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1 Introduction

New instances of the stringy holographic correspondence on AdS3 backgrounds have been

recently formulated. On the one hand, a large N = (4, 4) duality is proposed in [1] for type

IIB string theory on AdS3×S3×S3×S1, following up on earlier developments [2–7]. The dual

CFT is conjectured to be the symmetric product orbifold of the so-called Sκ CFTs which

describe the σ-model on S3× S1. On the other hand, a novel family of N = (2, 2) dualities

is proposed in [8, 9] through considering type IIB string theory on quotient backgrounds

AdS3 × (S3 × T4)/Dn and AdS3 × (S3 ×K3)/Z2, where Dn is the dihedral group. In these

constructions, the original small N = (4, 4) supersymmetry supported by T4 and K3 [10]

is reduced to N = (2, 2) supersymmetry. The conjectured dual CFTs are again symmetric

product orbifolds and the seed theories are CFTs on T4/Dn and K3/Z2, respectively.

Motivated by these developments, in this work we study another example of the

AdS3/CFT2 duality with non-maximal supersymmetry. We consider the construction of

Yamaguchi et al. [11] and study string theory on the orbifold background AdS3×(S3×S3×
S1)/Z2. The action of the Z2 orbifold is implemented by exchanging the two three-spheres

and reflecting the circle S1. This action may be realised such that the spacetime supersym-

metry is reduced from large N = 4 to either N = 3 or N = 1. We consider the former and

study string theory configuration with N = (3, 3) supersymmetry. We conjecture that the

CFT dual to this configuration is the symmetric orbifold of S0/Z2, where S0 (a member of

the Sκ family with κ = 0) is a theory of four free fermions and one free boson.

We compute the BPS spectra of the string worldsheet theory and of the dual CFT and

find that they match precisely. We provide further non-trivial support for the proposed

duality by matching a supersymmetric index between the bulk and boundary theories. The

elliptic genus of the N = 3 CFTs vanishes due to the presence of a fermionic zero mode.
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We define a non-vanishing index in the NS sector, which is composed of chiral primaries in

the right-moving sector and arbitrary excitations in the left-moving sector, compute it on

both sides of the duality, and find that they match. This provides additional non-trivial

evidence for the proposed holographic duality.

The plan of this paper is as follows. In section 2 we discuss the realisation of the

action of the Z2 orbifold and propose the associated AdS3/CFT2 duality with N = (3, 3)

supersymmetry. In section 3 we compute the BPS spectrum of the proposed dual CFT.

We define and compute a modified elliptic genus for the dual CFT in section 4. We

next analyse the string worldsheet theory in terms of the WZW models in section 5 and

derive its BPS spectrum. We find that the spectrum precisely matches that of the dual

CFT. In section 6 we compute the modified elliptic genus of the worldsheet theory in the

supergravity limit and show that it reproduces the corresponding CFT results. Finally,

in section 7 we conclude and discuss future directions of research. We present the details

of the S0 CFT in appendix A. The large N = 4 and N = 3 algebras and the associated

characters are reviewed in appendix B. Some technical details of the symmetric orbifold

computations are presented in appendix C. Finally, Jacobi theta function identities that

we use are outlined in appendix D.

2 String theory on AdS3 × S3 × S3 × S1

The holographic duality for type IIB string theory on the AdS3×S3×S3×S1 background [1]

proposes that the dual CFT is the symmetric product orbifold of Sκ theories, SymN (Sκ).

The Sκ CFTs are supersymmetric σ-models on S3 × S1 and have large N = (4, 4) super-

conformal symmetry [1, 12]. The R-symmetry is su(2)+ ⊕ su(2)− ⊕ u(1) for both the left-

and right-moving sectors. The BPS spectra of SymN (Sκ), the worldsheet theory described

in terms of WZW models associated to AdS3 × S3 × S3 × S1, and supergravity on this

background were computed in [1, 2] and it was shown that the spectra of the three theories

match precisely.

In this work we consider the construction of [11] and study string theory on the

AdS3× (S3× S3× S1)/Z2 orbifold background. The action of the Z2 orbifold is realised by

exchanging the two three-spheres and simultaneously reflecting the circle. This amounts

to exchanging the two affine su(2)± algebras. The Z2 action then imposes the condition

that the two spheres have equal radii, i.e. that the levels of the two affine su(2)’s coincide:

k+ = k−. This corresponds to κ = 0.

The diagonal su(2) of the R-symmetry algebra survives the orbifold projection. The

currents of the diagonal su(2) are the sum of the currents of the two su(2)± affine al-

gebras and generate the R-symmetry of the worldsheet theory of string theory on the

AdS3 × (S3 × S3 × S1)/Z2 background. Before taking the orbifold projection, the four

left-moving supercurrents of the original large N = 4 SCA transform in the representation

(2,2) of the su(2)+ ⊕ su(2)−. After taking the Z2-orbifold, the supercurrents transform

in the 3⊕ 1 representations of the diagonal su(2) (and likewise, the same result holds for

the right-moving supercurrents). The action of the Z2 can be taken such that either the

triplet or the singlet supercurrents survive the projection. The two operations are then

– 2 –
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shown in [11] to reduce the spacetime supersymmetry and yield N = 3 and N = 1 su-

perconformal symmetry, respectively (see section 5 for more details). Taking into account

the contribution from the right-moving part, the theory admits N = (3, 3), N = (3, 1),

N = (1, 3), or N = (1, 1) supersymmetry.

Working within the context of the large N = (4, 4) AdS3/CFT2 correspondence for

the AdS3 × S3 × S3 × S1 background [1] and performing the Z2 orbifold action of [11]

described above, we propose that string theory on AdS3 × (S3 × S3 × S1)/Z2 background

with N = (3, 3) supersymmetry is dual to the symmetric product orbifold SymN (S0/Z2).

2.1 Fluxes and charges

Let us briefly describe the fluxes of the model. For AdS3 × S3
+ × S3

− × S1, there are three

charges, which we denote by Q0
1, Q+,0

5 and Q−,05 . These correspond to the number of D1,

D5+ and D5−-branes in the brane construction (or F1-strings and NS5-branes in the NS-

NS background we are treating). S3
± is supported by Q±,05 units of flux, whereas Q0

1 is

related to the radius of the S1, see [4, eq. (2.44)].

When performing the Z2-orbifold, there is an associated map in cohomology, which

maps the fluxes of the quotient geometry to the original geometry. In this case, the two

three-spheres get interchanged, which results in the quotient space to have only one value

of D5-brane (or NS5-brane) charge.1 The fluxes of the quotient geometry are then related

to the original fluxes as

2Q1 = Q0
1 , Q5 = Q+,0

5 = Q−,05 . (2.1)

Note that we can perform the quotient only when Q+,0
5 = Q−,05 , i.e. when the three-spheres

have equal size. The factor of 2 in the D1-brane charge comes from the fact that the

quotient map is a degree 2 map.

Let us also comment on the Brown-Henneaux central charge [13]. For the unorbifolded

geometry, it is given by [5, 12, 14]:

c0 =
6Q0

1Q
+,0
5 Q−,05

Q+,0
5 +Q−,05

= 3Q0
1Q

+,0
5 . (2.2)

The classical Brown-Henneaux central charge formula for the background AdS3 ×M7 is

given by

c =
3`

2G3d
, G3d =

G10d

vol(M7)
. (2.3)

where ` is the AdS3-radius and G3d and G10d are the 3-dimensional and 10-dimensional

Newton constants, respectively. ` and G10d are invariant under the orbifold action but the

volume ofM7 is only half as large after the orbifolding procedure, so we conclude that the

Brown-Henneaux central charge of the orbifold geometry is given by

c =
c0

2
=

3

2
Q0

1Q
+,0
5 = 3Q1Q5 . (2.4)

There might be order one corrections to this formula, as for the Brown-Henneaux central

charge on AdS3 × S3 ×K3 [15, 16].

1This is reflected in H3((S3 × S3 × S1)/Z2;R) ∼= R.
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The theory S0/Z2 has central charge 3, hence we conjecture that the dual CFT to the

background AdS3 × (S3 × S3 × S1)/Z2 is

SymQ1Q5(S0/Z2) . (2.5)

3 BPS spectrum of the dual CFT

In this section we first review the BPS spectrum of the S0 theory in subsection 3.1. We

next discuss in subsection 3.2 the actions of the Z2 orbifold on the S0 CFT which yield

N = 3 and N = 1 superconformal symmetries. We note that only the reduction to the

N = 3 SCA has an N = 2 subalgebra, and hence, a BPS spectrum. We derive this BPS

spectrum in section 3.3. For the N = 1 theory, we derive the spectrum of the theory

which survives the action of the orbifold. In section 3.4 we compute the BPS spectrum of

the symmetric product orbifold SymN (S0/Z2) with N = (3, 3) supersymmetry. Finally, in

section 3.5 we discuss the moduli of the dual CFT. We present the details of the analyses

of the symmetric orbifold in appendix C.1.

3.1 BPS spectrum of S0

Let us recall the definition of the so-called S0 theory [1, 4, 17]. It consists of four free

fermions ψµν with µ, ν ∈ {+,−} and one free boson ∂φ. These generating fields give the

R-symmetry su(2)1 ⊕ su(2)1 ⊕ u(1) of the large N = 4 SCA, as reviewed in more detail in

appendix A (the subscripts denotes the level of the algebra). We denote these two affine

su(2)1-algebras in the following as su(2)+
1 and su(2)−1 . µ and ν are then bispinor indices of

the su(2)1 ⊕ su(2)1-algebra.

The BPS spectrum of the S0 theory is derived e.g. in [1]. The only BPS states in the

charge-zero sector are the vacuum together with their superconformal descendants:2

|0〉 , ψ++
− 1

2

|0〉 , ψ̃++
− 1

2

|0〉 , ψ++
− 1

2

ψ̃++
− 1

2

|0〉 (3.1)

Hence the corresponding Hodge-diamond is of the form

1

1 1 ,

1

(3.2)

which is the same as the Hodge diamond of the sigma model on T2, see [1, section 5.3].

3.2 Action of the Z2 orbifold

The generators of the large N = 4 algebra can be realised in terms of the free fields3 as

presented in appendix A (see also [4, 18]).

We would like to determine the action of the Z2-orbifold on the generators of the

large N = 4 algebra such that it is reduced to the N = 3 or N = 1 SCA. As discussed

2Here and in the following, a tilde denotes the right-movers.
3We thank Matthias Gaberdiel for sharing a note with us on the explicit form of this realisation.
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in section 2, the Z2-action exchanges the two affine su(2)1 algebras of the R-symmetry

algebra and thus imposes the condition k+ = k− = 1 (hence, κ = 0) on the levels. Z2 also

acts by inverting the sign of the free boson:

∂φ 7−→ −∂φ . (3.3)

For the four free fermions, we consider the following two actions:

(i) ψ++ 7−→ −ψ++, ψ−− 7−→ −ψ−−, ψ+− 7−→ ψ−+, ψ−+ 7−→ ψ+−, (3.4)

(ii) ψ++ 7−→ ψ++, ψ−− 7−→ ψ−−, ψ+− 7−→ −ψ−+, ψ−+ 7−→ −ψ+−. (3.5)

Using eqs. (A.1)–(A.11), one can check that in both cases the two su(2)±1 algebras are

indeed exchanged and that the stress-energy tensor is preserved. Let us consider the

transformation of the supercurrents. For case (i) we find:

G++ 7−→ G++, G−− 7−→ G−−, G+− 7−→ G−+, G−+ 7−→ G+−. (3.6)

The supercharges G++, G−−, and the combination G+− + G−+ are preserved under the

Z2-action. The large N = 4 SCA is reduced to the N = 3 algebra in this case [19].

The generators of the algebra and their (anti-)commutation relations as derived from this

reduction are presented in appendix B.1.2.

For case (ii) in eq. (3.5) we have:

G++ 7−→ −G++, G−− 7−→ −G−−, G+− 7−→ −G−+, G−+ 7−→ −G+−, (3.7)

where only the combination G+− −G−+ survives the Z2 action. The large N = 4 SCA is

reduced to the N = 1 SCA in this case.4 One can check that (3.4) and (3.5) are the only

two consistent Z2-actions which exchange the two su(2)±1 algebras.

3.3 BPS spectrum of S0/Z2

In this section, we derive the BPS spectrum of the S0/Z2 CFT.

Let us start by computing the NS sector partition function for the N = 3 theory

in (3.4). We recall that, under the Z2 action, the R-symmetry of the theory is reduced to

the diagonal su(2)2 algebra. We introduce a chemical potential, z, to keep track of the u(1)-

charge (resp. the su(2)-spin). Two of the four free fermions, ψ++ and ψ−−, are charged

under the u(1) whereas the other two, ψ+− and ψ−+, are not. Moreover, according to

eq. (3.4), the two charged fermions, ψ++ and ψ−−, and the linear combination ψ+−+ψ−+

of uncharged fermions are flipped under the Z2 and are orbifold odd. All in all, the

contribution to the partition function before orbifolding is of the form

1

2
Θ(τ ; τ̄ ;R)

∣∣∣∣ϑ3(z|τ)ϑ3(τ)

η(τ)3

∣∣∣∣2 , (3.8)

4In fact, to a semi-direct product of the N = 1 SCA with the diagonal affine su(2)2-algebra, but this

will not be important in what follows.
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where Θ(τ ; τ̄ ;R) represents the theta-function associated to the compact free boson. We

already included the factor of 1
2 , which is the usual factor 1/|Z2| introduced by the projec-

tion operator. A pair of charged fermions contribute a factor of
∣∣ϑ3(z|τ)/η(τ)

∣∣2 and each

uncharged fermion contributes a factor of
∣∣ϑ3(τ)

1
2 /η(τ)

1
2

∣∣2.

We next consider the contribution from the orbifold projected states in the untwisted

sector as well as the unprojected and projected states in the twisted sector of the Z2.

The details of the derivation may be found in [20, section 10.4.3], the formula follows

essentially by requiring invariance under modular transformations. The full NS sector

partition function reads:

ZNS(z, τ ; z̄, τ̄) =
1

2
Θ(τ ; τ̄ ;R)

∣∣∣∣ϑ3(z|τ)ϑ3(τ)

η(τ)3

∣∣∣∣2 +

∣∣∣∣∣ϑ4(z|τ)ϑ3(τ)
1
2ϑ4(τ)

1
2

ϑ2(τ)
1
2 η(τ)

3
2

∣∣∣∣∣
2

+

∣∣∣∣∣ϑ2(z|τ)ϑ3(τ)
1
2ϑ2(τ)

1
2

ϑ4(τ)
1
2 η(τ)

3
2

∣∣∣∣∣
2

+

∣∣∣∣∣ϑ1(z|τ)ϑ3(τ)
1
2ϑ1(τ)

1
2

ϑ3(τ)
1
2 η(τ)

3
2

∣∣∣∣∣
2

. (3.9)

The last term formally vanishes, but it is useful to keep it as a book-keeping device. We

note that the ϑ3(τ)
1
2 factor in all four terms of the above equation corresponds to the

uncharged fermion which is not affected by the Z2 orbifold: it is just a bystander.

We shall now read off the BPS spectrum of the theory in the NS sector. Only the zero

modes of ϑ1 and ϑ2 and the one-half modes of ϑ3 and ϑ4 have a chance to produce BPS

states. Including only those, the partition function reduces to:

|q|
1
4ZNS(z, τ ; z̄, τ̄) =

1

2
(1 + yq

1
2 )(1 + ȳq̄

1
2 ) +

1

2
(1− yq

1
2 )(1− ȳq̄

1
2 )

+ 2q
1
4 q̄

1
4 (y

1
2 + y−

1
2 )(y

1
2 + y−

1
2 ) + non BPS

= 1 + 2q
1
4 q̄

1
4 y

1
2 ȳ

1
2 + q

1
2 q̄

1
2 yȳ + non BPS . (3.10)

Thus, the corresponding Hodge-diamond is

1

0 2 0

1

. (3.11)

We extend the notion of Hodge-diamond to incorporate also half-integer cohomology,

see [8]. The corresponding Hodge-numbers will be denoted by hp,q with p, q ∈ 1
2Z. The

requirement of half-integer spin implies that hp,q = 0, unless p+ q ∈ Z.

We could have also derived the above BPS spectrum by considering the BPS spectrum

of the S0 theory in (3.2) and noting that the chiral primary operators ψ++
−1/2|0〉NS and

ψ̃++
−1/2|0〉NS do not survive the action of the Z2 orbifold, see eq. (3.4). The BPS spectrum

of the untwisted sector of the S0/Z2 theory will then be of the form h0,0 = 1, h1,0 = 0,

h0,1 = 0, and h1,1 = 1. Since S1 has two fixed points under the action of the Z2, the twisted

sector will contribute two more BPS states, leading to h1/2,1/2 = 2. We then recover the

Hodge-diamond (3.11).

– 6 –
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Ñ = 3 Ñ = 1

N = 3

1

0 0

1

0

0 1

1

N = 1

0

1 0

1

1

1 1

1

Table 1. Spectra of the untwisted sectors of the S0/Z2 theories. The Z2 group is acting such that

it preserves either N = 3 (3.4) or N = 1 (3.5) supersymmetry in the left and right-moving sectors.

Similarly, we can determine the reduced spectrum of the S0/Z2 theories with (N , Ñ ) =

(3, 1), (1, 3) and (1, 1) supersymmetry. By this, we mean the orbifold even part of the BPS

spectrum of S0. While not being chiral primary (since N = 1 supersymmetry does not

possess chiral primary states), we still expect those states to be protected, because of the

underlying large N = 4 SCA. The chiral primary ψ++
−1/2|0〉NS survives the action of the Z2

in case (ii) and so does its right-moving counterpart, see eq. (3.5). Table 1 compares the

spectra of the untwisted sectors of the S0/Z2 theories.

An elliptic genus may then be derived for the (N , Ñ ) = (3, 3) theory and for the left

and right-moving sectors of the (3,1) and (1,3) theories, respectively. We will discuss the

elliptic genera in section 4.

3.4 BPS spectrum of symmetric orbifold of S0/Z2

We shall now compute the single-particle BPS spectrum of SymN (S0/Z2) with N = (3, 3)

supersymmetry. This is the quantity that we will compare and match with that of the

stringy world-sheet theory as a first test of our proposal, see section 5.4. Since the fermionic

boundary conditions are different between the odd and even twisted sectors, we treat each

case separately. We follow closely the approach of [1] and refer the reader to section 3 and

appendix D of this paper for more details. The single-particle spectrum corresponds to

the single-cycle states of the symmetric orbifold theory. We note that since the number

of bosons and fermions are not equal in the seed theory, one has to be very careful when

applying the DMVV formula [21]. For this reason, we will derive the partition function

and the associated BPS spectrum microscopically (see also the discussion at the end of

section 4.3).

The seed theory S0/Z2 consists of the untwisted sector and twisted sector of Z2. Below

we shall be explicit about the Z2 (un)twisted sectors and the symmetric orbifold odd and

even twisted sectors to avoid confusions. We present the main results of the computations

here and refer the reader to appendix C.1 for the details.

3.4.1 Odd twisted sector of symmetric orbifold

Z2 untwisted sector: we consider the theory in the NS sector. The seed theory is in

the Z2 untwisted sector and has zero ground-state energy, see eq. (3.10). So the non-trivial

contribution to the ground-state energy comes from the odd twisted sector of the symmetric

– 7 –
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orbifold, n ∈ Zodd>0, were bosons and fermions have the same energy [22]. Acting on the

ground state with fractionally-moded fermionic fields, see eq. (C.2), we find that there are

two BPS states with conformal dimensions and u(1)-charges

h = h̄ =
`

2
=

¯̀

2
=
n± 1

4
. (3.12)

Z2 twisted sector: the bosonic and fermionic fields have non-trivial ground-state ener-

gies in the Z2 twisted sector of the seed CFT. Taking this into account, we find that the

associated BPS states have dimensions and charges

h = h̄ =
`

2
=

¯̀

2
=
n

4
. (3.13)

Moreover, this state appears with multiplicity 2.

3.4.2 Even twisted sector of symmetric orbifold

Z2 untwisted sector: the even twisted sector of the symmetric orbifold is a bit more

delicate. We start again with the Z2 untwisted sector of the seed CFT which has a van-

ishing ground-state energy. In the even twisted sector of the symmetric orbifold, fermions

have a different boundary condition than the bosons and their ground-state energies are

consequently different [22]. We find that, applying fractionally-moded fermions, one cannot

construct any BPS states in this sector as the conformal dimension of the ground-state is

already high to begin with.

Z2 twisted sector: let us now describe the Z2-twisted sector. As discussed before,

3 of the 4 NS fermions in the seed theory are orbifolded by the Z2: this affects their

boundary conditions and yields integer R-moded fermions. The one remaining fermion is

not orbifolded and has half-integer NS modes. In the even twisted sector of the symmetric

orbifold, the fermionic boundary conditions are switched again, but this time all the 4

fermions are acted on by the symmetric group. The 3 aforementioned fermions now become

fractionally NS-moded and the remaining one becomes fractionally R-moded. The zero-

modes of the R-moded fermion generate two states, but only one of them is orbifold even.

Thus, if we find a BPS state, it will come with multiplicity 2 which is the multiplicity of

the Z2 twisted sector. We find that one can indeed construct BPS states in this sector5

with dimensions and R-charges

h = h̄ =
`

2
=

¯̀

2
=
n

4
. (3.14)

5This is not the case in the SymN (S0) theory: there are no BPS states in the even twisted sector of the

symmetric orbifold, see [1, section 3.4].
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3.4.3 Full BPS spectrum

All in all, taking the contributions from the odd and even twisted sectors of the symmetric

orbifold together, we finally obtain the full BPS spectrum of SymN (S0/Z2):

...

0 0

2

0 0

2

0 0

1

⊕

...

2

0

2

0

2

0

⊕

...

0

2

0

2

0

0

=

...
...

...

0 2 0

4

0 2 0

4

0 2 0

1

, (3.15)

where the first, second and third terms on the l.h.s. correspond to eqs. (3.12), (3.13),

and (3.14), respectively. Eq. (3.15) is the main result of this section. We will compare and

match the CFT BPS spectrum to that of string theory in section 5.

In the conjectured dual CFT (2.5), there are Q1Q5 copies of the seed theory, so the

maximal twist is Q1Q5. This sector has a BPS state with conformal weight 1
4Q1Q5 =

c
12 , where c is the Brown-Henneaux central charge (2.4). This is the stringy exclusion

principle [23].

3.5 Moduli

Having derived the BPS spectrum of SymN (S0/Z2), we shall now determine the moduli,

i.e. exactly marginal operators of the theory. The moduli have dimensions (h, h̄) = (1, 1)

and are singlets of the R-symmetry in the left and right-moving sectors. The moduli are

constructed by acting on the BPS states with (h, h̄) = (1
2 ,

1
2) with the N = 3 supercharges

Gi−1/2. The SymN (S0/Z2) theory has four moduli, corresponding to the h1,1 = 4 component

of the Hodge diamond on the r.h.s. of eq. (3.15).

One modulus is in the untwisted sector of the Z2-orbifold of the seed theory as well as

the untwisted sector of the symmetric orbifold and is the trivial modulus which changes the

radius of S1. Another modulus belongs to the untwisted sector of the Z2 and twist-3 sector

of the symmetric orbifold. These two moduli are associated with the two moduli of the

SymN (S0) theory and survive the Z2 action [4]. The twist-3 sector modulus of SymN (S0)

is identified with the RR axion in supergravity, see section 5.2 of this reference.

The interesting observation is that the SymN (S0/Z2) theory has two additional moduli

which do not exist in SymN (S0). These moduli come from the Z2 twisted sector of the seed

theory and from the twist-2 sector of the symmetric orbifold. It would be very interesting

to understand the properties of the dual moduli in supergravity.6 We shall pursue this

question in the near future.

Finally, we note that the exact marginality of these four operators (i.e., that they

are indeed true moduli of the theory), is deduced by noting that these four operators are

descendants of the N = (2, 2) chiral primaries, see [24] and [4, appendix A].

6We thank Matthias Gaberdiel for a discussion on this point.
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4 Elliptic genus of the dual CFT

We start by computing the elliptic genus of the orbifold theory S0/Z2 in subsection 4.1.

We find that the elliptic genus for this theory vanishes due to the presence of a fermionic

zero mode which survives the action of the orbifold. This is indeed the case for all theories

which are N = 3 superconformal symmetric.

In subsection 4.2 we consider the NS sector and determine a quantity which is composed

of chiral primaries in the right-moving sector and of arbitrary excitations in the left-moving

sector. This implies that the right-moving sector only consists of short representations

whereas in the left-moving sector, both short and long representations contribute. The

constraint of having half-integer spins in the NS sector yields h − h̄ ∈ Z/2. Thus, the

conformal dimensions on the left-moving sector have to be rigid, i.e. do not acquire an

anomalous dimension perturbatively. The quantity defined as such is an index and we

refer to it as the “modified” elliptic genus.

Finally, we compute the modified elliptic genus of the symmetric product orbifold of

S0/Z2 in subsection 4.3. As we will show, the odd and even twisted sectors of the symmetric

orbifold have to be examined separately and with care due to the presence of the fermionic

zero mode in the seed theory S0/Z2.

We note that the modified elliptic genus is not modular invariant on its own: to obtain

a modular invariant quantity one has to sum over the partition functions in the NS sector,

with and without the insertion of (−1)F, as well as the partition function in the Ramond

sector without the insertion of (−1)F, see footnote 8. Nonetheless, as discussed above,

it is an index and is invariant under deformations. We compare the modified genus of

the proposed dual CFT to that of the string theory in section 6 and find that the two

quantities match.

4.1 Elliptic genus of S0/Z2

The elliptic genus of an N = (2, 2) CFT is defined as the trace over the Ramond-Ramond

(RR) sector of the Hilbert space of the theory [25]:

Z̃R(z, τ ; 0, τ̄) = trRR(−1)FqL0− c
24 yJ0 q̄L̄0− c

24 , (4.1)

where J is the u(1) R-current, q = e2πiτ , y = e2πiz, and (−1)F = (−1)FL(−1)FR with

FL and FR being the left and right-moving fermion numbers, respectively. The tilde in Z̃

denotes the (−1)F insertions in our conventions.

The partition function Z̃R(z, τ ; z̄, τ̄) can be computed similarly as (3.9), and reads:

Z̃R(z, τ ; z̄, τ̄) =
1

2
Θ(τ ; τ̄ ;R)

∣∣∣∣ϑ1(z|τ)ϑ1(τ)

η(τ)3

∣∣∣∣2 +

∣∣∣∣∣ϑ2(z|τ)ϑ1(τ)
1
2ϑ2(τ)

1
2

ϑ2(τ)
1
2 η(τ)

3
2

∣∣∣∣∣
2

+

∣∣∣∣∣ϑ4(z|τ)ϑ1(τ)
1
2ϑ4(τ)

1
2

ϑ4(τ)
1
2 η(τ)

3
2

∣∣∣∣∣
2

+

∣∣∣∣∣ϑ3(z|τ)ϑ1(τ)
1
2ϑ3(τ)

1
2

ϑ3(τ)
1
2 η(τ)

3
2

∣∣∣∣∣
2

= 0 . (4.2)

This function vanishes because of the existence of the fermionic zero-mode of the unorb-

ifolded free fermion in the N = 3 algebra, see eq. (3.4). This is manifested in the presence
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of the |ϑ1(τ)
1
2 |2 factor in all four terms of (4.2). The vanishing of the elliptic genus holds

true for any CFT with N = 3 supersymmetry. This is because the linear N = 3 SCA

contains a free fermion which is a singlet of the R-symmetry su(2)k, see appendix B.2.2

and references [19, 26].7

4.2 Modified elliptic genus of S0/Z2

Typically, in CFTs with N = 2 or higher supersymmetry where all fermions are charged

under the U(1) symmetry of the SCA, one can define four equivalent definitions of the

elliptic genus through spectral flowing between the NS and R sectors and inserting (or not)

the fermion number operators:8

Z(z, τ) ≡ Z̃R(z, τ ; z̄ = 0, τ̄) = ZR

(
z − 1

2
, τ ; z̄ = −1

2
, τ̄

)
(4.3)

= y−
c
6 (qq̄)

c
24 Z̃NS

(
z − τ

2
, τ ; z̄ = − τ̄

2
, τ̄

)
(4.4)

= y−
c
6 (qq̄)

c
24ZNS

(
z − (τ + 1)

2
, τ ; z̄ = −(τ̄ + 1)

2
, τ̄

)
. (4.5)

Here, c is the central charge of the theory. This is because spectral flow interpolates

between NS- and R-sectors for charged fermions. For the S0/Z2 theory, however, the four

definitions in eqs. (4.3)–(4.5) are not equal due to the presence of the uncharged fermion.

To define a non-vanishing index in a theory with charged fermionic zero-modes, one can

take derivatives with respect to the chemical potential to obtain a non-vanishing protected

quantity [12, 27, 28]. Since in this case the fermionic zero-mode is uncharged, we cannot

eliminate it in this way. Instead we will simply eliminate it by not using the definition

of Z in the R̃-sector, but in another sector where the partition function does not vanish

identically. Recall that in this case, spectral flow does not interpolate between the different

sectors because uncharged fermions are unaffected by it and hence we cannot give a purely

R̃-sector definition of our index.

The NS-sector definition with the insertion of (−1)F, Z̃NS, is of interest for the purpose

of comparison with the string theory and supergravity elliptic genus, as done for the cases

of N = (2, 2) and small (4, 4) AdS3/CFT2 dualities [8, 29]. We thus consider Z̃NS, which

defines a quantity composed of the contribution from chiral primaries in the right-moving

sector and arbitrary excited states in the left-moving sector. This is because non-chiral

primaries come always in pairs related by the action of the supercharge G̃−1/2 resp. G̃+
−1/2

in the N = 2 and N = 3 cases. The two states cancel in the elliptic genus. Therefore,

while only short representations contribute to the right-moving sector, both short and long

representations contribute to the left-moving sector.

The conformal dimensions of the BPS states in the N = 3 algebra are quarter-integer:

h, h̄ ∈ Z/4, see eq. (B.22). The requirement that the spins of the physical states are

7Analogously, the elliptic genera of any large N = 4 CFT with Aγ symmetry vanish.
8Note that even when not all of the fermions are charged under the u(1), the first definition Z̃R in eq. (4.3)

is modular invariant while the other three transform into each other under modular transformations with

their sum being a modular invariant quantity.
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half-integer in the NS sector imposes the constraint h− h̄ ∈ Z/2. This implies that the left-

moving conformal dimensions, which may potentially come from long representations, have

to be rigid and do not acquire perturbative corrections. We note that two short multiplets

on the right may acquire corrections and join each other to form a long multiplet. For this

to happen, the short multiplets have to come in a pair which cancels in the elliptic genus.

Hence the elliptic genus remains invariant when short multiplets on the right lift. We thus

conclude that the defined quantities in (4.3)–(4.5) are indices.

We consider the ÑS version of the elliptic genus:9

Z̃NS(z, τ) ≡ (qq̄)
c
24 Z̃NS

(
z, τ ; z̄ = − τ̄

2
, τ̄

)
= (qq̄)

c
24 Z̃NS

(
z, τ ; z̄ = − τ̄

2
, τ̄

)∣∣∣
h̄=

¯̀

2

. (4.6)

We call this index the “modified” elliptic genus of the N = 3 CFT. The partition function

Z̃NS is again computed similar to (3.9) and is given by:

Z̃NS(z, τ ; z̄, τ̄) =
1

2
Θ(τ ; τ̄ ;R)

∣∣∣∣ϑ4(z|τ)ϑ4(τ)

η(τ)3

∣∣∣∣2 +

∣∣∣∣∣ϑ3(z|τ)ϑ4(τ)
1
2ϑ3(τ)

1
2

ϑ2(τ)
1
2 η(τ)

3
2

∣∣∣∣∣
2

+

∣∣∣∣∣ϑ1(z|τ)ϑ4(τ)
1
2ϑ1(τ)

1
2

ϑ4(τ)
1
2 η(τ)

3
2

∣∣∣∣∣
2

+

∣∣∣∣∣ϑ2(z|τ)ϑ4(τ)
1
2ϑ2(τ)

1
2

ϑ3(τ)
1
2 η(τ)

3
2

∣∣∣∣∣
2

(4.7)

=
1

2
Θ(τ)

∣∣∣∣ϑ4(z|τ)ϑ4(τ)

η(τ)3

∣∣∣∣2 + 2

∣∣∣∣ϑ3(z|τ)

ϑ2(τ)

∣∣∣∣2 + 2

∣∣∣∣ϑ2(z|τ)

ϑ3(τ)

∣∣∣∣2 . (4.8)

This is a non-vanishing quantity at z̄ = − τ̄
2 . The two terms in the first line of eq. (4.7) are

contributions from the untwisted sector of the Z2 orbifold and the two terms in the second

line come from the Z2 twisted sector, see eqs. (3.8)–(3.9). The modified elliptic genus (4.6)

then reads

Z̃NS(z, τ) = 2q
1
8

(
ϑ3(z|τ)

ϑ2(τ)
+
ϑ2(z|τ)

ϑ3(τ)

)
. (4.9)

Note that the result is independent of q̄.

4.3 Modified elliptic genus of symmetric orbifold of S0/Z2

Having defined the modified elliptic genus of S0/Z2, we shall now compute the modified

elliptic genus of its symmetric product orbifold. As discussed in the previous subsection,

the modified elliptic genus of the seed theory is an index and so is the modified elliptic

genus of the symmetric orbifold of it. One would then expect that, in the context of the

proposed N = (3, 3) duality, the modified elliptic genus matches its counterpart computed

in string theory. We will verify this in section 6.

In the comparison between the modified elliptic genus of the dual CFT and that of

the supergravity (i.e. low energy) limit of string theory on the AdS3 × (S3 × S3 × S1)/Z2

background, we will focus on the contribution from single-particle states in the spectrum.

These correspond to single-cycle states of the symmetric orbifold. Multi-particle states

correspond to multiple cycles.

9For convenience, we have redefined the chemical potential z in comparison to (4.4).
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In the remainder of this section we compute the modified elliptic genus of the symmetric

orbifold of S0/Z2 from first principles. We note that there are two orbifold actions at work:

the first one is the Z2 action on S0 which yields an untwisted as well as a twisted sector to

the Hilbert space of the seed theory. The second orbifold action is that of the symmetric

product of N = Q1Q5 copies of the seed theory, SymN (S0/Z2), and contributes to twist-n

sectors with 1 ≤ n ≤ N .10 We shall be explicit below about the Z2 versus SymN orbifold

actions to avoid confusions. We present the details of the analysis of the odd twisted sector

in appendix C.2.

4.3.1 Odd twisted sector of symmetric orbifold

We start by considering the odd twisted sector. The contribution of single-particle states

comes from states comprised of one cyclic permutation of n copies of the seed theory

(n ∈ Zodd, 1 ≤ n ≤ N) with symmetrised excitations on the n copies, and N − n copies of

the seed theory in their vacua. The untwisted projected partition function (in either NS

or R sector) reads

Z(z, τ) = Z(nz, nτ)
(
Z(z, τ)

)N−n
. (4.10)

We next perform an S-modular transformation to obtain the partition function of the

twist-n sector in terms of the fractional modes of bosons and fermions in the twist n

sector, see [1, appendix D] and [30, appendix A]. This operation depends on the choice of

the sector. For the NS sector and without (−1)F insertions, we have

ZNS(z, τ) = ZNS

(
z,
τ

n

)(
ZNS(z, τ)

)N−n
. (4.11)

This is because under an S-modular transformation, the NS sector partition function is

mapped to itself. However, Z̃NS(nz, nτ) (with fermion number insertions) is transformed

into ZR(z, τn). Similarly, Z̃R transforms into itself whereas ZR(nz, nτ) is transformed

into Z̃NS(z, τn). Since we are interested in computing Z̃NS(z, τn) for our modified ellip-

tic genus (4.6), we need to start from the partition function ZR(nz, nτ) in (4.10) and then

perform the S-modular transformation to obtain Z̃NS(z, τn).

The full derivation of the modified elliptic genus is presented in appendix C.2. Here

we write the final result:

Z̃NS(z, τ) = 2
∑
n odd

(
q
n
4 y

n
2
ϑ2(z + τ

2 |
τ
n)

ϑ2( τn)

∣∣∣∣∣
h∈ Z

2

+ q
n
4 y

n
2
ϑ3(z + τ

2 |
τ
n)

ϑ3( τn)

∣∣∣∣∣
h∈ Z

2
+ 1

4

)
. (4.12)

We would next like to Fourier expand this result for the purpose of comparing it with

our worldsheet string theory analyses in section 6. To do so, we find it more convenient to

analyse each term in equation (4.12) separately. The first term on the r.h.s. comes from

the Z2 untwisted sector whereas the second term is the Z2 twisted sector contribution. We

10One could view this also as an orbifold of SN0 by the wreath product of the symmetric group with Z2,

we prefer however to view the theory as an orbifold of an orbifold.

– 13 –



J
H
E
P
0
7
(
2
0
1
8
)
1
4
3

define:

Z̃UZ2
NS (z, τ) = 2

∑
n odd

q
n
4 y

n
2
ϑ2(z + τ

2 |
τ
n)

ϑ2( τn)

∣∣∣∣∣
h∈ Z

2

, (4.13)

Z̃TZ2
NS (z, τ) = 2

∑
n odd

q
n
4 y

n
2
ϑ3(z + τ

2 |
τ
n)

ϑ3( τn)

∣∣∣∣∣
h∈ Z

2
+ 1

4

, (4.14)

where the superscripts UZ2 and TZ2 correspond to the Z2 untwisted and twisted sectors,

respectively.

The details of the computation are again presented in appendix C.2. Using the quasi-

periodicity properties of the Fourier coefficients of the modified elliptic genus, we find that:

Z̃UZ2
NS

(
z,
τ

n

)
=

∑
m′∈ Z

2
, `′∈Z

(
2δ
m′,± `′

2

δm′, 1
2
Z>0
− 3δm′,0δ`′,0

)
qm
′
y`
′

=
2

1− yq
1
2

+
2

1− y−1q
1
2

− 3 , (4.15)

and

Z̃TZ2
NS

(
z,
τ

n

)
=

∑
m′∈ Z

2
+ 1

4
, `′∈Z+ 1

2

2δ
m′,± l′

2

δm′, 1
2
Z≥0+ 1

4
qm
′
yl
′

=
2y

1
2 q

1
4

1− yq
1
2

+
2y−

1
2 q

1
4

1− y−1q
1
2

. (4.16)

We compare and match separately the modified elliptic genera (4.15) and (4.16) with their

counterparts in the Z2 untwisted and twisted sectors string theory in section 6.

4.3.2 Even twisted sector of symmetric orbifold

We shall now turn to the computation of the modified elliptic genus in the even twisted

sector of the symmetric orbifold theory. Fermionic fields acquire a minus sign under even

cyclic permutations and have R-moding in the NS sector and vice versa. Following our

procedure in the previous subsection, we thus need to determine the partition function of

the symmetric orbifold Z̃R(nz, nτ), perform the S-modular transformation, and obtain the

R-type partition function Z̃R(z, τn) which has the appropriate moding for the even twisted

sector, see the discussion below eq. (4.11).

The R sector partition function Z̃R of the seed theory was, however, computed earlier

in (4.2) where we found that it vanishes identically due to the zero mode of the uncharged

fermion in the N = 3 SCA. This continues to hold true in the symmetric product orb-

ifold. We thus conclude that the modified elliptic genus in the even twisted sector of the

symmetric orbifold vanishes.

Finally, we note that if we apply the DMVV formula only to the odd twisted sector of

the symmetric orbifold, where bosons and fermions have the same ground-state energies,

we would indeed obtain eqs. (4.15) and (4.16), as expected. This, however, is not the case

for the even twisted sector.11

11We thank Christoph Keller for a discussion on this point.
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5 BPS spectrum in string theory

In this section, we analyse the string worldsheet theory. Since this is largely an amalga-

mation of [1, 11] and [8], we will follow these sources closely.

We will heavily rely on the representation theory of osp(3|2), the global subalgebra of

the N = 3 SCA, as discussed in appendix B. The BPS condition for this algebra is given

in (B.22), we reproduce it here for completeness:

hBPS =
`

2
, (5.1)

where ` is the su(2) spin and ` ≤ k
2 , where k is the level of the affine su(2)k algebra inside

the N = 3 SCA.

The unorbifolded worldsheet theory with pure NS-NS flux is a WZW model based on

sl(2,R)
(1)
k+k−
k++k−

⊕ su(2)
(1)
k+ ⊕ su(2)

(1)
k− ⊕ u(1)(1) . (5.2)

Here, the superscript (1) indicates that this is an N = 1 supersymmetric affine WZW

model. For more details on these algebras, see e.g. [31]. These algebras split into bosonic

WZW models with level shifted by the respective dual Coxeter number of the algebra

together with free fermions. Thus, the bosonic (or ‘decoupled’) currents generate the

affine algebra

sl(2,R) k+k−
k++k−+2

⊕ su(2)k+−2 ⊕ su(2)k−−2 ⊕ u(1) . (5.3)

From this, it is clear that we should require k± ≥ 2 in order for the worldsheet theory to

be unitary.12 We denote the sl(2,R)-fermions by ψa, a ∈ {3,±} and the su(2)±-fermions

by χ±,a. The u(1)-fermion is denoted by λ. Since these fermions are almost all we need to

construct BPS states, we will focus on those.

To take the orbifold, we have to require that k+ = k−. The level of the diagonal su(2)

is then k = k+ + k− = 2k+ and the level of the sl(2,R)-algebra is given by 1
2k

+ = 1
4k.13

To distinguish the su(2)’s, we will denote them by su(2)+, su(2)− and the diagonal su(2)

simply by su(2). We will also follow the following convention for the spins: j will always

denote the sl(2,R)k/4-spin, which corresponds to the conformal weight h of the dual CFT.

`+ and `+ denote the spins of su(2)+
k/2 and su(2)−k/2. Finally, ` denotes the spin of su(2)k.

5.1 Review of the unorbifolded theory

We start by reviewing the unorbifolded theory and its BPS spectrum. This was worked out

in [2]. We will focus in the following on the massless field content. These are fields with the

minimal excitation level, which is 1
2 in the NS sector and 0 in the R sector. Let us explain

why these fields correspond precisely to the supergravity KK-modes. The supergravity limit

can by obtained by the limit k →∞. In this case, the string tension compared to the AdS3-

radius becomes very large and stringy excitations become very heavy. The corresponding

12See however [30] for a recent proposal of how to make sense of the k± = 1 case.
13Note that k is always even. We chose the conventions in such a way that k corresponds to the level of

the N = 3 SCA as first given in [19] and reviewed in appendix B.
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three-dimensional mass can be computed via the relation m2 = (j+ j̄)(j+ j̄−2)/k [15, 32].

It is indeed true that except for the massless excitations, the mass becomes infinite in the

limit k →∞.14

In [2], it was shown that indeed all BPS states of string theory on AdS3×S3×S3×S1

come from massless fields. This was to be expected, since these are the only fields surviving

the k →∞ limit. Since BPS states should be protected, we expect them to be among the

massless fields. For this reason, we will in the following only discuss massless fields.

The partition function of string theory on AdS3×S3×S3×S1 involves a sum over the

su(2)±-spins. It was demonstrated in [2] that we obtain BPS states only in the case `+ = `−,

i.e. when both spins agree. In this case, there is for every spin one BPS state coming from

the NS and one from the R sector. When combining left- and right-movers, this yields one

BPS state from the NS-NS, the NS-R, the R-NS and the R-R sector, respectively. In the

NS sector, this BPS state has the form ψ−−1/2|j0 = `+0 + 1, `+0 , `
+
0 〉. The three quantum

numbers label the sl(2,R)- and the two su(2)-spins of the ground state. This state satisfies

all physical state conditions: (i) it is trivially annihilated by all positive Ln-modes, (ii)

it is annihilated by G1/2,15 (iii) it satisfies the GSO-projection, and (iv) it satisfies the

mass-shell condition. It was checked in [2] that restricting to superprimary fields and

eliminating null-fields can be done analogously to the light-cone gauge. It has simply the

effect of removing two uncharged oscillators. The mass-shell condition for a general state

is given by

− 4j0(j0 − 1)

k
+

2`+0 (`+0 + 1)

k
+

2`−0 (`−0 + 1)

k
+N = a . (5.4)

Here, a is the normal-ordering constant, which equals 1
2 in the NS sector and 0 in the R

sector. To restrict to massless fields, we set N = a. The quantum numbers j0, `+0 and `−0
refer to the ground-state spins, whereas j, `+ and `− are the actual spins. For the state

ψ−−1/2|j0 = `+0 + 1, `+0 , `
+
0 〉, the mass-shell condition is clearly satisfied and we have

j = j0 − 1 = `+0 = `−0 = `+ = `− . (5.5)

This is because we used one sl(2,R)-charged oscillator. Since j is identified with h in the

dual CFT, this state saturates the N = 4 BPS bound (B.21).

In the R sector, the fermionic zero-modes generate an 8-dimensional representation of

the algebra sl(2,R) ⊕ su(2) ⊕ su(2), namely (2,2,2). The eight states have spins |j0 ±
1
2 , `

+
0 ± 1

2 , `
−
0 ± 1

2〉. Of this representation, we may pick the state |j0 − 1
2 , `

+
0 + 1

2 , `
−
0 + 1

2〉.
Let us again restrict to the case `+0 = `−0 , otherwise this does not yield a BPS state. The

state satisfies the mass-shell condition, provided that j0 = `+0 + 1 = `−0 + 1 and hence

j = j0 −
1

2
= `+0 +

1

2
= `−0 +

1

2
= `+ = `− . (5.6)

So, this state is again a BPS state.

14There is a small subtlety in this statement: when including the so-called spectrally flowed sectors of

the affine sl(2,R)k/4-algebra, we also have to use oscillator excitations. For simplicity’s sake, we assume in

this paper that k is large and do not consider spectrally flowed sectors. We have however checked that the

arguments we present below also go through in the spectrally flowed case.
15This is the supercharge of the N = 1 worldsheet SCA.
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To summarize, the complete BPS spectrum of string theory on AdS3× S3× S3× S1 in

the limit k →∞ is⊕
`+=`−∈ 1

2
Z≥0

(
[`+, `−, u = 0]S ⊕

[
`+ +

1

2
, `− +

1

2
, u = 0

]
S

)

⊗
(

[`+, `−, u = 0]S ⊕
[
`+ +

1

2
, `− +

1

2
, u = 0

]
S

)
. (5.7)

Here, [`+, `−, u]S refers to a short d(2, 1;α), the global subalgebra of the large N = 4 SCA,

multiplet. The structure and character of such a multiplet is discussed in appendix B. The

first factor corresponds to the left-movers and the second factor to the right-movers. The

first summand of each factor is the N = 4 multiplet with highest weight state in the NS

sector, the second summand has its highest weight state in the R sector.

5.2 The Z2 untwisted sector

We first discuss the untwisted sector of the Z2-orbifold. As explained above, we restrict to

the unflowed sector of sl(2,R)k/4. The Z2 acts as follows on the fermions:

(ψ, χ+,a, χ−,a, λ) 7−→ (ψ, χ−,a, χ+,a,−λ) . (5.8)

Let us first discuss the NS sector. The BPS state was reviewed above and has the

form ψ−−1/2|j0 = `+0 + 1, `+0 , `
+
0 〉. It is obviously invariant under the orbifold action, since

the sl(2,R)-oscillators are orbifold-invariant.

Next, we treat the R sector. This is much more complicated. Here, the fermions have

zero-modes, which generate the representation 2(2,2,2) of sl(2,R)⊕ su(2)+⊕ su(2)−. The

factor 2 is removed by the GSO-projection, but for now, we work with the fermions before

the GSO projection. After orbifolding, this representation branches down to 2(2,1)⊕2(2,3)

of sl(2,R)⊕su(2). It is however quite non-trivial to see how the orbifold and GSO projection

act on these states.

We can fix the representation content of the R sector as follows. The NS sector

fermionic partition function is (including physical state conditions):

1

2

(∣∣∣∣ϑ3(u|τ)ϑ3(z|τ)2ϑ3(τ)

η(τ)4
− ϑ4(u|τ)ϑ4(z|τ)2ϑ4(τ)

η(τ)4

∣∣∣∣2
+

∣∣∣∣ϑ3(u|τ)ϑ3(z|τ)ϑ4(z|τ)ϑ4(τ)

η(τ)4
− ϑ4(u|τ)ϑ4(z|τ)ϑ3(z|τ)ϑ3(τ)

η(τ)4

∣∣∣∣2
)
. (5.9)

Here, u is the sl(2,R)-potential and z is the su(2)-potential. The first line corresponds to the

unprojected partition function. We have two fermions charged under sl(2,R) (namely ψ±),

four fermions charged under su(2) (namely χ±,±) and two uncharged fermions (e.g. χ+,3−
χ−,3 and λ, remember that two uncharged fermions are eliminated due to the physical state

conditions). The second term in the first line takes care of the GSO-projection. The second

line is the projected partition function. Two uncharged fermions are orbifolded, since both
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χ+,3−χ−,3 and λ are odd.16 Also two of the su(2)-charged fermions are orbifolded, namely

χ+,± − χ−,±. The other two fermions χ+,± + χ−,± are invariant.

In the R sector, ϑ3’s become ϑ2’s and ϑ4’s become ϑ1’s. Thus, the second term in the

first line and the first term in the second line yields a ϑ1(τ) = 0 in the R sector. Thus, the

complete expression including the R sector is

1

2

(∣∣∣∣∣ϑ3(y|τ)ϑ3(z|τ)2ϑ3(τ)

η(τ)4
− ϑ4(y|τ)ϑ4(z|τ)2ϑ4(τ)

η(τ)4
+
ϑ2(y|τ)ϑ2(z|τ)2ϑ2(τ)

η(τ)4

∣∣∣∣∣
2

+

∣∣∣∣∣ϑ3(y|τ)ϑ3(z|τ)ϑ4(z|τ)ϑ4(τ)

η(τ)4
− ϑ4(y|τ)ϑ4(z|τ)ϑ3(z|τ)ϑ3(τ)

η(τ)4

± ϑ1(y|τ)ϑ1(z|τ)ϑ2(z|τ)ϑ2(τ)

η(τ)4

∣∣∣∣∣
2)

. (5.10)

The sign of the last term is ambiguous and can be chosen independently for left- and right-

movers. We will discuss the impact of the corresponding sign choice below. The zero-modes

(i.e. the coefficient of q
1
2 , which corresponds to the massless states) read

1

2

( ∣∣∣v + v−1 + 2(y + y−1) + 2 + (v
1
2 + v−

1
2 )(y

1
2 + y−

1
2 )2
∣∣∣2

+
∣∣∣v + v−1 − 2± (v

1
2 − v−

1
2 )(y

1
2 − y−

1
2 )(y

1
2 + y−

1
2 )
∣∣∣2 ) (5.11)

=
1

2

( ∣∣∣v−1(1 + v
1
2 y)(1 + v

1
2 y−1)(1 + v

1
2 )2
∣∣∣2

+
∣∣∣v−1(1∓ v

1
2 y)(1± v

1
2 y−1)(1 + v

1
2 )(1− v

1
2 )
∣∣∣2 ) . (5.12)

where v = e2πiu and y = e2πiz.

Let us discuss this result. The first term is the unprojected partition function. As one

can see, it factorizes into four factors, corresponding to the action of the four supercharges

of the large N = 4 SCA transforming in the representation 3 ⊕ 1 of su(2). Thus, the

partition function of AdS3×S3×S3×S1 is manifestly N = 4 supersymmetric. The second

term show that some of the supercharges are orbifolded out — they act trivially on the

BPS states. The positively charged supercharge G+
−1/2 is orbifolded out, provided that

we choose the plus-sign for both the left- and right-movers. For the other sign-choice the

negatively charged supercharge G−−1/2 is orbifolded out. The four possibilities on how to

perform the orbifold correspond precisely to the N = (3, 3), N = (3, 1), N = (1, 3) and

the N = (1, 1) theories discovered in [11]. The four possibilities also simply correspond

to the four possible superstring theories on the background, they are the four different

GSO-projections. We usually only talk about two different GSO-projections, but for this

background all four of them are inequivalent. For the background AdS3 × S3 × S3 × S1,

there was no sign-ambiguity, since we can T-dualize along the circle S1 to see that the type

IIA and IIB superstrings are in fact equivalent.

16We had to eliminate the two unorbifolded fermions in the light-cone gauge to be able to correctly

orbifold the theory.

– 18 –



J
H
E
P
0
7
(
2
0
1
8
)
1
4
3

From this partition function, we can also read off the action of the Z2 on the BPS states.

The BPS states have to be of the form (v
1
2u)`(v̄

1
2 ū)

¯̀
by virtue of the BPS bound (B.22).

We see that these are generated by the first of the four terms in the product. So the BPS

partition function reads
1

2

( ∣∣∣1 + v
1
2u
∣∣∣2 +

∣∣∣1∓ v 1
2u
∣∣∣2 ) . (5.13)

This precisely reproduces table 1. In the following we will restrict to the case where we

have N = (3, 3) supersymmetry.

To summarize, the supergravity BPS spectrum from the untwisted sector reads⊕
`∈Z≥0

[`]S ⊗ [`]S ⊕ [`+ 1]S ⊗ [`+ 1]S . (5.14)

Note that the su(2)-spin only takes integer values, since ` = `+ + `− = 2`+ ∈ Z. [`]S
denotes a short N = 3 character.

5.3 The Z2 twisted sector

In this subsection, we treat the Z2 twisted sector.

Let us begin with the twisted NS sector. For this, note that the worldsheet theory is

almost a symmetric product orbifold with two copies of Sk/2−2. In particular, the ground-

state energy of the twisted sector agrees with what was calculated in [1, Equation (D.8)]

for the twist-2 sector of the symmetric product orbifold and reads

h =
c

12
+

2

8k
=

2(k/2− 1)

2k
+

2

8k
=

2k − 3

4k
. (5.15)

The fermions χa are moded in 1
2Z in the twisted sector17 and the fermion λ is R-moded.

ψ is still NS-moded. We have four chiral fermionic zero-modes (i.e. we have also the four

right-moving zero-modes): χa0 and λ0. They transform in the representation 3⊕1 of su(2),

hence their zero-modes generate the 4 = 22-dimensional representation 2·2 of su(2). This is

the associated spinor representation of 3⊕1. Now we need to impose the GSO-projection.

This further reduces the representation to one copy of 2. The only state which has a chance

to be a BPS state is the highest weight state of this representation 2.

Its mass-shell condition reads as follows:

− 4j0(j0 − 1)

k
+

2`0(`0 + 1)

2k
+

2k − 3

4k
=

1

2
. (5.16)

Here, the first summand comes from the Casimir of sl(2,R). The second summand is the

standard contribution h/2 of the symmetric product orbifold: a state in the seed theory

always gives rise to a state in the twisted sector with the same quantum numbers and

the conformal weight divided by the twist. The third term is the ground-state energy we

17From the symmetric orbifold perspective there is only one set of χ’s. We could equally well still use the

combinations χ+,a + χ−,a and χ+,a − χ−,a. The former would be NS-moded, while the latter combination

is R-moded.
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explained above. Finally, we equate this with 1
2 , which is the normal-ordering constant in

the NS sector. Solving the mass-shell condition gives

j = j0 =
1

2
`0 +

3

4
=

1

2
`+

1

2
. (5.17)

So the state is not BPS.

Let us now consider the R sector. This makes a difference only for the 4 fermions

which get orbifolded, which receive a ground-state energy of − 1
16 instead of 1

16 . Thus, in

comparison to the above groundstate energy, we have to subtract 1
2 and obtain the following

ground-state energy of the twisted sector:

h =
2k − 3

4k
− 1

2
= − 3

4k
. (5.18)

The six unorbifolded fermions are still Ramond-moded. Only four are physical, they are

ψ± and χ+,± + χ−,±. Hence their zero-modes will generate the representation (2,2) of

sl(2,R) ⊕ su(2). So, the lowest weight state w.r.t. sl(2,R) and the highest weight state

w.r.t. su(2) has a chance of being BPS. This state has j = j0 − 1
2 and ` = `0 + 1

2 . The

mass-shell condition is almost identically as before, it reads:

− 4j0(j0 − 1)

k
+

2`0(`0 + 1)

2k
− 3

4k
= 0 . (5.19)

Its solution is again j0 = 1
2`0 + 3

4 , which this time implies

j = j0 −
1

2
=

1

2
`0 +

1

4
=

1

2
` . (5.20)

This agrees with the BPS bound (B.22) and so we have found a BPS state in the

twisted sector. This state has to be preserved by the GSO-projection, since otherwise the

states would not arrange themselves into N = 3 multiplets. In fact, we now see that the

massless states of the NS sector and the R sector precisely generate the short representation

[j]S = [j0− 1
2 ]S of the global N = 3 algebra. Thus, we also manifestly see that all massless

states are in fact orbifold-invariant.18

Now let us now determine the multiplicity of the twisted sector state. It turns out

to be 2, as we now explain. The orbifold action has two fixed submanifolds, coming from

the fact that the Z2-action on S1 has two fixed points. Both of these fixed manifolds are

associated with a twisted sector. In fact, the BPS states should precisely correspond to the

new cohomology classes of these two singular loci. One can see this also on the character

level. For an orbifold of a free compactified boson, the twisted sector has a multiplicity of

2, as discussed e.g. in [33].

Since these are the only states at the massless level, this is the complete list of BPS

states. Note that the conformal weight of the BPS states in the twisted sector is in 1
4Z>0.

There is no dependence on k, as it was the case for [8]. Thus, we expect the theory to be

18One can again show this directly by using a character argument as we did above for the untwisted

sector.
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spacetime-supersymmetric for all values of k.19 Hence the BPS spectrum of the twisted

sector reads: ⊕
`∈ 1

2
Z>0

2[`]S ⊗ [`]S . (5.21)

The lower bound on the spin comes from the relation ` = `0 + 1
2 and `0 ≥ 0. Note that the

su(2)-spin in the twisted sector can take any half-integer value. This is in contrast to the

untwisted sector, where the su(2)-spin was integer.

5.4 Summary and comparison

We finally conclude that the complete BPS spectrum from string theory in the limit k →∞
is given by⊕
`∈Z≥0

[`]S⊗[`]S⊕2

([
`+

1

2

]
S

⊗
[
`+

1

2

]
S

)
⊕
(
[`+1]S⊗[`+1]S

)
⊕

⊕
`∈Z≥0+ 1

2

2

([
`+

1

2

]
S

⊗
[
`+

1

2

]
S

)
.

(5.22)

We have written the result in a suggestive way, whose meaning will become apparent below.

In the language of half-integer Hodge-diamonds introduced above, the BPS spec-

trum reads
...

0 0

2

0 0

2

0 0

1

⊕

...

2

2

2

2

2

0

=

...

0 2 0

4

0 2 0

4

0 2 0

1

, (5.23)

where the first and the second terms on the l.h.s. correspond to the Z2 untwisted and

twisted sectors, respectively. This matches precisely eq. (3.15) and hence gives a strong

test of the proposed duality. This also provides another strong test of the recent proposal

of [1] of the large N = 4 duality between string theory on AdS3 × S3 × S3 × S1 and the

symmetric orbifold of Sκ in the case of κ = 0.

When repeating the BPS analysis for finite k, we find the same BPS spectrum with

upper cutoff in the conformal weight of the dual CFT c
12 , where c is the Brown-Henneaux

central charge given in (2.4). Additionally, there are some BPS states missing. This is much

in parallel of the situation for all other AdS3/CFT2 dualities and is discussed in [1, 34].

The upper cutoff matches with what we have concluded at the end of section 3.4.3.

6 Elliptic genus in string theory

In this section, we will compute the space-time elliptic genus following [8] and [29]. There

are some additional subtleties arising, as mostly already explained in section 4. In space-

time, we compute what we called the “modified” ÑS elliptic genus in section 4. We distin-

guish the Z2 untwisted and twisted sector contributions.

19Of course, k is still even due to our choice of conventions.
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The elliptic genus is sensitive to all states of the form |anything〉 ⊗ |chiral primary〉.
Because of this, we need to know the complete massless spectrum to compute the elliptic

genus. From an N = 3 perspective, not all massless fields sit in short multiplets, so the

comparison is a check of the proposal beyond the BPS spectrum.

6.1 The Z2 untwisted sector

We first treat the untwisted sector. We worked out in section 5 the BPS spectrum of the

untwisted sector. For convenience, we reproduce here formula (5.14):⊕
`∈Z≥0

(
[`]S ⊗ [`]S

)
⊕
(
[`+ 1]S ⊗ [`+ 1]S

)
. (6.1)

There are further BPS states in the background AdS3×S3×S3×S1, which are Z2-odd and

are projected out when taking the orbifold. These are the states in (5.7) missing in (5.14):⊕
`∈Z≥0

(
[`+ 1]S ⊗ [`]S

)
⊕
(
[`]S ⊗ [`+ 1]S

)
. (6.2)

In the background AdS3 × S3 × S3 × S1, these states are highest weight states of short

N = 4 multiplets.20 When acting with the Z2-orbifold, every second state of the short

N = 4 multiplet is projected out. This is described on the level of the characters in detail

in appendix B. As a consequence, the untwisted string theory elliptic genus can be naturally

decomposed in terms of these characters.

The supergravity elliptic genus is defined as

Zsp(z, τ) = trNS⊗NS chiral primary

(
(−1)FqL0yJ0

)
. (6.3)

Note that we have not included the ground-state energy − c
24 , since it diverges in the limit

k →∞. This is analogous to what we have done in the CFT computation. J0 denotes the

Cartan-generator of the su(2)k-algebra. ‘sp’ stands for single-particle, since we restrict to

the single-particle sector of supergravity. This is then compared with the single-particle

contribution from the CFT.

When restricting to massless fields, we obtain the following contribution from the

untwisted sector to the elliptic genus:

ZUZ2 (z, τ) =
∞∑
`=0

(
χ̃
N=4, (−1)F

`
2

(z, τ)−
[
χ
N=4, (−1)F

`
2
, `
2

(z, τ)− χ̃N=4, (−1)F

`
2

(z, τ)

]
+ χ̃

N=4, (−1)F

`+1
2

(z, τ)−
[
χ
N=4, (−1)F

`+1
2
, `+1

2

(z, τ)− χ̃N=4, (−1)F

`+1
2

(z, τ)

])
. (6.4)

The characters χ̃N=4
` (z, τ) are the orbifolded N = 4 characters with orbifold even highest

weight state as given in appendix B.6. Since two of the BPS states for each ` are orbifold

even, this contributes the first term in both lines. The terms inside the square brackets

20Additionally, there are also long N = 4 multiplets with `+ 6= `−, but these are long for both the left-

and right-movers and hence do not contribute to the elliptic genus.
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come from the orbifold odd highest weight state, in which case the orbifold odd states of

the large N = 4 multiplet survive. Since we are computing the elliptic genus, we have to

insert an additional (−1)F, which we have indicated in the characters.

When inserting the explicit formulas of the characters as derived in appendix B, many

cancellations occur and we end up with

ZUZ2 (z, τ) =
2

1− yq
1
2

+
2

1− y−1q
1
2

− 3 , (6.5)

which precisely matches (4.15). Note that from a symmetric orbifold perspective, there are

no untwisted BPS states in the even twist sectors, so the subtlety with fermion zero modes

does not come into play.

6.2 The Z2 twisted sector

Recall from (5.21) the BPS spectrum of the twisted sector:⊕
`∈ 1

2
Z>0

2[`]S ⊗ [`]S . (6.6)

In the twisted sector, the massless states sit only in short N = 3 multiplets, as one can see

directly from the string theory discussion. Hence the analogue of (6.4) is

ZTZ2 (z, τ) =
∑

`∈ 1
2
Z>0

(
ε
(1)
` + ε

(2)
`

)
χ
N=3, (−1)F

` (z, τ) . (6.7)

The character formulas for the N = 3 algebra can again be found in appendix B and the

(−1)F is easily inserted.

Here, a difficulty arises. We have inserted two constants ε
(1)
` and ε

(2)
` for the two

BPS states, which take value in ±1, depending on whether the BPS states are bosonic or

fermionic. This is difficult to fix from a string theory perspective and we were not able to

do so. Instead we fix the fermion numbers holographically by comparison with the dual

CFT. We note that ` ∈ Z+ 1
2 corresponds in the dual CFT to odd twist and ` ∈ Z to even

twist. We have seen in section 3 and 4 that for odd twists the two BPS states are both

bosons. On the other hand, for even twist, they have opposite fermion numbers due to the

existence of fermion zero-modes and hence cancel out. We thus conclude that the correct

choices for the constants ε
(i)
` are

ε
(1)
` = 1 , ε

(2)
` = (−1)2`+1 . (6.8)

Because of this, only terms with ` ∈ Z + 1
2 contribute to the sum (6.7). The N = 3

characters can now be inserted and we finally obtain

ZTZ2 (z, τ) = 2
∑

`∈ 1
2
Z≥0+ 1

2

χ
N=3, (−1)F

` (z, τ) (6.9)

=
2y

1
2 q

1
4

1− yq
1
2

+
2y−

1
2 q

1
4

1− y−1q
1
2

. (6.10)

This is in perfect agreement with (4.16).
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7 Conclusions

In this paper, we considered string theory on AdS3×(S3×S3×S1)/Z2 and conjectured it to

be dual to the symmetric orbifold of the S0/Z2 theory. This proposal is in the spirit of [8].

The background we have looked at is interesting for a variety of reasons. In particular,

it supports N = (3, 3) supersymmetry, which allows for a BPS spectrum and a non-

vanishing elliptic genus and quantizes the conformal weights of BPS states. Thus the

background is sufficiently complicated for indices not to vanish, but easy enough to have

good control over protected quantities.

In our proposed duality, we matched the BPS spectrum on both sides and found

agreement. This was particularly non-trivial in the twisted sector of the Z2-orbifold, where

new BPS states arise. This matching gives also substantial new evidence for the proposal

in [1] that string theory on AdS3 × S3 × S3 × S1 should be dual to the symmetric product

of Sκ (a generalization of the theory S0 discussed in this paper), at least in the case when

the two spheres have equal size. While in the large N = 4 case the elliptic genus vanishes,

it is non-vanishing after taking the orbifold. The comparison allowed us to perform a test

of our proposal and of the large N = 4 duality beyond the BPS spectrum.

Let us comment on the rôle of higher spin algebras in this duality. In [35], the higher

spin symmetry in the large N = 4 duality was elucidated. While the symmetric product

orbifold of S0 does not possess a N = 4 supersymmetric higher spin algebra, one can still

define two different kinds of higher spin algebras. First, it supports an N = 2 super-

symmetric higher spin algebra, which can be seen by bosonisation of the two uncharged

fermions in S0 [1]. This N = 2 higher spin algebra is invariant under the Z2-orbifold.

Another approach was investigated in [35], which breaks all supersymmetry, but keeps the

R-symmetry explicit. This yields the higher spin algebra ho(4|1)[0] in the case of S0, which

is broken down to ho(3|1)[0] when taking the Z2-orbifold. This shows that the higher spin

dualities of [36] are not directly embeddable in the stringy duality, similar to what was

concluded in the large N = 4 case for the higher spin duality of [31].

Several directions for future research seem promising. We have mentioned in the main

text that two moduli emerge from the twisted sector of the Z2-orbifold. This indicates

that the background geometry might become smooth after turning on these moduli. This

would yield an N = 3 supergravity background. To the best of our knowledge, no such

background is known in the supergravity literature.

The new modulus implies also the existence of a non-trivial moduli space of supersym-

metric vacua, whose comparison on both sides of the duality would give further evidence

for the proposed duality. For string theory on AdS3 × S3 × T4 and AdS3 × S3 × K3, this

was done in [37].

We have not tried to engineer the background by employing a D-brane construction.

This was partly done in [11], but it would be interesting to understand the gauge theory

better and show that it has N = (3, 3) supersymmetry, see [14].

One could hope to realise the background as a near-horizon limit of a black hole. Since

the modified elliptic genus is non-vanishing, matching black hole entropies would then

become possible.
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Finally, it would be interesting to study the stringy duality on AdS3×(S3×S3×S1)/Z2

backgrounds with N = (3, 1), (1, 3), and (1, 1) supersymmetries further. The N = 1 theory

does not contain a BPS spectrum. However, as discussed in section 3.3, since the states

in table 1 are obtained from the action of Z2 on chiral primaries of the large N = 4 SCA,

one still believes that they are protected. It seems natural then to conjecture that the

CFTs dual to these configurations are again the symmetric orbifold SymN (S0/Z2) with

appropriate supersymmetry content. Furthermore, it would be interesting to determine

and compute non-supersymmetric indices which will shed further light on the proposed

family of stringy dualities, see e.g. [38] for recent work. We hope to study some of these

issues in the near future.
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A The S0 theory

In this appendix we present the free field realisation of the generating currents of the S0

theory, see [1, appendix C] for the field content of Sκ theories in general. The S0 theory

has one real boson ∂φ and four real fermions ψµν and supports the large N = 4 SCA. The

indices µ, ν ∈ {±} are bispinor indices of su(2)+⊕ su(2)−. The R-symmetry currents A±,a

are of the form:

A+,+
m =

∑
r

ψ+−
r ψ++

m−r , A+,−
m =

∑
r

ψ−−r ψ−+
m−r , (A.1)

A+,3
m =

1

2

∑
r

(: ψ++
r ψ−−m−r : + : ψ+−

r ψ−+
m−r :) , (A.2)

A−,+m =
∑
r

ψ++
r ψ−+

m−r , A−,−m =
∑
r

ψ+−
r ψ−−m−r , (A.3)

A−,3m =
1

2

∑
r

(: ψ++
r ψ−−m−r : − : ψ+−

r ψ−+
m−r :) . (A.4)

where we consider the complex basis a ∈ {±, 3} which is related to the basis i ∈ {1, 2, 3} in

appendix B.1.1 as A±,a ≡ A±,1 ± iA±,2. The supercurrents, stress-energy tensor, the u(1)
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current, and the free fermions read

G++
r =

∑
r

ψ++
s αr−s + i

∑
s,t

: ψ++
t ψ+−

s ψ−+
r−s−t : , (A.5)

G+−
r =

∑
r

ψ+−
s αr−s − i

∑
s,t

: ψ++
t ψ+−

s ψ−−r−s−t : , (A.6)

G−+
r = −

∑
r

ψ−+
s αr−s + i

∑
s,t

: ψ++
t ψ−−s ψ−+

r−s−t : , (A.7)

G−−r =
∑
r

ψ−−s αr−s + i
∑
s,t

: ψ+−
t ψ−−s ψ−+

r−s−t : , (A.8)

Ln =
1

2

∑
m

: αmαn−m : +
∑
r

(n
2
− r
)

(: ψ++
r ψ−−n−r : + : ψ+−

r ψ−+
n−r :) , (A.9)

Um = αm , (A.10)

Qµνr = ψµνr , (A.11)

where αm denote the boson modes. The (anti-)commutation relations of these fields repro-

duce (B.1)–(B.10) for k+ = k− = 1.

B Large N = 4 and N = 3 superalgebras and characters

B.1 Superconformal algebras

B.1.1 Large N = 4 SCA

The large N = 4 SCA comes in two guises, commonly referred to as Aγ and Ãγ in the

literature. We will use the ‘linear’ version Aγ . It contains, beyond the four supercurrents,

the generators of the R-symmetry su(2)k+ ⊕ su(2)k− ⊕ u(1), which we denote by A±,i and

U , respectively, for i = 1, 2, 3 denoting adjoint indices of su(2)k± . In bispinor notation, the

algebra reads

[Um, Un] =
k+ + k−

2
mδm,−n (B.1)

[A+,i
m , Qµνr ] =

1

2
(σi) µ

ρ Qρνm+r (B.2)

[A−,im , Qµνr ] =
1

2
(σi) ν

ρ Qµρm+r (B.3)

{Qµνr , Qρτs } = (k+ + k−) εµρεντ δr,−s (B.4)

[A±,im , A±,jn ] =
k±

2
mδij δm,−n + i εijlA±,lm+n (B.5)

[Um, G
µν
r ] = imQµνm+r (B.6)

[A+,i
m , Gµνr ] =

1

2
(σi) µ

ρ Gρνm+r + (1− γ)m (σi) µ
ρ Qρνm+r (B.7)

[A−,im , Gµνr ] =
1

2
(σi) ν

ρ Gµρm+r − γ m (σi) ν
ρ Qµρm+r (B.8)

{Qµνr , Gρτs } = 2 εµπ(σi)
ρ
π ε

ντ A+,i
r+s − 2ενπ(σi)

τ
π εµρA−,ir+s + 2i εµρεντ Ur+s (B.9)
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{Gµνr , Gρτs } = − 2c

3
εµρεντ

(
r2 − 1

4

)
δr,−s − 4εµρεντ Lr+s

+ 4 (r − s)
(
γ εµπ(σi) ρ

π ε
ντ A+,i

r+s + (1− γ) ενπ(σi) τ
π εµρA−,ir+s

)
. (B.10)

The central charge c and the parameter γ are given by

γ =
k−

k+ + k−
, c =

6k+k−

k+ + k−
. (B.11)

Here, greek indices µ, ν, . . . are spinor indices and get as usual raised and lowered by the

epsilon symbol εµν , which we have indicated explicitly. σi denotes the Pauli matrices,

i.e. the two-dimensional spinor representation of su(2).

B.1.2 N = 3 SCA

The N = 3 SCA also has a linear and a non-linear version [26]. In analogy with the case

of the large N = 4 SCA discussed in B.1.1, we are interested in the linear version of the

algebra (see appendix B.2.2 for more details). The N = 3 SCA is a subalgebra of Aγ for

γ = 1
2 . Using equation (B.11), this yields k+ = k−. We define k ≡ k+ + k− = 2k+ = 2k−.

The generators of the linear N = 3 algebra are {Gi, Ai, Q}. The three supercurrents,

Gi, are related to the supercurrents of the large N = 4 SCA as

Gir ≡
1

2
(σi)µνG

µν
r . (B.12)

As for the R-symmetry group, we keep the diagonal su(2)k whose associated currents are

Ai ≡ A+,i +A−,i. (B.13)

The index i ∈ {1, 2, 3} corresponds to the adjoint representation of su(2)k. Finally, we keep

the free fermion

Q ≡ 1

2
εµνQ

µν
r =

1

2
(Q+−

r −Q−+
r ). (B.14)

The commutation relations read

[Aim, Qr] = 0 (B.15)

{Qr, Qs} =
k

2
δr,−s (B.16)

[Aim, A
j
n] =

k

2
mδij δm,−n + i εijlA±,lm+n (B.17)

[Aim, G
j
r] = iεijkGkm+r +mδijQm+r (B.18)

{Qr, Gis} = Air+s , (B.19)

{Gir, Gjs} =
k

2

(
r2 − 1

4

)
δijδr,−s + 2δij Lr+s + (r − s) iεijk Akr+s . (B.20)

The central charge is then c = 3
2k.
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B.2 Representations

B.2.1 Large N = 4 SCA

The representations of the large N = 4 SCA are labelled by the quantum numbers

(h, `+, `−, u), which correspond to the conformal weight, the two su(2) spins, and the

u(1) charge, respectively. In terms of these, the BPS bound reads

h ≥ k−`+ + k+`− + (`+ − `−)2 + u2

k+ + k−
. (B.21)

For more details, see e.g. [31].

B.2.2 N = 3 SCA

The BPS bound for the linear N = 3 SCA is the same as that of the non-linear N = 3

algebra and reads

h ≥ `

2
. (B.22)

The representations of the N = 3 SCA are labelled by (h, `). Notice that this BPS bound

means in particular that the conformal weight of BPS states takes quarter-integer values.

When realizing the N = 3 SCA as a subalgebra of the large N = 4 SCA with k+ = k−,

we can decompose a representation (h, `+, `−, u) into N = 3 representations. In particular,

we obtain the representation (h, `+ + `−) on the ground state. Note that the N = 3 BPS

bound does not agree with the N = 4 BPS bound except for `+ = `− and u = 0.

B.3 The global subalgebras

We will now discuss the global (or ‘wedge’) subalgebras of the relevant superconformal

algebras. These are generated by all modes annihilating the in-, as well as the out-vacuum.

These are the modes with mode numbers −h < m < h, where h is the conformal weight of

the respective field. In particular, the free fermions are invisible in the global subalgebra.

The u(1)-current U0 of the large N = 4 SCA becomes central and decouples from the

algebra. The resulting global subalgebra is known as the exceptional Lie superalgebra

d(2, 1;α), where the parameter α is related to γ by

α =
γ

1− γ
. (B.23)

In the important case γ = 1
2 or α = 1, we have another description thanks to the isomor-

phism d(2, 1;α = 1) ∼= osp(4|2). The field content of this Lie superalgebra is seen to be

correct, the bosonic subalgebra is sp(2) ⊕ so(4) ∼= su(2) ⊕ su(2) ⊕ su(2). The first su(2)

is generated by the energy-momentum tensor (or rather its non-compact version sl(2,R)).

The other two su(2)’s describe the R-symmetry. The fermions transform in the representa-

tion (2,4) ∼= (2,2,2) of these algebras. This is indeed the correct transformation behaviour

of the supercharges.

The Z2-quotient we performed above can also be seen on the global superalgebra. It

corresponds to interchanging the two su(2)-factors of so(4). The fixed point algebra is
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h+ 2 (`+, `−)

h+ 3
2 (`+ + 1

2 , `
− + 1

2)(`+ + 1
2 , `
− − 1

2)(`+ − 1
2 , `
− + 1

2)(`+ − 1
2 , `
− − 1

2)

h+ 1 (`+ + 1, `−) (`+, `− + 1) 2(`+, `−) (`+ − 1, `−) (`+, `− − 1)

h+ 1
2 (`+ + 1

2 , `
− + 1

2)(`+ + 1
2 , `
− − 1

2)(`+ − 1
2 , `
− + 1

2)(`+ − 1
2 , `
− − 1

2)

h (`+, `−)

Table 2. The multiplet structure of a long d(2, 1;α)-multiplet.

then given by osp(3|2), which is the global subalgebra of the N = 3 SCA. The bosonic and

fermionic field content matches again the one we listed above.

As an aside, we mention the following two facts. We may ask whether there are other

values of α for which d(2, 1;α) has an outer automorphism by which we can orbifold.

These outer automorphisms of d(2, 1;α) are listed in [39]. When requiring in addition that

α ∈ Q≥0, in which case we can extend the algebra to the largeN = 4 SCA a unitary manner,

only α = 1 has the non-trivial outer automorphism group Z2 by which we orbifolded above.

The construction generalizes however to higher rank. The Lie superalgebra osp(2m|2n)

has still outer automorphism group Z2. This outer automorphism can be described by the

Adjoint representation of an element of superdeterminant −1 in OSP(2m|2n) on its Lie

algebra. If we orbifold by this Z2, the fixed point algebra becomes osp(2m − 1|2n) [40].

For n = 1, this was discussed in [36]. The case n > 1 might be relevant for higher spin

algebras with extended supersymmetry.

B.4 d(2, 1;α) characters

In this subsection, we will discuss the characters of the global large N = 4 superalgebra

d(2, 1;α). In our situation of interest, we only need α = 1, but the characters are generically

independent of the value of α.21 We have two chemical potentials z± (with y± = e2πiz±

associated to the two su(2)±’s). Furthermore, we have the usual chemical potential τ (with

q = e2πiτ ) associated to the third su(2), which is the Möbius subalgebra of the Virasoro

algebra. We shall denote an su(2)-character by χ`(z):

χ`(z) =
y`+

1
2 − y−`−

1
2

y
1
2 − y−

1
2

. (B.24)

A long d(2, 1;α)-multiplet has the form shown in table 2. Thus, its character reads:

χN=4
h,`+,`−(z±, τ) =

qh

1− q

((
1 + q2

)
χ`+(z+)χ`−(z−) +

(
q

1
2 + q

3
2
)(
χ`++ 1

2
(z+)χ`−+ 1

2
(z−)

+ χ`++ 1
2
(z+)χ`−− 1

2
(z−) + χ`+− 1

2
(z+)χ`−+ 1

2
(z−)

+ χ`+− 1
2
(z+)χ`−− 1

2
(z−)

)
21This is of course not the case for the superconformal characters described in detail in [41, 42].
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h+ 3
2 (`+ − 1

2 , `
− − 1

2)

h+ 1 (`+, `−) (`+ − 1, `−) (`+, `− − 1)

h+ 1
2 (`+ + 1

2 , `
− − 1

2) (`+ − 1
2 , `
− + 1

2) (`+ − 1
2 , `
− − 1

2)

h (`+, `−)

Table 3. The multiplet structure of a short d(2, 1;α)-multiplet.

+ q
(
χ`++1(z+)χ`−(z−) + χ`+(z+)χ`−+1(z−) + χ`+−1(z+)χ`−(z−)

+ χ`+(z+)χ`−−1(z−) + 2χ`+(z+)χ`−(z−)
))

(B.25)

=
qhχ`+(z+)χ`−(z−)

1− q
∏

ε+,ε−=±

(
1 + y

1
2
ε+

+ y
1
2
ε−
− q

1
2
)
. (B.26)

In the last formulation, the action of the four supercharges is made manifest. There are

some exceptions to the multiplet structure displayed in table 2 when either `+ < 1 or

`− < 1, according to the tensor product rules of su(2)-representations. However, eq. (B.26)

remains true even for low spins.

Similarly, a short multiplet has the structure shown in table 3 with a character

χN=4
`+,`−(z±, τ) =

qhBPS

1− q

(
χ`+(z+)χ`−(z−) + q

1
2
(
χ`+− 1

2
(z+)χ`−− 1

2
(z−)

+ χ`+− 1
2
(z+)χ`−+ 1

2
(z−) + χ`++ 1

2
(z+)χ`−− 1

2
(z−)

)
+ q
(
χ`+−1(z+)χ`−(z−) + χ`+(z+)χ`−−1(z−)

+ χ`+(z+)χ`−(z−)
)

+ q
3
2χ`+− 1

2
(z+)χ`−− 1

2
(z−)

)
(B.27)

= qhBPS
∑

η+,η−=±1

η+η−y
η+(`++ 1

2
)

+ y
η−(`−+ 1

2
)

−

(1− q)(y
1
2
+ − y

1
2
+)(y

1
2
− − y

1
2
−)

∏
ε+,ε−=±

(ε+,ε−) 6=(η+,η−)

(
1 + y

1
2
ε+

+ y
1
2
ε−
− q

1
2
)
.

(B.28)

The conformal weight saturates the BPS bound

hBPS(`+, `−) =
k−`+ + k+`−

k+ + k−
. (B.29)

This is the k± →∞ limit of (B.21), as befits the BPS bound of the global subalgebra. In

the formulation (B.28), one can see that one of the supercharges always acts trivially. This

formula also holds true for small spin `+, `−. The multiplet structure of these exceptional

cases is treated in [5].

B.5 N = 3 characters

We repeat a similar analysis for the characters of osp(3|2), the global algebra of the N = 3

SCA. A long multiplet has the structure displayed in table 4. Now states arrange themselves
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h+ 3
2 `

h+ 1 `− 1 ` `+ 1

h+ 1
2 `− 1 ` `+ 1

h `

Table 4. The multiplet structure of a long osp(3|2)-multiplet.

h+ 1 `− 1

h+ 1
2 `− 1 `

h `

Table 5. The multiplet structure of a short osp(3|2)-multiplet.

into su(2)-multiplets. We denote the chemical potential of the su(2) by z. The the long

character N = 3 hence equals

χN=3
h,` (z, τ) =

qh

1− q

((
χ`(z) + q

3
2
)

+
(
q

1
2 + q

)(
χ`+1(z) + χ`(z) + χ`−1(z)

))
(B.30)

=
qhχ`(z)

1− q
(
1 + q

1
2
) ∏
ε=±

(
1 + yεq

1
2
)
. (B.31)

The factorized form again encompasses also low-lying special cases.

Finally, a short representation of osp(3|2) has the form displayed in table 5. Hence, its

character reads

χN=3
` (z, τ) =

qhBPS

1− q

(
χ`(z) + q

1
2
(
χ`(z) + χ`−1(z)

)
+ qχ`−1(z)

)
(B.32)

= qhBPS
∑
η=±

ηyη(`+ 1
2

)

(1− q)(y
1
2 − y−

1
2 )

(
1 + q

1
2
) ∏
ε=±
ε 6=η

(
1 + yεq

1
2
)
. (B.33)

Again, one of the supercharges acts trivially. The BPS bound hBPS(`) = `
2 is saturated.

This again encompasses low-lying special cases.

B.6 The branching osp(4|2) −→ osp(3|2)

As explained in the previous subsection, the global N = 3 algebra osp(3|2) is a natural

subalgebra of the global large N = 4 algebra d(2, 1;α = 1) ∼= osp(4|2). Hence, there should

be an associated branching rule, which we can determine on the level of the characters.

Since, the subalgebra osp(3|2) preserves the diagonal su(2), we set the chemical potentials

z ≡ z+ = z−. From the expressions of the characters we gave above, the branching rules

for a long osp(4|2) representation are

χN=4
h,`+,`−(z, τ) =

`++`−∑
`=|`+−`−|, `++`−−`∈Z

(
χN=3
h,` (z, τ) + χN=3

h+ 1
2
,`

(z, τ)
)
. (B.34)
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These branching rules are more or less directly inherited from the su(2) tensor product

decomposition. For a short osp(4|2)-multiplet, we have

χN=4
`+,`−(z, τ) =

`++`−∑
`=|`+−`−|,`++`−−`∈Z

χN=3
hBPS(`+,`−),`(z, τ) . (B.35)

The top summand is a short multiplet. Indeed, it has h = 1
2`

+ + 1
2`
− = 1

2` and hence

saturates the N = 3 BPS bound.

B.7 The orbifold action on the characters

We have seen above that the osp(3|2)-subalgebra may be described by the fixed point set

of an involution acting on osp(4|2), which interchanges the two su(2)-factors of so(4) ∼=
su(2)⊕ su(2). Correspondingly, there is a Z2-action on the representations of osp(4|2) and

so on the characters. It is clear that a character χN=4
h,`+,`− is mapped to χN=4

h,`−,`+ under the

Z2-action. Hence, for `+ 6= `−, the fixed points are simply symmetric or antisymmetric

combinations of the two representations. The question becomes much more interesting for

`+ = `−, which is mapped to itself under the orbifold action. su(2)⊕ su(2)-representations

(`+, `−) are again mapped to (`−, `+) under the orbifold action. This is the reason why they

always have to appear in pairs in the N = 4 characters. For the su(2)⊕su(2)-representation

(`, `), the orbifold even part is seen to be

1

2
χ`(z)χ`(z) +

1

2
χ`(2z) , (B.36)

whereas the orbifold odd part is

1

2
χ`(z)χ`(z)− 1

2
χ`(2z) . (B.37)

We have set the chemical potentials equal, since the orbifold-fixed part transforms only

under the diagonal su(2). Remember also that one uncharged supercharge is orbifold odd,

whereas the other three supercharges are orbifold even. Thus, the invariant part of a long

osp(4|2)-character χN=4
h,`,` is

χ̃N=4
h,` (z, τ) =

qh

1− q

(
1

2

(
1 + q2

)
χ`(z)χ`(z) +

1

2

(
1− q2

)
χ`(2z)

+
(
q

1
2 + q

3
2
)(1

2
χ`+ 1

2
(z)χ`+ 1

2
(z) + χ`+ 1

2
(z)χ`− 1

2
(z) +

1

2
χ`− 1

2
(z)χ`− 1

2
(z)

)
+

1

2

(
q

1
2 − q

3
2
)
(χ`− 1

2
(2z) + χ`+ 1

2
(2z)

)
+ q
(
χ`+1(z)χ`(z) + χ`−1(z)χ`(z) + χ`(z)χ`(z)

))
(B.38)

= qh
(
1 + q

1
2

)
χ`(z)χ`(z) +

(
1− q

1
2

)
χ`(2z)

2(1− q)
∏
ε=0,±

(
1 + yεq

1
2
)
. (B.39)
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In the last formulation, we see again the three orbifold even supercharges manifestly. The

last supercharge is orbifold odd, which is why we have to keep also the orbifold odd part

of the su(2)⊕ su(2)-multiplet, when it is applied.

The corresponding formula for a short N = 4 representation reads

χ̃N=4
` (z, τ) =

qh

1− q

(
1

2
χ`(z)χ`(z) +

1

2
χ`(2z) + q

1
2

(
χ`+ 1

2
(z)χ`− 1

2
(z) +

1

2
χ`− 1

2
(z)χ`− 1

2
(z)

+
1

2
χ`− 1

2
(2z)

)
+ q

(
χ`−1(z)χ`(z) +

1

2
χ`(z)χ`(z)− 1

2
χ`(2z)

)
+

1

2
q

3
2 (χ`− 1

2
(z)χ`− 1

2
(z)− χ`− 1

2
(2z))

)
(B.40)

=
qh
(
1 + q

1
2

)
2(1− q)

(
y

1
2 − y−

1
2

)(∑
η=±

yη(2`+ 3
2

)
(
1 + y−ηq

1
2

)2
y − y−1

−
∏
ε=±

(
1 + yεq

1
2

)
y

1
2 − y−

1
2

)
.

(B.41)

Here, the interpretation of this formula becomes less clear. It holds however again also for

low spins.

Finally, we check that this procedure of taking the orbifold even part preserves the

N = 3 decomposition (B.34) and (B.35). We have the following formulas for the long and

short characters, respectively:

χ̃N=4
h,` (z, τ) =

2∑̀
`′=0, 2`−`′∈2Z

χN=3
h,` (z, τ) +

2∑̀
`′=0, 2`−`′∈2Z+1

χN=3
h+ 1

2
,`

(z, τ) , (B.42)

χ̃N=4
` (z, τ) =

2∑̀
`′=0, 2`−`′∈2Z

χN=3
hBPS,`

(z, τ) . (B.43)

In the second line, the top component of the summand is again a short character.

C Symmetric orbifold of S0/Z2

C.1 BPS spectrum of SymN(S0/Z2)

C.1.1 Odd twisted sector of SymN(S0/Z2)

Z2 untwisted sector: the ground state has conformal dimension and R-charge [22]:

h = h̄ =
c

24

(
n− 1

n

)
=

1

8

(
n− 1

n

)
, ` = ¯̀= 0 . (C.1)

To construct BPS states, we act on the ground state with fermionic excitations to increase

the conformal dimension and the u(1)-charge such that they saturate the BPS bound

h = `
2 . The only field which brings us closer to the BPS bound is ψ++

r . Since fermions

are fractionally moded in the symmetric orbifold twisted sector, we can construct the

following state:

ψ++
− 1

2
+ 1
n

ψ++
− 1

2
+ 2
n

· · ·ψ++
− 1

2
+n−1

2n

ψ̃++
− 1

2
+ 1
n

ψ̃++
− 1

2
+ 2
n

· · · ψ̃++
− 1

2
+n−1

2n

|σ〉 , (C.2)
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where |σ〉 is the symmetric orbifold ground state in the twist-n sector and ψ̃ correspond to

the right-moving fermions. This state has conformal weight and R-charge

h = h̄ =
1

8

(
n− 1

n

)
+

n−1
2∑

k=1

(
1

2
− k

n

)
=
n− 1

4
, ` = ¯̀=

n− 1

2
, (C.3)

and so is a BPS state. Moreover, it is orbifold even since we have an even number of

fermionic excitations (n ∈ Zodd>0). On top of this BPS state, we can apply ψ++
−1/2ψ̄

++
−1/2 to

obtain another BPS state. These contribute to BPS states with h = h̄ = `
2 =

¯̀

2 = n+1
4 .

We cannot apply only one fermion since the resulting state would not be orbifold even.

Z2 twisted sector: in the Z2-twisted sector, each boson and each fermion contribute

to a factor of q
1
16 to the ground-state energy in the NS sector. The seed theory has then

the ground-state energy 1
16 + 3 × 1

16 = 1
4 (the factor of 3 corresponds to the fact that 3

out of 4 free fermions are orbifolded under the Z2). Thus, in the nth twisted sector of the

symmetric orbifold, we have an additional contribution of 1
4n to the ground-state energy.

The zero modes shift the u(1)-charge by 1
2 . On top of this, we apply now the following

fermionic oscillators:

ψ++
− 1
n

ψ++
− 2
n

· · ·ψ++
−n−1

2n

ψ̃++
− 1
n

ψ̃++
− 2
n

· · · ψ̃++
−n−1

2n

|σ̃〉 , (C.4)

where |σ̃〉 is the ground state of the Z2 twisted sector of the symmetric orbifold. We note

that the fermions ψ++ are integer-moded in the Z2 twisted sector. The total weight and

R-charges then read:

h = h̄ =
1

4n
+

1

8

(
n− 1

n

)
+

n−1
2∑

k=1

(
k

n

)
=
n

4
, ` = ¯̀=

n− 1

2
+

1

2
=
n

2
, (C.5)

which saturate the BPS bound. The Z2 twisted sector has multiplicity 2, so we obtain two

BPS states from them, see eq. (3.10).

C.1.2 Even twisted sector of SymN(S0/Z2)

Z2 untwisted sector: the ground-state energy of the even twist-n sector of the symmet-

ric orbifold is given by:

h = h̄ =
(cb + cf)n

24
+

(
− cb

24n
+

cf

12n

)
=
cb

24

(
n− 1

n

)
+
cf

24

(
n+

2

n

)
, (C.6)

where cb and cf correspond to the boson and fermion central charges, see [30, eqs. (A.5) and

(A.9)] and [1, appendix D.2]. In the even twisted sector of the symmetric orbifold, fermions

have a different boundary condition than the bosons and their ground-state energies are

consequently different [22]. We have thus expressed the contributions from bosonic and

fermionic fields separately in the above expression.22

22We note that for n = 2, the ground-state energies of a boson and an NS fermion are the same since

cb = 1 and cf = 1
2
, hence the comment above equation (C.4). This, however, is not the case for n > 2 in

the even twisted sector of symmetric orbifold.

– 34 –



J
H
E
P
0
7
(
2
0
1
8
)
1
4
3

For the S0/Z2 theory cb = 1, cf = 4
2 = 2, and the ground state has

h = h̄ =
1

8

(
n+

1

n

)
, ` = ¯̀=

1

2
. (C.7)

Similar to the odd twisted sector analyses, we shall now apply fermionic excitation on the

ground state to construct BPS states. However, the conformal dimension is too high to

give BPS states in the Z2 untwisted sector, as described in [1, section 3.3]. Thus we obtain

no BPS contributions in this case.

Z2 twisted sector: we consider the state

ψ++
− 1

2n

ψ++
− 3

2n

· · ·ψ++
−n−1

2n

ψ̃++
− 1

2n

ψ̃++
− 3

2n

· · · ψ̃++
−n−1

2n

|σ̃〉 . (C.8)

It has conformal weight and u(1)-charge

h = h̄ =
1

8

(
n+

1

n

)
− 1

8n
+

n
2∑

k=1

2k − 1

2n
=
n

4
, ` = ¯̀=

n− 1

2
+

1

2
=
n

2
, (C.9)

which saturate the BPS bound. Here, the second term in the formula for the conformal

weight is the ground-state energy of the twisted sector of the Z2-orbifold in the R sector

divided by n, according to the general rule that a state of conformal weight h in the

seed theory contributes to conformal weight h
n in the symmetric orbifold. Thus, we find

two further BPS states in the even twisted sector of the symmetric orbifold. Taking all

contributions together, we obtain the Hodge diamond (3.15).

C.2 Modified elliptic genus of the odd twisted sector of SymN(S0/Z2)

We derive the modified elliptic genus of the symmetric orbifold CFT in the odd twisted

sector. Performing an S-modular transformation on the R-sector partition function of the

seed theory with factors of the twist n inserted, we obtain the single-particle ÑS sector

partition function of the twist-n sector:

Z̃NS

(
z,
τ

n
; z̄,

τ̄

n

)
=

∣∣∣∣∣ϑ3(z| τn)ϑ4( τn)
1
2ϑ3( τn)

1
2

ϑ2( τn)
1
2 η( τn)

3
2

∣∣∣∣∣
2

+

∣∣∣∣∣ϑ2(z| τn)ϑ4( τn)
1
2ϑ2( τn)

1
2

ϑ3( τn)
1
2 η( τn)

3
2

∣∣∣∣∣
2

(C.10)

= 2

∣∣∣∣ϑ3(z| τn)

ϑ2( τn)

∣∣∣∣2 + 2

∣∣∣∣ϑ2(z| τn)

ϑ3( τn)

∣∣∣∣2 , (C.11)

where we have not included the Θ-dependent term since it contains θ4(τ) and vanishes

after taking z̄ = − τ̄
2 in the modified elliptic genus.

Putting back the ground-state energy of the untwisted copies (C.1),23 we obtain

Z̃NS(z, τ ; z̄, τ) =
∑

n∈Z>0,odd

q
n
8 q̄

n
8 Z̃NS

(
z,
τ

n
; z̄,

τ̄

n

)∣∣∣∣
h−h̄−∈ Z

2

(C.12)

=
∑

n∈Z>0,odd

2 q
n
8 q̄

n
8

( ∣∣∣∣ϑ3(z| τn)

ϑ2( τn)

∣∣∣∣2 +

∣∣∣∣ϑ2(z| τn)

ϑ3( τn)

∣∣∣∣2)∣∣∣∣
h−h̄∈ Z

2

23This is the ground-state energy relative to the vacuum. We have not included the factor q−
c
24 in the

partition function, since it diverges in the limit we are computing, see below eq. (6.3)
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where we have included the untwisted sector contribution n = 1 to write the general ex-

pression for all positive odd n. Invariance under the action of the Z2 imposes the constraint

h − h̄ ∈ Z/2. Using identities of the Jacobi theta functions which we list in appendix D,

we find that the partition function reads

Z̃NS(z, τ ; z̄, τ) =
∑

n∈Z>0,odd

2 q
n
4 y

n
2 q̄

n
4 ȳ

n
2

( ∣∣∣∣ϑ2(z + τ
2 |
τ
n)

ϑ2( τn)

∣∣∣∣2 +

∣∣∣∣ϑ3(z + τ
2 |
τ
n)

ϑ3( τn)

∣∣∣∣2)∣∣∣∣
h−h̄∈ Z

2

.

(C.13)

We finally set h̄ =
¯̀

2 to compute the modified elliptic genus:

Z̃NS(z, τ) = 2
∑
n odd

(
q
n
4 y

n
2
ϑ2(z + τ

2 |
τ
n)

ϑ2( τn)

∣∣∣∣∣
h∈ Z

2

+ q
n
4 y

n
2
ϑ3(z + τ

2 |
τ
n)

ϑ3( τn)

∣∣∣∣∣
h∈ Z

2
+ 1

4

)
. (C.14)

Following our approach in section 4.3.1, we next perform a Fourier expansions of the

modified elliptic genus and analyse the contributions from the Z2 untwisted and twisted

sectors separately, see eqs. (4.13) and (4.14).

Z2 untwisted sector: let us first consider the Fourier expansion of the Z2 untwisted

sector in (4.13). For this, we define

2
ϑ2(z|τ)

ϑ2(τ)
≡

∑
m∈Z, `∈Z+ 1

2

c(m, `)qmy` . (C.15)

With this, we can expand the Z2 untwisted sector contribution as follows:

Z̃UZ2
NS (z, τ) =

∑
n∈Z>0,odd

q
n
4 y

n
2

∑
m∈ Z

n
, `∈Z+ 1

2

c(nm, `) qm+ `
2 y`
∣∣∣
h∈ Z

2

(C.16)

=
∑

n∈Z>0,odd

q
n
4 y

n
2

∑
m∈Z, `∈Z+ 1

2

c(nm, `) qm+ `
2 y` , (C.17)

=
∑

n∈Z>0,odd

∑
m′∈ Z

2
, `′∈Z

c

(
n

(
m′ − `′

2

)
, `′ − n

2

)
q`
′
y`
′
, (C.18)

where in the second line we have defined

m′ ≡ m+
`

2
+
n

4
, `′ ≡ `+

n

2
. (C.19)

By restricting m ∈ Z in (C.17), we have imposed the orbifold projection h ∈ 1
2Z.

The coefficients c(m, `) are quasi-periodic in z and satisfy the assumptions of Theo-

rem 2.2 of [43]:

c(m, `) ≡ c(2m− `2) . (C.20)
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Eq. (C.18) then reads

Z̃UZ2
NS (z, τ) =

∑
n∈Z>0,odd

∑
m′∈ Z

2
, `′∈Z

c

(
2nm′ − `′2 − n2

4

)
qm
′
y`
′

=
∑

n∈Z>0,odd

∑
m′∈ Z

2
, `′∈Z

c

(
4m′

2 − `′2 −
(
n

2
− 2m′

)2)
qm
′
y`
′

=
∑

m′∈ Z
2
, `′∈Z

( ∑
n∈Z>0,odd

c

(
2m′

2 − `′2

2
,

1

2
(n− 4m′)

))
qm
′
y`
′
. (C.21)

We next define n′ ≡ n − 4m′, which is an odd integer for m′ ∈ Z≥0/2. The condition

n > 0 requires that n′ > −4m′. We then first evaluate the sum over n′ in eq. (C.21) and

to do so, we use the fact that c(s) = 0 for s < −1 and extend the range of the sum over

all odd integers. This, however, may result in an over-counting of low-lying contributions

which we then need to subtract subsequently, see [29, section 5] and [8, section 4.3].We can

evalute (C.21) further using the definition (C.15):

∑
n′∈Zodd, s

c

(
s,
n′

2

)
qs = 2

ϑ2(z|τ)

ϑ2(τ)

∣∣∣∣∣
z=0

= 2 , (C.22)

and hence ∑
n′∈Zodd

c

(
s,
n′

2

)
= 2δs,0 . (C.23)

Thus, we find that∑
n′∈Zodd

c

(
2m′ − `′2

2
,
n′

2

)
= 2δ

m′,± `′
2

, `′ − 2m′ ∈ Z, |`′| ≥ 1 . (C.24)

The only low-lying exception which we need to subtract from the above sum is for `′ = 0.

Inserting the result back in eq. (C.21), we find the expression (4.15).

Z2 twisted sector: the computation for the Z2 twisted sector is exactly analogous. The

only differences arise in the summation ranges: now m′ ∈ 1
2Z + 1

2 and `′ ∈ Z + 1
2 . There

are no low-lying exceptions in the twisted sector and we find the final result (4.16).

D Theta functions

We follow the notation of [44] and define the theta functions as

ϑ

[
α

β

]
(z|τ) =

∑
n∈Z

eiπ(n+α)2τ+2πi(n+α)(z+β) . (D.1)

The four Jacobi theta functions are then defined as

ϑ1 ≡ ϑ
[ 1

2
1
2

]
, ϑ2 ≡ ϑ

[ 1
2

0

]
, ϑ3 ≡ ϑ

[
0

0

]
, ϑ4 ≡ ϑ

[
0
1
2

]
. (D.2)
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We use the following identities of the theta functions:

2η(τ)3 = ϑ2(τ)ϑ3(τ)ϑ4(τ) , (D.3)

ϑ2

(
z

∣∣∣∣ τn
)

= q
n
8 y

n
2 ϑ3

(
z +

τ

2

∣∣∣∣τ2
)
, (D.4)

ϑ3

(
z

∣∣∣∣ τn
)

= q
n
8 y

n
2 ϑ2

(
z +

τ

2

∣∣∣∣τ2
)
, (D.5)

where q = e2πiτ , y = e2πiz, η(τ) is the Dedekind theta function and n is an odd integer.

The last two identities can be derived using eqs. (9.101b)–(9.101d) of [44].
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