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Abstract

Classifying facial expressions into different categories
requires capturing regional distortions of facial landmarks.
We believe that second-order statistics such as covariance is
better able to capture such distortions in regional facial fea-
tures. In this work, we explore the benefits of using a man-
ifold network structure for covariance pooling to improve
facial expression recognition. In particular, we first employ
such kind of manifold networks in conjunction with tradi-
tional convolutional networks for spatial pooling within in-
dividual image feature maps in an end-to-end deep learning
manner. By doing so, we are able to achieve a recognition
accuracy of 58.14% on the validation set of Static Facial
Expressions in the Wild (SFEW 2.0) and 87.0% on the vali-
dation set of Real-World Affective Faces (RAF) Database'.
Both of these results are the best results we are aware of.
Besides, we leverage covariance pooling to capture the tem-
poral evolution of per-frame features for video-based facial
expression recognition. Our reported results demonstrate
the advantage of pooling image-set features temporally by
stacking the designed manifold network of covariance pool-
ing on top of convolutional network layers.

1. Introduction

Facial expressions play an important role in communi-
cating the state of our mind. Both humans and computer
algorithms can greatly benefit from being able to classify
facial expressions. Possible applications of automatic fa-
cial expression recognition include better transcription of
videos, movie or advertisement recommendations, detec-
tion of pain in telemedicine etc.

Traditional convolutional neural networks (CNNs) that
use convolutional layers, max or average pooling and fully
connected layers are considered to capture only first-order
statistics [25]. Second-order statistics such as covariance
are considered to be better regional descriptors than first-
order statistics such as mean or maximum [20]. As shown

IThe code of this paper will be eventually released on https://
github.com/d-acharya/CovPoolFER

Figure 1. Top: sample images of different facial expression classes
from the SFEW dataset. Bottom: distortion of region between two
eyebrows in the corresponding facial images.

in Figure 1, facial expression recognition is more directly
related to how facial landmarks are distorted rather than
presence or absence of specific landmarks. We believe that
second-order statistics is more suited to capture such distor-
tions than first-order statistics. To learn second-order infor-
mation deeply, we introduce covariance pooling after final
convolutional layers. For further dimensionality reduction
we borrow the concepts from the manifold network [ 1] and
train it together with conventional CNNs in an end-to-end
fashion. It is important to point out this is not a first work
to introduce second-order pooling to traditional CNNs. Co-
variance pooling was initially used in [13] for pooling co-
variance matrix from the outputs of CNNs. [25] proposed
an alternative to compute second-order statistics in the set-
ting of CNNs. However, such two works do not use either
dimensionality reduction layers or non-linear rectification
layers for second-order statistics. In this paper, we present
a strong motivation for exploring them in the context of fa-
cial expression recognition.

In addition to being better able to capture distortions in
regional facial features, covariance pooling can also be used
to capture temporal evolution of per-frame features. Covari-
ance matrix has been employed before to summarize per-
frame features [ | 7]. In this work, we experiment with using
manifold networks for pooling per-frame features.

In summary, the contribution of this paper is two-fold:

e End-to-end pooling of second-order statistics for both
videos and images in the context of facial expression
recognition

e State-of-art result on image-based facial expression
recognition
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2. Related Works

Though facial expression recognition from both images
and videos are closely related, they each have their own
challenges. Videos contain dynamic information which a
single image lacks. With this additional dynamic informa-
tion, we should theoretically be able to improve facial ex-
pression accuracy. However, extracting information from
videos has its own challenges. In following sub-sections,
we briefly review standard approaches to facial expressions
on both image and video-based approaches.

2.1. Facial Expression Recognition from Images

Most of the recent approaches in facial expression recog-
nition from images use various standard architectures such
as VGG networks, Inception networks, Residual networks,
Inception-Residual Networks etc [3][7][2]. Many of these
works carry out pretraining on FER-2013, face recognition
datasets or similar datasets and either use outputs from fully
connected layers as features to train classifiers or fine-tune
the whole network. Use of ensemble of multiple CNNs and
fusion of the predicted scores is also widely used and found
to be successful. For example, in Emotiw2015 sub chal-
lenge on image-based facial expression recognition, both
winners and runner up teams [15][26] employed ensemble
of CNNs to achieve the best reported score. There, pre-
training was done on FER-2013 dataset. Recently, in [3],
authors reported validation accuracy of 54.82% which is a
state-of-art result for a single network. The accuracy was
achieved using VGG-VD-16. The authors carried out pre-
training on VGGFaces and FER-2013.

All such networks discussed above employ traditional
neural network layers. These architectures can be consid-
ered to capture only first-order statistics. Covariance pool-
ing, on the other hand captures second-order statistics. One
of the earliest works employing covariance pooling for fea-
ture extraction used it as regional descriptor [6][20]. In
[25], authors propose various architectures based on VGG
network to employ covariance pooling. In [11], authors
present a deep learning architecture for learning on Rie-
mannian manifold which can be employed for covariance
pooling.

2.2. Facial Expression Recognition from Videos

Traditionally, video-based recognition problems used
per-frame features such as SIFT, dense-SIFT, HOG [17] and
recently deep features extracted with CNNs have been used
[9] [4]. The per-frame features are then used to assign score
to each individual frame. Summary statistics of such per-
frame features are then used for facial expression recog-
nition. In [24], authors propose modification of Inception
architecture to capture action unit activation which can be
beneficial for facial expression recognition. Other works

use various techniques to capture the temporal evolution
of the per-features. For example, LSTMs have been suc-
cessfully employed with various names such as CNN-RNN,
CNN-BRNN etc [8][9][23]. 3D convolutional neural net-
works have also been used for facial expression recognition.
However, performance of a single 3D-ConvNet was worse
than applying LSTMs on per-frame features [9]. State-of-
art result reported in [9] was obtained by score fusion of
multiple models of 3D-ConvNets and CNN-RNNs.

Covariance matrix representation was used as one of the
summary statistics of per-frame features in [17]. Kernel-
based partial least squares (PLS) were then used for recog-
nition. Here, we use the methods in [17] as baseline and use
the SPD Riemannian networks instead of kernel based PLS
for recognition and obtain slight improvement.

3. Facial Expression Recognition and Covari-
ance Pooling

3.1. Overview

Facial expression is localized in the facial region
whereas images in the wild contain large irrelevant infor-
mation. Due to this, face detection is performed first and
then aligned based on facial landmark locations. Next, we
feed the normalized faces into a deep CNN. To pool the
feature maps spatially from the CNN, we propose to use
covaraince pooling, and then employ the manifold network
[11] to deeply learn the second-order statistics. The pipeline
of our proposed model for image-based facial expression
recognition is shown in Figure 2.

As the case of image-based facial expression recogni-
tion, videos in the wild contain large irrelevant information.
First, all the frames are extracted from a video. Face de-
tection and alignment is then performed on each individual
frame. Depending on the feature extraction algorithm, ei-
ther image features are extracted from the normalized faces
or the normalized faces are concatenated and 3d convolu-
tions are applied to the concatenated frames. Intuitively,
as the temporal convariance can capture the useful facial
motion pattern, we propose to pool the frames over time.
To deeply learn the temporal second-order information, we
also employ the manifold network [11] for dimensionality
reduction and non-linearity on covariance matrices. The
overview of our presented model for video-based facial ex-
pression recognition is illustrated in Figure 3.

Accordingly, the core techniques of the two proposed
models are spatial/temporal covariance pooling and the
manifold network for learning the second-order features
deeply. In the following we will introduce the two crucial
techniques.
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Figure 2. In order to leverage covariance pooling on image-based
facial expression recognition problem, output of convolutional
layer is flattened as illustrated. The covariance matrix is computed
form resulting vectors.

3.2. Covariance Pooling

As discussed earlier, traditional CNNs that consist of
fully connected layers, max or average pooling and con-
volutional layers only capture first-order information [25].
ReLU introduces non-linearity but does so only at individ-
ual pixel level. Covariance matrices computed from fea-
tures are believed to be better able to capture regional fea-
tures than first-order statistics [20].

Given a set of features, covariance matrix can be used to
compactly summarize the second-order information in the
set. If f1,f2, ..., f, € RY be the set of features, the covari-
ance matrix can be computed as:

c=— S E-HE-b7, 1)

n—1~4
=1

where f = 137" f;.

The matrices thus obtained are symmetric positive defi-
nite (SPD) only if number of linearly independent compo-
nents in {f;,f2,...,f,} is greater than d. In order to em-
ploy the geometric structure preserving layers of the SPD
manifold network [ 1], the covariance matrices are required
to be SPD. However, even if the matrices are only positive
semi definite, they can be regularized by adding a multiple
of trace to diagonal entries of the covariance matrix:

C*t = C + Mrace(C)I, )

where ) is a regularization parameter and I is identity ma-
trix.

Covariance Matrix for Spatial Pooling: In order to ap-
ply covariance pooling to image-based facial expression
recognition problem, as shown in Figure 2, outputs from
final convolutional layers can be flattened and used to com-
pute covariance matrix. Let X € R“*"*d be the output
obtained after several convolutional layers, where w, h,d
stand for width, height and number of channels in the output
respectively. X can be flattened as an element X' € R"*¢
wheren = w x h. If f1,fa, ..., f, € R¢ be columns of X/,
we can capture the variation across channels by computing

Covariance |SPD lassifi
Matrix Net |~ Classifier

@Q/

Outputs of FC layer

Figure 3. In case of video-based facial expression recognition
problems, output of fully connected layers are considered as image
set features. The covariance matrix is computed from such image
set features.

covariance as in Eqn 1 and regularizing thus computed ma-
trix using Eqn. 2.

Covariance Matrix for Temporal Pooling: As illus-
trated in Figure 3, covariance pooling can be employed in
[17] to pool temporal features. If f,fs,... f, € R? be
per-frame features extracted from images, we can compute
covariance matrix using the Eqn. 1 and regularize it using
Eqn. 2.

3.3. SPD Manifold Network (SPDNet) Layers

The covariance matrices thus obtained typically reside
on the Riemannian manifold of SPD matrices. Directly flat-
tening and applying fully connected layers directly causes
loss of geometric information. Standard methods apply log-
arithm operation to flatten the Riemannian manifold struc-
ture to be able to apply standard loss functions of Euclidean
space [0][20]. The covariance matrices thus obtained are
often large and their dimension needs to be reduced without
losing geometric structure. In [ 1], authors introduce spe-
cial layers for reducing dimension of SPD matrices and to
flatten the Riemannian manifold to be able to apply standard
loss functions.

In this subsection, we briefly discuss the layers intro-
duced in [ 1 1] for learning on Riemannian Manifold.

Bilinear Mapping Layer (BiMap) Covariance matrices
computed from features can be large and it may not be fea-
sible to directly apply fully connected layers after flattening
them. Furthermore, it is also important to preserve geomet-
ric structure while reducing dimension. The BiMap layer
accomplishes both of these conditions and plays the same
role as traditional fully connected layers. If X;_; be input
SPD matrix, W, € RY* “%~1 be weight matrix in the space
of full rank matrices and X, € R *dr pe output matrix,
then k-th the bilinear mapping ff is defined as

Xp, = fFXpo1; Wi) = Wi X W (3)
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Figure 4. Illustration of SPD Manifold Network (SPDNet) with
2-BiRe layers.

Eigenvalue Rectification (ReEig) ReFEig layer can be
used to introduce non-linearity in the similar way as Rec-
tified Linear Unit (ReLU) layers in traditional neural net-
works. If X be input SPD matrix, X be output and €
be eigenvalue rectification threshold, k-th ReEig Layer f*
is defined as:

Xy = fH(Xp-1) = Up_y max(eLoyp—1)UT_;, ()

where U, _; and 3j;_; are defined by eigenvalue decom-
position X;_1 = Uk—12k—1U£,1. The max operation is
element-wise matrix operation.

Log Eigenvalue Layer (LogEig) As discussed earlier,
SPD matrices lie on Riemannian manifold. The final Lo-
gEig layer endows elements in Riemannian manifold with
a Lie Group structure so that matrices can be flattened and
standard euclidean operations can be applied. If Xj;_; be
input matrix, Xy, be output matrix, the LogEig layer applied
in k-th layer f* is defined as

Xy, = fF(Xp-1) = log(Xp_1) = Up_1 log(S_1) U},
4)
where X, = Uk_12k_1U£,1 is an eigenvalue decompo-
sition and log is an element-wise matrix operation.
BiMap and ReEig layers can be used together as a block
and is abbreviated as BiRe. The architecture of a SPDNet
with 2-BiRe layers is shown in Figure 4.

4. Experiments
4.1. Benchmark Datasets

Datasets that contain samples with either real or acted
facial expressions in the wild were chosen. Such datasets
are better approximation to the real world scenarios than
posed datasets and are also more challenging.

Image-based Facial Expression Recognition For com-
paring our deep learning architectures for image-based fa-
cial expression recognition against standard results, we use
Static Facial Expressions in the Wild (SFEW) 2.0 [2] [1]
dataset and Real-world Affective Faces (RAF) dataset [16].
SFEW 2.0 contains 1394 images, of which 958 are to be
used for training and 436 for validation. This dataset was

prepared by selecting frames from videos of AFEW dataset.
Facial landmark points provided by the authors were de-
tected using mixture-of-parts based model [28]. The land-
marks thus obtained were then used for alignment. The
RAF dataset [16] was prepared by collecting images from
various search engines and the facial landmarks were an-
notated manually by 40 independent labelers. The dataset
contains 15331 images labeled with seven basic emotion
categories of which 3068 are to be used for validation and
12271 for training.

It is worth pointing out that there exist several other
image-based datasets such as EmotioNet [5] and FER-
2013 [10]. However, they have their own downsides.
Though EmotioNet is the largest existing dataset for facial
expression recognition, the images were automatically an-
notated and the labels are incomplete. FER-2013, contains
relatively small image size and does not contain RGB infor-
mation. Most other databases either contain too few sam-
ples or are taken in well posed laboratory setting.

Video-based Facial Expression Recognition For video-
based facial expression recognition, we use Acted Facial
Expressions in the Wild (AFEW) dataset to compare our
methods with existing methods. This dataset was prepared
by selecting videos from movies. It contains about 1156
publicly available labeled videos of which 773 videos are
used for training and 383 for validation. Just as in case
of SFEW 2.0 dataset, the landmarks and aligned images
provided by authors were obtained using mixture-of-parts
based model.

Though there exist several other facial expression recog-
nition databases for videos such as Cohn-Kanade/Cohn-
Kanade+ (CK/CK+) [14][ 18], most of them are either sam-
pled in well controlled laboratory environment or are la-
beled with action unit encoding rather than seven basic
classes of facial expressions.

4.2. Face Detection and Alignment

Authors of RAF database [16] provide manually anno-
tated face landmarks, while those of SFEW 2.0 [2] and
AFEW [1] datasets do not and instead provide landmarks
and aligned images obtained using mixture-of-parts based
model [28]. Images and videos captured in the wild contain
large amount of non-essential information. Face detection
and alignment helps remove non-essential information from
the data samples. Furthermore, to be able to compare vari-
ations in local facial features across images, face alignment
is important. This serves as normalization of data. While
trying to categorize facial expressions from videos, motion
of people, change of background etc. also lead to large un-
wanted variation across image frames. Due to this, training
algorithms on original unaligned data is not feasible. Face
alignment additionally helps to capture the dynamic evolu-
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RAF SFEW 2.0
Total Total

VGG-VD-16 network[3] - 54.82
Inception-ResnetV1
. 82.6 47.37
(Trained from scratch)?
Inception-ResnetV1
. 83.4 51.9
(Finetuned) ¥
Baseline Model 1 84.5 54.45
Table 1. Comparison of image-base recognition accuracies of var-
ious standard models on validation set of the RAF and SFEW 2.0
datasets. Here the models labelled ¥ were trained on our own.

Models

tion of local facial features across images of the same videos
in an effective manner.

For face and facial landmark detection Multi-task Cas-
cade Convolutional Neural Networks (MTCNN) [27] was
used. MTCNN was found to be more accurate and suc-
cessful for alignment compared to mixture-of-parts based
model. After successful face and facial landmark detec-
tion, we use three points constrained affine transformation
for face alignment. Coordinates of left eye, right eye and
midpoint of corners of the lips were used for alignment.

4.3. Baseline Model and Architectures for Image-
based Problem

Comparison of Standard Architectures In Table 1 we
present the comparison of accuracies of training or finetun-
ing various standard network architectures. For a baseline
model, we take the network architecture presented in [16].
The scores reported on RAF database for VGG network and
AlexNet in [16] is less compared to their base line model.
So the networks are not trained again here. It is worth point-
ing out that there, authors report per class average accuracy
but we report total accuracy only here. Here, we use center
loss[22] to train the network in all cases rather than local-
ity preserving loss[16] as we do not deal with compound
emotions. In all cases, dataset was augmented using stan-
dard techniques such as random crop, random rotate and
random flip. For SFEW 2.0, in all cases, output of sec-
ond to last fully connected layer was used as image fea-
tures and Support Vector Machines (SVMs) were trained
separately. Note that the models labelled * were trained on
our own. Inception-ResnetV1 [19] was both trained from
scratch, as well as finetuned on a model pre-trained on sub-
set of MS-Celeb-1M dataset. It is evident from the table that
fine-tuning the Inception-ResnetV1 trained on face recog-
nition dataset performs better than training from scratch. It
should not come as a surprise that a relatively small network
outperforms Inception-ResNet model as there are more pa-
rameters to be learned in deeper models. For further ex-
periments and to introduce covariance pooling, we use the
baseline model from [16].

Incorporation of SPD Manifold Network As discussed
above, we introduce covariance pooling and subsequently
the layers from the SPD manifold network (SPDNet) after
the final convolutional layer. While introducing covariance
pooling, we experimented with various models for the ar-
chitecture. The details of the various models considered are
summarized in Table 2.

Baseline  Mode-1 Model-2 Model-3 Model-4
Conv256 Conv256 Conv256 Conv256 Conv256
Cov Cov Cov Cov
BiRe BiRe BiRe BiRe
LogFig LogEig BiRe LogFig
LogFEig
FC2000 FC2000 FC2000 FC2000  FC2000
FC7 FC7 FC128 FC7 FC512
FC7 FC7

Table 2. Various models considered for covariance pooling. For
brevity, initial convolution layers are ignored.

4.4. Results on Image-based Problem

Covariance pooling was applied after final convolution
layer and before fully connected layers. Various models
described in Table 2 and their accuracies are listed below

in Table 3. For the RAF database, as stated earlier, the
Model RAF SFEW 2.0
Total Accuracy Total Accuracy
Baseline Model [16] 84.7 54.45
Model-1 86.3 55.40
Model-2 87.0 56.72
Model-3 85.0 57.48
Model-4 854 58.14
VGG-VD-16 [3] - 54.82
EmotiW-1 (2015) [26] - 55.96
EmotiW-2 (2015) [15] - 52.80

Table 3. Image-based recognition accuracies for various models
with and without covariance pooling.

network was trained in end-to-end fashion. However, for
SFEW 2.0 dataset, we use output of penultimate fully con-
nected layer (which ranges from 128 to 2000 dimensional
feature depending on the model considered). It is worth
pointing out that for SFEW 2.0 our single model performed
better than ensemble of convolutional neural networks in
[26] and [15]. Tt could be argued that the datasets used
for pre-training were different in our case and in [26][15].
However, improvement of almost 3.7% over baseline in the
SFEW 2.0 dataset justifies the use of SPDNet for facial ex-
pression recognition.

484



It is also important to point out that on the SFEW 2.0
and AFEW datasets, face detection failed in several images
and videos. To report validation score, we assign random
uniform probability of success (%) for correct recognition
to the samples on which face detection did not succeed.

Confusion matrix
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Figure 5. Confusion matrix for Model-2 on the RAF dataset.

4.5. Baseline Model for Video-based Recognition
Problem

For comparing the benefits of using SPDNet over exist-
ing methods, we use kernel based PLS that used covariance
matrices as features [17] in baseline method. 128 dimen-
sional features were extracted from each image frame of a
video and the video was modeled with a covariance ma-
trix. Then either SPDNet or kernel based SVM with either
RBF or Polynomial kernel were used for recognition. The
SPDNet was able to outperform other methods.

Confusion matrix
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Figure 6. Confusion matrix for Model-4 on the SFEW 2.0 dataset.

Confusion matrix
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Figure 7. Confusion matrices for our method (4-Bire) on the
AFEW dataset.

4.6. Results on Video-based Problem

The results of our proposed methods, baseline method
and the accuracies of other C3D and CNN-RNN models
from [9] are presented for context. However, datasets used
for those pretraining other models are not uniform, and de-
tailed comparison of all existing methods is not within the
scope of this work. As seen from Table 5, our model was
able to slightly surpass the results of the base line model.
Our method also performed better than all single models
that were trained on publicly available training dataset. The
network from [4] was trained on private dataset containing
an order of magnitude more samples. As a side experimen-
tation, we also introduced covariance pooling to C3D model
in [9] and did not obtain any improvement. We obtained ac-
curacy of 39.78%.

5. Conclusion

In this work, we exploit the use of SPDNet on facial ex-
pression recognition problems. As shown above, SPDNet
applied to covariance of convolutional features can classify
facial expressions more efficiently. We study that second-
order networks are better able to capture facial landmark
distortions. Similarly, covariance matrix computed from
image feature vectors were used as input to SPDNet for
video-based facial expression recognition problem.

We were able to obtain state-of-the-art results on image-
based facial expression recognition problems on the SFEW
2.0 and RAF datasets. In video-based facial expression
recognition, training SPDNet on image-based features was
able to obtain results comparable to state-of-the-art results.

In the context of video-based facial expression recog-
nition problem, architecture presented in Figure 8 can be
trained in end-to-end training. Though with brief experi-
mentation, we were able to obtain accuracy of only 32.5%
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Original Class  Correctly Predicted

Angry

Disgust

Fear

Happy

Neutral

N

Sad

Surprise

Model AFEW
VGG13 [4] 57.07
Single Best CNN-RNN [9] 45.43
Single Best C3D [9] 39.69
Single Best HoloNet [23] 44.57
Baseline (RBF Kernel) [17] 45.95
Baseline (Poly Kernel) [17] 45.43
Our proposed method (2-Bire) 42.25
Our proposed method (3-Bire) 44.09
Our proposed method (4-Bire) 46.71

Multiple CNN-RNN and C3D ** [9] 51.8
VGG13+VGG16+ResNet ** [23] 59.16

Table 5. Video-based recognition accuracies for various single
models and fusion of multiple models. Here the results of the
methods marked with ** were obtained either by score level or
feature level fusion of multiple models.

which is worse than the score reported [ 1]. Itis likely to be
a result of relatively small size of AFEW dataset compared
to parameters in the network. Further work is necessary to
see if training end-to-end using joint convolutional net and
SPD net can improve results.

Video

Con ovariance |SPD o
netv =S %. Matrix Net | Classifier
I

Outputs of FC layer

Figure 8. Architecture for end-to-end training on videos directly.

Incorrectly Predicted

f
\ ¢

Predicted Classes
Neutral, Neutral, Neutral,
Neutral, Happy

Sad, Sad, Surprise, Sad,
1 Neutral

Happy, Happy, Neutral, An-
gry, Happy

Sad, Neutral, Neutral, Sad,
Angry

Angry, Happy, Happy,

Happy, Happy
Neutral, Angry, Happy, Sur-
prise, Neutral

e =
y X

[

Table 4. Samples from each class of the SFEW dataset that were most accurately and least accurately classified. The first column indicates
ground truth and final column indicates predicted labels for incorrectly predicted images.

Happy, Happy, Happy, Neu-
tral, Happy

6. Further Works

In this work, we leveraged covariance matrix to capture
second-order statistics. As studied in [12], Gaussian matrix
is able to further improve the effectiveness of second-order
statistics. Formally, the SPD form of Gaussian matrix can
be computed by

_ (T op
G_( ,LLT 1) (6)

where X is the covariance matrix defined in Eqn. 1, and

p=> f @)

is the mean of the samples f7, fa, . .., f;, captures both first-
order and second-order statistics. It was also employed
in [25] to develop second-order convolutional neural net-
works. Extending current work from covariance pooling
to Gaussian pooling would be an interesting direction and
should theoretically improve results.
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