The University of Southampton
University of Southampton Institutional Repository

Spectral tensor train parameterization of deep learning layers

Spectral tensor train parameterization of deep learning layers
Spectral tensor train parameterization of deep learning layers
Obukhov, Anton
69c25caf-d3b0-426d-a15c-66eef826a6bf
Rakhuba, Maxim
aa976d66-9a72-4204-b326-c817fad406d1
Liniger, Alexander
1a12d9a8-26bf-4aa5-b940-92f27d78775b
Huang, Zhiwu
84f477cd-9097-44dd-a33e-ff71f253d36b
Georgoulis, Stamatios
2c0c1c7d-a1c4-4c74-860e-5051d803dd0e
Dai, Dengxin
8e362c1c-4ce0-44f8-a3f1-ca1b897a356b
Van Gool, Luc
ef628918-631d-4515-8e59-17fae59a8ba2
Obukhov, Anton
69c25caf-d3b0-426d-a15c-66eef826a6bf
Rakhuba, Maxim
aa976d66-9a72-4204-b326-c817fad406d1
Liniger, Alexander
1a12d9a8-26bf-4aa5-b940-92f27d78775b
Huang, Zhiwu
84f477cd-9097-44dd-a33e-ff71f253d36b
Georgoulis, Stamatios
2c0c1c7d-a1c4-4c74-860e-5051d803dd0e
Dai, Dengxin
8e362c1c-4ce0-44f8-a3f1-ca1b897a356b
Van Gool, Luc
ef628918-631d-4515-8e59-17fae59a8ba2

Obukhov, Anton, Rakhuba, Maxim, Liniger, Alexander, Huang, Zhiwu, Georgoulis, Stamatios, Dai, Dengxin and Van Gool, Luc (2021) Spectral tensor train parameterization of deep learning layers. In International Conference on Artificial Intelligence and Statistics. vol. 130, 11 pp .

Record type: Conference or Workshop Item (Paper)

This record has no associated files available for download.

More information

Published date: 13 August 2021
Venue - Dates: 24th International Conference on Artificial Intelligence and Statistics, , San Diego, United States, 2021-04-13 - 2021-04-15

Identifiers

Local EPrints ID: 501684
URI: http://eprints.soton.ac.uk/id/eprint/501684
PURE UUID: 7e590822-8e23-4e29-ad8f-c7fbcd7c42e9
ORCID for Zhiwu Huang: ORCID iD orcid.org/0000-0002-7385-079X

Catalogue record

Date deposited: 05 Jun 2025 16:58
Last modified: 06 Jun 2025 02:06

Export record

Contributors

Author: Anton Obukhov
Author: Maxim Rakhuba
Author: Alexander Liniger
Author: Zhiwu Huang ORCID iD
Author: Stamatios Georgoulis
Author: Dengxin Dai
Author: Luc Van Gool

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×