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Abstract 11 

 12 

This paper reports the use of integrated computational alloy design, coupled 13 

with a rapid printability screening method, to downselect from a total of 70000 dataset 14 

in design space to five candidates in the first step, and then from five to one in the 15 

second step. The new Ni-base superalloy with compositions of Ni-5.03Al-2.69Co-16 

5.63Cr-0.04Hf-1.91Mo-2.36Re-3.32Ta-0.57Ti-8.46W-0.05C-0.019B exhibits an 17 

optimal balance of density (8.82 g/cm2), printability (freezing range of 107 °C), thermal 18 

stability (g¢-volume fraction of 50.7% at 980 °C and low 𝑀!"""" value) and creep (rupture 19 

time of 612 h at 980 °C/120 MPa). The micro-hardness varies mildly from 417.2±18.5 20 

to 434.7±14.6 Hv, suggesting a good phase stability. This is substantiated by 21 

microstructure observations, which revealed the absence of a topologically close 22 

packed phase. Machine-learning tools of the artificial neural network (ANN), random 23 

forest and support vector regression, respectively, were used to predict creep rupture 24 

time. The ANN algorithm achieves the highest accuracy in predicting creep life. By 25 

recognising the “black box” nature of the ANN, interpretability analysis was conducted 26 

using the local interpretable model-agnostic method. The analysis supports that the 27 

ANN model truly learned meaningful functional relationships, and thus is judged as 28 

reliable. Feature correlation evaluation outcome emphasises the importance of 29 

incorporating microstructure-related input feature. 30 
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1. Introduction 35 

 36 

Designing high-temperature structural materials such as Ni-base superalloys 37 

that involve more than 10 alloy elements require significant time and capital investment. 38 

This is because correlation between the composition and material property represents a 39 

high-dimensional problem and shows complex data relationships [1]. The overall target 40 

of alloy design is to find the optimal compositional combination that maximises the 41 

performance index. A cost-effective workflow, encompassing compositional design, 42 

processing and verification, is demonstrated in the present work through developing a 43 

non-weldable Ni-base superalloy with the attributes of low density, good thermal 44 

stability, crack-free 3D printing and creep life. Fig. 1 depicts how the integrated 45 

computational tool system, coupled with carefully selected rapid printability screening 46 

experimental methods, was implemented to achieve our goal. The research hypothesis 47 

is by connecting the dots, the time and cost associated with the design and qualification 48 

of a new Ni-base superalloy tailored for additive manufacturing (AM) can be vastly 49 

reduced. This work is motivated by two previous AM studies, and the identified gaps 50 

are highlighted next. 51 

 52 

 53 
Fig. 1: Schematic summary of the integrated tool system, involving both the digital 54 
tools and rapid AM printability screening experiments, to achieve the target of alloy 55 
design. 56 
 57 



Pollock et al. [2] developed a new CoNi-base superalloy SB-CoNi-10, printable 58 

for both the electron-beam and laser-beam powder-bed-fusion (EB-PBF and L-PBF) 59 

AM processes, by using computational and rapid AM printability screening alloy 60 

design tools (e.g., first-principles calculations, CALPHAD approach based on 61 

thermodynamic calculations, combinatorial alloy processing and characterisation 62 

techniques). Their alloy design criteria involved good high-temperature strength and 63 

oxidation resistance in addition to the printability. The resulting material was proven as 64 

AM defect-resistant, exhibiting excellent tensile properties at room temperature. Reed 65 

et al. [3] designed two new crack-free superalloys ABD-850AM and ABD-900AM 66 

(belonging to the weldable group) tailored for the L-PBF using CALPHAD approach. 67 

The present work, by contrast, studies the machine learning (ML) aided design of non-68 

weldable Ni-base superalloy, tailored for the EB-PBF. Moreover, our alloy design 69 

toolkit was coupled with the new rapid printability screening method. This helps to 70 

tackle one of the challenges in the AM domain, i.e., fabrication of expensive powders 71 

with significant quantities [2]. 72 

ML has become the mainstream for developing new material systems thanks to 73 

its higher efficiency, continually improved accuracy, and lower cost [4,5]. It has 74 

achieved successes for optimising stainless steels [6–10], permanent magnets [11], 75 

shape memory alloys [12], metallic glasses [13], composites [14], and Ni-base 76 

superalloys [15–18]. Especially, ML is proven as an effective tool for the alloy design 77 

in terms of linking the alloy composition to material properties. Case studies cover both 78 

the physical and mechanical properties, such as electrical conductivity [19], 79 

transformation temperature [12], fatigue [8], tensile [6,19,20] and creep [9,15–18], to 80 

name a few. For example, Conduit et al. [15] applied a set of artificial neural network 81 

(ANN) algorithms to design a new Ni-base superalloy exceeding the target criteria of 82 

fatigue life, tensile property, and creep life. However, no experimental verification was 83 

conducted. Another example is the work of Montakhab and Balikci [18], where the 84 

ANN method was coupled with physics-based calculations to predict the creep life of 85 

Ni-base superalloy. But they were not able to prepare alloy compositions with better 86 

creep life as predicted by the ANN method. By combining the rapid AM printability 87 

screening design strategy with unsupervised ML method in [21], the prediction of creep 88 

rates and structural stability of Ni-base superalloys became more efficiently through the 89 

massive calculations of the multi-element diffusion coefficients. Generally speaking, 90 

all studies were exclusively focused on cast and wrought Ni-base superalloys. In this 91 



context, the present work represents the first report of employing the ML-aided alloy 92 

design tool for the development of AM Ni-base superalloy, together with the 93 

experimental verification. 94 

AM printability of the non-weldable Ni-base superalloy has been a hot topic 95 

over the last decade, with published work of e.g., [22–24]. In brief, the crack 96 

susceptibility can be minimised by first, lowering the sum of Al, Ti, Ta and Nb 97 

concentrations (e.g., [3]) and second, lowering the #𝑑𝑇/𝑑(𝑓"
#/%)# near (𝑓"

#/%)=1 (e.g., 98 

[25]) or narrowing the freezing temperature range (e.g., [2] The former is associated 99 

with the strain-age cracking whilst the latter with solidification cracking mechanism. 100 

Thermal stability of Ni-base superalloy appears to be another concern, especially for 101 

the EB-PBF where the high build temperature was found to promote the formation of 102 

topologically close packed (TCP) phase [26] at the lower build height region. Latest 103 

work by Liu et al. [27] demonstrated that adding minor Sc to Ni-base superalloys can 104 

greatly improve the AM printability and material properties. 105 

Here, we design a new AM Ni-base superalloy that simultaneously fulfils four 106 

criteria: printability, creep, thermal stability and density. Our significant contribution 107 

lies in the integration of alloy design and rapid AM printability screening 108 

characterisations to achieve a cost-effective processing. In the first part of the paper, 109 

the computational alloy design methodology and digital tools involved are described, 110 

followed by explaining how the rapid material screening was achieved to downselect 111 

the top five alloy types. The next major part of the paper is devoted to describing the 112 

rapid AM printability screening verification methodology, followed by evaluating the 113 

robustness of the chosen digital tools via direct experimental data comparison. Given 114 

that the newly designed non-weldable but AM printable Ni-base superalloy has an 115 

experimental creep life of 612 h at 980 °C/120 MPa as compared to that of 603 h from 116 

the ANN prediction, the discussion part seeks to interpret the prediction results and 117 

extract important knowledge from the ML model. 118 

 119 

2. Integrated computational alloy design 120 

2.1 Methodology 121 

 122 

Table 1 lists the digital approaches used to predict properties together with the 123 

target specifications. Physical approaches were used to calculate the strain-age cracking 124 



merit index (SCMI), d-orbital energy level (𝑀!"""") and density (ρ). CALPHAD approach 125 

was used to derive the liquidus and solidus temperatures (TL and TS), g¢ solidus 126 

temperature (Tg¢), freezing temperature range (ΔT = TL - TS), and the content of g¢ at 980 127 

ºC. Machine-learning tools of the ANN, random forest (RF) and support vector 128 

regression (SVR), respectively, were used to predict the creep rupture time at 980 129 

ºC/120 MPa. 130 

 131 

Table 1: Approach used to predict properties and the target specification 132 
Property Approach Target 
SCMI Physical SCMI>4 wt.% 
Md value Physical 𝑀!""""<0.98 eV 
Density Physical ρ<9.1 g/cm3 
Liquidus temperature CALPHAD TL>1300 ºC 
Solidus temperature CALPHAD TS>1250 ºC 
Freezing temperature range CALPHAD ΔT<200 ºC 
Content of g¢ at 980 ºC CALPHAD g¢ content>50% 
g¢ solidus temperature CALPHAD Tg¢>1100 ºC 
Rupture time at 980 ºC /120 MPa Machine learning (ML) t>500 h 
 133 

2.2 Creep 134 

 135 

The primary distinction among evolving generations of single-crystal Ni-base 136 

superalloys lies in their Re concentration, with the second generation being the most 137 

prevalent in the market. For a typical first-generation single-crystal Ni-base superalloy, 138 

it does not contain Re element; by comparison, a second-generation single-crystal Ni-139 

base superalloy contains about 3 wt.% Re, whilst a third-generation superalloy contains 140 

between 5 and 6 wt.%. It is also worthwhile noting that the addition of Ru has become 141 

a mainstream when designing the latest ‘fourth-generation’ single-crystal superalloys 142 

[28]. Typical elements used in the second-generation single-crystal Ni-base superalloys 143 

are Ni, Al, Co, Cr, Hf, Mo, Re, Ta, Ti and W, without taking into account the trace 144 

elements. 70000 groups of data, which were randomly generated within the 145 

composition range as indicated in Table 2, were used as the test data. 1013 groups of 146 

data, spanning from the low to high creep temperatures and stress levels for a wide 147 

range of alloy types, were sourced from the published papers (e.g., [29–34]), books 148 

(e.g., [28]), online database (e.g., [35,36]) and our unpublished work. They were used 149 

as the known data for the ANN prediction of creep life, by serving as the training and 150 



validation data. Five ML algorithms were compared, including ANN, RF, and three 151 

SVR sub-categories. 152 

 153 

Table 2: Composition ranges used to generate the alloy design space 154 
Elements Ni Al Co Cr Hf Mo Re Ta Ti W 

Range (wt.%) Bal. 1-6 2-10 0-7 0-0.5 0-4 0-5 2-10 0-1 2-10 
 155 

The ANN algorithm was chosen as it can map the relationship between different 156 

compositions and material property by fast learning of a large dataset. Additionally, it 157 

can be combined with optimisation algorithms to analyse the weights and biases, 158 

facilitating iterative optimisation to identify the optimal alloy composition. The RF 159 

algorithm is another commonly used ML model based on decision tree [37]. The SVR 160 

algorithm is developed from support vector machine [38], and it requires appropriate 161 

parameter selection (e.g., kernel function, penalty factor C, gamma and epsilon), and 162 

data pre-processing to fully exploit its advantages. Three types of kernel functions were 163 

considered: linear kernel (SVR.lin), polynomial kernel (SVR.poly), and radial basis 164 

function kernel (SVR.rbf). All of the ML algorithms were realised using sklearn in 165 

Python with the same dataset. Due to sufficient and evenly distributed data, we directly 166 

adjust the hyperparameters of each model by partitioning the data. Different ML models 167 

have their pros and cons. For example, compared to the ANN algorithm, RF is more 168 

user-friendly, requiring fewer hyperparameter adjustments and enabling faster training 169 

and optimisation; and SVR can efficiently handle high-dimensional data while keeping 170 

the data interpretation straightforward. However, the prediction accuracy determines 171 

their fit-for-purpose. 172 

The evaluation of each algorithm performance was based on the root mean 173 

squared error (RMSE), mean absolute error (MAE) and coefficient of determination 174 

(R2): 175 

RMSE = /#
&
∑ (y' − y3')%&(#
')*                     (1) 176 

MAE = #
&
∑ |y' − y3'|&(#
')*                       (2) 177 

R% = 1 − ∑ (-!(-.!)"
#$%
!&'
∑ (-!(-0)"#$%
!&'

                       (3) 178 

where N is the data number, yi is the experimental value, y3' is the predicted value, and 179 

y" is the average value of the creep life. The prediction is judged as more accurate when 180 

the values of RMSE and MSE are smaller and the R2 value is closer to 1. 181 



The ANN algorithm deserves a further description for two reasons: first, this 182 

ML tool performs the best for predicting the creep life when compared to the other four; 183 

second, both the number of hidden nodes and epoch selections are known to greatly 184 

influence the prediction results [18]. In this work, a 13-11-1 neural network structure 185 

was chosen, with 13, 11 and 1 representing the input layer, hidden nodes, and the output 186 

layer (i.e., creep rupture time), respectively. The 13 input layer data included 10 187 

element types (Table 2), the g¢ content, creep temperature and stress. 11 hidden nodes 188 

were chosen as this number led to the lowest value of RMSE, Fig. 2a. Furthermore, the 189 

optimal model complexity was evaluated by finding the best bias-variance trade-off in 190 

terms of the optimal epoch, namely, the number of times that the algorithm went 191 

through the entire training dataset. As shown in Fig. 2b, despite the monotonic decline 192 

of the training loss with the number of epochs, the validation loss reached its minimum 193 

at 400 epochs, indicating the presence of data overfitting. Thus 400 was chosen for the 194 

present ANN model. 195 

Adaptive moment estimation (so-called Adam) was used for training as opposed 196 

to the traditional stochastic gradient descent [15]. This optimisation algorithm can 197 

design independent adaptive learning rates for different parameters by computing first-198 

order and second-order moment estimates of the gradients [39]. Training cycle was 199 

terminated when generalisation stopped improving. Rectified linear unit (ReLU) 200 

activation function acting on the output neurons was used to transform input into output 201 

signals. When compared to the Sigmoid and Tanh functions used in previous work 202 

[15,18], the ReLU function has its advantages of sparse activation, mitigating gradient 203 

vanishing, and linear separability. 204 

 205 

 206 
Fig. 2: (a) Influence of the number of hidden nodes on RMSE; (b) evolution of the 207 
training loss and validation loss as a function of epoch. 208 
 209 



2.3 Printability and thermal stability 210 

 211 

Thermodynamic calculations of the CALPHAD approach were performed with 212 

the TCNI10 database using Thermo-Calc software. Given the large amount of data in 213 

the design space, TCPython, a software development kit attached to the Thermo-Calc, 214 

was used to greatly accelerate the calculation efficiency. The Scheil-Gulliver model 215 

was used to calculate the non-equilibrium solidification behaviour. In general, the 216 

higher the calculated phase transformation temperatures, the better the material 217 

performance at high temperature. Thus, the following target criteria were set: TL>1300 218 

ºC, TS>1250 ºC, and Tg¢>1100 ºC (Table 1). Moreover, the magnitude of freezing 219 

temperature range needs to be smaller than 200 ºC (ΔT<200 ºC in Table 1) so that the 220 

Ni-base superalloy is less prone to the solidification cracking during the AM process 221 

[2]. 222 

In general, adding more solid solution strengthening elements such as Mo, Co, 223 

W can greatly improve the strength [40], while low Si and C contents help in avoiding 224 

crack formation [41]. Besides, the addition of C and B can also improve the creep life 225 

[42]. However, their contents should be strictly controlled [43,44]. Després et al. [45] 226 

found that the Ni-base superalloy with B+C addition exhibited a better creep resistance 227 

than the C addition alone. When the C content reduced to 0.05 wt.%, adding B stabilised 228 

grain boundaries [46,47]. But excessive B addition resulted in the formation of 229 

solidification cracks [48]. 230 

Here, an empirical method was adopted to set the limit, as opposed to using the 231 

ML method as their minor concentration is deemed to propagate a large error. The 232 

relationship between the Cr, Mo and B contents (in at.%) was defined as: 233 

𝑘 = *.2#3
[56789]([;])

                          (4) 234 

where k is the solubility product. According to [49], the critical value of k=0.012 was 235 

used to calculate the optimum B concentration. The C concentration was set as 0.05 236 

wt.% in this work. 237 

Among the considered elements in Table 2, according to Thompson et al. [50] 238 

and Henderson et al. [51], Al, Ti and Ta can promote the g¢ formation and thereby 239 

compromises the material’s local ductility, leading to strain-age cracking. Their 240 

combined effect can be defined through the SCMI factor: 241 

SCMI = WAl+0.5WTi+0.15WTa (all in wt.%)             (5) 242 



The so-called weldability diagram, therefore, can be drawn by using the Al 243 

concentration as abscissa whilst the combined concentration of Ti and Ta (i.e., 244 

0.5WTi+0.15WTa) as ordinate. Using the SCMI as the boundary line, when the SCMI 245 

value is higher than 4 wt.%, the Ni-base superalloy is considered non-weldable. 246 

Obviously, the higher the SCMI factor, the higher the g¢ fraction. This represents a 247 

trade-off between the improved creep performance and worse AM printability. For this 248 

reason, the design criterion was set as reasonably close to the boundary line but greater 249 

than 4 wt.% for the newly designed non-weldable Ni-base superalloy. 250 

During the casting or welding process, certain alloys are prone to cracking due 251 

to the solidification shrinkage caused by the higher density of the solid than the liquid. 252 

Therefore, during the final solidification process, cracks may occur along grain 253 

boundaries, according to Kou [25]. In that work, a crack susceptibility index, defined 254 

as #𝑑𝑇/𝑑(𝑓"
#/%)# near (𝑓"

#/%)=1, was proposed to evaluate the solidification crack 255 

susceptibility. Given the absolute value of slope of the curve varies significantly near 256 

(𝑓"
#/%)=1, an average steepness #D𝑇′/D(𝑓"

#/%)# was used as an approximation. Note 257 

that the higher the crack susceptibility index, the higher susceptibility of the alloy to 258 

solidification cracking. In the present work, this index has been used to evaluate the 259 

susceptibility of designed superalloys to solidification cracking. 260 

Most of the main alloy elements in Ni-base superalloys are transition elements 261 

with unpaired d-electrons (e.g., Co, Cr, Mo, Re, Ta and W with their anticipated 262 

concentration ranges listed in Table 2). Covalent bond strength between the d-electrons, 263 

responsible for the high cohesive energy of transition metals, can be informed by using 264 

two physical parameters: d-orbital energy level (Md) and the bond order [52–54]. The 265 

list of Md values for all the elements listed in Table 2 can be found in [53]. For example, 266 

the higher Md values were found for Hf (3.020 eV) and Ta (2.224 eV) than the others 267 

(e.g., Co of 0.777 and Re of 1.267 eV). This means that for the same amount of alloy 268 

addition, elements with higher Md are expected to have an adverse effect on the thermal 269 

stability. In practice, the average Md value (symbolised with 𝑀!"""" ) of a particular 270 

superalloy type was derived using: 271 

𝑀!"""" = ∑𝑋'(𝑀!)'                          (6) 272 

where Xi is the atomic fraction of element i, and (Md)i is the Md value for that particular 273 

element. The higher 𝑀!""""  value indicates the greater tendency of the TCP-phase 274 

formation [55], and hence the target criterion was set as 𝑀!""""<0.98 eV (Table 1). 275 



 276 

2.4 Density 277 

 278 

The density of pure Ni at room temperature is 8.9 g/cm3, but alloying changes 279 

its value, with most of the 5d transition elements significantly increasing the alloy 280 

density, such as the refractory elements of Re, W and Ta. Fig. 3 shows the density 281 

values of Al and transition elements from 3d to 5d series, with a total of 10 chosen 282 

elements marked to illustrate such effect. The superalloy density can be estimated with 283 

the density of pure elements by using the Hull’s regression equation (all in wt.%), under 284 

the premise of no element mixing or interaction [56]: 285 

ρ=[w+0.1437-0.00137WCr-0.00139WNi-0.00142WCo-0.00125WW-286 

0.00113WTa+0.00040WTi-0.00113WHf+0.0000187(WMo)2-287 

0.0000506(WCo)(WTi)]´27.68 (g/cm3), with w=[100/[∑ <!
=!

>
')# ]                 (7) 288 

where Wi stands for the wt.% of element i, and Di is the density of pure element i. Here 289 

the upper limit of density was set as ρ<9.1 g/cm3. 290 

 291 

 292 
Fig. 3: Density of transition elements in 3d, 4d and 5d series as well as Al element at 293 
room temperature. Note that density of 10 elements selected for alloy design were 294 
marked. 295 
 296 

3. Alloy design results 297 

 298 

Fig. 4a compares five ML algorithms used for the creep life prediction, and their 299 

performance was assessed based on the values of the RMSE and MAE (Eqs. 1 and 2). 300 

Both the ANN and SVR.rbf models have the lowest values, meaning that they can 301 



predict the creep life with good accuracy, followed by the RF algorithm. Fig. 4b-4f 302 

present the one-to-one comparison between experimentally obtained (abscissa) and 303 

modelling predicted (ordinate) creep life, for the ANN, RF, and three SVR models, 304 

respectively. Blue points are from the validation data while red line is the regression 305 

line. It can be seen that the R2 values of the ANN and SVR.rbf models are above 0.98, 306 

indicating a good prediction. By comparison, the data distribution of SVR.lin and 307 

SVR.poly are asymmetric with reference to the red line, suggesting that the low R2 308 

value for these two models was caused by the extreme “bad points”. In terms of the RF 309 

model, its R2 value is lower than the ANN and SVR.rbf, but the prediction was not 310 

misled heavily by the extreme values, Fig. 4c. The ANN predicted creep life will 311 

hereafter be chosen, because it has received a steady improvement not only on its 312 

accuracy but also on the intepretability; with the latter leading to a gradual uncovering 313 

of how each input feature contributes to the overall model performance.  314 

 315 

 316 
Fig. 4: (a) Comparison of the algorithm performance based on RMSE/MAE values for 317 
the five machine learning methods; (b) to (f) one-to-one comparison of the model 318 
predicted against experimental observed creep rupture time, for the ANN, RF, SVR.lin, 319 
SVR.poly, and SVR.rbf, respectively, with the value of R2 marked in each figure. 320 
 321 

Based on the target criteria, the top 5 alloy compositions were identified, and 322 

they are summarised in Table 3. To better visualise the relationship between 323 

compositions and properties, the alloy design space used for screening out the new 324 

superalloy grades are shown in Fig. 5. For comparison purposes, data points 325 

representing the current second-generation Ni-base single crystal superalloys are 326 

marked with green colour, and the colour partitioned regions reflect the set criterion. 327 



 328 

Table 3: Alloy compositions for the top 5 Ni-base superalloys which meet all four 329 
design criteria (all in wt.%) 330 

Alloy 
ID Ni Al Co Cr Hf Mo Re Ta Ti W C B 

1 Bal. 5.14 3.00 4.19 0.22 2.29 2.77 3.29 0.16 8.65 0.05 0.026 
2 Bal. 5.08 3.97 4.35 0.2 2.43 2.74 2.98 0.21 8.91 0.05 0.024 
3 Bal. 5.04 2.36 6.45 0.19 2.72 1.59 3.29 0.39 8.78 0.05 0.014 
4 Bal. 5.03 2.69 5.63 0.04 1.91 2.36 3.32 0.57 8.46 0.05 0.019 
5 Bal. 4.91 2.44 5.58 0.31 1.39 3.35 2.74 0.39 9.07 0.05 0.020 

René 
N5 Bal. 6.0 8.0 7.1 0.15 2.0 3.0 7.0 0 5.0 0.05 0.004 

 331 

The newly designed superalloys are closer to the dividing line between the 332 

weldable and non-weldable types, when compared to the existing ones, Fig. 5a. This 333 

means that they are less prone to the strain-age cracking. On the flip side, the five alloys 334 

tailored for AM belong to the non-weldable group, which represents a fundamental 335 

difference to the ABD-850 and ABD-900 alloys as reported previously [3]. Fig. 5b 336 

presents the g¢-volume fraction at 980 ºC versus the SCMI factor which essentially 337 

combines the ordinate and abscissa values as presented in Fig. 5a. It can be seen that 338 

the newly designed five superalloys have a reasonably high g¢-volume fraction (above 339 

50%) whilst keeping a lower SCMI value. 340 

Furthermore, the freezing temperature range of the top five superalloys is less 341 

than 200 ºC, Fig. 5c, suggesting a lower tendency to solidification cracking. Interesting 342 

to note, all the existing Ni-base superalloys, except for the MC2 type, are prone to 343 

solidification cracking, and thus they are not ideal for the AM process. Based on the 344 

Thermo-Calc calculations, crack susceptibility index #𝑑𝑇/𝑑(𝑓"
#/%)#  near (𝑓"

#/%)=1 345 

has been also used to evaluate the solidification cracking susceptibility of five designed 346 

alloys. The terminal solidification path of alloy 1 to 5 is illustrated in Fig. 5e, with the 347 

dark-grey area indicating the region of 𝑓"
#/%=0.933 (fS=0.87) and 0.970 (fS=0.87), 348 

according to [25,57–59]. The temperature changes DT' in the selected fS range of alloy 349 

1 to 5 are 39, 40, 42, 36, and 43 °C, respectively, as shown in Fig. 5f. The corresponding 350 

crack susceptibility index was calculated as 1054, 1081, 1135, 973 and 1162 for alloy 351 

1 to 5. With the same fS range, alloy 4 apparently has the lowest DT' and crack 352 

susceptibility index among five designed alloy, whilst alloy 5 has the highest value. 353 

 354 



 355 
Fig. 5: Plots of 70000 data used for the computational alloy design, with both the newly 356 
designed alloy types (named as alloy 1 to 5) and the widely used second-generation Ni-357 
base single crystal superalloys marked in the design space: (a) SCMI plot to indicate 358 
strain-age cracking susceptibility; (b) g¢-volume fraction; (c) freezing temperature range; 359 
(d) creep rupture time; (e) and (f) solidification cracking susceptibility of the newly 360 
designed alloy 1 to 5, plotted using the criterion proposed by Kou [25]. Note: the two 361 
newly designed AM compatible Ni-base superalloys ABD series [3] are also indicated 362 
in (a) to visualise their weldable nature. 363 
 364 

Fig. 5d presents the ANN model predicted creep life, and all of the newly 365 

designed superalloys exhibit a good balance of creep performance and AM printability. 366 

As informed by the ML model, the trade-off between the two is overcome by increasing 367 

the overall concentration of solid solution strengthening elements (e.g., Mo and W). 368 



For example, René N5 is a second-generation Ni-base single crystal superalloy, and it 369 

contains a higher concentration of Al, Ti and Ta, but the combined concentration of Mo 370 

and W is lower, when compared to alloys 1 to 5 (Table 3). 371 

Thermal stability and density are the other two alloy selection criteria (Fig. 1). 372 

The former was addressed using the 𝑀!"""" method. The top five alloy types have the 𝑀!"""" 373 

value of 0.970, 0.970, 0.979, 0.970, 0.970 eV, respectively, which are lower than the 374 

existing Ni-base superalloys, e.g., René N5 of 0.989 eV and CMSX-4 of 0.984 eV. 375 

Thus, they are expected to have a good thermal stability, which is beneficial for a 376 

reduced tendency to form TCP phase and thereby showing a good compatibility with 377 

the EB-PBF AM process [26]. The violin-histogram plot in Fig. 6a, based on the 378 

calculated density, exhibits a normal distribution feature, indicating a well-representing 379 

alloy design space. 380 

Fig. 6b compares the model calculated with experimentally measured density 381 

for a range of existing Ni-base superalloys. The linear least-squares fitting returns to a 382 

value of k=1.06, indicating that the calculated density would be higher than the 383 

measured one, with the relative error estimated as 1-3%. The reason for such 384 

discrepancy is due to atom mixing which is not considered by the Hull’s regression. To 385 

this end, the density criterion was set as ρ < 9.1 g/cm3 from the modelling perspective, 386 

however, the expected density from the measurement would likely fall into the density 387 

range of 8.64-8.95 g/cm3 based on the one-to-one comparison of the existing second-388 

generation single-crystal Ni-base superalloys, as indicated in Fig. 6b. 389 

 390 

 391 
Fig. 6: (a) Violin-histogram of the calculated density for the considered 70000 data; (b) 392 
one-to-one comparison of the measured and calculated density for the existing Ni-base 393 
superalloy types. 394 
 395 



4. Experimental verification 396 

4.1 Rapid AM printability screening and crack susceptibility evaluation 397 

 398 

First, cast alloy sample coupons with dimensions of 50´25´5 mm3 were made 399 

using the five different alloy compositions as shown in Table 3. Casting was performed 400 

in a vacuum arc melting furnace with 99.99% high purity argon filled. This step 401 

involved ingot overturning smelting of 7 times (5 mins per time), with the use of 402 

electromagnetic stirring during the smelting, and finally cooling to room temperature. 403 

Second, the as-cast sample coupon was cut into a cuboid with dimensions of 10 mm 404 

long and 5 mm wide. Third, the cuboidal specimen was placed inside a recession cut 405 

into a stainless-steel starting plate with dimensions of 105´105´10 mm3. Fig. 7a 406 

illustrates how the cuboidal specimens were positioned in the starting plate. 407 

 408 

 409 
Fig. 7: (a) A schematic showing the sample layout for conducting the EB-PBF surface 410 
remelting; (b) scan strategy; (c) a photograph showing a representative sample in the 411 
surface remelted condition. Note that each sample was cut from the middle position to 412 
examine the cracking behaviour. 413 
 414 

Prior to the surface remelting, preheat step was applied. As shown in Fig. 7a, 415 

two different preheat temperatures (i.e., Tpreheat=230 °C and 1050 °C) were considered 416 

to examine the cracking susceptibility. We heated the substrate to 1050 °C for the right 417 

five alloys, cooled to room temperature, and then preheated to 230 °C for the left five 418 

ones. For the surface remelting itself, beam power P of 600 W, scan speed v of 2000 419 

mm/s, line offset Loff of 0.1 mm, and line order of 99 were chosen, resulting in the area 420 

energy value of 3 J/mm2. Note that the same process parameter set was used later on to 421 



fabricate the bulk sample. The preheat, surface remelt and bulk sample fabrication were 422 

all conducted using the EB-PBF machine (Arcam A2XX). The machine was operated 423 

in manual mode, and each cuboidal sample was subjected to remelting twice, as shown 424 

in Fig. 7b. Hatch depth was set as 50 µm and the hatch direction was rotated by 90° 425 

between layers. A typical sample in the surface remelted condition is shown in Fig. 7c, 426 

together with the indication of the vertical cut position. The cut was made perpendicular 427 

to the beam scan direction of the second scan used for the surface remelting. 428 

Crack examination was performed on the horizontal cross-section with the help 429 

of scanning electron microscopy (SEM, Zeiss Supra-55), and then on the vertical cross-430 

section with the aid of optical microscopy (Zeiss AxioCam MRc 5). For the SEM 431 

observation of Fig. 8, sample’s surface condition was in the as-cut state, whilst 432 

mechanically polished sample down to 0.5 µm diamond paste was used for the optical 433 

microscopy of Fig. 9. 434 

The left column of Fig. 8a to 8e are the surface remelted samples with the 435 

preheat temperature of 230 °C, whilst the right column of Fig. 8f to 8j are those with 436 

the preheat temperature of 1050 °C. As revealed by the SEM examination, the cracks 437 

would always form regardless of the alloy compositions under the preheat temperature 438 

of 230 °C. By contrast, the number of cracks vastly reduced under the preheat condition 439 

of 1050 °C. Especially, alloys 1 to 4 showed virtually no crack, Fig. 8f to 8i. However, 440 

alloy 5 still exhibited cracks despite the high preheat temperature, Fig. 8j. To a certain 441 

extent, this rapid screening test substantiates that the newly designed Ni-base 442 

superalloys are well suited for the EB-PBF method as opposed to the L-PBF (operating 443 

at low build temperature). Alloys 1 to 5 (1050 °C preheat temperature) were examined 444 

further on a large cross-section prepared vertically, as shown in Fig. 9. Alloy 4 was 445 

ranked the best (i.e., immune to cracking), followed by alloys 3, 1, 2 and 5, in order of 446 

low to high crack susceptibility. Henceforth, alloy 4 with the composition of Ni-5.03Al-447 

2.69Co-5.63Cr-0.04Hf-1.91Mo-2.36Re-3.32Ta-0.57Ti-8.46W-0.05C-0.019B (Table 3) 448 

is verified as a Ni-base superalloy with good EB-PBF compatibility with the use of 449 

cost-effective surface remelting (i.e., without producing mass powders). 450 

 451 



 452 
Fig. 8: SEM examination of the cracks as observed in the EB-PBF surface remelted 453 
samples (x-y plane): (a) to (e) preheat temperature of 230 °C; (f) to (j) preheat 454 
temperature of 1050 °C. Alloy IDs are indicated at the left of each row. Note the 455 
identified cracks are highlighted using bright-contrast outlines. 456 
 457 



 458 
Fig. 9: Optical micrographs of the vertical section (x-z plane) of each sample: (a) to (e) 459 
alloys 1 to 5, respectively. All samples were subjected to surface remelting at the 460 
preheat temperature of 1050 ºC. Note the identified cracks are marked in red. 461 
 462 

Fig. 10a to 10e show the equilibrium solidification paths as calculated with 463 

TCNI10 database of Thermo-Calc software. For each designed superalloy, there is no 464 

significant difference in solidification processes, i.e. all of them experience three 465 

solidification stages of L, L+g, and L+g+g¢. Alloy 4 exhibited a narrower freezing range 466 

and a smaller L+g+g¢ zone when compared to the other alloys. Neither TCP phase nor 467 

carbide was observed at the end of solidification. To evaluate the accuracy of the 468 

thermodynamic calculation, SEM examination was conducted to reveal the 469 

microstructure details of alloys 1 to 5, as shown in Fig.10f to 10j. It is evident that 470 

neither the TCP phase nor carbide can be seen at the grain or dendritic boundary. This 471 

means that the Md-based thermal stability prediction is accurate and reliable. 472 

Furthermore, the SEM study shows that alloys 1 and 4 have coarser columnar structures 473 

than alloys 2, 3 and 5. This means the predicted solidification curves are consistent with 474 

the experimental observation. 475 

 476 



 477 
Fig. 10: (a-e) Equilibrium solidification curves for alloys 1 to 5; (f-j) SEM observations 478 
of alloys 1 to 5, with left column showing low-magnification images, while the right 479 
column showing the high-magnification images. 480 
 481 

Two additional experimental verifications which were performed using the as-482 

cast samples with the alloy compositions of alloys 1 to 5 are the measurement of mass 483 

density and determination of thermodynamic properties. Refer to Appendix A for the 484 

detail of experimental methods. It was confirmed that the Hull’s regression equation 485 

and CALPHAD approach can be used to guide the alloy design in terms of the mass 486 

density, freezing temperature range and g¢ solvus temperature. Note such finding is 487 



consistent with the previous studies with the examples of [55] for the density prediction 488 

and [3] for the phase-transformation temperature. 489 

 490 

4.2 Bulk sample printing and material qualification 491 

 492 

The rapid AM printability screening narrowed the list of alloy candidates down 493 

from five to one. The same EB-PBF machine was then used to fabricate bulk samples 494 

with nine cuboids (dimensions of 25´25´20 mm3) per batch, as schematically shown 495 

in Fig. 11a. Alloy powders were prepared using the plasma rotating electrode 496 

processing (PREP) method, with their size distribution measured as 60.9 µm, 119.3 µm 497 

and 221.6 µm, for the respective D10, D50 and D90, using the laser diffraction method. 498 

For the bulk sample printing, beam power P of 600 W, scan speed v of 300 mm/s, line 499 

offset Loff of 0.1 mm, and preheat temperature of 1050 °C were chosen, together with 500 

the unidirectional scan strategy. 501 

Fig. 11b shows the optical micrograph of alloy 4 in the as-built condition, 502 

revealing a virtually crack-free microstructure in the main body of the specimen, except 503 

for one crack at the very bottom (this region would be cut off in a real-word scenario). 504 

To fully recognise the excellent AM printability, an existing Ni-base superalloy René 505 

N5 type was chosen for making a direct comparison. Fig. 11c reveals the presence of 506 

several cracks in the as-built René N5 sample, and these large cracks extended almost 507 

half of the specimen. The EB-PBF alloy 4 sample was subjected to a full heat treatment, 508 

involving solution treating for 4 h at 1260 °C (oil quenched), followed by g¢-precipitate 509 

aging at 1050 °C for 8 h (oil quenched). The temperature selection was guided by the 510 

combination of differential scanning calorimetry measurement and CALPHAD 511 

thermodynamics calculation. Alloy 4 in as-built condition has a columnar dendrite 512 

structure with well-defined g¢-cuboids with size of ~92 nm, Fig. 11d. No secondary 513 

phase was found in the as-built condition. After solution treating and aging, chain-like 514 

Ta, Hf-rich carbides precipitated from the inter-dendritic region (Fig. 11e and 11f) 515 

according to energy-dispersive X-ray spectroscopy (EDS) mapping results, in 516 

alignment with our previous work [60]. 517 

 518 



 519 
Fig. 11: (a) Schematic diagram of one batch of as-built alloy 4 samples; (b) and (c) 520 
comparison of the alloy 4 (crack-free) and a typical second-generation single-crystal 521 
Ni-base superalloy René N5 (the presence of cracks) as revealed under the optical 522 
microscopy. Both samples were printed using the same EB-PBF melt parameters 523 
(details can be found elsewhere [60]) and samples were polished down to 0.5 µm 524 
diamond paste prior to taking the images. Additional microstructure observations by 525 
using secondary electron SEM imaging mode were conducted on alloy 4: (d) as-built; 526 
(e) solution treated and (f) aged conditions. 527 
 528 

Creep test of alloy 4 was performed on a SANS CMT504A1 tester, with the 529 

specimen dimensions of 10 mm in gauge length, 3 mm in width and 1 mm in thickness. 530 

Prior to the test, specimen surface was subjected to polishing down to 2000-grit SiC 531 

paper, followed by ethanol ultrasonic cleaning. Three thermocouples were attached 532 

onto the specimen near the top, middle and bottom to monitor the temperature. The 533 

specimen was heated to 980 ºC with the rate of 10 ºC/min, and then held at the 534 

temperature for 30 mins prior to applying the load of 120 MPa. During the entire creep 535 

test, the temperature variation was controlled within ±2 ºC. Fig. 12a presents the 536 

experimentally measured creep curve and the derived creep rate vs. time. Overall, the 537 

creep rupture time reaches 612 h which is comparable to the ANN model prediction of 538 

603 h. Also, the minimum creep rate was determined as 4.39´10-5 h-1 (Fig. 12a). 539 

 540 



 541 
Fig. 12: (a) Creep curve of EB-PBF alloy 4 at 980 °C / 120 MPa, with the primary Y-542 
axis indicating strain, while the secondary Y-axis indicating strain rate; (b) 543 
microhardness values of the as-built and fully heat-treated conditions of alloy 4 as 544 
measured at different build heights (Z=1 mm, 5 mm, 10 mm, 15 mm and 20 mm). 545 
 546 

Vickers hardness measurements were performed on a FALCON511 micro-547 

hardness tester, with the load of 200g and dwell time of 10s. Ten individual 548 

measurements per condition were made to derive the average value. Fig. 12b compares 549 

the as-built with fully heat-treated conditions of alloy 4. The Z-build variation was also 550 

measured as it provides important indication of the thermal stability. For the as-build 551 

condition, the micro-hardness was determined as 382.8±5.2, 384.5±8.8, 406.9±8.5, 552 

410.1±7.1 and 438.9±10.8, for the Z-build height of 1 mm, 5 mm, 10 mm, 15 mm and 553 

20 mm, respectively. This suggests coarsening of g¢-precipitate occurred towards the 554 

bottom of the sample build. However, when the samples were subjected to the heat 555 

treatment, the micro-hardness results suggested the more uniform distribution with the 556 

lowest value of 417.2±18.5 and highest value of 434.7±14.6 Hv. 557 

 558 

5. Discussion 559 

 560 

Finding the optimal alloy composition that best meets multiple criteria (or called 561 

as inequality constraints as stated in Table 1) represents a multi-objective optimisation 562 

problem, according to [61]. Multiple criteria come with additional degrees of freedom, 563 

and thus the utility function (U) can be introduced to combine the objectives into a 564 

single measure that reflects the overall quality of a solution. In the context of the present 565 

work, the alloy composition is the objective function, while SCMI, Md value, density, 566 

etc. are a series of criteria (with each objective described by its objective function). 567 

Mathematically, the adopted approach can be summarised as weighted sum method: 568 



𝑈 = ∑ 𝑤?𝑄?(x)@
?)#                          (8) 569 

where U is the utility function, k is the number of objective functions, wi is the weight, 570 

and Qi(x) is objective function. The objective functions Qi(x) are defined such that when 571 

a solution satisfies a certain criterion, Qi(x)=1, and when it does not, Qi(x)=0. In other 572 

words, a binary objective function (Qi(x)=1 or Qi(x)=0) is used, allowing for a 573 

simplification of the optimisation problem. All weights (wi) are set to 1, indicating equal 574 

importance for all objectives. There are nine objective functions, as stated in Table 1, 575 

and thus k is equal to 9. 576 

Apparently, the above-mentioned multi-objective optimisation method suits the 577 

purpose of the present work, because what concerned us the most from the perspective 578 

of alloy design is whether a criterion is met, rather than its specific values. For example, 579 

if a designed superalloy meets the density criterion of ρ<9.1 g/cm3, Qi(x)=1 will be 580 

assigned. The specific value for the density becomes not relevant from the perspective 581 

of binary indicator. 582 

Through the integration of computational alloy design and rapid AM printability 583 

screening experimental validation, a new Ni-base superalloy has been developed to 584 

meet target specifications as outlined in Table 1. In terms of the AM printability, both 585 

the freezing temperature range (as well as the crack susceptibility index) and SCMI 586 

factor have been considered via the modelling approach. However, this does not 587 

necessarily guarantee a crack-free microstructure as revealed by the surface remelting 588 

experiment, where only alloy 4 is proven as immune to cracking (Fig. 8 and Fig. 9). 589 

The remaining four alloys all showed some level of cracking, despite the high build 590 

temperature of 1050 ºC which helped to prevent cracking. Given the small difference 591 

in terms of the model predicted SCMI (5.52 to 5.81 wt.%), crack susceptibility index 592 

(973 to 1162 °C) and freezing temperature range (104 to 154 °C) for the top five alloy 593 

compositions, it is important to emphasise the need for performing experimental 594 

verification. To this end, the surface remelting strategy (Fig. 7) brings out a clear benefit 595 

in terms of cost saving, representing a new rapid printability screening method. The 596 

present work demonstrates the efficacy of this method, which can be used to replace 597 

the production of AM powders with five different compositions for the purposes of 598 

printing the bulk sample. 599 

Part of the motivation behind the present work is to ensure the good AM 600 

printability does not sacrifice the creep property. Therefore, the ML method has been 601 



employed to forecast the creep performance, instead of conducting a batch of creep tests 602 

which are known to be costly and time consuming. ML is an emerging technique, and 603 

several ML methods were employed for predicting the creep rupture time, such as RF, 604 

SVR, gaussian process regression (GPR), lasso regression (LR), ridge regression (RR), 605 

gradient boosted tree (GBT), and deep neural network (DNN). Liu et al. [17] compared 606 

five of them, including RF, SVR, GPR, LR and RR, to reveal the differences in creep 607 

mechanisms of alloy samples in different clusters. Sanchez et al. [62] determined the 608 

main influencing factors on creep rates in L-PBF Alloy 718 by using ML methods of 609 

RF, GBT, SVR, DNN, RR and LR, together with the input data of several build 610 

parameters and geometrical material descriptors. Furthermore, ANN has been proven 611 

as a reliable method to predict the creep life of alloys processed by conventional means 612 

[63,64]. To this end, the present work represents the first attempt of using ANN method 613 

to predict the creep rupture time of AM Ni-base superalloy. It turns out to be a success 614 

in terms of achieving the good agreement between the experimental data (612 h) and 615 

modelling prediction (603 h). Moreover, there is no reason to believe that such a good 616 

agreement is only applicable to the chosen creep condition of 980°C/120 MPa. This is 617 

because the ANN model (Fig. 4b) is characterised by the low RMSE of 40.2 h and low 618 

MAE of 19.8 h, as well as the high R2 of 0.98 (Fig. 4a). Despite the success, nearly all 619 

ML methods (e.g., ANN) are recognised as the “black box” in nature. This means 620 

whether the model has achieved good results would also rely on its interpretability. 621 

Chen et al. [65] found that adding minor Ti (~0.5 wt.%) to a second-generation 622 

single-crystal Ni-base superalloy can greatly improve the creep rupture time by more 623 

than twice compared to René N5 (45 h vs. 100 h at 1030 °C / 230 MPa), and the Ti 624 

concentration is close to alloy 4. Kalyanasundaram et al. [66] prepared crack-free 625 

CM247LC alloy via L-PBF, with the rupture time at 800 °C of ~200 h at 500 MPa, 65 626 

h at 550 MPa, 30 h at 600 MPa. However, carbides with enrichments of Ti/Hf/Ta/W/C 627 

elements can be observed in the as-fabricated state compared with the current work in 628 

Fig. 10d, 10i and 11d. This indicates that alloy 4 has a good thermal stability thanks to 629 

the high accuracy of Md predictions. 630 

The correlation between each pair of features is visualised via the heatmap of 631 

Fig. 13. It reveals that element such as Al and Ta, especially the former, exhibits 632 

statistically significant positive correlations with g¢ content. This finding aligns with 633 

their metallurgical role as the primary forming element for the g¢ precipitate. Moreover, 634 



the g¢ content demonstrates a strong positive correlation with creep rupture time, with 635 

W and Cr following closely. On the other hand, Ni consistently exhibits negative 636 

correlations with most of the other elements. Importantly, no notably strong correlation 637 

was observed between any two elements. This observation suggests that these elements 638 

should be retained simultaneously as input data, emphasising their individual 639 

contributions without significant multicollinearity. 640 

 641 

 642 
Fig. 13: Heatmap visualisation of the correlation between every pair of features as well 643 
as the target (note that the colour intensity and numerical values in each cell indicating 644 
the strength of correlation between the corresponding features). 645 
 646 

Fig. 14 explores the linear relationship between each alloying element and the 647 

creep rupture time. g¢ content and Al exhibit a positive correlation and Ni shows a 648 

negative correlation, establishing clear linear relationships with the target. By 649 

comparison, other elements display less discernible linear patterns (consistent with Fig. 650 

13). This observation explains why the accuracy of the SVR with a linear kernel (Fig. 651 

4d) is comparatively lower than other ML algorithms. Therefore, we opted not to 652 

consider simple linear regression and logistic regression in this study. 653 



 654 

 655 
Fig. 14: Scatter matrix for the relationship between the alloying features and the target. 656 

 657 

Now let’s consider the interpretability of the ANN model. The interpretability 658 

analysis was performed using the local interpretable model-agnostic explanations 659 

(LIME) method [67], aimed to evaluating whether the model has truly learned useful 660 

functional relationships. The idea behind the LIME is to approximate the nonlinear 661 

function learned by a ML model to a linear function within a small neighbourhood of 662 

an individual sample (i.e., a specific element type). In practice, this is achieved by 663 

generating a small set of samples around the sample of interest, obtaining their 664 

predicted outcomes (i.e., creep life) using the ANN model, and finally performing the 665 

simple linear regression. The interpretability analysis results for the 10 element types 666 

and g¢-volume fraction (in total 11 features) are presented in Fig. 15. In the bar chart, 667 

the positive direction (pointing right) of each reference bar indicates a positive effect 668 

on creep life (leading to increased rupture time). Likewise, the negative direction 669 

suggests such feature would cause a decreased creep rupture time. The bar length 670 



indicates the feature weight. Five alloys are considered separately, Fig. 15a to 15e in 671 

order of alloy 1 to 5, and the analysis results are overall consistent.  672 

 673 

 674 
Fig. 15: Analysis of interpretability of ANN model using the LIME method: (a) to (e) 675 
alloy 1 to 5, illustrating the influence of feature weight on creep rupture time. 676 
 677 

The LIME analysis shows that the g¢-volume fraction within the data range of 678 

46.5% to 58.0% (with reference to the set target of >50%) would impact positively the 679 

creep rupture time. By incorporating the g¢-volume fraction as an input feature to the 680 

ANN model, the contributions of Al, Ti and Ta are reduced to a very low positive value 681 



or even towards a low negative value. This is as expected because they are all g¢-forming 682 

elements [28], namely, their influence on the creep rupture time has been already 683 

considered by the feature of g¢-volume fraction. The second key learning outcome is 684 

the role of W > 7.8%, which has a positive effect on creep life. W is one of the most 685 

effective solid solution strengthening elements in Ni-base superalloys, and research 686 

conducted by Zenk et al. [68] revealed that the higher W content led to reduced 687 

secondary creep rate. Furthermore, two out of the five alloys (i.e., alloy 2 and 3 in Fig. 688 

14b and 14c) suggest that Mo content of > 2.4% generates a positive impact on creep 689 

rupture time. This seems to agree with the experimental observation by Zhang et al. 690 

[69], where the increased ratio of Mo to W resulted in the prolonged creep life. Note 691 

that the LIME analysis could not cope with synergistic effect in a sense of treating 692 

combined feature effect. In addition, Re in the range from 2.1% to 4.0% would have a 693 

positive influence on creep life. This agrees with the metallurgical role of Re in terms 694 

of its enrichment at partial dislocations, imposing a drag effect on dislocation 695 

movement [70]. Moreover, the LIME analysis shows that Co content of £ 4.7% would 696 

generate the negative influence. In other words, by increasing the Co content of higher 697 

than this critical concentration, one would expect an increased creep rupture time. This 698 

seems to concur with our consensus that Co in Ni-base superalloys plays a vital role on 699 

the enhanced creep properties because it can increase g¢-volume fraction and reduce the 700 

stacking fault energy [71]. To summarise, based on the LIME analysis, the present 701 

ANN model shows a good level of reliability in a sense that it did truly learn meaningful 702 

functional relationships. 703 

The LIME analysis is also in line with the trend of alloy development. 704 

Experience has shown that improvements in creep strengthening occur in the increasing 705 

order of Co®Cr®Ta®W®Re [28]. Although Re has a significant effect on the creep 706 

performance improvement, excessive addition will promote the precipitation of 707 

intermetallic phases (such as the TCP phases), by lowering the thermal stability (refer 708 

to the high Md value of Re, 1.267 eV). However, the range of Re among five designed 709 

alloys is still within the scope of the second-generation single-crystal Ni-base 710 

superalloy. Lowering the content of Cr and Ta is another trend from the development 711 

of second- to the fourth-generation single-crystal Ni-base superalloys. This is broadly 712 

consistent with the composition as shown in Table 3 (comparing with other second-713 

generation single-crystal Ni-base superalloys such as René N5). Increasing the W 714 



content to a high level (over 8.5 wt.%) to offset the decrease in other elements might 715 

have a positive effect, although the specific mechanism for such a large amount of W 716 

is still unknown except for the results of LIME. 717 

Acknowledging the limitations of the ANN model is equally important. Its 718 

design doesn’t aim to indicate any specific physical relationships, but rather provides 719 

an alternative means to predict results similar to physical constitutive laws. It becomes 720 

particularly robust when the model includes adequate physics-related input features. 721 

The above-mentioned interpretability analysis serves to compare the variable 722 

importance against our state-of-the-art field knowledge. This should not be 723 

misunderstood with the discovery of any new physical relationships. Numerous 724 

physical creep models, outlined in the open literature e.g., [30,72–74], have established 725 

the links between controlling microstructural features and creep life by precisely 726 

accounting for underlying deformation and damage processes. However, their 727 

applicability is predominantly limited to certain stress and temperature conditions as 728 

well as the material process history. When addressing the complexity of various 729 

alloying elements and multiple parameters during AM, these models achieved limited 730 

success. It was reported in [17] that when considering the microstructural evolution 731 

information in a data-driven models, a more accurate prediction result of creep rupture 732 

time can be obtained, when compared to the use of physical models. Therefore, the use 733 

of ANN approach becomes notably appealing in scenarios where intricate physical 734 

processes pose challenges for conventional physics-based methodologies [75]. 735 

Feature correlation is another method to help understand the ML predicted 736 

results. Here, both the Pearson correlation coefficient (PCC) and maximum information 737 

coefficient (MIC) were used to characterise the feature correlation of the ANN model. 738 

The PCC is the most common way of measuring the strength and direction of the linear 739 

correlation between two variables [76], whereas the MIC can provide a measure of the 740 

strength of the linear or nonlinear correlation [77]. The value range of the PCC is [-1,1], 741 

suggesting a strong positive correlation if its value becomes close to 1, while a strong 742 

negative correlation for a value of close to -1. The value range of the MIC is [0,1], 743 

suggesting a strong correlation between two variables, when its value becomes close to 744 

1, regardless of linear or non-linear relationship. 745 

 746 



 747 
Fig. 16: Feature correlation related to the creep rupture time based on the PCC in (a) 748 
and MIC in (b). 749 
 750 

The PCC and MIC evaluation results for 10 elements plus the g¢ content (i.e., in 751 

total 11 input features) are shown in Fig. 16a and 16b. There is no strong correlation 752 

between each feature and the predicted creep life, suggesting a very weak linear 753 

relationship between the two variables. However, the PCC evaluation does reveal some 754 

positive correlation of key elements, g¢ content and the creep life. For example, Re, Al, 755 

Ta, Co and W elements in Ni-base superalloys are known to be beneficial for the creep 756 

property [28,68–70]. In terms of the MIC evaluation, g¢ content was found to have a 757 

value of ~0.5, suggesting a strong correlation between this feature and creep life. By 758 

contrast, all the elements do not show a strong correlation, which suggests that 759 

microstructure (e.g., g¢ content) plays a more important role when compared to the alloy 760 

composition. Based on the PCC and MIC analyses of the ANN model prediction, it 761 

seems that introducing other input features which can represent the microstructure-762 

property interrelationship might generate an even more reliable prediction. It has been 763 

recognised in literature that microstructure feature such as grain size [78,79], stacking 764 

fault energy [80], diffusion coefficient of g or g¢-forming elements [81], and AM 765 

parameters [82] all play an important role on the creep property. Using a 766 

thermodynamic calculation software (e.g., Thermo-Calc) to calculate these parameters 767 

is a viable route. 768 

 769 

6. Conclusions 770 

 771 

The following conclusions can be drawn from this work: 772 

1) Using the integrated computational tools coupled with rapid AM 773 

printability screening experimental methods, a new Ni-base superalloy 774 



composition (Ni-5.03Al-2.69Co-5.63Cr-0.04Hf-1.91Mo-2.36Re-3.32Ta-775 

0.57Ti-8.46W-0.05C-0.019B) is proposed to meet four design criteria of 776 

AM printability, creep, thermal stability and density. 777 

2) Surface remelting strategy is proven as an effective means to examine the 778 

AM printability in a cost-effective manner, and this new rapid printability 779 

screening method provides a bypass as far as the expensive AM powder 780 

production in significant quantities is concerned. 781 

3) Among the five ML algorithms considered, ANN shows the highest 782 

prediction accuracy in the context of comparing the experimental 783 

measured with model predicted creep life. The measured creep life of 612 784 

h is close to the model predicted 603 h. 785 

4) LIME-based interpretability analysis substantiates that the ANN model 786 

truly learns meaningful functional relationships between input features 787 

and the output. PCC and MIC-based evaluation emphasises the 788 

importance of incorporating microstructure-related input feature as it 789 

plays a key role on the prediction results and reliability. 790 
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 800 

Appendix A: Density measurement and determination of phase transformation 801 

temperatures 802 

 803 

Using the cast samples with compositions of alloy 1 to 5, the mass density was 804 

measured by using Archimedes drainage method. Five measurements were taken per 805 

alloy type, and the averaged value of mass density was determined as 8.85, 8.88, 8.63, 806 

8.82, 8.88 g/cm3, in order of alloy 1 to 5. By comparison, the Hull’s model (Eq. 7) 807 

predicted values were 9.09, 9.09, 8.98, 8.98, 9.09 g/cm3, respectively. The lower value 808 



of the predicted density as compared to the measurement is as expected given the fact 809 

of first, k factor with a value of greater than 1 (Fig. 6b), and second, no consideration 810 

of the atom mixing. 811 

A synchronous thermal analyser NETZSCH STA 449 F3 filled with argon was 812 

used to measure thermodynamic properties. The heating rate was set as 5 °C/min. The 813 

size of each test sample was 4 mm in diameter and 0.8 mm thick. By analysing the 814 

differential scanning calorimetry (DSC) data curve, for alloys 1 to 5 as shown in Fig. 815 

A1, the liquidus and solidus temperatures (TL and TS) as well as the g¢ solvus 816 

temperatures (Tg¢) of all five alloys were obtained. By comparison with the CALPHAD 817 

approach predicted values (Table A1), it seems that the model prediction shows a 818 

reasonably good agreement with experimental data. 819 

 820 

 821 
Fig. A1: Differential scanning calorimetry (DSC) curves obtained from alloys 1 to 5, 822 
during heating and cooling at 5 K/min, as presented in (a) to (e), respectively. 823 
 824 
Table A1: Comparison of CALPHAD approach predicted thermodynamic properties 825 
with the DSC measured values for alloys 1 to 5. Note: freezing temperature range is the 826 
difference between TL and Ts. 827 

Alloy type 
CALPHAD (ºC) DSC (ºC) 

TL TS Freezing range TL TS Freezing range 
Alloy 1 1418 1264 154 1399 1270 129 
Alloy 2 1415 1296 119 1410 1330 80 
Alloy 3 1401 1297 104 1394 1280 114 
Alloy 4 1406 1299 107 1401 1300 101 
Alloy 5 1421 1310 111 1408 1330 78 
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