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1 Introduction

New instances of the stringy holographic correspondence on AdSs backgrounds have been
recently formulated. On the one hand, a large N' = (4, 4) duality is proposed in [1] for type
IIB string theory on AdS3xS?xS3x S, following up on earlier developments [2-7]. The dual
CFT is conjectured to be the symmetric product orbifold of the so-called S, CFTs which
describe the o-model on S? x S'. On the other hand, a novel family of A = (2, 2) dualities
is proposed in [8, 9] through considering type IIB string theory on quotient backgrounds
AdS3 x (S? x T*)/D,, and AdS3 x (S? x K3)/Zs, where D,, is the dihedral group. In these
constructions, the original small A" = (4,4) supersymmetry supported by T* and K3 [10]
is reduced to N = (2, 2) supersymmetry. The conjectured dual CFTs are again symmetric
product orbifolds and the seed theories are CFTs on T*/D,, and K3/Zs, respectively.

Motivated by these developments, in this work we study another example of the
AdS3/CFTy duality with non-maximal supersymmetry. We consider the construction of
Yamaguchi et al. [11] and study string theory on the orbifold background AdSsz x (S? x S3 x
SY)/Zs. The action of the Zsy orbifold is implemented by exchanging the two three-spheres
and reflecting the circle S!. This action may be realised such that the spacetime supersym-
metry is reduced from large N = 4 to either N' = 3 or N/ = 1. We consider the former and
study string theory configuration with N' = (3, 3) supersymmetry. We conjecture that the
CFT dual to this configuration is the symmetric orbifold of Sy/Zso, where Sy (a member of
the S, family with x = 0) is a theory of four free fermions and one free boson.

We compute the BPS spectra of the string worldsheet theory and of the dual CFT and
find that they match precisely. We provide further non-trivial support for the proposed
duality by matching a supersymmetric index between the bulk and boundary theories. The
elliptic genus of the A/ = 3 CFTs vanishes due to the presence of a fermionic zero mode.



We define a non-vanishing index in the NS sector, which is composed of chiral primaries in
the right-moving sector and arbitrary excitations in the left-moving sector, compute it on
both sides of the duality, and find that they match. This provides additional non-trivial
evidence for the proposed holographic duality.

The plan of this paper is as follows. In section 2 we discuss the realisation of the
action of the Zy orbifold and propose the associated AdS3/CFTy duality with N = (3,3)
supersymmetry. In section 3 we compute the BPS spectrum of the proposed dual CFT.
We define and compute a modified elliptic genus for the dual CFT in section 4. We
next analyse the string worldsheet theory in terms of the WZW models in section 5 and
derive its BPS spectrum. We find that the spectrum precisely matches that of the dual
CFT. In section 6 we compute the modified elliptic genus of the worldsheet theory in the
supergravity limit and show that it reproduces the corresponding CF'T results. Finally,
in section 7 we conclude and discuss future directions of research. We present the details
of the Sy CFT in appendix A. The large N’ = 4 and N = 3 algebras and the associated
characters are reviewed in appendix B. Some technical details of the symmetric orbifold
computations are presented in appendix C. Finally, Jacobi theta function identities that
we use are outlined in appendix D.

2 String theory on AdS; x S% x S% x S!

The holographic duality for type IIB string theory on the AdS3 x S? x $3 x S background [1]
proposes that the dual CFT is the symmetric product orbifold of S, theories, Sym®™ (S).
The S, CFTs are supersymmetric o-models on S® x S! and have large N = (4,4) super-
conformal symmetry [1, 12]. The R-symmetry is su(2)* @ su(2)~ @ u(1) for both the left-
and right-moving sectors. The BPS spectra of Sym® (S, ), the worldsheet theory described
in terms of WZW models associated to AdS3 x S3 x S3 x S!, and supergravity on this
background were computed in [1, 2] and it was shown that the spectra of the three theories
match precisely.

In this work we consider the construction of [11] and study string theory on the
AdS3 x (S3 x S? x S1)/Zy orbifold background. The action of the Zy orbifold is realised by
exchanging the two three-spheres and simultaneously reflecting the circle. This amounts
to exchanging the two affine su(2)* algebras. The Zs action then imposes the condition
that the two spheres have equal radii, i.e. that the levels of the two affine su(2)’s coincide:
k* = k~. This corresponds to x = 0.

The diagonal su(2) of the R-symmetry algebra survives the orbifold projection. The
currents of the diagonal su(2) are the sum of the currents of the two su(2)* affine al-
gebras and generate the R-symmetry of the worldsheet theory of string theory on the
AdS3 x (S3 x S3 x S!)/Zs background. Before taking the orbifold projection, the four
left-moving supercurrents of the original large N/ = 4 SCA transform in the representation
(2,2) of the su(2)™ @ su(2)~. After taking the Zs-orbifold, the supercurrents transform
in the 3 @ 1 representations of the diagonal su(2) (and likewise, the same result holds for
the right-moving supercurrents). The action of the Zg can be taken such that either the
triplet or the singlet supercurrents survive the projection. The two operations are then



shown in [11] to reduce the spacetime supersymmetry and yield N' = 3 and N' = 1 su-
perconformal symmetry, respectively (see section 5 for more details). Taking into account
the contribution from the right-moving part, the theory admits ' = (3,3), N' = (3,1),
N =(1,3), or N = (1,1) supersymmetry.

Working within the context of the large N' = (4,4) AdS3/CFTy correspondence for
the AdS3 x S* x S3 x S! background [1] and performing the Zs orbifold action of [11]
described above, we propose that string theory on AdSs x (S? x S? x S!)/Zy background
with A = (3,3) supersymmetry is dual to the symmetric product orbifold Sym® (Sy/Zs).

2.1 Fluxes and charges

Let us briefly describe the fluxes of the model. For AdS; x S% x S? x S!, there are three
charges, which we denote by QY, Q;’O and Q;O. These correspond to the number of D1,
D51 and D5~ -branes in the brane construction (or F1-strings and NS5-branes in the NS-
NS background we are treating). S is supported by Q?’O units of flux, whereas QY is
related to the radius of the S!, see [4, eq. (2.44)].

When performing the Zs-orbifold, there is an associated map in cohomology, which
maps the fluxes of the quotient geometry to the original geometry. In this case, the two
three-spheres get interchanged, which results in the quotient space to have only one value
of D5-brane (or NS5-brane) charge.! The fluxes of the quotient geometry are then related
to the original fluxes as

201=Q), Q=05"=Q;". (2.1)
Note that we can perform the quotient only when Q;”O = Qg’o, i.e. when the three-spheres
have equal size. The factor of 2 in the D1-brane charge comes from the fact that the
quotient map is a degree 2 map.

Let us also comment on the Brown-Henneaux central charge [13]. For the unorbifolded
geometry, it is given by [5, 12, 14]:
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The classical Brown-Henneaux central charge formula for the background AdSs x My is

=3Q0Q:" . (2.2)

given by
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where /¢ is the AdSs-radius and Gsq and Gigq are the 3-dimensional and 10-dimensional

C

Newton constants, respectively. £ and (G1pq are invariant under the orbifold action but the
volume of M7 is only half as large after the orbifolding procedure, so we conclude that the
Brown-Henneaux central charge of the orbifold geometry is given by

A 3
‘=373
There might be order one corrections to this formula, as for the Brown-Henneaux central
charge on AdS3 x S* x K3 [15, 16].

QT = 30105 . (2.4)

' This is reflected in H*((S* x S* x S')/Z2;R) = R.



The theory Sy/Zs has central charge 3, hence we conjecture that the dual CFT to the
background AdSs3 x (S? x S? x S')/Z is

Sme1Q5 (So/ZQ) . (25)

3 BPS spectrum of the dual CFT

In this section we first review the BPS spectrum of the Sy theory in subsection 3.1. We
next discuss in subsection 3.2 the actions of the Zs orbifold on the Sy CFT which yield
N = 3 and N = 1 superconformal symmetries. We note that only the reduction to the
N = 3 SCA has an N = 2 subalgebra, and hence, a BPS spectrum. We derive this BPS
spectrum in section 3.3. For the N' = 1 theory, we derive the spectrum of the theory
which survives the action of the orbifold. In section 3.4 we compute the BPS spectrum of
the symmetric product orbifold Sym®™ (Sy/Zs) with V' = (3, 3) supersymmetry. Finally, in
section 3.5 we discuss the moduli of the dual CFT. We present the details of the analyses
of the symmetric orbifold in appendix C.1.

3.1 BPS spectrum of Sy

Let us recall the definition of the so-called Sy theory [1, 4, 17]. It consists of four free
fermions Y*” with u,v € {+,—} and one free boson d¢. These generating fields give the
R-symmetry su(2); @ su(2); @ u(1) of the large N =4 SCA, as reviewed in more detail in
appendix A (the subscripts denotes the level of the algebra). We denote these two affine
su(2)1-algebras in the following as su(2)] and su(2);. p and v are then bispinor indices of
the su(2); @ su(2);-algebra.

The BPS spectrum of the Sy theory is derived e.g. in [1]. The only BPS states in the
charge-zero sector are the vacuum together with their superconformal descendants:?

0), w¥flo), @*il0), wrivrio) (3.1)

Hence the corresponding Hodge-diamond is of the form
) (3.2)

which is the same as the Hodge diamond of the sigma model on T2, see [1, section 5.3].

3.2 Action of the Z, orbifold

The generators of the large N' = 4 algebra can be realised in terms of the free fields® as
presented in appendix A (see also [4, 18]).

We would like to determine the action of the Zs-orbifold on the generators of the
large N/ = 4 algebra such that it is reduced to the N' = 3 or N/ = 1 SCA. As discussed

2Here and in the following, a tilde denotes the right-movers.
3We thank Matthias Gaberdiel for sharing a note with us on the explicit form of this realisation.



in section 2, the Zs-action exchanges the two affine su(2); algebras of the R-symmetry
algebra and thus imposes the condition kT = k= =1 (hence, k = 0) on the levels. Zy also
acts by inverting the sign of the free boson:

0P — —0¢ . (3.3)
For the four free fermions, we consider the following two actions:

(Z) ¢++ — _w++7 ¢__ — _w__v ¢+_ — ¢_+7 1/}_+ — w—i-_u (34)

(i) ¢HF st T e T, T e g T e gt

Using eqs. (A.1)-(A.11), one can check that in both cases the two su(2)f algebras are
indeed exchanged and that the stress-energy tensor is preserved. Let us consider the
transformation of the supercurrents. For case (i) we find:

Gt — Gt G~ —G 7, Gt~ — G, G t— G . (3.6)

The supercharges GT, G~~, and the combination GT~ + G~ are preserved under the
Zo-action. The large N' = 4 SCA is reduced to the N' = 3 algebra in this case [19].
The generators of the algebra and their (anti-)commutation relations as derived from this
reduction are presented in appendix B.1.2.

For case (ii) in eq. (3.5) we have:

GTt— -G, GT+— -G, Gt +— -G, Gt+— -G, (3.7)

where only the combination GT~ — G~ survives the Zy action. The large N' = 4 SCA is
reduced to the N'= 1 SCA in this case.? One can check that (3.4) and (3.5) are the only
two consistent Zp-actions which exchange the two su(2)T algebras.

3.3 BPS spectrum of Sy/Z2

In this section, we derive the BPS spectrum of the Sy/Zy CFT.

Let us start by computing the NS sector partition function for the NV = 3 theory
n (3.4). We recall that, under the Zs action, the R-symmetry of the theory is reduced to
the diagonal su(2)9 algebra. We introduce a chemical potential, z, to keep track of the u(1)-
charge (resp. the su(2)-spin). Two of the four free fermions, ™" and ¢~ ~, are charged
under the u(1) whereas the other two, ™~ and ™", are not. Moreover, according to
eq. (3.4), the two charged fermions, 1) and ¢~ ~, and the linear combination ™~ +¢~+
of uncharged fermions are flipped under the Zs and are orbifold odd. All in all, the
contribution to the partition function before orbifolding is of the form

2

193(Z|T)Q93(T) (38)

n(r)?3

“In fact, to a semi-direct product of the A/ = 1 SCA with the diagonal affine su(2)2-algebra, but this
will not be important in what follows.

2@(7;?;]%)‘




where ©(7;7; R) represents the theta-function associated to the compact free boson. We
already included the factor of 3, which is the usual factor 1/|Z,| introduced by the projec-
tion operator. A pair of charged fermions contribute a factor of |J3(z|7)/ 77(7)‘2 and each
uncharged fermion contributes a factor of ‘193(7')% / T](T)%‘ .

We next consider the contribution from the orbifold projected states in the untwisted
sector as well as the unprojected and projected states in the twisted sector of the Zs.
The details of the derivation may be found in [20, section 10.4.3], the formula follows
essentially by requiring invariance under modular transformations. The full NS sector
partition function reads:

1 Y3(z|T)9 2 9 T% %
Ins(2,732,7) = 2@(7’%;}%)‘ 3(77‘(7))33( ) e )(Tg))(én)(T)é( 7)
|22l (r) 20t NUIE |T)Q93(17)%79§(T)% 2 (3.9)
) Ia() ()

The last term formally vanishes, but it is useful to keep it as a book-keeping device. We
note that the 193(7‘)% factor in all four terms of the above equation corresponds to the
uncharged fermion which is not affected by the Zo orbifold: it is just a bystander.

We shall now read off the BPS spectrum of the theory in the NS sector. Only the zero
modes of 97 and 9 and the one-half modes of 93 and 994 have a chance to produce BPS
states. Including only those, the partition function reduces to:

1 _ 1 1 __1 1 1 1
lalt Zns (2,73 2,7) = 5 (1 +yg2) (1 +4q2) + 5 (1~ yg2)(1 — yg2)
+247q3(y? +y 2)(y? +y 7) +non BPS
=1+ 2q%cﬁy%g% + q% %yy + non BPS . (3.10)
Thus, the corresponding Hodge-diamond is
1
02 0 . (3.11)
1

We extend the notion of Hodge-diamond to incorporate also half-integer cohomology,
see [8]. The corresponding Hodge-numbers will be denoted by hy,, with p,q € %Z. The
requirement of half-integer spin implies that h,, = 0, unless p + ¢ € Z.

We could have also derived the above BPS spectrum by considering the BPS spectrum
of the Sy theory in (3.2) and noting that the chiral primary operators ¢ffr/2|0>Ns and
1/1+1 /2’0>NS do not survive the action of the Zy orbifold, see eq. (3.4). The BPS spectrum
of the untwisted sector of the Sy/Zg theory will then be of the form hog = 1, h1 9 = 0,
ho,1 =0, and hy; = 1. Since S! has two fixed points under the action of the Zs, the twisted
sector will contribute two more BPS states, leading to hy/o1/2 = 2. We then recover the
Hodge-diamond (3.11).
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Table 1. Spectra of the untwisted sectors of the Sy/Zs theories. The Zo group is acting such that
it preserves either A" =3 (3.4) or N/ =1 (3.5) supersymmetry in the left and right-moving sectors.

Similarly, we can determine the reduced spectrum of the So/Zs theories with (A, ) =
(3,1), (1,3) and (1, 1) supersymmetry. By this, we mean the orbifold even part of the BPS
spectrum of Sy. While not being chiral primary (since N' = 1 supersymmetry does not
possess chiral primary states), we still expect those states to be protected, because of the
underlying large A = 4 SCA. The chiral primary wff'/2|0>Ns survives the action of the Zg
in case (77) and so does its right-moving counterpart, see eq. (3.5). Table 1 compares the
spectra of the untwisted sectors of the Sp/Zsa theories.

An elliptic genus may then be derived for the (M, V) = (3,3) theory and for the left
and right-moving sectors of the (3,1) and (1,3) theories, respectively. We will discuss the
elliptic genera in section 4.

3.4 BPS spectrum of symmetric orbifold of Sy/Z>

We shall now compute the single-particle BPS spectrum of Sym® (Sp/Zs) with N = (3, 3)
supersymmetry. This is the quantity that we will compare and match with that of the
stringy world-sheet theory as a first test of our proposal, see section 5.4. Since the fermionic
boundary conditions are different between the odd and even twisted sectors, we treat each
case separately. We follow closely the approach of [1] and refer the reader to section 3 and
appendix D of this paper for more details. The single-particle spectrum corresponds to
the single-cycle states of the symmetric orbifold theory. We note that since the number
of bosons and fermions are not equal in the seed theory, one has to be very careful when
applying the DMVYV formula [21]. For this reason, we will derive the partition function
and the associated BPS spectrum microscopically (see also the discussion at the end of
section 4.3).

The seed theory Sy/Zso consists of the untwisted sector and twisted sector of Zy. Below
we shall be explicit about the Zy (un)twisted sectors and the symmetric orbifold odd and
even twisted sectors to avoid confusions. We present the main results of the computations
here and refer the reader to appendix C.1 for the details.

3.4.1 0Odd twisted sector of symmetric orbifold

Zo untwisted sector: we consider the theory in the NS sector. The seed theory is in
the Zy untwisted sector and has zero ground-state energy, see eq. (3.10). So the non-trivial
contribution to the ground-state energy comes from the odd twisted sector of the symmetric



orbifold, n € Zoqq=0, were bosons and fermions have the same energy [22]. Acting on the
ground state with fractionally-moded fermionic fields, see eq. (C.2), we find that there are
two BPS states with conformal dimensions and u(1)-charges

_ 4 ¢ n+1
h_h_§_§_ T (3.12)

Zo twisted sector: the bosonic and fermionic fields have non-trivial ground-state ener-
gies in the Zg twisted sector of the seed CFT. Taking this into account, we find that the
associated BPS states have dimensions and charges

(3.13)

Moreover, this state appears with multiplicity 2.

3.4.2 Even twisted sector of symmetric orbifold

Zo untwisted sector: the even twisted sector of the symmetric orbifold is a bit more
delicate. We start again with the Zs untwisted sector of the seed CFT which has a van-
ishing ground-state energy. In the even twisted sector of the symmetric orbifold, fermions
have a different boundary condition than the bosons and their ground-state energies are
consequently different [22]. We find that, applying fractionally-moded fermions, one cannot
construct any BPS states in this sector as the conformal dimension of the ground-state is
already high to begin with.

Zo twisted sector: let us now describe the Zo-twisted sector. As discussed before,
3 of the 4 NS fermions in the seed theory are orbifolded by the Zy: this affects their
boundary conditions and yields integer R-moded fermions. The one remaining fermion is
not orbifolded and has half-integer NS modes. In the even twisted sector of the symmetric
orbifold, the fermionic boundary conditions are switched again, but this time all the 4
fermions are acted on by the symmetric group. The 3 aforementioned fermions now become
fractionally NS-moded and the remaining one becomes fractionally R-moded. The zero-
modes of the R-moded fermion generate two states, but only one of them is orbifold even.
Thus, if we find a BPS state, it will come with multiplicity 2 which is the multiplicity of
the Zo twisted sector. We find that one can indeed construct BPS states in this sector®
with dimensions and R-charges

(3.14)

This is not the case in the Sym”™ (Sp) theory: there are no BPS states in the even twisted sector of the
symmetric orbifold, see [1, section 3.4].



3.4.3 Full BPS spectrum

All in all, taking the contributions from the odd and even twisted sectors of the symmetric
orbifold together, we finally obtain the full BPS spectrum of Sym?® (Sy/Zs):

2 0 2
2 0 2 4
0 0 ® 2 ® 0 = 0 2 0 (3.15)
2 0 2 4
0 0 2 0 0 2 0
1 0 0 1

where the first, second and third terms on the Lh.s. correspond to egs. (3.12), (3.13),
and (3.14), respectively. Eq. (3.15) is the main result of this section. We will compare and
match the CF'T BPS spectrum to that of string theory in section 5.

In the conjectured dual CFT (2.5), there are Q1Q5 copies of the seed theory, so the
maximal twist is @Q1Q5. This sector has a BPS state with conformal weight %Qng, =
13, where c is the Brown-Henneaux central charge (2.4). This is the stringy exclusion
principle [23].

3.5 Moduli

Having derived the BPS spectrum of Sym® (Sy/Zs), we shall now determine the moduli,
i.e. exactly marginal operators of the theory. The moduli have dimensions (h,h) = (1,1)
and are singlets of the R-symmetry in the left and right-moving sectors. The moduli are
constructed by acting on the BPS states with (h,h) = (3,1) with the A” = 3 supercharges
G’;l Jo- The Sym® (Sy/Zs) theory has four moduli, corresponding to the hi,1 = 4 component
of the Hodge diamond on the r.h.s. of eq. (3.15).

One modulus is in the untwisted sector of the Zs-orbifold of the seed theory as well as
the untwisted sector of the symmetric orbifold and is the trivial modulus which changes the
radius of S'. Another modulus belongs to the untwisted sector of the Zy and twist-3 sector
of the symmetric orbifold. These two moduli are associated with the two moduli of the
Sym? (Sp) theory and survive the Zy action [4]. The twist-3 sector modulus of Sym®¥ (Sp)
is identified with the RR axion in supergravity, see section 5.2 of this reference.

The interesting observation is that the Sym® (Sy/Zs) theory has two additional moduli
which do not exist in Sym® (Sp). These moduli come from the Zy twisted sector of the seed
theory and from the twist-2 sector of the symmetric orbifold. It would be very interesting
to understand the properties of the dual moduli in supergravity.® We shall pursue this
question in the near future.

Finally, we note that the exact marginality of these four operators (i.e., that they
are indeed true moduli of the theory), is deduced by noting that these four operators are
descendants of the ' = (2,2) chiral primaries, see [24] and [4, appendix A].

5We thank Matthias Gaberdiel for a discussion on this point.



4 Elliptic genus of the dual CFT

We start by computing the elliptic genus of the orbifold theory Sp/Zz in subsection 4.1.
We find that the elliptic genus for this theory vanishes due to the presence of a fermionic
zero mode which survives the action of the orbifold. This is indeed the case for all theories
which are N’ = 3 superconformal symmetric.

In subsection 4.2 we consider the NS sector and determine a quantity which is composed
of chiral primaries in the right-moving sector and of arbitrary excitations in the left-moving
sector. This implies that the right-moving sector only consists of short representations
whereas in the left-moving sector, both short and long representations contribute. The
constraint of having half-integer spins in the NS sector yields h — h € Z/2. Thus, the
conformal dimensions on the left-moving sector have to be rigid, i.e. do not acquire an
anomalous dimension perturbatively. The quantity defined as such is an index and we
refer to it as the “modified” elliptic genus.

Finally, we compute the modified elliptic genus of the symmetric product orbifold of
So/Z2 in subsection 4.3. As we will show, the odd and even twisted sectors of the symmetric
orbifold have to be examined separately and with care due to the presence of the fermionic
zero mode in the seed theory Sp/Zs.

We note that the modified elliptic genus is not modular invariant on its own: to obtain
a modular invariant quantity one has to sum over the partition functions in the NS sector,

with and without the insertion of (—1)¥

F

, as well as the partition function in the Ramond
sector without the insertion of (—1)", see footnote 8. Nonetheless, as discussed above,
it is an index and is invariant under deformations. We compare the modified genus of
the proposed dual CFT to that of the string theory in section 6 and find that the two

quantities match.

4.1 Elliptic genus of So/Z2

The elliptic genus of an N' = (2,2) CFT is defined as the trace over the Ramond-Ramond
(RR) sector of the Hilbert space of the theory [25]:

ZR(Z,T; 0,7) = trRR(—l)FqLofiy‘]oq’EO*i , (4.1)

where J is the u(1) R-current, ¢ = ™7, y = ** and (-1)F = (-1)F2(~1)Fr with
F1, and Fp being the left and right-moving fermion numbers, respectively. The tilde in Z
denotes the (—1)¥ insertions in our conventions.

The partition function Zg(z,7;%,7) can be computed similarly as (3.9), and reads:

1 12
_ 1 - W (z|7)01 (1) Vo (2|7)01(7)292(7)2
utesrnm) = ot [REEGHO] | HEREECSS
L [tnnmbomt | sennmiemi ),
Pa(r)bn(r) da(r)in(r)’?

This function vanishes because of the existence of the fermionic zero-mode of the unorb-
ifolded free fermion in the A/ = 3 algebra, see eq. (3.4). This is manifested in the presence
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of the \191(7)% | factor in all four terms of (4.2). The vanishing of the elliptic genus holds
true for any CFT with A/ = 3 supersymmetry. This is because the linear N' = 3 SCA
contains a free fermion which is a singlet of the R-symmetry su(2)y, see appendix B.2.2
and references [19, 26].”

4.2 Modified elliptic genus of Sp/Z2

Typically, in CFTs with N’ = 2 or higher supersymmetry where all fermions are charged
under the U(1) symmetry of the SCA, one can define four equivalent definitions of the
elliptic genus through spectral flowing between the NS and R sectors and inserting (or not)

the fermion number operators:®
~ _ _ 1 _ 1 _
Z(z,T)ZZR(z,T;z:O,T):ZR<Z—2,7‘;,2:—2,T> (4.3)
:y_g(QQ);lZNS<Z_72-77—;'2:_72-77—> (44)
c C ]_ T 1
—yﬁ(qq)MZNs<z—<T; ),T;z——(T; ),T> - (4.5)

Here, ¢ is the central charge of the theory. This is because spectral flow interpolates
between NS- and R-sectors for charged fermions. For the Sy/Zso theory, however, the four
definitions in eqs. (4.3)—(4.5) are not equal due to the presence of the uncharged fermion.

To define a non-vanishing index in a theory with charged fermionic zero-modes, one can
take derivatives with respect to the chemical potential to obtain a non-vanishing protected
quantity [12, 27, 28]. Since in this case the fermionic zero-mode is uncharged, we cannot
eliminate it in this way. Instead we will simply eliminate it by not using the definition
of Z in the ﬁ-sector, but in another sector where the partition function does not vanish
identically. Recall that in this case, spectral flow does not interpolate between the different
sectors because uncharged fermions are unaffected by it and hence we cannot give a purely
R-sector definition of our index.

The NS-sector definition with the insertion of (—1)¥, Zns, is of interest for the purpose
of comparison with the string theory and supergravity elliptic genus, as done for the cases
of N'= (2,2) and small (4,4) AdS3/CFTy dualities [8, 29]. We thus consider Zys, which
defines a quantity composed of the contribution from chiral primaries in the right-moving

sector and arbitrary excited states in the left-moving sector. This is because non-chiral
+

~1/2
in the A/ = 2 and N/ = 3 cases. The two states cancel in the elliptic genus. Therefore,

primaries come always in pairs related by the action of the supercharge G_; /2 Tesp. G

while only short representations contribute to the right-moving sector, both short and long
representations contribute to the left-moving sector.

The conformal dimensions of the BPS states in the N' = 3 algebra are quarter-integer:
h,h € Z/4, see eq. (B.22). The requirement that the spins of the physical states are

" Analogously, the elliptic genera of any large N' = 4 CFT with A, symmetry vanish.

®Note that even when not all of the fermions are charged under the u(1), the first definition Zg in eq. (4.3)
is modular invariant while the other three transform into each other under modular transformations with
their sum being a modular invariant quantity.
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half-integer in the NS sector imposes the constraint h—h € Z/2. This implies that the left-
moving conformal dimensions, which may potentially come from long representations, have
to be rigid and do not acquire perturbative corrections. We note that two short multiplets
on the right may acquire corrections and join each other to form a long multiplet. For this
to happen, the short multiplets have to come in a pair which cancels in the elliptic genus.
Hence the elliptic genus remains invariant when short multiplets on the right lift. We thus
conclude that the defined quantities in (4.3)—(4.5) are indices.

We consider the NS version of the elliptic genus:”

N N

Z~NS(Z7T) = (q(j)iZNS <Z7T;Z = —,T> = (qQ)i ~NS <27T;2 - _72-77—) ‘B 7" (46)
~2

We call this index the “modified” elliptic genus of the A/ =3 CFT. The partition function
Zns is again computed similar to (3.9) and is given by:

2 1 12

Ins(2, 73 2,7) = EG(T;%;R) ’194(Z|7')1934(T) 193(z|7-)194(17—)219§(7.)2

? 2
L[pemn@in@ | nenn@inel
Da(r)2(r)? D3(7)2n(r)?

Lo (ry| P22 ’03<zv> > (el
BN BT 48
200 =, o) e (48)
This is a non-vanishing quantity at z = —7. The two terms in the first line of eq. (4.7) are

contributions from the untwisted sector of the Zs orbifold and the two terms in the second
line come from the Zy twisted sector, see egs. (3.8)—(3.9). The modified elliptic genus (4.6)

Zys(z,7) = 25 (1955'(17)) + 0;;2?) . (4.9)

then reads

Note that the result is independent of g.

4.3 Modified elliptic genus of symmetric orbifold of Sy/Zs

Having defined the modified elliptic genus of Sy/Zs, we shall now compute the modified
elliptic genus of its symmetric product orbifold. As discussed in the previous subsection,
the modified elliptic genus of the seed theory is an index and so is the modified elliptic
genus of the symmetric orbifold of it. One would then expect that, in the context of the
proposed N = (3, 3) duality, the modified elliptic genus matches its counterpart computed
in string theory. We will verify this in section 6.

In the comparison between the modified elliptic genus of the dual CFT and that of
the supergravity (i.e. low energy) limit of string theory on the AdS3 x (S* x S? x S!)/Zs
background, we will focus on the contribution from single-particle states in the spectrum.
These correspond to single-cycle states of the symmetric orbifold. Multi-particle states
correspond to multiple cycles.

9For convenience, we have redefined the chemical potential z in comparison to (4.4).
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In the remainder of this section we compute the modified elliptic genus of the symmetric
orbifold of Sy/Zs from first principles. We note that there are two orbifold actions at work:
the first one is the Zs action on Sy which yields an untwisted as well as a twisted sector to
the Hilbert space of the seed theory. The second orbifold action is that of the symmetric
product of N = Q1Q5 copies of the seed theory, Sym” (Sy/Zs), and contributes to twist-n
sectors with 1 < n < N.10 We shall be explicit below about the Z, versus SymN orbifold
actions to avoid confusions. We present the details of the analysis of the odd twisted sector
in appendix C.2.

4.3.1 0Odd twisted sector of symmetric orbifold

We start by considering the odd twisted sector. The contribution of single-particle states
comes from states comprised of one cyclic permutation of n copies of the seed theory
(n € Zodqq, 1 <n < N) with symmetrised excitations on the n copies, and N — n copies of
the seed theory in their vacua. The untwisted projected partition function (in either NS
or R sector) reads

Z(z,T) = Z(nz,nT)(Z(z,T))N_n . (4.10)

We next perform an S-modular transformation to obtain the partition function of the
twist-n sector in terms of the fractional modes of bosons and fermions in the twist n
sector, see [1, appendix D] and [30, appendix A]. This operation depends on the choice of
the sector. For the NS sector and without (—1)¥ insertions, we have

Zns(z,7) = Zns (z, ;) (ZNS(Z,T))Nin . (4.11)

This is because under an S-modular transformation, the NS sector partition function is
mapped to itself. However, Zys(nz,n7) (with fermion number insertions) is transformed
into Zgr(z, ~). Similarly, Zg transforms into itself whereas Zg(nz,nt) is transformed
into Zng(z, T). Since we are interested in computing ZNS(Z, T) for our modified ellip-
tic genus (4.6), we need to start from the partition function Zg(nz,n7) in (4.10) and then
perform the S-modular transformation to obtain Zys(z, )

The full derivation of the modified elliptic genus is presented in appendix C.2. Here
we write the final result:

. 3(z +T§\ﬁ)
U3(%)

=3

~ n n'19 +II
Zns(z,7) =2 Z <q4 Yz a2+ 313) +q

n odd 2(3)

> L (412)

YA Z 1
hes h€3+g

We would next like to Fourier expand this result for the purpose of comparing it with
our worldsheet string theory analyses in section 6. To do so, we find it more convenient to
analyse each term in equation (4.12) separately. The first term on the r.h.s. comes from
the Zo untwisted sector whereas the second term is the Zo twisted sector contribution. We

00ne could view this also as an orbifold of S}’ by the wreath product of the symmetric group with Zs,
we prefer however to view the theory as an orbifold of an orbifold.
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define:

n n + T
Z (z,7 —2Zq1 5737“ , (4.13)
n odd (7) he%
n n +
Z(zm =23 diy 5'272‘) , (4.14)
n odd Us(5) helil

where the superscripts Uz, and Tz, correspond to the Zs untwisted and twisted sectors,
respectively.

The details of the computation are again presented in appendix C.2. Using the quasi-
periodicity properties of the Fourier coefficients of the modified elliptic genus, we find that:

NUZ T / gl
ZNS2 <z’ n) = Z (25m’,:t%5m’,%2>0 o 35”1/»05@',0) "y
m’E%,Z’eZ
2 2
= + -3, (4.15)

T 1
l-yq> 1-ylg>
and
~TZ T / l/
ZNS2 <Z7n> = Z 25m,7:|:%(Sm,ézzo_’_i qmy
m'eZ+l rezyl
9 o o5 ot
204 204
_ gt Tl (1.16)
1—yqz 1-y g2
We compare and match separately the modified elliptic genera (4.15) and (4.16) with their

counterparts in the Zo untwisted and twisted sectors string theory in section 6.

4.3.2 Even twisted sector of symmetric orbifold

We shall now turn to the computation of the modified elliptic genus in the even twisted
sector of the symmetric orbifold theory. Fermionic fields acquire a minus sign under even
cyclic permutations and have R-moding in the NS sector and vice versa. Following our
procedure in the previous subsection, we thus need to determine the partition function of
the symmetric orbifold ZR(nz, nt), perform the S-modular transformation, and obtain the
R-type partition function ZR(Z, T) which has the appropriate moding for the even twisted
sector, see the discussion below eq. (4.11).

The R sector partition function Zg of the seed theory was, however, computed earlier
in (4.2) where we found that it vanishes identically due to the zero mode of the uncharged
fermion in the N' =3 SCA. This continues to hold true in the symmetric product orb-
ifold. We thus conclude that the modified elliptic genus in the even twisted sector of the
symmetric orbifold vanishes.

Finally, we note that if we apply the DMVYV formula only to the odd twisted sector of
the symmetric orbifold, where bosons and fermions have the same ground-state energies,
we would indeed obtain egs. (4.15) and (4.16), as expected. This, however, is not the case
for the even twisted sector.'!

We thank Christoph Keller for a discussion on this point.
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5 BPS spectrum in string theory

In this section, we analyse the string worldsheet theory. Since this is largely an amalga-
mation of [1, 11] and [8], we will follow these sources closely.

We will heavily rely on the representation theory of 0sp(3|2), the global subalgebra of
the N/ = 3 SCA, as discussed in appendix B. The BPS condition for this algebra is given
in (B.22), we reproduce it here for completeness:

14

hBPS == 5, (51)

where ¢ is the su(2) spin and ¢ < %, where k is the level of the affine su(2); algebra inside
the N' =3 SCA.
The unorbifolded worldsheet theory with pure NS-NS flux is a WZW model based on

si2,R)D, @su(2),(€13 @5u(2),(:_) eu(1)® . (5.2)
kT +k—

Here, the superscript (1) indicates that this is an N = 1 supersymmetric affine WZW
model. For more details on these algebras, see e.g. [31]. These algebras split into bosonic
WZW models with level shifted by the respective dual Coxeter number of the algebra
together with free fermions. Thus, the bosonic (or ‘decoupled’) currents generate the
affine algebra

5[(2,R) et e—

kt4k—

192 5> 5U(2)k+_2 S¥) 5U(2)k—_2 ® U(l) . (53)

From this, it is clear that we should require k* > 2 in order for the worldsheet theory to
be unitary.'> We denote the sl(2, R)-fermions by 1, a € {3,+} and the su(2)*-fermions
by x* . The u(1)-fermion is denoted by A. Since these fermions are almost all we need to
construct BPS states, we will focus on those.

To take the orbifold, we have to require that k™ = k~. The level of the diagonal su(2)
is then k = k™ + k= = 2k" and the level of the sl(2, R)-algebra is given by sk = 1k.!3
To distinguish the su(2)’s, we will denote them by su(2)", su(2)~ and the diagonal su(2)
simply by su(2). We will also follow the following convention for the spins: j will always
denote the s[(2,R),/4-spin, which corresponds to the conformal weight h of the dual CFT.

¢t and ¢+ denote the spins of 5u(2);/2 and su(2) Finally, ¢ denotes the spin of su(2)g.

k2"
5.1 Review of the unorbifolded theory

We start by reviewing the unorbifolded theory and its BPS spectrum. This was worked out
in [2]. We will focus in the following on the massless field content. These are fields with the
minimal excitation level, which is % in the NS sector and 0 in the R sector. Let us explain
why these fields correspond precisely to the supergravity KK-modes. The supergravity limit
can by obtained by the limit & — oo. In this case, the string tension compared to the AdSs-
radius becomes very large and stringy excitations become very heavy. The corresponding

128ee however [30] for a recent proposal of how to make sense of the k¥ = 1 case.
13Note that k is always even. We chose the conventions in such a way that k corresponds to the level of
the N/ = 3 SCA as first given in [19] and reviewed in appendix B.
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three-dimensional mass can be computed via the relation m? = (j+7)(j +j —2)/k [15, 32].
It is indeed true that except for the massless excitations, the mass becomes infinite in the
limit k& — o0o.14

In [2], it was shown that indeed all BPS states of string theory on AdSg x S3 x §3 x S!
come from massless fields. This was to be expected, since these are the only fields surviving
the £ — oo limit. Since BPS states should be protected, we expect them to be among the
massless fields. For this reason, we will in the following only discuss massless fields.

The partition function of string theory on AdSs x S? x S3 x S! involves a sum over the
su(2)*-spins. It was demonstrated in [2] that we obtain BPS states only in the case (T = ¢,
i.e. when both spins agree. In this case, there is for every spin one BPS state coming from
the NS and one from the R sector. When combining left- and right-movers, this yields one
BPS state from the NS-NS, the NS-R, the R-NS and the R-R sector, respectively. In the
NS sector, this BPS state has the form ¢:1/2|j0 = ESF + 1,58“,63). The three quantum
numbers label the s[(2,R)- and the two su(2)-spins of the ground state. This state satisfies
all physical state conditions: (7) it is trivially annihilated by all positive L,-modes, (i)
it is annihilated by Gq/9,'® (iii) it satisfies the GSO-projection, and (iv) it satisfies the
mass-shell condition. It was checked in [2] that restricting to superprimary fields and
eliminating null-fields can be done analogously to the light-cone gauge. It has simply the
effect of removing two uncharged oscillators. The mass-shell condition for a general state
is given by

 4jo(jo — 1) N 205 (03 +1) N 20y (6y + 1)
k k k

Here, a is the normal-ordering constant, which equals % in the NS sector and 0 in the R

+N=a. (5.4)

sector. To restrict to massless fields, we set N = a. The quantum numbers jo, Ear and £,
refer to the ground-state spins, whereas j, /T and ¢~ are the actual spins. For the state
v, /2 |70 = EJ +1, fg ,Eg}, the mass-shell condition is clearly satisfied and we have

j=do—1=4( =4y =t =0 . (5.5)

This is because we used one sl(2,R)-charged oscillator. Since j is identified with A in the
dual CFT, this state saturates the N' =4 BPS bound (B.21).

In the R sector, the fermionic zero-modes generate an 8-dimensional representation of
the algebra sl(2,R) @ su(2) @ su(2), namely (2,2,2). The eight states have spins |jo +
%,KSL + %,Ea + %) Of this representation, we may pick the state |jo — %,K(J{ + %,Ea + %)
Let us again restrict to the case {7 = {;, otherwise this does not yield a BPS state. The
state satisfies the mass-shell condition, provided that j, = 6(’; + 1=/, + 1 and hence

.1 | | _
]:]0—§:£§+§:€0+§:€+:€ . (5.6)

So, this state is again a BPS state.

MThere is a small subtlety in this statement: when including the so-called spectrally flowed sectors of
the affine s[(2, R)/4-algebra, we also have to use oscillator excitations. For simplicity’s sake, we assume in
this paper that k is large and do not consider spectrally flowed sectors. We have however checked that the

arguments we present below also go through in the spectrally flowed case.
15This is the supercharge of the N’ = 1 worldsheet SCA.
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To summarize, the complete BPS spectrum of string theory on AdS3 x S3 x S? x St in
the limit £ — oo is

1 1
a <[€+,€,u:0]3@ [€++,€+,u=0] )
2 2 5

£+:‘€_€%ZEO

1 1
® ([ﬁ,é‘,u =0]s @ [ﬁ + 5,(‘ +5u= 0} ) . (5.7)
S

Here, [T, 47, u]s refers to a short 0(2,1; ), the global subalgebra of the large N' = 4 SCA,
multiplet. The structure and character of such a multiplet is discussed in appendix B. The
first factor corresponds to the left-movers and the second factor to the right-movers. The
first summand of each factor is the N' = 4 multiplet with highest weight state in the NS
sector, the second summand has its highest weight state in the R sector.

5.2 The Zs untwisted sector

We first discuss the untwisted sector of the Zs-orbifold. As explained above, we restrict to
the unflowed sector of s[(2,R); /4. The Zy acts as follows on the fermions:

(¢7 X+’a7 Xi’aa A) — (¢7 X77a7 X+,a7 _)‘) . (58)

Let us first discuss the NS sector. The BPS state was reviewed above and has the
form ¢~ /2| jo = €5 + 1,£5,£8). Tt is obviously invariant under the orbifold action, since
the sl(2, R)-oscillators are orbifold-invariant.

Next, we treat the R sector. This is much more complicated. Here, the fermions have
zero-modes, which generate the representation 2(2,2,2) of s[(2,R) ®su(2)" @& su(2)~. The
factor 2 is removed by the GSO-projection, but for now, we work with the fermions before
the GSO projection. After orbifolding, this representation branches down to 2(2,1)®2(2, 3)
of 5[(2, R)@su(2). It is however quite non-trivial to see how the orbifold and GSO projection
act on these states.

We can fix the representation content of the R sector as follows. The NS sector
fermionic partition function is (including physical state conditions):

1
2
2
) . (5.9)

Here, u is the s[(2, R)-potential and z is the su(2)-potential. The first line corresponds to the

I3(u|r)V3(2|1)295(1)  Ya(ulr)Va(2|7)*Va(r) |”

n(r)* - n(r)*
n ’?93(147)193(217)194(2\T)194(T)  Va(u|)Va(2|7)03(2|7)03(7)
n(r)* n(r)*

unprojected partition function. We have two fermions charged under sl(2, R) (namely %),
four fermions charged under su(2) (namely %) and two uncharged fermions (e.g. xy*3 —
X
conditions). The second term in the first line takes care of the GSO-projection. The second

and A, remember that two uncharged fermions are eliminated due to the physical state

line is the projected partition function. Two uncharged fermions are orbifolded, since both
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x T3 —x72 and X are 0odd.'% Also two of the su(2)-charged fermions are orbifolded, namely

+ are invariant.

x T+ — 7%, The other two fermions y T+ + y =

In the R sector, 1¥3’s become 12’s and ¥4’s become 1;’s. Thus, the second term in the
first line and the first term in the second line yields a ¥1(7) = 0 in the R sector. Thus, the
complete expression including the R sector is

(

O3(y|7)03(2|7)203(7)  Ialy|T)a(z|7)?Va(T) n Do (y|7)92(2|7)?92(7) i

n(r)* n(r)* n(r)*
N U3(y|7)V3(2|7)04(2|7)0a(1)  aly|T)da(z]7)V3(2|7)I5(T)
n(r)* n(r)*
2
V1 (y[m)d1(2|7)02(2]7)d2(7)
+ o ) . (5.10)

The sign of the last term is ambiguous and can be chosen independently for left- and right-
movers. We will discuss the impact of the corresponding sign choice below. The zero-modes
(i.e. the coefficient of q%, which corresponds to the massless states) read

1
5(’v+v‘1+2(y+y‘1)+2+(v%+u

1

+ ‘v +oTl =2 (02 — 0T (y2 —y T2 (yE +y R

1 2
= ([ + b+ oy +0d)

+‘v—l(u:v%y)uiu%y—l)(1+v%)(1—v%) 2) . (5.12)

where v = *™ and y = e*™%,

Let us discuss this result. The first term is the unprojected partition function. As one
can see, it factorizes into four factors, corresponding to the action of the four supercharges
of the large N' = 4 SCA transforming in the representation 3 & 1 of su(2). Thus, the
partition function of AdSz x S? x S x S! is manifestly A = 4 supersymmetric. The second
term show that some of the supercharges are orbifolded out — they act trivially on the
BPS states. The positively charged supercharge Gi’l /2 is orbifolded out, provided that
we choose the plus-sign for both the left- and right-movers. For the other sign-choice the
negatively charged supercharge G, /2 is orbifolded out. The four possibilities on how to
perform the orbifold correspond precisely to the N' = (3,3), N = (3,1), N = (1,3) and
the N = (1,1) theories discovered in [11]. The four possibilities also simply correspond
to the four possible superstring theories on the background, they are the four different
GSO-projections. We usually only talk about two different GSO-projections, but for this
background all four of them are inequivalent. For the background AdSs; x S? x S? x S!,
there was no sign-ambiguity, since we can T-dualize along the circle S! to see that the type

ITA and TIB superstrings are in fact equivalent.

16We had to eliminate the two unorbifolded fermions in the light-cone gauge to be able to correctly
orbifold the theory.
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From this partition function, we can also read off the action of the Zs on the BPS states.

The BPS states have to be of the form (v%u)z(f)%ﬂ)z by virtue of the BPS bound (B.22).
We see that these are generated by the first of the four terms in the product. So the BPS
partition function reads

1 12 12
5(‘1+mu‘ +‘1:qu‘ ). (5.13)
This precisely reproduces table 1. In the following we will restrict to the case where we

have N/ = (3, 3) supersymmetry.
To summarize, the supergravity BPS spectrum from the untwisted sector reads

@ Hs@[ls@[l+1ls®@ [+ 1]s . (5.14)
telso

Note that the su(2)-spin only takes integer values, since ¢ = (T + (= = 20T € Z. [{]g
denotes a short N' = 3 character.

5.3 The Z5 twisted sector

In this subsection, we treat the Zs twisted sector.

Let us begin with the twisted NS sector. For this, note that the worldsheet theory is
almost a symmetric product orbifold with two copies of S, /5_5. In particular, the ground-
state energy of the twisted sector agrees with what was calculated in [1, Equation (D.8)]
for the twist-2 sector of the symmetric product orbifold and reads

c 2 2k/2-1) 2  2k-—3

~ 12 " 8k 2% 8k 4k

(5.15)

The fermions x® are moded in %Z in the twisted sector'” and the fermion A is R-moded.
1 is still NS-moded. We have four chiral fermionic zero-modes (i.e. we have also the four
right-moving zero-modes): x§ and Ag. They transform in the representation 3% 1 of su(2),
hence their zero-modes generate the 4 = 22-dimensional representation 2-2 of su(2). This is
the associated spinor representation of 3@ 1. Now we need to impose the GSO-projection.
This further reduces the representation to one copy of 2. The only state which has a chance
to be a BPS state is the highest weight state of this representation 2.
Its mass-shell condition reads as follows:

4j0(jo — 1)  26p(bp+1) 2k—-3 1
- =—. 5.16
k + 2k + 4k 2 (5.16)
Here, the first summand comes from the Casimir of s[(2,R). The second summand is the
standard contribution h/2 of the symmetric product orbifold: a state in the seed theory
always gives rise to a state in the twisted sector with the same quantum numbers and

the conformal weight divided by the twist. The third term is the ground-state energy we

From the symmetric orbifold perspective there is only one set of x’s. We could equally well still use the

a

combinations x % 4+ x % and x % — x**. The former would be NS-moded, while the latter combination

is R-moded.
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explained above. Finally, we equate this with %, which is the normal-ordering constant in
the NS sector. Solving the mass-shell condition gives

j=jo=zlo+>=20+=. (5.17)

So the state is not BPS.

Let us now consider the R sector. This makes a difference only for the 4 fermions
which get orbifolded, which receive a ground-state energy of —%6 instead of 1—16. Thus, in
comparison to the above groundstate energy, we have to subtract % and obtain the following
ground-state energy of the twisted sector:

_2k-3 1 3

The six unorbifolded fermions are still Ramond-moded. Only four are physical, they are
¢F and xytT + xy=F. Hence their zero-modes will generate the representation (2,2) of
sl(2,R) @ su(2). So, the lowest weight state w.r.t. sl{(2,R) and the highest weight state
w.r.t. su(2) has a chance of being BPS. This state has j = jo — % and £ = {g + % The
mass-shell condition is almost identically as before, it reads:

~ 4jo(jo — 1) n 20(lo+1) 3

——=0. 5.19
k 2k 4k ( )
Its solution is again jy = %60 + %, which this time implies
.. 1 1 1 1
]—]0—5—5504‘1—55- (5.20)

This agrees with the BPS bound (B.22) and so we have found a BPS state in the
twisted sector. This state has to be preserved by the GSO-projection, since otherwise the
states would not arrange themselves into N/ = 3 multiplets. In fact, we now see that the
massless states of the NS sector and the R sector precisely generate the short representation
[7]ls = [Jo — %]s of the global A/ = 3 algebra. Thus, we also manifestly see that all massless
states are in fact orbifold-invariant.'®

Now let us now determine the multiplicity of the twisted sector state. It turns out
to be 2, as we now explain. The orbifold action has two fixed submanifolds, coming from
the fact that the Zs-action on S! has two fixed points. Both of these fixed manifolds are
associated with a twisted sector. In fact, the BPS states should precisely correspond to the
new cohomology classes of these two singular loci. One can see this also on the character
level. For an orbifold of a free compactified boson, the twisted sector has a multiplicity of
2, as discussed e.g. in [33].

Since these are the only states at the massless level, this is the complete list of BPS
states. Note that the conformal weight of the BPS states in the twisted sector is in iZ>0.
There is no dependence on k, as it was the case for [8]. Thus, we expect the theory to be

80ne can again show this directly by using a character argument as we did above for the untwisted
sector.
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spacetime-supersymmetric for all values of k.' Hence the BPS spectrum of the twisted
sector reads:

P 200s®[4s - (5.21)

ZG%Z>0
The lower bound on the spin comes from the relation £ = fy + % and £y > 0. Note that the
su(2)-spin in the twisted sector can take any half-integer value. This is in contrast to the
untwisted sector, where the su(2)-spin was integer.
5.4 Summary and comparison

We finally conclude that the complete BPS spectrum from string theory in the limit & — oo

is given by
ggzéo[ﬁ]s@[f]s@z([uﬂ S@ [£+ﬂ S) @([£+1}s®[£+1]8)@e€§?+; 2 < [u;] S@ [u;] S) .

(5.22)

We have written the result in a suggestive way, whose meaning will become apparent below.

In the language of half-integer Hodge-diamonds introduced above, the BPS spec-
trum reads

2 0 2 0
2 2 4
0 0® 2 =202 0, (5.23)
2 2 4
0 0 2 0 2 0
1 0 1

where the first and the second terms on the lh.s. correspond to the Zy untwisted and
twisted sectors, respectively. This matches precisely eq. (3.15) and hence gives a strong
test of the proposed duality. This also provides another strong test of the recent proposal
of [1] of the large N = 4 duality between string theory on AdS3 x S3 x S3 x S! and the
symmetric orbifold of Sy in the case of kK = 0.

When repeating the BPS analysis for finite k, we find the same BPS spectrum with

c
12>

central charge given in (2.4). Additionally, there are some BPS states missing. This is much
in parallel of the situation for all other AdS3/CFTy dualities and is discussed in [1, 34].
The upper cutoff matches with what we have concluded at the end of section 3.4.3.

upper cutoff in the conformal weight of the dual CFT where c is the Brown-Henneaux

6 Elliptic genus in string theory

In this section, we will compute the space-time elliptic genus following [8] and [29]. There
are some additional subtleties arising, as mostly already explained in section 4. In space-
time, we compute what we called the “modified” NS elliptic genus in section 4. We distin-
guish the Zo untwisted and twisted sector contributions.

90f course, k is still even due to our choice of conventions.
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The elliptic genus is sensitive to all states of the form |anything) ® |chiral primary).
Because of this, we need to know the complete massless spectrum to compute the elliptic
genus. From an N = 3 perspective, not all massless fields sit in short multiplets, so the
comparison is a check of the proposal beyond the BPS spectrum.

6.1 The Zs untwisted sector

We first treat the untwisted sector. We worked out in section 5 the BPS spectrum of the
untwisted sector. For convenience, we reproduce here formula (5.14):

P (s s) @ ([ +1]s@[¢+1]s) - (6.1)

ZEZEO

There are further BPS states in the background AdSsz x S x S? x S, which are Zs-odd and
are projected out when taking the orbifold. These are the states in (5.7) missing in (5.14):

D (t+1sels) @ (Us@ [0 +1]s) - (6.2)

ZGZEO

In the background AdSz x S3 x S2 x S!, these states are highest weight states of short
N = 4 multiplets.? When acting with the Zs-orbifold, every second state of the short
N = 4 multiplet is projected out. This is described on the level of the characters in detail
in appendix B. As a consequence, the untwisted string theory elliptic genus can be naturally
decomposed in terms of these characters.

The supergravity elliptic genus is defined as

zZ%® (Z) 7—) = trNS@NS chiral primary ((*1)FqLoyJ0) . (63)

£
24>

k — oo. This is analogous to what we have done in the CFT computation. Jy denotes the

Note that we have not included the ground-state energy —+5, since it diverges in the limit
Cartan-generator of the su(2)g-algebra. ‘sp’ stands for single-particle, since we restrict to
the single-particle sector of supergravity. This is then compared with the single-particle
contribution from the CFT.

When restricting to massless fields, we obtain the following contribution from the
untwisted sector to the elliptic genus:

© 4 (_1\F — 4 (_1\F N4 (—1)F
2V(em) = 3 (G ) = [T ) - )
=0

27 2

~N=4,(-1)F N=4,(-1F N=4,(-1)F
F R ) - [ e -2 )| ) L )

The characters )}2\[ =4(z,7) are the orbifolded A = 4 characters with orbifold even highest
weight state as given in appendix B.6. Since two of the BPS states for each ¢ are orbifold
even, this contributes the first term in both lines. The terms inside the square brackets

20 Additionally, there are also long N = 4 multiplets with ¢+ # £~ but these are long for both the left-
and right-movers and hence do not contribute to the elliptic genus.
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come from the orbifold odd highest weight state, in which case the orbifold odd states of
the large N' = 4 multiplet survive. Since we are computing the elliptic genus, we have to
insert an additional (—1)F, which we have indicated in the characters.

When inserting the explicit formulas of the characters as derived in appendix B, many
cancellations occur and we end up with

2 2
1 —"_ 1
l-yqz 1-y g2

which precisely matches (4.15). Note that from a symmetric orbifold perspective, there are

2V (2, 7) = -3, (6.5)

no untwisted BPS states in the even twist sectors, so the subtlety with fermion zero modes
does not come into play.

6.2 The Zs twisted sector
Recall from (5.21) the BPS spectrum of the twisted sector:

P 2as®[Ms - (6.6)

EG%Z>0

In the twisted sector, the massless states sit only in short A/ = 3 multiplets, as one can see
directly from the string theory discussion. Hence the analogue of (6.4) is

2Tz = Y () + ) ). (6.7)

ZE%Z>O

The character formulas for the N' = 3 algebra can again be found in appendix B and the
(—=1)F is easily inserted.

Here, a difficulty arises. We have inserted two constants 621) and ef) for the two
BPS states, which take value in £+1, depending on whether the BPS states are bosonic or
fermionic. This is difficult to fix from a string theory perspective and we were not able to
do so. Instead we fix the fermion numbers holographically by comparison with the dual
CFT. We note that ¢ € Z + % corresponds in the dual CFT to odd twist and ¢ € Z to even
twist. We have seen in section 3 and 4 that for odd twists the two BPS states are both
bosons. On the other hand, for even twist, they have opposite fermion numbers due to the
existence of fermion zero-modes and hence cancel out. We thus conclude that the correct

choices for the constants egi) are

eél) =1, eéz) = (—1)2£+1 . (6.8)

Because of this, only terms with ¢ € Z + % contribute to the sum (6.7). The N' = 3
characters can now be inserted and we finally obtain

2% (z,7) =2 Z Xé\/:?”(fl)F (z,7) (6.9)
telZzo+1

11
2¢q4

2yrqi 2

204

_ 2yEa | 2yt
1—yqz 1-ylg2

This is in perfect agreement with (4.16).
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7 Conclusions

In this paper, we considered string theory on AdSg x (S3 x S3 x S1)/Zs and conjectured it to
be dual to the symmetric orbifold of the Sp/Zg theory. This proposal is in the spirit of [8].

The background we have looked at is interesting for a variety of reasons. In particular,
it supports N' = (3,3) supersymmetry, which allows for a BPS spectrum and a non-
vanishing elliptic genus and quantizes the conformal weights of BPS states. Thus the
background is sufficiently complicated for indices not to vanish, but easy enough to have
good control over protected quantities.

In our proposed duality, we matched the BPS spectrum on both sides and found
agreement. This was particularly non-trivial in the twisted sector of the Zs-orbifold, where
new BPS states arise. This matching gives also substantial new evidence for the proposal
in [1] that string theory on AdSz x S? x S x S! should be dual to the symmetric product
of S;; (a generalization of the theory Sy discussed in this paper), at least in the case when
the two spheres have equal size. While in the large N' = 4 case the elliptic genus vanishes,
it is non-vanishing after taking the orbifold. The comparison allowed us to perform a test
of our proposal and of the large N' = 4 duality beyond the BPS spectrum.

Let us comment on the role of higher spin algebras in this duality. In [35], the higher
spin symmetry in the large NV = 4 duality was elucidated. While the symmetric product
orbifold of Sy does not possess a N/ = 4 supersymmetric higher spin algebra, one can still
define two different kinds of higher spin algebras. First, it supports an N' = 2 super-
symmetric higher spin algebra, which can be seen by bosonisation of the two uncharged
fermions in Sy [1]. This A/ = 2 higher spin algebra is invariant under the Zs-orbifold.
Another approach was investigated in [35], which breaks all supersymmetry, but keeps the
R-symmetry explicit. This yields the higher spin algebra ho(4]1)[0] in the case of Sy, which
is broken down to ho(3|1)[0] when taking the Zs-orbifold. This shows that the higher spin
dualities of [36] are not directly embeddable in the stringy duality, similar to what was
concluded in the large N' = 4 case for the higher spin duality of [31].

Several directions for future research seem promising. We have mentioned in the main
text that two moduli emerge from the twisted sector of the Zj-orbifold. This indicates
that the background geometry might become smooth after turning on these moduli. This
would yield an N' = 3 supergravity background. To the best of our knowledge, no such
background is known in the supergravity literature.

The new modulus implies also the existence of a non-trivial moduli space of supersym-
metric vacua, whose comparison on both sides of the duality would give further evidence
for the proposed duality. For string theory on AdSz x S? x T* and AdS3 x S? x K3, this
was done in [37].

We have not tried to engineer the background by employing a D-brane construction.
This was partly done in [11], but it would be interesting to understand the gauge theory
better and show that it has A" = (3, 3) supersymmetry, see [14].

One could hope to realise the background as a near-horizon limit of a black hole. Since
the modified elliptic genus is non-vanishing, matching black hole entropies would then
become possible.
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Finally, it would be interesting to study the stringy duality on AdSs x (S3x S3xS1)/Zo
backgrounds with A" = (3,1), (1,3), and (1, 1) supersymmetries further. The A’ = 1 theory
does not contain a BPS spectrum. However, as discussed in section 3.3, since the states
in table 1 are obtained from the action of Zs on chiral primaries of the large N =4 SCA,
one still believes that they are protected. It seems natural then to conjecture that the
CFTs dual to these configurations are again the symmetric orbifold Sym® (Sy/Z>) with
appropriate supersymmetry content. Furthermore, it would be interesting to determine
and compute non-supersymmetric indices which will shed further light on the proposed
family of stringy dualities, see e.g. [38] for recent work. We hope to study some of these
issues in the near future.
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A The Sy theory

In this appendix we present the free field realisation of the generating currents of the Sy
theory, see [1, appendix C] for the field content of S, theories in general. The Sy theory
has one real boson d¢ and four real fermions ** and supports the large N'= 4 SCA. The
indices 1, v € {4} are bispinor indices of su(2)* @ su(2)~. The R-symmetry currents A
are of the form:

Ant =t AT =N et (A1)
1
+3 _ 2: Y i T T A e A
Am - 5 ” ( wr ¢mfr St 1,[17, wmfr‘ ‘)7 (AQ)
At =N et AT = LT (A.3)
1
-3 _ E: Y
Am o 5 ( r m—r * - wT m—r ) : <A4)

r

where we consider the complex basis a € {£,3} which is related to the basis i € {1,2,3} in
appendix B.1.1 as AT® = A®! 4452, The supercurrents, stress-energy tensor, the u(1)

— 95—



current, and the free fermions read

G :wa S+IZ it (A.5)
Gr——Zzbs Q. —lzt U (A.6)
Gt =—Z¢ a— s+1§j USSR e (A7)
G;*—Zws a— S+IZ Uy T (A.8)

L, 5 Z AmQn—m * + Z ( ) 1/J++¢ i ¢j_¢;§» :)7 (Ag)
Um = Qm, (AlO)

Qﬁy — ,(/}ﬁtl/7 (A.ll)

where «,,, denote the boson modes. The (anti-)commutation relations of these fields repro-
duce (B.1)~(B.10) for k™ =k~ =1

B Large N =4 and N = 3 superalgebras and characters

B.1 Superconformal algebras
B.1.1 Large N =4 SCA

The large N' = 4 SCA comes in two guises, commonly referred to as A, and fly in the
literature. We will use the ‘linear’ version A,. It contains, beyond the four supercurrents,
the generators of the R-symmetry su(2),+ @® su(2),- @ u(1), which we denote by A and
U, respectively, for i = 1,2, 3 denoting adjoint indices of su(2);+. In bispinor notation, the
algebra reads

Jr —
U U = T s (B.1)
. 1 .
[, Q1] = 5(0")," Qfiss (B.2)
-, v 1 A%
[Am’ 7Q¢ ] = 7(0- )p ’ump—i—r (B3)
2
{Q" QY = (kT + k™) €€ 6,5 (B.4)
. . :l: .. .
AR AR) = 898y e AR, (5.5
U, GI] = im Q2 (5.6)
] v 1 % v %
(A5, G = 5(0)),! Gy + (L =) m (o), QL (B.7)
-1 v 1 1\ v
A7, GI) = L(01), Gt~ (o), QUL (B.5)
{QY, G} =26 (0y) L™ A:js —2¢"(0y) P AL L2 Uy (B.9)
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2 1
{GE, G} = — gc elPel™ (1“2 - 4>(5r,_s — 4e"Pe"T Loy s

+4(r—s) (’y e (oh) PET A;r_fs +(1—-7) e””(ai)WTe“'”A;fs> . (B.10)

The central charge ¢ and the parameter v are given by

k~ 6kTk™
_ - B.11
R (B.11)
Here, greek indices u, v, ... are spinor indices and get as usual raised and lowered by the

epsilon symbol €,,, which we have indicated explicitly. o' denotes the Pauli matrices,
i.e. the two-dimensional spinor representation of su(2).

B.1.2 N =3 SCA

The N = 3 SCA also has a linear and a non-linear version [26]. In analogy with the case
of the large N/ = 4 SCA discussed in B.1.1, we are interested in the linear version of the
algebra (see appendix B.2.2 for more details). The AN/ = 3 SCA is a subalgebra of A, for
v = 1. Using equation (B.11), this yields k* = k~. We define k = k* + k= = 2k* = 2k,
The generators of the linear A = 3 algebra are {G*, A*, Q}. The three supercurrents,

G*, are related to the supercurrents of the large A' = 4 SCA as
g

7
T

(0w GH . (B.12)

N | =

As for the R-symmetry group, we keep the diagonal su(2); whose associated currents are
Al = AT 4 AT (B.13)

The index i € {1, 2,3} corresponds to the adjoint representation of su(2);. Finally, we keep
the free fermion

Q= 5ew@ = 3(QF - Q) (B.14)

The commutation relations read

AL, Q] =0 (B.15)
{Qr. Qs} = gér,-s (B.16)
(AL AL = gméij O, +icdt AL (B.17)
(AL, GI] = iEijkanJrr + M6 Qgr (B.18)
{Qn, G} = AL, (B.19)
{GL,GIY = g <7~2 - Daiﬂ'ar,s + 209 Lyys + (r — s) i€k AR . (B.20)

The central charge is then ¢ = %kz
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B.2 Representations
B.2.1 Large N =4 SCA

The representations of the large N = 4 SCA are labelled by the quantum numbers
(h,€T,¢~,u), which correspond to the conformal weight, the two su(2) spins, and the
u(1) charge, respectively. In terms of these, the BPS bound reads

s k=0T + ke + (07 —07)% + u?
- kT 4k '

(B.21)

For more details, see e.g. [31].

B.2.2 N =3 SCA
The BPS bound for the linear N/ = 3 SCA is the same as that of the non-linear N' = 3
algebra and reads

h> . (B.22)

N o~

The representations of the N' =3 SCA are labelled by (h,¢). Notice that this BPS bound
means in particular that the conformal weight of BPS states takes quarter-integer values.

When realizing the N' = 3 SCA as a subalgebra of the large N’ = 4 SCA with kT =k,
we can decompose a representation (h, £*, £~ u) into N’ = 3 representations. In particular,
we obtain the representation (h,¢" + £7) on the ground state. Note that the N' = 3 BPS
bound does not agree with the N' = 4 BPS bound except for /T = ¢~ and u = 0.

B.3 The global subalgebras

We will now discuss the global (or ‘wedge’) subalgebras of the relevant superconformal
algebras. These are generated by all modes annihilating the in-, as well as the out-vacuum.
These are the modes with mode numbers —h < m < h, where h is the conformal weight of
the respective field. In particular, the free fermions are invisible in the global subalgebra.
The u(1)-current Uy of the large N' = 4 SCA becomes central and decouples from the
algebra. The resulting global subalgebra is known as the exceptional Lie superalgebra
0(2,1; ), where the parameter « is related to 7 by

a=—T (B.23)

In the important case v = % or @ = 1, we have another description thanks to the isomor-
phism 0(2,1; ¢ = 1) = 0sp(4]2). The field content of this Lie superalgebra is seen to be
correct, the bosonic subalgebra is sp(2) @ s0(4) = su(2) ® su(2) @ su(2). The first su(2)
is generated by the energy-momentum tensor (or rather its non-compact version sl(2,R)).
The other two su(2)’s describe the R-symmetry. The fermions transform in the representa-
tion (2,4) = (2, 2, 2) of these algebras. This is indeed the correct transformation behaviour
of the supercharges.

The Zs-quotient we performed above can also be seen on the global superalgebra. It

corresponds to interchanging the two su(2)-factors of so(4). The fixed point algebra is
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h+2 (e, 07)

h+3 (r+ 50+ e+ e =Yt =L+ e -5 - 1)
h+1 |(F+1,07) (U0 +1) 2(0%,07) (0 —1,07) (Ut —1)
h+3 (i e+ e+ i - Dt -ty et -1 -9

h (e, 07)

Table 2. The multiplet structure of a long 9(2, 1; «)-multiplet.

then given by o0sp(3|2), which is the global subalgebra of the N' = 3 SCA. The bosonic and
fermionic field content matches again the one we listed above.

As an aside, we mention the following two facts. We may ask whether there are other
values of a for which 9(2,1; ) has an outer automorphism by which we can orbifold.
These outer automorphisms of 9(2, 1; «) are listed in [39]. When requiring in addition that
a € Q>0, in which case we can extend the algebra to the large N’ = 4 SCA a unitary manner,
only a = 1 has the non-trivial outer automorphism group Zso by which we orbifolded above.

The construction generalizes however to higher rank. The Lie superalgebra osp(2m/|2n)
has still outer automorphism group Zs. This outer automorphism can be described by the
Adjoint representation of an element of superdeterminant —1 in OSP(2m|2n) on its Lie
algebra. If we orbifold by this Zsg, the fixed point algebra becomes osp(2m — 1|2n) [40].
For n = 1, this was discussed in [36]. The case n > 1 might be relevant for higher spin
algebras with extended supersymmetry.

B.4 0(2,1; ) characters

In this subsection, we will discuss the characters of the global large N/ = 4 superalgebra
0(2,1; ). In our situation of interest, we only need o = 1, but the characters are generically

21 We have two chemical potentials zi (with yi = 2™+

independent of the value of «.
associated to the two su(2)*’s). Furthermore, we have the usual chemical potential 7 (with
q = e¥™7) associated to the third su(2), which is the Mdbius subalgebra of the Virasoro
algebra. We shall denote an su(2)-character by x(z):
0+ 1 _y—1
(o) =2V (B.24)
Y2 -y 2

A long 9(2, 1; a)-multiplet has the form shown in table 2. Thus, its character reads:

_ h 1 s
X (24, 7) = T p ((1 + @) xer () xe- (2=) + (02 +¢2) (X1 (24X 1 (22)
T Xer 41 (Z+)Xzf_% (2-) + Xe+ -1 (Z+)X£f+% (2-)
+ Xg+_%(z+)X€*—%(z—))

21 This is of course not the case for the superconformal characters described in detail in [41, 42].
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h+3 (=30 —3)

htl | (50) (e —1,07) (e, —1)
htg | (4500 —3) ((F=30+3) (=50 -3
h (e+,67)

Table 3. The multiplet structure of a short 9(2, 1; a))-multiplet.

+ q(Xe++1(Z0)x0- (22) + Xor (2 x0-41 (=) + X -1 (24) X0~ (22)

+ X+ (24)Xe-—1(2=) + 2Xe+ (24) Xe- (Z—))> (B.25)
_ ¢"xer (z0)xe (22) H (1 _’_yéwy%&q%) ' (B.26)

1- q €4,e—==+

In the last formulation, the action of the four supercharges is made manifest. There are
some exceptions to the multiplet structure displayed in table 2 when either /T < 1 or
¢~ < 1, according to the tensor product rules of su(2)-representations. However, eq. (B.26)
remains true even for low spins.
Similarly, a short multiplet has the structure shown in table 3 with a character
heps 1
7 ) = T (e (e () 4+ 0 (e g (e xe 3 ()

+ Xe+_%<z+)Xzf+%(z—) + X£++%(z+)Xe*—l(z—>>

2

+ q(xer—1(z0)xe- (22) + xe+ (2 xe-—1(2-)

3
e (20 (2-)) + a3 xs 1 (240X 1 (2)) (B.27)
N (T +3) n-(0+3) 1 1
_ qhBPS Z 77+77—y+ Y_ - H (1 + yzf—‘—yze_q%) .

mett (1= )2 —y2) (92 —y2) s
(B.28)
The conformal weight saturates the BPS bound
kt + k-

This is the kT — oo limit of (B.21), as befits the BPS bound of the global subalgebra. In
the formulation (B.28), one can see that one of the supercharges always acts trivially. This

heps({T,07) = (B.29)

formula also holds true for small spin ¢*,¢~. The multiplet structure of these exceptional
cases is treated in [5].

B.5 N = 3 characters

We repeat a similar analysis for the characters of 0sp(3|2), the global algebra of the N' = 3
SCA. A long multiplet has the structure displayed in table 4. Now states arrange themselves
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h+3 0
h+1]1¢-1 ¢ (+1

h+3 [ 0—1 ¢ (+1

h 14

Table 4. The multiplet structure of a long 0sp(3|2)-multiplet.

h+1 0—1
h+3 | -1 ¢
h ¢

Table 5. The multiplet structure of a short osp(3|2)-multiplet.

into su(2)-multiplets. We denote the chemical potential of the su(2) by z. The the long
character N’ = 3 hence equals

h 3 1
Ao = 70 (el +a2) + (0% +0) (e () +l@) (=) ) (B30)
_ Q';XM (o) TT (1 +v'a?) (B.31)
—4q e=+

The factorized form again encompasses also low-lying special cases.
Finally, a short representation of 0sp(3|2) has the form displayed in table 5. Hence, its
character reads

hBps

V=32, 7) = e (Xe(z) + a2 (xe(2) + xe-1(2)) + ‘IXE—I(Z)) (B.32)
( %) 1 1
_ s WU ey [[ved) . B3
= 1—q)(y? —y 2) G;ﬂ;

Again, one of the supercharges acts trivially. The BPS bound hppg(¢) = % is saturated.

This again encompasses low-lying special cases.

B.6 The branching osp(4|2) — osp(3|2)

As explained in the previous subsection, the global N' = 3 algebra osp(3|2) is a natural
subalgebra of the global large V' = 4 algebra 9(2,1;« = 1) = 0sp(4|2). Hence, there should
be an associated branching rule, which we can determine on the level of the characters.
Since, the subalgebra osp(3|2) preserves the diagonal su(2), we set the chemical potentials
z = z4y = z_. From the expressions of the characters we gave above, the branching rules
for a long osp(4|2) representation are
A
W, (27) = S (AT TP am) . B3
(=|+ —b=|, b+ +0— —LeZ
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These branching rules are more or less directly inherited from the su(2) tensor product
decomposition. For a short osp(4|2)-multiplet, we have

e

N=4 N=3
Xer g (2,7) = ) Xhgps(e+e-).0(2T) - (B.35)
= |0+ —0— |+ +0- €T

The top summand is a short multiplet. Indeed, it has h = %6“‘ + %E‘ = %E and hence
saturates the N’ =3 BPS bound.

B.7 The orbifold action on the characters

We have seen above that the osp(3|2)-subalgebra may be described by the fixed point set
of an involution acting on o0sp(4|2), which interchanges the two su(2)-factors of so(4) =
su(2) @ su(2). Correspondingly, there is a Zg-action on the representations of osp(4|2) and
so on the characters. It is clear that a character Xﬁ{g:f, ¢+~ 1s mapped to Xﬁ{ 52—4, s+ under the
Za-action. Hence, for T # ¢~ the fixed points are simply symmetric or antisymmetric
combinations of the two representations. The question becomes much more interesting for
¢t = ¢~ which is mapped to itself under the orbifold action. su(2) @ su(2)-representations
(¢1,47) are again mapped to (¢, £1) under the orbifold action. This is the reason why they
always have to appear in pairs in the A/ = 4 characters. For the su(2)@®su(2)-representation

(¢,¢), the orbifold even part is seen to be

(=) + (), (B30

whereas the orbifold odd part is

Sxe(Ehlz) - 3xel22) (.37

We have set the chemical potentials equal, since the orbifold-fixed part transforms only
under the diagonal su(2). Remember also that one uncharged supercharge is orbifold odd,
whereas the other three supercharges are orbifold even. Thus, the invariant part of a long
0sp(4|2)-character X{X 574 is

%/,2{624(2',7') =1 <;(1 + QQ)Xg(Z)Xg(Z) + 7(1 — q2)Xg(2Z)

T (e (2xez) + xe (2xel2) + xAzm(z))) (B.38)

N|=

_ (14 a2)xe(=)xe(2) + (1 — g2)xe(22) IT 1+

20— q) AL ) (B.39)
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In the last formulation, we see again the three orbifold even supercharges manifestly. The
last supercharge is orbifold odd, which is why we have to keep also the orbifold odd part
of the su(2) & su(2)-multiplet, when it is applied.

The corresponding formula for a short N' = 4 representation reads

h 1
X Hzr) = 1q_ q <;X£(Z)X£(Z) + %Xﬂ@z) +4q2 <Xe+;(Z)Xe—;(Z) + %Xe—%(z)Xe—é(Z)
#30329)) om0l + puul) - )
#5000 Oy ()~ 3y 22) (5.40)
q

1 1 1

_ h(1+q%) yn(ze+%)(1+y—nq%)2 ngi(1+y€q%) |
;) n—+ y—y Y2 —y 2

Here, the interpretation of this formula becomes less clear. It holds however again also for
low spins.

Finally, we check that this procedure of taking the orbifold even part preserves the
N = 3 decomposition (B.34) and (B.35). We have the following formulas for the long and
short characters, respectively:

20 20

Wil = Y AP+ > Xﬁ@(zﬁ), (B.42)
0'=0,20—0"' €27 0'=0,20—0'€27+1
20

T = Y oS () (B.43)

0=0,20—0'€2Z

In the second line, the top component of the summand is again a short character.

C Symmetric orbifold of Sy/Z,

C.1 BPS spectrum of Sym®™ (Sy/Zs)
C.1.1 0dd twisted sector of Sym®™ (Sy/Z>)

Z2 untwisted sector: the ground state has conformal dimension and R-charge [22]:

- & 1 1 1 _
—h=-—(n-—=)==(n-— =0=0. 1
h=nh o4 <n n) 8<n n) , L=¢=0 (C.1)

To construct BPS states, we act on the ground state with fermionic excitations to increase
the conformal dimension and the u(1)-charge such that they saturate the BPS bound
h = %. The only field which brings us closer to the BPS bound is 9, . Since fermions
are fractionally moded in the symmetric orbifold twisted sector, we can construct the
following state:

++ ++ ++ T At T+
B o C.2
e T e N ik (©2)
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where |o) is the symmetric orbifold ground state in the twist-n sector and zﬁ correspond to
the right-moving fermions. This state has conformal weight and R-charge

n—1

2

- 1 1 1 k n—1 - n—1

and so is a BPS state. Moreover, it is orbifold even since we have an even number of

fermionic excitations (n € Zyqq>0). On top of this BPS state, we can apply ¢J_r1+/21ﬁir1+/2 to

obtain another BPS state. These contribute to BPS states with h = h = g = % = "TH.

We cannot apply only one fermion since the resulting state would not be orbifold even.

Zo twisted sector: in the Zs-twisted sector, each boson and each fermion contribute
to a factor of q% to the ground-state energy in the NS sector. The seed theory has then
the ground-state energy 1—16 + 3 x % = i (the factor of 3 corresponds to the fact that 3
out of 4 free fermions are orbifolded under the Zy). Thus, in the n'" twisted sector of the
symmetric orbifold, we have an additional contribution of ﬁ to the ground-state energy.
The zero modes shift the u(1)-charge by % On top of this, we apply now the following
fermionic oscillators:

Can R ar SRR AR s S s SR A )R (C4)

2n 2n

where |) is the ground state of the Zy twisted sector of the symmetric orbifold. We note
that the fermions 1™ are integer-moded in the Zs twisted sector. The total weight and
R-charges then read:

n—1
- 1 1 1 [k n n—1 1 n

which saturate the BPS bound. The Z, twisted sector has multiplicity 2, so we obtain two
BPS states from them, see eq. (3.10).

Il
(|
Il

C.1.2 Even twisted sector of Sym” (Sy/Z2)

Zo untwisted sector: the ground-state energy of the even twist-n sector of the symmet-
ric orbifold is given by:

- (ep+ee)n o cr ch 1 cr 2
h—h— 2 P =2(p-Z — — C.6
20 T\ " 2m 120) 2\ n) Tu\" T ) (C6)
where ¢}, and ¢f correspond to the boson and fermion central charges, see [30, egs. (A.5) and
(A.9)] and [1, appendix D.2]. In the even twisted sector of the symmetric orbifold, fermions
have a different boundary condition than the bosons and their ground-state energies are
consequently different [22]. We have thus expressed the contributions from bosonic and

fermionic fields separately in the above expression.??

22We note that for n = 2, the ground-state energies of a boson and an NS fermion are the same since
¢, =1 and ¢t = %, hence the comment above equation (C.4). This, however, is not the case for n > 2 in
the even twisted sector of symmetric orbifold.
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For the Sy/Zs theory cp, = 1, ¢f = 5 = 2, and the ground state has

8 2

Similar to the odd twisted sector analyses, we shall now apply fermionic excitation on the

h:h:1<n+1>, (—i=1 .7
n

ground state to construct BPS states. However, the conformal dimension is too high to
give BPS states in the Zg untwisted sector, as described in [1, section 3.3]. Thus we obtain
no BPS contributions in this case.

Z+o twisted sector: we consider the state

YIS v ¢++ ¢++ T 18) (C.8)
2n 2n 2n
It has conformal weight and u(l)—charge
-1 1 1 : 2k—1 n - n—1 1 n
8<n+n> 8n+; o 4 - t273  (©9

which saturate the BPS bound. Here, the second term in the formula for the conformal
weight is the ground-state energy of the twisted sector of the Zs-orbifold in the R sector
divided by n, according to the general rule that a state of conformal weight A in the
seed theory contributes to conformal weight % in the symmetric orbifold. Thus, we find
two further BPS states in the even twisted sector of the symmetric orbifold. Taking all
contributions together, we obtain the Hodge diamond (3.15).

C.2 Modified elliptic genus of the odd twisted sector of Sym”™ (Sy/Z2)

We derive the modified elliptic genus of the symmetric orbifold CFT in the odd twisted
sector. Performing an S-modular transformation on the R-sector partition function of the
seed theory with factors of the twist n inserted, we obtain the single-particle NS sector
partition function of the twist-n sector:

s Zi5. ) <[22 W@ |BEDuEin@
' Is(Z)En(E)5 P3(7)2n(5)?
L [BER [P
2‘ 0() “’ Us(Z) | (C.11)

where we have not included the ©-dependent term since it contains 64(7) and vanishes
after taking z = —f in the modified elliptic genus.
Putting back the ground-state energy of the untwisted copies (C.1),23 we obtain

n''n -
N€Z%0,0dd h—h—€Z
Ty |2 T\ |2
= ¥ 2q§q§<‘03< L'n,) +’192( 7) )
N€Z>0,0dd 192(5) 193( ) h—BG%

Z3This is the ground-state energy relative to the vacuum. We have not included the factor qii in the
partition function, since it diverges in the limit we are computing, see below eq. (6.3)
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where we have included the untwisted sector contribution n = 1 to write the general ex-
pression for all positive odd n. Invariance under the action of the Zs imposes the constraint
h — h € 7Z/2. Using identities of the Jacobi theta functions which we list in appendix D,
we find that the partition function reads

2 >

oz + 5|7)
J2(%)

I3(2 + 5l5)
J3(7)

2 ‘

Ins(zmi2,7)= > 2¢iy2qs 173<

NEZ>0,0dd

h—heZ .
] (C.13)
We finally set h = % to compute the modified elliptic genus:

n n 793(2"‘%‘1)
+ g1y ——=n12
"y I3(7)

Zns(z,7) =2 Z <qz y2 ozt 3l0) > . (C.14)

n odd 192(%)

hel helil

Following our approach in section 4.3.1, we next perform a Fourier expansions of the
modified elliptic genus and analyse the contributions from the Zy untwisted and twisted
sectors separately, see egs. (4.13) and (4.14).

Zo untwisted sector: let us first consider the Fourier expansion of the Zy untwisted
sector in (4.13). For this, we define

219;(?‘7)-) = Z c(m, £)g™y" . (C.15)
27 mELAEL+L

With this, we can expand the Zy untwisted sector contribution as follows:

U non ¢
2 () = ). diyr > c(nm,0) qm+2y£)h . (C.16)
NEZ>0,0dd WE%,KEZ-F% €3
= ) diy? c(nm, £) "+ 3y’ (C.17)
N€Z>0,0dd MELNEL+L
E, ! /
= Z Z c(n <m/ - 2),5' — g) qz ye , (C.18)

N€L>0,0dd m'e % V'€

where in the second line we have defined

{ n n
I = — 4= =04 —. 1
m m+2+4, +2 (C.19)

By restricting m € Z in (C.17), we have imposed the orbifold projection h € %Z.

The coefficients ¢(m, ¢) are quasi-periodic in z and satisfy the assumptions of Theo-
rem 2.2 of [43]:

c(m, ) = c(2m — ) . (C.20)
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Eq. (C.18) then reads

~ 2 / /
ZII\IJ? (z,7) = Z Z c<2nm’ /e Z) ¢yt

nEL>0,0dd m'e %, v'e

2
- Z Z c<4m’2 /i (Z — 2m’> ) g™y

NE€L>0,0dd m' €%, V'€,

= ¥ ( 3 c<2m’2 - E; %(n - 4m’)>> ¢"y" . (C.21)

m/€Z 1€z \NEL>0,0dd

We next define ' = n — 4m’, which is an odd integer for m’ € Z>(/2. The condition
n > 0 requires that n’ > —4m/. We then first evaluate the sum over n’ in eq. (C.21) and
to do so, we use the fact that ¢(s) = 0 for s < —1 and extend the range of the sum over
all odd integers. This, however, may result in an over-counting of low-lying contributions
which we then need to subtract subsequently, see [29, section 5] and [8, section 4.3].We can
evalute (C.21) further using the definition (C.15):

s (-t

n'€Zoad, S

2, (C.22)

and hence

> c<s, 7;) = 20,0 . (C.23)

Thus, we find that

2
om' — —, — ) =25 / 0 —2m' ez, |I'|>1. C.24
Z C(m 272> m’,:l:%’ m 7‘ ‘— ( )

n'€Zodd

The only low-lying exception which we need to subtract from the above sum is for ¢/ = 0.
Inserting the result back in eq. (C.21), we find the expression (4.15).

Zo twisted sector: the computation for the Zy twisted sector is exactly analogous. The
only differences arise in the summation ranges: now m’ € 3Z + 3 and ¢ € Z + 1. There
are no low-lying exceptions in the twisted sector and we find the final result (4.16).

D Theta functions

We follow the notation of [44] and define the theta functions as

(0% . 2 .
9 ol7) = eur(n—i—oz) T4+2mi(n+a)(z+8) ) D.1
HEER> 0.1)

ne”L

The four Jacobi theta functions are then defined as

1 1 0 0
191529{%], 192529[(2)], 193519[ ], 194529{

2

] . (D.2)
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We use the following identities of the theta functions:

2(7)° = Do (7)03(7)Va(T), (D.3)
192< ;) 3y ( ;;) (D.4)
193( ;) =qry2Y ( % T> (D.5)

where ¢ = €2™7, y = €*™% p(7) is the Dedekind theta function and n is an odd integer.
The last two identities can be derived using egs. (9.101b)—(9.101d) of [44].
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