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Abstract

Classifying facial expressions into different categories

requires capturing regional distortions of facial landmarks.

We believe that second-order statistics such as covariance is

better able to capture such distortions in regional facial fea-

tures. In this work, we explore the benefits of using a man-

ifold network structure for covariance pooling to improve

facial expression recognition. In particular, we first employ

such kind of manifold networks in conjunction with tradi-

tional convolutional networks for spatial pooling within in-

dividual image feature maps in an end-to-end deep learning

manner. By doing so, we are able to achieve a recognition

accuracy of 58.14% on the validation set of Static Facial

Expressions in the Wild (SFEW 2.0) and 87.0% on the vali-

dation set of Real-World Affective Faces (RAF) Database1.

Both of these results are the best results we are aware of.

Besides, we leverage covariance pooling to capture the tem-

poral evolution of per-frame features for video-based facial

expression recognition. Our reported results demonstrate

the advantage of pooling image-set features temporally by

stacking the designed manifold network of covariance pool-

ing on top of convolutional network layers.

1. Introduction

Facial expressions play an important role in communi-

cating the state of our mind. Both humans and computer

algorithms can greatly benefit from being able to classify

facial expressions. Possible applications of automatic fa-

cial expression recognition include better transcription of

videos, movie or advertisement recommendations, detec-

tion of pain in telemedicine etc.

Traditional convolutional neural networks (CNNs) that

use convolutional layers, max or average pooling and fully

connected layers are considered to capture only first-order

statistics [25]. Second-order statistics such as covariance

are considered to be better regional descriptors than first-

order statistics such as mean or maximum [20]. As shown

1The code of this paper will be eventually released on https://

github.com/d-acharya/CovPoolFER

Figure 1. Top: sample images of different facial expression classes

from the SFEW dataset. Bottom: distortion of region between two

eyebrows in the corresponding facial images.

in Figure 1, facial expression recognition is more directly

related to how facial landmarks are distorted rather than

presence or absence of specific landmarks. We believe that

second-order statistics is more suited to capture such distor-

tions than first-order statistics. To learn second-order infor-

mation deeply, we introduce covariance pooling after final

convolutional layers. For further dimensionality reduction

we borrow the concepts from the manifold network [11] and

train it together with conventional CNNs in an end-to-end

fashion. It is important to point out this is not a first work

to introduce second-order pooling to traditional CNNs. Co-

variance pooling was initially used in [13] for pooling co-

variance matrix from the outputs of CNNs. [25] proposed

an alternative to compute second-order statistics in the set-

ting of CNNs. However, such two works do not use either

dimensionality reduction layers or non-linear rectification

layers for second-order statistics. In this paper, we present

a strong motivation for exploring them in the context of fa-

cial expression recognition.

In addition to being better able to capture distortions in

regional facial features, covariance pooling can also be used

to capture temporal evolution of per-frame features. Covari-

ance matrix has been employed before to summarize per-

frame features [17]. In this work, we experiment with using

manifold networks for pooling per-frame features.

In summary, the contribution of this paper is two-fold:

• End-to-end pooling of second-order statistics for both

videos and images in the context of facial expression

recognition

• State-of-art result on image-based facial expression

recognition
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2. Related Works

Though facial expression recognition from both images

and videos are closely related, they each have their own

challenges. Videos contain dynamic information which a

single image lacks. With this additional dynamic informa-

tion, we should theoretically be able to improve facial ex-

pression accuracy. However, extracting information from

videos has its own challenges. In following sub-sections,

we briefly review standard approaches to facial expressions

on both image and video-based approaches.

2.1. Facial Expression Recognition from Images

Most of the recent approaches in facial expression recog-

nition from images use various standard architectures such

as VGG networks, Inception networks, Residual networks,

Inception-Residual Networks etc [3][7][21]. Many of these

works carry out pretraining on FER-2013, face recognition

datasets or similar datasets and either use outputs from fully

connected layers as features to train classifiers or fine-tune

the whole network. Use of ensemble of multiple CNNs and

fusion of the predicted scores is also widely used and found

to be successful. For example, in Emotiw2015 sub chal-

lenge on image-based facial expression recognition, both

winners and runner up teams [15][26] employed ensemble

of CNNs to achieve the best reported score. There, pre-

training was done on FER-2013 dataset. Recently, in [3],

authors reported validation accuracy of 54.82% which is a

state-of-art result for a single network. The accuracy was

achieved using VGG-VD-16. The authors carried out pre-

training on VGGFaces and FER-2013.

All such networks discussed above employ traditional

neural network layers. These architectures can be consid-

ered to capture only first-order statistics. Covariance pool-

ing, on the other hand captures second-order statistics. One

of the earliest works employing covariance pooling for fea-

ture extraction used it as regional descriptor [6][20]. In

[25], authors propose various architectures based on VGG

network to employ covariance pooling. In [11], authors

present a deep learning architecture for learning on Rie-

mannian manifold which can be employed for covariance

pooling.

2.2. Facial Expression Recognition from Videos

Traditionally, video-based recognition problems used

per-frame features such as SIFT, dense-SIFT, HOG [17] and

recently deep features extracted with CNNs have been used

[9] [4]. The per-frame features are then used to assign score

to each individual frame. Summary statistics of such per-

frame features are then used for facial expression recog-

nition. In [24], authors propose modification of Inception

architecture to capture action unit activation which can be

beneficial for facial expression recognition. Other works

use various techniques to capture the temporal evolution

of the per-features. For example, LSTMs have been suc-

cessfully employed with various names such as CNN-RNN,

CNN-BRNN etc [8][9][23]. 3D convolutional neural net-

works have also been used for facial expression recognition.

However, performance of a single 3D-ConvNet was worse

than applying LSTMs on per-frame features [9]. State-of-

art result reported in [9] was obtained by score fusion of

multiple models of 3D-ConvNets and CNN-RNNs.

Covariance matrix representation was used as one of the

summary statistics of per-frame features in [17]. Kernel-

based partial least squares (PLS) were then used for recog-

nition. Here, we use the methods in [17] as baseline and use

the SPD Riemannian networks instead of kernel based PLS

for recognition and obtain slight improvement.

3. Facial Expression Recognition and Covari-

ance Pooling

3.1. Overview

Facial expression is localized in the facial region

whereas images in the wild contain large irrelevant infor-

mation. Due to this, face detection is performed first and

then aligned based on facial landmark locations. Next, we

feed the normalized faces into a deep CNN. To pool the

feature maps spatially from the CNN, we propose to use

covaraince pooling, and then employ the manifold network

[11] to deeply learn the second-order statistics. The pipeline

of our proposed model for image-based facial expression

recognition is shown in Figure 2.

As the case of image-based facial expression recogni-

tion, videos in the wild contain large irrelevant information.

First, all the frames are extracted from a video. Face de-

tection and alignment is then performed on each individual

frame. Depending on the feature extraction algorithm, ei-

ther image features are extracted from the normalized faces

or the normalized faces are concatenated and 3d convolu-

tions are applied to the concatenated frames. Intuitively,

as the temporal convariance can capture the useful facial

motion pattern, we propose to pool the frames over time.

To deeply learn the temporal second-order information, we

also employ the manifold network [11] for dimensionality

reduction and non-linearity on covariance matrices. The

overview of our presented model for video-based facial ex-

pression recognition is illustrated in Figure 3.

Accordingly, the core techniques of the two proposed

models are spatial/temporal covariance pooling and the

manifold network for learning the second-order features

deeply. In the following we will introduce the two crucial

techniques.
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Figure 2. In order to leverage covariance pooling on image-based

facial expression recognition problem, output of convolutional

layer is flattened as illustrated. The covariance matrix is computed

form resulting vectors.

3.2. Covariance Pooling

As discussed earlier, traditional CNNs that consist of

fully connected layers, max or average pooling and con-

volutional layers only capture first-order information [25].

ReLU introduces non-linearity but does so only at individ-

ual pixel level. Covariance matrices computed from fea-

tures are believed to be better able to capture regional fea-

tures than first-order statistics [20].

Given a set of features, covariance matrix can be used to

compactly summarize the second-order information in the

set. If f1, f2, . . . , fn ∈ R
d be the set of features, the covari-

ance matrix can be computed as:

C =
1

n− 1

n
∑

i=1

(fi − f̄)(fi − f̄)T , (1)

where f̄ = 1

n

∑

n

i=1
fi.

The matrices thus obtained are symmetric positive defi-

nite (SPD) only if number of linearly independent compo-

nents in {f1, f2, . . . , fn} is greater than d. In order to em-

ploy the geometric structure preserving layers of the SPD

manifold network [11], the covariance matrices are required

to be SPD. However, even if the matrices are only positive

semi definite, they can be regularized by adding a multiple

of trace to diagonal entries of the covariance matrix:

C
+ = C+ λtrace(C)I, (2)

where λ is a regularization parameter and I is identity ma-

trix.

Covariance Matrix for Spatial Pooling: In order to ap-

ply covariance pooling to image-based facial expression

recognition problem, as shown in Figure 2, outputs from

final convolutional layers can be flattened and used to com-

pute covariance matrix. Let X ∈ R
w×h×d be the output

obtained after several convolutional layers, where w, h, d

stand for width, height and number of channels in the output

respectively. X can be flattened as an element X′ ∈ R
n×d

where n = w × h. If f1, f2, ..., fn ∈ R
d be columns of X′,

we can capture the variation across channels by computing

Figure 3. In case of video-based facial expression recognition

problems, output of fully connected layers are considered as image

set features. The covariance matrix is computed from such image

set features.

covariance as in Eqn 1 and regularizing thus computed ma-

trix using Eqn. 2.

Covariance Matrix for Temporal Pooling: As illus-

trated in Figure 3, covariance pooling can be employed in

[17] to pool temporal features. If f1, f2, . . . , fn ∈ R
d be

per-frame features extracted from images, we can compute

covariance matrix using the Eqn. 1 and regularize it using

Eqn. 2.

3.3. SPD Manifold Network (SPDNet) Layers

The covariance matrices thus obtained typically reside

on the Riemannian manifold of SPD matrices. Directly flat-

tening and applying fully connected layers directly causes

loss of geometric information. Standard methods apply log-

arithm operation to flatten the Riemannian manifold struc-

ture to be able to apply standard loss functions of Euclidean

space [6][20]. The covariance matrices thus obtained are

often large and their dimension needs to be reduced without

losing geometric structure. In [11], authors introduce spe-

cial layers for reducing dimension of SPD matrices and to

flatten the Riemannian manifold to be able to apply standard

loss functions.

In this subsection, we briefly discuss the layers intro-

duced in [11] for learning on Riemannian Manifold.

Bilinear Mapping Layer (BiMap) Covariance matrices

computed from features can be large and it may not be fea-

sible to directly apply fully connected layers after flattening

them. Furthermore, it is also important to preserve geomet-

ric structure while reducing dimension. The BiMap layer

accomplishes both of these conditions and plays the same

role as traditional fully connected layers. If Xk−1 be input

SPD matrix, Wk ∈ R
dk×dk−1

∗ be weight matrix in the space

of full rank matrices and Xk ∈ R
dk×dk be output matrix,

then k-th the bilinear mapping fk

b
is defined as

Xk = fk

b
(Xk−1;Wk) = WkXk−1W

T

k
. (3)
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Figure 4. Illustration of SPD Manifold Network (SPDNet) with

2-BiRe layers.

Eigenvalue Rectification (ReEig) ReEig layer can be

used to introduce non-linearity in the similar way as Rec-

tified Linear Unit (ReLU) layers in traditional neural net-

works. If Xk−1 be input SPD matrix, Xk be output and ǫ

be eigenvalue rectification threshold, k-th ReEig Layer fk
r

is defined as:

Xk = fk

r
(Xk−1) = Uk−1 max(ǫI, σk−1)U

T

k−1, (4)

where Uk−1 and Σk−1 are defined by eigenvalue decom-

position Xk−1 = Uk−1Σk−1U
T

k−1
. The max operation is

element-wise matrix operation.

Log Eigenvalue Layer (LogEig) As discussed earlier,

SPD matrices lie on Riemannian manifold. The final Lo-

gEig layer endows elements in Riemannian manifold with

a Lie Group structure so that matrices can be flattened and

standard euclidean operations can be applied. If Xk−1 be

input matrix, Xk be output matrix, the LogEig layer applied

in k-th layer fk

l
is defined as

Xk = fk

l
(Xk−1) = log(Xk−1) = Uk−1 log(Σk−1)U

T

k−1,

(5)

where Xk = Uk−1Σk−1U
T

k−1
is an eigenvalue decompo-

sition and log is an element-wise matrix operation.

BiMap and ReEig layers can be used together as a block

and is abbreviated as BiRe. The architecture of a SPDNet

with 2-BiRe layers is shown in Figure 4.

4. Experiments

4.1. Benchmark Datasets

Datasets that contain samples with either real or acted

facial expressions in the wild were chosen. Such datasets

are better approximation to the real world scenarios than

posed datasets and are also more challenging.

Image-based Facial Expression Recognition For com-

paring our deep learning architectures for image-based fa-

cial expression recognition against standard results, we use

Static Facial Expressions in the Wild (SFEW) 2.0 [2] [1]

dataset and Real-world Affective Faces (RAF) dataset [16].

SFEW 2.0 contains 1394 images, of which 958 are to be

used for training and 436 for validation. This dataset was

prepared by selecting frames from videos of AFEW dataset.

Facial landmark points provided by the authors were de-

tected using mixture-of-parts based model [28]. The land-

marks thus obtained were then used for alignment. The

RAF dataset [16] was prepared by collecting images from

various search engines and the facial landmarks were an-

notated manually by 40 independent labelers. The dataset

contains 15331 images labeled with seven basic emotion

categories of which 3068 are to be used for validation and

12271 for training.

It is worth pointing out that there exist several other

image-based datasets such as EmotioNet [5] and FER-

2013 [10]. However, they have their own downsides.

Though EmotioNet is the largest existing dataset for facial

expression recognition, the images were automatically an-

notated and the labels are incomplete. FER-2013, contains

relatively small image size and does not contain RGB infor-

mation. Most other databases either contain too few sam-

ples or are taken in well posed laboratory setting.

Video-based Facial Expression Recognition For video-

based facial expression recognition, we use Acted Facial

Expressions in the Wild (AFEW) dataset to compare our

methods with existing methods. This dataset was prepared

by selecting videos from movies. It contains about 1156

publicly available labeled videos of which 773 videos are

used for training and 383 for validation. Just as in case

of SFEW 2.0 dataset, the landmarks and aligned images

provided by authors were obtained using mixture-of-parts

based model.

Though there exist several other facial expression recog-

nition databases for videos such as Cohn-Kanade/Cohn-

Kanade+ (CK/CK+) [14][18], most of them are either sam-

pled in well controlled laboratory environment or are la-

beled with action unit encoding rather than seven basic

classes of facial expressions.

4.2. Face Detection and Alignment

Authors of RAF database [16] provide manually anno-

tated face landmarks, while those of SFEW 2.0 [2] and

AFEW [1] datasets do not and instead provide landmarks

and aligned images obtained using mixture-of-parts based

model [28]. Images and videos captured in the wild contain

large amount of non-essential information. Face detection

and alignment helps remove non-essential information from

the data samples. Furthermore, to be able to compare vari-

ations in local facial features across images, face alignment

is important. This serves as normalization of data. While

trying to categorize facial expressions from videos, motion

of people, change of background etc. also lead to large un-

wanted variation across image frames. Due to this, training

algorithms on original unaligned data is not feasible. Face

alignment additionally helps to capture the dynamic evolu-
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Models
RAF SFEW 2.0

Total Total

VGG-VD-16 network[3] - 54.82

Inception-ResnetV1

(Trained from scratch)‡
82.6 47.37

Inception-ResnetV1

(Finetuned) ‡ 83.4 51.9

Baseline Model ‡ 84.5 54.45

Table 1. Comparison of image-base recognition accuracies of var-

ious standard models on validation set of the RAF and SFEW 2.0

datasets. Here the models labelled ‡ were trained on our own.

tion of local facial features across images of the same videos

in an effective manner.

For face and facial landmark detection Multi-task Cas-

cade Convolutional Neural Networks (MTCNN) [27] was

used. MTCNN was found to be more accurate and suc-

cessful for alignment compared to mixture-of-parts based

model. After successful face and facial landmark detec-

tion, we use three points constrained affine transformation

for face alignment. Coordinates of left eye, right eye and

midpoint of corners of the lips were used for alignment.

4.3. Baseline Model and Architectures for Image­
based Problem

Comparison of Standard Architectures In Table 1 we

present the comparison of accuracies of training or finetun-

ing various standard network architectures. For a baseline

model, we take the network architecture presented in [16].

The scores reported on RAF database for VGG network and

AlexNet in [16] is less compared to their base line model.

So the networks are not trained again here. It is worth point-

ing out that there, authors report per class average accuracy

but we report total accuracy only here. Here, we use center

loss[22] to train the network in all cases rather than local-

ity preserving loss[16] as we do not deal with compound

emotions. In all cases, dataset was augmented using stan-

dard techniques such as random crop, random rotate and

random flip. For SFEW 2.0, in all cases, output of sec-

ond to last fully connected layer was used as image fea-

tures and Support Vector Machines (SVMs) were trained

separately. Note that the models labelled ‡ were trained on

our own. Inception-ResnetV1 [19] was both trained from

scratch, as well as finetuned on a model pre-trained on sub-

set of MS-Celeb-1M dataset. It is evident from the table that

fine-tuning the Inception-ResnetV1 trained on face recog-

nition dataset performs better than training from scratch. It

should not come as a surprise that a relatively small network

outperforms Inception-ResNet model as there are more pa-

rameters to be learned in deeper models. For further ex-

periments and to introduce covariance pooling, we use the

baseline model from [16].

Incorporation of SPD Manifold Network As discussed

above, we introduce covariance pooling and subsequently

the layers from the SPD manifold network (SPDNet) after

the final convolutional layer. While introducing covariance

pooling, we experimented with various models for the ar-

chitecture. The details of the various models considered are

summarized in Table 2.

Baseline Mode-1 Model-2 Model-3 Model-4

Conv256 Conv256 Conv256 Conv256 Conv256

Cov Cov Cov Cov

BiRe BiRe BiRe BiRe

LogEig LogEig BiRe LogEig

LogEig

FC2000 FC2000 FC2000 FC2000 FC2000

FC7 FC7 FC128 FC7 FC512

FC7 FC7

Table 2. Various models considered for covariance pooling. For

brevity, initial convolution layers are ignored.

4.4. Results on Image­based Problem

Covariance pooling was applied after final convolution

layer and before fully connected layers. Various models

described in Table 2 and their accuracies are listed below

in Table 3. For the RAF database, as stated earlier, the

Model
RAF SFEW 2.0

Total Accuracy Total Accuracy

Baseline Model [16] 84.7 54.45

Model-1 86.3 55.40

Model-2 87.0 56.72

Model-3 85.0 57.48

Model-4 85.4 58.14

VGG-VD-16 [3] - 54.82

EmotiW-1 (2015) [26] - 55.96

EmotiW-2 (2015) [15] - 52.80

Table 3. Image-based recognition accuracies for various models

with and without covariance pooling.

network was trained in end-to-end fashion. However, for

SFEW 2.0 dataset, we use output of penultimate fully con-

nected layer (which ranges from 128 to 2000 dimensional

feature depending on the model considered). It is worth

pointing out that for SFEW 2.0 our single model performed

better than ensemble of convolutional neural networks in

[26] and [15]. It could be argued that the datasets used

for pre-training were different in our case and in [26][15].

However, improvement of almost 3.7% over baseline in the

SFEW 2.0 dataset justifies the use of SPDNet for facial ex-

pression recognition.
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It is also important to point out that on the SFEW 2.0

and AFEW datasets, face detection failed in several images

and videos. To report validation score, we assign random

uniform probability of success ( 1
7

) for correct recognition

to the samples on which face detection did not succeed.

Figure 5. Confusion matrix for Model-2 on the RAF dataset.

4.5. Baseline Model for Video­based Recognition
Problem

For comparing the benefits of using SPDNet over exist-

ing methods, we use kernel based PLS that used covariance

matrices as features [17] in baseline method. 128 dimen-

sional features were extracted from each image frame of a

video and the video was modeled with a covariance ma-

trix. Then either SPDNet or kernel based SVM with either

RBF or Polynomial kernel were used for recognition. The

SPDNet was able to outperform other methods.

Figure 6. Confusion matrix for Model-4 on the SFEW 2.0 dataset.

Figure 7. Confusion matrices for our method (4-Bire) on the

AFEW dataset.

4.6. Results on Video­based Problem

The results of our proposed methods, baseline method

and the accuracies of other C3D and CNN-RNN models

from [9] are presented for context. However, datasets used

for those pretraining other models are not uniform, and de-

tailed comparison of all existing methods is not within the

scope of this work. As seen from Table 5, our model was

able to slightly surpass the results of the base line model.

Our method also performed better than all single models

that were trained on publicly available training dataset. The

network from [4] was trained on private dataset containing

an order of magnitude more samples. As a side experimen-

tation, we also introduced covariance pooling to C3D model

in [9] and did not obtain any improvement. We obtained ac-

curacy of 39.78%.

5. Conclusion

In this work, we exploit the use of SPDNet on facial ex-

pression recognition problems. As shown above, SPDNet

applied to covariance of convolutional features can classify

facial expressions more efficiently. We study that second-

order networks are better able to capture facial landmark

distortions. Similarly, covariance matrix computed from

image feature vectors were used as input to SPDNet for

video-based facial expression recognition problem.

We were able to obtain state-of-the-art results on image-

based facial expression recognition problems on the SFEW

2.0 and RAF datasets. In video-based facial expression

recognition, training SPDNet on image-based features was

able to obtain results comparable to state-of-the-art results.

In the context of video-based facial expression recog-

nition problem, architecture presented in Figure 8 can be

trained in end-to-end training. Though with brief experi-

mentation, we were able to obtain accuracy of only 32.5%

485



Original Class Correctly Predicted Incorrectly Predicted Predicted Classes

Angry
Neutral, Neutral, Neutral,

Neutral, Happy

Disgust
Sad, Sad, Surprise, Sad,

Neutral

Fear
Happy, Happy, Neutral, An-

gry, Happy

Happy
Sad, Neutral, Neutral, Sad,

Angry

Neutral
Angry, Happy, Happy,

Happy, Happy

Sad
Neutral, Angry, Happy, Sur-

prise, Neutral

Surprise
Happy, Happy, Happy, Neu-

tral, Happy

Table 4. Samples from each class of the SFEW dataset that were most accurately and least accurately classified. The first column indicates

ground truth and final column indicates predicted labels for incorrectly predicted images.

Model AFEW

VGG13 [4] 57.07

Single Best CNN-RNN [9] 45.43

Single Best C3D [9] 39.69

Single Best HoloNet [23] 44.57

Baseline (RBF Kernel) [17] 45.95

Baseline (Poly Kernel) [17] 45.43

Our proposed method (2-Bire) 42.25

Our proposed method (3-Bire) 44.09

Our proposed method (4-Bire) 46.71

Multiple CNN-RNN and C3D ⋆⋆ [9] 51.8

VGG13+VGG16+ResNet ⋆⋆ [23] 59.16

Table 5. Video-based recognition accuracies for various single

models and fusion of multiple models. Here the results of the

methods marked with ⋆⋆ were obtained either by score level or

feature level fusion of multiple models.

which is worse than the score reported [11]. It is likely to be

a result of relatively small size of AFEW dataset compared

to parameters in the network. Further work is necessary to

see if training end-to-end using joint convolutional net and

SPD net can improve results.

Figure 8. Architecture for end-to-end training on videos directly.

6. Further Works

In this work, we leveraged covariance matrix to capture

second-order statistics. As studied in [12], Gaussian matrix

is able to further improve the effectiveness of second-order

statistics. Formally, the SPD form of Gaussian matrix can

be computed by

G =

(

Σ+ µµT µ

µT 1

)

, (6)

where Σ is the covariance matrix defined in Eqn. 1, and

µ =
n
∑

i=1

fi (7)

is the mean of the samples f1, f2, . . . , fn captures both first-

order and second-order statistics. It was also employed

in [25] to develop second-order convolutional neural net-

works. Extending current work from covariance pooling

to Gaussian pooling would be an interesting direction and

should theoretically improve results.
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