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 A B S T R A C T

We propose the REORIENT (REnewable resOuRce Investment for the ENergy Transition) model for energy 
systems planning with the following novelties: (1) integrating capacity expansion, retrofit and abandonment 
planning, and (2) using multi-horizon stochastic mixed-integer linear programming with multi-timescale 
uncertainty. We apply the model to the European energy system considering: (a) investment in new hydrogen 
infrastructures, (b) capacity expansion of the European power system, (c) retrofitting oil and gas infrastructures 
in the North Sea region for hydrogen production and distribution, and abandoning existing infrastructures, 
and (d) long-term uncertainty in oil and gas prices and short-term uncertainty in time series parameters. 
We utilise the structure of multi-horizon stochastic programming and propose a stabilised adaptive Benders 
decomposition to solve the model efficiently. We first conduct a sensitivity analysis on retrofitting costs of 
oil and gas infrastructures. We then compare the REORIENT model with a conventional investment planning 
model regarding costs and investment decisions. Finally, the computational performance of the algorithm is 
presented. The results show that: (1) when the retrofitting cost is below 20% of the cost of building new ones, 
retrofitting is economical for most of the existing pipelines, (2) platform clusters keep producing oil due to the 
massive profit, and the clusters are abandoned in the last investment stage, (3) compared with a traditional 
investment planning model, the REORIENT model yields 24% lower investment cost in the North Sea region, 
and (4) the enhanced Benders algorithm is up to 6.8 times faster than the level method stabilised adaptive 
Benders.
1. Introduction

Accelerating energy transition in all sectors is vital to achieve a 
carbon-neutral economy by 2050 (European Commission, 2020, 2022). 
The committed emissions from existing energy infrastructure jeopardise 
the 1.5 ◦C target (Tong et al., 2019). It may be more beneficial to 
retrofit existing energy infrastructure than to abandon it. Abandoning 
existing energy infrastructure, such as oil and gas infrastructure, may 
have a substantial cost (Bakker et al., 2019). Also, the oil and gas 
industry involves multi-billion-dollar investments and profits. There-
fore, there is motivation to retrofit existing oil and gas infrastructure 
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for clean energy production and transportation to (1) help the oil and 
gas industry transition to a clean energy producer, and (2) accelerate 
the energy transition by financing it using the gain from the avoided 
abandonment cost. Retrofitting existing oil and gas infrastructure for 
hydrogen production and transportation is drawing more attention 
due to the increasing demand for hydrogen. Most offshore pipelines 
can be used for hydrogen transport in Europe (Gentile et al., 2021). 
The European hydrogen infrastructure could grow to a pan-European 
network by 2040, largely based on repurposed existing natural gas 
infrastructure (Rossum et al., 2022). Retrofitting an existing offshore 
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platform to a green hydrogen production platform is under explo-
ration (Neptune Energy, 2023). We note that retrofitting may become 
an important pillar for accelerating the energy transition. Therefore, in 
this paper, we analyse cost drivers that have the possibility to trigger 
widespread retrofit of offshore oil and gas infrastructure and achieve 
cleaner energy generation and decarbonisation. We use a high-fidelity, 
detailed spatial–temporal stochastic programming model to analyse 
these drivers for a large region with a substantial role in the energy 
supply to the surrounding countries.

Energy system infrastructure planning is crucial during the energy 
transition towards zero emission by 2050. Optimisation models are 
widely used for the investment (Cho et al., 2022; Munoz & Watson, 
2015; Zhang, Tomasgard, Knudsen, Svendsen et al., 2022) and opera-
tional (Philpott et al., 2000; Schulze & McKinnon, 2016) planning of 
energy systems. Traditionally, capacity expansion, retrofitting (Støre 
et al., 2018) and abandonment are planned separately using different 
models. However, as sector coupling and Power-to-X become more 
important, as well as the possibility of retrofitting existing infrastruc-
ture for renewable energy production and distribution, the ability to 
analyse investments, retrofit and abandonment planning in a single 
integrated model becomes more important; including all degrees of 
freedom together minimises the risk of suboptimality. However, such 
integrated models have been less explored than their counterparts that 
treat investment, retrofit and abandonment independently.

Managing uncertainty is crucial in a long-term planning model. 
Long-term energy system planning problems are normally prone to 
uncertainty on strategic and operational time horizons. Strategic uncer-
tainty includes oil and gas prices, CO2 budget, and CO2 tax. Short-term 
uncertainty normally includes the availability of non-dispatchable re-
newable technologies. When the short-term uncertainty does not affect 
the future strategic decisions, the problem has a Multi-Horizon Stochas-
tic Programming (MHSP) structure (Kaut et al., 2014), and this leads 
to a more compact and easier to solve model than when this is not the 
case. Most previous studies on energy system planning consider only 
short-term uncertainty (Backe et al., 2022). In this paper, the proposed 
model utilises MHSP and includes uncertainty from both time horizons.

Large-scale MHSP remains difficult, however, and this needs to be 
addressed. The block separable structure of MHSP allows the decom-
position of a problem with Benders-type algorithms. Also, the structure 
of the subproblems enables adaptive oracles (Mazzi et al., 2021). A 
stabilised adaptive Benders decomposition algorithm was proposed 
in Zhang, Mazzi et al. (2022) and demonstrated on a power system 
investment planning problem with up to 1 billion variables and 4.5 
billion constraints. The algorithm showed a significant reduction in 
computational time. However, Zhang, Mazzi et al. (2022) dealt with 
a large-scale linear programming problem. In this paper, we consider a 
problem with binary variables in the investment planning part in order 
to capture the economic scale and model retrofit and abandonment 
decisions. Because the binary variables only exist in the investment 
planning part, which is the reduced master problem in the Benders-
type algorithm, we can still apply stabilised adaptive Benders directly. 
However, the algorithm may slow down due to the combinatorial part 
of the problem. This is because the stabilisation problem in Zhang, 
Mazzi et al. (2022) are quadratic programs, and when binary variables 
are added, the problems become mixed integer quadratic programs. 
Although commercial solvers have improved, allowing mixed integer 
quadratic programming to be solved more efficiently, they are unable 
to deal with the large problems this paper considers.

To fill the research gaps mentioned above, we first propose the 
REORIENT (REnewable resOuRce Investment for the ENergy Transi-
tion) model, which is a multi-horizon stochastic Mixed-Integer Linear 
Programming (MILP) model with multi-timescale uncertainty for the 
investment, retrofit and abandonment planning for energy systems. 
We consider retrofitting existing platforms for offshore green hydrogen 
production and pipelines for green and blue hydrogen distribution. We 
then demonstrate the REORIENT model on a European energy system 
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planning problem. A stabilised adaptive Benders decomposition is pro-
posed: this extends and improves the method in Zhang, Mazzi et al. 
(2022), allowing it to solve problems with binary variables efficiently.

The contributions of the paper are the following: (1) we inte-
grate investment planning, retrofitting, and abandonment in a single 
multi-horizon stochastic MILP model, which allows us to analyse the 
economic trade off among different kinds of planning decisions rather 
than only capacity expansion decisions in a traditional investment 
planning model, (2) we propose a centred point stabilised Benders de-
composition with inexact cuts to solve the resulting large-scale model, 
(3) we extend the centred point stabilisation, which was proposed for 
linear programs, to solve MILP and provide convergence proof, and (4) 
we demonstrate the model on a large-scale planning problem for the 
European energy system to analyse the planning decisions and costs 
and provide global insights.

The outline of the paper is as follows: Section 2 introduces the 
background knowledge regarding capacity expansion planning, retrofit 
planning and abandonment planning, stochastic programming, MHSP, 
and Benders decomposition. Section 3 provides the problem descrip-
tion, modelling strategies and assumptions. Section 4 presents the 
proposed stabilised adaptive Benders decomposition. Section 5 presents 
the REORIENT model. Section 6 reports the computational results and 
numerical analysis. Section 7 discusses the implications of the method 
and results and summarises the limitations of the research. Section 8 
concludes the paper and suggests further research.

2. Literature review

In the following, we present a brief overview of relevant litera-
ture on capacity expansion planning, abandonment planning, retrofit 
planning, MHSP, and Benders decomposition.

2.1. Capacity expansion planning

Capacity expansion planning problems normally consider an ex-
isting system with historical capacity or a new system and make 
investment planning to fulfil the demand under, among others, en-
vironmental restrictions. Capacity expansion problems are formulated 
either in deterministic models (Lara et al., 2018) or stochastic program-
ming models (Backe et al., 2022; Conejo et al., 2016). Backe et al. 
(2022) utilised multi-horizon formulation but did not include long-term 
uncertainty. Sometimes MILP is used (Lara et al., 2020) to capture 
the discrete nature of some investment decisions. To gain enough 
environmental and economic insights from such models, sometimes 
large-scale problems need to be solved, such as in Li et al. (2022) 
and Zhang, Tomasgard, Knudsen, Svendsen et al. (2022). Munoz et al. 
(2016) proposed a new bounding scheme and combined it with Ben-
ders decomposition to solve a large investment planning problem that 
was formulated as MILP. In addition to planning for power, natural 
gas and heat systems separately, planning for integrated multi-carrier 
systems has also been studied. Energy hubs that convert, process and 
store multiple energy carriers in an investment planning problem were 
studied in Zhang, Mazzi et al. (2022). Also, stochastic programming 
has been used in natural gas systems (Fodstad et al., 2016), offshore 
oil and gas infrastructure planning (Gupta & Grossmann, 2014), and 
hydrogen network (Galan et al., 2019). There is much literature on 
capacity expansion problems: we refer the readers to Krishnan et al. 
(2016) for a more comprehensive review.

2.2. Retrofit planning

In grassroots design, the decisions on what processes to use are 
made first to be followed by equipment decisions, but for proper 
analysis the retrofit design also requires models that evaluate existing 
equipment. A comparison of grassroots and retrofit design has been 
presented in Grossmann et al. (1987). The combinatorial nature of the 
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retrofit planning problems makes their models much more complex. 
There are several reasons to retrofit, including (1) processing a new 
feedstock, (2) improving the economics by the use of less energy per 
unit of production, (3) making a new product, and (4) increasing the 
conversion of the feedstocks. In this paper, we consider retrofitting 
to make a new product. A debottlenecking strategy was proposed 
for retrofit problems (Harsh et al., 1989). A systematic procedure for 
the retrofit of heat exchanger networks was presented in Yee and 
Grossmann (1991). Retrofitting of heat exchangers has been extensively 
studied in the past decades (Pan et al., 2013; Wang et al., 2012). A high-
level optimisation model for the retrofit planning of process networks 
over several time periods was presented in Jackson and Grossmann 
(2002). The proposed strategy consists of a high-level analysis of the 
entire network and a detailed low-level analysis of the resulting specific 
process flowsheet. The problem is formulated using a multi-period gen-
eralised disjunctive programming model, which is reformulated using a 
mixed-integer linear program using the convex hull formulation. In this 
paper, because of the scope and size of the problem, we only consider 
the high-level modelling of the retrofit.

2.3. Abandonment planning

Abandonment planning includes the abandonment of power plants 
that exceed their lifetimes, and of mature oil and gas fields. In the oil 
and gas industry, existing literature focuses on the plug and abandon-
ment campaign. This is because many wells are planned to be plugged 
and abandoned, and such activity will have a substantial cost (Bakker 
et al., 2019). The plug and abandonment cost is estimated at £5-15 
million per well, and thousands are expected to be abandoned just in 
offshore regions over the next decade. Plug and abandonment planning 
is formulated either as a profit maximisation problem (Bakker, Kleiven 
et al., 2021) or a cost minimisation problem (Bakker et al., 2019; 
Bakker, Wang et al., 2021). Real options theory is also used for oil and 
gas field development (Bakker et al., 2019; Fleten et al., 2011; Støre 
et al., 2018). In addition to abandonment, investment and operational 
scheduling optimisation in the oil and gas sector can be found in Goel 
and Grossmann (2004), Gupta and Grossmann (2012), Iyer et al. (1998) 
and Oliveira et al. (2013).

From the literature above, we find that the planning of investment, 
retrofit, and plug and abandonment are often treated separately. To 
overcome the limitations of the separated approach for energy sys-
tems planning where such decisions are deemed tightly coupled, we 
propose a modelling framework that integrates investment, plug and 
abandonment and retrofit. An illustrative example is presented in Fig. 
1. The parts marked with grey represent the new integrated planning 
compared with traditional investment planning in the literature.

2.4. MHSP

Investment planning of an energy system often faces uncertainty 
from two time horizons (Kaut et al., 2014; Lara et al., 2020): (a) 
the uncertainty from the operational time horizon, such as the avail-
ability of generation from renewable energy sources. The operational 
uncertainty becomes even more crucial for a system with higher pen-
etration of intermittent renewable energy, and (b) the uncertainty 
on the strategic time horizon, e.g., oil and gas price and demand. 
In traditional multi-stage stochastic programming, uncertainty from 
operational and strategic time horizons can lead to a large scenario 
tree, thus, an intractable planning model. The multi-horizon approach 
was proposed as an alternative formulation that reduces the model 
size significantly by reducing the interaction between short-term and 
long-term uncertainties (Kaut et al., 2014).

One can have a much smaller model by disconnecting operational 
nodes between successive planning stages and embedding them into 
their respective strategic nodes. An illustration of MHSP with short-
term and long-term uncertainty is shown in Fig.  2. We call an oper-
ational problem embedded in a strategic node an operational node. 
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The resulting model is called MHSP. MHSP is identical to multi-stage 
stochastic programming provided that the state of an operational prob-
lem at the end of a strategic period does not affect the operational 
state at the start of the following strategic period or affect any future 
strategic decisions. If either of these conditions is not met, then MHSP 
gives only an approximation, however for our problem it is a good ap-
proximation. MHSP has been applied in several energy system planning 
problems (Backe et al., 2022; Durakovic et al., 2023; Skar et al., 2016; 
Zhang, Tomasgard, Knudsen and Grossmann, 2022). Furthermore, the 
bounds in MHSP have been studied in Maggioni et al. (2020).

2.5. Benders decomposition

Benders decomposition was proposed to solve problems with com-
plicating variables (Geoffrion & Balakrishnan, 1972). Then generalised 
Benders for nonconvex problems was proposed (Li & Grossmann, 2019; 
Steeger & Rebennack, 2017). Extensive research was conducted on 
accelerating Benders decomposition, such as by choosing and adding 
strong cuts (Magnanti & Wong, 1981; Oliveira et al., 2014), develop-
ing a multi-cut version of Benders decomposition (You & Grossmann, 
2011), stabilised Benders decomposition (Zhang, Mazzi et al., 2022; 
Zverovich et al., 2012), and using inexact oracles (Mazzi et al., 2021; 
van Ackooij et al., 2016; Zhang, Mazzi et al., 2022). In this paper, we 
adopt the multi-cut approach used in Zhang, Mazzi et al. (2022) and 
improve and extend the method to solve MILPs.

A multi-stage stochastic capacity expansion program formulated as 
MHSP has a block separable structure (Louveaux, 1986) and can be 
decomposed by Benders decomposition (Zhang, Mazzi et al., 2022). For 
Benders decomposition, all the long-term nodes (blue circles in Fig.  2) 
are included in a single reduced master problem, and the blocks of 
short-term nodes (red squares in Fig.  2) are in the subproblems. The 
REORIENT model described in this paper is an MHSP problem, and 
the investment planning part is tractable even though all the long-term 
nodes are included in a single reduced master problem. Therefore, we 
choose to use and improve the method proposed in Zhang, Mazzi et al. 
(2022) instead of using nested Benders decomposition or stochastic 
dual dynamic programming, whose benefit is to have multiple but 
smaller reduced master problems.

A potential problem of Benders decomposition is that all subprob-
lems need to be solved exactly at every iteration to generate cuts 
and obtain an upper bound. Mazzi et al. (2021) proposed Benders 
decomposition with adaptive oracles to avoid solving all subproblems 
at every iteration by utilising the structure of subproblems. In Mazzi 
et al. (2021), Benders decomposition with adaptive oracles was shown 
to be 31.9 times faster than standard Benders decomposition for a 1% 
convergence tolerance, and it has been further improved in Zhang, 
Mazzi et al. (2022). The subproblems in the REORIENT model are large-
scale operational problems that are hard to solve, and the adaptive 
oracles are needed to make the problem tractable.

Zhang, Mazzi et al. (2022) pointed out that stabilising Benders 
decomposition is important when solving multi-region energy system 
planning problems. The level method stabilised adaptive Benders de-
composition proposed in Zhang, Mazzi et al. (2022) is able to solve 
linear programs with 1 billion variables and 4.5 billion constraints 
very efficiently. Stabilisation is needed since the REORIENT model is 
a large-scale multi-region planning model. In this paper, we propose 
a new stabilisation method for solving the REORIENT model. This is 
because the level method stabilisation problem in Zhang, Mazzi et al. 
(2022) experiences a severe slowdown when there are binary variables. 
Therefore, we propose an alternative stabilisation called centred point 
stabilisation that speeds up the stabilisation step.

In addition to Benders decomposition, Lagrangean decomposition 
(Escudero et al., 2017), column generation (Singh et al., 2009), and 
combined column generation and Benders decomposition (Huang et al., 
2022) have been proposed for capacity expansion problems. These 
approaches can solve problems with integer variables in the operational 
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Fig. 1. Integrated investment, retrofit and abandonment planning. The grey dotted box includes some technologies that can be invested in. The offshore oil and gas platform can 
be retrofitted or abandoned. Otherwise, it can keep producing. The Offshore Energy Hubs (OEHs) (Zhang, Tomasgard, Knudsen, Svendsen et al., 2022) can generate electricity, 
and produce and store hydrogen.
Fig. 2. Illustration of MHSP with short-term and long-term uncertainty. (blue circles: 
strategic nodes, red squares: operational periods, 𝑖 ∶ index of the strategic nodes).

problem, however, this is not a feature that is needed in the REORIENT 
model, and they do not exploit the block separable structure of MHSP, 
which makes them less suitable alternatives than the method in Zhang, 
Mazzi et al. (2022).

3. Problem description, modelling strategies, modelling assump-
tions

In this section, we present the problem description and modelling 
strategies, including price modelling, scenario generation, temporal 
and geographical representations of the problem, and the modelling 
assumptions.
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The problem under consideration aims to choose (a) the optimal 
strategy for investment, abandonment and retrofit planning, and (b) 
operating scheduling for an energy system to achieve emission targets 
at minimum overall costs under short-term uncertainty, including re-
newable energy availability, hydropower production profile and load 
profile, and long-term uncertainty, including oil and gas prices.

For the investment planning, we consider: (a) thermal generators 
(Coal-fired plant, OCGT, CCGT, Diesel, nuclear plants, co-firing biomass 
with 10% lignite, lignite); (b) generators with Carbon Capture and 
Storage (CCS) (Coal-fired plant with CCS and advanced CCS, gas-fired 
plant with CCS and advanced CCS, co-firing biomass with 10% lignite 
with CCS, lignite with CCS, lignite with advanced CCS); (c) renewable 
generators (onshore and offshore wind and solar, wave, biomass, run-
of-the-river hydropower, geothermal and regulated hydropower); (d) 
electric storage (hydro pump storage and lithium); (e) onshore and 
offshore transmission lines; (f) onshore and offshore clean energy hubs 
(electrolyser, fuel cell, hydrogen storage); (g) onshore steam reforming 
plant with CCS (SMRCCS) and (h) offshore and onshore hydrogen 
pipelines. The capital costs and fixed operational costs coefficients are 
assumed to be known.

For the retrofit planning, we consider: (a) retrofitting existing nat-
ural gas pipelines for hydrogen transport, and (b) retrofitting existing 
offshore platforms for clean OEHs. Finally, we consider the abandon-
ment of mature fields. The problem is to determine: (a) the capaci-
ties of technologies and retrofit and abandonment decisions, and (b) 
operational strategies that include scheduling of generators, storage 
and approximate power flow among regions to meet the energy de-
mand with minimum overall expected investment and operational and 
environmental costs.

3.1. Modelling strategies and assumptions

In this section, we present the modelling strategies and assumptions 
we use in the long-term integrated planning problem.

3.1.1. Long-term production profile modelling
There are three phases during the lifetime of oil field produc-

tion (Støre et al., 2018): ramp up, plateau and decline. We adopt the 
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commonly used production model from Wallace et al. (1987), whose 
long-term production quantity of oil and gas is represented by, 

𝑞𝑡 =

{

𝑞𝑃 𝑡 ≤ 𝑡𝑃 ,
𝑞𝑃 𝑒−𝑚(𝑡−𝑡𝑝) 𝑡 > 𝑡𝑃 ,

(1)

where 𝑞𝑃  (MMbbl) is the production rate during plateau period, 𝑡𝑃
(year) is the length of the plateau period, 𝑚 is the decline constant. 
We also calibrate this model using the average decline rate of the giant 
oil fields in the world (Höök et al., 2009). Note that with this model, 
the amount of oil and gas in a reservoir at the start of each planning 
stage, and hence the total amount produced within a planning stage, 
are exogenous quantities, and so are not affected by the operations. 
This approximation maintains the MHSP structure of the model.

3.1.2. Scenario generation
For short-term uncertainty, we consider uncertain time series data: 

wind and solar capacity factors, hydropower generation profiles, load 
profiles, and platform production profiles. We consider operational 
problems with an hourly resolution. We divide the full year into four 
seasons and select representative time slices from these seasons. The 
length of the times slices can be different in different seasons. The 
spatial correlation is preserved due to sampling from historical data. To 
preserve the auto-correlation and correlation between time series data, 
the same hours are used for all the time series data within a scenario. 
The generated operational scenarios are used for all operational nodes.

For long-term uncertainty, we consider oil and gas price uncer-
tainty. We first generate a large number of projections using the 
price process described below. We use a two-factor Short-Term Long-
Term (STLT) model to capture a realistic price behaviour of oil and 
gas (Schwartz & Smith, 2000). The STLT model has a stochastic 
equilibrium price and stochastic short-term deviations (Bakker, Kleiven 
et al., 2021). In the STLT model, the logarithm of the spot price at time 
𝑡 is, 
log 𝑝𝑡 = 𝜒𝑡 + 𝜉𝑡, (2)

where 𝜒𝑡 is the short-term factor in prices and 𝜉𝑡 is the long-term 
factor. Bakker, Kleiven et al. (2021) presented a risk-neutral STLT 
model in discrete time, which is used in this paper for price modelling. 
The price is represented by,

𝑝̃𝑡 = 𝑒𝜒𝑡+𝜉𝑡 , (3)

𝜒𝑡 = 𝜒𝑡−1 −
(

1 − 𝑒−𝜅𝛥𝑡
)

+ 𝜎𝜒 𝜖𝜒

√

1 − 𝑒−2𝜅𝛥𝑡
2𝜅

, (4)

𝜉 = 𝜉𝑡−1 + 𝜇∗
𝜉𝛥𝑡 + 𝜎𝜉𝜖𝜉

√

𝛥𝑡, (5)

where 𝑝̃𝑡, 𝜒𝑡 and 𝜉𝑡 are risk-neutral equivalents to the spot price, short-
term factor and long-term factor. The volatilities are represented by 
𝜎𝜒  and 𝜎𝜉 , while 𝜖𝜒  and 𝜖𝜉 are correlated standard normal random 
variables with correlation coefficient 𝜌𝜒𝜉 . The parameter 𝜅 is the mean 
reversion coefficient, 𝜆𝜒  is a risk premium that specifies a reduction 
in the drift got the short-term process, and 𝜇∗

𝜉  is the risk-neutral drift 
of the equilibrium level, 𝜉𝑡. The length of the time period 𝑡 (year) is 
represented by 𝛥𝑡.

Based on the historical record, we assume the gas price is closely 
correlated with the oil price, and so we use a single price process for 
oil and gas prices.

Then we obtain the mean values of the prices for each stage and 
construct the mean scenario. Next, we use a Julia package Scen-
Trees.jl (Kirui et al., 2020) that utilises the methodology proposed 
in Pflug and Pichler (2015) to generate a multi-stage scenario tree. The 
structure of the scenario tree is not determined a priori but dynamically 
adapted to meet the Wasserstein distance requirement, which measures 
of the quality of the approximation. Note that because we consider 
long-term time horizon with a five year gap between stages, the tempo-
ral correlation is weak. However, due to the use of Wasserstein distance 
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in the scenario generation routine, the temporal correlation is still 
preserved. In addition, there is a perfect spatial correlation because the 
oil and gas prices are assumed to be the same for all regions.

3.1.3. Geographical representation of the problem
The problem potentially consists of many regions and results in a 

large model. Therefore, we use a k-means cluster approach to group 
platform locations into representative locations, adapted from Zhang, 
Tomasgard, Knudsen, Svendsen et al. (2022). We use dedicated lo-
cations to represent the regions that require higher resolution. All 
generators and storage units within each aggregated region that have 
the same characteristics are aggregated into clusters. In this way, 
within aggregated regions, the model does not make the investment in 
individual units but in the total for that technology. For retrofit and 
abandonment decisions on the offshore platforms, we aggregate the 
platforms in each offshore region and use the representative platforms 
in the model.

3.1.4. Modelling assumptions
We assume that: (a) the Kirchhoff voltage law is omitted and we 

use a linear direct current power flow model for the power system 
part, (b) the initial storage level of storage units in each operational 
node are assumed to be half of their capacities, (c) the switch from 
natural gas to hydrogen has little impact on the capacity of a pipeline to 
transport energy (Fors et al., 2021), (d) linepack in hydrogen pipelines 
is omitted, (e) investment in new wells is not considered, (f) we simplify 
the modelling of pressure and temperature of the production processes 
on platforms and use typical values from the North Sea region, (g) there 
is no more oil and gas profit once a platform is retrofitted, and the gas 
profit, associated with a pipeline is lost once it is retrofitted.

4. Benders decomposition in MHSP

MHSP has a structure that allows the application of Benders-type de-
composition for solving large-scale stochastic programming problems. 
In the following, we first present how a MHSP problem can be decom-
posed by Benders decomposition. We then propose a stabilised adaptive 
Benders decomposition for solving the proposed model efficiently.

4.1. Benders decomposition in MHSP

Here, we give a general MHSP formulation of our combined strate-
gic and operational planning problem and show that it has a block 
separable structure which allows it to be decomposed by Benders 
decomposition into a single master strategic investment problem and 
a family of operational problems.

The MHSP formulation is as follows:

min
𝐱∈

∑

𝑖∈
𝜋𝑖

(

𝑐⊤𝑖 𝑥𝑖 + min
𝑦𝑖∈

𝑞⊤𝑖 𝑄𝑦𝑖

)

(6a)

s.t. 𝑇 𝐼
𝐴𝑖
𝑥𝐴𝑖

+𝑊 𝐼
𝑖 𝑥𝑖 ≤ ℎ𝐼𝑖 , 𝑖 ∈  ⧵ {1}, (6b)

𝑊 𝐼
1 𝑥1 ≤ ℎ𝐼1 , (6c)

𝑇𝑂𝑥𝑂𝑖 +𝑊 𝑂𝑦𝑖 ≤ ℎ𝑂 , 𝑖 ∈ , (6d)

where  is the set of strategic nodes and 𝐴𝑖 is the ancestor node of 
node 𝑖, 𝑥𝑖 is the vector of variables for the strategic decisions and 
the investment state at investment node 𝑖, and 𝐱 is the collection of 
all the 𝑥𝑖, 𝑖 ∈ . The 𝜋𝑖 is the probability of strategic node 𝑖, and 
the sum of 𝜋𝑖 in each strategic stage is equal to 1.  represents the 
domains of the elements of 𝐱, i.e. their bounds and whether they are 
integer or continuous. 𝑦𝑖 is the vector of operational variables at node 
𝑖, and  represents the bounds on the elements of 𝑦𝑖, all of which are 
continuous variables. Together  , and Constraints (6b)–(6d) define 
the feasible region. 𝑥𝑂𝑖  is the part of 𝑥𝑖 that affects the subproblem 
𝑖. The dimensions of 𝑥𝑂 , 𝑞  and 𝑦  are the same in each subproblem 𝑖
𝑖 𝑖 𝑖
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but the dimensions of 𝑥𝑖 may differ. The dimension of the 𝑥𝑂𝑖  and of 
the 𝑞𝑖 are typically much smaller. The vectors, variables, and matrices 
have compatible dimensions. Some elements of 𝑥𝑂𝑖  may be fixed to 
exogenous parameters, which is equivalent to having different right 
hand sides in Constraint (6d).

In MHSP, the complicating variables are the strategic decisions, 
𝐱, that link all the decision nodes. By fixing the complicating vari-
ables 𝐱, we can decompose the full size problem using Benders-type 
decomposition. For a given node 𝑖, the subproblem is formulated as

𝑔(𝑥𝑂𝑖 , 𝑞𝑖) ∶= min
𝑦𝑖∈

𝑞⊤𝑖 𝑄𝑦𝑖 (7a)

s.t. 𝑇𝑂𝑥𝑂𝑖 +𝑊 𝑂𝑦𝑖 ≤ ℎ𝑂 , 𝑖 ∈ . (7b)

 The single subproblem 𝑔(𝑥𝑂𝑖 , 𝑞𝑖) can include multiple operational sce-
narios. If the operational scenarios are independent of each other then 
an alternative approach would be to treat each as an independent 
subproblem. This has the potential advantage of maintaining a more 
accurate model of the operational problems, but the disadvantage is 
that it increases the number of Benders cuts and slows down the solu-
tion of each Benders reduced master problem. In this paper, the single 
subproblem approach is taken, as illustrated in Fig.  2. The Reduced 
Master Problem (RMP) at iteration 𝑗 is

min
𝐱∈

∑

𝑖∈
𝜋𝑖(𝑐⊤𝑖 𝑥𝑖 + 𝛽𝑖) (8a)

s.t. Constraints (6b) and (6c),
𝛽𝑖 ≥ 𝜃𝑖𝑘 + 𝝀⊤𝑖𝑘(𝑥

𝑂
𝑖 − 𝑥̂𝑂𝑖𝑘), 𝑖 ∈ , 𝑘 < 𝑗, (8b)

 where 𝛽𝑖 is a variable for the approximated cost of the operational 
subproblem that is embedded in strategic node 𝑖. Constraint (8b) are 
the Benders cuts associated with subproblem 𝑖 built in the iterations up 
to the current iteration 𝑗.

4.2. Stabilised adaptive benders decomposition

In this section, we propose a stabilised adaptive Benders decompo-
sition algorithm that utilises the structure of MHSP. The algorithm is 
taken from Zhang, Mazzi et al. (2022) and extended to solve MILP.
Zhang, Mazzi et al. (2022) utilised the adaptive oracles proposed 
in Mazzi et al. (2021) and level method stabilisation and achieved 
a significant reduction in solution time compared to the unstabilised 
version of adaptive Benders. The adaptive oracles were introduced for 
problems where the following conditions hold:

Condition 1. 𝑔(𝑥𝑂𝑖 , 𝑞𝑖) is convex w.r.t. the vector 𝑥𝑂𝑖 , and concave w.r.t. 
the vector 𝑞𝑖, and 𝑔(𝑥𝑂𝑖 , 𝑞𝑖) is a decreasing function of the elements of 𝑥𝑂𝑖
and an increasing function of the elements of 𝑞𝑖.

The convexity and concavity are immediate consequences of Eqs. (7)
being a minimisation linear program and the monotonicity properties 
hold if, for example, 𝑇𝑂 ,𝑊 𝑂 and 𝑦𝑖 are non-negative.

Once one or more subproblems have been solved at a collection of 
points, this information can be used by the adaptive oracles to generate 
valid bounds at different points for all subproblems. We refer to Mazzi 
et al. (2021) for the mathematical definition and the proof of the 
properties of the adaptive oracles.

The adaptive oracles provide bounds for a subproblem at a new 
solution point without having to solve it exactly, and this reduces the 
computational cost compared to standard Benders decomposition. The 
process is shown in Algorithm 1. In iteration 𝑗, when subproblem 𝑖
is solved at the point (𝑥̂𝑂

𝑖𝑗
, 𝑞𝑖), the solver returns the optimal value 

𝜃 = 𝑔(𝑥̂𝑂 , 𝑞 ), and the subgradients 𝜆  and 𝜙  with respect to 𝑥𝑂 and 
𝑖𝑗 𝑖𝑗 𝑖 𝑖𝑗 𝑖𝑗 𝑖𝑗
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𝑞𝑖, respectively. Then the solution vector (𝑥̂𝑂𝑖𝑗 , 𝑞𝑖, 𝜃𝑖𝑗 , 𝜆𝑖𝑗 , 𝜙𝑖𝑗 ) is added 
to the collection  of solution vectors. Then, using the information in 
, the adaptive oracles generate valid bounds for all subproblems: the 
oracles are called for each subproblem 𝑖 at the current solution point 
(𝑥̂𝑂𝑖𝑗 , 𝑞𝑖) and return the values 𝜃𝑖𝑗 , 𝜃𝑖𝑗 , and 𝜆𝑖𝑗 with the properties: 

Property 1. 𝜃𝑖𝑗 + 𝜆𝑇𝑖𝑗 (𝑥
𝑂
𝑖 − 𝑥̂𝑂𝑖𝑗 ) ≤ 𝑔(𝑥𝑂𝑖 , 𝑞𝑖), ∀𝑥𝑂𝑖 and 𝑔(𝑥̂𝑂𝑖𝑗 , 𝑞𝑗 ) ≤ 𝜃𝑖𝑗 .

The RMP in adaptive Benders is the same as in standard Benders, 
except that the exact cuts in Eq.  (8b) of standard Benders are replaced 
by the approximate cuts in Eq.  (9b), which use the quantities supplied 
by the adaptive oracles. An illustration of cut sharing using adaptive 
oracles is presented in Fig.  3.

In the standard unstabilised version of Benders the subproblems are 
evaluated at the current RMP solution. In stabilised versions, they are 
evaluated instead at a reference point. In the level method stabilisation 
approach shown in Eqs. (9), the reference point, 𝐱𝑅𝑒𝑓𝑗 , for iteration 
𝑗 is chosen as the point at the minimum distance from the previous 
reference point, 𝐱𝑅𝑒𝑓𝑗−1 , subject to being feasible for the RMP and having 
a RMP objective value not exceeding the specified target level, 𝑇𝑗 . 
The target level 𝑇𝑗 is defined in terms of a stabilisation factor 𝛾𝑗 by 
𝑇𝑗 = 𝐿∗

𝑗 + 𝛾𝑗 (𝑈∗
𝑗−1 − 𝐿∗

𝑗 ), where 𝑈∗
𝑗−1 and 𝐿∗

𝑗  are the best upper bound 
and lower bound respectively at iterations 𝑗 − 1 and 𝑗.

𝐱𝑅𝑒𝑓𝑗 ∶= argmin
𝐱∈ ,𝛽

‖

‖

‖

𝐱 − 𝐱𝑅𝑒𝑓𝑗−1
‖

‖

‖

2

2
(9a)

s.t. Constraints (6b) and (6c),
𝛽𝑖 ≥ 𝜃𝑖𝑘 + 𝝀⊤𝑖𝑘(𝑥

𝑂
𝑖 − 𝑥̂𝑂𝑖𝑘), 𝑖 ∈ , 𝑘 < 𝑗, (9b)

∑

𝑖∈
𝜋𝑖(𝑐⊤𝑖 𝑥𝑖 + 𝛽𝑖) ≤ 𝑇𝑗 , (9c)

The level method stabilisation problem is a quadratic program if 
𝐿2 norm is used (Zverovich et al., 2012) and becomes a mixed-integer 
quadratic program when integer variables are present. In this paper, we 
instead use a centred point approach to avoid solving the mixed-integer 
quadratic program but still obtain a stabilised solution.

The Centred Point problem (CP) is derived from the level method 
stabilisation problem by relaxing the integer variables and dropping 
the objective function. The CP is, therefore, a linear programming 
feasibility problem. An illustration of the centred point stabilisation 
approach is presented in Fig.  4. Finding a centred point in the feasi-
ble region can be done efficiently using solvers like Gurobi (Gurobi 
Optimization, LLC, 2022). For example, using the barrier algorithm 
of Gurobi and turning off presolve and crossover, the CP finds a well 
centred point within the feasible region approximating the analytic 
centre, (i.e. the point that maximises the product of distances from 
all faces of the linear programming polytope (Gondzio et al., 1996)). 
Solving a CP is computationally much cheaper than solving the level 
method stabilisation problem, so the time spent on stabilisation is 
reduced significantly.

The method is presented in Algorithm 1. The stabilisation factor 
𝛾 is adjusted using an approach that is analogous to the trust region 
method. In Zhang, Mazzi et al. (2022), it was shown that by adjusting 
the stabilisation factor, a Benders type algorithm became more robust. 
In the early tests in this paper, we noticed that adjusted stabilisation is 
much more efficient than using a fixed stabilisation factor.

The level set adjustment steps are presented in Subroutine 1. If 
both the actual improvement and predicted improvement are positive 
(Line 2), we check the ratio against two predefined parameters 𝑃
and 𝑃 . If the improvement ratio 𝑟 is lower than 𝑃 , meaning that the 
actual improvement is less than the least improvement we want to 
achieve in proportion to the predicted improvement, we tighten the 
stabilisation in Line 4. This is because we want to avoid moving to an 
area that provides insufficient improvement. The parameter 𝜔 affects 
how significant the change in stabilisation is. If the improvement ratio 
is higher than 𝑃 , the actual improvement aligns with the predicted 
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Fig. 3. Illustration of adaptive oracles. There are three iterations in this illustration. The 𝑥-axis in the graph shows the value of the first element of 𝑥̂𝑂𝑖𝑗 . In the first iteration, 
subproblem 2 is solved exactly at (𝑥̂𝑂21 , 𝑞2), and an exact cut is generated. An inexact but valid cut and upper bound are then generated by the adaptive oracles for subproblem 1 
via cut sharing. In iterations 2 and 3, the exact cut is for subproblem 1, and valid inexact cuts are generated for subproblem 2.
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Fig. 4. Illustration of centred point stabilisation. We assume 𝑥 has only one element and the inexact oracles provide inexact but valid cuts and upper bounds. The centred point 
is relative to the two inexact cuts and the target 𝑇3.
improvement well. This suggests we are moving in the right direction, 
and we loosen the stabilisation to hopefully achieve more improvement 
in the next iteration.

Subroutine 1 Dynamic level set management

1: 𝐼𝑃𝑗 ∶= 𝐿̂𝑗−1 − 𝑇𝑗 , 𝐼𝐴𝑗 ∶= 𝐿̂𝑗−1 − 𝐿̂𝑗 , 𝑟 ∶=
𝐼𝐴𝑗
𝐼𝑃𝑗
;

2: if 𝐼𝐴𝑗 > 0 and 𝐼𝑃𝑗 > 0 then 
3:   if 𝑟 ≤ 𝑃 then
4:     𝛾𝑗+1 ∶= 1 − 𝜔(1 − 𝛾𝑗 ); 
5:   else if 𝑟 > 𝑃 then
6:     𝛾𝑗+1 ∶= 𝜔𝛾𝑗 ; 
7:   end if
8: end if

4.3. Convergence of Algorithm 1

In this section, we prove the convergence of Algorithm 1.

Lemma 1.  For problems where Condition  1 holds, Algorithm 1 achieves 
an 𝜖-optimal solution when it terminates.

Proof.  It is proved in Mazzi et al. (2021) that if Condition  1 holds, then 
the bounds in Property  1 provided by the adaptive oracles are valid. It 
then follows that the RMP, Eqs. (8), is a valid relaxation of the MHSP, 
Eqs. (6), and consequently that 𝐿∗

𝑗  in Line 5 is a valid lower bound on 
the optimal MHSP objective.

Also, 𝑈𝑗 in Line 36 is obtained from an integer feasible value of 
𝑥𝑅𝑀𝑃
𝑖𝑗  and an upper bound on the objective value for the subproblems 
evaluated at the RMP point. Therefore, 𝑈𝑗 is a valid upper bound for 
the problem, and so is 𝑈∗

𝑗 .
Since 𝐿∗

𝑗  and 𝑈∗
𝑗  are valid upper and lower bounds on the optimal 

objective, the algorithm will terminate correctly if the convergence 
tolerance is met. □
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Theorem 1.  If all the subproblems are linear programming problems, 
then Algorithm 1 converges in a finite number of iterations to an 𝜖-optimal 
solution.

Proof.  When a subproblem is solved, the cut generated is a face of 
its value surface. If the new bound at the point is tighter than before, 
i.e., 𝜃𝑖𝑗 > 𝜃𝑖𝑗 , then the cut is new.

If no new face is generated in the last outer iteration (Lines 3–38), 
then the next iteration is an RMP iteration. Hence, the number of CP 
iterations must be less than or equal to the total number of faces, which 
is finite because the subproblems are linear programs.

Also, there can only be a finite number of RMP iterations at which 
a new face is generated. Eventually, if termination has not already 
occurred, there must be an RMP iteration where no new face is found. 
When that happens, the inner loop exits either at Line 20, or with the 
𝐿̂𝑗 ≥ 𝑈∗

𝑗−1 condition at Line 32. In the first case, there is no bound 
gap at the optimal RMP point. In the second case, since this is an RMP 
iteration, 𝐿̂𝑗 has been evaluated at the RMP point and is therefore a 
lower bound on the RMP, and since this is greater than or equal to 
the upper bound 𝑈∗

𝑗−1, equality must hold. Hence, in either case, the 
exact optimum has been reached, so the termination condition has been 
satisfied within a finite number of outer iterations.

Finally, note that when the adaptive oracles are called at a point 
where subproblem 𝑖 has been previously solved, they return a zero 
bound gap, i.e., 𝜃𝑖𝑗 − 𝜃𝑖𝑗 = 0. Also, as more exact solutions are added 
to , the oracle bounds cannot become slacker, so the bound gap at a 
point where the subproblem has previously been solved remains zero. 
Hence, the inner loop cannot select a subproblem that has been solved 
in an earlier inner iteration, so the loop cannot be executed more than 
|| times. Hence, since the number of outer iterations is also finite, the 
total number of function evaluations is finite. □

5. The REORIENT model

This section presents the energy system integrated planning and 
operational optimisation model. The full model is decomposed by 
having an investment planning master problem and an operational sub-
problem. We use the conventions that calligraphic capitalised Roman 
letters denote sets, upper case Roman and lower case Greek letters 
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Algorithm 1 Stabilised Benders decomposition with adaptive oracles
1: choose 𝜖 (convergence tolerance), 𝛾0 ∈ (0, 1) (stabilisation factor), 𝛽 (initial lower bound 𝛽𝑖), 𝑈∗

0 ∶= +∞ (initial upper bound), 𝜖0, 𝜔 ∈ (0, 1), 
𝑃 ∈ (0, 1), 𝑃 ∈ (𝑃 , 1), 𝜉 ∶= 0, 𝐱𝐶𝑃

𝑖 ∶= 0;
2: solve subproblem exactly at the special point (𝑥𝑂 , 𝑞) and obtain 𝜃, 𝜆 and 𝜙;  ∶= {(𝑥𝑂 , 𝑞, 𝜃, 𝜆, 𝜙)};
3: repeat
4:   𝑗 ∶= 𝑗 + 1;
5:   solve RMP and obtain 𝛽𝑖𝑗 and 𝐱𝑅𝑀𝑃

𝑗 ; 𝐿∗
𝑗 ∶=

∑

𝑖∈ 𝜋𝑖(𝑐⊤𝑥
𝑅𝑀𝑃
𝑖𝑗 + 𝛽𝑖𝑗 );

6:   𝐱̂𝑗 ∶= 𝐱𝑅𝑀𝑃
𝑗 ;

7:   if 𝑗 ≥ 2 and 𝜉 = 1 then
8:     set CP target 𝑇𝑗 ∶= 𝐿∗

𝑗 + 𝛾𝑗 (𝑈∗
𝑗−1 − 𝐿∗

𝑗 ), solve CP and obtain 𝐱𝐶𝑃𝑗 ;
9:     if ‖‖

‖

𝐱𝐶𝑃
𝑗 − 𝐱𝐶𝑃

𝑗−1
‖

‖

‖

≤ 𝜖0 then𝐱̂𝑗 ∶= 𝐱𝐶𝑃
𝑗 ;

0:     end if
1:   else
2:     𝐱𝐶𝑃

𝑗 ∶= 𝐱𝐶𝑃
𝑗−1;

3:   end if
4:   for 𝑖 ∈  do
5:     call adaptive oracles at (𝑥̂𝑂𝑖𝑗 , 𝑞𝑖) and obtain 𝜃𝑖𝑗 , 𝜃𝑖𝑗 , and 𝜆𝑖𝑗 ;
6:   end for
7:   set 𝜉 ∶= 0;
8:   repeat
9:     if max𝜋𝑖(𝜃𝑖𝑗 − 𝜃𝑖𝑗 ) = 0 then Exit loop
0:     end if
1:     𝑖 ∶= argmax𝑖∈ 𝜋𝑖(𝜃𝑖𝑗 − 𝜃𝑖𝑗 );
2:     solve subproblem exactly at (𝑥̂𝑂

𝑖𝑗
, 𝑞𝑖) and obtain 𝜃𝑖𝑗 , 𝜆𝑖𝑗 , 𝜙𝑖𝑗 ;

3:     if 𝜃𝑖𝑗 > 𝜃𝑖𝑗 then
4:       set 𝜉 ∶= 1;
5:        ∶=  ∪ {(𝑥̂𝑂

𝑖𝑗
, 𝑞𝑖, 𝜃𝑖𝑗 , 𝜆𝑖𝑗 , 𝜙𝑖𝑗 )};

6:     end if
7:     for 𝑖 ∈  do
8:       call adaptive oracles at (𝑥̂𝑂𝑖𝑗 , 𝑞𝑖) and obtain 𝜃𝑖𝑗 , 𝜃𝑖𝑗 , and 𝜆𝑖𝑗 ;
9:     end for
0:     𝐿̂𝑗 ∶=

∑

𝑖∈ 𝜋𝑖(𝑐⊤𝑥̂𝑖𝑗 + 𝜃𝑖𝑗 );
1:     𝑈̂𝑗 ∶=

∑

𝑖∈ 𝜋𝑖(𝑐⊤𝑥̂𝑖𝑗 + 𝜃𝑖𝑗 );
2:   until (𝑈̂𝑗 − 𝐿̂𝑗 ≤ 𝑈∗

𝑗−1 − 𝐿∗
𝑗−1 and 𝜉 = 1) or 𝐿̂𝑗 ≥ 𝑈∗

𝑗−1
3:   for 𝑖 ∈  do
4:     call upper bound adaptive oracle at (𝑥𝑅𝑀𝑃 ,𝑂

𝑖𝑗 , 𝑞𝑖) and obtain 𝜃𝑖𝑗 ;
5:   end for
6:   𝑈𝑗 ∶=

∑

𝑖∈ 𝜋𝑖(𝑐⊤𝑥
𝑅𝑀𝑃
𝑖𝑗 + 𝜃𝑖𝑗 ), 𝑈∗

𝑗 ∶= min(𝑈∗
𝑗−1, 𝑈𝑗 ); 

7:   Subroutine 1: Dynamically adjust the level set;
8: until 𝑈∗

𝑗 − 𝐿∗
𝑗 ≤ 𝜖.
denote parameters, and lower case Roman letters denote variables. 
The indices are subscripts, and name extensions are superscripts. The 
same lead symbol represents the same type of thing. The names of 
variables, parameters, sets and indices are single symbols. We give 
a brief definition of some of the main sets and variables, and their 
corresponding domains as we explain the equations. For a complete 
overview of all sets and indices, parameters and variables used in the 
REORIENT model, we refer to Appendix.

5.1. Investment planning model (RMP in benders decomposition)

The investment master problem Eqs. (10)–(22) follows the general 
formulation given by Eqs. (8). The total discounted cost for investment 
planning, Eq. (10), consists of actual investment costs 𝑐𝐼𝑁𝑉  as well 
as the expected operational cost of the system over the time hori-
zon 𝜅∑

𝑖∈𝑂𝑝𝑒 𝜋𝑖𝑐𝑂𝑃𝐸
𝑖  which is total approximated subproblem costs in 

Benders decomposition. Here, 𝜅 is a scaling factor that depends on 
the time step between two successive investment nodes. The scaling 
factor scales the operational costs between two successive investment 
nodes. By doing this, we can evaluate the operational subproblem 
on the represented operational hours and scale the cost up to obtain 
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the total operational costs. Eq. (11) calculates the investment cost, 
which comprises capacity-dependent and capacity-independent costs, 
retrofitting costs, abandonment costs, fixed operating and maintenance 
costs, and profit of existing technology (e.g., oil and gas platform). 
min 𝑐𝐼𝑁𝑉 + 𝜅

∑

𝑖∈𝑂𝑝𝑒

𝜋𝑖𝑐
𝑂𝑃𝐸
𝑖 , (10)

where 

𝑐𝐼𝑁𝑉 =
∑

𝑖∈𝐼𝑛𝑣
𝜋𝐼𝑛𝑣
𝑖

(

∑

𝑝∈

(

𝐶𝐼𝑛𝑣𝑉
𝑝𝑖 𝑥𝐼𝑛𝑣𝑝𝑖 + 𝐶𝐼𝑛𝑣𝐹

𝑝𝑖 𝑦𝐼𝑛𝑣𝑝𝑖

)

+

∑

𝑝∈𝑅𝑇

(

𝐶𝑅𝑒𝑇𝑉
𝑝𝑖 𝑥𝑅𝑒𝑇𝑝𝑖 + 𝐶𝑅𝑒𝑇𝐹

𝑝𝑖 𝑦𝑅𝑒𝑇𝑝𝑖

)
⎞

⎟

⎟

⎠

+

𝜅
∑

𝑖∈𝑂𝑝𝑒

𝜋𝑂𝑝𝑒
𝑖

(

∑

𝑝∈
𝐶𝐹 𝑖𝑥
𝑝𝑖 𝑥𝐴𝑐𝑐𝑝𝑖 +

∑

𝑝∈𝑅𝑇

𝐶𝑅𝑒𝑇𝐹 𝑖𝑥𝑂
𝑝𝑖 𝑥𝐴𝑐𝑐𝑅𝑒𝑇𝑝𝑖 +

∑

𝑝∈𝑅

𝐶𝑅𝑒𝐹𝐹 𝑖𝑥𝑂
𝑝𝑖 𝑥𝐴𝑐𝑐𝑅𝑒𝐹𝑝𝑖

⎞

⎟

⎟

⎠

.

(11)

Constraint (12) states that the accumulated capacity of a technology 
𝑥𝐴𝑐𝑐 in an operational node equals the sum of the historical capacity 
𝑝𝑖
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𝑋𝐻𝑖𝑠𝑡
𝑝  and newly invested capacities 𝑥𝐼𝑛𝑣𝑝𝑖  in its ancestor investment 

nodes 𝐼𝑛𝑣
𝑖  that are not retired. 

𝑥𝐴𝑐𝑐𝑝𝑖 = 𝑋𝐻𝑖𝑠𝑡
𝑝𝑖 +

∑

𝑗∈𝐼𝑛𝑣𝑖 |𝜅(𝑆𝑂𝑝𝑒
𝑖 −𝑆𝐼𝑛𝑣

𝑗 )≤𝐻𝑝

𝑥𝐼𝑛𝑣𝑝𝑗 , 𝑝 ∈  , 𝑖 ∈ 𝑂𝑝𝑒. (12)

Constraint (13) ensures the maximum 𝑋𝑀𝑎𝑥𝐼𝑛𝑣
𝑝𝑖  capacity that is built 

in an investment node. The binary variable 𝑦𝐼𝑛𝑣𝑝𝑖  equals 1 if a technology 
𝑝 ∈  in investment node 𝑖 ∈ 𝐼𝑛𝑣 is invested. Parameter 𝑋𝑀𝑎𝑥𝐴𝑐𝑐

𝑝  gives 
the maximum capacity that can be installed for different technologies. 

𝑥𝐼𝑛𝑣𝑝𝑖 ≤ 𝑋𝑀𝑎𝑥𝐼𝑛𝑣
𝑝𝑖 𝑦𝐼𝑛𝑣𝑝𝑖 , 𝑝 ∈  , 𝑖 ∈ 𝐼𝑛𝑣. (13)

Constraints (14)–(16) establish that the invested capacity and accu-
mulated capacity of newly invested technologies and retrofitted tech-
nologies should be within the capacity limits. 

𝑥𝐴𝑐𝑐𝑝𝑖 ≤ 𝑋𝑀𝑎𝑥𝐴𝑐𝑐
𝑝 , 𝑝 ∈  , 𝑖 ∈ 𝑂𝑝𝑒, (14)

𝑥𝐴𝑐𝑐𝑅𝑒𝑇𝑝𝑖 ≤ 𝑋𝑀𝑎𝑥𝐴𝑐𝑐𝑅𝑒𝑇
𝑝 , 𝑝 ∈ 𝑅𝑇 , 𝑖 ∈ 𝑂𝑝𝑒, (15)

𝑥𝑅𝑒𝑇𝑝𝑗 ≤ 𝑋𝑀𝑎𝑥𝑅𝑒𝑇
𝑝 𝑦𝑅𝑒𝑇𝑝𝑖 , 𝑝 ∈ 𝑅𝑇 , 𝑖 ∈ 𝐼𝑛𝑣, 𝑗 ∈ 𝐼𝑛𝑣

𝑖 . (16)

Constraint (17) dictates that the existing capacity is zero if a tech-
nology is retrofitted to a new technology. 

𝑥𝐴𝑐𝑐𝑅𝑒𝐹𝑝𝑗 = 𝑋𝐻𝑖𝑠𝑡𝑅𝑒𝐹
𝑝𝑗 (1 − 𝑦𝑅𝑒𝐹𝑝𝑖 ), 𝑝 ∈ 𝑅, 𝑖 ∈ 𝐼𝑛𝑣, 𝑗 ∈ 𝑂𝑝𝑒

𝑖 . (17)

Constraint (18) states that only one technology can be retrofitted 
to. 
∑

𝑝∈𝑅
𝑝

𝑦𝑅𝑒𝑇𝑝𝑖 ≤ 𝑦𝑅𝑒𝐹𝑝𝑖 , 𝑝 ∈ 𝑅, 𝑖 ∈ 𝐼𝑛𝑣. (18)

Constraint (19) ensures that retrofit can only happen once for a 
technology during the planning horizon. 
∑

𝑖∈𝐼𝑛𝑣
𝑦𝑅𝑒𝐹𝑝𝑖 ≤ 1, 𝑝 ∈ 𝑅. (19)

Constraint (20) states that the accumulated capacity of a technology 
𝑥𝐴𝑐𝑐𝑅𝑒𝑇𝑝𝑖  in an operational node equals the newly invested capacities 
𝑥𝑅𝑒𝑇𝑝𝑖  in its ancestor investment nodes 𝐼𝑛𝑣

𝑖  that are not retired. Param-
eter 𝑋𝑀𝑎𝑥𝐴𝑐𝑐𝑅𝑒𝑇

𝑝  is the maximum accumulated capacity of a technology 
that is retrofitted from another. 

𝑥𝐴𝑐𝑐𝑅𝑒𝑇𝑝𝑖 =
∑

𝑗∈𝐼𝑛𝑣𝑖 |𝜅(𝑆𝑂𝑝𝑒
𝑖 −𝑆𝐼𝑛𝑣

𝑗 )≤𝐻𝑝

𝑥𝑅𝑒𝑇𝑝𝑗 , 𝑝 ∈ 𝑅𝑇 , 𝑖 ∈ 𝑂𝑝𝑒. (20)

The Benders cuts built up to iteration 𝑘 − 1 are given by Eq.  (21). 

𝑐𝑂𝑃𝐸
𝑖 ≥ 𝜃 + 𝜆⊤(𝑥𝑖 − 𝑥), (𝑥, 𝜃, 𝜆) ∈ 𝑖(𝑘−1), 𝑖 ∈ . (21)

The domains of variables are given as follows

𝑥𝐼𝑛𝑣𝑝𝑖 , 𝑥𝐴𝑐𝑐𝑝𝑖 , 𝑥𝑅𝑒𝑇𝑝𝑖 , 𝑥𝐴𝑐𝑐𝑅𝑒𝑇𝑝𝑖 , 𝑥𝐴𝑐𝑐𝑅𝑒𝐹𝑝𝑖 , 𝑐𝐼𝑁𝑉 ∈ R+
0 ,

𝑦𝐼𝑛𝑣𝑝𝑖 , 𝑦𝑅𝑒𝐹𝑝𝑖 , 𝑦𝑅𝑒𝑇𝑝𝑖 ∈ {0, 1}. (22)

The vector 𝑥𝑖 =
(

{𝑥𝐴𝑐𝑐𝑝𝑖 , 𝑝 ∈ }, {𝑥𝐴𝑐𝑐𝑅𝑒𝑇𝑝𝑖 , 𝑝 ∈ 𝑅𝑇 }, {𝑥𝐴𝑐𝑐𝑅𝑒𝐹𝑝𝑖 ,

𝑝 ∈ 𝑅}, 𝜇𝐷𝑃
𝑖 , 𝜇𝐷𝐻

𝑖 , 𝜇𝐷𝐻𝑦
𝑖 , 𝜇𝐸

𝑖

)

 collects all right-hand side coefficients 
that will be fixed in operational subproblem, Eqs. (23)–(35). The vector 
𝑐𝑖 =

(

𝐶𝐶𝑂2
𝑖

)

 collects all the cost coefficients. The vectors 𝑥𝑖 and 𝑐𝑖
will be fixed as parameters in the operational problem. The long-term 
uncertain parameters, including load scaling 𝜇𝐷𝑃

𝑖 , 𝜇𝐷𝐻
𝑖 , and 𝜇𝐷𝐻𝑦

𝑖 𝜇𝐸
𝑖 , 

are fixed in the operational problem described below because they 
affect the system operation.
270 
5.2. Operational problem (subproblem in benders decomposition)

We now present the operational problem and note that we omit 
index 𝑖 in the operational model for ease of notation because all 
variables and parameters are defined for each operational node.

The right hand side parameters 𝑃𝐴𝑐𝑐
𝑝 , 𝑉 𝐴𝑐𝑐

𝑐 , 𝑃𝐴𝑐𝑐𝐺
𝑔 , 𝑃𝐴𝑐𝑐𝐻𝑅𝑜𝑟

𝑔 ,
𝑃𝐴𝑐𝑐𝑆𝐸 , 𝑄𝐴𝑐𝑐𝑆𝐸

𝑠 , 𝑃𝐴𝑐𝑐𝐿
𝑙 , 𝑉 𝐴𝑐𝑐𝐿𝐻𝑦

𝑙 , 𝜇𝐷𝑃 , 𝜇𝐷𝐻 , 𝜇𝐸 , 𝜇𝐷𝐻𝑦 are fixed by the 
solution 𝑥𝑖 from solving the master problem Eqs. (10)–(22). The CO2
cost of generators that is included in parameter 𝐶𝐺

𝑔  is fixed by 𝑐𝑖 from 
the master problem.

The operational cost 𝑐𝑂𝑃𝐸 (𝑥𝑖, 𝑐𝑖) at one operational node 𝑖 is com-
puted by solving subproblem Eqs. (23)–(35) given the decisions 𝑥𝑖 and 
𝑐𝑖 made in Eqs. (10)–(21). The operational subproblem Eqs. (23)–(35) 
correspond to the general formulation Eqs. (7). The objective function, 
the operational cost, includes total operating costs of generators 𝐶𝐺

𝑔 𝑝
𝐺
𝑔𝑡, 

energy load shedding costs for heat, power, and hydrogen 𝐶𝑆ℎ𝑒𝑑𝑝𝑆ℎ𝑒𝑑𝑧𝑡
and 𝐶𝑆ℎ𝑒𝑑𝑣𝑆ℎ𝑒𝑑𝑧𝑡  and fuel cost of steam reforming plants 𝐶𝑅𝑣𝑅𝑟𝑡. 𝐶𝐺

𝑔
includes the variable operational cost, fuel cost and the CO2 tax, 𝐶𝐶𝑂2 , 
charged on the emissions of generator 𝑔. The inclusion of load shedding 
variables 𝑝𝑆ℎ𝑒𝑑𝑧𝑡  and 𝑣𝑆ℎ𝑒𝑑𝐻𝑦 ensures the operational problem is always 
feasible. The load shedding costs 𝐶𝑆ℎ𝑒𝑑 are large enough so that the 
optimal solution has little or nor load shed.

min
∑

𝑡∈
𝜋𝑡𝐻𝑡

(

∑

𝑔∈
𝐶𝐺
𝑔 𝑝

𝐺
𝑔𝑡 +

∑

𝑟∈
𝐶𝑅𝑣𝑅𝑟𝑡 +

∑

𝑧∈

(

∑

𝑙∈{𝐻,𝑃 }
𝐶𝑆ℎ𝑒𝑑,𝑙𝑝𝑆ℎ𝑒𝑑,𝑙𝑧𝑡 +

𝐶𝑆ℎ𝑒𝑑𝐻𝑦𝑣𝑆ℎ𝑒𝑑𝐻𝑦
𝑧𝑡

))

. (23)

Constraints (24) ensure that the technologies operate within their 
capacity limits.

𝑝𝑝𝑡 ≤ 𝑃𝐴𝑐𝑐
𝑝 , 𝑝 ∈ ∗, 𝑡 ∈  , (24a)

𝑣𝑣𝑡 ≤ 𝑉 𝐴𝑐𝑐
𝑣 , 𝑣 ∈ ∗, 𝑡 ∈  , (24b)

𝑝𝐺𝑔𝑡 + 𝑝𝑅𝑒𝑠𝐺𝑔𝑡 ≤ 𝑃𝐴𝑐𝑐𝐺
𝑔 , 𝑔 ∈ , 𝑡 ∈  , (24c)

𝑝𝑆𝐸−
𝑠𝑡 + 𝑝𝑅𝑒𝑠𝑆𝐸𝑠𝑡 ≤ 𝑃𝐴𝑐𝑐𝑆𝐸

𝑠 , 𝑠 ∈ 𝐸 , 𝑡 ∈  , (24d)

𝑞𝑆𝐸𝑠𝑡 ≤ 𝑄𝐴𝑐𝑐𝑆𝐸
𝑠 , 𝑠 ∈ 𝐸 , 𝑡 ∈  , (24e)

− 𝑃𝐴𝑐𝑐𝐿
𝑙 ≤ 𝑝𝐿𝑙𝑡 ≤ 𝑃𝐴𝑐𝑐𝐿

𝑙 , 𝑙 ∈ , 𝑡 ∈  , (24f)

− 𝑉 𝐴𝑐𝑐𝐿𝐻𝑦
𝑙 ≤ 𝑣𝐿𝐻𝑦

𝑙𝑡 ≤ 𝑉 𝐴𝑐𝑐𝐿𝐻𝑦
𝑙 , 𝑙 ∈ 𝐻𝑦, 𝑡 ∈  . (24g)

Constraint (25) captures how fast generators can ramp up or ramp 
down their power output, respectively.
− 𝛼𝐺𝑔 𝑃

𝐴𝑐𝑐𝐺
𝑔 ≤ 𝑝𝐺𝑔𝑡 + 𝑝𝑅𝑒𝑠𝐺𝑔𝑡 − 𝑝𝐺𝑔(𝑡−1) − 𝑝𝑅𝑒𝑠𝐺𝑔(𝑡−1) ≤ 𝛼𝐺𝑔 𝑃

𝐴𝑐𝑐𝐺
𝑔 ,

𝑔 ∈ , 𝑛 ∈  , 𝑡 ∈ 𝑛. (25)

Constraint (26) dictates that the spinning reserve of generator 𝑝𝑅𝑒𝑠𝐺𝑔𝑡 , 
plus the reserve of the electricity storage 𝑝𝑅𝑒𝑠𝐸𝑆

𝑠𝑡  must exceed the 
minimum reserve requirement, where 𝜎𝑅𝑒𝑠 is a percentage of the power 
load. 
∑

𝑔∈𝑧

𝑝𝑅𝑒𝑠𝐺𝑔𝑡 +
∑

𝑠∈𝐸
𝑧

𝑝𝑅𝑒𝑠𝑆𝐸𝑠𝑡 ≥ 𝜎𝑅𝑒𝑠𝑧 𝑃𝐷𝑃
𝑧𝑡 , 𝑧 ∈ , 𝑡 ∈  . (26)

Constraints (27) and (28) ensure that run-of-the-river hydropower 
and regulated hydropower production are within their limits and ac-
cording to the generation profiles, separately. 
∑

𝑡∈𝑛

𝑝𝐻𝑔𝑡 ≤
∑

𝑡∈𝑛

𝑃𝐻𝑆𝑒𝑎
𝑔𝑡 , 𝑔 ∈ 𝐻𝑆𝑒𝑎, 𝑛 ∈  , (27)

𝑝𝐻𝑔𝑡 ≤ 𝑃𝐻𝑅𝑜𝑟
𝑔𝑡 𝑃𝐴𝑐𝑐𝐻𝑅𝑜𝑟

𝑔 , 𝑔 ∈ 𝐻𝑅𝑜𝑟, 𝑡 ∈  . (28)

Constraint (29) ensures that, in one operational period 𝑡, the sum 
of total power generation of generators 𝑝𝐺𝑔𝑡, power discharged from 
all the electricity storage 𝑝𝑆𝐸−, renewable generation 𝑅𝑅𝑝𝐴𝑐𝑐𝑅, hydro 
𝑠𝑡 𝑧𝑡 𝑟𝑡
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power generation 𝑝𝐻𝑔𝑡 , fuel cell generation 𝑝𝐹𝑓𝑡, power transmitted to this 
region, and load shed 𝑝𝑆ℎ𝑒𝑑𝑃𝑧𝑡  equals the sum of power demand 𝜇𝐷𝑃𝑃𝐷𝑃

𝑧𝑡 , 
power consumption of electric boilers 𝑝𝐵𝐸𝑏𝑡 , power consumption of 
all electrolysers 𝑝𝐸𝑒𝑡, power transmitted to other regions, and power 
generation shed 𝑝𝐺𝑆ℎ𝑒𝑑𝑃

𝑧𝑡 . The parameter 𝑅𝐺𝑅
𝑟𝑡  is the capacity factor 

of the renewable unit that is a fraction of the nameplate capacity 
𝑃𝐴𝑐𝑐𝑅. The subset of a technology in the region 𝑧 is represented by 
𝑅𝑧 ∶= {𝑟 ∈  ∶ 𝑟 is available in region 𝑧}, where  can be replaced by 
other sets of technologies. The power load shed 𝑝𝑆ℎ𝑒𝑑𝑃  allows power 
demand unmet at a high cost to ensure the feasibility of the operational 
subproblem. The same idea applies to hydrogen mass balance and heat 
energy balance. 

∑

𝑔∈𝑧

𝑝𝐺𝑔𝑡 +
∑

𝑙∈𝐼𝑛
𝑧

𝜂𝐿𝑝𝐿𝑙𝑡 +
∑

𝑠∈𝐸
𝑧

𝑝𝑆𝐸−
𝑠𝑡 +

∑

𝑟∈𝑅𝑧

𝑅𝐺𝑅
𝑟𝑡 𝑃𝐴𝑐𝑐𝐺𝑅

𝑟 +

∑

𝑔∈𝐻𝑧

𝑝𝐻𝑔𝑡 +
∑

𝑓∈𝑧

𝑝𝐹𝑓𝑡 + 𝑝𝑆ℎ𝑒𝑑𝑃𝑧𝑡 =

𝜇𝐷𝑃𝑃𝐷𝑃
𝑧𝑡 +

∑

𝑏∈𝐸
𝑧

𝑝𝐵𝐸𝑏𝑡 +
∑

𝑒∈𝑧

𝑝𝐸𝑒𝑡 +
∑

𝑙∈𝑂𝑢𝑡
𝑧

𝜂𝐿𝑙 𝑝
𝐿
𝑙𝑡 +

∑

𝑠∈𝐸
𝑧

𝑝𝑆𝐸+
𝑠𝑡 +

𝑝𝐺𝑆ℎ𝑒𝑑𝑃
𝑧𝑡 , 𝑧 ∈ , 𝑡 ∈  .

(29)

The hydrogen mass balance Constraint (30) dictates that hydrogen 
produced by electrolyser 𝐻𝑡𝜌𝐸𝑝𝐸𝑒𝑡 and steam reforming plant 𝑣𝑅𝑟𝑡, hy-
drogen transmitted to this region, withdraw from a hydrogen storage 
𝑣𝑆𝐻𝑦−
𝑠𝑡  and hydrogen production shed 𝑣𝐺𝑆ℎ𝑒𝑑𝐻𝑦

𝑧𝑡  equals the hydrogen 
demand 𝑉 𝐷𝐻𝑦

𝑧𝑡 , fuel supply to fuel cell 𝐻𝑡𝜌𝐹 𝑝𝐹𝑓𝑡, hydrogen injected 
into the storage 𝑣𝑆𝐻𝑦+, hydrogen transmitted from this region plus the 
hydrogen load shed 𝑣𝑆ℎ𝑒𝑑𝐻𝑦

𝑧𝑡 . 
∑

𝑠∈𝐻𝑦
𝑧

𝑣𝑆𝐻𝑦+
𝑠𝑡 +

∑

𝑙∈𝐻𝑦𝑂𝑢𝑡
𝑧

𝑣𝐿𝐻𝑦
𝑙𝑡 +

∑

𝑓∈𝑧

𝐻𝑡𝜌
𝐹 𝑝𝐹𝑓𝑡 + 𝑣𝑆ℎ𝑒𝑑𝐻𝑦

𝑧𝑡 +

𝜇𝐷𝐻𝑦𝑉 𝐷𝐻𝑦
𝑧𝑡 =

∑

𝑙∈𝐻𝑦𝐼𝑛
𝑧

𝑣𝐿𝐻𝑦
𝑙𝑡 +

∑

𝑒∈𝑧

𝐻𝑡𝜌
𝐸𝑝𝐸𝑒𝑡 +

∑

𝑟∈𝑧

𝑣𝑅𝑟𝑡+

∑

𝑠∈𝐻𝑦
𝑧

𝑣𝑆𝐻𝑦− + 𝑣𝐺𝑆ℎ𝑒𝑑𝐻𝑦
𝑧𝑡 , 𝑧 ∈ , 𝑡 ∈  .

(30)

The heat energy balance Constraint (31) states that the heat recov-
ery of gas turbines 𝜂𝐻𝑟𝐺

𝑔 𝑝𝐺𝑔𝑡, plus electric boiler heat generation 𝜂𝐵𝐸𝑏 𝑝𝐵𝐸𝑏𝑡 , 
plus heat load shed 𝑝𝑆ℎ𝑒𝑑𝐻𝑧𝑡  equals the heat demand 𝜇𝐷𝐻𝑃𝐷𝐻

𝑧𝑡  plus the 
heat generation shed 𝑝𝐺𝑆ℎ𝑒𝑑𝐻

𝑧𝑡 . 
∑

𝑔∈
𝜂𝐻𝑟𝐺
𝑔 𝑝𝐺𝑔𝑡 +

∑

𝑏∈𝐸
𝑧

𝜂𝐵𝐸𝑏 𝑝𝐵𝐸𝑏𝑡 + 𝑝𝑆ℎ𝑒𝑑𝐻𝑧𝑡 =

𝜇𝐷𝐻𝑃𝐷𝐻
𝑧𝑡 + 𝑝𝐺𝑆ℎ𝑒𝑑𝐻

𝑧𝑡 , 𝑧 ∈ 𝑃 , 𝑡 ∈  .
(31)

Constraint (32) states that the state of charge 𝑞𝑆𝐸𝑠𝑡  in period 𝑡 +
1 depends on the previous state of charge 𝑞𝑆𝐸𝑠𝑡 , the charged power 
𝜇𝑆𝐸
𝑠 𝑝𝑆𝐸+

𝑠𝑡  and discharged power 𝑝𝑆𝐸−
𝑠𝑡 . The parameter 𝜂𝑆𝐸𝑠  represent the 

charging efficiency. 

𝑞𝑆𝐸𝑠(𝑡+1) = 𝑞𝑆𝐸𝑠𝑡 +𝐻𝑡(𝜂𝑆𝐸𝑠 𝑝𝑆𝐸+
𝑠𝑡 − 𝑝𝑆𝐸−

𝑠𝑡 ), 𝑠 ∈ 𝐸 , 𝑛 ∈  , 𝑡 ∈ 𝑛. (32)

The hydrogen storage balance Constraint (33) shows that the hy-
drogen storage level 𝑣𝑆𝐻𝑦

𝑠𝑡  at period 𝑡 + 1 equals to storage level at the 
previous period, plus the hydrogen injected 𝑣𝑆𝐻𝑦+

𝑠𝑡 , minus the hydrogen 
withdrawn 𝑣𝑆𝐻𝑦−

𝑠𝑡 . 

𝑣𝑆𝐻𝑦
𝑠(𝑡+1) = 𝑣𝑆𝐻𝑦

𝑠𝑡 + 𝑣𝑆𝐻𝑦+
𝑠𝑡 − 𝑣𝑆𝐻𝑦−

𝑠𝑡 , 𝑠 ∈ 𝐻𝑦, 𝑛 ∈  , 𝑡 ∈ 𝑛. (33)

Constraint (34) restricts the total emission. The parameter 𝜇𝐸 is the 
CO2 budget. 
∑

𝑡∈
𝜋𝑡

(

∑

𝑔∈
𝐸𝐺
𝑔 𝑝

𝐺
𝑔𝑡 +

∑

𝑟∈
𝐸𝑅𝑣𝑅𝑟𝑡

)

≤ 𝜇𝐸 . (34)
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Fig. 5. Illustration of the considered European energy system. The considered system 
includes 27 regions (each region can deploy 36 technologies), 87 transmission lines, 7 
existing natural gas pipelines that can be retrofitted for hydrogen transport (some are 
overlapped), and 87 candidate new hydrogen pipelines.

The domains of variables are given as follows 
𝑝𝐿𝑙𝑡 , 𝑣

𝐿𝐻𝑦
𝑙𝑡 ∈ R, 𝑝𝐺𝑔𝑡, 𝑝

𝑆ℎ𝑒𝑑𝑃 , 𝑝𝑆ℎ𝑒𝑑𝐻 , 𝑣𝑆ℎ𝑒𝑑𝐻𝑦
𝑧𝑡 , 𝑝𝐴𝑐𝑐𝑝 , 𝑝𝐵𝐸𝑏𝑡 ,∈ R+

0 ,

𝑝𝑅𝑒𝑠𝐺 , 𝑝𝑅𝑒𝑠𝑆𝐸 , 𝑝𝐴𝑐𝑐𝐺𝑔 , 𝑝𝐺𝑆ℎ𝑒𝑑𝑃
𝑧𝑡 , 𝑝𝐺𝑆ℎ𝑒𝑑𝐻

𝑧𝑡 , 𝑣𝐺𝑆ℎ𝑒𝑑𝐻𝑦
𝑧𝑡 , 𝑣𝑆𝐻𝑦+

𝑠𝑡 ∈ R+
0 ,

𝑣𝑆𝐻𝑦−
𝑠𝑡 , 𝑣𝑆𝐻𝑦

𝑠𝑡 , 𝑝𝐸𝑒𝑡, 𝑝
𝐻
𝑔𝑡 , 𝑝

𝐴𝑐𝑐𝐺𝑅
𝑟 , 𝑝𝑆𝐸+

𝑠𝑡 , 𝑣𝐴𝑐𝑐𝐿𝐻𝑦
𝑙 , 𝑝𝑆𝐸−

𝑠𝑡 , 𝑞𝐴𝑐𝑐𝑆𝐸𝑠 ,∈ R+
0 ,

𝑞𝑆𝐸𝑠𝑡 , 𝑝𝐴𝑐𝑐𝐿𝑙 , 𝑝𝐴𝑐𝑐𝑅𝑟 , 𝑝𝐹𝑓𝑡, 𝑣
𝑅
𝑟𝑡 ∈ R+

0 .

(35)

6. Results

In this section, we first present the case study. Then we report the 
computational performance of the stabilised adaptive Benders decom-
position, followed by the sensitivity analysis of the retrofitting cost 
of natural gas pipelines and offshore platforms. Finally, we compare 
the solutions and costs between the REORIENT and investment-only 
models. The investment-only model is the REORIENT model without 
the retrofit and abandonment planning functions. All data used in the 
test instances is provided at Zhang (2024).

6.1. Case study

We demonstrate the REORIENT model on the integrated strategic 
planning of the European energy system. The network topology is 
shown in Fig.  5. We make investment planning towards 2050 with 
a 5-year planning step. We implemented the algorithm and model in 
Julia 1.8.2 using JuMP (Dunning et al., 2017) and solved with Gurobi 
10.0 (Gurobi Optimization, LLC, 2022). The problem instances contain 
up to 13 million continuous variables, 1860 binary variables, and 30 
million constraints. We run the code on nodes of a computer cluster 
with a 2x 3.6 GHz 8 core Intel Xeon Gold 6244 CPU and 384 GB of 
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Table 1
Estimated parameters for the price process.
Source: Taken from Bakker, Kleiven et al. (2021).
 𝜅 𝜎𝜒 𝜆𝜒 𝜎𝜉 𝜇∗

𝜉 𝜌𝜒𝜉  
 Estimate 0.407 0.273 −0.147 0.149 −0.007 0.306 

Table 2
Existing natural gas pipelines considered in the case study and their 
potential hydrogen transport capacity.
Model name Name From To Capacity (Ktonne/h)
Pipeline 1 Vesterled NOO3 UK1 0.46
Pipeline 2 Langeled NOO4 UK2 0.98
Pipeline 3 Zeepipe 1 NOO4 WE 0.58
Pipeline 4 Franpipe NOO4 WE 0.75
Pipeline 5 Norpipe NOO5 EE 0.61
Pipeline 6 Europipe 1 NOO4 EE 0.69
Pipeline 7 Europipe 2 NOO4 EE 0.92

RAM, running on CentOS Linux 7.9.2009. The parameters for the price 
process for oil and gas prices are presented in Table  1. The potential 
hydrogen transport capacities of the existing natural gas pipelines are 
presented in Table  2.

We use Gurobi as the base solver. We use the dual simplex algo-
rithm to solve the RMP due to its relatively small size. The parameter
DegenMoves has been turned on because we notice degeneracy makes 
the solver slow. We use the Barrier algorithm to solve the centred point 
problem to obtain a centred point. If Presolve is off and Crossover
is off, then Gurobi will give a centred point. However, we turn on
Presolve to reduce the problem size further. In addition, considering 
the scale of the problem, we choose to solve all the following instances 
to 1% convergence tolerance.

6.1.1. Computational results
This section presents an overview of the problem instances and a 

performance analysis of the proposed algorithm. An overview of the 
test instances is presented in Table  3. In the test instances, we consider 
operational problems with hourly time resolution. The test instances 
vary in the number of operational hours in each short-term scenario, 
short-term scenarios, and long-term scenarios. The problem instances 
have seven stages, which makes the problem instances large even with 
a few realisations of the parameters in each stage. The computational 
time is given in Tables  4 and 5, and note that Gurobi can only solve 
Case 1.

By comparing Tables  4 and 5, we can see that by utilising the 
centred point, we reduce the computational time significantly. By 
comparing the percentage of the time spent on solving the stabilisation 
problem, we can see that solving CP takes much less of the total time 
than solving a quadratic programming stabilisation problem. We can 
also see that as we increase the number of strategic nodes, the percent-
age of time spent on the RMP and CP increases in both algorithms. This 
is because we add one cut per node per iteration, and as we have more 
nodes, the RMP and CP grow faster every iteration. Also, by comparing 
Cases 2 and 3, we observe no significant difference in the number of 
iterations, but the increase in time is more significant. This is because 
Cases 2 and 3 have the same amount of strategic decisions, but the 
subproblem in Case 3 is larger. In addition, there are significantly more 
operational nodes in Case 6 than the other cases which lead to much 
more subproblem evaluations. This eventually leads to a longer solution 
time.

6.1.2. Sensitivity analysis
In this section, we use Case 3 to conduct a sensitivity analysis on 

the fixed retrofitting cost of pipelines and platforms. In addition, we 
also present the results of the investment decisions for a future energy 
system with a large amount of green and blue hydrogen production and 
transportation.
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We first conduct a sensitivity analysis on the retrofitting cost of nat-
ural gas pipelines. To this end, we consider two cases: Case A, oil and 
gas production has stopped, and there is no natural gas transportation 
value in the pipelines, and Case B, oil and gas production is ongoing, 
and the natural gas pipelines are used for natural gas transport. Using 
Case A, our motivation is to understand under what cost range it would 
be more beneficial to retrofit natural gas pipelines that are not in 
operation compared with building new hydrogen pipelines. Case B is 
a more realistic case because most of the pipelines in the North Sea 
are in operation and have an export role. Using Case B, we want to 
analyse if retrofit to hydrogen will occur if that means the loss of 
oil and gas export profit. According to Fors et al. (2021), the cost 
of retrofitting the pipelines can be estimated at around 10%–15% of 
the new construction. Here, we conduct sensitivity on the cost from 
5%–30% with a 5% step.

From Table  6, for pipelines 2–7, if the retrofitting cost is below 15% 
of newly built cost, they will be retrofitted in all scenarios. However, 
for pipeline 1, when the retrofitting cost is less than 15% of building 
a new one, it is retrofitted in 28 scenarios, and the retrofitting takes 
place in the third strategic stage. Pipeline 5 is only retrofitted at the end 
of the planning horizon when the cost is 15% of building a new one. 
When the retrofitting cost is higher than 20%, some of the pipelines are 
not retrofitted. Instead, the model decides to build new pipelines and 
a different network topology to achieve the minimum cost. We can see 
that different oil and gas price scenarios affect the retrofitting decisions.

From Table  7, it can be observed, compared with Case A, that the 
economic viability of pipeline retrofit is harder if the pipelines are 
already used for natural gas transport. However, most pipelines are still 
retrofitted for hydrogen transportation in later investment stages. From 
Tables  6 and 7, we can see that retrofit decisions are sensitive to the 
retrofitting cost, and oil and gas prices. Also, retrofit sometimes only 
take place in specific price scenarios.

Secondly, we conduct a sensitivity analysis on the retrofitting cost of 
oil and gas platforms. By doing so, we aim to analyse: (1) if retrofitting 
can help delay or even avoid the costly abandonment campaign and 
(2) understand the relation between retrofitting existing platforms for 
OEHs and building new OEHs. We assume that the fixed part of the 
retrofitting cost is half of the removal cost, and conduct sensitivity 
around this cost. For each platform cluster, we consider a fixed part of 
the retrofitting cost ranging from €10 million to €2 billion. However, 
the results suggest that it is not economical to retrofit platforms for hy-
drogen production under this price range due to the massive loss of oil 
and gas export profit. The model decides to conduct an abandonment 
campaign for all platform clusters by the end of the planning horizon. 
This means that based on the cost models that are used, retrofitting 
platforms for hydrogen production is more costly than abandonment. 
Also, due to the oil and gas export profit, the platforms will produce 
as long as possible until they must be abandoned. In this case study, 
the platforms must be retrofitted or abandoned by 2050. This suggests 
that repurposing platforms for other use may need stronger incentives 
in addition to economic factors.

6.1.3. Comparison between the REORIENT model and an investment plan-
ning only model

In this section, we use Case 3 and analyse the difference between 
an investment-planning-only model and the proposed integrated model 
regarding investment decisions and costs. We fix the retrofitting cost 
of pipelines to 15% of the cost of its newly built counterpart. In 
the following, we report the results of expected strategic decisions 
regarding the grid design and capacities of the technologies in each 
decision stage.

From Figs.  6 and 7, we can see that the network topology is 
noticeably different. By 2050, there will be 32 pipelines built compared 
with 28 pipelines in the investment-only model. The line connecting NE 
and NO1 has less capacity in the REORIENT model compared with the 
investment-only model. In both cases, the UK onshore power system 
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Table 3
Overview of the cases used in the computational study.

Operational periods Short-term Long-term Number of decision nodes Problem size (undecomposed) Initial RMP size Subproblem size
per short-term scenario scenarios scenarios Operational nodes Investment nodes Continuous variables Binary variables Constraints Continuous variables Binary variables Constraints Continuous variables Constraints

Case 1 96 4 1 6 6 7.0 × 105 180 1.6 × 106 2.0 × 104 180 2.3 × 104 1.1 × 105 1.7 × 105

Case 2 672 4 1 6 6 4.8 × 106 180 1.1 × 107 2.0 × 104 180 2.3 × 104 8.0 × 105 1.2 × 106

Case 3 96 4 53 114 62 1.3 × 107 1860 3.0 × 107 3.0 × 105 1860 3.7 × 105 1.1 × 105 1.7 × 105

Case 4 96 4 49 107 58 1.2 × 107 1770 2.8 × 107 2.9 × 105 1770 3.5 × 105 1.1 × 107 1.7 × 105

Case 5 96 8 49 107 58 8.5 × 107 1770 1.9 × 108 2.9 × 105 1770 3.5 × 105 2.3 × 105 3.3 × 105

Case 6 96 4 95 273 179 3.2 × 107 5370 7.1 × 107 7.7 × 105 5370 9.4 × 105 1.1 × 105 1.7 × 105
Table 4
Computational time of level set stabilised Benders. (Iters: iterations, Evals: subproblem evaluations).

Iters/Evals Total time spent (h) Master problem (%) Stabilisation problem (%) Subproblems and adaptive oracles (%) Lower bound (Be) Upper bound (Be)
Case 1 714/3615 5.53 16.34 43.06 40.58 1709.32 1726.29
Case 2 894/4249 31.04 4.02 12.76 83.21 1882.78 1901.23

This method did not solve Cases 3–6 after more than ten days of running.
Table 5
Computational time of centred point stabilised Benders. (Iters: iterations, Evals: subproblem evaluations).

Iters/Evals Total time spent (h) Master problem (%) Stabilisation problem (%) Subproblems and adaptive oracles (%) Lower bound (Be) Upper bound (Be)
Case 1 152/641 0.37 8.42 3.35 88.08 1717.62 1734.30
Case 2 119/516 4.54 0.44 0.20 99.35 1887.87 1906.69
Case 3 161/6502 49.61 9.26 8.88 81.85 1677.74 1694.62
Case 4 159/5340 30.38 4.97 10.87 84.15 1378.83 1388.65
Case 5 110/4371 55.12 0.87 2.87 96.25 1488.47 1501.71
Case 6 134/9653 78.65 5.48 4.62 89.90 1329.80 1343.11
Table 6
Results of the expected retrofitting decisions in Case A.
 Cost (% of new one) Pipeline 1 Pipeline 2 Pipeline 3 Pipeline 4 Pipeline 5 Pipeline 6 Pipeline 7 
 5% (0, 0, 2, 4, 8, 16, 28) a a a a a a  
 10% (0, 0, 2, 4, 8, 16, 28) a a a a a a  
 15% (0, 0, 2, 4, 8, 16, 28) a a a (0, 0, 0, 0, 0, 2, 3) a a  
 20% – a a – – a a  
 25% – – a a (0, 0, 0, 2, 4, 7, 11) a a  
 30% – – a – (0, 0, 0, 0, 2, 4, 7) a a  
–: the pipeline is not retrofitted.
({𝑥𝑖 , 𝑖 = 1,… , 7}) ∶ the number of decision nodes, 𝑥𝑖, that retrofitting of the pipeline takes place in stage 𝑖.
a The pipeline is retrofitted in all strategic nodes.
Table 7
Results of the expected retrofitting decisions in Case B.
 Cost (% of new one) Pipeline 1 Pipeline 2 Pipeline 3 Pipeline 4 Pipeline 5 Pipeline 6 Pipeline 7  
 5% – (0, 0, 0, 0, 2, 4, 6) (0, 0, 0, 2, 4, 8, 14) (0, 0, 0, 0, 2, 4, 7) (0, 0, 0, 0, 2, 4, 8) (0, 0, 0, 0, 2, 4, 7) (0, 0, 0, 0, 2, 4, 7)  
 10% – – (0, 0, 0, 2, 4, 8, 14) (0, 0, 2, 4, 8, 16, 28) (0, 0, 0, 0, 0, 2, 4) (0, 0, 0, 2, 4, 8, 14) (0, 0, 0, 2, 4, 8, 14) 
 15% – – (0, 0, 0, 2, 4, 8, 14) (0, 0, 0, 2, 4, 8, 14) (0, 0, 0, 0, 2, 4, 6) (0, 0, 0, 2, 4, 8, 14) (0, 0, 0, 0, 2, 4, 7)  
 20% – – (0 ,0, 0, 0, 2, 4, 8) (0, 0, 0, 0, 2, 4, 6) (0, 0, 0, 0, 2, 4, 6) (0, 0, 0, 0, 2, 4, 8) (0, 0, 0, 0, 2, 4, 8)  
 25% – – (0, 0, 0, 2, 4, 8, 14) (0, 0, 0, 0, 2, 4, 6) (0, 0, 0, 0, 2, 4, 6) (0, 0, 0, 2, 4, 8, 14) (0, 0, 0, 2, 4, 8, 14) 
 30% – – – – – (0, 0, 0, 0, 2, 4, 8) (0, 0, 0, 0, 2, 4, 6)  
–: the pipeline is not retrofitted.
({𝑥𝑖 , 𝑖 = 1,… , 7}) ∶ the number of decision nodes, 𝑥𝑖, that retrofitting of the pipeline takes place in stage 𝑖.
transmission is reinforced, however, a 3 GW difference in the line 
connecting UK3 and UK5 is observed, followed by a 2 GW difference in 
UK4-UK5. By 2050, the line NEO-EEO will have 44.90 GW capacity in 
REORIENT model compared with 36.81 GW in its counterpart. NOO3-
NEO presents a significant difference as well with 4.4 GW capacity in 
REORIENT model and 12.26 GW in the investment-only model by 2050. 
NOO2 and NOO3 are not connected in the REORIENT model but are 
connected in the other model.

By comparing Figs.  8 and 9, we notice that in both models, NOO3 
is an important offshore region which receives significant investment 
in offshore wind and electrolysers due to its location and high wind 
availability. A major difference is found in offshore wind capacity in 
NEO and UKO4. The REORIENT model has a higher investment in 
offshore wind in NEO in all investment steps.

Tables  8 and 9 present the accumulated capacity of each technology 
in each region offshore wind will surpass onshore wind and become the 
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most important renewable power supply by 2050. In the investment-
only model, more than 23 GW more transmission line capacity is 
needed by 2050 compared with the results using the REORIENT model. 
In both models, hydrogen is produced mainly from SMRCCS at the 
initial stages but gradually replaced by electrolysers. Also, both models 
decide to produce green hydrogen mainly offshore. The hydrogen 
pipeline capacity is lower in the REORIENT model compared with the 
counterpart by the end of the planning stage.

In addition, the total cost over the given planning horizon is 
€1694.47 billion in the investment-only model and €1691.50 billion 
in the REORIENT model. Furthermore, the REORIENT yields 24% 
lower investment cost in the North Sea region compared with the 
traditional investment-only model. This shows the potential value of 
doing integrated planning. The value of REORIENT model can be 
further revealed once more retrofitting options are included, e.g., by 
including more existing natural gas pipelines.
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Fig. 6. Expected solution of the grid design towards 2050 (investment only model).
Table 8
Results of accumulated capacity in Europe (investment-only model).
Year Offshore wind Onshore wind Onshore solar Electrolyser offshore Electrolyser onshore Transmission line Hydrogen pipeline

(GW) (GW) (GW) (GW) (GW) (GW) (ktonne/h)

2025 35.72 279.24 119.83 0.00 0.00 148.66 0.00
2030 36.26 354.17 119.83 0.00 0.00 190.46 0.00
2035 212.08 364.02 146.29 12.46 8.66 586.61 0.73
2040 397.01 373.98 146.29 161.64 14.74 909.83 6.98
2045 465.95 355.11 150.86 174.57 20.51 985.28 7.80
2050 608.14 269.46 171.42 248.01 27.19 1084.87 15.70
Table 9
Results of accumulated capacity in Europe (REORIENT model).
Year Offshore wind Onshore wind Onshore solar Electrolyser offshore Electrolyser onshore Transmission line Hydrogen pipeline

(GW) (GW) (GW) (GW) (GW) (GW) (ktonne/h)

2025 35.92 277.39 119.83 0.00 0.00 148.84 2.94
2030 38.33 348.67 119.83 0.00 0.00 190.73 3.19
2035 215.35 366.35 146.29 20.25 9.35 536.56 3.59
2040 394.34 371.60 146.29 156.90 20.38 904.63 6.19
2045 461.80 357.82 151.91 172.95 21.44 998.00 6.93
2050 593.89 293.15 171.42 253.37 24.85 1061.02 13.63
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Fig. 7. Expected solution of the grid design towards 2050 (REORIENT model).
7. Discussion

In this paper, we integrated investment, retrofit and abandonment 
planning in a multi-horizon stochastic MILP model. The model is gener-
ally applicable to studying a specific planning problem for a production 
plant or a large-scale energy system planning problem for a region.

We used the model to study the investment planning of a Euro-
pean energy system. We considered regional retrofit at a high level 
and conduct a techno-economical analysis. Unlike traditional retrofit 
models for process systems, we have omitted detailed modelling of 
the processes, which is a compromise due to the large scale of the 
study. The sensitivity analysis presented in this paper can be used as 
a benchmark for future studies.

In the case study, we find that although reducing retrofitting costs 
can trigger the retrofitting of some oil and gas infrastructures, it may 
not be a sufficiently strong incentive for platform retrofitting compared 
with pipeline retrofitting. This is because the loss of oil and gas profit 
is much larger than the reduction in retrofitting cost. Additionally, 
for platforms, a lot of investment needs to be made for producing 
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green hydrogen upon removing the existing structure. Other driving 
factors, such as policies, are therefore needed to encourage oil and gas 
operators to retrofit their infrastructure or reduce production for the 
energy transition.

From a computational perspective, the proposed algorithm solved 
the problem instances efficiently. The problem instances have many 
regions and technologies and, therefore, are highly degenerate. The CP 
helps the proposed stabilised adaptive Benders algorithm to converge 
faster. In addition, the proposed stabilised adaptive Benders decompo-
sition can be applied to a class of problems that can be formulated 
as Eqs. (6) and (7). Other strategies to accelerate Benders decomposi-
tion, including adding combinatorial cuts, trust region, local branching 
methods, and partial surrogate are tested. However, the improvement 
in performance is not significant.

There are some limitations of the case study: (1) in the case study, 
the offshore fields are aggregated into representative fields, which loses 
the modelling of the retrofit and abandonment for specific fields; (2) 
there are other parameters that may affect the investment decisions 
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Fig. 8. Expected investment decisions towards 2050 (investment only model).

Fig. 9. Expected investment decisions towards 2050 (REORIENT model).
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such as CO2 budget can be an uncertain parameter and change the re-
sults. We believe that oil and gas prices have a more direct relation and 
economic trade-off with retrofit and abandonment decisions; therefore, 
we choose to consider oil and gas prices as the uncertain parameter, 
and (3) we only consider green and blue hydrogen. However, hydrogen 
produced by other means may also be relevant and affect the results. In 
addition, although the MHSP can include uncertainty from short-term 
and long-term time horizons more efficiently, uncertain parameters 
such as oil and gas prices can be affected by regional decisions taken. 
This can not be captured using our MHSP model. However, North Sea 
oil and gas prices are mainly affected by global actions not regional 
actions so our model is a good approximation. If local decisions do have 
a significant effect on oil and gas prices, there have been modelling and 
computational strategies for multi-stage stochastic programming with 
endogenous and exogenous uncertainties (Apap & Grossmann, 2017; 
Goel & Grossmann, 2006) and it may be possible to combine these 
approaches with MHSP to address this limitation.

8. Conclusions and future work

This paper has presented the REORIENT model, a multi-horizon 
stochastic MILP for integrated investment, retrofit and abandonment 
energy-system planning. The major novelties and contributions are: (1) 
we developed an MHSP model for integrated investment, retrofit and 
abandonment planning of energy systems, (2) we included uncertainty 
from both strategic and operational time horizons in such a model, (3) 
a centred point stabilised adaptive Benders decomposition algorithm 
was developed to solve large-scale MILP faster, (4) we extended the 
centred point stabilisation, which was used for linear programs, to 
solve MILP problems and provided convergence proof, and (5) the 
triggering parameters for retrofitting is investigated by conducting 
sensitivity analysis and a comparison between the REORIENT model 
and investment planning only model is made. Results from our case 
study indicate that: (1) for pipelines that are not in use, when the 
retrofitting cost is below 20% of the cost of building new ones, it is 
more economical to retrofit most of the pipelines than building new 
ones. For pipelines that transport natural gas, it is economical to be 
retrofitted in some natural gas price scenarios, (2) platform clusters 
keep producing oil and gas rather than being retrofitted for hydrogen 
use, and the clusters abandonment takes place at the last investment 
stage, (3) compared with an investment planning model, the REORIENT 
model yields €3 billion lower total cost, and 24% lower investment 
cost in the North Sea region, and (4) the proposed Benders algorithm 
can solve the model efficiently. For the smaller cases, it is 6.8 times 
faster than the level method stabilised Benders decomposition, and it 
can solve all the larger cases which the level method stabilised Benders 
which could not solve.

In the future, the REORIENT model can be used for more energy 
systems analysis, such as investigating the integrated planning for other 
regions, such as the continental shelf of the United States, or focusing 
on some specific platforms in a smaller region. In addition, decompo-
sition methods, such as Lagrangean type algorithms and progressive 
hedging algorithms, could be applied to solve the reduced master 
problems should this becomes a bottleneck in solving larger stochastic 
instances.

CRediT authorship contribution statement

Hongyu Zhang: Writing – review & editing, Writing – original draft, 
Visualization, Validation, Software, Resources, Project administration, 
Methodology, Investigation, Formal analysis, Data curation, Conceptu-
alization. Ignacio E. Grossmann: Writing – review & editing, Writing 
– original draft, Supervision, Resources, Methodology, Formal analy-
sis, Conceptualization. Ken McKinnon: Writing – review & editing, 
Writing – original draft, Validation, Resources, Methodology, Inves-
tigation, Formal analysis, Conceptualization. Brage Rugstad Knud-
sen: Writing – review & editing, Writing – original draft, Supervision, 
277 
Funding acquisition, Conceptualization. Rodrigo Garcia Nava: Soft-
ware, Methodology. Asgeir Tomasgard: Writing – review & editing, 
Writing – original draft, Supervision, Resources, Project administra-
tion, Methodology, Investigation, Funding acquisition, Formal analysis, 
Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Acknowledgments

This work was supported by the Research Council of Norway 
through PETROSENTER LowEmission [project code 296207].

Appendix. Nomenclature

 Investment planning model indices and sets
 𝑝 ∈  Set of technologies  
 𝑝 ∈ 𝑅 Set of candidate retrofit technologies  
 𝑝 ∈ 𝑅

𝑝 Set of candidate technologies that an existing 
technology 𝑝 can be retrofitted to (𝑝 ∈ 𝑅)
which including abandonment and prolong

 

 𝑝 ∈ 𝑅𝑇 Set of candidate technologies be retrofitted to  
 𝑖 ∈ 𝑂𝑝𝑒 Set of operational nodes  
 𝑖 ∈ 𝐼𝑛𝑣 Set of investment nodes  
 𝑗 ∈ 𝐼𝑛𝑣

𝑖 Set of investment nodes 𝑗 (𝑗 ∈ 𝐼𝑛𝑣) succeed to 
investment node 𝑖 (𝑖 ∈ 𝐼𝑛𝑣)

 

 𝑗 ∈ 𝑂𝑝𝑒
𝑖 Set of operational nodes 𝑗 (𝑗 ∈ 𝑂𝑝𝑒) succeed to 

investment node 𝑖 (𝑖 ∈ 𝐼𝑛𝑣)
 

 (𝑥, 𝜃, 𝜆) ∈ 𝑖(𝑘−1) Set of the Benders cut built up to iteration 𝑘 − 1, 
where 𝑥 is the vector of sampled points, 𝑡ℎ𝑒𝑡𝑎
and 𝜆 are the actually cost of subproblem at the 
sampled points, and the vector of subgradients 
at the sampled points, respectively.

 

 Investment planning model parameters
 𝐶𝐼𝑛𝑣𝑉

𝑝𝑖 Unitary investment cost of technology 𝑝 in 
investment node 𝑖 (𝑝 ∈  , 𝑖 ∈ 𝐼𝑛𝑣) [€/MW, 
€/MWh, €/kg]

 

 𝐶𝐼𝑛𝑣𝐹
𝑝𝑖 Fixed capacity independent investment cost of 

technology 𝑝 in investment node 𝑖
(𝑝 ∈  , 𝑖 ∈ 𝐼𝑛𝑣) [€]

 

 𝐶𝐹 𝑖𝑥
𝑝𝑖 Unitary fix operational and maintenance cost of 

technology 𝑝 in operational node 𝑖
(𝑝 ∈  , 𝑖 ∈ 𝑂𝑝𝑒) [€/MW, €/MWh, €/kg]

 

 𝐶𝑅𝑒𝑇𝑉
𝑝𝑖 Unitary investment cost of retrofitted technology 

𝑝 in investment node 𝑖 (𝑝 ∈ 𝑅𝑇 , 𝑖 ∈ 𝐼𝑛𝑣) 
[€/MW, €/MWh, €/kg]

 

 𝐶𝑅𝑒𝑇𝐹
𝑝𝑖 Fixed capacity independent investment cost of 

retrofitted to technology 𝑝 in investment node 𝑖
(𝑝 ∈ 𝑅𝑇 , 𝑖 ∈ 𝐼𝑛𝑣) [€]

 

 𝐶𝑅𝑒𝑇𝐹 𝑖𝑥𝑂 Fixed operational cost of the technology that is 
retrofitted to 𝑝 in investment node 𝑖
(𝑝 ∈ 𝑅𝑇 , 𝑖 ∈ 𝐼𝑛𝑣) [€]

 

 𝐶𝑅𝑒𝐹𝐹 𝑖𝑥𝑂
𝑝𝑖 Fixed operational cost of retrofitted technology 𝑝

in investment node 𝑖 (𝑝 ∈ 𝑅𝑇 , 𝑖 ∈ 𝐼𝑛𝑣) [€]
 

 𝑋𝑀𝑎𝑥𝐼𝑛𝑣∕𝑀𝑖𝑛𝐼𝑛𝑣
𝑝𝑖 Maximum/minimum built capacity of 

technology 𝑝 in investment node 𝑖
(𝑝 ∈  , 𝑖 ∈ 𝐼𝑛𝑣) [MW, MWh, kg]

 

 𝑋𝑀𝑎𝑥𝐴𝑐𝑐
𝑝 Maximum installed capacity of technology over 

the planning horizon 𝑝 (𝑝 ∈ ) [MW, MWh, kg]
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 𝜅 Scaling effect depending on time step between 
successive investment nodes

 

 𝐻𝑝 Lifetime of technology 𝑝 (𝑝 ∈ )  
 𝑋𝐻𝑖𝑠𝑡𝑅𝑒𝐹

𝑝𝑖 Historical capacity of existing technology that 
can be retrofitted [MW, MWh, kg]

 

 𝑋𝐻𝑖𝑠𝑡
𝑝𝑖 Historical capacity of technology 𝑝 in 

operational node 𝑖 (𝑝 ∈  , 𝑖 ∈ 𝑂𝑝𝑒) [MW, MWh, 
kg]

 

 𝑋𝑀𝑎𝑥𝑅𝑒𝑇 ∕𝑀𝑖𝑛𝑅𝑒𝑇
𝑝𝑖 Maximum/minimum built capacity of 

technology 𝑝 in investment node 𝑖
(𝑝 ∈ 𝑅𝑇 , 𝑖 ∈ 𝐼𝑛𝑣) [MW, MWh, kg]

 

 𝑋𝑀𝑎𝑥𝐴𝑐𝑐𝑅𝑒𝑇
𝑝𝑖 Maximum installed capacity of technology 𝑝

(𝑝 ∈ 𝑅𝑇 ) [MW, MWh, kg]
 

 𝑥𝑖 Right hand side of the operational problem  
 𝑐𝑖 Cost coefficients of the operational problem  
 𝜋𝐼𝑛𝑣∕𝑂𝑝𝑒

𝑖 Discount factor multiplied probability of 
investment/operational node 𝑖, 
(𝑖 ∈ 𝐼𝑛𝑣/𝑖 ∈ 𝑂𝑝𝑒)

 

 𝜇𝐸
𝑖 CO2 budget at operational node 𝑖 (𝑖 ∈ 𝑂𝑝𝑒)  

 𝜇𝐷𝑃
𝑖 Scaling factor on power demand at operational 

node 𝑖 (𝑖 ∈ 𝑂𝑝𝑒)
 

 𝜇𝑃
𝑖 Scaling factor on oil and gas production at 

operational node 𝑖 (𝑖 ∈ 𝑂𝑝𝑒)
 

 𝜇𝐷𝐻𝑦
𝑖 Scaling factor on hydrogen demand at 

operational node 𝑖 (𝑖 ∈ 𝑂𝑝𝑒)
 

 𝐶𝐶𝑂2
𝑖 CO2 emission price at operational node 𝑖

(𝑖 ∈ 𝑂𝑝𝑒)
 

 𝑂𝑝𝑒
𝑖 Strategic stage of operational node 𝑖 (𝑖 ∈ 𝑂𝑝𝑒)  

 𝐼𝑛𝑣
𝑖 Strategic stage of investment node 𝑖 (𝑖 ∈ 𝐼𝑛𝑣)  

 Investment planning model variables
 𝑥𝐴𝑐𝑐𝑝𝑖 Accumulated capacity of device 𝑝 in operational 

node 𝑖 (𝑝 ∈  , 𝑖 ∈ 𝑂𝑝𝑒) [MW, MWh, kg]
 

 𝑥𝐼𝑛𝑣𝑝𝑖 Newly invested capacity of device 𝑝 in 
investment node 𝑖0 (𝑝 ∈  , 𝑖 ∈ 𝐼𝑛𝑣) [MW, MWh, 
kg]

 

 𝑦𝐼𝑛𝑣𝑝𝑖 1 if technology 𝑝 is newly invested in 
investment node 𝑖, 0 otherwise (𝑝 ∈  , 𝑖 ∈ 𝐼𝑛𝑣)

 

 𝑦𝑅𝑒𝑇𝑝𝑖 1 if technology 𝑝 is retrofitted to in investment 
node 𝑖, 0 otherwise (𝑝 ∈ 𝑅𝑇 , 𝑖 ∈ 𝐼𝑛𝑣)

 

 𝑥𝐴𝑐𝑐𝑅𝑒𝑇𝑝𝑖 Accumulated capacity of technology 𝑝 that is 
retrofitted to in operational node 𝑖
(𝑝 ∈ 𝑅𝑇 , 𝑖 ∈ 𝑂𝑝𝑒)

 

 𝑦𝑅𝑒𝐹𝑝𝑖 1 if technology 𝑝 is retrofitted from in 
investment node 𝑖, 0 otherwise (𝑝 ∈ 𝑅, 𝑖 ∈ 𝐼𝑛𝑣)

 

 𝑥𝐴𝑐𝑐𝑅𝑒𝐹𝑝𝑖 Accumulated capacity of retrofitted from 
technology in operational node 𝑖
(𝑝 ∈ 𝑅, 𝑖 ∈ 𝑂𝑝𝑒)

 

 𝑥𝑅𝑒𝑇𝑝𝑖 In operational node 𝑖 (𝑝 ∈ 𝑅, 𝑖 ∈ 𝑂𝑝𝑒)  
 𝑐𝐼𝑁𝑉 Total investment and fixed operating and 

maintenance costs [€]
 

 𝑐𝑂𝑃𝐸
𝑖 Approximated operational cost in operational 

node 𝑖 in Benders decomposition (𝑖 ∈ 𝑂𝑝𝑒) [€]
 

 Operational model indices and sets
 𝑛 ∈  Set of time slices  
 𝑡 ∈  Set of hours in all time slices  
 𝑡 ∈ 𝑛 Set of hours in time slice 𝑛 (𝑛 ∈  )  
 𝑙 ∈  Set of transmission lines  
 𝑙 ∈ 𝐻𝑦 Set of hydrogen pipelines  
 𝑙 ∈ 𝑂𝑢𝑡∕𝐼𝑛

𝑧 Set of transmission lines go out of/into region 𝑧  
 𝑙 ∈ 𝐻𝑦𝑂𝑢𝑡∕𝐻𝑦𝐼𝑛

𝑧 Set of hydrogen pipelines go out of/into region 𝑧 
 𝑔 ∈  Set of thermal generation  
 𝑟 ∈ 𝑅 Set of renewable generation  
 𝑔 ∈ 𝐻 Set of hydropower generation including run of 

the river 𝐻𝑅𝑜𝑟 and seasonal 𝐻𝑆𝑒𝑎
 

 𝑠 ∈ 𝐸 Set of electricity storage  
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 𝑠 ∈ 𝐻𝑦 Set of hydrogen storage  
 𝑏 ∈ 𝐸 Set of electric boilers  
 𝑟 ∈  Set of SMRCCS  
 𝑒 ∈  Set of electrolysers  
 𝑓 ∈  Set of fuel cells  
 𝑧 ∈ 𝑃 Set of all platform clusters  
 𝑧 ∈  Set of all locations  
 𝑝 ∈ ∗ Set of all thermal generators, electric boilers, 

electrolysers, electricity storage, fuel cells and 
seasonal hydropower generation 
(∗ =  ∪ 𝐸 ∪  ∪ 𝐸 ∪  ∪ 𝐻𝑆𝑒𝑎)

 

 𝑣 ∈ ∗ Set of hydrogen storage and SMRCCS plants 
(∗ = 𝐻𝑦 ∪)

 

 Operational model parameters
 𝜇𝐸 CO2 emission limit (tonne)  
 𝜇𝐷𝑃∕𝐷𝐻∕𝐷𝐻𝑦 Scaling effect on power demand/heat 

demand/hydrogen demand
 

 𝐻𝑡 Number of hour(s) in one operational period 𝑡  
 𝜋𝑡 Weighted length of one operational period 𝑡  
 𝑅𝐺𝑅

𝑟𝑡 Capacity factor of renewable unit 𝑟 in period 𝑡
(𝑟 ∈ , 𝑡 ∈  )

 

 𝜂∗ Efficiency of electric boilers, fuel cells, thermal 
generators, electric storage and transmission 
lines ∗= {BE, SE, L, HrG} indexed by related sets

 

 𝐸𝐺
𝑔 CO2 emission factor of thermal generation 𝑔

(𝑔 ∈ ) [t/MWh]
 

 𝐶𝐺
𝑔 Total operational cost of generating 1 MW 

power from thermal generation 𝑔 (𝑔 ∈ ) 
[€/MW]

 

 𝐶𝑆ℎ𝑒𝑑,𝑙 Load shed penalty cost of power (𝑙 = 𝑃 ), heat 
(𝑙 = 𝐻) and hydrogen 𝑙 = 𝐻𝑦 [€/MW, €/kg]

 

 𝜎𝑅𝑒𝑠𝑧 Spinning reserve factor in region 𝑧 (𝑧 ∈ )  
 𝛼𝐺𝑔 Maximum ramp rate of generators (𝑔 ∈ ) 

[MW/MW]
 

 𝜌𝐸 Conversion factor of electrolyser to hydrogen 
[MWh/kg]

 

 𝑃𝐷𝑃∕𝐷𝐻
𝑧𝑡 Power demand/heat demand in location 𝑧

period 𝑡 (𝑧 ∈ , 𝑡 ∈  ) [MW]
 

 𝜌𝐹 Hydrogen consumption factor of fuel cell 
[kg/MW]

 

 𝑃𝐴𝑐𝑐𝐺
𝑔 Accumulated capacity of thermal generator 𝑔

(𝑔 ∈ ) [MW]
 

 𝑃𝐴𝑐𝑐𝐻𝑅𝑜𝑟
𝑔 Accumulated capacity of run of the river 

hydropower generation 𝑔 (𝑔 ∈ 𝐻𝑅𝑜𝑟) [MW]
 

 𝑃𝐴𝑐𝑐
𝑔 Accumulated capacity of technology 𝑝 (𝑝 ∈ ∗)

[MW]
 

 𝑄𝐴𝑐𝑐𝑆𝐸
𝑠 Accumulated storage capacity of electricity store 

𝑠 (𝑠 ∈ 𝐸) [MWh]
 

 𝑃𝐴𝑐𝑐𝐿
𝑙 Accumulated capacity of line 𝑙 (𝑙 ∈ ) [MW]  

 𝐶𝑅 Operational cost of producing 1 kg hydrogen 
from SMRCCS [€/kg]

 

 𝑃𝐻𝑆𝑒𝑎∕𝐻𝑅𝑜𝑟
𝑔𝑡 Production profile of seasonal hydropower/run 

of the river hydropower in location 𝑧 period 𝑡
(𝑧 ∈ , 𝑡 ∈  ) [MW]

 

 𝑉 𝐷𝐻𝑦
𝑧𝑡 Hydrogen demand in region 𝑧 period 𝑡

(𝑧 ∈ , 𝑡 ∈  ) [MW]
 

 𝐸𝑅 Emission factor of SMRCCS  
 𝑉 𝐴𝑐𝑐 Storage level, injection and withdrawal 

capacities of hydrogen storage and capacity of 
SMRCCS [kg]

 

 Operational model variables
 𝑝𝐺𝑔𝑡 Power generation of thermal generator 𝑔 in 

period 𝑡 (𝑔 ∈ , 𝑡 ∈  ) [MW]
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 𝑝𝑅𝑒𝑠𝐺𝑔𝑡 Power reserved of thermal generator 𝑔 for 
spinning reserve requirement in period 𝑡
(𝑔 ∈ , 𝑡 ∈  ) [MW]

 

 𝑝𝑆𝐸+
𝑠𝑡 ∕𝑝𝑆𝐸−

𝑠𝑡 Charge/discharge power of electricity store 𝑠 in 
period 𝑡 (𝑠 ∈ 𝐸 , 𝑡 ∈  ) [MW]

 

 𝑝𝑅𝑒𝑠𝑆𝐸𝑠𝑡 Power reserved in electricity store 𝑠 for spinning 
reserve requirement in period 𝑡 (𝑠 ∈ 𝐸 , 𝑡 ∈  ) 
[MW]

 

 𝑞𝑆𝐸𝑠𝑡 Energy level of electricity store 𝑠 at the start of 
period 𝑡 (𝑠 ∈ 𝐸 , 𝑡 ∈  ) [MWh]

 

 𝑝𝐺𝑆ℎ𝑒𝑑,𝑙
𝑧𝑡 Generation shed for power (𝑙 = 𝑃 ) and heat 

(𝑙 = 𝐻) in location 𝑧 in period 𝑡 (𝑧 ∈ , 𝑡 ∈  ) 
[MW]

 

 𝑝𝑆ℎ𝑒𝑑,𝑙𝑧𝑡 Load shed for power (𝑙 = 𝑃 ) and heat (𝑙 = 𝐻) in 
location 𝑧 in period 𝑡 (𝑧 ∈ , 𝑡 ∈  ) [MW]

 

 𝑣𝐺𝑆ℎ𝑒𝑑𝐻𝑦
𝑧𝑡 Hydrogen production shed in location 𝑧 in 

period 𝑡 (𝑧 ∈ , 𝑡 ∈  ) [kg]
 

 𝑣𝑆ℎ𝑒𝑑𝐻𝑦
𝑧𝑡 Hydrogen load shed in location 𝑧 in period 𝑡

(𝑧 ∈ , 𝑡 ∈  ) [kg]
 

 𝑝𝐿𝑙𝑡 Power flow in line 𝑙 in period 𝑡 (𝑙 ∈ , 𝑡 ∈  ) 
[MW]

 

 𝑝𝐵𝐸𝑏𝑡 Power consumption of electric boiler 𝑏 in period 
𝑡 (𝑏 ∈ 𝐸 , 𝑡 ∈  ) [MW]

 

 𝑝𝐹𝑓𝑡 Power generation of fuel cell 𝑓 in period 𝑡
(𝑓 ∈  , 𝑡 ∈  ) [MW]

 

 𝑝𝐸𝑒𝑡 Power consumption of electrolyser 𝑒 in period 𝑡
(𝑒 ∈  , 𝑡 ∈  ) [MW]

 

 𝑣𝑆𝐻𝑦+
𝑠𝑡 ∕𝑣𝑆𝐻𝑦−

𝑠𝑡 Injection/withdraw of hydrogen to (from) 
hydrogen storage 𝑠 In period 𝑡 (𝑠 ∈ 𝐻𝑦, 𝑡 ∈  ) 
[kg]

 

 𝑣𝑆𝐻𝑦
𝑠𝑡 Storage level of hydrogen storage 𝑠 in period 𝑡

(𝑠 ∈ 𝐻𝑦, 𝑡 ∈  ) [kg]
 

 𝑣𝑅𝑟𝑡 Hydrogen production of SMRCCS 𝑟 in period 𝑡
(𝑟 ∈ , 𝑡 ∈  ) [kg]

 

 𝑣𝐿𝐻𝑦
𝑙𝑡 Hydrogen flow in pipeline 𝑙 period 𝑡

(𝑙 ∈ 𝐻𝑦, 𝑡 ∈  )
 

 𝑣𝑣𝑡 Hydrogen injection, withdraw, storage level of 
hydrogen storage, and hydrogen production of 
SMRCCS in period 𝑡 (𝑣 ∈ 𝐻𝑦 ∪) [kg]
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