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Abstract

This paper reports the use of integrated computational alloy design, coupled
with a rapid printability screening method, to downselect from a total of 70000 dataset
in design space to five candidates in the first step, and then from five to one in the
second step. The new Ni-base superalloy with compositions of Ni-5.03Al1-2.69Co-
5.63Cr-0.04Hf-1.91Mo-2.36Re-3.32Ta-0.57Ti-8.46 W-0.05C-0.019B  exhibits  an
optimal balance of density (8.82 g/cm?), printability (freezing range of 107 °C), thermal
stability (y'-volume fraction of 50.7% at 980 °C and low My value) and creep (rupture
time of 612 h at 980 °C/120 MPa). The micro-hardness varies mildly from 417.2+18.5
to 434.7£14.6 Hv, suggesting a good phase stability. This is substantiated by
microstructure observations, which revealed the absence of a topologically close
packed phase. Machine-learning tools of the artificial neural network (ANN), random
forest and support vector regression, respectively, were used to predict creep rupture
time. The ANN algorithm achieves the highest accuracy in predicting creep life. By
recognising the “black box” nature of the ANN, interpretability analysis was conducted
using the local interpretable model-agnostic method. The analysis supports that the
ANN model truly learned meaningful functional relationships, and thus is judged as
reliable. Feature correlation evaluation outcome emphasises the importance of

incorporating microstructure-related input feature.
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1. Introduction

Designing high-temperature structural materials such as Ni-base superalloys
that involve more than 10 alloy elements require significant time and capital investment.
This is because correlation between the composition and material property represents a
high-dimensional problem and shows complex data relationships [1]. The overall target
of alloy design is to find the optimal compositional combination that maximises the
performance index. A cost-effective workflow, encompassing compositional design,
processing and verification, is demonstrated in the present work through developing a
non-weldable Ni-base superalloy with the attributes of low density, good thermal
stability, crack-free 3D printing and creep life. Fig. 1 depicts how the integrated
computational tool system, coupled with carefully selected rapid printability screening
experimental methods, was implemented to achieve our goal. The research hypothesis
is by connecting the dots, the time and cost associated with the design and qualification
of a new Ni-base superalloy tailored for additive manufacturing (AM) can be vastly
reduced. This work is motivated by two previous AM studies, and the identified gaps

are highlighted next.
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Fig. 1: Schematic summary of the integrated tool system, involving both the digital
tools and rapid AM printability screening experiments, to achieve the target of alloy
design.
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Pollock et al. [2] developed a new CoNi-base superalloy SB-CoNi-10, printable
for both the electron-beam and laser-beam powder-bed-fusion (EB-PBF and L-PBF)
AM processes, by using computational and rapid AM printability screening alloy
design tools (e.g., first-principles calculations, CALPHAD approach based on
thermodynamic calculations, combinatorial alloy processing and characterisation
techniques). Their alloy design criteria involved good high-temperature strength and
oxidation resistance in addition to the printability. The resulting material was proven as
AM defect-resistant, exhibiting excellent tensile properties at room temperature. Reed
et al. [3] designed two new crack-free superalloys ABD-850AM and ABD-900AM
(belonging to the weldable group) tailored for the L-PBF using CALPHAD approach.
The present work, by contrast, studies the machine learning (ML) aided design of non-
weldable Ni-base superalloy, tailored for the EB-PBF. Moreover, our alloy design
toolkit was coupled with the new rapid printability screening method. This helps to
tackle one of the challenges in the AM domain, i.e., fabrication of expensive powders
with significant quantities [2].

ML has become the mainstream for developing new material systems thanks to
its higher efficiency, continually improved accuracy, and lower cost [4,5]. It has
achieved successes for optimising stainless steels [6—10], permanent magnets [11],
shape memory alloys [12], metallic glasses [13], composites [14], and Ni-base
superalloys [15—18]. Especially, ML is proven as an effective tool for the alloy design
in terms of linking the alloy composition to material properties. Case studies cover both
the physical and mechanical properties, such as electrical conductivity [19],
transformation temperature [12], fatigue [8], tensile [6,19,20] and creep [9,15-18], to
name a few. For example, Conduit et al. [15] applied a set of artificial neural network
(ANN) algorithms to design a new Ni-base superalloy exceeding the target criteria of
fatigue life, tensile property, and creep life. However, no experimental verification was
conducted. Another example is the work of Montakhab and Balikci [18], where the
ANN method was coupled with physics-based calculations to predict the creep life of
Ni-base superalloy. But they were not able to prepare alloy compositions with better
creep life as predicted by the ANN method. By combining the rapid AM printability
screening design strategy with unsupervised ML method in [21], the prediction of creep
rates and structural stability of Ni-base superalloys became more efficiently through the
massive calculations of the multi-element diffusion coefficients. Generally speaking,

all studies were exclusively focused on cast and wrought Ni-base superalloys. In this
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context, the present work represents the first report of employing the ML-aided alloy
design tool for the development of AM Ni-base superalloy, together with the
experimental verification.

AM printability of the non-weldable Ni-base superalloy has been a hot topic
over the last decade, with published work of e.g., [22-24]. In brief, the crack
susceptibility can be minimised by first, lowering the sum of Al, Ti, Ta and Nb
concentrations (e.g., [3]) and second, lowering the |dT /d (fsl/ 2)| near ( fsl/ 2)=1 (e.g.,
[25]) or narrowing the freezing temperature range (e.g., [2] The former is associated
with the strain-age cracking whilst the latter with solidification cracking mechanism.
Thermal stability of Ni-base superalloy appears to be another concern, especially for
the EB-PBF where the high build temperature was found to promote the formation of
topologically close packed (TCP) phase [26] at the lower build height region. Latest
work by Liu et al. [27] demonstrated that adding minor Sc to Ni-base superalloys can
greatly improve the AM printability and material properties.

Here, we design a new AM Ni-base superalloy that simultaneously fulfils four
criteria: printability, creep, thermal stability and density. Our significant contribution
lies in the integration of alloy design and rapid AM printability screening
characterisations to achieve a cost-effective processing. In the first part of the paper,
the computational alloy design methodology and digital tools involved are described,
followed by explaining how the rapid material screening was achieved to downselect
the top five alloy types. The next major part of the paper is devoted to describing the
rapid AM printability screening verification methodology, followed by evaluating the
robustness of the chosen digital tools via direct experimental data comparison. Given
that the newly designed non-weldable but AM printable Ni-base superalloy has an
experimental creep life of 612 h at 980 °C/120 MPa as compared to that of 603 h from
the ANN prediction, the discussion part seeks to interpret the prediction results and
extract important knowledge from the ML model.

2. Integrated computational alloy design

2.1 Methodology

Table 1 lists the digital approaches used to predict properties together with the

target specifications. Physical approaches were used to calculate the strain-age cracking
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merit index (SCMI), d-orbital energy level (My) and density (p). CALPHAD approach
was used to derive the liquidus and solidus temperatures (71 and 7s), y' solidus
temperature (7y), freezing temperature range (A7 = 71 - Ts), and the content of y" at 980
°C. Machine-learning tools of the ANN, random forest (RF) and support vector

regression (SVR), respectively, were used to predict the creep rupture time at 980

°C/120 MPa.

Table 1: Approach used to predict properties and the target specification

Property Approach Target

SCMI Physical SCMI>4 wt.%
My value Physical My3<0.98 eV
Density Physical p<9.1 g/cm’
Liquidus temperature CALPHAD T1>1300 °C
Solidus temperature CALPHAD Ts>1250 °C
Freezing temperature range CALPHAD AT<200 °C
Content of y" at 980 °C CALPHAD v content>50%
Y’ solidus temperature CALPHAD T,>1100 °C
Rupture time at 980 °C /120 MPa Machine learning (ML) t>500 h

2.2 Creep

The primary distinction among evolving generations of single-crystal Ni-base
superalloys lies in their Re concentration, with the second generation being the most
prevalent in the market. For a typical first-generation single-crystal Ni-base superalloy,
it does not contain Re element; by comparison, a second-generation single-crystal Ni-
base superalloy contains about 3 wt.% Re, whilst a third-generation superalloy contains
between 5 and 6 wt.%. It is also worthwhile noting that the addition of Ru has become
a mainstream when designing the latest ‘fourth-generation’ single-crystal superalloys
[28]. Typical elements used in the second-generation single-crystal Ni-base superalloys
are Ni, Al, Co, Cr, Hf, Mo, Re, Ta, Ti and W, without taking into account the trace
elements. 70000 groups of data, which were randomly generated within the
composition range as indicated in Table 2, were used as the test data. 1013 groups of
data, spanning from the low to high creep temperatures and stress levels for a wide
range of alloy types, were sourced from the published papers (e.g., [29—34]), books
(e.g., [28]), online database (e.g., [35,36]) and our unpublished work. They were used
as the known data for the ANN prediction of creep life, by serving as the training and
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validation data. Five ML algorithms were compared, including ANN, RF, and three
SVR sub-categories.

Table 2: Composition ranges used to generate the alloy design space
Elements Ni Al Co Cr Hf Mo Re Ta Ti W
Range (wt.%) Bal. 1-6 2-10 0-7 0-05 04 0-5 2-10 0-1 2-10

The ANN algorithm was chosen as it can map the relationship between different
compositions and material property by fast learning of a large dataset. Additionally, it
can be combined with optimisation algorithms to analyse the weights and biases,
facilitating iterative optimisation to identify the optimal alloy composition. The RF
algorithm is another commonly used ML model based on decision tree [37]. The SVR
algorithm is developed from support vector machine [38], and it requires appropriate
parameter selection (e.g., kernel function, penalty factor C, gamma and epsilon), and
data pre-processing to fully exploit its advantages. Three types of kernel functions were
considered: linear kernel (SVR.lin), polynomial kernel (SVR.poly), and radial basis
function kernel (SVR.rbf). All of the ML algorithms were realised using sklearn in
Python with the same dataset. Due to sufficient and evenly distributed data, we directly
adjust the hyperparameters of each model by partitioning the data. Different ML models
have their pros and cons. For example, compared to the ANN algorithm, RF is more
user-friendly, requiring fewer hyperparameter adjustments and enabling faster training
and optimisation; and SVR can efficiently handle high-dimensional data while keeping
the data interpretation straightforward. However, the prediction accuracy determines
their fit-for-purpose.

The evaluation of each algorithm performance was based on the root mean
squared error (RMSE), mean absolute error (MAE) and coefficient of determination

(R?):

1 _ A
RMSE = [2E50y, - 907 M
1 — A
MAE = EZ%\LOlIYi — $il )
TN (yi-91)?
2 — __ &i=0
R =1-3NA552 )

where N is the data number, y; is the experimental value, ¥; is the predicted value, and
y is the average value of the creep life. The prediction is judged as more accurate when

the values of RMSE and MSE are smaller and the R? value is closer to 1.
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The ANN algorithm deserves a further description for two reasons: first, this
ML tool performs the best for predicting the creep life when compared to the other four;
second, both the number of hidden nodes and epoch selections are known to greatly
influence the prediction results [18]. In this work, a 13-11-1 neural network structure
was chosen, with 13, 11 and 1 representing the input layer, hidden nodes, and the output
layer (i.e., creep rupture time), respectively. The 13 input layer data included 10
element types (Table 2), the y' content, creep temperature and stress. 11 hidden nodes
were chosen as this number led to the lowest value of RMSE, Fig. 2a. Furthermore, the
optimal model complexity was evaluated by finding the best bias-variance trade-off in
terms of the optimal epoch, namely, the number of times that the algorithm went
through the entire training dataset. As shown in Fig. 2b, despite the monotonic decline
of the training loss with the number of epochs, the validation loss reached its minimum
at 400 epochs, indicating the presence of data overfitting. Thus 400 was chosen for the
present ANN model.

Adaptive moment estimation (so-called Adam) was used for training as opposed
to the traditional stochastic gradient descent [15]. This optimisation algorithm can
design independent adaptive learning rates for different parameters by computing first-
order and second-order moment estimates of the gradients [39]. Training cycle was
terminated when generalisation stopped improving. Rectified linear unit (ReLU)
activation function acting on the output neurons was used to transform input into output
signals. When compared to the Sigmoid and Tanh functions used in previous work
[15,18], the ReLU function has its advantages of sparse activation, mitigating gradient

vanishing, and linear separability.
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Fig. 2: (a) Influence of the number of hidden nodes on RMSE; (b) evolution of the
training loss and validation loss as a function of epoch.



210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233

234

235
236
237
238
239
240
241
242

2.3 Printability and thermal stability

Thermodynamic calculations of the CALPHAD approach were performed with
the TCNI10 database using Thermo-Calc software. Given the large amount of data in
the design space, TCPython, a software development kit attached to the Thermo-Calc,
was used to greatly accelerate the calculation efficiency. The Scheil-Gulliver model
was used to calculate the non-equilibrium solidification behaviour. In general, the
higher the calculated phase transformation temperatures, the better the material
performance at high temperature. Thus, the following target criteria were set: 71>1300
°C, Ts>1250 °C, and Ty>1100 °C (Table 1). Moreover, the magnitude of freezing
temperature range needs to be smaller than 200 °C (A7<200 °C in Table 1) so that the
Ni-base superalloy is less prone to the solidification cracking during the AM process
[2].

In general, adding more solid solution strengthening elements such as Mo, Co,
W can greatly improve the strength [40], while low Si and C contents help in avoiding
crack formation [41]. Besides, the addition of C and B can also improve the creep life
[42]. However, their contents should be strictly controlled [43,44]. Després et al. [45]
found that the Ni-base superalloy with B+C addition exhibited a better creep resistance
than the C addition alone. When the C content reduced to 0.05 wt.%, adding B stabilised
grain boundaries [46,47]. But excessive B addition resulted in the formation of
solidification cracks [48].

Here, an empirical method was adopted to set the limit, as opposed to using the
ML method as their minor concentration is deemed to propagate a large error. The

relationship between the Cr, Mo and B contents (in at.%) was defined as:

. 0.416
~ [Cr+Mol5[B]3

4
where £ is the solubility product. According to [49], the critical value of £&=0.012 was
used to calculate the optimum B concentration. The C concentration was set as 0.05
wt.% in this work.

Among the considered elements in Table 2, according to Thompson et al. [50]
and Henderson et al. [51], Al, Ti and Ta can promote the y' formation and thereby
compromises the material’s local ductility, leading to strain-age cracking. Their

combined effect can be defined through the SCMI factor:
SCMI = Wa+0.5Wri+0.15Wr, (all in wt.%) (5)



243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

The so-called weldability diagram, therefore, can be drawn by using the Al
concentration as abscissa whilst the combined concentration of Ti and Ta (i.e.,
0.5Wrti+0.15Wr.) as ordinate. Using the SCMI as the boundary line, when the SCMI
value is higher than 4 wt.%, the Ni-base superalloy is considered non-weldable.
Obviously, the higher the SCMI factor, the higher the y' fraction. This represents a
trade-off between the improved creep performance and worse AM printability. For this
reason, the design criterion was set as reasonably close to the boundary line but greater
than 4 wt.% for the newly designed non-weldable Ni-base superalloy.

During the casting or welding process, certain alloys are prone to cracking due
to the solidification shrinkage caused by the higher density of the solid than the liquid.
Therefore, during the final solidification process, cracks may occur along grain
boundaries, according to Kou [25]. In that work, a crack susceptibility index, defined
as |dT/d(f51/ 2)| near (fsl/ 2)=1, was proposed to evaluate the solidification crack
susceptibility. Given the absolute value of slope of the curve varies significantly near
(fsl/ 2)=1, an average steepness |AT’/A(f51/ 2)| was used as an approximation. Note
that the higher the crack susceptibility index, the higher susceptibility of the alloy to
solidification cracking. In the present work, this index has been used to evaluate the
susceptibility of designed superalloys to solidification cracking.

Most of the main alloy elements in Ni-base superalloys are transition elements
with unpaired d-electrons (e.g., Co, Cr, Mo, Re, Ta and W with their anticipated
concentration ranges listed in Table 2). Covalent bond strength between the d-electrons,
responsible for the high cohesive energy of transition metals, can be informed by using
two physical parameters: d-orbital energy level (Mq) and the bond order [52—54]. The
list of My values for all the elements listed in Table 2 can be found in [53]. For example,
the higher My values were found for Hf (3.020 eV) and Ta (2.224 eV) than the others
(e.g., Co of 0.777 and Re of 1.267 eV). This means that for the same amount of alloy
addition, elements with higher My are expected to have an adverse effect on the thermal
stability. In practice, the average My value (symbolised with My) of a particular
superalloy type was derived using:

Mg = ¥ X;(My); (6)
where X; is the atomic fraction of element 1, and (Ma); is the My value for that particular
element. The higher My value indicates the greater tendency of the TCP-phase

formation [55], and hence the target criterion was set as M3<0.98 eV (Table 1).
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2.4 Density

The density of pure Ni at room temperature is 8.9 g/cm?, but alloying changes
its value, with most of the 5d transition elements significantly increasing the alloy
density, such as the refractory elements of Re, W and Ta. Fig. 3 shows the density
values of Al and transition elements from 3d to 5d series, with a total of 10 chosen
elements marked to illustrate such effect. The superalloy density can be estimated with
the density of pure elements by using the Hull’s regression equation (all in wt.%), under
the premise of no element mixing or interaction [56]:
p=[®+0.1437-0.00137Wc-0.00139Wni-0.00142Wco-0.00125Ww-
0.00113Wr,+0.00040W1i-0.001 13 Wr+0.0000187(Wnmo)*-

Wi

0.0000506(Wco)(Wri)]x27.68 (g/em?), with @=[100/[XL, = (7)

where Wi stands for the wt.% of element i, and D; is the density of pure element i. Here

the upper limit of density was set as p<9.1 g/cm?.
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Fig. 3: Density of transition elements in 3d, 4d and 5d series as well as Al element at
room temperature. Note that density of 10 elements selected for alloy design were
marked.

3. Alloy design results

Fig. 4a compares five ML algorithms used for the creep life prediction, and their
performance was assessed based on the values of the RMSE and MAE (Egs. 1 and 2).
Both the ANN and SVR.rbf models have the lowest values, meaning that they can
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predict the creep life with good accuracy, followed by the RF algorithm. Fig. 4b-4f
present the one-to-one comparison between experimentally obtained (abscissa) and
modelling predicted (ordinate) creep life, for the ANN, RF, and three SVR models,
respectively. Blue points are from the validation data while red line is the regression
line. It can be seen that the R? values of the ANN and SVR.rbf models are above 0.98,
indicating a good prediction. By comparison, the data distribution of SVR.lin and
SVR.poly are asymmetric with reference to the red line, suggesting that the low R?
value for these two models was caused by the extreme “bad points”. In terms of the RF
model, its R? value is lower than the ANN and SVR.rbf, but the prediction was not
misled heavily by the extreme values, Fig. 4c. The ANN predicted creep life will
hereafter be chosen, because it has received a steady improvement not only on its
accuracy but also on the intepretability; with the latter leading to a gradual uncovering

of how each input feature contributes to the overall model performance.
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Fig. 4: (a) Comparison of the algorithm performance based on RMSE/MAE values for
the five machine learning methods; (b) to (f) one-to-one comparison of the model
predicted against experimental observed creep rupture time, for the ANN, RF, SVR.lin,
SVR.poly, and SVR.1bf, respectively, with the value of R? marked in each figure.

Based on the target criteria, the top 5 alloy compositions were identified, and
they are summarised in Table 3. To better visualise the relationship between
compositions and properties, the alloy design space used for screening out the new
superalloy grades are shown in Fig. 5. For comparison purposes, data points
representing the current second-generation Ni-base single crystal superalloys are

marked with green colour, and the colour partitioned regions reflect the set criterion.
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Table 3: Alloy compositions for the top 5 Ni-base superalloys which meet all four

design criteria (all in wt.%)

Alloy . .

D Ni Al Co Cr Hf Mo Re Ta Ti w C B
1 Bal 5.4 3.00 419 022 229 277 329 016 865 0.05 0.026
2 Bal. 5.08 397 435 02 243 274 298 021 891 005 0.024
3 Bal. 504 236 645 0.19 272 159 329 039 878 005 0.014
4 Bal. 5.03 269 563 004 191 236 332 057 846 0.05 0.019
5  Bal. 491 244 558 031 139 335 274 039 9.07 005 0.020
Rl\el‘;e Bal. 60 80 7.1 015 20 30 70 0 50 005 0.004

The newly designed superalloys are closer to the dividing line between the
weldable and non-weldable types, when compared to the existing ones, Fig. 5a. This
means that they are less prone to the strain-age cracking. On the flip side, the five alloys
tailored for AM belong to the non-weldable group, which represents a fundamental
difference to the ABD-850 and ABD-900 alloys as reported previously [3]. Fig. 5b
presents the y'-volume fraction at 980 °C versus the SCMI factor which essentially
combines the ordinate and abscissa values as presented in Fig. 5a. It can be seen that
the newly designed five superalloys have a reasonably high y’-volume fraction (above
50%) whilst keeping a lower SCMI value.

Furthermore, the freezing temperature range of the top five superalloys is less
than 200 °C, Fig. 5c, suggesting a lower tendency to solidification cracking. Interesting
to note, all the existing Ni-base superalloys, except for the MC2 type, are prone to
solidification cracking, and thus they are not ideal for the AM process. Based on the
Thermo-Calc calculations, crack susceptibility index |dT/d(f51/ 2)| near (fsl/ 2)=1
has been also used to evaluate the solidification cracking susceptibility of five designed

alloys. The terminal solidification path of alloy 1 to 5 is illustrated in Fig. Se, with the
dark-grey area indicating the region of f;/*=0.933 (f=0.87) and 0.970 (fs=0.87),
according to [25,57-59]. The temperature changes A7" in the selected fs range of alloy
1 to 5 are 39, 40, 42, 36, and 43 °C, respectively, as shown in Fig. 5f. The corresponding
crack susceptibility index was calculated as 1054, 1081, 1135, 973 and 1162 for alloy
1 to 5. With the same fs range, alloy 4 apparently has the lowest A7" and crack

susceptibility index among five designed alloy, whilst alloy 5 has the highest value.
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Fig. 5: Plots of 70000 data used for the computational alloy design, with both the newly
designed alloy types (named as alloy 1 to 5) and the widely used second-generation Ni-
base single crystal superalloys marked in the design space: (a) SCMI plot to indicate
strain-age cracking susceptibility; (b) y’-volume fraction; (¢) freezing temperature range;
(d) creep rupture time; (e) and (f) solidification cracking susceptibility of the newly
designed alloy 1 to 5, plotted using the criterion proposed by Kou [25]. Note: the two
newly designed AM compatible Ni-base superalloys ABD series [3] are also indicated
in (a) to visualise their weldable nature.

Fig. 5d presents the ANN model predicted creep life, and all of the newly
designed superalloys exhibit a good balance of creep performance and AM printability.
As informed by the ML model, the trade-off between the two is overcome by increasing

the overall concentration of solid solution strengthening elements (e.g., Mo and W).
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For example, René N5 is a second-generation Ni-base single crystal superalloy, and it
contains a higher concentration of Al, Ti and Ta, but the combined concentration of Mo
and W is lower, when compared to alloys 1 to 5 (Table 3).

Thermal stability and density are the other two alloy selection criteria (Fig. 1).
The former was addressed using the My method. The top five alloy types have the My
value of 0.970, 0.970, 0.979, 0.970, 0.970 eV, respectively, which are lower than the
existing Ni-base superalloys, e.g., René N5 of 0.989 eV and CMSX-4 of 0.984 eV.
Thus, they are expected to have a good thermal stability, which is beneficial for a
reduced tendency to form TCP phase and thereby showing a good compatibility with
the EB-PBF AM process [26]. The violin-histogram plot in Fig. 6a, based on the
calculated density, exhibits a normal distribution feature, indicating a well-representing
alloy design space.

Fig. 6b compares the model calculated with experimentally measured density
for a range of existing Ni-base superalloys. The linear least-squares fitting returns to a
value of k=1.06, indicating that the calculated density would be higher than the
measured one, with the relative error estimated as 1-3%. The reason for such
discrepancy is due to atom mixing which is not considered by the Hull’s regression. To
this end, the density criterion was set as p < 9.1 g/cm? from the modelling perspective,
however, the expected density from the measurement would likely fall into the density
range of 8.64-8.95 g/cm? based on the one-to-one comparison of the existing second-

generation single-crystal Ni-base superalloys, as indicated in Fig. 6b.
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Fig. 6: (a) Violin-histogram of the calculated density for the considered 70000 data; (b)
one-to-one comparison of the measured and calculated density for the existing Ni-base
superalloy types.
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4. Experimental verification

4.1 Rapid AM printability screening and crack susceptibility evaluation

First, cast alloy sample coupons with dimensions of 50x25x5 mm?® were made
using the five different alloy compositions as shown in Table 3. Casting was performed
in a vacuum arc melting furnace with 99.99% high purity argon filled. This step
involved ingot overturning smelting of 7 times (5 mins per time), with the use of
electromagnetic stirring during the smelting, and finally cooling to room temperature.
Second, the as-cast sample coupon was cut into a cuboid with dimensions of 10 mm
long and 5 mm wide. Third, the cuboidal specimen was placed inside a recession cut
into a stainless-steel starting plate with dimensions of 105x105x10 mm?. Fig. 7a

illustrates how the cuboidal specimens were positioned in the starting plate.

(a) Stainless steel substrate
|:| As-cast I:’ - -
samples 10 mm

Hatch depth
(50 pm)

Surface remelting

Cut

/

Z As-cast substrate

Fig. 7: (a) A schematic showing the sample layout for conducting the EB-PBF surface
remelting; (b) scan strategy; (c) a photograph showing a representative sample in the
surface remelted condition. Note that each sample was cut from the middle position to
examine the cracking behaviour.

Prior to the surface remelting, preheat step was applied. As shown in Fig. 7a,
two different preheat temperatures (i.€., Tprenear=230 °C and 1050 °C) were considered
to examine the cracking susceptibility. We heated the substrate to 1050 °C for the right
five alloys, cooled to room temperature, and then preheated to 230 °C for the left five
ones. For the surface remelting itself, beam power P of 600 W, scan speed v of 2000
mm/s, line offset Lo of 0.1 mm, and line order of 99 were chosen, resulting in the area

energy value of 3 J/mm?. Note that the same process parameter set was used later on to
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fabricate the bulk sample. The preheat, surface remelt and bulk sample fabrication were
all conducted using the EB-PBF machine (Arcam A2XX). The machine was operated
in manual mode, and each cuboidal sample was subjected to remelting twice, as shown
in Fig. 7b. Hatch depth was set as 50 um and the hatch direction was rotated by 90°
between layers. A typical sample in the surface remelted condition is shown in Fig. 7c,
together with the indication of the vertical cut position. The cut was made perpendicular
to the beam scan direction of the second scan used for the surface remelting.

Crack examination was performed on the horizontal cross-section with the help
of scanning electron microscopy (SEM, Zeiss Supra-55), and then on the vertical cross-
section with the aid of optical microscopy (Zeiss AxioCam MRc 5). For the SEM
observation of Fig. 8, sample’s surface condition was in the as-cut state, whilst
mechanically polished sample down to 0.5 um diamond paste was used for the optical
microscopy of Fig. 9.

The left column of Fig. 8a to 8e are the surface remelted samples with the
preheat temperature of 230 °C, whilst the right column of Fig. 8f to 8j are those with
the preheat temperature of 1050 °C. As revealed by the SEM examination, the cracks
would always form regardless of the alloy compositions under the preheat temperature
of 230 °C. By contrast, the number of cracks vastly reduced under the preheat condition
of 1050 °C. Especially, alloys 1 to 4 showed virtually no crack, Fig. 8f to 8i. However,
alloy 5 still exhibited cracks despite the high preheat temperature, Fig. §j. To a certain
extent, this rapid screening test substantiates that the newly designed Ni-base
superalloys are well suited for the EB-PBF method as opposed to the L-PBF (operating
at low build temperature). Alloys 1 to 5 (1050 °C preheat temperature) were examined
further on a large cross-section prepared vertically, as shown in Fig. 9. Alloy 4 was
ranked the best (i.e., immune to cracking), followed by alloys 3, 1, 2 and 5, in order of
low to high crack susceptibility. Henceforth, alloy 4 with the composition of Ni-5.03Al-
2.69C0-5.63Cr-0.04Hf-1.91Mo-2.36Re-3.32Ta-0.57Ti-8.46 W-0.05C-0.019B (Table 3)
is verified as a Ni-base superalloy with good EB-PBF compatibility with the use of

cost-effective surface remelting (i.e., without producing mass powders).
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Fig. 8: SEM examination of the cracks as observed in the EB-PBF surface remelted
samples (x-y plane): (a) to (e) preheat temperature of 230 °C; (f) to (j) preheat
temperature of 1050 °C. Alloy IDs are indicated at the left of each row. Note the
identified cracks are highlighted using bright-contrast outlines.
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Fig. 9: Optical micrographs of the vertical section (x-z plane) of each sample: (a) to (e)
alloys 1 to 5, respectively. All samples were subjected to surface remelting at the
preheat temperature of 1050 °C. Note the identified cracks are marked in red.

Fig. 10a to 10e show the equilibrium solidification paths as calculated with
TCNI10 database of Thermo-Calc software. For each designed superalloy, there is no
significant difference in solidification processes, i.e. all of them experience three
solidification stages of L, L+y, and L+y+y'. Alloy 4 exhibited a narrower freezing range
and a smaller L+y+y’ zone when compared to the other alloys. Neither TCP phase nor
carbide was observed at the end of solidification. To evaluate the accuracy of the
thermodynamic calculation, SEM examination was conducted to reveal the
microstructure details of alloys 1 to 5, as shown in Fig.10f to 10j. It is evident that
neither the TCP phase nor carbide can be seen at the grain or dendritic boundary. This
means that the Mgy-based thermal stability prediction is accurate and reliable.
Furthermore, the SEM study shows that alloys 1 and 4 have coarser columnar structures
than alloys 2, 3 and 5. This means the predicted solidification curves are consistent with

the experimental observation.
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Fig. 10: (a-e) Equilibrium solidification curves for alloys 1 to 5; (f-j) SEM observations
of alloys 1 to 5, with left column showing low-magnification images, while the right
column showing the high-magnification images.

Two additional experimental verifications which were performed using the as-
cast samples with the alloy compositions of alloys 1 to 5 are the measurement of mass
density and determination of thermodynamic properties. Refer to Appendix A for the
detail of experimental methods. It was confirmed that the Hull’s regression equation

and CALPHAD approach can be used to guide the alloy design in terms of the mass

density, freezing temperature range and Yy’ solvus temperature. Note such finding is
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consistent with the previous studies with the examples of [55] for the density prediction

and [3] for the phase-transformation temperature.

4.2 Bulk sample printing and material qualification

The rapid AM printability screening narrowed the list of alloy candidates down
from five to one. The same EB-PBF machine was then used to fabricate bulk samples
with nine cuboids (dimensions of 25x25x20 mm?) per batch, as schematically shown
in Fig. 1la. Alloy powders were prepared using the plasma rotating electrode
processing (PREP) method, with their size distribution measured as 60.9 um, 119.3 um
and 221.6 pm, for the respective D10, D50 and D90, using the laser diffraction method.
For the bulk sample printing, beam power P of 600 W, scan speed v of 300 mm/s, line
offset Logr of 0.1 mm, and preheat temperature of 1050 °C were chosen, together with
the unidirectional scan strategy.

Fig. 11b shows the optical micrograph of alloy 4 in the as-built condition,
revealing a virtually crack-free microstructure in the main body of the specimen, except
for one crack at the very bottom (this region would be cut off in a real-word scenario).
To fully recognise the excellent AM printability, an existing Ni-base superalloy René
NS5 type was chosen for making a direct comparison. Fig. 11c reveals the presence of
several cracks in the as-built René N5 sample, and these large cracks extended almost
half of the specimen. The EB-PBF alloy 4 sample was subjected to a full heat treatment,
involving solution treating for 4 h at 1260 °C (oil quenched), followed by y'-precipitate
aging at 1050 °C for 8 h (oil quenched). The temperature selection was guided by the
combination of differential scanning calorimetry measurement and CALPHAD
thermodynamics calculation. Alloy 4 in as-built condition has a columnar dendrite
structure with well-defined y'-cuboids with size of ~92 nm, Fig. 11d. No secondary
phase was found in the as-built condition. After solution treating and aging, chain-like
Ta, Hf-rich carbides precipitated from the inter-dendritic region (Fig. 11e and 11f)
according to energy-dispersive X-ray spectroscopy (EDS) mapping results, in

alignment with our previous work [60].
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Fig. 11: (a) Schematic diagram of one batch of as-built alloy 4 samples; (b) and (c)
comparison of the alloy 4 (crack-free) and a typical second-generation single-crystal
Ni-base superalloy René N5 (the presence of cracks) as revealed under the optical
microscopy. Both samples were printed using the same EB-PBF melt parameters

(details can be found elsewhere [60]) and samples were polished down to 0.5 pm
diamond paste prior to taking the images. Additional microstructure observations by
using secondary electron SEM imaging mode were conducted on alloy 4: (d) as-built;
(e) solution treated and (f) aged conditions.

Creep test of alloy 4 was performed on a SANS CMT504A1 tester, with the
specimen dimensions of 10 mm in gauge length, 3 mm in width and 1 mm in thickness.
Prior to the test, specimen surface was subjected to polishing down to 2000-grit SiC
paper, followed by ethanol ultrasonic cleaning. Three thermocouples were attached
onto the specimen near the top, middle and bottom to monitor the temperature. The
specimen was heated to 980 °C with the rate of 10 °C/min, and then held at the
temperature for 30 mins prior to applying the load of 120 MPa. During the entire creep
test, the temperature variation was controlled within 2 °C. Fig. 12a presents the
experimentally measured creep curve and the derived creep rate vs. time. Overall, the
creep rupture time reaches 612 h which is comparable to the ANN model prediction of

603 h. Also, the minimum creep rate was determined as 4.39x107 h! (Fig. 12a).
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Fig. 12: (a) Creep curve of EB-PBF alloy 4 at 980 °C / 120 MPa, with the primary Y-
axis indicating strain, while the secondary Y-axis indicating strain rate; (b)
microhardness values of the as-built and fully heat-treated conditions of alloy 4 as
measured at different build heights (Z=1 mm, 5 mm, 10 mm, 15 mm and 20 mm).
Vickers hardness measurements were performed on a FALCONS11 micro-
hardness tester, with the load of 200g and dwell time of 10s. Ten individual
measurements per condition were made to derive the average value. Fig. 12b compares
the as-built with fully heat-treated conditions of alloy 4. The Z-build variation was also
measured as it provides important indication of the thermal stability. For the as-build
condition, the micro-hardness was determined as 382.8+5.2, 384.5+8.8, 406.9+8.5,
410.147.1 and 438.9£10.8, for the Z-build height of 1 mm, 5 mm, 10 mm, 15 mm and
20 mm, respectively. This suggests coarsening of y'-precipitate occurred towards the
bottom of the sample build. However, when the samples were subjected to the heat

treatment, the micro-hardness results suggested the more uniform distribution with the

lowest value of 417.2+18.5 and highest value of 434.7+14.6 Hv.

5. Discussion

Finding the optimal alloy composition that best meets multiple criteria (or called
as inequality constraints as stated in Table 1) represents a multi-objective optimisation
problem, according to [61]. Multiple criteria come with additional degrees of freedom,
and thus the utility function (U) can be introduced to combine the objectives into a
single measure that reflects the overall quality of a solution. In the context of the present
work, the alloy composition is the objective function, while SCMI, My value, density,
etc. are a series of criteria (with each objective described by its objective function).

Mathematically, the adopted approach can be summarised as weighted sum method:
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U =% wiQi(x) (8)
where U is the utility function, & is the number of objective functions, w; is the weight,
and Q;i(x) is objective function. The objective functions Qi(x) are defined such that when
a solution satisfies a certain criterion, Qi(x)=1, and when it does not, Qi(x)=0. In other
words, a binary objective function (Qi(x)=1 or Qi(x)=0) is used, allowing for a
simplification of the optimisation problem. All weights (w;) are set to 1, indicating equal
importance for all objectives. There are nine objective functions, as stated in Table 1,
and thus £ is equal to 9.

Apparently, the above-mentioned multi-objective optimisation method suits the
purpose of the present work, because what concerned us the most from the perspective
of alloy design is whether a criterion is met, rather than its specific values. For example,
if a designed superalloy meets the density criterion of p<9.1 g/cm?, Qi(x)=1 will be
assigned. The specific value for the density becomes not relevant from the perspective
of binary indicator.

Through the integration of computational alloy design and rapid AM printability
screening experimental validation, a new Ni-base superalloy has been developed to
meet target specifications as outlined in Table 1. In terms of the AM printability, both
the freezing temperature range (as well as the crack susceptibility index) and SCMI
factor have been considered via the modelling approach. However, this does not
necessarily guarantee a crack-free microstructure as revealed by the surface remelting
experiment, where only alloy 4 is proven as immune to cracking (Fig. 8 and Fig. 9).
The remaining four alloys all showed some level of cracking, despite the high build
temperature of 1050 °C which helped to prevent cracking. Given the small difference
in terms of the model predicted SCMI (5.52 to 5.81 wt.%), crack susceptibility index
(973 to 1162 °C) and freezing temperature range (104 to 154 °C) for the top five alloy
compositions, it is important to emphasise the need for performing experimental
verification. To this end, the surface remelting strategy (Fig. 7) brings out a clear benefit
in terms of cost saving, representing a new rapid printability screening method. The
present work demonstrates the efficacy of this method, which can be used to replace
the production of AM powders with five different compositions for the purposes of
printing the bulk sample.

Part of the motivation behind the present work is to ensure the good AM

printability does not sacrifice the creep property. Therefore, the ML method has been



602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634

employed to forecast the creep performance, instead of conducting a batch of creep tests
which are known to be costly and time consuming. ML is an emerging technique, and
several ML methods were employed for predicting the creep rupture time, such as RF,
SVR, gaussian process regression (GPR), lasso regression (LR), ridge regression (RR),
gradient boosted tree (GBT), and deep neural network (DNN). Liu et al. [17] compared
five of them, including RF, SVR, GPR, LR and RR, to reveal the differences in creep
mechanisms of alloy samples in different clusters. Sanchez et al. [62] determined the
main influencing factors on creep rates in L-PBF Alloy 718 by using ML methods of
RF, GBT, SVR, DNN, RR and LR, together with the input data of several build
parameters and geometrical material descriptors. Furthermore, ANN has been proven
as a reliable method to predict the creep life of alloys processed by conventional means
[63,64]. To this end, the present work represents the first attempt of using ANN method
to predict the creep rupture time of AM Ni-base superalloy. It turns out to be a success
in terms of achieving the good agreement between the experimental data (612 h) and
modelling prediction (603 h). Moreover, there is no reason to believe that such a good
agreement is only applicable to the chosen creep condition of 980°C/120 MPa. This is
because the ANN model (Fig. 4b) is characterised by the low RMSE 0f 40.2 h and low
MAE of 19.8 h, as well as the high R? of 0.98 (Fig. 4a). Despite the success, nearly all
ML methods (e.g., ANN) are recognised as the “black box” in nature. This means
whether the model has achieved good results would also rely on its interpretability.

Chen et al. [65] found that adding minor Ti (~0.5 wt.%) to a second-generation
single-crystal Ni-base superalloy can greatly improve the creep rupture time by more
than twice compared to René N5 (45 h vs. 100 h at 1030 °C / 230 MPa), and the Ti
concentration is close to alloy 4. Kalyanasundaram et al. [66] prepared crack-free
CM247LC alloy via L-PBF, with the rupture time at 800 °C of ~200 h at 500 MPa, 65
h at 550 MPa, 30 h at 600 MPa. However, carbides with enrichments of Ti/Hf/Ta/W/C
elements can be observed in the as-fabricated state compared with the current work in
Fig. 10d, 101 and 11d. This indicates that alloy 4 has a good thermal stability thanks to
the high accuracy of My predictions.

The correlation between each pair of features is visualised via the heatmap of
Fig. 13. It reveals that element such as Al and Ta, especially the former, exhibits
statistically significant positive correlations with ¥ content. This finding aligns with

their metallurgical role as the primary forming element for the y’ precipitate. Moreover,
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the y' content demonstrates a strong positive correlation with creep rupture time, with
W and Cr following closely. On the other hand, Ni consistently exhibits negative
correlations with most of the other elements. Importantly, no notably strong correlation
was observed between any two elements. This observation suggests that these elements
should be retained simultaneously as input data, emphasising their individual

contributions without significant multicollinearity.

w

Rupture time  y'content

Re 7 W feontem Rupurtime

Fig. 13: Heatmap visualisation of the correlation between every pair of features as well

as the target (note that the colour intensity and numerical values in each cell indicating
the strength of correlation between the corresponding features).

Fig. 14 explores the linear relationship between each alloying element and the

creep rupture time. y' content and Al exhibit a positive correlation and Ni shows a

negative correlation, establishing clear linear relationships with the target. By

comparison, other elements display less discernible linear patterns (consistent with Fig.

13). This observation explains why the accuracy of the SVR with a linear kernel (Fig.

4d) is comparatively lower than other ML algorithms. Therefore, we opted not to

consider simple linear regression and logistic regression in this study.
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Fig. 14: Scatter matrix for the relationship between the alloying features and the target.

Now let’s consider the interpretability of the ANN model. The interpretability
analysis was performed using the local interpretable model-agnostic explanations
(LIME) method [67], aimed to evaluating whether the model has truly learned useful
functional relationships. The idea behind the LIME is to approximate the nonlinear
function learned by a ML model to a linear function within a small neighbourhood of
an individual sample (i.e., a specific element type). In practice, this is achieved by
generating a small set of samples around the sample of interest, obtaining their
predicted outcomes (i.e., creep life) using the ANN model, and finally performing the
simple linear regression. The interpretability analysis results for the 10 element types
and y'-volume fraction (in total 11 features) are presented in Fig. 15. In the bar chart,
the positive direction (pointing right) of each reference bar indicates a positive effect
on creep life (leading to increased rupture time). Likewise, the negative direction

suggests such feature would cause a decreased creep rupture time. The bar length
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674
675  Fig. 15: Analysis of interpretability of ANN model using the LIME method: (a) to (e)

676  alloy 1 to 5, illustrating the influence of feature weight on creep rupture time.
677

678 The LIME analysis shows that the y’-volume fraction within the data range of
679  46.5% to 58.0% (with reference to the set target of >50%) would impact positively the
680  creep rupture time. By incorporating the y'-volume fraction as an input feature to the

681  ANN model, the contributions of Al, Ti and Ta are reduced to a very low positive value
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or even towards a low negative value. This is as expected because they are all y'-forming
elements [28], namely, their influence on the creep rupture time has been already
considered by the feature of y’-volume fraction. The second key learning outcome is
the role of W > 7.8%, which has a positive effect on creep life. W is one of the most
effective solid solution strengthening elements in Ni-base superalloys, and research
conducted by Zenk et al. [68] revealed that the higher W content led to reduced
secondary creep rate. Furthermore, two out of the five alloys (i.e., alloy 2 and 3 in Fig.
14b and 14c) suggest that Mo content of > 2.4% generates a positive impact on creep
rupture time. This seems to agree with the experimental observation by Zhang et al.
[69], where the increased ratio of Mo to W resulted in the prolonged creep life. Note
that the LIME analysis could not cope with synergistic effect in a sense of treating
combined feature effect. In addition, Re in the range from 2.1% to 4.0% would have a
positive influence on creep life. This agrees with the metallurgical role of Re in terms
of its enrichment at partial dislocations, imposing a drag effect on dislocation
movement [70]. Moreover, the LIME analysis shows that Co content of < 4.7% would
generate the negative influence. In other words, by increasing the Co content of higher
than this critical concentration, one would expect an increased creep rupture time. This
seems to concur with our consensus that Co in Ni-base superalloys plays a vital role on
the enhanced creep properties because it can increase y'-volume fraction and reduce the
stacking fault energy [71]. To summarise, based on the LIME analysis, the present
ANN model shows a good level of reliability in a sense that it did truly learn meaningful
functional relationships.

The LIME analysis is also in line with the trend of alloy development.
Experience has shown that improvements in creep strengthening occur in the increasing
order of Co>Cr—>Ta—>W—Re [28]. Although Re has a significant effect on the creep
performance improvement, excessive addition will promote the precipitation of
intermetallic phases (such as the TCP phases), by lowering the thermal stability (refer
to the high My value of Re, 1.267 eV). However, the range of Re among five designed
alloys is still within the scope of the second-generation single-crystal Ni-base
superalloy. Lowering the content of Cr and Ta is another trend from the development
of second- to the fourth-generation single-crystal Ni-base superalloys. This is broadly
consistent with the composition as shown in Table 3 (comparing with other second-

generation single-crystal Ni-base superalloys such as René N5). Increasing the W
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content to a high level (over 8.5 wt.%) to offset the decrease in other elements might
have a positive effect, although the specific mechanism for such a large amount of W
is still unknown except for the results of LIME.

Acknowledging the limitations of the ANN model is equally important. Its
design doesn’t aim to indicate any specific physical relationships, but rather provides
an alternative means to predict results similar to physical constitutive laws. It becomes
particularly robust when the model includes adequate physics-related input features.
The above-mentioned interpretability analysis serves to compare the variable
importance against our state-of-the-art field knowledge. This should not be
misunderstood with the discovery of any new physical relationships. Numerous
physical creep models, outlined in the open literature e.g., [30,72—74], have established
the links between controlling microstructural features and creep life by precisely
accounting for underlying deformation and damage processes. However, their
applicability is predominantly limited to certain stress and temperature conditions as
well as the material process history. When addressing the complexity of various
alloying elements and multiple parameters during AM, these models achieved limited
success. It was reported in [17] that when considering the microstructural evolution
information in a data-driven models, a more accurate prediction result of creep rupture
time can be obtained, when compared to the use of physical models. Therefore, the use
of ANN approach becomes notably appealing in scenarios where intricate physical
processes pose challenges for conventional physics-based methodologies [75].

Feature correlation is another method to help understand the ML predicted
results. Here, both the Pearson correlation coefficient (PCC) and maximum information
coefficient (MIC) were used to characterise the feature correlation of the ANN model.
The PCC is the most common way of measuring the strength and direction of the linear
correlation between two variables [76], whereas the MIC can provide a measure of the
strength of the linear or nonlinear correlation [77]. The value range of the PCC is [-1,1],
suggesting a strong positive correlation if its value becomes close to 1, while a strong
negative correlation for a value of close to -1. The value range of the MIC is [0,1],
suggesting a strong correlation between two variables, when its value becomes close to

1, regardless of linear or non-linear relationship.
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Fig. 16: Feature correlation related to the creep rupture time based on the PCC in (a)
and MIC in (b).

The PCC and MIC evaluation results for 10 elements plus the ¥’ content (i.e., in
total 11 input features) are shown in Fig. 16a and 16b. There is no strong correlation
between each feature and the predicted creep life, suggesting a very weak linear
relationship between the two variables. However, the PCC evaluation does reveal some
positive correlation of key elements, y' content and the creep life. For example, Re, Al,
Ta, Co and W elements in Ni-base superalloys are known to be beneficial for the creep
property [28,68—70]. In terms of the MIC evaluation, y' content was found to have a
value of ~0.5, suggesting a strong correlation between this feature and creep life. By
contrast, all the elements do not show a strong correlation, which suggests that
microstructure (e.g., Y’ content) plays a more important role when compared to the alloy
composition. Based on the PCC and MIC analyses of the ANN model prediction, it
seems that introducing other input features which can represent the microstructure-
property interrelationship might generate an even more reliable prediction. It has been
recognised in literature that microstructure feature such as grain size [78,79], stacking
fault energy [80], diffusion coefficient of y or y'-forming elements [81], and AM
parameters [82] all play an important role on the creep property. Using a
thermodynamic calculation software (e.g., Thermo-Calc) to calculate these parameters

is a viable route.
6. Conclusions
The following conclusions can be drawn from this work:

1) Using the integrated computational tools coupled with rapid AM

printability screening experimental methods, a new Ni-base superalloy
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composition (Ni-5.03A1-2.69Co0-5.63Cr-0.04Hf-1.91Mo-2.36Re-3.32Ta-
0.57Ti-8.46W-0.05C-0.019B) is proposed to meet four design criteria of
AM printability, creep, thermal stability and density.

2)  Surface remelting strategy is proven as an effective means to examine the
AM printability in a cost-effective manner, and this new rapid printability
screening method provides a bypass as far as the expensive AM powder
production in significant quantities is concerned.

3) Among the five ML algorithms considered, ANN shows the highest
prediction accuracy in the context of comparing the experimental
measured with model predicted creep life. The measured creep life of 612
h is close to the model predicted 603 h.

4)  LIME-based interpretability analysis substantiates that the ANN model
truly learns meaningful functional relationships between input features
and the output. PCC and MIC-based evaluation emphasises the
importance of incorporating microstructure-related input feature as it

plays a key role on the prediction results and reliability.
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Appendix A: Density measurement and determination of phase transformation

temperatures

Using the cast samples with compositions of alloy 1 to 5, the mass density was
measured by using Archimedes drainage method. Five measurements were taken per
alloy type, and the averaged value of mass density was determined as 8.85, 8.88, 8.63,
8.82, 8.88 g/cm’, in order of alloy 1 to 5. By comparison, the Hull’s model (Eq. 7)
predicted values were 9.09, 9.09, 8.98, 8.98, 9.09 g/cm?, respectively. The lower value
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of the predicted density as compared to the measurement is as expected given the fact
of first, k factor with a value of greater than 1 (Fig. 6b), and second, no consideration
of the atom mixing.

A synchronous thermal analyser NETZSCH STA 449 F3 filled with argon was
used to measure thermodynamic properties. The heating rate was set as 5 °C/min. The
size of each test sample was 4 mm in diameter and 0.8 mm thick. By analysing the
differential scanning calorimetry (DSC) data curve, for alloys 1 to 5 as shown in Fig.
Al, the liquidus and solidus temperatures (71 and 7s) as well as the Yy’ solvus
temperatures (77) of all five alloys were obtained. By comparison with the CALPHAD
approach predicted values (Table Al), it seems that the model prediction shows a

reasonably good agreement with experimental data.
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Fig. A1: Differential scanning calorimetry (DSC) curves obtained from alloys 1 to 5,
during heating and cooling at 5 K/min, as presented in (a) to (e), respectively.

Table Al: Comparison of CALPHAD approach predicted thermodynamic properties
with the DSC measured values for alloys 1 to 5. Note: freezing temperature range is the
difference between 71 and 7.

CALPHAD (°C) DSC (°C)
Alloy type - .
L Ts Freezing range L Ts Freezing range
Alloy 1 1418 1264 154 1399 1270 129
Alloy 2 1415 1296 119 1410 1330 80
Alloy 3 1401 1297 104 1394 1280 114
Alloy 4 1406 1299 107 1401 1300 101
Alloy 5 1421 1310 111 1408 1330 78
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