The University of Southampton
University of Southampton Institutional Repository

Off-policy reinforcement learning for efficient and effective GAN architecture search

Off-policy reinforcement learning for efficient and effective GAN architecture search
Off-policy reinforcement learning for efficient and effective GAN architecture search
Tian, Yuan
1238e219-b832-4633-a5d1-a41c60939333
Wang, Qin
a5d96f7a-c6f5-46c1-b378-18f0df6dd136
Huang, Zhiwu
84f477cd-9097-44dd-a33e-ff71f253d36b
Li, Wen
8c42a2d3-2812-4dfb-910b-cfa4c58cccb6
Dai, Dengxin
9051493e-1770-4a70-abab-c83a0e7fdd59
Yang, Minghao
f8b05989-8ca0-4492-903f-c98d83f2a3e4
Wang, Jun
168e96d4-5d93-4498-94ad-50897e60199e
Fink, Olga
32a4fb5c-daad-4cfd-b1c0-432e387d2e4b
Tian, Yuan
1238e219-b832-4633-a5d1-a41c60939333
Wang, Qin
a5d96f7a-c6f5-46c1-b378-18f0df6dd136
Huang, Zhiwu
84f477cd-9097-44dd-a33e-ff71f253d36b
Li, Wen
8c42a2d3-2812-4dfb-910b-cfa4c58cccb6
Dai, Dengxin
9051493e-1770-4a70-abab-c83a0e7fdd59
Yang, Minghao
f8b05989-8ca0-4492-903f-c98d83f2a3e4
Wang, Jun
168e96d4-5d93-4498-94ad-50897e60199e
Fink, Olga
32a4fb5c-daad-4cfd-b1c0-432e387d2e4b

Tian, Yuan, Wang, Qin, Huang, Zhiwu, Li, Wen, Dai, Dengxin, Yang, Minghao, Wang, Jun and Fink, Olga (2020) Off-policy reinforcement learning for efficient and effective GAN architecture search. In European Conference on Computer Vision.

Record type: Conference or Workshop Item (Paper)

This record has no associated files available for download.

More information

Published date: 23 August 2020

Identifiers

Local EPrints ID: 501642
URI: http://eprints.soton.ac.uk/id/eprint/501642
PURE UUID: d45abf68-a785-4b9d-b929-f2df8c98c414
ORCID for Zhiwu Huang: ORCID iD orcid.org/0000-0002-7385-079X

Catalogue record

Date deposited: 04 Jun 2025 17:11
Last modified: 05 Jun 2025 02:08

Export record

Contributors

Author: Yuan Tian
Author: Qin Wang
Author: Zhiwu Huang ORCID iD
Author: Wen Li
Author: Dengxin Dai
Author: Minghao Yang
Author: Jun Wang
Author: Olga Fink

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×