering left and right states [L, R] where the primitive variables in the two states are

L :


p

n

ρ

 =


10
8
23

 (4.56)

for the left state and

R :


p

n

ρ

 =


1
1

2.5

 (4.57)

for the right state. The pressure, p, and number density, n, are set in the initial data
and the equation of state, p = (Γ − 1)(ρ − n), determines the energy density, ρ. We set
a value of Γ = 5/3 for the adiabatic index.

The three degrees of freedom in the model, represented by the three conserved
quantities (D, Sx, τ), produce three waves: a left-travelling rarefaction wave, a
right-travelling contact wave and a right-travelling (and faster) shockwave. Note the
smearing of the rarefaction & shockwave, and the increase in shock speed for the
non-ideal case.

In figures fig. 4.6, fig. 4.7, fig. 4.8 and fig. 4.9 we show results of Kelvin-Helmholtz
instability simulations, both with and without shear viscosity. To investigate this
process, we use the initial conditions from Beckwith and Stone, 2011, as well as the
spectral analysis laid out by them. The data are defined within a 2D domain where
x ∈ [−1.0, 1.0] and y ∈ [−0.5, 0.5]. The domain is then divided into two fluid regions,
with the inner region contained roughly within x ∈ [−0.5, 0.5] and the outer elsewhere.
The two fluid regions have differing densities and flow past each other with velocities
directed in the positive and negative y-directions. There is a narrow transition layer
between the two where a small, spatially-varying perturbation to the x-directed
velocity is also introduced to induce mixing. The primitive variables are


vy

ρ

vx

 =


vsh tanh

(
x−0.5

a

)
ρ0 + ρ1 tanh

(
x−0.5

a

)
A0vsh sin(2πy) exp

(
−(x−0.5)2

l2

)
 ; x > 0.0 (4.58a)
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and 
vy

ρ

vx

 =


−vsh tanh

(
x+0.5

a

)
ρ0 − ρ1 tanh

(
x+0.5

a

)
−A0vsh sin(2πy) exp

(
−(x+0.5)2

l2

)
 ; x ≤ 0.0 (4.58b)

where the shear velocity is vsh = 0.5, the boundary layer thickness is a = 0.01, the
densities are given by (ρ0, ρ1) = (0.55, 0.45), and the perturbation has an amplitude
A0 = 0.1 over a characteristic length l = 0.1. The initial pressure is uniform, p = 1.0,
and the adiabatic index is set to Γ = 4/3. We use periodic boundaries in the both the
x and y directions.

One can see that, in general, adding viscosity suppresses the formation of small-scale
features and the mixing of the two fluids. Also, in figure 4.10 we plot the normalized,
integrated power spectrum, Pû(kx), of the kinetic energy density. This quantity is
defined as

Pû(kx) =
Ny∑

ny=0
|û(kx, ny)|2/

NNy∑
kx=0

Ny∑
ny=0

|û(kx, ny)|2 (4.59)

where NNy = Nx/2 is the Nyquist frequency and û(kx, ny) is the 1D discrete Fourier
transform of the discretized variable u(nx, ny) in the x-direction, defined as

û(kx, ny) =
Nx∑

nx=0

1
Nx

u(nx, ny) exp−2πikx
nx
Nx (4.60)

where in our case u(nx, ny) is specifically given by u = nW (W − 1) and is hence a
“kinetic energy density”. Note that we could have performed the Fourier transform
from position space to wavenumber space (n → k) in the y-direction, or even
performed a 2D discrete Fourier transform in both directions. In all cases the resulting
spectrum is similar and demonstrates that there is an intermediate range of
wavenumbers where the expected Kolmogorov scaling is obeyed and Pû(kx) ∝ k−5/3

x .
Below this range (longer wavelengths, lower wavenumber) there is a greater power due
to the kinetic energy in the large-scale features and above this range (shorter
wavelengths, higher wavenumber) there is a fall-off in kinetic energy as viscosity, either
genuine or numerical, extracts it from the system.
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Chapter 5

Simulations with our ‘MISCE’
Model

In this chapter, we presents results from our own
‘Müller-Israel-Stewart-Chapman-Enskog’ (MISCE) model, derived from the
Müller-Israel-Stewart formalism already introduced in section 2.2.1.5. Large sections of
this chapter are adapted directly from our publication this year (Hatton and Hawke,
2024).

The MIS model includes viscous and heat-conductive effects in the evolved conserved
and flux vectors, as well as relaxation-type sources that drive the non-ideal terms to
relativistic analogues of their Navier-Stokes forms. A numerical issue arises when the
dissipative relaxation timescales become small and the sources become ‘stiff’. The
relaxation timescales tend to zero in the ideal limit, which is relevant for the majority
of the lifecycle of a binary neutron star merger. One must either reduce the timestep of
the simulation drastically or adopt implicit time-integrator methods to ensure accurate
and stable numerical evolution. See Palenzuela, Lehner, et al. (2009), Dionysopoulou,
Alic, et al. (2013), Miranda-Aranguren, Aloy, et al. (2018), Ripperda, Bacchini, et al.
(2019), Wright and Hawke (2020), Wright (2020), and Dash, Shokri, et al. (2023) for
examples of approaches taken to evolve stiff numerical systems. Both options increase
the computational cost of simulations greatly. Sometimes, ‘best-of-both’
implicit-explicit methods (Pareschi and Russo, 2005) may be used but in any case, the
computational cost increases, potentially by an order of magnitude or two, when
source terms become stiff near the ideal limit (Most and Noronha, 2021).

This in turn limits the spatial resolution of simulations that are performed, leading to
coarse numerical grids that represent fluid elements with sizes well above those that
‘should’ be used to satisfy the fluid approximation. That is to say, there is significant
variation in fluid properties occurring over lengthscales well below that of the grid
cells’ size. Estimates of the dissipation lengthscale above which structure can form
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through turbulence suggest that simulations may need to resolve scales below the cm
level (Radice and Hawke, 2024; Thompson and Duncan, 1993). However the current
highest-resolution simulations have fluid elements with sizes ≈ 10m (Kiuchi, Kyutoku,
et al., 2018). To bridge this gap computationally is impractical for the foreseeable
future.

Instead, to address this ‘subgrid’ behaviour, extensions to existing hydrodynamic
models have recently begun being employed. These additions to the model aim to
capture, at least in a statistical sense, either genuine subgrid microphysics or
mathematical artefacts resulting from the implicit filtering process introduced by
coarse simulations.

Subgrid models are beginning to see a number of applications in modelling
astrophysical systems. The general principle behind these extensions is to include
additional terms into the equations of motion, aimed at capturing the effects of
unresolved fluid behaviour at scales below that which can be directly resolved in a
numerical simulation. The benefit of these models lies in their ability to, without
greatly increased computational cost, capture the influence of unresolvable
microphysics or fluctuations, at least in a statistical sense.

A common application of subgrid sources is in the modelling of turbulence. In
large-eddy simulations, the equations of motion are explicitly redefined in terms of
resolved and unresolved quantities. A closure relation is then applied that allows the
subgrid fields to be formulated in terms of the resolved ones. Using this technique, it is
possible to replicate the behaviour that would result, on average, from using more
fine-scale numerical grids.

For instance, Radice (2017) first applied an analogue of the classical Smagorinsky
closure (Smagorinsky, 1963) to the equations of general relativistic hydrodynamics for
a merger simulation, showing that by modelling the subgrid scale turbulence, the
collapse of the hyper-massive neutron star remnant is altered. Other work by Viganò,
Aguilera-Miret, et al. (2020b) and Carrasco, Viganò, et al. (2020) uses a gradient
expansion approach to prescribe the unresolved fields in the MHD equations.
See Radice and Hawke, 2024 for a modern review of the field.

One might ask why these subgrid models are relevant to the non-ideal hydrodynamic
formulation presented here. In Celora, Andersson, et al., 2021, it is shown that when a
linear, covariant filtering operation is applied to an ideal fluid formulation, the
fine-scale variation that is spatially-averaged over may be described on the coarse-scale
by algebraic terms that mimic those present in a non-ideal fluid formulation. The
corollary of this is that we may use our models of non-ideal hydrodynamics to describe
a fluid which does not genuinely exhibit dissipative effects, at least not on the coarse
scale at which we simulate it, but instead to capture unresolved effects due to
resolution limitations. In effect, our subgrid closure relation is given by the model’s
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prescription for the non-ideal dissipation terms within it. Of course, the meaning of
the ‘dissipative’ terms changes when we do this. Instead, they now capture the effects
of filtering. We dedicate chapter 6 to our work in this direction.

In this chapter, we develop an extension to the special relativistic, ideal hydrodynamic
equations that captures the dissipative effects present in full non-ideal fluid
descriptions. This extension, dubbed a dissipative extension to ideal fluid dynamics
(DEIFY), is derived from first principles arguments, and as such requires no fine
tuning of parameters for different astrophysical scenarios.

The rest of the chapter is laid out as follows. Section 5.1 presents the full ‘MISCE’
model in balance-law form, with its source derived from applying the CE expansion to
the MIS model. In section 5.2 we show results of simulations that use the MISCE
formulation of dissipative hydrodynamics and then assess code performance
in section 5.3. Particularly, we quantitatively compare results and performance with
the MIS model. Section section 5.4 covers additional considerations for this model,
specifically those related to initial data choices and stability. Finally, in section 5.5, we
summarise our findings from simulating this new model and discuss how they fit into
the state of current astrophysical simulations.

5.1 General Balance-Law Derivation

In this section we will derive a source term that captures the behaviour due to
dissipation introduced in the MIS formulation, but that avoids the numerical
difficulties in the first-order limit of this second-order system. We will do this using a
Chapman-Enskog-type analysis.

We can re-write system (4.54) in the following, more compact way:

∂tq(w, w) + ∂i f i(w, w) = s = 0, (5.1a)

∂tq(w, w) + ∂i f i
(w, w) =

s(w)

ϵ
, (5.1b)

where we indicate terms which become stiff as ϵ → 0 with an over-bar. This means
that the stiff conserved variables are q = {U , Yj , Zjk} with the corresponding fluxes,
f i(w, w), and sources, s(w), as in equations (4.54). These form the dissipative
subsystem of equations. The remaining conserved variables describe the fluid evolution
and are non-stiff in the ideal limit, denoted q = {D, Sj , τ}. We will also denote the
vector of primitive variables present in ideal hydrodynamics as w = {p, ρ, n, v1, v2, v3}
and the dissipative variables as w(w) = {Π, qj , πjk}.

We begin with the full MIS model in balance law form, eq. (5.1), recalling that the
non-stiff and stiff conserved variables are labelled q and q respectively. In order to
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maintain finite solutions in the ideal limit, we require that limϵ→0 s(q, q) = 0. This
motivates an expansion of the stiff variables in powers of ϵ, with each increasing order
providing a further deviation from the ideal limit.

In fact, because of the mathematical and physical links between the dissipation
timescales (τ ) and strengths (ξ) discussed earlier, we choose to perform the expansion
in powers of ϵ where both τ and ξ are O(ϵ). Whilst in theory this means that these
parameters should take on similar (small) values, this is not always the case in
practice1. This choice also means that O(ϵ0) corresponds to ideal behaviour with no
dissipation. We could equally well perform the expansion in powers of τ and arrive at
the same result, simply with a shifted series definition. Moving on, we now have

q = q0 + q1 + q2 + O(ϵ3) (5.2)

where q0 is O(ϵ0), q1 is O(ϵ), q2 is O(ϵ2) and so on. To identify the terms in this
expansion we take the form of the stiff source:

s(q, q) =
1
ϵ
(q − qNS) (5.3)

and simply rewrite it as

ϵs(q, q) = q − qNS . (5.4)

Noting that qNS is O(ϵ), we have that at zero’th order (the ideal case) q = q0 = 0. At
first order we have q = q1 = qNS and at second order we have q = q2 where q2 is yet
to be determined.

At zeroth-order, the non-stiff subsystem of equations is given by

∂tq0(w) + ∂i f i
0(w) = 0 (5.5)

where

q0(w) =


D

Sj

τ

 =


nW

(ρ + p)W 2vj

(ρ + p)W 2 − p − nW

 (5.6)

1In many numerical simulations of relativistic astrophysical fluids, physical values of transport coef-
ficients (e.g., viscosity, conductivity) correspond to scales that are well below the resolution limit. As a
result, simulations often employ artificially large parameter values to retain numerical stability or conver-
gence. While this allows one to qualitatively capture dissipative effects, it does not resolve the intrinsic
kinetic or turbulent scales. To bridge this gap, effective mean corrections, such as turbulent viscosities
or subgrid closures, are introduced. For example, in neutron star merger simulations, an effective shear
viscosity may used to model angular momentum transport from magnetorotational turbulence, while in
accretion disks, α-viscosity prescriptions are commonly adopted to mimic MRI-induced transport.
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and

f i
0(w) =


nWvi

(ρ + p)W 2vivj + pδi
j

(ρ + p)W 2vi − nWvi

 . (5.7)

These are simply the relativistic Euler equations. At first-order, it can be written as

∂t

[
q0(w) + H(1)(w, ∂tw, ∂iw)

]
+

∂i

[
f i
0(w) + Fi

(1)(w, ∂tw, ∂iw)
]
= 0

(5.8)

where

H(1)(w) =


0

W (q0,NSvj + qj,NS) + π0j,NS

2q0,NSW − ΠNS + π00,NS)

 (5.9)

and

Fi
(1)(w) =


0

ΠNS(vivj + δi
j)W

2 + W (qi
NSvj + qj,NSvi) + πi

j,NS

W (q0,NSvi + qi
NS) + πi

0,NS

 . (5.10)

Here, we have separated the dissipative parts of the state and flux vectors and can
view H(1) and F(1) as O(ϵ) perturbations on-top of the ideal O(ϵ0) state and flux
vectors, q0 and f0. In general, we can rewrite the expanded system as

∂tq0 + ∂i f i
0 =

∑
p=0

R̃(p) ≡
∑
p=0

(
−∂tH(p) − ∂iFi

(p)

)
(5.11)

where each additional term in the series on the RHS of eq. (5.11) represents a source
correction of order ϵp. Hence, R̃(0) = 0, R̃(1) = −∂tH(1) − ∂iFi

(1) and
R̃(2) = −∂tH(2) − ∂iFi

(2) and so on.

Using symbolic Python, we have fully derived the first-order (O(ϵ)) source terms in
R̃(1) such that they contain only spatial gradients. At second order, we have derived
the flux contribution to R̃(2) that is −∂iFi

(2). The presence of high order time
derivatives in −∂tH(2), which in turn introduce even higher-order spatial derivatives,
leads to algebraic terms that rapidly scale in number and complexity, making it
impractical to derive and implement, even using computer algebra packages.

Note that one cannot always directly align powers of ϵ ({ζ, κ, η} or {τΠ, τq, τπ}) with
the order of spatial derivatives appearing in these source terms. To see this, consider
the simple (CE) bulk viscosity and heat flux models from earlier given by eq. (4.20)
and eq. (4.26). In the former, the next-to-leading order correction is O(κ2τq) and
contains a fourth-order derivative, whilst in the latter it is O(ζτΠ) and contains a
mixture of first-, second- and third-order derivatives. However, the leading order
correction in each case, R̃(1), contains mostly second-order gradients in the primitive
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variables (∂i∂jw) with some products of two first-order derivatives (∂iw∂jw). To see
this, consider that the dissipative variables we move from the state and flux vectors to
the new sources contain first order gradients. If moved from the flux vector, becoming
−∂iFi

(1), they pick up another spatial derivative from the flux-gradient. If moved from
the state vector, becoming −∂tH(1), they pick up a first-order temporal derivative,
which we will show can be swapped for a first-order spatial derivative. Hence, they are
always diffusive, second-order gradients as one would expect for dissipation. This can
also be seen in eq. (4.20) and eq. (4.26) at leading-order.

We choose to perform the series expansion and truncation such that terms O(ϵ)

contain no timescales and are first-order in the dissipation strengths {ζ, κ, η}. Terms
considered to be O(ϵ2) are first-order in the timescales {τΠ, τq, τπ} and the strengths.
We often choose to work with the first order (O(ϵ)) source terms only as we find that
including higher orders generally only makes small quantitative differences. However,
using the O(ϵ2) source, the effect of varying timescales for both the MIS and MISCE
models will be shown. Finally, despite the inherent instability of first-order theories of
relativistic dissipation in fluids (Hiscock and Lindblom, 1983), we do not find any
instabilities arising with our first-order MISCE model, at least for the test problems
and parameter space explored so far.

In order to make it practical to implement the system numerically, we need to replace
the time derivatives present in R̃(1) and R̃(2) with spatial ones. We have two
potentially problematic sources of time-derivatives. Firstly, the Navier-Stokes forms of
the dissipative variables themselves contain time derivatives. Secondly, the entire
dissipative state vector H(w) is time-differentiated in the equations of motion.
Because both H and F can be expressed entirely as functions of primitive, non-stiff
variables, we need expressions for the time derivatives of the primitive variables.
Making use of the chain rule and eq. (5.5), which contains the time derivative of the
ideal state vector and hence the primitive variables that constitute it, we have

∂w
∂t

=
∂w
∂q0

∂q0
∂t

+
∂w
∂q1

∂q1
∂t

+ ... = −
(

∂q0
∂w

)−1
∂i f i

0 + O(ϵ), (5.12)

where we again note that w is the vector of primitives. This means the term ∂w
∂q0

has a
matrix form that is far more easily obtained through an inversion of the matrix ∂q0

∂w .
We can use this result to substitute wherever a time-derivative appears in our source
such that we then have

R̃(1) = −∂tHNS(w, ∂iw) − ∂iFi
NS(w, ∂iw) (5.13)

and our source contains solely first and second-order spatial derivatives. For a
derivation of higher-order approximations to time derivatives of primitive variables,
see appendix A.
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We will dub this new formulation DEIFY (Dissipative Extension to Ideal Fluid
dYnamics) so that R̃(1) is the first-order DEIFY source term. Also observe how the
source term for DEIFY is proportional to ϵ whereas the Müller-Israel-Stewart
formulation source terms scale as 1/τ ∝ ϵ−1. This means that the two forms become
stiff in opposing limits—near the ideal regime (small ϵ) DEIFY will be stable as a
result of a small source term, and will only become stiff, and potentially unstable, as ϵ

grows large. The big benefit of this behaviour is that near the ideal regime we can
confidently evolve DEIFY with explicit time integrators, knowing that source
contributions will remain small.

In contrast, in the event of very slow-acting (large τ) and large-in-magnitude (large
{κ, ζ, η}) viscosities and heat fluxes, it will not be sensible or accurate to evolve
DEIFY, even using implicit schemes. Instead, we may revert to an implementation of
the MIS formulation in this regime, which is likely to be stable with explicit
integrators and therefore less costly. Future work will extend the approach of Wright,
2020, where an adaptive model of resistive and ideal MHD was implemented. Ours will
be able to switch between different dissipative formulations of hydrodynamics during
evolution, ensuring stability, efficiency and accuracy.

In summary, in both the ideal and highly-non-ideal limits, we should be able to use
explicit integration schemes, which have been shown to provide a speed-up of up to an
order of magnitude over implicit schemes in comparable models of resistive/ideal
MHD (Wright and Hawke, 2020). In section 5.3 we will prove the validity of this claim,
and further explore the intermediate region of non-ideal behaviour between these two
extremes.

5.1.1 First-Order Source

In order to compute the DEIFY source term(s), we will need to calculate matrices and,
crucially, their inverses. For instance, we will need to know the inverse matrix that
appears in equation 5.12 which represents the Jacobian of the primitive vector with
respect to the non-stiff conserved vector.

Here, we have a choice of how to compute the matrices of interest—that is we can
invert them numerically, or try to get the form of the inverted matrix symbolically.
Inverting matrices numerically, especially when densely populated, can require a large
amount of computation, reducing accuracy as well as slowing down simulations. If the
algebraic form of the matrices were at hand, this would lead to a far more efficient
simulation, and as we are trying to build a source term to extend ideal hydrodynamics
with the intention of being faster to evolve than other forms of dissipative
hydrodynamics, it is sensible to adopt the performance gains of a purely symbolic
source term.
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On this note, let us turn to computing (algebraically) the matrices
(

∂q0
∂w

)
and, hence,(

∂q0
∂w

)−1
. We have some choice over which five non-stiff primitive variables

(corresponding to the five conserved quantities we evolve) we choose to include in our
differencing vector, w, when calculating the Jacobian. The equations of state we use in
this work relate p, ρ and n, which gives us this freedom, and we opt to work with
w = {p, ρ, v}.

Our ideal conserved vector is now

q0(w) =


D

Sj

E ≡ τ + D

 =


(ρ − p/(Γ − 1))W

(ρ + p)vjW 2

(ρ + p)W 2 − p

 (5.14)

where we have chosen to work with the conserved variable E for now instead of τ as it
takes an even simpler form. Now, we have

(
∂q0
∂w

)
=


W /(1 − Γ) W (ρ − p/(Γ − 1))W 3v1 (ρ − p/(Γ − 1))W 3v2 (ρ − p/(Γ − 1))W 3v3

W 2v1 W 2v1 (ρ + p)(W 2 + 2W 4v2
1) 2(ρ + p)W 4v1v2 2(ρ + p)W 4v1v3

W 2v2 W 2v2 2(ρ + p)W 4v2v1 (ρ + p)(W 2 + 2W 4v2
2) 2(ρ + p)W 4v2v3

W 2v3 W 2v3 2(ρ + p)W 4v3v1 2(ρ + p)W 4v3v2 (ρ + p)(W 2 + 2W 4v2
3)

W 2 − 1 W 2 2(ρ + p)W 4v1 2(ρ + p)W 4v2 2(ρ + p)W 4v3

 .

(5.15)

In order to present the following matrix-inversion results in a human-readable fashion,
we take the low-velocity limit, neglecting terms O(v2) and hence setting the Lorentz
factor, W = 1. However, this simplification allows us to generalise our expressions to
be EoS-agnostic and express certain terms as partial derivatives of the primitive
variables, rather than using our specific Gamma-law EoS. This means that we now have

(
∂q0
∂w

)
=



∂pn ∂ρn 0 0 0
v1 v1 p + ρ 0 0
v2 v2 0 p + ρ 0
v3 v3 0 0 p + ρ

0 1 0 0 0


(5.16)

and, hence,
(

∂q0
∂w

)−1
is

(p + ρ)−1



(p + ρ)/∂pn 0 0 0 −(p + ρ)∂ρn/∂pn

0 0 0 0 (p + ρ)

−v1/∂pn 1 0 0 −v1(∂pn + ∂ρn)/∂pn

−v2/∂pn 0 1 0 −v2(∂pn + ∂ρn)/∂pn

−v3/∂pn 0 0 1 −v3(∂pn + ∂ρn)/∂pn


. (5.17)
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Next, using equation 5.12, we have

∂t


p

ρ

vj

 = (ρ + p)−1


(p + ρ)((1/∂pn) − (∂ρn/∂pn)∂tE)

(p + ρ)∂tE

−vj((1 + ∂ρn/∂pn)∂tE + (1/∂pn)∂tD) + ∂tSj

 (5.18)

where we can exchange the time-derivatives of the conserved variables for spatial
derivatives of the fluxes using eq. (5.5). Doing this, and using our equation of state
p = (Γ − 1)(ρ − n) to replace the partial derivatives of primitive variables, we arrive at

∂t


p

ρ

vj

 =


(1 − Γ)(1 + ∂iS

i)

−∂iS
i

(ρ + p)−1
[
vj((2 − Γ)∂iS

i + (1 − Γ)∂i(Dvi)) − ∂iS
i
j

]
 (5.19)

which represents expressions for the partial time derivatives of the primitive variables
in terms of purely spatial-derivatives.

Let us now demonstrate what the MISCE sources look like. These are too complex to
write in full, so we consider the case of bulk viscosity only, restrict to one spatial
dimension and again work in the low-velocity approximation such that W = 1 (but not
neglecting terms O(v2)). Then, ΠNS = −ζ∂xvx. The leading order source term,
R̃(1) = −∂tH(1) − ∂xFx

(1) in full is

R̃(1) = −∂t


0
0

−ΠNS

− ∂x


0

ΠNSv2
x

0

 (5.20a)

= ζ




0
0

−∂t∂xvx

+ ∂x


0

v2
x∂xxvx + 2vx(∂xvx)2

0


 (5.20b)

where from eq. (5.19) we have

∂x∂xvt = (ρ + p)−1[((2 − Γ)(vx∂xxSx + (∂xSx)(∂xvx))

+ (1 − Γ)∂xx(Dvx)) − ∂xx(S
xvx + p)] (5.21a)

= [((2 − Γ)(2vx∂xxvx + 3vx(∂xvx)∂x(ρ + p) + (∂xvx)
2)

+ (ρ + p)−1(1 − Γ)(vx∂xxn + n∂xxvx)

− ∂xxvx − vx∂x(ρ + p) − (ρ + p)−1∂xxp)] (5.21b)

and, finally, we have an expression for R̃(1) that is expressed purely in (second-order)
spatial gradients of the primitive variables. The full expressions (without
simplification) are not human-readable, but the code to derive them can be found at
https://www.github.com/MarcusHatton/ComputerAlgebra, whilst their
implementation can be seen at https://www.github.com/MarcusHatton/METHOD.
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5.1.2 Second-Order Source

A similar but more complex calculation can be made to derive the next order (second)
of dissipative correction to ideal hydrodynamics. Beginning again with the
conservation law

∂t

[
q0(w) + H(1) + H(2)

]
+ ∂i

[
f (i)0 (w) + F(i)

(1) + F(i)
(2)

]
= 0 (5.22)

it follows that
R̃(2) = −∂tH(2) − ∂iF

(i)
(2). (5.23)

At first order, the form of H, F and hence R̃(1) followed simply from the definition of
the Navier-Stokes terms which are of O(ϵ). At second order we use the stiff subsystem:

∂t (nW w) + ∂i

(
nWviw

)
=

n

τ
(w − wNS) (5.24a)

∂tq + ∂i f i
(q, q) =

1
ϵ
(q − qNS) (5.24b)

and make the substitution q = q0 + q1 + q2 ≡ 0 + qNS + q2 to obtain, at order O(ϵ2),

ϵ
[
∂tqNS + ∂i f (q, qNS)

]
= q2. (5.25)

Because the NS forms of the stiff variables can be defined entirely in terms of the
non-stiff primitive variables (qNS ≡ qNS(q)), so too can q2. The vectors H(2), F(2) are
given by

H(2)(w) =


0

W (q0,(2)vj + qj,(2)) + π0j,(2)

2q0,(2)W − Π(2) + π00,(2))


and

F(i)
(2)(w) =


0

Π(2)(v
ivj + δi

j)W
2 + W (qi

(2)vj + qj,(2)v
i) + πi

j,(2)
W (q0,(2)v

i + qi
(2)) + πi

0,(2)

 .

Putting these results together and making substitutions wherever we find
time-derivatives of the primitive variables (as before) allows us to arrive at a purely
spatial form for R̃(2).
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5.2 Simulation Results

In fig. 5.1, we see the expected production of the three travelling waves: the
left-moving rarefaction; right-moving contact-wave; and (faster) right-moving
shockwave. These are most easily seen in the energy density plot in the top-left. The
bulk viscosity has a smoothing effect on these waves, particularly on the shockwave,
where it also significantly increases the propagation speed of the shock-front – this can
also be seen directly in the velocity plot (top-right). The bulk viscosity itself
(bottom-right) spikes at the shock where the velocity gradients are highest. Its
positivity there indicates a resistance to the rapid compression of the fluid by the
shockwave, with the reverse being true for the rarefaction. Increasing the bulk
viscosity parameter ζ leads to a strengthening of these features, as expected. Switching
on the second-order MISCE source term by setting τΠ ̸= 0 has a negligible effect on
the final state, as expected given the second-order term is O(ζτΠ) ∼ 10−4 here. Note
that, without viscosity, the solution to this test problem would be self-similar, meaning
that evolution in time results in a simple re-scaling of the final state.

In fig. 5.2, we take a closer look at a shocktube profile for the fluid’s number density
with bulk viscosity and heat flux present. Three results from the MIS model are
plotted for differing dissipative timescales τ (the same for both types of dissipation),
and one for the MISCE model (at leading order, so the timescale does not enter into
the EoM). In particular, we see convergence of the MIS result to the MISCE result as
τ is decreased. This is expected given that for the MIS model, in the τ → 0 limit, any
off-shell deviations from relativistic Navier-Stokes behaviour are instantaneously
quenched. This means that the MIS model’s behaviour should match that of the
leading-order MISCE model in this limit, where terms O(τ ) and higher are neglected.

Figures 5.3 to 5.5 show the development of the KHI for the fluid’s number density.
Figures 5.3 and 5.4 show its development for an ideal (inviscid) fluid. For the former,
the early-time behaviour is the focus, with the initial growth of the interface instability
visible, followed by large-scale mixing and finally the formation of small-scale structure
as energy cascades from longer to shorter scales. In the latter, the asymmetry of the
initial perturbation has had time to grow into a macroscopic asymmetry. One can also
see vortices forming and the onset of turbulence in the wide mixing layer.

In fig. 5.5, the long-term behaviour for a viscous fluid is shown. Viscosity suppresses
the perturbation’s growth and stabilises the mixing at the interface. Vortices do form,
still, but they are confined to a smaller corridor between the two bulk fluid regions,
and in general the behaviour is less chaotic. We observe similar qualitative behaviour
to Takamoto and Inutsuka, 2011, who performed comparable simulations.
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Figure 5.1: The evolution of four primitive variables for a ‘stillshock’ test - a shocktube
with zero initial velocity - up until time t = 1.5. An ideal fluid is compared with a
viscous one using the MISCE formulation at both leading and next-to-leading order, for
a range of parameter values. The increase in shock propagation speed and smearing of
discontinuities due to the inclusion of bulk viscosity are both visible physical effects. The
second-order terms have little impact on the solution as they are O(ζτΠ ∼ 1 × 10−4 but
do make some visible difference to the temperature and number density at the contact

wave discontinuity.

In fig. 5.6 we isolate the effect of heat conductivity on the shocktube solution, plotting
the temperature for both the MIS and MISCE models. For the MIS model, no effect is
seen at any dissipation strength. This is because numerical stability sharply bounds
the value of the relaxation timescale τq from below, meaning heat conduction happens
too slowly to be seen on the dynamical timescales present in the system2. This is not
the case for the MISCE model, where the effective relaxation timescale is zero (τq = 0),
and so the effect of a heat flux is seen as an additional heating between the shock and
contact waves. We consider the ability of the MISCE model to efficiently capture this
physical effect an advantage here. However, an effect is still only seen in the strongest
dissipation case, when κ = 0.001. The other values of κ are simply too small to create
a noticeable effect.

2We find, empirically, that the lower bound on the ratio τq/κ is much higher than the equivalent
bound in the viscous cases. This means that by the time κ is large enough to have an effect, τq is also
so large that the dissipation acts too slowly to affect the solution.
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Figure 5.2: The evolution of the number density for the same stillshock test, but now
until time t = 5.0, with the x-coordinate plotted horizontally. There is bulk viscosity
and heat flux present with coefficients ζ = 5 × 10−2 and κ = 5 × 10−3. The three panels
show the entire domain (left), the rarefaction wave (centre) and the shockwave (right).
The two models (MIS, MISCE) are compared in all three panels, with the dissipative
timescale τ varying for the MIS model but held constant at zero for the MISCE model.
One can see the approach of the MIS solution towards the MISCE solution as τ → 0.
For the rarefaction wave they have converged in the fastest case, but for the shock there
are still differences. In particular, one can see the increase in speed of the shock as the
ratio ζ/τπ increases for the MIS model. It is catching up to the MISCE solution, which

can be thought of as its limiting case.
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Figure 5.3: The development of a Kelvin-Helmholtz unstable fluid with negligible
viscosity until t = 6.25. The number density is shown in colour, as is the case for
all KHI plots here. The initial perturbation grows rapidly until the interface breaks
and large-scaling mixing occurs, followed by the onset of turbulent behaviour which

produces shocks and smaller-scale vortices.
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Figure 5.4: The development of the Kelvin-Helmholtz instability until t = 30.0, for
an ideal fluid with negligible viscosity. The longer simulation time allows the asym-
metric initial perturbation at the interface to give rise to large-scale asymmetric vortex

formation.

t=
0.

00

t=
6.

00

t=
12

.0
0

t=
18

.0
0

t=
24

.0
0

t=
30

.0
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Figure 5.5: The long-term evolution of the Kelvin Helmholtz instability using the
MISCE model at leading order with a shear viscosity parameter of η = 1 × 10−3. The
shear viscosity has an intermediate value here: it suppresses large-scale mixing of the
two fluids but vortices still form in a narrow shearing layer that is stable even at late

times. The asymmetry is again visible here, but obscured for similar reasons.
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Figure 5.6: The evolution of the temperature for the same shocktube test with zero
initial velocity and varying heat flux parameter, κ, across three orders of magnitude.
An effect is only seen for the MISCE model in the highest-κ case, where an additional
heating of fluid between the shock and contact discontinuities is seen. We originally
considered this to be the breakdown of the MISCE approximation occurring, and MIS
to be the ‘true’ solution. However, we argue that the MISCE solution here is correct
in its effective limit of τq → 0, which cannot be replicated in the MIS model due to

numerical stability bounds on the ratio κ/τq.

Figure 5.7 shows the power spectra for the kinetic energy in our KHI simulations. Two
comparisons are made: one between early (t = 12.0, blue curve) and late (t = 30.0,
orange curve) times; and one between an inviscid (top panel) and viscous (bottom
panel) fluid. In both cases, the system loses energy over time. For the inviscid case,
this is due to numerical dissipation. For the viscous case, there is the additional effect
of viscous dissipation, which causes the steeper drop-off for the orange vs. the blue
curve. The expected Kolomogorov scaling for the inertial range is plotted and matches
well with the data for all but the late-time viscous case, where dissipation has more
efficiently moved energy to the shorter lengthscales, giving a steeper dependence on
wavenumber. Finally, the ‘ringing’ effect seen for the highest wavenumbers in the
late-time, viscous case is, we believe, a numerical artefact. Dissipative behaviour in the
MISCE model is captured using a complex mixture of spatial gradients of the primitive
variables, generally calculated using simple central differencing rather than, for
example, a WENO scheme which is designed to be non-oscillatory. For the highest
wavenumbers here, corresponding to a few or even a single cell(s), these derivatives
may be causing small-scale oscillations in fluid variables that have no qualitative
significance.
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Figure 5.7: The power spectra for the kinetic energy density in the Kelvin-Helmholtz
instability at medium and long times, for an inviscid fluid (top) and one with weak
shear viscosity, η = 1 × 10−4 (bottom). This uses the MISCE formulation with a grid
of size Nx = Ny = 800. The expected Kolmogorov scaling of the power spectrum is
seen in the inertial regime at earlier times. In the inviscid case, the numerical viscosity
has a minor damping effect on the power spectrum at late times and high wavenumbers
(short lengthscales). A greater damping effect is seen in the viscous case, as well as
a ‘ringing’ at high wavenumbers due to coupled action of fluid element discretization
and local viscosity: these wavenumbers correspond to lengthscales of a few, or even a

single, cell(s).

5.3 Code Performance

There are a few key metrics of code performance we must now consider. Firstly, how
the runtime of simulations scales with resolution. Secondly, the convergence of the
simulation output, which is assessed in two ways: the self-convergence of the MISCE
results to a very high resolution simulation output; the asymptotic approach of the
MISCE results to either leading-order or ideal fluid behaviour as the non-ideal
coefficients approach zero. Finally, we present a comparison of runtimes, showing the
significant speed-up achieved by the MISCE model.

5.3.1 Scaling and Convergence

By evolving smooth “SineWave” initial data (fig. 5.8), we are able to assess the
convergence of our MIS and MISCE implementations with resolution. Specifically, the
initial data for the y-directed velocity are vy(0, x) = 0.2 sin (π(x + 1)) whilst all other
variables are constant across the domain.
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Figure 5.8: The “SineWave” initial data (and its evolution with the MISCE model)
used to assess numerical convergence with resolution. Shear viscosity causes the flat-
tening of features in the y-direction velocity across the x-domain here. This simulation

was performed using 3200 cells in one dimension up to a code time of 50.0.

Considering the error due to finite resolution, we define it as the difference between
“true” solution (the one obtained at infinite resolution) and the finite-resolution
solutions our code actually produces: E = Qtrue − Qnum. Then we make the usual
assumption that this error follows a power law scaling in the grid-size: E ∝ ∆xn.
Different approaches exist for extracting the value of n in this expression, and we
choose here to use self-convergence, where each resolution’s solution is compared to its
neighbours to produce a set of convergence powers at different resolutions. We do this
because different components of our numerical scheme (the time-integrator,
cell-interface reconstruction method etcetera) each have individual expected
convergence rates that blend together to give an overall convergence. This means that
different components can dominate the error at different resolutions, and we are able
to assess the transition between them using this approach.

We report in table 5.1, and visualize in fig. 5.9, a summary of convergence orders for
different models and resolutions. In summary, we see a transition from high-order
convergence at low resolutions to lower-order convergence at higher resolutions. For
both models, the error at low resolutions is dominated by the time integrator and
reconstruction algorithm, which are high-order schemes and hence their error converges
away quickly.

At high resolutions, we see a drop in the overall convergence order. For the MISCE
model, this is because there are many spatial derivatives of the primitive variables in
the complex source terms, which are evaluated using second-order central differencing.
Increasing the order of this central differencing does increase the convergence rate, but
makes negligible difference to quantitative results. For the MIS model, we require
temporal derivatives of the primitive variables. These are evaluated using
backwards-differencing on the primitives’ values at the current and previous timestep.
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Figure 5.9: The self-convergence rate of the MISCE model for different resolutions
using the number density in the ‘sinewave’ test seen in fig. 5.8. For lower resolutions, the
convergence order is between fourth and fifth due to the use of an RK4 time-integrator
and a WENO5 reconstruction scheme. At higher resolutions a transition to second-
order convergence is seen due to the presence of first-order central differencing used for

spatial derivatives in the MISCE source terms.

Self-Convergence
Model Integrator Reconstruction Resolution Order
MISCE RK2 WENO3 100 2.45
MISCE RK4 WENO5 50 4.5
MISCE RK4 WENO5 100 4.7
MISCE RK4 WENO5 200 3.9
MISCE RK4 WENO5 400 2.6
MISCE RK4 WENO5 800 2.1
MISCE RK4 WENO5 1600 2.0

MIS SSP2 WENO5 400 4.0
MIS SSP2 WENO5 800 5.7
MIS SSP2 WENO5 1600 1.0

Table 5.1: The self-convergence of a smooth sin-wave evolution using different models
of non-ideal hydrodynamics and different numerical schemes. The expected orders
of convergence are seen. At very high resolution, the first-order central differencing
used in the MISCE model source’s spatial derivatives causes the convergence order
to drop to 2nd. For the MIS model, we use lagged-updates to calculate the required
time derivatives. This similarly caps the order of convergence at first when very high
resolutions are used and error from other components of the numerical scheme are tiny.

This introduces a first-order error due to these lagging updates that does not converge
away with resolution, and hence appears as the dominant error at high resolutions.

5.3.2 Model Comparison

We show in table 5.2 a comparison of runtimes between the MIS and MISCE models
for the KHI. We primarily present results comparing the MIS model evolved with the
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Average Runtime
Model Integrator Resolution Endtime Runtime (Speed-up)
MIS SSP2 200x400 6.25 1h22m

MISCE RK2 200x400 6.25 6m (×14)
MIS SSP2 400x800 6.25 3h22m

MISCE RK2 400x800 6.25 29m (×7)
MIS SSP2 800x1600 6.25 26h10m

MISCE RK2 800x1600 6.25 3h7m (×8.4)
MIS RK2 800x1600 18.0 15h45m

MISCE RK2 800x1600 18.0 9h8m (×1.7)
MIS SSP2 800x1600 3.75 22h3m

MISCE RK2 800x1600 3.75 1h54m (×11.6)

Table 5.2: A comparison of computational time required for different hydrodynamic
models and time-integrators. These results are for Kelvin-Helmholtz instability simula-
tions using 40 CPU nodes and MPI memory management on the Iridis5 supercomputer.
The MISCE model gives about an order of magnitude speed-up compared to the MIS
model (when evolved with explicit methods instead of implicit ones). RK2 refers to
an operator-split, 2nd-order Runge-Kutta scheme and SSP2(222) refers to a 2nd-order

implicit-explicit scheme.

SSP2(222) IMEX time-integrator (Pareschi and Russo, 2005) and the MISCE model
evolved with an operator-split RK2 time-integrator. Whilst this comparison may seem
‘unfair’ at first, due to the costly nature of IMEX schemes3 compared to explicit ones,
it is justified. For much of a merger simulation the neutron star fluid may be
accurately treated as ideal or near-ideal; when dissipation does become significant, its
parameter space will certainly extend into the region where the MIS model becomes
stiff and IMEX schemes are needed to evolve it stably.

In this case, a significant speed-up of about an order of magnitude is achieved using
the MISCE model. When the two models are compared using explicit time-integrators
for both, a speed-up of nearly a factor of 2 occurs, owing to the reduced system size.

We have seen the first-order-in-τ convergence of the MISCE model to its leading-order
behaviour as τ is decreased. Now, we also investigate the convergence rate of the MIS
model to the leading-order MISCE model (independent of τ) as τ is reduced for the
MIS model. This also serves as an indirect check on the behaviour of the MISCE
model, as we see how large the effect of being off-shell is for the MIS model, relative to
it.

In fig. 5.10, we plot the L2-norm of the difference between the MIS and MISCE models,
summed across the entire domain, whilst varying τ for the MIS model. The data used
are those seen in fig. 5.2. We see that for small values of τ ≈ 1 × 10−5 − 1 × 10−2,
where the viscosities and heat flux quickly relax to their Navier-Stokes forms, the
difference is small. This is expected given that at leading order, the dissipative

3The implicit part of the solver requires either a complex algebraic calculation involving the inversion
of a large matrix, or a numerical root-find to arrive at a self-consistent solution.
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Figure 5.10: The difference between the MISCE model at τ = 0.0 (leading order) and
the MIS model with varying τ , where all three forms of dissipation are present. The L2-
norm of the difference between number densities (left) and velocities (right) are plotted
for shocktube initial data as seen in fig. 5.2.Please see the text for an explanation of

the observed behaviour.

variables in the MISCE model are given precisely by the same Navier-Stokes form. For
intermediate values when τ ≈ 1 × 10−2 − 1.0, the difference rapidly increases as the
off-shell behaviour of the MIS model kicks in. Finally, for the largest values of
τ ≈ 1 × 10−2 − 1.0, the difference starts to plateau as the impact of dissipation
becomes negligible–it is too slow compared to the dynamical timescales of the fluid.

5.4 Further Considerations

5.4.1 Rapid Evolution of Reduced Initial Data

The source terms in MIS models drive the dissipative variables towards their
equilibrium values on timescales τ . We therefore expect that, when our initial data (or
otherwise) puts us significantly out-of-equilibrium, at times t ≲ τ , there will be a
systematic error in the dissipative variables that decays roughly as e−t/τ .

However, a CE-expanded model does not possess this type of source term nor indeed
any explicit dissipative variables at all. Instead, the primitive variables and their
derivatives are used to produce dissipative effects. We therefore expect that we will
need to make modifications to the primitive variables’ initial values to reflect their
out-of-equilibrium status in lieu of having terms that explicitly define our
out-of-equilibrium state.

Let us demonstrate the effect of not making appropriate adjustments to the primitive
variables to reflect their out-of-equilibrium state. We take the simple heat model
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presented earlier in eq. (4.11), in one dimension:

∂tT + ∂xq = 0, (5.26a)

∂tq = − 1
τq
(κ∂xT + q); (5.26b)

and its CE form, eq. (4.20),

∂tT = κ
[
∂(2)

x T − κτq∂(4)
x T

]
. (5.27)

By introducing a fast time variable T = t/τq on the scale of the relaxation rate, we
can perform a matched asymptotic expansion valid even at small times. This
transforms eq. (5.26) into

∂T T + τq∂xq = 0, (5.28a)

∂T q = −q − κ∂xT . (5.28b)

From eq. (5.28), the power series expansion now gives that the temperature T is
independent of T to leading order and

∂T q0 = −q0 (5.29)

which can be integrated directly to give

q0 = C0e−T (5.30)

where C0 is a constant of integration. We immediately see that this exponential
behaviour in fast time, T , cannot be captured by a power series expansion in the
original time, t.

Noting that C0 = q(t = 0) + O(τq), we relabel C0 as ∆q0 because it represents an
initial offset of the heat-flux at T → 0+. To compare this early-time behaviour between
the two models (eq. (5.26) and eq. (5.27)), we can Taylor-expand each in terms of T to
an arbitrary (small) time T = 1 about T = 0. This is equivalent to considering the
evolution up to time t = τq. From the relaxation model eq. (5.26) we have

T (T = 1) ≃ T (T = 0) +
(

∂T0
∂T

+ τq
∂T1
∂T

+ ...
)
(T = 0) + ... (5.31a)

= T (T = 0) − τq
∂∆q0
∂x

+ O(τ2
q ) (5.31b)

whilst from the CE model eq. (5.27) we have

T (T = 1) ≃ T (T = 0) +
(

∂T0
∂T

+ τq
∂T1
∂T

+ ...
)
(T = 0) + ... (5.32a)

= T (T = 0) + O(τ2
q ). (5.32b)
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Comparing the two, we see that we can match the two temperatures at small times by
making an initial-data adjustment given by

T (t = 0, x) → T (t = 0, x) − τq∂x∆q0. (5.33)

This accounts for the fast-relaxation behaviour and removes the
exponentially-decaying, leading-order systematic error in the solution. In words, we are
taking into account the heat flux (q) that would have produced our initial,
out-of-equilibrium temperature (T ) distribution. Otherwise, our reduced system does
not have access to this knowledge and will not equilibrate accordingly.

This can be seen in fig. 5.11, where a one-dimensional ‘top-hat’ temperature profile
evolves up to t = 1 × 10−3, using non-ideal parameter values κ = 1 × 10−3 and
τq = 1 × 10−4. Here, we are not interested in the usual, long-term evolution where heat
would slowly diffuse outwards and the temperature profile would adopt a decaying
Gaussian shape. Instead, we are interested in the very short-term evolution due to the
inclusion of an initial heat flux ∆q0 = sin(6πx) into the MIS-derived heat model given
by eq. (5.26).

In the left panel the temperature of the MIS-derived relaxation model is shown with
solid lines, whilst the initial temperature with the offset computed in eq. (5.33) is
shown with dotted lines. Excellent agreement is seen, indicating that this offset would
work when applied to a reduced order model such as the MISCE approach. The right
panel shows the heat flux of the MIS-derived relaxation model, showing that the
system has relaxed to equilibrium, illustrating that this applied offset has the
appropriate magnitude.

In summary, injecting an initial heat-flux into a relaxation-type system leads to an
exponentially fast adjustment of the corresponding conjugate primitive variable: the
temperature, in this case. We are able to derive an analytic expression for this
adjustment behaviour that depends on the spatial gradient of the injection and the
non-ideal parameter controlling its timescale, τq in this case. Even in the reduced
system found using the CE-expansion, we are able to adjust the sole remaining
variable (the temperature) to capture the offset that is quickly arrived at by the
original relaxation system.

The same effect would be observed when using the full MIS model of non-ideal
hydrodynamics, where an initial bulk or shear viscosity would lead to an
exponentially-fast adjustment of the velocity, albeit likely small in magnitude. If one
uses our MISCE model for capturing far out-of-equilibrium dissipation, the initial
conditions of the non-ideal variables (viscosity, heat-flux) can and should still be taken
account of by adjustment of their conjugate primitive variables (such as velocity and
temperature).
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Figure 5.11: The evolution of the temperature and heat flux for the ‘top-hat’ initial
data described in section 5.4.1 using the relaxation model given by eq. (5.26). The initial
heat flux means the data is initially out-of-equilibrium. The non-ideal parameters are
κ = 1 × 10−3 and τq = 1 × 10−4, so the system relaxes to equilibrium on the timescale
shown here, as seen by the heat flux relaxing to nearly zero. The analytic result for
the appropriate adjustment to the initial data, derived in section 5.4.1, is also plotted
in the left panel (dotted) and shows excellent agreement with the numerical evolution

result.

5.4.2 Stability Analysis

It is important to consider the numerical stability of the CE systems introduced here.
Usually, conservation laws are evolved for hydrodynamic simulations of ideal fluids in
special relativity of the form

∂tq + ∂xf = 0, (5.34)

where we choose to write it in one spatial dimension for simplicity. The
Courant–Friedrichs–Lewy (CFL) condition sets a stability criterion for these strongly
hyperbolic systems given by

C :=
∣∣∣∣∂f

∂q

∣∣∣∣ ∆t

∆x
≤ Cmax (5.35)

where ∆t is the timestep and ∆x is the spatial resolution. C is the Courant number
and Cmax is a constant that determines its maximum stable value and depends on the
particular numerical scheme employed. Typically, Cmax = O(1) for explicit schemes.

For linear systems involving higher-order spatial derivatives, such as the heat equation
given by

∂tT = κ∂(2)
x T , (5.36)

a von Neumann stability analysis is usually performed, where the numerical errors are
decomposed into a Fourier series. For a forward-time, centre-spaced (explicit)
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numerical scheme this analysis finds that

κ
∆t

∆x2 ≤ 1
2 (5.37)

is the condition necessary for stability. This puts a limitation on the maximum
timestep allowed for a given spatial resolution, often increasing the computational cost
as more timesteps are then required. Super-timestepping is one approach to tackling
this issue, often employed in Newtonian hydrodynamics simulations. There, the CFL
condition is (somewhat) bypassed by using sub-timesteps within a larger timestep.
Only over the larger, super-timestep is the stability condition required to be satisfied.
Although this requires a greater number of total (sub-)timesteps, the cost of the
simulation is still reduced by allowing greater effective timesteps to be taken.
See Alexiades, Amiez, et al., 1996, for instance, where a super-timestepping procedure
is applied to an explicit time-integrator (forward Euler method) for the parabolic heat
equation (the same one we have here).

For the CE heat system given by eq. (4.20),

∂tT = κ∂(2)
x T − κ2τq∂(4)

x T , (5.38)

the conditions for stability are slightly more complex, and are visualized in fig. 5.12.
The same analysis gives us the inequality for stability of

κ
∆t

∆x2 + 4τqκ2 ∆t

∆x4 ≤ 1
2. (5.39)

This clearly yields the previous heat-equation limit when the first term is dominant. In
the limit where ∆x → 0 and the second term becomes dominant we instead obtain the
condition ∆t ≤ 1

8
∆x4

τqκ2 which is the stricter condition of the two in this limit. We expect
a cross-over of stability between the two criteria when ∆x2 = 4τqκ. At this point, the
overall stability condition given by eq. (5.39) above yields ∆t ≤ τq.

The stability criteria for the full, non-linear MISCE model we have developed will be
more complex still, given the presence of many mixed derivatives. Hence, we primarily
investigate its stable parameter space empirically. However, we can first glean some
insight analytically, although the usual von Neumann stability analysis is not
applicable to the non-linear terms and we therefore consider the linear terms only here.

We make the ansatz that the general solution, Q, can be written as
Qn

l = Qn exp(ilα∆x) where n and l index the time-step and a grid-point, respectively,
and α is a spatial frequency present in the data. Using central finite differencing, the
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Figure 5.12: The stability criteria of eq. (5.39) are plotted separately (dashed, dotted)
and summed (solid). The red, shared region shows where the simple heat flux model
given by eq. (5.38) should be stable, according to the standard von Neumann analysis
technique using a Fourier series of errors. The heat dissipation parameter values here
are τq = 0.01, κ = 0.05 and the CFL factor is C = 0.5 hence the crossover between the

two stability criteria occurs at ∆x ≃ 0.045.

MISCE sources will produce a solution growth rate per step, R, with the following form

R = 1 − ξ
A∆t

∆x2 sin2
(

θ

2

)
+ ξτ

B∆t

∆x3 (sin (2θ) − 2 sin (θ)) (5.40)

+ ξ2τ
C∆t

∆x4 sin4
(

θ

2

)
where θ = α∆x/2, ξ ≡ {ζ, κ, η} and A, B and C are functions of the primitive
variables. We anticipate a crossover between the various stability criteria as resolution
varies.

Firstly, we note that the validity of our expansion only applies when τ ≪ 1 and indeed
we find that our simulations are unstable when τ ≳ 10−2. In Hiscock and Lindblom,
1983, conditions are provided for the stability (and causality) of MIS theory. There,
the β-coefficients (written out in section 4.1 of this thesis), which represent the ratio of
dissipation strengths (ξ ≡ {ζ, κ, η}) to timescales (τ ≡ {τΠ, τq, τπ}), are used to
determine the stability of the theory. Unsurprisingly then, we find the same is true
here: a lower bound from causality appears on the ratio τ/ξ.

In particular we find that for shocktube tests, τq/κ = Tβ1 ≳ 0.5 as well as
τΠ/ζ = β0 ≳ 0.1 grants stability. Similarly, for KHI tests, τπ/η = β2 ≳ 0.2 gives
stability. These ratio conditions coupled with the small-τ requirement work together to
create a stability region bounded at either end, at least when next-to-leading order
terms ∝ τ are included in the MISCE source.

For a Boltzmann gas, the β coefficients have thermodynamic forms that we can
calculate analytically. We expect them to usually be ∼ O(1). Indeed, we have
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implemented these thermodynamic forms such that the timescales used are dynamically
adjusted during the simulation – little difference is made to using preset values.

5.4.3 Extension to GR

Here we briefly consider the form our model would take if we were to extend it to
General Relativity, in anticipation of future work. We follow the fairly standard
numerical relativity definitions as laid out in Chabanov, Rezzolla, et al., 2021. In
particular, we introduce the unit time-like vector n that is normal to the spatial
hypersurfaces, on which an induced spatial metric γµν

.
= gµν + nµnν is defined, where

gµν is the spacetime metric and g
.
= det(gµν) = α

√
γ relates the determinants of the

two. The components of n are given by nµ = (−α, 0, 0, 0) and nµ = α−1(1, −βi)T

where α is the lapse scalar and βi = γijβj is the shift-vector.

The hydrodynamic equations in GR then become

∂t (
√

γU) + ∂i

(√
γFi(U)

)
=

√
γS (5.41)

where

U =



D

Sj

τ

X

Y j

Zjk


=



nW

(ρ + p + Π)W 2vj + W (q0vj + qj) + π0j

(ρ + p + Π)W 2 + 2q0W − (p + Π − π00) − nW

nW Π
nWqj

nWπjk


,

Fi =



DV i

αSi
j − βiSj

αSi − βiE − DV i

XV i

Y jV i

ZjkV i


, S =



0
1
2αSik∂jγik + Si∂jβi − E∂jα

αSijKij − Sj∂jα
αn
τΠ

(ΠNS − Π + ∆Π)
αn
τq
(γj

µqµ
NS − qj + ∆j

q + τqGj
q + τqHj

q)
αn
τπ

(γj
µγk

ν πµν
NS − πjk + ∆jk

π + τπGjk
π + τπHjk

π )


and we have defined V i = αvi − βi, Kµν = −∇µnν − nµa

(n)
ν as the extrinsic curvature

and aµ
(n) = nν∇νnµ as the acceleration of the normal observer. The ∆ terms represent

the next-to-leading order contributions to the dissipative terms’ sources and the G & H
terms represent couplings between the dissipative variables and the gauge & curvative
variables.

Let us consider how the MISCE derivation will work now: more details and an
illustration in a different context are given in Wright, 2020. We consider the τ → 0
limit so that the source terms G & H are irrelevant for the expansion about this limit.
We also neglect higher-order corrections as usual so that the ∆ terms vanish. The
perturbative expansion about the Navier-Stokes equilibrium is conceptually the same,
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if algebraically more complex. The procedure that replaces time derivatives of the
perturbative quantities with spatial derivatives of equilibrium quantities does, however,
involve derivatives of more terms that appear in eq. (5.41).

For instance, derivatives of the (square root of the) spatial metric’s determinant (√
γ)

appear in eq. (5.41). The spatial derivatives are fairly straightforward to calculate
using finite-differencing. However, we would like avoid using finite-differencing for the
temporal derivatives, which requires additional memory allocation and is generally
low-order accurate. To this end, we use the equation ∇µ

√
−g = 0 as well as the

relation √
−g = αγ to arrive at the identity

α∂µ
√

γ +
√

γ∂µα = 0 (5.43)

which, with index µ = 0, gives

∂t
√

γ =
−√

γ

α
∂tα (5.44)

where the time-derivative of α is usually calculated anyway as it is needed for the
evolution of the gauge.

5.5 Summary

We have presented a dissipative extension to the relativistic, ideal hydrodynamic
equations often used in astrophysical simulations. Motivated by the relaxation form of
the MIS sources for the dissipative variables, new source terms are derived by writing
the dissipative variables as a series expansion in deviations from their equilibrium,
relativistic-Navier-Stokes values. The series is paramterized by the dissipation strength
and timescale coefficients and its terms are found using an order-by-order comparison
of the MIS equations of motion. This leads to a rapidly convergent series in the case of
fast-acting, weak dissipation, which we term the MISCE formulation.

This new system is numerically non-stiff in the exact limit where the commonly-used
MIS equations of motion are stiff, and vice versa. Because much of the matter in a
neutron star may be treated as a near-ideal fluid, the MISCE equations of motion are
often able to be evolved explicitly, giving accurate results with execution times that
are about an order of magnitude reduced. Even when both models are evolved with
the same, explicit integrators, the MISCE formulation is nearly twice as fast, owing to
its reduced system size. It also converges to the Euler equations in the zero-dissipation
limit, allowing for the natural evolution of a fluid which is mostly ideal with some
areas of non-equilibrium behaviour.
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Within its domain of validity, we have demonstrated it to produce highly similar
results to the MIS formulation for a range of initial data. It is able to capture
dissipative effects near discontinuous data without the onset of Gibbs oscillations, and
shows little error growth (compared to MIS results) for smooth solutions over
dissipation strengths and timescales spanning many orders of magnitude. For more
complex simulations of Kelvin-Helmholtz instabilities, the expected scaling laws are
reproduced for the kinetic power spectrum across the inertial range of wavenumbers.

The realm of stability for our new model is considered in section 5.4.2, and is
dependent both upon the dissipation coefficients (in particular the ratio of strength to
timescale) and the simulation’s spacetime resolution, with a sharper dependence on the
spatial resolution. The presence of many mixed-order derivatives in the source terms
can lead to instabilities when spatial resolutions are pushed very high, though this
effect may be mitigated somewhat by using better numerical-derivative approximations
(than simple finite-differences) such as slope-limiting ones. In section 5.3.1 we
presented results showing the expected convergence for the fourth-order Runge-Kutta
and fifth-order WENO schemes we use. One caveat is that at high resolutions, the
MISCE formulation, which makes use of second-order central-differencing of the
primitive variables, starts converging at second-order in the grid-spacing. Similarly, the
MIS formulation starts converging at first-order for high resolutions, when the
dominant error contribution is the first-order time derivatives calculated using lagged
updates.

In section 5.1, to simplify the form of the matrices in the source that we present, we
made the assumption that terms of O(v2) and higher were negligible, and hence that
the Lorentz factor, W , could be set to unity. Whilst for simulations we use the entire,
non-simplified expressions that we derived using computer algebra, the differences this
made to results were small, and were generally eclipsed by resolution effects. However,
the differences may be more significant for fluid velocities approaching the speed of
light, such as in the final orbits of a binary neutron star pre-merger, or for the
significantly out-of-equilibrium matter created in the merger itself.

Although all simulations have been performed in the special relativistic limit, the
techniques we have used are not limited to this alone. A general relativistic extension
to MISCE is (in principle, at least) straightforward and already underway. In addition,
we have developed an adaptive code prototype that evolves different dissipative fluid
formulations in different physical regimes (e.g. MIS and MISCE) to minimize
computational work and maximize accuracy and stability. Together, this should allow
for more efficient, dissipative simulations of neutron star mergers and accretion onto
compact objects.
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Chapter 6

A Covariant Filtering
Implementation

6.1 Introduction

So far, we have seen how non-ideal fluids are physically important for neutron stars
in chapters 1 and 2, and how they can be practically modelled in chapters 4 and 5.
However, as discussed in section 2.3, the subgrid-scale (SGS) models used to capture
small-scale behaviour may be interpreted as non-ideal fluid models, too. This is
particularly important for large-eddy scheme (LES) approaches, which we introduce
and then present our work on in this chapter.

The LES strategy consists of two key steps. First, one introduces a filtering operation
with an associated filter kernel and filter length-scale. This is done in order to separate
a field (or quantity) into a ‘resolved’ part that varies on large scales (that is, scales
larger than the filter length-scale) and small-scale fluctuations. Second, the filtering
operation is applied to the equations of motion. The net result is that, whenever the
equations of motion contain non-linearities, filtering introduces residual terms that
capture the impact of the fluctuation dynamics on the resolved scales. By modelling
these residuals—e.g. calibrating them on high-resolution simulations of
turbulence—one can try to inform a large-scale simulation with relatively low
resolution about dynamics happening at smaller scales. These steps form the basis of
the LES strategy, in the Newtonian context as well as in relativity.

A significant drawback of all relativistic LES implementations to date is that none of
them are covariant, as highlighted in, for instance, Eyink and Drivas, 2018; Celora,
Andersson, et al., 2021. This is because the filtering procedure, which takes one from
the ‘micro’-level (where everything is assumed to be known and calculable) to the
‘meso’-level (where simulations are typically carried out) is performed at the level of
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the (foliation-based, or 3+1) equations of motion and not on, for example, the
stress-energy tensor itself. This makes the procedure frame dependent and so must be
performed with respect to a (perhaps implicitly) chosen observer. If we instead choose
to set the filtering observer using the fluid’s physical state, we can define a unique
observer that will give us the same filtering result independently of the frame of
reference or coordinates used. These issues were discussed in Duez, Knight, et al., 2020
and subsequently addressed in Celora, Andersson, et al., 2021, where an alternative,
covariant framework using a fibration was put forward. This, together with the
higher-level discussion we provide in Celora, Andersson, et al., 2024, serves as the
theoretical precursor to the present more practical work.

In this chapter we implement the fibration-based, fully covariant, LES strategy
outlined in Celora, Andersson, et al., 2021. We lay out the practical logic in
section 6.1.1 and apply the scheme to real numerical data in section 6.1.2. We then
build a closure model in section 6.3 and consider the impact on the interpretation of
the micro-physical parameters in section 6.4. The main purpose of this chapter is to
illustrate the viability of our approach and explore the possible pitfalls of alternative
strategies.

6.1.1 Logic of the Scheme

We now discuss a practical implementation of the framework presented in Celora,
Andersson, et al., 2021, focusing on the logic of the scheme and deferring to
section 6.1.2 a detailed proof of principle analysis. Nonetheless, we anticipate that here
the scheme is intended to be applied to special relativistic box simulations of
hydrodynamic turbulence. The covariance of the Lagrangian filtering and the fact that
this leaves the metric unaffected, allow us to apply the scheme to special relativistic
numerical data and lift the results of our analysis to any spacetime. In principle, this
allows us to perform explicit large-eddy scheme simulations in curved spacetimes—as
required for merger or post-merger—using a subgrid model fitted within our
framework. Of course, re-calibration to the specific dynamics of other systems beyond
those of our box simulations here may be required for this to be accurate.

The first cornerstone of the scheme is the construction of the observer Uµ, which will
be used for filtering and post-processing the numerical data. In essence, the idea is to
work around the fact that any filtering operation breaks covariance by linking the
operation to a physically meaningful observer—not to a gauge-dependent foliation
observer. Then, introducing Fermi-coordinates (see, e.g. Misner, Thorne, et al., 1973)
associated with such an observer, one can show that the metric is unaffected by the
filtering operation. These two features combined mean that the framework retains
compatibility with the tenets of general relativity, while adopting the main ideas of the
more traditional LES strategy.
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In practice, as for turbulent flows we expect to have changes in the flow properties over
small scales, we can introduce the filtering observer as the one that moves with the
‘bulk’ of the fluid. That is to say the observer is aligned with the (baryon) number
current of the flow, at the coarse level. This means that, if we consider a ‘box’ in
spacetime that is adapted to such an observer—that is, the observer identifies the
time-like direction of the box—there should be no (or at least minimized) baryon flux
through opposite sides of the box. To ‘extract’ the filtering observer from the
numerical data, then, we start by constructing such a box around a grid-point using
the fine-scale fluid velocity at the point, uµ, as initial guess for the observer: Uµ = uµ.
Starting from an orthonormal basis for the foliation of the spacetime
{eµ

(t), eµ
(x), eµ

(y), eµ
(z)} = {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)}, we project first

spatial leg of the tetrad as

Eµ
(1) = eµ

(x) + UµUνeν
(x) , Eµ

(1)E
(1)
µ = 1 . (6.1)

The remaining two spatial legs can be projected in a similar fashion, namely

Eµ
(2) = eµ

(y) + UµUνeν
(y) − Eµ

(1)E
(1)
ν eν

(y) , Eµ
(2)E

(2)
µ = 1 , (6.2)

and similarly for Eµ
(3). Given the tetrad legs, we then consider a space-time volume VL

aligned with the tetrad {Uµ , Eµ
(1) , Eµ

(2) , Eµ
(3)} with representative lengthscale L about

our current point and compute three residual terms

r(I) =
∫
VL

Eµ
(I)nµ dVL , I = 1, 2, 3 (6.3)

where nµ = nuµ is the micro-scale baryon current. These residuals measure the
average particle drift in the direction I over the space-time volume VL. We can then
feed these residuals into a root-finding algorithm and reconstruct (from the roots) the
observer Uµ that minimizes the particle drift on average1.

Note that the observer-finding volume’s lengthscale, L, is a free parameter here and in
theory represents a separate choice to the filtering kernel size introduced and discussed
later. Perhaps it should be made inversely proportional to the Lorentz factor of the
observer, to reflect relativistic length contraction for high-velocity flows. Here,
however, we decide not to overcomplicate the matter and set the two to be identical.
This means that for a turbulent fluid flow, where there are rapid spatial variations in
fluid quantities, we at least know that the filtering is being done with respect to an
observer (and within a volume) that minimizes the local baryon current drift with
respect to itself.

1We note that we have also implemented and tested a minimization algorithm based on a similar
logic, but found this was slower and more sensitive to the initial guess. The root-finding algorithm,
however, appears to be robust even for high fluid/observer velocities.
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Having discussed the construction of the filtering observer, let us turn to the
meso-model and filtering. Given discrete data from a box simulation, the first step is
to set up a meso-grid that is aligned with the ‘micro one’ from the simulations2. We do
so by introducing a coarse-graining factor (CG) in order to be able to reduce explicitly
(or not) the resolution of the meso-grid with respect to the micro-grid. Once the grid
is set up, we compute the filtering observer at each point on the meso-grid using the
procedure discussed above. Then, we perform a Lagrangian spatial filtering of all the
relevant variable of the micro-model, where we stress that we filter in the spatial
directions relative to the observer. Here we do this using a sharp box filter kernel, so
that for a given quantity X we compute its filtered counterpart as

⟨X⟩ =
∫

VL

X dVL , (6.4)

where VL is a spatial volume adapted to {Eµ
(1) , Eµ

(2) , Eµ
(3)} with side L and the integral

is performed using a Gauss-Legendre quadrature scheme. We note that, as the spatial
directions relative to the filtering observer will in general be tilted with respect to the
foliation, the procedure requires introducing abstract coordinates adapted to the tilted
box at each point. This operation populates the meso-grid with the computed values
for the Lagrangian-filtered meso-model variables. For the simplest case of an ideal,
single fluid, which we will be focusing on in the following sections, this involves
computing the baryon current ⟨nµ⟩, stress-energy tensor ⟨T µν⟩ and thermodynamic
pressure ⟨p⟩.

As extensively discussed in Celora, Andersson, et al., 2021, even if the micro-scale
model is that of an ideal fluid with stress-energy tensor given by

T µν = ρuµuν + p(gµν + uµuν) , (6.5)

where ρ, p are the micro-scale energy density and pressure, filtering will introduce
additional ‘non-diagonal’ terms into the stress-energy tensor akin to those that enter
dissipative fluid models. In practice, we introduce a ‘Favre’ observer (FO) ũµ at the
meso scale as the one associated with the filtered baryon flux ⟨nµ⟩ ≡ ñũµ and write the
filtered stress-energy tensor as

⟨T µν⟩ = (ρ̃ + ⟨p⟩) ũµũν + ⟨p⟩gµν + 2q̃(aũb) + s̃µν . (6.6)

The energy density as measured by the Favre observer is denoted as ρ̃, while the
additional residual terms q̃µ and s̃µν measure effective momentum flux and stresses
introduced by the filtering. In essence, these quantities are intended to capture energy
and momentum transfer to/from the smaller scales that have been filtered out
explicitly. Specifying a closure scheme in this picture amounts to introducing a

2We note that it is not strictly necessary to have the two grids aligned, but this clearly is a sensible
choice, particularly for comparison at each grid point.
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suitable representation of these residuals in terms of resolved/filtered quantities. Given
the evident analogy with non-dissipative fluids and based on the classical work by
Smagorinsky, 1963 (see also Radice, 2017; Radice, 2020), in Celora, Andersson, et al.,
2021 a closure scheme that builds precisely on this formal connection was proposed.
Here we choose to model the residuals as

s̃µν =
1
3Π̃⊥̃µν

+ π̃µν , Π̃ = ζθ̃ , π̃µν = −ησ̃µν , q̃µ = −κT̃ ⊥̃µν
( 1

T̃
∇bT̃ + ãb

)
,

(6.7)
where T̃ is the meso temperature, ⊥̃µν

= gµν + ũµũν is the orthogonal projector
relative to the Favre observer, while θ̃, σ̃µν and ãµ are, respectively, the expansion rate
scalar, the shear rate tensor and the acceleration relative to the Favre observer:

ãµ = ũν∇bũµ , (6.8a)

θ̃ = ⊥̃µν∇µũν , (6.8b)

σ̃µν =
1
2
(
⊥̃c

a⊥̃d
b + ⊥̃c

b⊥̃
d
a

)
∇cũd − 1

3 θ̃⊥̃µν . (6.8c)

As extensively discussed in Celora, Andersson, et al., 2021 and Radice and Hawke,
2024, filtering may also impact on the thermodynamics. As the equation of state can
be thought of as a non-linear closure, there is no guarantee that its functional form will
be preserved by filtering. This implies that there is some freedom in specifying the EoS
and related thermodynamic quantities at the filtered level. We do not wish to expand
further on this issue here; it will be discussed later in section 6.4. Nonetheless, we note
at this point that this may impact on the closure scheme in eq. (6.7) as it requires the
introduction and choice of a filtered EoS from which we can compute T̃ given filtered
data.

At this point, we have covered the salient points of the scheme, so we can turn our
attention to a proof-of-concept implementation of the strategy. In fact, the aim of the
next sections is to discuss how the effective dissipative coefficients can be extracted
from box simulations and how we can use the results to calibrate a meso-model. Once
this is done, the Lagrangian subgrid model is complete. Before we move on, however,
we need to comment on the choice of the closure scheme that will be explored in the
following sections. At first glance, and with the closure scheme above, the final model
resembles the Eckart model for a dissipative fluid, which is well-known to be acausal
and suffer from instabilities Hiscock and Lindblom, 1983; Hiscock and Lindblom, 1985.

As far as we are aware, however, all discussions of the stability and causality properties
of the Eckart model assume constant transport coefficients. It is not clear what would
happen to the ‘classical’ results if we relax this assumption. In fact, as we will see
below, it appears that modelling the effective dissipative coefficients only in terms of
thermodynamic quantities like temperature and density does not suffice. This casts
doubts on the naïve extension of the classical instability results to the problems we are
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interested in. Moreover, if the unstable wavenumbers are not resolved in the
coarse-grained simulation, then instability would not be triggered at all. We note that
a similar perspective has recently been discussed in the context of reaction-sourced
bulk-viscosity in mergers (Celora, Hawke, et al., 2022), although bulk viscosity in
mergers is mathematically equivalent to resumed MIS (Gavassino, Disconzi, et al.,
2024) as mentioned previously in section 1.1.5.

On top of all these considerations, it is also important to note that the various models
designed to overcome these issues are all built by extending or generalizing the
first-order models of the Landau-Eckart family. Given the novelty of the strategy that
is being explored and implemented in this work, and as a first stab at the problem, we
will focus on extracting and modelling the effective transport coefficients as in
eq. (6.7), which we may also consider as leading order results.

6.1.2 Box Simulations of the Kelvin-Helmoltz Instability

We now turn our attention to applying the practical filtering scheme laid out
in Celora, Andersson, et al., 2021 to real simulation data. These data are produced
using the METHOD codebase; a (3+1D) finite-difference codebase for simulating
hydrodynamics in special relativistic spacetimes. It contains a range of explicit and
implicit-explicit (IMEX) time-integrators, spatial reconstruction and flux schemes. The
METHOD codebase has been used previously to simulate resistive
magnetohydrodynamics (Wright and Hawke, 2019; Wright, 2020; Wright and Hawke,
2020) and dissipative, relativistic fluids (Hatton and Hawke, 2024). For our purposes
here, we perform high-resolution simulations of Kelvin-Helmholtz instabilities using a
relativistic, ideal fluid description prescribed by the Euler equations. The data are
defined within a 2D ‘box’ domain where x ∈ [0.0, 1.0]; y ∈ [0.0, 1.0]. The domain is
filled with two fluid regions of differing densities that flow past each other with
velocities directed in the positive and negative y-directions. The inner region of lighter
fluid exists roughly in x ∈ [0.25, 0.75], whilst the outer region of heavier fluid exists
elsewhere. The primitive variables are the density and the y-component of the velocity:

(
ρ

vy

)
=



(
0.1
0.5

)
xL < x < xR,

(
1.0

−0.5

)
otherwise.

(6.9)

The interfaces between the two regions—located at x = xL ≃ 0.25 and
x = xR ≃ 0.75—are perturbed in a random fashion to induce mixing of the two fluid
regions and encourage the instability to grow. We do so by superimposing 10 different
modes that are out of phase and of different amplitudes. Specifically, given

https://github.com/MarcusHatton/METHOD
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N = 1, . . . , 10, we independently perturb the x-position of both interfaces as

x → x + 0.01R1,N cos(R2,N + 2Nπx) (6.10)

where R1,N are ten random numbers between 0 and 1, normalized by their sum, and
R2,N are ten random numbers between −π and π. For the simulations we use a ‘Γ-law’
EoS of the form:

p = (Γ − 1)nϵ = (Γ − 1)(ρ − n) , ρ = mn(1 + ϵ) (6.11)

where p is the pressure, ϵ and ρ are (respectively) the specific internal energy and the
energy density, while n is the baryon number density. The initial pressure is uniform,
p = 1.0, and the adiabatic index is set to Γ = 4/3 as for an ultra-relativistic ideal fluid
in Rezzolla and Zanotti, 2013. We use periodic boundaries in all directions. Whilst the
simulations performed here, and the data analysed from them, are spatially
two-dimensional, the filtering codebase is written to work in arbitrary spatial
dimensions. The standard simulation resolution used below is Nx = Ny = 800.
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Figure 6.1: The development of a Kelvin-Helmholtz instability for an ideal fluid
with negligible viscosity. The number density is plotted and the simulation ran until
a code time of t = 16.0. Breakdown of the interface, seeded by a random initial
perturbation, occurs quickly and leads to vortex formation and the onset turbulence

across the domain.

When storing METHOD output data for our filtering pipeline, we typically store a
series of snapshots (up to ≈ 40) in rapid succession around a central time-slice. These
foliations cover (discretely) a portion of spacetime which we are then able to work
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Figure 6.2: The adjusted, integrated power spectra of the Lorentz factor for fluid in
the Kelvin-Helmholtz simulation seen above in fig. 6.1. The inertial range, where the
power scales as k−5/3, would correspond to a horizontal line here. On the left, three
curves for times t = 4.0, t = 10.0 and t = 20.0 are plotted for the micromodel data
(straight from simulation). On the right, four spectra are plotted, all at t = 10.0: one
for the micromodel data again, and three for the mesomodel with varying parameters.
CG is the coarse-graining factor of the mesomodel’s grid compared to the micromodel’s
one and FW is the filter width used for the averaging operation. In all cases the inertial

range is seen over at least an order of magnitude of wavenumbers.

within. For example, when we calculate the filtering observer at a particular spacetime
point, it will typically not be aligned with the normal vector of the foliation at that
point. This means we will need to access data outside that snapshot to calculate it.
Similarly, when we perform filtering of the microdata on a particularly slice to obtain
the mesodata, we filter over an (N + 1)D box aligned with this filtering observer. This
box will project beyond that particular slice and will also be tilted. Hence, we need
additional snapshots around those we strictly filter on. The number we need depends
on the filter size L which typically falls in the range {2 − 8}∆x.

Once we have obtained these mesodata, we need to calculate the non-ideal terms in
our subgrid closure scheme from them. This will require taking derivatives of the
filtered quantities. Spatial derivatives are straightforward to calculate across the
meso-grid. However, to calculate temporal derivatives, we again require multiple
timeslices of meso-data. Because we are performing covariant filtering, we want to keep
time and space on an equal footing. We also want to take derivatives at nearby points
in spacetime on fluid with similar global properties. For these reasons, we choose the
spatial and temporal capture resolutions to match3 so that ∆t = ∆x = ∆y. This
property is maintained when we filter, so that if the resolution of the mesodata is half
that of the microdata, this is true in the temporal direction, too. For example, when
performing a high-resolution simulation we have ∆t = ∆x = ∆y = 0.00125 for the
simulation microdata. If we then filter with a coarse-graining factor of CG = 4, we will
choose every fourth timeslice of microdata to work with, such that,

3It is not strictly required to have the time-gap in between timeslices exactly equal to the grid-spacing.
This choice, however, is practical as it means that derivatives in space and time evaluated using the same
differencing scheme will have the same level of accuracy.
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∆tmeso = ∆xmeso = ∆ymeso = CG ∆tmicro = 0.005 for the mesomodel grid. This
demonstrates the need for many initial snapshots, so that even after successive
trimmings, we have sufficient data at the end to do statistics on. Using simple
arguments we can estimate how much data we should need, finding that these should
cover a total time-interval of about4 5L. Given that the maximum value for this is
L = 8∆x and that we store snapshots separated by a time-gap equal to ∆x, this gives a
maximum total number of snapshots of ≈ 40 as reported above.

Figure 6.1 shows the evolution of the number density across time for the
Kelvin-Helmholtz initial data described above. An asymmetric initial perturbation in
the x-directed velocity across the interface leads to mixing of the two fluid regions,
which differ in density and velocity. This causes large vortices to form which quickly
destroy the distinction between the two fluid regions. In time, small-scale structure
develops as kinetic energy cascades down the length scales within the simulation.

Figure 6.2 summarises results of the integrated power spectra across scales, both for
the micromodel (simulation) data in the left panel and for filtered (also sometimes
coarse-grained) data in the right panel. For this Fourier analysis, we follow the
approach laid out in Beckwith and Stone, 2011 which is also seen in Wright and Hawke,
2019; Wright and Hawke, 2020. The results for the micromodel are plotted for three
different times so that one may see the features develop. Particularly, a wide inertial
range already exists at t = 4.0, indicated by the flatness of the blue curve. The inertial
range shrinks in time as numerical viscosity plays an increasingly important role in
dissipating kinetic energy, which is also shown by the overall lowering of the curves.

The results for the mesomodel are plotted together with the micromodel data in the
right panel. A number of effects shown by the three mesomodel curves are worth
highlighting. Firstly, their general shape is preserved with respect to the micromodel,
at least at low and medium wavenumbers. This is reassuring as we do not expect a
large statistical impact on scales well above that which we are filtering at. Secondly,
the coarse-graining reduces the maximum wavenumber of modes present, which in turn
reduces the extent of the spectrum. Finally, the filtering removes the steep drop-off in
kinetic energy seen for the highest wavenumbers in the micromodel data. This is
logically what we expect—averaging over small-scale behaviour will remove energy
from these scales. However, we also see a long rising tail in the spectrum (red curve)
where this filtering is not combined with matched coarse-graining. In this case, it
appears energy has actually been shifted into the smallest scales. This is an aliasing
affect, where the filtering operation maps some power at low frequencies to the highest
resolvable frequencies and vice versa. As there is much more power at low frequencies,
this leads to higher power at grid size frequencies. This is not problematic for our

4Given a central slice, one needs to move in time about CG∆x/2 to reach the next useful meso-grid
slice, and then up to 2L during the observer root-finding step. Because we will work with CG = L/∆x
and evaluate derivatives using a second order centred finite differencing scheme, we need up to three
slices and to span a total time-interval of ≈ 5L.
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analysis as our focus is on capturing the behaviour in the inertial range. However, to
minimise this effect we will below make the filtering and coarse-graining widths equal.

The Observers and Filtered Data

Having discussed METHOD and the initial data used for the box simulations, let us
turn our attention to the observers and filtering. The first step is to reconstruct the
baryon current and stress-energy tensor as these quantities are typically not directly
evolved in numerical simulations. Starting from the primitive/auxiliary variables and
for the ideal fluid case under consideration, these can be obtained as

nµ = nuµ , uµ = (W , Wvx, Wvy) , (6.12a)

T µν = nhuµuν + pηµν (6.12b)

where W is the Lorentz factor, vx, vy the primitive velocities in the x or y direction, n

is the baryon density, h the specific enthalpy, p the fluid pressure and ηµν denotes the
Minkowski metric. We stress that it is crucial to reconstruct these tensorial quantities
from ones that are more conveniently evolved in a hydrodynamic code. The reason for
this is that covariance of our Lagrangian scheme follows from filtering independently
each component of a geometrically well-defined object, i.e. a tensor, and use these to
reconstruct the tensor at the filtered scale. As such, for example, we cannot directly
apply the filtering operation to the primitive velocities (vx, vy) as these are not the
components of a tensor.

Assuming we have computed the baryon current nµ using the available data from the
box simulations, we have all the ingredients we need to find the filtering observers
following the logic detailed in section 6.1.1. We demonstrate this by comparing, in
fig. 6.3, the fine-scale velocity uµ against the observers Uµ obtained with L = 8 ∆x,
focusing on the time component. Data for this figure come from a snapshot around
t = 10.0. In the middle and right panels we plot data over the entire grid, hence the
differences between the two are mainly visible where the fine-scale data shows sharp
gradients. As such, and in order to better compare them, we also plot their relative
difference in the left-most panel. We can then confirm that the relative difference
peaks where there are sharp gradients in the fine-scale velocity, and that typical values
are of the order of a few percent. Let us also note that in constructing similar plots for
the x − y components, we tend to observe slightly higher relative differences of the
order of 10%. Nonetheless, we decided to focus here on the Lorentz factor as this gives
us a measure for how tilted we may expect the filtering box to be with respect to the
foliation5. Finally, we tested the robustness of the algorithm used to find the observers
against the choice of initial guess. To do so, we ran the algorithm with 200 different

5Since the filtering axes are tilted with respect to the foliation, an interval of δx′ according to the
filtering observer would correspond roughly to a time interval in the foliation of δt =

√
1 − 1/W 2δx′.
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Figure 6.3: Comparison between the fine-scale velocity uµ (middle panel) and the
filtering observers Uµ (right panel), computed using a box-length of 8 ∆x and focusing
on the time component. Data from a snapshot taken at around t = 10. In the left-most
panel we show the relative difference between the two velocities, noting that this is
typically of the order of a few percent and peaks where uµ presents sharp gradients.

initial velocities, obtained by rotating the fine-scale velocity at the point, and looked at
the distributions of the observers found. We repeated the process at several hundred
points randomly selected on the grid. In each of these cases, the distributions of the
observers found is very well described by a delta-function6 thus showing insensitivity
to the initial guess. This fact, together with the clear physical interpretation of the
algorithm implemented, is of crucial importance for the covariance of the scheme. We
now focus our attention on the impact of the Lagrangian filtering. As an example, we
show in fig. 6.4 the time component of the micro-scale and filtered baryon current. In
order to appreciate visually the impact of filtering, in the right and middle panel we
zoom in on the region x ∈ (0.5, 0.7), y ∈ (0.15, 0.35). The effect of filtering is visible as
it smooths out the features present in the fine-scale data. As the zoomed in patch
present several ‘bands’ of different densities, the effects of filtering are particularly
evident in that it smears out the ‘boundaries’ between them. In addition, the left-most
panel of the figure shows the relative difference between fine-scale and filtered data over
the full grid. We then observe that typical values range from a few percent up to 10%.

Larger filter-size means interpolating (or combining more generally) data coming from
larger regions around a point. As such, when comparing filtered meso-scale data to the
micro-scale, we expect larger differences for larger filter sizes. This would follow
automatically had we filtered in the spatial directions identified by the foliation, but
such a statement may not be that trivial given the Lagrangian filtering explored in this
work. In a sense, this provides a useful sanity check of the strategy and the pipeline
implemented. To verify this, we compared the relative differences between filtered and
fine-scale data at various filter widths and observed that the maximum relative
difference appears to (roughly) double as we double the filter size. In fig. 6.5 we show
the (time-component of the) fine-scale baryon current nµ and its relative difference for

6More precisely, we find standard deviations of 11 to 12 orders of magnitude smaller than the mean.
Consistently with this, we used a Gaussian kernel density estimator to estimate the observers probability
density function, finding this to be clearly limiting to a delta function.
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Figure 6.4: Comparison between the fine-scale nµ and filtered ⟨nµ⟩ baryon current
(filter-size L = 8 ∆x), focusing on the time component, at a representative time t = 10.
The left panel shows the relative difference between the two over the full grid. In the
middle and right panel we plot the fine-scale and filtered data zooming in the region
x ∈ (0.15, 0.35), y ∈ (0.5, 0.7) (the box indicated in the left panel). We do so to
visually appreciate the effects of filtering: the right panel presents the same ‘bands’ as

the middle one but the boundaries between them are smeared out.

Figure 6.5: Comparison between the fine-scale nµ and filtered ⟨nµ⟩ baryon current,
focusing on the time component, at a representative time t = 10. The left-most panel
shows the fine-scale data, whilst in the panels to its right we plot the relative difference
between this and the filtered data—with filter sizes of 2, 4, 8 ∆x. As we observed the
maximum values of these to roughly double as we double the filter-size, we plot here the
re-scaled relative differences, that is we divide by the filter-size L. This allows us to use
a single colour map for the three panels to the right and provides a better comparison

among them.

data filtered with filter lengths of 2, 4, 8 ∆x. Given the observed scaling in the
maximum value—this is about 4 to 5% for L = 2 ∆x, 8 to 10% for L = 4 ∆x and up to
15 to 20% for L = 8 ∆x—we plot the relative difference re-scaled by the filter size L.
Even though the impact of filtering is less visible in this figure due to the linear scaling
of the colour-map, we confirm the anticipated increase with the filter size. We will not
try to make a more precise statement at this point given that i) we will get back to
this issue in section 6.3 ii) the aim here is merely to demonstrate an increasing impact
of filtering in a loose sense. Moreover, we note that here we have varied the filter size
while keeping the observers fixed. For these tests, we have also constructed the grid for
the filtered data as having the same number of points as the fine-scale data. We stress
that we chose to do that in order to focus on the impact of the explicit filtering
operation implemented. Up until now, we have focused on individual aspects of the



6.1. Introduction 125

Figure 6.6: Comparison between fine-scale baryon current nµ and filtered data using
various filter-widths. The left-most panel shows a snapshot of the fine-scale data at
around t = 10. In the panels to its right we plot the filtered baryon current with filter-
sizes 2, 4, 8 ∆x, zooming in the region x ∈ (0.1, 0.4), y ∈ (0.4, 0.7). The corresponding
patch is indicated in the left panel. Data for this figure has been produced using an
observer box-length equal to the filter size and explicitly coarse-graining the meso grid.
Coarse-graining is particularly evident in the third and fourth panel, which makes the

images appear pixelated.

scheme one at a time, starting from the construction of the observers and then moving
on to showing some examples of the filtered data we obtain. We chose to do so for two
reasons: i) this is intended as a demonstration of the key points of the logic briefly
presented in section 6.1.1; ii) given the novelty of the strategy adopted and of the
codebase written, these tests allows us to gain confidence in the validity and robustness
of the analysis. In particular, we discussed some properties of the filtering observers
computed using L = 8 ∆x in fig. 6.3. Then we considered the impact of filtering at a
fixed filter-size and also varied this (while keeping the observers fixed) to show how the
impact of filtering scales with the filter-size (cf. fig. 6.5). In all these previous cases,
the filtered data has been produced simply by interpolating data coming directly from
simulations, without reducing the number of points of the meso-grid with respect to
the fine-scale one. As such, it makes sense to conclude this section by considering the
above-mentioned aspects all at once. In fig. 6.6 we show a comparison of the fine-scale
and filtered baryon current varying the filter-size and, at the same time, recomputing
the observers for each value of this. Similarly, we have also increased the grid-spacing
for the filtered data accordingly: if the filter-size is 2 ∆x (as is the observers’ box
length) the number of points in the meso-grid where such data is stored is reduced by
a factor of 2 (in each direction), and so on. We do so because our ultimate goal is to
inform ‘low-resolution’ simulations and make them (somehow) sensitive to physics
happening on small scales without increasing the resolution. In essence, we need to
keep track of the information that is lost in reducing the grid-resolution.
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6.2 Stress-Energy Residuals and Closure Ingredients

Let us now turn to the modelling of the filtered/meso-scale stress-energy tensor ⟨T µν⟩.
As discussed in section 6.1.1, filtering introduces additional off-diagonal components in
the stress-energy tensor—the residuals—which we need to model. We demonstrate this
by first computing the Favre-observers from the filtered baryon current as

ñ =
√

−⟨nµ⟩⟨nµ⟩ , ũµ = ⟨nµ⟩/ñ −→ ⟨nµ⟩ = ñũµ , (6.13)

and decomposing the stress-energy tensors with respect to these. In essence, we
compute the residual stresses and momentum flux as

Π̃ =
1
3⊥̃µν⟨T µν⟩ − ⟨p⟩ , (6.14a)

π̃µν = ⊥̃µ
c ⊥̃ν

d⟨T cd⟩ −
(
⟨p⟩ + Π̃

)
⊥̃µν , (6.14b)

q̃µ = −ũc⊥̃
µ
b ⟨T bc⟩ , (6.14c)

where we recall that ⊥̃µν
= ηµν + ũµũν . Note that the equation of state of the

meso-model pressure ⟨p⟩ need not be that of the micro-model. For now we make the
simplifying assumption that they match and investigate this point further
in section 6.4. An example of such residuals is given in fig. 6.7, where once again the
data is coming from a snapshot at around t = 10.0 and the simulation data has been
filtered (and coarse-grained) using a filter size of 8 ∆x. As q̃µ, π̃µν are tensors, in the
middle and right panel of the figure we plot

√
π̃µν π̃µν and

√
q̃µq̃µ as these give us a

measure of the overall magnitude. We then confirm these residuals terms are
generically non-negligible, as expected based on theoretical grounds.

Even though we have performed the decomposition in terms of the Favre observers ũµ,
this is not a unique choice, certainly not from a theoretical point of view. We could
have, for example, used the filtering observers Uµ for the decomposition instead,
noting that this would not break covariance as the filtering observers have a clear
physical meaning in our framework. We choose to work with the Favre observers for
two reasons: first, there would be additional drift terms in the filtered baryon current
had we decomposed it with respect to Uµ. These additional drift terms are essentially
re-absorbed into the definition of ũµ (see Celora, Andersson, et al., 2021) and would
need to be modelled otherwise. Second, a similarly defined Favre velocity is used in
most of the Newtonian LES work on turbulence (Schmidt, 2015). In any case, given
the way we construct the filtering observers, we have checked that there are no large
differences between Uµ and ũµ as expected. Having discussed the residuals in the
stress-energy tensor, let us turn to their modelling. To do so we first need to compute
various gradients of the Favre velocity ũµ and of the temperature T̃ (cf. eq. (6.7)),
noting that our closure scheme will require us to combine spatial and temporal
derivatives. This is evident if we look at the definition of the shear tensor σ̃µν in
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Figure 6.7: Plotting the magnitude of the stress-energy tensor residuals. From left
to right: the isotropic residual stresses Π̃, the anisotropic residual stresses π̃µν and
residual momentum flux q̃µ. Data underlying this figure is obtained from filtering a

snapshot at around t = 10 using a filter-size of 8 ∆x.

eq. (6.8): the shear matrix is, by definition, spatial with respect to the Favre observer,
but the observer’s spatial directions are tilted with respect to the foliation. We stress
that this is not a peculiar feature of the closure scheme we are exploring here, rather it
is reasonable to expect that this will happen with any covariant closure scheme. For
example, if we want the closure scheme to account for the fact that we expect turbulent
transport only if there is non-zero shear in a local Lorentz frame moving with the fluid,
then this will inevitably require it to mix time and space derivatives (cf. Duez, Knight,
et al., 2020). Having said that, we compute space and time derivatives with respect to
the foliation—using standard second-order centered finite-differencing—and then from
these we reconstruct, say, the velocity gradient decomposition as in eq. (6.8).7

Computing spatial derivatives is fairly straightforward since it requires using filtered
data coming from a single snapshot. Time derivatives, on the other hand, require some
extra work as we also need filtered data coming from different time slices: for a centred
first-order finite-differencing scheme we need 3. We also note here that the time gap
between the slices play a role at this point. Since space and time derivatives are here
computed using the same differencing scheme we choose the time gap between the
stored simulation snapshots to be equal to the spatial grid spacing. As a first pass, we
decided in this work not to interpolate the gridded data. Therefore, having the slices
separated by a time gap equal to the grid spacing implies that all derivatives are
computed with the same accuracy: at the same order and the same increment.

In fig. 6.8 we show an example of some gradients relevant to the modelling of the
residuals plotted in fig. 6.7. In particular, in the left we show the Favre-observers’
expansion rate θ̃, while in the middle and right panel we plot

√
σ̃µν σ̃µν and

√
Θ̃µΘ̃µ,

where Θµ = ⊥̃µν
(∇ν T̃ + T̃ ãν). Comparing figs. 6.7 and 6.8, we immediately observe a

nice degree of spatial correlation between quantities plotted in the middle and
7A convenient way of doing this is to store in memory the various derivatives as components of

a tensor. This way we can directly apply the algebraic decomposition as in eq. (6.8). We also note
that such decomposition makes explicit use of some algebraic constraints which may be violated due to



128 Chapter 6. A Covariant Filtering Implementation

Figure 6.8: Results for various gradients relevant to the modelling of the stress-energy
tensor residuals. From left to right we show: the expansion rate θ̃, the square-root of the
trace of the squared shear tensor

√
σµνσµν , and the temperature gradients corrected

by the heat inertia
√

Θ̃µΘ̃µ, where Θ̃µ = ⊥̃µν
(∇bT̃ + T̃ ãb). Data for this figure was

obtained from filtering a snapshot at around t = 10 using a filter size of 8 ∆x.

right-most panels. Given this, it makes sense to conclude this section by considering
the simplest model for the residuals we can think of. Let us first consider the
anisotropic residual stresses π̃µν and residual momentum flux q̃µ, as well as the
corresponding relevant gradients σ̃µν , Θ̃µ. At each point on the meso-grid, we ‘square’
these and compute their ratio as

r1 =

√
π̃µν π̃µν√
σ̃µν σ̃µν

, and r2 =

√
q̃µq̃µ√

Θ̃µΘ̃µ
. (6.15)

We then average over the values computed at each grid point—meaning that we
average the ratios to obtain r̄1, r̄2—and construct the models for the residuals as
π̃µν

mod = r̄1σ̃µν and q̃µ
mod = r̄2Θ̃µ. We do the same for the isotropic residual stresses Π̃,

noting that we construct the model for this using the absolute value of θ̃. This is
because, while Π̃ is positive at all gridpoints, the expansion rate is not (cf. figs. 6.7
and 6.8).

We compare the results to the residuals by plotting the corresponding distributions in
fig. 6.9. The first thing we note is that, while we do not expect this model to be
particularly good or accurate, the model for the residual momentum flux (right-most
panel of the figure) is actually better than expected: while the mean values of the
distributions are slightly different, there is a nice overlap between the two. This is
suggestive of the fact that a constant heat conductivity model might be not too far off.
Having said that, let us turn to the isotropic residual stresses (left-most panel of the
figure), which is visibly the worst case of the three. That this was going to be the
worst case can be easily explained: when comparing the left-most panels of fig. 6.8
with that of fig. 6.7, we see that θ̃ shows complex dynamics that are not perfectly
represented by Π̃. In this sense, it is evident that a constant coefficient model for the

numerical errors. Large deviations from these constraints should be corrected for, although we checked
explicitly and this appears not to be required in our case.
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Figure 6.9: Comparing distributions of stress-energy tensor residuals with their values
from a first-order gradient model that assumes constant coefficients. From left to right
we show: the isotropic residual stresses Π̃, the anisotropic residual stresses π̃µν and the

residual momentum flux q̃µ.

isotropic residual stresses will not be particularly good. Also consider the anisotropic
residual stresses (middle-panel of the figure). We observe that, while the model almost
correctly captures the mean value, it is not able to reproduce either the spread nor the
skewness of the distribution. The next section will be devoted to discussing how we
can improve on this crude model.

6.3 Discriminating Between Models

The aim of this section is to discuss some initial ideas on how to improve the modelling
of the extracted transport coefficients and their corresponding residuals. We will focus
on the anisotropic residual stresses, given that these are expected to play the largest
role in determining the dynamics of a shearing flow like the one in the
Kelvin-Helmholtz instability. We also conducted a similar analysis for the remaining
residuals but as the qualitative discussion and key messages are essentially the same,
we report on them in section 6.5.

6.3.1 Scaling with filter width

Perhaps the most fundamental thing we need to discuss is how the residuals and the
corresponding effective dissipative coefficients change as we vary the filter size. In
order to discuss this, we need to compare the distributions obtained with different
filter sizes. For the case of the shear viscosity, the relevant distributions to look at are
those of π̃µν π̃µν and σ̃µν σ̃µν . These are shown in fig. 6.10 for the three filter sizes
considered in this work, L = 2, 4, 8∆x. Quite notably, while the distributions of π̃µν π̃µν

change by a constant shift in log space, those of σ̃µν σ̃µν do not. In particular, the shift
between the L = 2∆x and L = 4∆x appear to be the same as that between the
L = 4∆x and L = 8∆x distributions—the shift being roughly 1.2 in log-space. As for
the shear viscosity coefficient, we compute this (as before) at each grid point as
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Figure 6.10: Comparing distributions at different filter sizes. From left to right we
show: i) the second invariant of the shear tensor, ii) the ‘magnitude’ of the anisotropic

stress residuals and iii) the re-scaled, extracted shear viscosity.

η =
√

π̃µν π̃µν/
√

σ̃µν σ̃µν . Given that the distributions for σ̃µν σ̃µν do not change with
the filter size—hence corroborating the idea that this quantity is measuring an
intrinsic property of the flow—we then expect the η-distributions to scale as8 (L∆x)2.
The right panel of fig. 6.10 confirms this guess as we observe the scaled distributions to
almost perfectly overlap. We stress that this scaling is consistent with naïve
expectations based on Taylor-expansion type reasoning, although cannot be taken for
granted given the way we implement filtering here. It at least represents a strong test
of the robustness of the framework that we are exploring here.

6.3.2 Linear regression in log-space

Having discussed the residuals’ scaling with the filter size, let us turn to their
modelling. Because the extracted values of η range over 3 orders of magnitude, we will
pursue a linear regression model in log-space.

As a simple attempt, we can propose modelling η in terms of only the filtered
temperature and baryon density, such that η ≡ η(T̃ , ñ). This parametrization of a
transport property in terms of thermodynamic variables is a common one motivated by
viscosity’s microphysical origins. It turns out, however, that this gives very poor
results: while we do not show this here, we compared the distributions of model
predictions against data—both for the shear viscosity distribution as well as for the
corresponding residual distribution—and observed very poor matching. This can be
corroborated with a simple correlation plot amongst the variables {η, T̃ , ñ}, which
highlights the weak correlations between these quantities. This may be due to the fact
that the filtered temperature T̃ and density ñ span a range of only one order of
magnitude. This is, however, common to most simulations of Kelvin-Helmoltz
instabilities we are aware of as the simulation set-up we used is quite standard—e.g.
uniform pressure in the initial data. We can try to explain this result by the fact that

8This is because 1.2 ≈ log10(16).
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the Kelvin-Helmholtz instability—used here to sustain the development of
turbulence—is inherently a shear-instability whose dynamics are largely controlled by
the relative velocity of the two fluids.

Given this, we expand the list of possible explanatory variables used in our regression,
including in particular various scalar quantities involving gradients of the
Favre-velocity ũµ. This choice is partly motivated by the observation that some of
these quantities are much better correlated with the extracted shear viscosity and
partly by the fact that we might expect these quantities to actually play a role on
theoretical grounds. The full list of possible explanatory variables considered here is

{
T̃ , ñ, σ̃µν σ̃µν , det(σ̃), ω̃µν ω̃µν , σ̃µν σ̃µν − ω̃µν ω̃µν , σ̃µν σ̃µν/ω̃µν ω̃µν} .

In addition to the thermodynamic quantities, we include the invariants of the shear
tensor, det(σ̃), σ̃µν σ̃µν , that of the vorticity tensor, ω̃µν ω̃µν , as well as the difference
and the quotient between the second invariants of these. We choose to add the last two
quantities in the list since the former can be used to identify a vortex in a turbulent
flow (Jeong and Hussain, 1995), whilst the latter is a measure of the relative intensity
of the shear and vorticity and has recently been used in a discussion of the local-energy
cascade in Newtonian hydrodynamic turbulence (Yao, Schnaubelt, et al., 2024).
Moreover, we can make sense of the need to consider such explanatory variables in the
following way: the extracted effective transport coefficient capture the energy flowing
to or from the scales we have explicitly filtered out, which we expect to happen as
non-linearities kick in. Because we extracted these coefficients using formulae inspired
from the modelling of viscous fluids and laminar flows, we can expect the intrinsic
non-linearity of turbulence to manifest itself by having transport coefficients depending
on velocity gradients as well.

Given this list of possible explanatory variables we construct the best model in the
following way. We consider all possible sets and subsets of the 7 quantities listed above
and for each we run a linear regression routine. Splitting the data into training and
validation—using a ratio of 80:20—we identify the best model by contrasting the
distributions of extracted data with the model predictions. We use the first
Wasserstein distance, also known as Earth mover’s distance, to quantify the quality of
a given model9: given two distributions X and Y the Wasserstein distance between
them can be computed as

W1(X, Y ) =
∑

i

||X(i) − Y(i)||2 . (6.16)

9We note that similar results can be obtained using Pearson’s correlation coefficient as a quality
factor, although we found it less capable of discriminating between models.
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where ||X||2 denotes the L2-norm of a quantity, X. In essence, once we construct the
regression models, we look for the one that minimizes the distance between the data
and the model predictions in a distributional sense.

6.3.3 Model interpretation and viability

In fig. 6.11 we summarize the results of this analysis. The first thing we note is that
the best model we obtain does not involve thermodynamical quantities at all: the
model involves only three of the quantities listed above, namely
det(σ̃), σ̃µν σ̃µν − ω̃µν ω̃µν , σ̃µν σ̃µν/ω̃µν ω̃µν . This is reported in the left panel of
fig. 6.11, where we show a scatter plot between the model and the data, while the
annotation box reports the regression coefficients of the model. The middle panel of
the figure instead shows a comparison between the distributions of the model and the
data, where we observe that this model does not fully capture the longer tails of the
data’s distribution. Finally, we show in the right panel of the figure a comparison
between the actual residual under consideration and the model’s predictions. A strong
matching between the two is seen. For the sake of clarity, let us comment on how we
build the model’s predictions for the residuals. We consider the validation set and for
each sample point we build the prediction for η given the pointwise values of the
model’s regressors. Then we construct the residual predictions as π̃µν

model = ηmodel σ̃µν .
Ultimately, the results shown in the right panel are the ones we truly care about. We
see that the two distributions largely overlap. However, this simple model cannot quite
explain the skew in the distribution data, nor its slightly longer tails. Nonetheless, the
improvement with respect to the constant coefficient case above is significant and can
be appreciated by comparing this panel with the middle one in fig. 6.9.

The data underlying fig. 6.11 has been filtered using a filter-size of L = 8∆x. It is also
important, however, to check how the best model constructed in this way changes as
we vary the filter size—both in the set of explanatory variables used and in the specific
values of the coefficients. We have then performed the same process on data filtered
with sizes L = 2, 4∆x and found that the best set of explanatory variables is
unchanged across the different cases and the regression coefficients take almost
identical values. The only feature that changes is the offset, which increases by ≈ 0.6
as we double the filter size. This is consistent with the (L/∆x)2 scaling shown in
fig. 6.10 and provides a useful check on the robustness of the proposed modelling.

We conclude this section by commenting on an additional requirement for a model
such as this to be viable. In fact, we need to make sure that the model we construct is
regular in the laminar limit. Given the best model above, this would mean that the
value for η should not diverge in the limit where σ̃ → 0. At a first glance, this might
appear problematic since the regression coefficient for σ̃µν σ̃µν/ω̃µν ω̃µν is negative.
Nonetheless, we recall that det(σ̃) ∼ σ̃3, while σ̃µν σ̃µν ∼ σ̃2. As such, given that the
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Figure 6.11: Best regression model in log space for η. From left to right we show: i)
scatter-plot of the extracted data vs. model predictions ii) probability distributions of
extracted η vs its modelling iii) probability distributions of the extracted residual vs

its modelling.

coefficient in front of the det(σ̃) regressor is positive and larger than that of σ̃µν σ̃µν ,
we assert that the model constructed is actually regular in the laminar limit.

6.4 The Equation of State Residual

So far in this chapter we have repeatedly mentioned, and then by-passed, the fact that
filtering may impact on the thermodynamics, as well. In particular, we mentioned the
fact that EoS residuals may introduce a disconnect between the microphysics and the
EoS input in a numerical simulation. The aim of this section is to fill in this gap by
taking a closer look at such residuals. We will also take the first step towards
understanding the implications these may have if not accounted for.

To begin with, let us look back at eq. (6.6) and note that there are two residual
contributions entering in the total trace of the filtered stress-energy tensor. We see a
first one coming from the trace of s̃µν , which we model in section 6.5, plus a second
arising from the equation of state non-linearities. In fact, following from the discussion
in Celora, Andersson, et al., 2021, we can write the filtered pressure as

⟨p⟩ = −ρ̃ + µ̃ñ + T̃ s̃ + M . (6.17)

where M is the EoS residual, ρ̃ and ñ are the energy and number density (measured by
the Favre observer ũµ), while T̃ , µ̃ are defined with respect to a meso-scale EoS of the
form p̃ = p̃(ñ, ρ̃). For example, if we choose to work with a ‘Γ-law’ EoS, the meso
temperature is obtained as T̃ = p̃/ñ. As non-linearities in the Gibbs relation can be
interpreted as ‘entropy-like’ contributions associated with the fluctuations, there is
some freedom in the choice of the filtered thermodynamic potential (e.g. the filtered
entropy s̃). This choice will affect the extracted chemical potential µ̃ and temperature
T̃ and, in turn, the EoS residual M . The most natural choice would be to work with
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the same functional form for the equation of state, but this is a-priori a non-unique
choice. See Celora, Andersson, et al., 2024 for a more in-depth discussion of this topic.

First of all, we consider the individual residual contributions to the trace of the filtered
stress-energy tensor. These are plotted in fig. 6.12 for a snapshot at around t = 10 and
filtering with size L = 8 ∆x. For this figure we chose to work with the same EoS as
used for the micro-model, that is a ‘Γ-law’ EoS. We then observe that for this choice
the EoS residual M is always negative, so we plot in fig. 6.12 the absolute value. In
contrast, the Π̃ residual is always positive as is their sum, so that we have a net
positive increase in the pressure term. This can also be appreciated looking at the
relative distributions in the left-most panel of fig. 6.12. Having seen that the EoS

Figure 6.12: Visualizing the different residuals contributing to the trace of the stress-
energy tensor. In the left-most panel we show distributions corresponding to the EoS
residual, the isotropic stresses residual and the sum of the two. In the panels to its
right we plot the same quantities individually. Data used in this figure has been filtered

with filter-size L = 8 ∆x using snapshots around t = 10.

residuals M are generically non-negligible—their magnitude is of the same order as the
others—it is natural to ask the ‘null-hypothesis’ question: what is the impact of
neglecting this? This question is relevant in a broader sense as the effect of filtering
will inevitably enter any numerical simulation due to the implicit filtering associated
with the numerical discretization. As such we want to investigate whether these
residuals can have a ‘measurable’ impact on the EoS parameters. To do so we extract
locally the effective adiabatic index

Γ1 =

(
∂ log p

∂ log n

)
S

(6.18)

where S is the specific entropy, but first we need to rewrite this in terms of variables
we have access to. Choosing to work with the energy and number densities (ρ, n) we
arrive at

Γ1 =
n

p

[(
∂p

∂n

)
ρ
+

(
∂p

∂ρ

)
n

(
∂ρ

∂n

)
S

]
=

n

p

[(
∂p

∂n

)
ρ
+

p + ρ

n

(
∂p

∂ρ

)
n

]
. (6.19)

As a quick sanity-check one can verify that for a Γ-law equation of state this expression
gives Γ1 = Γ as expected. Then we consider the (corresponding) values for p, ρ, n
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explored in the METHOD simulation and construct a smooth bi-variate cubic spline
approximation for p(n, ε). With this we can then take derivatives and evaluate
eq. (6.19) at each grid-point. We do so for the micro-model data—that is the
simulation output of METHOD—and compare it to the value used in the numerical
code, Γ = 4/3. In the left panel of fig. 6.13 we plot the relative difference between the
two and observe that this is at maximum of the order of 10−11.

As for the meso-model, we do the same but assuming the null hypothesis, that is
pretending that M is not there. We then follow the same logic as above but now in
terms of the filtered pressure ⟨p⟩, energy density and number density ρ̃, ñ. Assuming
that M has no impact at all is equivalent to say that ⟨p⟩ is related to ρ̃, ñ by the same
equation of state as at the micro-level. We test this by extracting Γ1 locally using
eq. (6.19)—although replacing now p → ⟨p⟩, ρ → ρ̃, n → ñ—and comparing it to the
null-hypothesis value of 4/3. The relative difference between the two is plotted in the
right panel of fig. 6.13. In sharp contrast with the values obtained for the unfiltered
data, we observe differences up to the percent level.

Let us try to spell out what possible consequences this may have by considering a
binary neutron star merger simulation with finest resolution of O(10m). The results
shown suggest that unaccounted-for turbulent dynamics happening on scales of O(1m)

could induce up to percent level errors in the EoS parameters. While we would still
need to quantify how much of a bias this introduces in EoS inferences and parameter
estimation, it is clear this is an issue we need to explore in more detail. This is even
more true if we consider that we expect turbulent dynamics to be induced at much
smaller scales than O(1m) in an actual merger, see Radice and Hawke, 2024. Having
turbulent dynamics at smaller scales than O(1m) would mean that we can consider the
O(1m)-simulation as effectively introducing a filter with size larger than ≈ 10 ∆x. As
the residuals—including the EoS one, M—scale with the filter-size, the potential
systematic biases this may introduce could be even larger than reported here.

6.5 Modelling the Isotropic Stresses and Momentum
Flux Residuals

In this section we report on the modelling of the isotropic stresses and momentum flux
residuals, following the same logic we took in section section 6.3 for the anistropic
stresses. First, we observ that the distributions of the remaining residuals scale with
the filter-size in the same fashion as for the anisotropic stresses: doubling the filter-size
corresponds to a rigid shift of the distributions to larger values (the shift being ≈ 1.2
in log-space as above). Second, the distributions corresponding to the relevant
gradients—the expansion rate θ̃ and the temperature gradients Θ̃µΘ̃µ—do not change
as we varied the filter-size. As in the case of the effective shear viscosity then, we
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Figure 6.13: Comparing the 1st adiabatic index Γ1, computed locally using eq. (6.19),
to the expected value of 4/3. The left panel corresponds to the fine-scale data, with
a largest relative difference on the order of 10−11. The right panel corresponds to the
filtered data, explicitly ignoring the EoS residual. For this case we observe differences
up to percent level. The data underlying this figure has been filtered with filter size

L = 8 ∆x using snapshots around t = 10.

expect the distributions of ζ and κ to scale with (L∆x)2. We confirm this by plotting
in fig. 6.14 the corresponding re-scaled distributions and find these are practically
indistinguishable.

When it comes to the modelling, the only modification with respect to the shear
viscosity case is that now we include additional quantities in the list of possible
residuals: the new ones considered here are

{θ̃, ãµãµ, Θ̃µΘ̃µ, (Dµñ)(Dµñ), (Dµñ)Θ̃µ, ˙̃n, ˙̃T} .

These have been added as we found spatial gradients of the number density and the
temperature to be effective at modelling the effective heat conductivity (cf. fig. 6.15).
As for the bulk viscosity, we unsurprisingly found that adding the expansion rate to
the list of regressors significantly improved the model’s performance (cf. fig. 6.16). We
also note that the best-fit exponent obtained for the expansion is close to −1. In
practice then, the dependence of the isotropic residuals Π̃ on the expansion rate almost
cancels out. This is consistent with the poor correlation observed between Π̃ and θ̃

and casts some doubts on the validity of interpreting the isotropic residuals as an
effective bulk viscous pressure. Noting that this is not necessarily problematic, we also
stress that in order to reach a firm conclusion would require using more data as well as
more refined statistical models (and/or closure schemes). Given the scope of this work
we leave this for the future.
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Figure 6.14: Comparing distributions of ζ (left) and κ (right) at different filter sizes.
The almost perfect overlap of the re-scaled distributions demonstrate that the coeffi-

cients (and the residuals) follow the same scaling as discussed for η.

Figure 6.15: Equivalent to fig. 6.11 but focusing on the heat conductivity. From
left to right we show: i) scatter-plot of the extracted data vs. model predictions ii)
probability distributions of extracted κ vs its modelling iii) probability distributions of

the extracted residual vs its modelling.

Figure 6.16: Same as fig. 6.11 but focusing on the bulk viscosity. From left to right
we show: i) scatter-plot of the extracted data vs. model predictions ii) probability
distributions of extracted ζ vs its modelling iii) probability distributions of the extracted

residual vs its modelling.
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6.6 Extracting the Shear Viscosity, Component-Wise

In the main body of this work, we extracted the magnitude of the shear viscosity
coefficient by ‘squaring’ the relation in eq. (6.7). In a sense, it would be natural to ask
what would happen had we extracted the coefficient differently. For example, one
could think of extracting η using the same relation as above but in a component-wise
fashion: this would mean extracting 5 more independent distributions that eventually
need to be combined in some way.

However, it is important to stress at this point that (in our view) this appears to be
somewhat problematic, particularly because of the effort we made to set up the
observers and perform the filtering in a covariant fashion. Phrasing this differently, we
prefer the ‘squaring’ option as it allows us to stay ‘as covariant as possible’, while
extracting η component-wise is at odds with one of the main arguments for performing
the filtering in the way we do it in this work. Nonetheless, and mainly because we find
this to be instructive, let us expand here on the results we get if we extract η from
each component of eq. (6.7) independently.

In fig. 6.17 we compare the distributions for the absolute values of η obtained via
‘squaring’ vs component-wise. The first thing we note is that the various
component-wise distributions are qualitatively similar to each other. We take this as
an indication of the fact that while we expect numerical errors to have a larger impact
on the component-wise distributions—for example, when a particular component of
the shear tensor is small but, say, its second invariant is not—these are somehow
distributed isotropically in a statistical/distributional sense. Second, when comparing
the component-wise distributions against that obtained via squaring, we note that they
all have the same mean but the latter has smaller variance. Stated differently, the
component-wise distributions have longer tails with respect to the one obtained via
squaring—which may be due to the impact of the above-mentioned numerical errors.
While finding significantly different distributions would not be inherently problematic,
the fact that we do not is reassuring. In fact, we may even suggest that the values
obtained via squaring are reasonably consistent with those obtained in component-wise
fashion while being free from the coordinate dependence of the latter.

Having said that, we feel the urge to comment on the sign to be assigned to η. As
discussed in Celora, Andersson, et al., 2021, the sign of the effective transport
coefficients cannot be constrained or fixed using thermodynamics arguments based on
the second law of thermodynamics. In fact, we may even say that a positive shear
viscosity corresponds to a positive energy cascade locally, where the energy is
transferred to smaller scales, with the opposite being the case for negative values. It is
also clear that in extracting the coefficient via ‘squaring’ we are only considering its
magnitude, while the sign is not a priori fixed. We would then need a procedure/logic
to assign the sign that is similarly covariant. One reasonable way of doing this is the
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following: we can diagonalize the anisotropic stress residuals π̃µν and consider the
direction associated with the maximum eigenvector (in absolute value). We could then
transform the shear tensor to the basis given by the eigenvectors of π̃µν , check whether
σ̃µν is aligned or anti-aligned to π̃µν in this particular direction and assign a value to η

accordingly. Arguably, this would be a geometric way of fixing the sign.

In fig. 6.18 we show the distributions of positive and negative values obtained this way
and compare them to what we obtain if we follow the component-wise procedure.
While the distributions differ for different components, we observe that those
corresponding the (0, 1), (1, 1) and (0, 2), (1, 2) components are reasonably similar.
We also observe generically that distributions of positive values have a larger spread.
In the figure we chose to plot the histograms and also report in the legend the positive
and negative counts: we can observe then a larger number of negative values in all
cases with the exception of the (0, 0) distributions. The bottom-right panel of the
figure shows instead the distributions obtained via squaring and the logic described
above for fixing the sign. Also in this case we observe a distribution of positive values
with a larger variance and an overall larger number of negative values. In a loose sense
then, this can be considered as a confirmation of the correctness of the logic used for
fixing the sign, given that it also gives a larger amount of negative values that are
generically smaller in magnitude.

We conclude this section by commenting on why we focused on modelling the
magnitude of the shear viscosity only in section 6.3. In fact, it is not quite clear how
seriously we should take the negative values extracted: some works in the literature
simply discard these arguing they represent conservative spatial fluxes at the filter
scale rather than interscale interactions (see e.g. Vela-Martín, 2022), even though the
recent analysis in Yao, Schnaubelt, et al., 2024 appears to suggest we may want to take
them seriously. We also stress that the simulations used here are 2+1 dimensional,
while for real applications we will need to perform the analysis on data coming from
3+1 simulations. Besides, the phenomenology of 2-dimensional turbulence is quite
different from the 3-dimensional case. In particular, we expect real 3-dimensional
isotropic and homogeneous turbulence to have a net positive energy cascade. Assuming
this would correspond to an overall predominance of positive over negative values—as
reported in Yao, Schnaubelt, et al., 2024—and given the proof-of-concept nature of
this work, we leave the exploration of these aspects for the future.

6.7 Extension to MHD

Above, a framework is presented for filtering an ideal, fine-scale fluid and modelling
the result as a coarser, dissipative fluid. Generalising this idea, we are mapping one
effective field theory (hydrodynamic model) to another. In principle, if we find that the
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Figure 6.17: Extracting η component-wise: comparing the magnitude distributions
obtained in a component-wise fashion (one per independent component) vs that via
squaring. Data underlying this figure has been filtered with filter-size L = 8 ∆x using

snapshots around t = 10.

Figure 6.18: Comparing the histograms for positive and negative values of η,
component-wise and via squaring. For each panel we report the total counts of positive
vs negative values, so to be able to appreciate whether there are more positive than
negative values or vice versa. Data underlying this figure has been filtered with filter

size L = 8 ∆x and snapshots around t = 10.
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additional degrees of freedom (parameters) of the filtered model can be well-fitted to
parameters of the starting model, then there exists a ‘strong’ mapping between the two.

Let us consider, for instance, ideal magnetohydrodynamics (iMHD) with an ideal fluid.
The fine-scale SET is now

T µν = ρuµuν + phµν + F µαF ν
α − 1

4gµνFαβF αβ . (6.20)

We may propose, as one would probably expect, that at the coarse level we have the
filtered SET of a non-ideal fluid with (filtered) EM fields:

T̄ µν = ρ̃ũµũν + (p̃ + Π)h̃µν + q(µũν) + πµν + F̄ µαF̄ ν
α − 1

4 g̃µνF̄αβF̄ αβ . (6.21)

Or, perhaps more boldly, we may propose that the subgrid behaviour due to the
presence of EM fields on the fine-scale may be captured solely by dissipative terms on
the coarse scale, such that the filtered SET is simply that of a non-ideal fluid, as before:

T̄ µν = ρ̃ũµũν + (p̃ + Π)h̃µν + q(µũν) + πµν (6.22)

In either case, we will need to calculate the Faraday tensor in order to construct the
fine-scale SET. If the vector potential, Aµ, is evolved by a simulation then we can
calculate the Faraday tensor F µν as F µν = ∇µAν − ∇νAµ. The electromagnetic vector
fields {Eµ, Bµ} are also then given by B = ∇ × A and E = ∂tA, at least for ideal
electromagnetism. If the magnetic field alone is evolved in a simulation then the
electric field may be calculated as Eµ = ϵµαβuαBβ and the Faraday tensor constructed
from the EM vector fields.

6.8 Summary

Binary neutron star mergers are extremely rich and dynamical events whose
quantitative modelling requires using numerical relativity simulations, particularly for
the latest stages of the inspiral, the actual merger and the post-merger phase. The
expected sensitivities of future third generation detectors, as well as the fact that these
will also be able to detect the post-merger gravitational wave signal, justifies the
ongoing efforts to improve the realism of said simulations. A key issue in this respect is
the need to resolve (at least in principle) the full range of scales involved in the
turbulent flow that develops in the merger remnant—e.g. due to the Kelvin-Helmholtz
instability (Price and Rosswog, 2006).

Because this is (at the very least) not practical, recent years have witnessed various
efforts to extend the large-eddy simulations’ strategy from Newtonian physics to
relativistic (magneto-)hydrodynamics (Radice, 2020; Carrasco, Viganò, et al., 2020;
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Viganò, Aguilera-Miret, et al., 2020a). While these efforts have already delivered
impressive results (Aguilera-Miret, Viganò, et al., 2020; Aguilera-Miret, Viganò, et al.,
2021; Palenzuela, Aguilera-Miret, et al., 2022; Aguilera-Miret, Palenzuela, et al., 2023;
Izquierdo, Bezares, et al., 2024), there are a number of non-trivial aspects involved
that are not yet fully understood. Certainly one of these is the fact that all practical
implementations so far break covariance, both in the way the filtering operation is
performed and in the specific closure scheme used (Radice and Hawke, 2024).

In this respect, in Celora, Andersson, et al., 2021 we have discussed some of these
issues and put forward a coherent theoretical framework for performing large-eddy
simulations while retaining compatibility with the covariance principle of general
relativity. A higher-level discussion of the reasons for tackling such an issue in this way
is provided in our recent paper (Celora, Andersson, et al., 2024). In this work however,
we have taken a practical step forward by presenting the very first implementation of a
fully covariant filtering scheme in relativity.

Being the first of its kind, this work is primarily intended as a demonstration that the
logic discussed in Celora, Andersson, et al., 2021 is practically viable. We presented
simulations of Kelvin-Helmholtz driven turbulence and used these to discuss the key
features of the scheme. In particular, we dynamically identify a suitable observer that
moves with the bulk of the flow and perform the filtering in the spatial directions
identified by this observer. We demonstrate that, as expected from theoretical
grounds, filtering impacts on the stress-energy tensor by introducing effective
dissipative terms and that these scale with the size of the filter kernel as naïvely
expected. As an illustration of the viability of the scheme, we have then provided a
first ‘a-priori’ calibration of the effective transport coefficients that can be extracted
directly from simulation data using a simple eddy-viscosity-type model. Finally, we
have looked at the impact that filtering may have on the thermodynamics, finding
indications that, if not properly modelled, this may introduce up to percent level
differences in the EoS parameters. These results demonstrate the kind of questions we
may try to answer by working within this framework.

The purpose of this work is also to introduce and present the codebase we have built10.
In this respect, it is important to stress that the results presented here are not
expected to be of direct use for real large-scale simulations of compact-object mergers.
This is mainly because the simulations used here have two spatial dimensions, and do
not contain electromagnetism. It is well known that three-dimensional turbulence is
phenomenologically quite different from its two-dimensional counterpart. For example,
vortices stretch each other in three-dimensional turbulence whilst in two-dimensional
turbulence they simply move past each other. Two-dimensional turbulence may exhibit
both a direct and inverse cascade of energy due to the additional conservation of

10The first release of the code used in this work is publicly available at https://github.com/Lagrangian-
filtering/Lagrangian-filtering

https://github.com/Lagrangian-filtering/Lagrangian-filtering
https://github.com/Lagrangian-filtering/Lagrangian-filtering
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enstrophy.11 Similarly, magnetic turbulence exhibits an inverse cascade that amplifies
large-scale magnetic fields, giving magnetar remnants their enormous magnetic field
strength.

Nonetheless, we stress that the key routines have been written in such a way to work
in 3+ 1 dimensions as well. Similarly, the scheme has been structured in a pipeline-like
fashion to easily allow for future improvements and extensions. For example, future
work will range from extensions to account for electromagnetic effects, to a systematic
exploration of various closure schemes and ‘a-posteriori’ tests of these. To this end, we
note that our recent work (Hatton and Hawke, 2024) provides a computationally
efficient formulation of dissipative hydrodynamics that can be used to implement a
subgrid model of the type we derive here.

In summary, this work represents a first step towards a practical implementation of the
covariant filtering scheme from Celora, Andersson, et al., 2021 and provides us with a
tool that can be used to investigate a number of open issues regarding the modelling of
relativistic turbulence.

11Enstrophy is a scalar measure of (square averaged) vorticity, in an analogous way to energy being a
scalar measure of (square averaged) velocity (for uniform mass).
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Chapter 7

Other Avenues

In this chapter, we present further results from simulations of dissipative
hydrodynamics. These pieces of work have not yet come to full fruition but are in a
proof-of-concept stage currently. They provide viable avenues for further work in the
direction of this thesis.

Firstly, in section 7.1, we introduce the numerics of the BDNK model and compare its
simulation results to those of the MIS & MISCE models.

Then, we show preliminary results from performing simulations with an explicit
large-eddy scheme in section 7.2. This uses the subgrid closure model derived
in chapter 6 that mimics true dissipative hydrodynamics to capture unresolved
dynamics.

7.1 Simulations with the BDNK Model

In this section, we present results from simulations using the the
Bemfica-Disconzi-Noronha-Kovtun (BDNK) model of dissipative, relativistic
hydrodynamics (Kovtun, 2019; Bemfica, Disconzi, et al., 2022). We also make both
qualitative and quantitative comparisons with the MIS and MISCE models simulated
previous in chapters 4 and 5.

Following the numerical work of Pandya, Pretorius & Most (Pandya, Most, et al.,
2022b; Pandya and Pretorius, 2021) in particular, we seek to implement a first-order
system of equations that has the advantage of provable stability, causality &
hyperbolicity, as well as a smaller system size (compared to MIS) because the
dissipative terms have constitutive relations rather than obeying relaxation equations.
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We write our conserved vector as
D

Sj

E

 =


nW

(ρ + p + Π + A)W 2vj + (qj + qkvkvj)W + π0
j

(ρ + p + Π + A)W 2 − (p + Π + A) + 2qkvkW + π0
0

 , (7.1)

whilst our flux vector is
Dvi

Sjvi + (p + Π)δi
j + W (qivj − qkvkvjvi) + πi

j

(E + p)vi + W (qi − qkvkvi) + πi
0

 , (7.2)

and the source vector is 
0
0
0

 . (7.3)

Note that we have a new variable to define, and that some of our familiar variables
now take on a different form:

A = τϵ [u
µ∇µρ + (ρ + p)∇µuµ] , (7.4a)

Π = −ζΘ + τΠ/τϵA, (7.4b)

qµ = τq(ρ + p)uν∇νuµ + βϵ∆µν∇νρ + βn∆µν∇νn, (7.4c)

πµν = −η

[
∆µα∆νβ∇αuβ + ∆µα∆νβ∇βuα − 2

3∆µν∆αβ∇αuβ

]
. (7.4d)

Our C2P procedure is given by the following steps:

1. Compute A, Π, qµ and πµ
ν from the values of the primitives at the previous

timestep. Note that this will require both temporal and spatial derivatives.

2. Guess χ̄ (= p + Π + A − 2qkvkW − πk
k) and σ̄j (= (qj + qkvkvj)W + π0

j ).

3. Compute v2 = γij(Si − σi)(Sj − σj)/(E + χ)2

4. Compute W = (1 − v2)−1/2

5. Compute n = D/W

6. Compute ρ + p = (E + χ)/W 2 − (Π + A)

7. Compute vj from (Sj − σj)/[(ρ + p + Π + A)W 2]).

8. Invert our EOS to get p from n, ρ + p.

9. Compute χ = p + Π + A − 2qkvkW − πk
k , σj = (qj + qkvkvj)W + π0

j from our
quantities and compare to our guesses.

10. Recompute A, Π, qµ and πµ
ν with the updated primitives set by this C2P scheme.
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We have 6 free parameters: {κ, ζ, η} & {τq, τΠ, τϵ}. All act to moderate the strength of
the additional, non-ideal terms (despite the notation, none are reciprocal timescales as
for the MIS case). From some of these parameters we calculate two more coefficients,
βϵ & βn:

βϵ = τq

(
∂p

∂ρ

)
n

+
κT (ρ + p)

n

(
∂(µ/T )

∂ρ

)
n

, (7.5a)

βn = τq

(
∂p

∂n

)
ϵ
+

κT (ρ + p)

n

(
∂(µ/T )

∂n

)
ϵ
, (7.5b)

Given that our equation of state is p = (Γ − 1)(ρ − n), the chemical potential is
µ = (Γ − 1)(ρ − n)n−2 and temperature T = pρ−1 we have µT−1 = ρn−2 and hence

βϵ = τq(Γ − 1) + κT (ρ + p)

n3 , (7.6a)

βn = −τq(Γ − 1) − κp(ρ + p)

n4 ≡ −τq(Γ − 1) − κT 4(ρ + p)

p3 . (7.6b)

7.1.1 An Alternative Evolution Scheme

The above scheme is not that adopted in the latest work by Pandya, Pretorius & Most
("PPM") (Pandya, Most, et al., 2022b). Instead, they undertake a clever approach tied
together by the need to not finite difference in time when computing the first
derivatives needed to close the system.

We usually think of three sets of variables; the conserved variables that are evolved via
a balance law form and associated high resolution shock capturing scheme (involving a
total derivative of a flux plus a source), the primitive variables (any minimal
independent set of variables from which everything else can be computed), and the
auxiliary variables (anything else that is useful to store).

The PPM paper uses similar language, but the meaning of the terms is somewhat
different. To try and be precise here we will call the evolved variables as those within
the state vector that are explicitly updated at each (sub-)timestep, and the basic
variables as the set which need updating at the end of each (sub-)timestep.

The conserved variables are q = (D, S, E). The primitive variables are w = (n, v, ρ).
In the PPM paper, the evolved variables are e = (D, S, E, n, v, ρ) = (q, w). The basic
variables are b = (n, v, ρ, ∂tn, ∂tv, ∂tρ) = (w, ∂tw). The equations of motion can be
written as

∂te + ∂j f (j)(e, w, ∂iw) = s(e, w). (7.7)

In particular, the equations of motion for the conserved variables (the first half of the
state vector) remain the same as before, whilst the equations of motion for the
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primitive variables are trivial (as the time derivatives of the primitives are assumed
known at this stage, and appear in the basic variables).

The key to the scheme is the conserved-to-primitive transformation, which should
really be thought of as an ‘evolved-to-basic’ transformation. After updating one
(sub-)timestep, the evolved variables are known, and we have to re-compute the basic
and auxiliary variables. First we apply the boundary conditions to the evolved
variables so they are known everywhere, including in the ghost zones. Next, compute
the spatial derivatives of the primitive variables (as the primitive variables are known
everywhere, as they are the second half of the evolved variables). Finally, write

q ≡ q(∂tw; w, ∂jw). (7.8)

The point here is that the conserved variables (which are known – they have been
updated in the evolution) are functions of the primitive variables (known similarly),
the spatial derivatives of the primitives (computed by finite differencing above, so
known), and the time derivatives of the primitives (unknown). As the number of
primitive time derivatives (∂tw) matches the number of conserved variables (q), we
have a system of nonlinear algebraic equations for which a root-finding method can be
employed. Using, as an initial guess, the previous value of the time derivative, its value
at the new time can be computed.
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Figure 7.1: The evolution of discontinuous initial data (a shocktube) for the ideal
and bulk-viscous (ζ = 1 × 10−2) cases. The BDNK formulation is compared to the

MIS model, showing excellent visual agreement in both cases.
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Figure 7.2: The evolution of a spinning ‘rotor’ with initial data similar to that
in Pandya, Most, et al., 2022b using the BDNK formulation with a shear viscosity
coefficient of η = 1 × 10−3. The weak shear viscosity allows small-scale vortex struc-

ture to develop but eventually causes breaking of the fluid.

Writing the system explicitly

We will write out the system explicitly here for clarity, also reverting to our
nomenclature for the various quantities that aligns with METHOD but still referring
to evolved and basic variables when it is useful to. Our conserved vector is now in the
same form as before but extended to contain (unusually) primitive fluid quantities



D

Sj

E

vj

p

ρ


=



nW

(ρ + p + Π + A)W 2vj + (qj + qkvkvj)W + π0
j

(ρ + p + Π + A)W 2 − (p + Π + A) + 2qkvkW + π0
0

vj

p

ρ


(7.9)
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Figure 7.3: The long-term evolution of the Kelvin Helmholtz instability using the
BDNK formulation of non-ideal hydrodynamics with no non-ideal effects and 800 × 800

cells.

whilst our flux vector is

Dvi

Sjvi + (p + Π)δi
j + W (qivj − qkvkvjvi) + πi

j

(E + p)vi + W (qi − qkvkvi) + πi
0

0
0
0


, (7.10)

and the source vector is 

0
0
0

∂tvj

∂tp

∂tρ


. (7.11)

The primitive variables appearing in the second-half of the conserved vector are
sourced simply from their time derivatives, which are also needed to calculate the
non-ideal terms in the first-half of the conserved vector (Π, A, qj and πi

j).
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Figure 7.4: The long-term evolution of the Kelvin Helmholtz instability using the
BDNK formulation of non-ideal hydrodynamics with a viscosity parameter of η =
1 × 10−4 and 800 × 800 cells. The small but finite shear viscosity here initially suppresses
the breaking of the interface but then causes large-scale features to develop (roll-up,

vortices) with fine-scale details within them.

Our conserved-to-primitive scheme now reads significantly differently from previous
formulations’.

1. Apply boundary conditions (BCs) so that the conserved variables are correct
over our entire domain (interior and exterior).

2. Trivially recover our primitive variables {vj , p, ρ} from the conserved vector.

3. Compute all necessary spatial derivatives of these primitive variables (these
calculations are only required for the interior region but will require values of the
primitives in the exterior due to the finite differencing).

4. Guess four time derivatives (∂t{vj , ρ}) required to calculate the non-ideal terms.

5. Calculate ∂tn using the continuity of mass equation: uµ∇µn = −n∇µuµ. This
leads to ∂tn = −vi∂in − nΘ/W where Θ is the 4-divergence (= ∇µuµ).

6. We now have all required quantities to calculate the entire conserved vector!
’Simply’ root-find on the difference between the value of the conserved vector’s
elements and their values computed algebraically (including using the
time-derivative guesses).
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7. Compute ∂tp using the chain-rule on our EoS and our calculated values of ∂tρ

and ∂tn: ∂tp = (Γ − 1)(∂tρ − ∂tn).

8. We can now update the flux and source vectors with correct values.

We’ve carried out a number of tests of the BDNK formulation using both of these
methods of solving the system. This is ongoing work but the short answer is that both
methods are stable only within narrow parameter value ranges (of {κ, ζ, η} &
{τq, τΠ, τϵ}). In particular, the second approach is highly unstable for weak dissipation.
This is unsurprising but problematic. We attribute this instability to a couple of
factors:

1. The root-find tries to match a small change in the conserved quantities to a tiny
viscosity coefficient multiplying a time derivative, giving a highly sensitive and
often artificially large time derivative. This issue is somewhat avoided in their
(PPM) work by use of an algebraic C2P, made possible my heavy simplifications
such as asserting that the fluid is conformal. We would like to keep our approach
more general than this. One alternative is to avoid the root-find entirely by using
approximate algebraic expressions for the time derivatives as described
in appendix A. This, however, introduces errors into the time derivatives of at
least O(δ2) where δ = {κ, ζ, η}, {τq, τΠ, τϵ}. These errors seem to accumulate and
eventually destabilize the system anyway.

2. The spatial finite differencing may also be contributing to the problems facing us
here. The feedback into the time derivatives could lead to instabilities. Whilst
the flux calculations in METHOD are made using a high-order WENO scheme
(see section 3.4), the spatial differentials in the non-ideal terms are currently
calculated using low-order, central finite differencing. Increasing the order of this
spatial differencing doesn’t seem to improve the behaviour, but perhaps the more
advanced CWENO methods adopted by PPM would.

We show the results of a number of simulations using familiar initial data with the
BDNK model in figs. 7.1, 7.3 and 7.4. We also show results from a new test in fig. 7.2,
one similar to that used in Pandya, Most, et al., 2022b. It is a simulation of a rotating
circle of fluid - a ‘rotor’ - that mimics, in a highly simplified way, how a spinning
compact object such as a neutron star may be affected by the viscosity.

Direct comparison to the other dissipative models in this thesis is difficult because the
dynamical hydrodynamic frame of BDNK means an adjustment of certain primitive
variables is necessary before their values represent equivalent physical quantities as
they do in other formulations with a static frame. However, in fig. 7.1, we do make a
favourable comparison to the MIS model for a shocktube test, and in the other
simulations we at least see the expected behaviour of a dissipative fluid. Further work
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more thoroughly analysing the BDNK model and the results it produces in simulations
would be an interesting endeavor.

7.2 Subgrid Modelling with Dissipative Hydrodynamics

Building on our filtering work outlined in chapter 6, we will now discuss the steps
required for a practical implementation of the subgrid closure obtained therein. This
will serve as an aposteriori test of our previous work and (hopefully) demonstrate a
viable approach to performing covariant large-eddy simulations. To this end, we
present preliminary results from performing simulations of this nature.

We will be simulating a dissipative fluid at the meso-scale with stress-energy tensor
(SET) given by

T̃ ab = (ε̃ + p̃) ũaũb + p̃gab + 2q̃(aũb) + s̃ab (7.12)

where we use the tilde symbol to designate these as meso-scale quantities that haven’t
been explicitly filtered. We chose to model the residuals as

s̃ab =
1
3Π̃⊥̃ab

+ π̃ab , Π̃ = −ζθ̃ , π̃ab = −ησ̃ab , q̃a = −κT̃ ⊥̃ab
( 1

T̃
∇bT̃ + ãb

)
,

(7.13)
where T̃ is the meso temperature, ⊥̃ab

= gab + ũaũb is the orthogonal projector relative
to the Favre observer, while θ̃, σ̃ab and ãa are, respectively, the expansion rate scalar,
the shear rate tensor and the acceleration relative to the Favre observer:

ãa = ũb∇bũa , (7.14a)

θ̃ = ⊥̃ab∇aũb , (7.14b)

σ̃ab =
1
2
(
⊥̃c

a⊥̃d
b + ⊥̃c

b⊥̃
d
a

)
∇cũd − 1

3 θ̃⊥̃ab . (7.14c)

From the conservation of energy, momentum and mass we have the usual divergence
equations:

∇aT̃ ab = 0, ∇aña = 0, (7.15a)

where ña = ñũa. Recasting these, using the ‘Valencia’ formulation, into
conservation-law equations of the form

∂tU + ∂iF(i) = S = 0 (7.16)
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where

U =


D

Sj

τ

 =


nW

(ε + p + Π)W 2vj + W (q0vj + qj) + π0j

(ε + p + Π)W 2 + 2q0W − (p + Π − π00) − D

 , F(i) =


Dvi

Si
j

Si − Dvi


(7.17a)

and
Si

j = (ε + p + Π)W 2vivj + W (qivj + qjvi) + (p + Π)δi
j + πi

j . (7.18)

The dissipative coefficients {ζ, η, κ} will now be given by the functional form arrived at
through statistical fitting. Specifically, by comparison of the non-ideal terms in this
first-order model with the residuals produced by explicitly filtering the micro-scale
SET. For example, one set that gave near-maximal correlation score (or rather
minimized the Wasserstein distance between the two distributions) is given (for
L̃ = L/∆x = 8) by

η =10−1.644 · (det σ̃)+0.149 · (σ̃abσ̃
ab − ω̃abω̃

ab)+0.045 (7.19a)

· (σ̃abσ̃
ab/ω̃abω̃

ab)−0.132,

κ =10−4.530 · (σ̃abσ̃
ab)+0.146 · ñ+0.291 · (σ̃abσ̃

ab − ω̃abω̃
ab)+0.227 (7.19b)

· (DañDañ)+0.397 · (DañΘa)−0.367,

ζ =10−3.922 · (ω̃abω̃
ab)+0.107 · T̃+0.409 · ñ+0.497 (7.19c)

· (σ̃abσ̃
ab − ω̃abω̃

ab)+0.459 · θ̃−0.847.

We observed a scaling of these coefficients ∝ L̃2. Hence, we recalibrate these
expressions to be valid for the case when L̃ = 1 by adjusting the off-sets down by
log10(82) ≈ 1.8 and then introduce the L̃2 scaling explicitly to obtain

η =10−3.444 · L̃2 · (det σ̃)+0.149 · (σ̃abσ̃
ab − ω̃abω̃

ab)+0.045 (7.20a)

· (σ̃abσ̃
ab/ω̃abω̃

ab)−0.132,

κ =10−6.330 · L̃2 · (σ̃abσ̃
ab)+0.146 · ñ+0.291 · (σ̃abσ̃

ab − ω̃abω̃
ab)+0.227 (7.20b)

· (DañDañ)+0.397 · (DañΘa)−0.367,

ζ =10−5.722 · L̃2 · (ω̃abω̃
ab)+0.107 · T̃+0.409 · ñ+0.497 (7.20c)

· (σ̃abσ̃
ab − ω̃abω̃

ab)+0.459 · θ̃−0.847.

Calculations of all quantities on the list of regression variables have been implemented
in METHOD, as well as these functional forms for the coefficients and the first-order
gradient model1 used for the closure scheme. The first thing to check is what values
these coefficients take during evolution, without actually performing the subgrid
simulation yet. The result of this check is shown through a combination of figures.

1Essentially, relativistic Navier-Stokes.
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Figure 7.5: The evolution of the Kelvin-Helmholtz instability (KHI) and onset of
turbulence for an ideal fluid. The number density, n, is plotted over a low-resolution
domain of 200 × 200 cells. No subgrid model is active but this simulation is the one

used to calculate the model’s coefficients in the plots (figs. 7.6 to 7.9) that follow.
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Figure 7.6: The subgrid model coefficient κ plotted over the domain of the turbulent
KHI simulation seen above. The spatial correlation with ‘sharp’ features (strong gra-

dients) in the fluid flow is clear, in particular at the shocks.
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Figure 7.7: The same plot but for the coefficient ζ. Some spatial structure is seen
but much of the domain is ‘dark’ (zero) because of the clipping we perform when the

expansion θ̃ diverges, which has a negative power fitted in our subgrid model.
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Figure 7.8: For the coefficient η, spikes in its value are seen along the discontinuities,
and there is clearly spatial correlation with the vortices.
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reassuringly very similar
to that extracted in the
analysis in section 6.6 and

seen in figure 6.15.

10 5 10 4 10 3
0

500

1000

1500

2000

2500

3000

3500

Co
un

t
(b) The distribution for ζ
here is similar to that seen
in figure 6.16 but lacks
the right-tail (largest val-
ues), possibly due to our
clipping of values to zero
when the expansion rate
vanishes which gives a di-

vergence otherwise.

10 2
0

1000

2000

3000

4000

5000

6000

Co
un

t

(c) For η, we may com-
pare to figure 6.11. We
see that this distribution
is narrower, and shifted
to the right (increased) by
nearly an order of magni-

tude.

Figure 7.9: The distribution of values of κ, ζ and η in the subgrid model for a 200 × 200
resolution box simulation with initial data creating a Kelvin-Helmholtz instability.

Firstly, in figure 7.5 we show the number density evolution for a low-resolution
simulation with Nx = Ny = 200. This is simply an ideal fluid and can be directly
compared to its high-resolution (Nx = Ny = 800) counterpart fig. 6.1 seen in chapter 6.
Then, we calculate the coefficient values at every point during this simulation, and plot
them in figures 7.6, 7.7 and 7.8. Finally, in figure 7.9 we show histograms of each of the
dissipation coefficients’ values, conglomerated across all times during the simulation.

We should comment on both the spatial and numerical distribution of the coefficients’
values. Visually, the spatial distribution is clearly correlated with the fluid flow. In
particular, the coefficient values spike along discontinuities in the number density
and/or velocity of the fluid, and the shape of the vortices can be seen in them. One
caveat to this is for ζ, where we have clipped its value to zero whenever we find it has
diverged. This divergence is due to the expansion scalar θ̃ being present in its fitted
form and having a negative power, leading to divergence when it is zero. Reassuringly,
the coefficients’ numerical distributions largely match closely to those derived
in chapter 6 and seen in figures 6.11, 6.15 and 6.16. Again, ζ is missing its high-tail,
likely due to clipping and the η distribution is narrower and right-shifted compared to
expectation. Whilst we would like to get to the bottom of these issues, we will not
spend more time on them now and will proceed anyway. The next step, therefore, is to
switch-on the subgrid model and see what happens...
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7.2.1 Assessing the SubGrid Model

When trying to perform the same simulation as above, now with the subgrid closure
model active, we immediately run into numerical stability issues. These may be due to
the fact that we are using a first-order gradient model of dissipative hydrodynamics
(essentially, relativistic Navier-Stokes) which is known to be inherently unstable,
although it is also (at least) exacerbated by the fact that we now have a non-physical
subgrid closure model acting as genuine dissipation. Due to the fitted form of the
coefficients, they now take on a (albeit sensible) range of values which can vary
significantly on small lengthscales, rather than being constant as in all previous
simulations. Hence, we consider alternative models of dissipative hydrodynamics to use
as our subgrid closure scheme. However, because we derived this subgrid closure
scheme using the first-order gradient model outlined above, we cannot stray far from it
or the fitted coefficients will be invalidated. This likely rules out the BDNK model, but
makes the MIS and MISCE models potentially viable alternatives. The MIS model
removes the pathologies of the Landau & Eckart models by adding additional modes
into the system through relaxation equations. If we use small relaxation times, then
the MIS model will quickly relax the dissipative variables to their Navier-Stokes
forms–the same ones they have directly in the model above. This may allow us to
perform a simulation with essentially the same subgrid closure scheme, except for some
small deviations.

In fact, we actually find that changing our time-integrator from an explicit
Runge-Kutta one to the semi-implicit IMEX scheme SSP2(2,2,2) (see section 3.5.3)
stabilizes the numerical evolution. Whilst ostensibly good news, this does go against
the ethos of subgrid modelling, which is to cut computational cost by being able to use
lower resolutions whilst still capturing the relevant microscale physics. Being forced to
use a more costly numerical scheme for the sake of stability is a shame, but one we will
have to accept for now until we are able to understand why the explicit integration
scheme is unstable and remedy that. We show the first results using the subgrid model
in fig. 7.10. Compared to fig. 7.5, the same simulation with no subgrid model active,
there are significant differences. We also compare fig. 7.10 to a high-resolution
(800 × 800) simulation with no subgrid model.

It is tricky to assess the success of the subgrid model using a visual analysis, or by
inspecting individual features or points within the domain. This is because the subgrid
model is designed to capture on average the unresolved behaviour. A full assessment of
the subgrid model is now outside the scope of this thesis but we present here a few
possible measures of its success:

1. A comparison of the kinetic energy spectra (of the type shown here) between a
low-resolution simulation with the subgrid model and the high-resolution
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Figure 7.10: Low resolution (200x200) simulation of the KHI for an ideal fluid with
our subgrid model active. Compared to the case with no subgrid model, seen in fig. 7.5,
there are small but significant visual differences. In particular, the shocks are noticeably
shifted in position due to the inclusion of (effective) dissipative effects that modify their
propagation speeds. Also, the maximum number density is slightly suppressed, which

is unsurprising given that dissipation smooths gradients in fluid properties.

simulation without it, at least for the wave-modes resolvable in the
lower-resolution simulation. Whilst the subgrid model cannot significantly extend
the narrower inertial range of the lower-resolution simulation, it may be able to
compensate for the overall faster decay of the spectrum for the lower-resolution
simulation.

2. An analysis of components of the stress-energy tensor, particular the T tt

component often identified with the total energy of the system. Both numerical
dissipation and dissipation due to the subgrid model will cause this quantity to
decay over time. In fact, this particular consideration and the previous one both
further motivate the use of a subgrid model with negative effective dissipation
coefficients. In both cases, the decay will be faster for a lower-resolution
simulation. This means that a subgrid model acting in a low-resolution
simulation needs to generate energy at the smallest lengthscales (or at least move
it from there to the longer lengthscales) to match the decay-rate of a
higher-resolution simulation.

3. Effective equation of state comparison. We showed in figure 6.13 that filtering
introduces deviations from the fine-scale equation of state, specifically in the
value of Γ used in its parametrization. Our subgrid model may be tested (or
calibrated) by requiring that deviations in the effective equation of state for a
simulation with the subgrid model active are smaller than these.
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Chapter 8

Conclusions & Outlook

Conclusions

Relativistic, dissipative hydrodynamics has been a field of research for over half a
century. It has found applications in the modelling of viscous accretion disks, the
quark-gluon plasma created in heavy ion collisions, and, most recently, the hot, dense,
out-of-equilibrium matter created in neutron star mergers. With the next generation of
gravitational wave detectors on the horizon, it is growing ever more important to
include next-to-leading order effects into BNS merger simulations. Heat conduction
and viscosity will affect the gravitational and electromagnetic signals we detect, so
modelling them accurately is necessary to produce numerical results which may be
faithfully compared to future observations.

However, due the onset of turbulence, its interaction with the magnetic field of a
remnant, and the out-of-equilibrium processes which mergers enable, small-scale
dynamics are still important in determining large-scale behaviour. Unfortunately,
direct numerical simulation of these small-scale dynamics will be computationally out
of reach for the foreseeable future. Therefore, subgrid modelling and large-eddy
schemes, which are well-established in non-relativistic fields of research, must now be
applied to relativistic fluids evolving in strong gravity environments. Fortunately,
subgrid models for fluids often resemble non-ideal ones, and so through a
re-interpretation of the components of non-ideal hydrodynamic models, we may
capture this otherwise-unresolved behaviour. These are the motivations behind this
research project, and the work contained in this thesis.

In chapter 4 we introduced the Müller-Israel-Stewart formalism and simulated this
well-established theory of non-ideal fluids in special relativity. Its numerical limitations
for near-equilibrium matter led us in chapter 5 to develop a new formulation for
SRDHD. This allowed us to perform significantly more efficient simulations whilst
capturing the same dissipative effects. Lightweight additions (such as this one) to
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existing models are crucial for including more physics into already very costly
simulations of BNS mergers.

In chapter 6 we motivated the need for explicit large-eddy schemes to be used in
binary neutron star merger simulations. With the first fully-covariant scheme of its
kind, we performed explicit filtering of a microscale fluid and showed that the residuals
introduced by this process may be well-captured by a dissipative fluid description at
the coarser mesoscale. This does require a statistical fitting of the non-ideal coefficients
to thermodynamic and flow properties of the fluid.

In chapter 7 we explored further uses of dissipative hydrodynamic models. In
particular, we introduced the recently-popularised BDNK formulation and performed
some of the first simulations of viscous fluids using it. We then showed results from an
adaptive prototype code that is able to switch between different models on-the-fly,
gaining the benefits and avoiding the pitfalls present in each model individually.
Finally, we showed preliminary results of applying explicit large-eddy schemes to a
turbulent fluid using the sub-grid closure obtained in chapter 6. This shows early
promise of being an effective approach to capture otherwise unresolved physics and one
that can be applied in BNS mergers.

Outlook

This thesis has explored a number formulations and uses of dissipative hydrodynamics,
and provides a strong basis for performing simulations. However, whilst our work has
been clearly motivated by neutron star physics and neutron star merger events, it has
not been directly applied to an astrophysical scenario. This motivates a fairly clear
path towards doing so and providing new insight in this field.

Firstly, we would need to move our models of dissipative hydrodynamics into full
general relativity, and couple them to a spacetime evolution code. To perform realistic
BNS merger simulations, we would also need to model electromagnetism, radiation and
cooling, as well as adopting a realistic equation of state. Whilst this sounds like a
considerable task (and it is), thankfully open-source software like the Einstein Toolkit,
LORENE and CompOSE provide much of what we’d need. This would then allow us
to give quantitative insights into how dissipation affects BNS mergers.

Fortunately, the covariant nature of our LES scheme means that our closure model can
be directly lifted into a curved spacetime. However, in order to extend our work on
turbulence modelling so that it is more representative of neutron star dynamics, we
would need to make the jump to three spatial dimensions and introduce
electromagnetism into the stress-energy tensor and hence equations of motion. This
introduces additional phenomenology particularly relevant for violent post-merger
dynamics where energy and angular momentum cascade between scales and small-scale



163

dynamos may lead to powerful, large-scale magnetic fields. Subgrid modelling of
turbulent dynamics in neutron stars, and the knock-on effect this has on observables,
will no doubt be a continued direction of research in the coming years - one that is
highly appealing to continue to be a part of.
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Appendix A

Approximating Time Derivatives

To approximate time derivatives, in particular for the MISCE model, we make use of
the following expansion

∂w
∂t

=
∂w
∂q0

∂q0
∂t

+
∂w
∂q1

∂q1
∂t

+ ... = −
(

∂q0
∂w

)−1 ∂ f (i)0
∂xi

+O(ϵ) = −
(

∂q0
∂w

)−1 ∂ f (i)0
∂w

∂w

∂xi
+O(ϵ)..

(A.1)
Note that this is valid in the limit of small dissipation, which is the expected regime
when we use MISCE (along with small timescales). Here we will derive this expansion
to next order, for instance to apply it to the BDNK formulation where, in general, the
dissipative contributions to the state & flux vectors are not small compared to the
ideal fluid variables. Now we cannot only consider the contribution of the fluid
variables themselves to the time-derivative of the state vector (∂tw), but also the
contribution of the temporal and spatial derivatives (∂µẇ, ∂µẃ).

Consider a system, such as the BDNK model, that can be written in the balance-law
form

∂t [q0(w) + q1(w, ẇ, ẃ)] + ∂i

[
f i
0(w) + f i

1(w, ẇ, ẃ)
]
= s = 0. (A.2)

In general, we have

∂tw = (∂wq)−1∂tq = −(∂wq)−1∂i f i = AB (A.3)

where
A = [∂wq0 + δ∂wq1]

−1 , B =
[
∂i f i

0 + δ∂i f i
1

]
(A.4)

and we have explicitly written the (possibly) small prefactor, δ. After some
manipulation, and using the assertion that δ is indeed small we arrive at the purely
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spatial forms

A =

[(
I − δ

(
∂q0
∂w

)−1 ∂q1
∂w

)(
∂q0
∂w

)−1]
, B =

[
∂f i

0
∂w

w′ + δ

(
∂f i

1
∂w

w′ +
∂f i

1
∂ẇ

ẇ′ +
∂f i

1
∂w′

w′′
)]

.

(A.5)
Note that we can choose to use the form of A in (A.4) and invert the sum of matrices,
rather than using the approximate small-δ trick that leads to A in (A.5). Similarly, we
can choose the expression for B from (A.4) which makes use of the fluxes themselves
directly, or we may use its form in (A.5) which requires evaluation of second-order
spatial differences of the primitive variables.



167

Appendix B

Extracting Numerical Viscosity

Finite numerical resolution introduces (hopefully small) errors and means that the
results of simulations always represent an approximation to the system they aim to
solve. One way that these errors appear is in the form of numerical viscosity - a
diffusive effect due to the discrete approximation we must use for the momentum
advection terms in fluid equations of motion. Understanding this effect is important,
especially when ensuring that viscous effects are genuine and not numerical.

In chapter 6, we modelled the effect of using coarse resolutions using viscosity. We
showed that the viscous residuals scaled as the square of the coarsening factor. Here,
we will use a simple test problem to extract the numerical viscosity and how it scales
with resolution.

In section 4.1.3.3 we introduced the reduced equation

∂tvy = 2η∂(2)
x vy − 4η2τπ∂(4)

x vy (B.1)

for the evolution of the y-directed velocity vy across a one-dimensional domain in x

with shear viscosity η. If we take the leading-order piece of our CE-expansion such
that τπ → 0 then we simply have

∂tvy = 2η∂(2)
x vy (B.2)

which has the form of the heat equation but with the heat conductivity κ replaced
with 2η. In figure fig. B.1, we simulate this equations and show the smearing of a
discontinuity given by the initial data

vy = C1Θ(a) + C2 (B.3)



168 Chapter B. Extracting Numerical Viscosity

0.10

0.05

0.00

0.05

0.10
Nx= 25 Nx= 50 Nx= 100

1 0 1
0.10

0.05

0.00

0.05

0.10
Nx= 200

1 0 1

Nx= 400

1 0 1

Nx= 800

Figure B.1: The smearing of an initial discontinuity due to numerical viscosity for
a number of resolutions. The simulation ran until time t = 20.0 with an ideal fluid
description. This behaviour matches the analytic solution of equation eq. (B.2) which

is described by a broadening error function.

where Θ(x) is the Heaviside step function defined as

Θ(x) =

0 x < 0

1 x ≥ 0
(B.4)

and the values used for the constants are C1 = 0.2, C2 = −0.1 and a = 0.

We plot the results for a number of resolutions and with an ideal fluid description–that
is with η = 0. Despite having set η to 0, the discontinuity does indeed decay as if there
were genuine viscosity present, which was simulated and shown in fig. 4.4
in section 4.1.3.3. This is due to numerical viscosity which gives an effective shear
viscosity ηeff . This decay is more rapid for lower resolutions where ηeff is larger.

The particular analytic solution to eq. (B.2) is

vy(x, t) =
C1
2

[
1 − erf

(
a − x√
8ηeff t

)]
+ C2 (B.5)
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Figure B.2: The power-law scaling of the effective viscosity ηeff with grid spacing ∆x
for the smearing of an initial discontinuity as seen in fig. B.1. As expected, the effective
viscosity is proportion to the grid spacing and hence vanishes in the continuum limit

of infinite resolution.

and hence by ‘reverse-engineering’ this expression, we can obtain an expression for ηeff

which is
ηeff =

(a − x)2

8t
[
erf−1

(
2(C2−vy)

C1
+ 1

)]2 . (B.6)

Therefore, we can use the analytic solution (eq. (B.5)) to extract an effective shear
viscosity coefficient that captures the effect of numerical dissipation as if it were
genuine dissipation. By doing this for a number of resolutions, we are able to see how
the value of ηeff scales with resolution. This gives us a simple way of obtaining a fit
for the dissipative coefficient in terms of resolution, which can be seen in fig. B.2. We
find that ηeff scales as ηeff ∝ ∆x0.38, which reassuringly means that in the limit of
infinite resolution ∆x, ηeff → 0.

Whilst this is a useful technique, it only works when we have an analytic solution to
our test problem. This is why comparison between low and high resolution simulations
is needed for understanding turbulence modelling and fitting large-eddy schemes. This
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is what we did in chapter 6 and has been done by others (Viganò, Aguilera-Miret,
et al., 2020b; Carrasco, Viganò, et al., 2020).
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