
P
os
te
d
on

24
A
p
r
20
25

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
74
55
27
2
4.
43
50
40
42
/v

1
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
ou

ld
n
o
t
b
..
.

A Real-time and Hardware Efficient Artefact-free Spike Sorting

Using Deep Spike Detection

Xiaoyu Jiang1, Tao Fang 1, and Majid Zamani1

1Affiliation not available

April 24, 2025

Abstract

Spike sorting is a valuable tool in understanding brain regions. It assigns detected spike waveforms to their origins, helping

to research the mechanism of the human brain and the development of implantable brain-machine interfaces (iBMIs). The

presence of noise and artefacts will adversely affect the efficacy of spike sorting. This paper proposes a framework for low-cost

and real-time implementation of deep spike detection, which consists of two one-dimensional (1-D) convolutional neural network

(CNN) model for channel selection and artefact removal. The framework utilizes simulation and hardware layers, and it applies

several low-power techniques to optimise the implementation cost of a 1-D CNN model. A compact CNN model with 210

bytes memory size is achieved using structured pruning, network projection and quantization in the simulation layer. The

hardware layer also accommodates various techniques including a customized multiply-accumulate (MAC) engine, novel fused

layers in the convolution pipeline and proposing flexible resource allocation for a power-efficient and low-delay design. The

optimized 1-D CNN significantly decreases both computational complexity and model size, with only a minimal reduction in

accuracy. Classification of 1-D CNN on the Cyclone V 5CSEMA5F31C6 FPGA evaluation platform is accomplished in just

16.8 microseconds at a frequency of 2.5 MHz. The FPGA prototype achieves an accuracy rate of 97.14% on a standard dataset

and operates with a power consumption of 2.67mW from a supply voltage of 1.1 volts. An accuracy of 95.05% is achieved with

a power of 5.6mW when deep spike detection is implemented using two optimized 1-D CNNs on an FPGA board.

1

First Author et al.: A Real-time and Hardware Efficient Artefact-free Spike Sorting Using Deep Spike Detection

Abstract: Spike sorting is a valuable tool in understanding
brain regions. It assigns detected spike waveforms to their
origins, helping to research the mechanism of the human
brain and the development of implantable brain-machine
interfaces (iBMIs). The presence of noise and artefacts will
adversely affect the efficacy of spike sorting. This paper
proposes a framework for low-cost and real-time
implementation of deep spike detection, which consists of
two one-dimensional (1-D) convolutional neural network
(CNN) model for channel selection and artefact removal.
The framework utilizes simulation and hardware layers, and
it applies several low-power techniques to optimise the
implementation cost of a 1-D CNN model. A compact CNN
model with 210 bytes memory size is achieved using
structured pruning, network projection and quantization in
the simulation layer. The hardware layer also
accommodates various techniques including a customized
multiply-accumulate (MAC) engine, novel fused layers in
the convolution pipeline and proposing flexible resource
allocation for a power-efficient and low-delay design. The
optimized 1-D CNN significantly decreases both
computational complexity and model size, with only a
minimal reduction in accuracy. Classification of 1-D CNN
on the Cyclone V 5CSEMA5F31C6 FPGA evaluation
platform is accomplished in just 16.8 microseconds at a
frequency of 2.5 MHz. The FPGA prototype achieves an
accuracy rate of 97.14% on a standard dataset and operates
with a power consumption of 2.67mW from a supply voltage
of 1.1 volts. An accuracy of 95.05% is achieved with a
power of 5.6mW when deep spike detection is implemented
using two optimized 1-D CNNs on an FPGA board.

Index Terms—Implantable brain-machine interface (iBMI),
unsupervised spike sorting, deep spike detection, artefact
removal, field programmable gate arrays (FPGA), deep
learning, reliable spike events monitoring.

I. INTRODUCTION

xtracellular recordings have been widely used to monitor
neuronal activity by implanting multi-electrodes in the

cortex and capturing multidimensional neural data. A
processing step, known as spike sorting shown in Fig.1(a), is
necessary to separate the multi-unit neural activities and assign
the captured spikes to their originating neurons [1-9]. Spike
sorting is an invaluable research tool applied in implantable
brain-machine interface (iBMI) research for studying and
decoding neural signals from different brain regions and
understanding the mechanisms of the brain. It is extremely

X. Jiang, and M. Zamani are with the School of Electronics and

Computer Science, University of Southampton, Southampton, SO17
1BJ UK, (e-mail: xj1u23@soton.ac.uk; m.zamani@soton.ac.uk;
km3@ecs.soton.ac.uk).

beneficial in design and development of various applications
such as identifying the optimal patterns and parameters to
condition diseases by artificially modulating irregular or faulty
electrical impulses [10], realizing a communication bridge for
control of assistive devices for patients with damaged
sensory/motor functions such as hand prosthesis [11], and
stimulating a particular pathway for biological functionality
regularization [12].
 The recent trend in brain sensing is about the utilization of
high-channel count neural interfaces that include tens of
thousands of sensing probes [13]-[14]. In such recording set-
ups, the extracellular recordings are typically severely
contaminated by artefacts and various noise sources, rendering
the separation of multi-unit neural recordings an immensely
challenging task. Therefore, removing artefacts and noise from
neural events is not only crucial but also directly enhances spike
sorting performance and classification accuracy.
 This motivates a new paradigm in spike events detection for
artefact-free sorting in high-channel count recording, called
deep spike detection shown in Fig.1(b). Deep spike detection
incorporates two convolutional neural networks (CNNs) into
the conventional spike processing framework to identify the
active neural channels and eliminate artefacts from those
selected channels. It identifies and extracts distinctive spike and
artefact characteristics from the input channels, enabling the
selective elimination of artefacts from extracellular recordings.
In 2019, Saif-ur-Rehman et al proposed SpikeDeeptector [15],
to detect and track channels containing neural data.
SpikeDeeptector employs a semi-automatic approach to
generate pseudo-labels, which involves visual inspections [15].
The training dataset was derived from a single subject

 T. F. was with Engineering and Applied Technology Research
Institute, Fudan University, 220 Handan Road, Shanghai, 200433,
China (e-mail: 19210860039@fudan.edu.cn).

A Real-time and Hardware Efficient Artfecat-
free Spike Sorting Using Deep Spike Detection

Xiaoyu Jiang, Student, IEEE, Tao Fang, Student, IEEE, and Majid Zamani, Member, IEEE

E

Fig. 1. Recording activities from neurons A, B and C using Neuropixels
electrode arrays. (a) Spike sorting process for determining single unit
activity using conventional methods. (b) Spike events monitoring using
deep spike detection which incorporates two 1-D convolutional neural
networks (CNNs), CNN1 and CNN2 for channel selection and artefact
removal respectively. This is known as artefact-free spike sorting.

First Author et al.: A Real-time and Hardware Efficient Artefact-free Spike Sorting Using Deep Spike Detection

comprising 1.56 million feature vectors that represent batches
of waveforms from one channel, each with dimensions of
48()×20 samples. In the first CNN, if at least one of the
waveforms represented a spike, the whole batch was classified
as neural activity. Authors reported an overall accuracy of
97.2% is achieved with SpikeDeeptector [15]. Notably, the
model could generalize across different brain regions, subjects,
species and electrode types. The second CNN is called
‘background activity rejector’ (BAR) that takes signals selected
by SpikeDeeptector and discards background activity by
classifying a given signal as spike or noise. BAR achieves an
accuracy of 92.3%. In 2023, Okreghe et al [16] also proposed a
solution for real-time improved channel selection and artefact
removal. The method in [16], also works with two CNNs, one
for the selection of channels and one for artefact removal.
Similar to [15], the proposed work in [16] trained with
1.61million labelled feature vectors to create a robust network.
The first CNN labels an input batch (48×20) as ‘neural’ if it
monitors at least one spike waveform. Like BAR [15], the
second CNN is provided with a single feature vector (48×1) and
discards non-neural events, and it achieves an overall accuracy
of 92.3%. The issue with the existing deep spike detectors [15]-
[16] is that they are implemented in software and can not be
utilized for real-world implantable brain processing. There is
therefore a need for hardware implementation of a deep spike
detector that uses extremely low power consumption to meet
the power-area requirements of implantable devices. Following
our previous work in [16], this paper proposes a low-cost
framework to implement deep spike detection shown in Fig.2.
The first layer of the proposed framework focuses on the
optimization techniques to reduce the number of parameters
and to diminish the memory space. A compact model with 210
bytes of memory size is achieved using structured pruning,
network projection and quantization in the simulation layer.
The efforts in the second layer of the proposed framework are
mainly made to design customized and real-time hardware for
the optimized 1-D CNN from the simulation layer. The
proposed optimization framework significantly reduces the
overall power consumption and classification latency of 1-D
CNN in hardware. An accuracy of 95.05% is achieved with a
power of 5.6mW when the deep spike detector is implemented
using two optimized 1-D CNNs on Cyclone V
5CSEMA5F31C6 FPGA. The rest of the paper is structured as
follows: Section II describes the simulation layer of the
proposed optimization framework. The customized hardware

techniques are presented in Section III, followed by an FPGA
and implementation results in Section IV. Finally, Section V
makes some concluding remarks.

II. PROPOSED OPTIMIZATION FRAMEWORK

In this section, adopted techniques for model optimization
are explained, together with the optimization procedures. Also,
the optimization results are demonstrated.
A. Simulation Layer
Fig.3 shows the procedures of model optimization in the
simulation layer. Structured and non-structured compression
techniques including pruning, network projection and
quantization are applied on the original 1-D CNN model.

Structured pruning refers to removing entire filters from the
network, thus changing the structure of the model. For
example, in the convolutional layers of a CNN model,
reducing the filter numbers from 4 to 2 will result in a
dimensionality reduction for subsequent feature maps from 4
channels to 2 channels. This approach can significantly affect
the model size and achieve acceleration with the help of
standard hardware [17]-[18]. Network projection [19] refers
to mapping the network from a higher dimension into a lower
dimension. In this process, the learnable parameters are
projected into the subspace while maintaining the highest
variance in neuron activations based on the principal
component analysis (PCA) on the neuron activations.
Network projection replaces a layer with a subnetwork of
smaller layers with fewer parameters. Suitable network
projection can reduce the number of learnable parameters and
retain a high prediction accuracy at the same time.

Quantization [20] also converts the parameters of CNN,
from high precision pseudo-continuous values to discrete
values of low precision. This technique reduces the bit-width
of each parameter and the overall size of the CNN model. A
common approach of quantization is to convert the parameters
from a floating point 32 bits to INT8 format or even fewer bits.
Due to the noise tolerance of CNN, the network after
quantization is able to maintain its performance compared to
the unquantized version.

The computation of floating point is time and resource
consuming because it needs the calculation of three parts
under this format: sign, exponent and mantissa. In comparison,
a fixed-point value such as INT8 computations can be easily
performed by full adders which is more efficient for

Untrained
Network

Dataset

Trained
CNN Model

Optimized
CNN Model

Deep Spike
Detector

(a) Simulation Layer

(b) Hardware Layer

Training Model
optimizaton

Hardware
optimization

Customized
hardware

Fig.2. Two-layer optimization framework. (a) Simulation layer. (b)
Hardware layer. The untrained model is fed to the input of the simulation
layer for initial optimizations. The optimized model is sent to the hardware
layer for customized hardware design.

O
rig

in
al

 C
N

N

m
od

el Structured
pruning

Network
projection

Non-Structured
Compression

Structured
Compression

Parameters:
1. Max Pruning Iteration Turns
2. Target Learnable Reduction Rate

Parameter:
Quantization Bit-width

S
im

p
lif

ie
d

C
N

N

m
od

el

Quantization

Fig.3. Simulation layer optimization procedures. Structured
compression techniques including pruning and network projection
simplify the original model. Non-structured compression further
optimizes the 1-D CNN by minimizing the bit-width of the parameters.

First Author et al.: A Real-time and Hardware Efficient Artefact-free Spike Sorting Using Deep Spike Detection

embedded or customized hardware.
In each optimization technique, there is a parameter that

needs to be modified, which results in different optimization
outcomes. In the simulation layer, the parameters are max
pruning iteration turns, target learnable reduction rate and
quantization bit-width which corresponds to the structured
pruning, network projection and quantization as shown in Fig.
3. Aggressive parameter optimization can result in a more
compressed model, however this will result in a greater
possibility of accuracy loss. For example, the max pruning
iteration controls the number of removed convolutional filters.
If too many filters are removed, the accuracy of the CNN
model will drop dramatically. To avoid this situation, the
accuracy of CNN models is examined after each optimization
run.
B. Optimization Procedures in Simulation Layer

The first step of model optimization is to construct a CNN,
this is regarded as the original or unoptimized model. The test
dataset (see Section IV. B) is split into three parts for training,
validation and test datasets with the ratio of 0.7, 0.15, 0.15.
The proposed deep spike detection algorithm in this paper
works with two 1-D CNNs, one for the selection of channels
and one for artefact removal similar to [13]-[14]. Therefore, a
similar CNN (66×1) is plugged into the two stages to perform
deep spike streaming over time, where 66 is the sample
waveform segment for a time duration of 2.5 ms. In the channel
selection stage, a down-sampling factor of 10 is considered to
reduce the number of samples for in-channel activity analysis.
This helps to monitor a larger segment of data with a much
smaller number of samples and is also aligned with the sparse
behaviour of neural activities in the recorded data. Considering
the down-sampling factor, the first CNN accepts a batch of
(66×1) while it monitors spiking activities in a data segment
with 660 samples.

A 1-D CNN model is therefore constructed for the
optimization procedures. The input layer is a 1-D Array with
a length of 66 that shows the number of samples per data
segment, and can be used in channel selection and artefact
removal stages shown in Fig. 1(b).
 50 convolution kernels are utilized in each convolution layer.
In the first convolutional layer (referred to as Conv1 Layer),
the kernel size is 1×3 for a single input channel. In the next
two convolutional layers (Conv2 and Conv3 Layers), the
spatial size of the kernel remains 1×3, but the number of
channels increases to 50. ReLU layers are placed after each
convolutional layer and fully connected layer as activation
functions to improve the learning ability of the model by
increasing its non-linearity. Maxpooling layers are also
utilized to reduce the amount of calculation, but maintain the
important features and information. Fully connected (FC) layer
is the final layer in the 1-D CNN consisting of 750 neurons.
 Mini-batch gradient descent with momentum (Mini-batch
SGDM) is used to solve the optimization problem. With a
learning rate that starts at 0.01 and is adjusted piecewise,
increasing by 10 for every 5 training epochs. The maximum
number of epochs and the batch size are set to 200 and 256
respectively. Using L2 regularization, grid search was
conducted from 0 to 5 with a step size of 0.2, the optimal value
was 1.8. By tracking the validation error, an early stopping
criterion was used to avoid overfitting on the test data at each

epoch. The training is stopped after six consecutive epochs if
the error rises or stays the same. Lastly, drop-out regularization
was applied. After training, a CNN model with 99.43%
classification accuracy, 17553 learnable parameters and
68Kbytes of memory is generated. This CNN model is used
as the original or unoptimized model for the optimization
procedures.
 The optimization procedures will begin with the structured
compression including pruning and network projection as
shown in Fig. 3. A validated and examined model after
structured pruning is then sent to the non-structured
compression which applies the quantization for further
implementation cost reduction. Two evaluation metrics are
used to validate the optimization steps. The first evaluation
metric is the classification accuracy on the testing dataset (see
Section IV.B). The second metric is the number of learnable
parameters of the optimized model. A model with the least
learnable number and maintaining an accuracy very close to
100% is the most ideal one. The following steps are carried
out to find the final optimized model.

Step 1) Various compressed models are investigated in
the structured compression stage, by running pruning and
network projection. The models with classification

C
la

ss
ifi

ca
tio

n
 a

cc
u

ra
cy

Qualified
models

Low accuracy
models

Fig.4. Classification accuracy of the compressed models in Step 1.

Le
a

rn
ab

le
 p

ar
am

et
er

s

Model with
251 learnable
parameters

Fig.5. Number of learnable parameters in compressed models from Step
1. The green arrow shows a model with 251 parameters.

First Author et al.: A Real-time and Hardware Efficient Artefact-free Spike Sorting Using Deep Spike Detection

accuracy above 99% with the least number of learnable
parameters are retained.
Step 2) Perform different quantization bit-width on the
model found in Step1. If the model fails to maintain
stability following quantization, consider utilizing a
version of the model with a marginally increased number
of parameters in Step 1, continuing this process until
stability is achieved with at least one quantization bit-
width.
Step 3) Select the model with the least quantization bit-
width while maintaining high accuracy.

 It is important to note that the maximum number of pruning
iterations is set to 30, the target reduction of the learnable rate
is specified within the range of 0 to 0.9, and the quantization
bit-width is taken into account within the limits of 8 to 2.

Fig.4 and Fig.5 show the outcome of optimization
procedures outlined in Step 1. After discarding all the
unqualified models shown with a red circle in Fig.4, Fig.5
shows the number of learnable parameters in the qualified
models. A model with the 251 learnable parameters is sent to
the quantization step. The selected model with 251 learnables
from Step1 shows poor stability during the quantization step,
shown in Fig.6. The accuracy of this model will drop to 93.90%
when quantized to 8-bits. The accuracy of the optimized CNN
demonstrates instability and will drop more if quantized to
fewer bits, therefore this model is quite vulnerable to
quantization. Another model with 419 learnable parameters

and 99.62% accuracy is selected for Step2. The same
quantization process is performed on this model. As shown in
Fig.7, this model maintains a high classification accuracy of
99.43% when quantized to 8-bits. This model still maintains
its performance even when quantized to 4-bits. Its accuracy
will drop to 96% when quantized by 3-bits.

In comparison, the former model has the least learnable
parameters but is unable to resist any quantization, the latter
model has slightly more parameters but maintains its
performance after 4 and 3-bits quantization. The latter is a
more suitable model for deployment for the hardware layer.
As a result, a 4-bit quantization for the model with 419
learnables is an ideal option, where the quantized model can
shrink the memory requirement to a great extent and maintain
good classification performance at the same time.

The compact CNN model after structured and non-
structured compressions is generated by max pruning
iterations of 30, target learnable reduction rate of 0.6 and the
quantization bit-width set to 4-bits. This CNN has 419 total
learnable parameters, with a classification accuracy of 99.81%.
Table I demonstrates the main layers of the non-optimized and
the optimized CNNs. The weights (W), bias (B) and
activations (A) are shown in the form of SSCB (spatial, spatial,
channel, batch).

From Table I, it can be seen that the channel number
decreased from 50 to 10. This is due to the fact that the
structured pruning removed plenty of filters from the original
model. Also, due to the use of network projection, the
convolution layers and fully connected layers are all replaced
by smaller sublayers. For example, the original Conv2 layer
in the non-optimized model is replaced by three sublayers.

Utilization of structured pruning and network projection

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

Quantization bit-width
Fig.6. Classification accuracy of the model with 251 learnable
parameters versus quantization bit-width.

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

Quantization bit-width
Fig.7. Classification accuracy of the model with 419 learnable
parameters versus quantization bit-width.

TABLE I
Comparison between the original and the optimized 1-D CNNs.

Layers Original CNN Optimized CNN Sub-Layers

Conv1
Layer

W: 1×3×1×50
B : 1×1×50

A: 1×66×50×1

W: 1×3×1×1
B : 1×1×1

A : 1×66×1×1

Conv1:
Conv Layer

W: 1×1×1×10
B : 1×1×10

A : 1×66×1×1

Conv1:
Projection Out

Layer

Conv2
Layer

W: 1×3×50×50
B : 1×1×50

A: 1×64×50×1

W: 1×1×10×1
B : 1×1×1

A : 1×66×1×1

Conv2:
Projection In

Layer
W: 1×3×1×1

B : 1×1×1
A : 1×64×1×1

Conv2:
Conv Layer

W: 1×1×1×10
B : 1×1×10

A : 1×64×10×1

Conv2:
Projection Out

Layer

Conv3
Layer

W: 1×3×50×50
B : 1×1×50

A: 1×30×50×1

W: 1×1×10×1
B : 1×1×1

A : 1×32×1×1

Conv3:
Projection In

Layer
W: 1×3×1×2

B : 1×1×2
A : 1×30×2×1

Conv3:
Conv Layer

W: 1×1×2×10
B : 1×1×10

A : 1×30×10×1

Conv3:
Projection Out

Layer

FC
Layer

W: 3×750
B : 3×1
A: 3×1

W: 2×150
B : 2×1×
A : 2×1

FC: Projection
In Layer

W: 3×2
B : 3×1×
A : 3×1

FC: Projection
Out Layer

First Author et al.: A Real-time and Hardware Efficient Artefact-free Spike Sorting Using Deep Spike Detection

resulted in a great compression in a 1-D CNN model size, the
learnable number decreased from 17553 to 419 (i.e., 41X
compression rate). Also, considering the 4-bits quantization
performed on the model, each parameter only occupies 4 bits
instead of 32 bits. This resulted in a memory decrease from
70212 bytes to 210 bytes (i.e., 334X memory compression).
However, the use of network projection results in an increase
in layer numbers from 12 to 18, where each layer is expanded
into several smaller sub-layers detailed in Table I.

III. HARDWARE LAYER OPTIMIZATION

After applying the optimization techniques in the simulation
layer, a customized hardware is designed to execute the 1-D
CNN model. This section will demonstrate the main techniques
used in the hardware design.
A. The 1-D CNN Model Architecture
 The hardware design adopted the idea of pipelining consists
of several hardware blocks connected in series to perform
classification, and the model diagram of the proposed network
model is shown in Fig. 8. The number of input channels in this
model is set to 66 for channel selection and the artefact removal
stage. The equivalent model of the fused processing blocks (see
Section III. C) are shown in more details on the right column.
 The design in Fig. 8 doesn’t have a global control unit,
therefore handshaking protocols and signals are used to control
the pipeline running between the blocks. The data processing
thereafter is driven only by local handshaking events without a
global synchronous clock, eliminating any timing uncertainty

such as skew and jitter associated with clock distribution. The
handshaking protocol between the modules is reliably governed
by four signals including ready, ready_in, fetch and fetched.
The ready and fetched signals are used for communications
with the upcoming block, and the ready_in and fetch signals
control the current block as shown in Fig. 8. Consequently, each
self-timed block functions at its own pace consistently,
delivering optimal performance that adjusts dynamically to
varying operating conditions. This also aids in effectively
reducing the operational cost of the proposed pipeline [21].
 Accessing external memory is an energy-consuming
activity requiring more operations and extra interactions,
conversely, accessing local memory is quicker and more
efficient [22]. To avoid unnecessary data movement
operations, the overall memory of the complete 1-D CNN
model is separated into several parts and distributed across
each hardware block. Therefore, each hardware block has its
own memory to store parameters belonging to its responsible
layers. This can be seen as distributed local memory for one
convolution layer to store the weights and bias data for
convolution operations.

B. Convolution Engine

 The designed and utilized convolution block in the 1-D
CNN is shown in Fig. 9. There are three main components in
this block including the convolution engine, shifting array and
array to store convolution results. Each convolution layer has
its own block for accelerated classification.

The convolution engine involves three multiply-accumulate
(MAC) units connected in series due to the convolution kernel
size as shown in Fig. 9. The convolution kernel slides through
the entire array based on the stride size, each time a matrix
multiplication is performed between the convolution kernel
and the shifting array.

Each MAC consists of a multiplier and an adder [18]. The
convolution process begins with selecting three elements from
the shifting array, and convolution is performed with the
kernel’s coefficients. When a convolution calculation is
performed, the result is written into a result array, with its
address (or index) incremented by one for the next
convolution operation. Also, the shifting array will shift by
one time to simulate the sliding window of filters. For a
shifting array with a length of n, (n-2) times of shifting are
needed to complete the entire convolution process.

C. Fused Layers and Processing

For the optimized CNN model from the simulation layer,
there are plenty of matrix projection operations in the pipeline
shown in Fig. 8. Inspired by [23], the projection of a larger

Stage1

Input LayerSignal Memory

Conv1: Convolution LayerConvolution Block 1

Stage2

Stage3

Fused Processing
Block 1

ReLU 1 Layer

Stage4

Fused Processing
Block 2

Stage5

Stage6

FC: Projection In Layer

Maxpooling 2 Layer

ReLU 3 Layer
Fused Processing

Block 3

Stage7

Classifier

SoftMax Layer

ReLU 4 Layer

Conv3: Projection In Layer

Conv2: Projection In Layer

Conv1: Projection Out Layer

Conv2: Projection Out Layer

ReLU 2 Layer

Maxpooling 1 Layer

FC: Projection Out Layer

Conv3: Projection Out Layer

Convolution Block 2

Convolution Block 3

Conv2: Convolution Layer

Conv3: Convolution Layer

ready-in fetch

ready fetched

Fig.8. Architecture of the proposed 1-D CNN using hand-shaking
protocol.

Shifting Array

Convolution
Engine

Convolution Result

Weights
Bias

MAC

MAC

MAC

Bias

Weight[2]

Weight[1]

Weight[0]

Value[2]

Value[1]

Value[0]

Result

Shifting

Convolution Block

Address++

Fig.9. Architecture of convolution block. Three MAC units are used in
the convolution engine to perform shift-and-convolution per array.

First Author et al.: A Real-time and Hardware Efficient Artefact-free Spike Sorting Using Deep Spike Detection

matrix into a smaller matrix occurs prior to the convolution
operation. Following the convolution, the smaller matrix is
transformed back into a larger matrix and subsequently passes
through the succeeding layers, including ReLU and
Maxpooling, until the commencement of the next convolution.
A High-bandwidth data transfer (66×10) is observed between
the output of one projection out layer and the next projection
in layer in Fig. 10 (a). A fused processing block is designed in
the CNN pipeline to merge several layers together, changing
the data flow and computation pattern to avoid the high-
bandwidth data transfer as shown in Fig. 10 (b).
 Taking the fused processing block in Fig. 10 as an example,
this block needs to manage the tasks of projection out, ReLU
and projection in layers. The process begins with the projection
out layer in Fig. 11 which is expressed as 𝑐 = 𝑤் ∙ 𝑎 + 𝑏் ,
where 𝑤, a and 𝑏 are the weights, input array and bias in the
projection out layer. 𝑇 also refers to the matrix transpose. It
should be noted that the matrix 𝑐 has m rows and n columns as
𝑐௜௝ = 𝑤௜𝑎௝ + 𝑏௜ (1 ≪ 𝑖 ≪ 𝑚, 1 ≪ 𝑗 ≪ 𝑛). The matrix 𝑑 after
ReLU is presented as 𝑑 = 𝑀𝑎𝑥(0, 𝑐) with m rows and n
columns, the detailed version is written as 𝑑௜௝ =

 𝑀𝑎𝑥(0, 𝑤௜𝑎௝ + 𝑏௜) (1 ≪ 𝑖 ≪ 𝑚, 1 ≪ 𝑗 ≪ 𝑛). The final layer
in Fig. 10 (a) and Fig.11 is projection in layer that projects the
matrix 𝑑 onto 𝑒 = 𝑤ᇱ் ∙ 𝑑 + 𝑏ᇱ . Matrix 𝑒 has 1 row and n
columns with each element defined as 𝑒௝ = 𝑏ᇱ + ∑ 𝑤௜

ᇱ ∙௠
௜ୀଵ

𝑀𝑎𝑥(0, 𝑤௜𝑎௝ + 𝑏௜) (1 ≪ 𝑗 ≪ 𝑛) , where 𝑤ᇱ and 𝑏ᇱ are the
weights and the biases of the projection in layer.
 Throughout the fusion process, each element in the output
array 𝑒 is determined by only one element from the input array
𝑎. That is a one-to-one mapping from the input array to the
output array based on the known weights and biases.

Fig.11 demonstrates the details of a one-to-one mapper and
the structure of a fused processing block. The weights (𝑤) and
bias (𝑏) during projection are all stored in three shifting arrays
and are shifted by once in a clock cycle. 𝑚1 , 𝑚2 and 𝑝𝑠
represent the multiplier, multiplicand and partial sum ports of
a MAC unit. The mapping operation is performed in m clock
cycles, where m represents the number of rows in the matrix
which is 10 in this work. The introduction of this component
helps fuse several layers together and avoids the high
bandwidth data transfer between blocks.
 Because the mapping operation only depends on the
internal parameters and the input array, several mappers can
work independently at the same time increasing the
parallelism of computation. It is important to note that certain
fused processing blocks incorporate Maxpooling layers,
resulting in a shift from a one-to-one mapping to a two-to-one
mapping. Nevertheless, the overall architecture remains
unchanged, with the addition of a 2-input comparator.

D. Roof-line Model and Resource Allocation

Considering the roof-line model [24], a resource allocation
strategy is adopted to introduce a balance between workload
and computational power. The golden point in the roof-line
model is satisfied when a block is able to use allocated
computing power and continuously work on data processing
without an interval (i.e., to avoid bucket effect in the pipeline).
To achieve this objective, resource allocation must vary across
different blocks due to the differing quantities of tasks assigned
to each.
 First, a block with a relatively low workload is identified.
Then the processing time of the block for an input batch is
calculated as a reference. Finally, the amount of workload in
the block is adjusted to meet the time specification of the
design. Conv3 is set as a benchmark, requiring approximately
30 clock cycles to finalize the data processing. The resources
assigned to the other blocks are adjusted based on this reference
to ensure a balanced time delay. For example, 3 MAC units are
used in Conv2 to perform the convolution, however it will take
64 clock cycles to complete the process which means a delay in
the pipeline. By adding another convolution engine (3 MAC
units) in Conv2, this block splits the original array into two
arrays (each 34 long because padding is needed for
convolution) and performs two convolution processes in

Conv1: Projection Out Layer

ReLU 1 Layer

Conv1: Projection In Layer

Conv2: Conv Layer

66×1 Array

66×10 Array

66×10 Array

66×1 Array

Conv1: Conv Layer

Conv2: Conv Layer

66×1 Array

66×1 Array

High-Bandwidth
Transfer

Low-Bandwidth
Transfer

Modify Computation
Pattern

Conv1: Conv Layer

Fused Processing Block 1

(a) (b)

Fig.10. (a) High-bandwidth data transfer. (b) Modifying computation
pattern using fused processing block. This avoids loading the entire
feature map before computing, equal to low-rank matrix computations.

ReLu

m1 m2
ps

m1 m2
ps

aj

ej

. . .

One-to-one MapperFused Processing Block

Input Array

Mapper Mapper Mapper

Output Array

P
ro

jectio
n O

u
t B

ia
s

P
ro

jectio
n O

u
t W

eigh
ts

P
rojectio

n
 In

 W
eigh

ts

Accumulation

Register

MAC MAC

Fig.11. Architecture of the fused processing block. The fusion is
performed using mappers detailed in the yellow box.

Shifting Array 1 (34×1)

Convolution
Engine 1

Convolution Result 1 (32×1)

Shifting

Modified convolution block

Shifting Array 2 (34×1)

Convolution
Engine 2

Convolution Result 2 (32×1)

Weights
Bias

Shifting

Array To be convolved (66×1)

Split

Final Result Array (64×1)

Combine

Fig.12. Performing two convolutions in parallel to adjust the delay in
the convolution engine. Example of an array (66×1) splitting into two
arrays (33×1) for parallel convolution is annotated in the figure.

First Author et al.: A Real-time and Hardware Efficient Artefact-free Spike Sorting Using Deep Spike Detection

parallel as shown in Fig. 12. The convolution results are then
combined to obtain the final array. This will reduce the Conv2
delay to 30 clock cycles, which simply means no lag in the
processing pipeline shown in Fig. 8. By changing resource
allocation in the convolution clocks, the delay is uniformly set
to 30 clock cycles. MAC resource allocation for Conv1-3 and
Fused Processing Blocks 1-3 are {6, 6, 6} and {44, 33, 30}
respectively.

IV. FPGA AND IMPLEMENTATION RESULTS

A. Resources and Power Consumption

Table II summarizes the utilized resources in the optimized
1-D CNN. As observed, fused processing blocks occupy more
resources than convolution blocks. The DSP resources are
mainly allocated to fused processing blocks because they
perform highly parallel projection tasks. Signal memory block
consumes plenty of adaptive logic modules (ALMs) and
combinational adaptive look-up tables (ALUTs) for data
storage.

The power consumption statistics come from the power
analyzer tool in QuartusII, where a clock with 2.5MHz
frequency is applied to simulate its power consumption. From
the tool, an overall power consumption of 2.67mW is
estimated from a 1.1 V supply voltage.

Table III demonstrates the hierarchy of power consumption
in this hardware design. Compared to convolution blocks,
fused processing blocks consume almost 3X higher power
consumption. The power consumption by fused processing
block 1, 2 and 3 are 0.79mW, 0.69mW and 0.55mW
respectively. Besides, the power consumption of the
convolution blocks 1, 2 and 3 are 0.24mW, 0.16mW, 0.18mW
respectively. This trend is consistent with the utilized
resources, such as registers and DSPs in each block.

Table IV summarizes the the power consumption of the
processing pipeline by hardware resources. The DSP block is
the most power-consuming, while combinational cells and I/O
consume the least amount of power. In the following sections,
various testing methodologies are used to evaluate the chip
performance under different conditions including confirmation

of its successful adaptation providing high clustering accuracy.

B. Dataset Information

 To evaluate the performance of the proposed deep spike
detector, the Wave_Clus spike bank was used [25]. The
database in [25] comprises various average spike waveforms
obtained from the neocortex and basal ganglia of humans. To
replicate the background noise activity, attenuated spike
waveforms selected at random from the data library were
incorporated into the generated datasets. There are four datasets
in the collected database, each has three spike mean waveforms
and provides corresponding spike times and their labels.
Besides, the four datasets are categorized according to the
different degrees of difficulty (e.g., similarity of spike shape)
and the noise levels. The datasets are labeled as C_Easy1_noise,
C_Easy2_noise, C_Difficult1_noise, and C_Difficult2_noise,
with noise levels represented by standard deviations (𝜎N) of
0.05, 0.1, 0.15, and 0.2. The terms "Easy" and "Difficult" refer
to the similarity index between spike shapes in each dataset.
Easy1 has also additional noise levels of 0.25, 0.3, 0.35 and 0.4
for further spike sorting performance analysis. Neurons located
at a considerable distance from the electrode tips are labeled
artefacts, as they reflect spurious neural events that typically
show incomplete transitions in polarization or depolarization
phases.

C. Classification Performance of the Optimized 1-D CNN

Due to the quantization processing, the data is stored and
calculated in the form of fixed-point values. As a result,
original samples are converted from FL32 to 10-bit fixed-
point values. This format covers the spike variations and
ensures that the signals preserve the shapes over time.

The classification performance is evaluated by ModelSim
simulation and also deploying the processing pipeline on
Cyclone V 5CSEMA5F31C6 FPGA. For example, amongst
the 524 batches of testing spike signals, 509 of them are
classified correctly by both methods. This results in a
hardware classification accuracy of 97.14%.

TABLE II
Resources used in FPGA.

Block Name ALMs ALUTs
Dedicated

Logic Registers
DSP

Blocks
Signal Memory 3931 2258 14 0

Convolution
Block 1

294 173 1196 3

Convolution
Block 2

472 163 1279 2

Convolution
Block 3

275 129 836 2

Fused Processing
Block 1

861 811 1680 10

Fused Processing
Block 2

771 796 943 8

Fused Processing
Block 3

912 844 482 5

Classifier 58 108 63 2
Scoreboard 35 49 28 0

 Used Resources 7609 5331 6521 32
Used Resources* 3643 3024 6479 32

* Without memory and score board.

TABLE III
Power consumption by hierarchy.

Block Name Power Consumption
Signal Memory 0.04mW

Convolution Block 1 0.24mW
Convolution Block 2 0.16mW
Convolution Block 3 0.18mW

Fused Processing Block 1 0.79mW
Fused Processing Block 2 0.69mW
Fused Processing Block 3 0.55mW

Classifier 0.02mW
Scoreboard 0.00mW

Total Hardware Design
2.67mW (0.57mW at its

own hierarchy)

TABLE IV

Power consumption by hardware resources.
Hardware Resources Type Power Consumption

DSP Block 1.40mW
Combinational cell 0.27mW
Clock enable block 0.32mW

Register cell 0.53mW
I/O 0.15mW

Total Hardware Design 2.67mW

First Author et al.: A Real-time and Hardware Efficient Artefact-free Spike Sorting Using Deep Spike Detection

This is very close to the derived 99.81% accuracy in
MATLAB. One possible explanation for the slight accuracy
decrease is the accumulated precision loss. In the MATLAB
model, data is still computed in floating-point format, where
even a tiny value can be represented. When performing fixed-
point number operations in hardware, any value that falls below
the current format's precision will be disregarded. While this
loss of value may be insignificant when only a few operations
are conducted, it can accumulate over time, leading to an
increasingly detrimental impact on the overall process as
computations progress.

The Classification delay is 42 clock cycles, which is 16.8μs,
considering a 2.5MHz clock frequency. The main reason is
that each hardware block has to spend several clock cycles on
handshaking and state transfer. Also, some blocks have
complex control logic for internal resource reuse. These
blocks will spend more time on the internal states for register
operations, which introduces more cycle lags.

D. Deep Spike Detection Performance Analysis

 FPGA implementation of deep spike detection was tested
using Cyclone V 5CSEMA5F31C6 with a MATLAB/Simulink
interface to a PC [30]. It embeds two optimized 1-D CNNs into
the conventional spike processing pipeline for the selection of
the active neural channels and the removal of artefacts from the
selected channels, each has an input layer that accepts a 1-D
array with a length of 66 samples (duration of 2.5 ms). To
extract the most abstract features, the detected spike events are
transferred to the PC. Spike waveforms are then transformed to
fewer dimensions using principal component analysis (PCA)

[31] and fed into the K-means algorithm to identify the classes.
Classification accuracy (CAcc) is evaluated by (TPCC/
NTS) ×100%, where TPCC is the number of truly detected and
correctly classified spikes and NTS is the number of truly
detected spikes. NTS = DTS − (FPS + MS), where DTS is the
number of detected spikes, FPS is the number of false alarm
spikes due to noise or overlapping spikes, and MS is the number
of missed spikes. Table V shows the classification accuracy in
comparison with Wave_clus [26] and SpikeDeep-classifier
[15]. The proposed deep spike detection method on FPGA
demonstrated an accuracy greater than 95%, which shows
6.86% and 4.45% improvement over Wave_clus [26] and
SpikeDeep-classifier [15] respectively. Both Wave_clus [26]
and SpikeDeep-classifier [15] are developed in software,
whereas the proposed deep spike detector is implemented on an
FPGA. For visualization purposes, Fig.13 shows the artefact-
free classification using label prediction and the PCA-based
projection of waveforms onto two-dimensional (2-D) feature
space. In all shown cases in Fig.13 (a)-(c), spike events and
artefacts are sufficiently separated (i.e., the projection borders
are clear).
Simulation suggests a power dissipation of 5.6mW when
running at 10-bit resolution and 2.5 MHz operating frequency
in the streaming phase.
Downscaling factor (DF) [32] is a mapping process to estimate
the dynamic power characteristics of the spike processor in
different technologies. The key player in the downscaling
process is the supply voltage (Vsup) of different technologies,
therefore DF can be expressed as 𝐷𝐹஻௔௦௘/ௌ௖௔௟௜௡௚ =

#1

#2
#3

PC1

P
C

2

2-D projection

A

Mean waveforms

0.5 ms

A
m

pl
itu

de

1
2

3A

50 mv

Mean waveforms

0.5 ms

A
m

pl
itu

de

1 2

3A

50 mv

Mean waveforms

0.5 msA
m

pl
itu

de

12
3

A

50 mv

(a)

(b)

(c)
#1

#2 #3

PC1

P
C

2

2-D projection

A

#1 #2

#3

PC1

P
C

2

2-D projection

A

Cluster Mean

Cluster Mean

Cluster
Mean

Fig.13. Three different examples of artefact removal are shown in (a)-(c).
Color-coded spike mean waveforms corresponding to different neurons.
#1 blue, #2 red, #3 black and A in green to represent artefact. 2-D
projection of #1, #2, #3 and A. The first two principal components, PC1
and PC2, are used for 2-D projection of spike clusters. The border between
the neural events and the artefact fully separated.

TABLE V
Comparison of classification accuracy (CAcc) of the proposed deep spike
detection on FPGA versus Wave_clus [26] and SpikeDeep-classifier [15]

on simulated dataset.

Dataset

𝜎N

Spikes

aWave_Clus
bSpikeDeep-

classifier

cProposed
(FPGA)

Easy
1

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

3514
3522
3477
3474
3298
3475
3534
3386

98.82
98.81
98.72
98.55
97.32
89.50
82.12
82.60

99.07
99.32
99.10
98.85
97.13
96.75
93.34
94.72

99.43
99.77
99.43
99.44
98.11
97.18
95.83
95.37

Easy

2

0.05
0.10
0.15
0.20

3410
3520
3411
3526

96.88
91.62
91.30
84.52

96.84
91.30
92.24
83.32

98.16
94.59
93.45
90.33

Difficult

1

0.05
0.10
0.15
0.20

3383
3448
3472
3414

89.10
93.44
66.95
75.19

96.79
93.24
70.64
67.70

97.32
95.54
87.14
85.37

Difficult

2

0.05
0.10
0.15
0.20

3364
3462
3440
3493

93.52
94.05
83.16
56.17

95.57
83.65
81.86
77.85

98.26
96.48
93.76
86.13

Average
CAcc

88.15

90.46

95.05

a) Waveclus [26] uses four-level Haar wavelet, Kolmogorov-Smirnov (KS
[27]) and superparamagnetic clustering (SPC).
b) SpikeDeep-classifier [15] is based on two CNNs, one for channel
selection and the other one for artefact removal.
c) The proposed model has great generalization capability in channel
selection. It classified only two out of five hundred and seventy-six channels
from recorded data using Utah arrays and micro-wires in [28]-[29].

First Author et al.: A Real-time and Hardware Efficient Artefact-free Spike Sorting Using Deep Spike Detection

(𝑉ௌ௎௉)஻௔௦௘
ଶ

(𝑉ௌ௎௉)ௌ௖௔௟௜௡௚
ଶ ൘ . For evaluation of the spike

processor in this work from base technology (1.1 V supply used
in FPGA board to scaling technology (65 nm, 0.27 V), both
operating at the same frequency, DF| Base/Scaling is calculated at
17. This scaling predicts the deep spike detector power
consumption to 329µW in 65nm. This shows compatibility of
the proposed design with the implantable brain processing and
closed-loop applications. The proposed design is set to be
implemented and validated in future work using 65nm
technology.

E. Comparison with the Published Works

 Table VI presents the features and performance outcomes of
the proposed deep spike detection spike sorting, in comparison
to previously published research conducted on FPGAs.
Valencia et. al. [33]-[34] presented template matching and
OSort-based clustering modules. Deep spike detector uses more
registers and DSP compared to [34], however it provides higher
5% higher sorting accuracy at 2.5 MHz. Note that the deep
spike detector offers artefact-free spike sorting, as artefacts will
adversely affect the spike sorting accuracy. Calculated sorting
accuracy in [33]-[39] assigns equal weights to the artefacts and
authentic spike waveforms which results in substantial error in
calculating sorting performance. The design outlined in [35]
introduces a spike sorting system that employs a probabilistic
neural network (PNN). It incorporates a tailored floating-point
numerical format comprising 1 sign bit, 8 exponent bits, and 7
fraction bits. The deep spike detector demands comparable
resources to [35], while also delivering superior sorting
performance. The work in [36] presents a real-time spike
sorting system that uses Hebbian learning to implement PCA
for projecting input spikes to features of interest. They present
results for 16-bit word length, as well as modelling their designs
using MATLAB’s fixed-point toolbox. Their target device is an
Xilinx Spartan-6 FPGA, and their resource utilization was
reported based on the reconfigurable slices. It is shown that the
deep spike detector implementation uses higher registers and
lower LUTs. Note that the design in [36] only reports the
implementation results of the Hebbian Eigenfilter hardware.
The reported spike sorting accuracy in [36] is 95% and 87%
when sorting spikes from three and four neurons, respectively.
The design presented in [37] has implemented the Bayes
optimal template matching (BOTM) algorithm for spike sorting
on a Virtex-6 FPGA. While the maximum operating frequency
has not been reported, the sorting latency was stated as 53

sampling cycles at a 20 kHz sampling rate. The BOTM also
uses large number of registers and LUTs. The design in [38] is
intended for high-speed data processing of neural recordings on
a workstation (offline), and the FPGA communicates with the
workstation via a PowerPC processor on the interface board.
The latency of 11 ms in Table. VI is assumed with 24 kHz
sampling rate. This is the worst-case sorting latency, and
correlates to 266 clock cycles. Proposed deep spike detector
achieves a significant reduction in real-time sorting latency
(16.8μs) and 95.05% sorting accuracy.

V. CONCLUSION

 This paper proposed a two-layer framework for efficient and
real-time hardware implementation of an artefact-free spike
sorting. Simulation layer applies structured and non-structured
compression techniques including pruning, network
projection and quantization to optimize the overall
implementation cost of the 1-D CNN. Having applied the
simulation layer, a compact model with 99.81% classification
accuracy, 41X lower number of parameters and 334X lower
memory usage was achieved. Following the simulation layer,
hardware techniques including a customized MAC engine,
novel fused layers and resource allocation are proposed for a
power-efficient system allowing the process of spike
waveforms in real-time. Optimized 1-D CNN loses only a
small amount of accuracy, while greatly reduces computational
complexity and processing latency. It only takes 16.8μs to
perform classification on the Cyclone V 5CSEMA5F31C6
FPGA evaluation platform at 2.5MHz. The FPGA prototype
provides 97.14% accuracy on a standard dataset and consumes
2.67mW from a 1.1 V supply voltage. An accuracy of 95.05%
is achieved with a power of 5.6mW when the deep spike
detector is implemented using two optimized 1-D CNNs on the
Cyclone V FPGA. Compared to the recently published works,
our design can operate at higher frequencies, while minimizing
the processing latency, which is ideal for real-time analysis of
single-unit activity. Future works will focus on further
reduction of computational cost of the deep spike detector,
fabrication of the deep spike detector in a specific technology
and multi-channel spike sorting using collected in-vivo data.

REFERENCES
[1] M. Zamani, and A. Demosthenous, “Feature extraction using extrema

sampling of discrete derivatives for spike sorting in implantable upper-
limb neural prostheses,” IEEE Trans Neural Syst Rehabil Eng, vol. 22,
no. 4, pp. 716-26, Jul, 2014.

TABLE VI
The features and outcomes of different spike sorting systems implemented on FPGAs.

Work

Algorithm

Device

Regs

LUTs

DSP utilization

Freq (MHz)
Clustering
Latency

Sorting
Accuracy

Ours Deep spike detectiona Cyclone V 12958 6048 64 2.5 16.8μs b 95.05% c
[33] Templated Matching Virtex-6 4880 6635 5 122 0.55μs 90.05%
[34] OSort Virtex-6 8444 16472 130 123 0.25μs 87%
[35] PNN Virtex-6 3936 13776 54 100 6.7μs 93.83%
[36] Hebbian Spartan-6 8904 6678 – – 0.96μs 95%
[37] BOTM Virtex-6 29000 190000 – – 2.65ms –
[38] OSort Virtex-5 16245 23567 29 100 11.1ms –
[39] OSort Zynq-7000 12150 14037 120 101 179.4 μs –

a) Precision, Throughput (GOP/s) and DSP efficiency (GOP/s/DSPs) are 10bits fixed, 74.4 and 0.42 respectively.
b) 16.8μs pipeline processing delay for real-time and artefact-free spike sorting using handshaking protocol.
c) PCA and K-means are performed off-chip by transferring detected spike events to PC [30].

First Author et al.: A Real-time and Hardware Efficient Artefact-free Spike Sorting Using Deep Spike Detection

[2] M. Zamani, D. Jiang, and A. Demosthenous, “An Adaptive Neural Spike
Processor With Embedded Active Learning for Improved Unsupervised
Sorting Accuracy,” IEEE Trans Biomed Circuits Syst, vol. 12, no. 3, pp.
665-676, Jun, 2018.

[3] M. Zamani, J. Sokolić, D. Jiang, F. Renna, M. R. Rodrigues, and A.
Demosthenous, “Accurate, very low computational complexity spike
sorting using unsupervised matched subspace learning,” IEEE Trans
Biomed Circuits Syst, vol. 14, no. 2, pp. 221-231, 2020.

[4] L. Meyer, M. Zamani, J. Rokai, and A. Demosthenous, “Deep learning-
based spike sorting: a survey,” Journal of Neural Engineering, doi:
10.1088/1741-2552/ad8b6c, 2024.

[5] M. Zamani, C. Okreghe, and A. Demosthenous, ‘‘Efficient approximation
of action potentials with high-order shape preservation in unsupervised
spike sorting,’’ in Proc. 44th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.
(EMBC), Jul. 2022, pp. 4884–4887.

[6] L. M. Meyer, M. Zamani, and A. Demosthenous, “Binarized Neural
Networks for Resource-Efficient Spike Sorting,” IEEE Access, vol. 13,
pp. 60258 - 60269, 2025.

[7] T. Fang and M. Zamani,, “FS-SS: Few-Shot Learning for Fast and
Accurate Spike Sorting of High-channel Count Probes,” arXiv preprint
arXiv:2503.18040 (2025).

[8] M. A. Shaeri and A. M. Sodagar, "A framework for on-implant spike
sorting based on salient feature selection", Nat. Commun., vol. 11, no. 1,
pp. 1-9, 2020.

[9] A. T. Do, S. M. A. Zeinolabedin, D. Jeon, D. Sylvester, and T. T. H. Kim,
“An area-efficient 128-channel spike sorting processor for real-time
neural recording with 0.175 µW/channel in 65-nm CMOS,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 27, no. 1, pp. 126–137, Jan.
2019.

[10] A. Mohammed, M. Zamani, R. Bayford, and A. Demosthenous, “Toward
on-demand deep brain stimulation using online Parkinson’s disease
prediction driven by dynamic detection,” IEEE Trans Neural Syst Rehabil
Eng, vol. 25, no. 12, pp. 2441-2452, 2017.

[11] T. S. Davis, H. A. Wark, D. Hutchinson, D. J. Warren, K. O’neill, T.
Scheinblum, G. A. Clark, R. A. Normann, and B. Greger, “Restoring
motor control and sensory feedback in people with upper extremity
amputations using arrays of 96 microelectrodes implanted in the median
and ulnar nerves,” Journal of Neural Engineering, vol. 13, no. 3, pp.
036001, 2016.

[12] M. Capogrosso, T. Milekovic, D. Borton, F. Wagner, E. M. Moraud, J.-B.
Mignardot, N. Buse, J. Gandar, Q. Barraud, and D. Xing, “A brain–spine
interface alleviating gait deficits after spinal cord injury in primates,”
Nature, vol. 539, no. 7628, pp. 284-288, 2016.

[13] N. A. Steinmetz, C. Aydin, A. Lebedeva, M. Okun, M. Pachitariu, M.
Bauza, M. Beau, J. Bhagat, C. Böhm, and M. Broux, “Neuropixels 2.0: A
miniaturized high-density probe for stable, long-term brain recordings,”
Science, vol. 372, no. 6539, pp. eabf4588, 2021.

[14] H.-S. Lee, K. Eom, M. Park, S.-B. Ku, K. Lee, and H.-M. Lee, “High-
density neural recording system design,” Biomedical Engineering Letters,
vol. 12, no. 3, pp. 251–261, May 2022, doi:
https://doi.org/10.1007/s13534-022-00233-z.

[15] M. Saif-ur-Rehman, O. Ali, S. Dyck, R. Lienkämper, M. Metzler, Y.
Parpaley, J. Wellmer, C. Liu, B. Lee, S. Kellis, R. A. Andersen, I.
Iossifidis, T. Glasmachers, and C. Klaes, ‘‘SpikeDeep-classifier: A deep-
learning based fully automatic offline spike sorting algorithm,’’ Journal
of Neural Engineering., Nov. 2021, Art. no. 016009.

[16] C. O. Okreghe, M. Zamani, and A. Demosthenous, “A deep neural
network-based spike sorting with improved channel selection and artefact
removal,” IEEE Access, vol. 11, pp. 15131-15143, 2023.

[17] Y. He and L. Xiao, “Structured pruning for deep convolutional neural
networks: a survey,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, pp. 1–20, Jan. 2024.

[18] T.-J. Yang, Y.-H. Chen, and V. Sze, “Designing Energy-Efficient
Convolutional Neural Networks using Energy-Aware Pruning,” arXiv.org,
Nov. 16, 2016. https://arxiv.org/abs/1611.05128

[19] M. Kudo, J. Toyama and M. Shimbo, "Multidimensional curve
classification using passing-through regions", Pattern Recognit. Lett.,
vol. 20, no. 11, pp. 1103-1111, Nov. 1999.

[20] J. Chen et al., "Quantization-aware Optimization Approach for CNNs
Inference on CPUs," 2024 29th Asia and South Pacific Design
Automation Conference (ASP-DAC), Incheon, Korea, Republic of, 2024,
pp. 878-883, doi: 10.1109/ASP-DAC58780.2024.10473863.

[21] T.-T. Liu and J. M. Rabaey, “A 0.25 V 460 nW asynchronous neural
signal processor with inherent leakage suppression,” IEEE J. SolidState
Circuits, vol. 48, no. 4, pp. 897–906, Apr. 2013

[22] V. Sze, Y. -H. Chen, T. -J. Yang and J. S. Emer, "Efficient Processing of
Deep Neural Networks: A Tutorial and Survey," in Proceedings of the
IEEE, vol. 105, no. 12, pp. 2295-2329, Dec. 2017, doi:
10.1109/JPROC.2017.2761740.

[23] M. Alwani, H. Chen, M. Ferdman and P. Milder, "Fused-layer CNN
accelerators," 2016 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), Taipei, Taiwan, 2016, pp. 1-12, doi:
10.1109/MICRO.2016.7783725.

[24] C. Park, S. Park and C. S. Park, "Roofline-Model-Based Design Space
Exploration for Dataflow Techniques of CNN Accelerators," IEEE
Access, vol. 8, pp. 172509-172523, 2020, doi:
10.1109/ACCESS.2020.3025550.

[25] Available online:
https://figshare.le.ac.uk/articles/dataset/Simulated_dataset/11897595.

[26] R. Q. Quiroga, Z. Nadasdy, and Y. Ben-Shaul, “Unsupervised spike
detection and sorting with wavelets and superparamagnetic clustering,” J.
Neural Comp., vol. 16, no. 8, pp. 1661–1687, Aug. 2004.

[27] H. W. Lilliefors, “On the Kolmogorov-Smirnov test for normality with
mean and variance unknown,” J. Amer. Statist. Assoc., vol. 62, no. 318,
pp. 399–402, June 1967.

[28] T. Aflalo, S. Kellis, C. Klaes, B. Lee, Y. Shi, K. Pejsa, and R. Andersen,
‘‘Decoding motor imagery from the posterior parietal cortex of a
tetraplegic human Science,’’ Neurophysiology, vol. 348, no. 6237, pp.
906–910, 2015.

[29] P. N. Lawlor, M. G. Perich, L. E. Miller, and K. P. Kording, ‘‘Linear
nonlinear- time-warp-Poisson models of neural activity,’’ J. Comput.
Neurosci., vol. 45, no. 3, pp. 173–191, Dec. 2018.

[30] M. Zamani, “Computationally Efficient Adaptive Spike Processor With
Real-Time Decoding of Neural Signals for Implantable Applications,”
Ph.D. Thesis, UCL, London, UK, 2017. Available online:
https://discovery.ucl.ac.uk/id/eprint/1556329/.

[31] H. Abdi and L. J. Williams, “Principal component analysis,” Wiley
Interdiscip. Rev. Comput. Stat., vol. 2, pp. 433–459, 2010.

[32] A. P. Chandrakasan and R. W. Brodersen, “Minimizing power
consumption in digital CMOS circuits,” Proc. IEEE, vol. 83, no. 4, pp.
498–523, Apr. 1995.

[33] D. Valencia and A. Alimohammad, “An efficient hardware architecture
for template matching-based spike sorting,” IEEE Transactions on
Biomedical Circuits and Systems, vol. 13, no. 3, pp. 481–492, 2019.

[34] D. Valencia and A. Alimohammad, “A real-time spike sorting system
using parallel osort clustering,” IEEE Trans. Biomed. Circuits Syst., vol.
13, no. 6, pp. 1700–1713, Dec. 2019.

[35] D. Wang, Y. Hao, X. Zhu, T. Zhao, Y. Wang, Y. Chen, W. Chen, and X.
Zheng, “FPGA implementation of hardware processing modules as
coprocessors in brain-machine interfaces,” in International Conference of
the IEEE Engineering in Medicine and Biology Society, 2011, pp. 4613 –
4616.

[36] B. Yu, T. Mak, X. Li, F. Xia, A. Yakovlev, Y. Sun, and C. Poon,
“Realtime FPGA based multichannel spike sorting using hebbian
eigenfilters,” IEEE Journal on Emerging and Selected Topics in Circuits
and Systems, vol. 1, no. 4, pp. 502 – 515, 2011.

[37] J. Dragas, D. J¨ackel, A. Hierlemann, and F. Franke, “Complexity
optimization and high-throughput low-latency hardware implementation
of a multi-electrode spike-sorting algorithm,” IEEE Transactions on
Neural Systems and Rehabilitation Engineering, vol. 23, no. 2, pp. 149–
158, 2015.

[38] S. Gibson, J. W. Judy, and D. Markovi´c, “An FPGA-based platform for
accelerated offline spike sorting,” Journal of Neuroscience Methods,
vol.215, no. 1, pp. 1–11, 2013.

[39] L. Sch¨affer, Z. Nagy, Z. Kineses, and R. Fith, “FPGA-based neural probe
positioning to improve spike sorting with OSort algorithm,” in IEEE
International Symposium on Circuits and Systems, 2017, pp. 1–4.

