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Abstract

Spike sorting is a valuable tool in understanding brain regions. It assigns detected spike waveforms to their origins, helping

to research the mechanism of the human brain and the development of implantable brain-machine interfaces (iBMIs). The

presence of noise and artefacts will adversely affect the efficacy of spike sorting. This paper proposes a framework for low-cost

and real-time implementation of deep spike detection, which consists of two one-dimensional (1-D) convolutional neural network

(CNN) model for channel selection and artefact removal. The framework utilizes simulation and hardware layers, and it applies

several low-power techniques to optimise the implementation cost of a 1-D CNN model. A compact CNN model with 210

bytes memory size is achieved using structured pruning, network projection and quantization in the simulation layer. The

hardware layer also accommodates various techniques including a customized multiply-accumulate (MAC) engine, novel fused

layers in the convolution pipeline and proposing flexible resource allocation for a power-efficient and low-delay design. The

optimized 1-D CNN significantly decreases both computational complexity and model size, with only a minimal reduction in

accuracy. Classification of 1-D CNN on the Cyclone V 5CSEMA5F31C6 FPGA evaluation platform is accomplished in just

16.8 microseconds at a frequency of 2.5 MHz. The FPGA prototype achieves an accuracy rate of 97.14% on a standard dataset

and operates with a power consumption of 2.67mW from a supply voltage of 1.1 volts. An accuracy of 95.05% is achieved with

a power of 5.6mW when deep spike detection is implemented using two optimized 1-D CNNs on an FPGA board.
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Abstract: Spike sorting is a valuable tool in understanding 
brain regions. It assigns detected spike waveforms to their 
origins, helping to research the mechanism of the human 
brain and the development of implantable brain-machine 
interfaces (iBMIs). The presence of noise and artefacts will 
adversely affect the efficacy of spike sorting. This paper 
proposes a framework for low-cost and real-time 
implementation of deep spike detection, which consists of 
two one-dimensional (1-D) convolutional neural network 
(CNN) model for channel selection and artefact removal. 
The framework utilizes simulation and hardware layers, and 
it applies several low-power techniques to optimise the 
implementation cost of a 1-D CNN model.  A compact CNN 
model with 210 bytes memory size is achieved using 
structured pruning, network projection and quantization in 
the simulation layer. The hardware layer also 
accommodates various techniques including a customized 
multiply-accumulate (MAC) engine, novel fused layers in 
the convolution pipeline and proposing flexible resource 
allocation for a power-efficient and low-delay design. The 
optimized 1-D CNN significantly decreases both 
computational complexity and model size, with only a 
minimal reduction in accuracy. Classification of 1-D CNN 
on the Cyclone V 5CSEMA5F31C6 FPGA evaluation 
platform is accomplished in just 16.8 microseconds at a 
frequency of 2.5 MHz. The FPGA prototype achieves an 
accuracy rate of 97.14% on a standard dataset and operates 
with a power consumption of 2.67mW from a supply voltage 
of 1.1 volts.  An accuracy of 95.05% is achieved with a 
power of 5.6mW when deep spike detection is implemented 
using two optimized 1-D CNNs on an FPGA board.    
 
Index Terms—Implantable brain-machine interface (iBMI), 
unsupervised spike sorting, deep spike detection, artefact 
removal, field programmable gate arrays (FPGA), deep 
learning, reliable spike events monitoring.  

I. INTRODUCTION 

xtracellular recordings have been widely used to monitor 
neuronal activity by implanting multi-electrodes in the 

cortex and capturing multidimensional neural data. A 
processing step, known as spike sorting shown in Fig.1(a), is 
necessary to separate the multi-unit neural activities and assign 
the captured spikes to their originating neurons [1-9]. Spike 
sorting is an invaluable research tool applied in implantable 
brain-machine interface (iBMI) research for studying and 
decoding neural signals from different brain regions and 
understanding the mechanisms of the brain. It is extremely 
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beneficial in design and development of various applications 
such as identifying the optimal patterns and parameters to 
condition diseases by artificially modulating irregular or faulty 
electrical impulses [10], realizing a communication bridge for 
control of assistive devices for patients with damaged 
sensory/motor functions such as hand prosthesis [11], and 
stimulating a particular pathway for biological functionality 
regularization [12].  
   The recent trend in brain sensing is about the utilization of  
high-channel count neural interfaces that include tens of 
thousands of sensing probes [13]-[14]. In such recording set-
ups, the extracellular recordings are typically severely 
contaminated by artefacts and various noise sources, rendering 
the separation of multi-unit neural recordings an immensely 
challenging task. Therefore, removing artefacts and noise from 
neural events is not only crucial but also directly enhances spike 
sorting performance and classification accuracy.  
   This motivates a new paradigm in spike events detection for 
artefact-free sorting in high-channel count recording, called 
deep spike detection shown in Fig.1(b). Deep spike detection 
incorporates two convolutional neural networks (CNNs) into 
the conventional spike processing framework to identify the 
active neural channels and eliminate artefacts from those 
selected channels. It identifies and extracts distinctive spike and 
artefact characteristics from the input channels, enabling the 
selective elimination of artefacts from extracellular recordings. 
In 2019, Saif-ur-Rehman et al proposed SpikeDeeptector [15], 
to detect and track channels containing neural data. 
SpikeDeeptector employs a semi-automatic approach to 
generate pseudo-labels, which involves visual inspections [15]. 
The training dataset was derived from a single subject 
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Fig. 1. Recording activities from neurons A, B and C using Neuropixels 
electrode arrays. (a) Spike sorting process for determining single unit 
activity using conventional methods. (b) Spike events monitoring using 
deep spike detection which incorporates two 1-D convolutional neural 
networks (CNNs), CNN1 and CNN2 for channel selection and artefact 
removal respectively. This is known as artefact-free spike sorting. 
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comprising 1.56 million feature vectors that represent batches 
of waveforms from one channel, each with dimensions of 
48()×20 samples. In the first CNN, if at least one of the 
waveforms represented a spike, the whole batch was classified 
as neural activity. Authors reported an overall accuracy of 
97.2% is achieved with SpikeDeeptector [15]. Notably, the 
model could generalize across different brain regions, subjects, 
species and electrode types. The second CNN is called 
‘background activity rejector’ (BAR) that takes signals selected 
by SpikeDeeptector and discards background activity by 
classifying a given signal as spike or noise. BAR achieves an 
accuracy of 92.3%. In 2023, Okreghe et al [16] also proposed a 
solution for real-time improved channel selection and artefact 
removal. The method in [16], also works with two CNNs, one 
for the selection of channels and one for artefact removal. 
Similar to [15], the proposed work in [16] trained with 
1.61million labelled feature vectors to create a robust network. 
The first CNN labels an input batch (48×20) as ‘neural’ if it 
monitors at least one spike waveform. Like BAR [15], the 
second CNN is provided with a single feature vector (48×1) and 
discards non-neural events, and it achieves an overall accuracy 
of 92.3%. The issue with the existing deep spike detectors [15]-
[16] is that they are implemented in software and can not be 
utilized for real-world implantable brain processing. There is 
therefore a need for hardware implementation of a deep spike 
detector that uses extremely low power consumption to meet 
the power-area requirements of implantable devices. Following 
our previous work in [16], this paper proposes a low-cost 
framework to implement deep spike detection shown in Fig.2. 
The first layer of the proposed framework focuses on the 
optimization techniques to reduce the number of parameters 
and to diminish the memory space. A compact model with 210 
bytes of memory size is achieved using structured pruning, 
network projection and quantization in the simulation layer. 
The efforts in the second layer of the proposed framework are 
mainly made to design customized and real-time hardware for 
the optimized 1-D CNN from the simulation layer. The 
proposed optimization framework significantly reduces the 
overall power consumption and classification latency of 1-D 
CNN in hardware. An accuracy of 95.05% is achieved with a 
power of 5.6mW when the deep spike detector is implemented 
using two optimized 1-D CNNs on Cyclone V 
5CSEMA5F31C6 FPGA. The rest of the paper is structured as 
follows: Section II describes the simulation layer of the 
proposed optimization framework. The customized hardware 

techniques are presented in Section III, followed by an FPGA 
and implementation results in Section IV. Finally, Section V 
makes some concluding remarks.  

II. PROPOSED OPTIMIZATION FRAMEWORK 

In this section, adopted techniques for model optimization 
are explained, together with the optimization procedures. Also, 
the optimization results are demonstrated.  
A. Simulation Layer  
Fig.3 shows the procedures of model optimization in the 
simulation layer. Structured and non-structured compression 
techniques including pruning, network projection and 
quantization are applied on the original 1-D CNN model.  

Structured pruning refers to removing entire filters from the 
network, thus changing the structure of the model. For 
example, in the convolutional layers of a CNN model, 
reducing the filter numbers from 4 to 2 will result in a 
dimensionality reduction for subsequent feature maps from 4 
channels to 2 channels. This approach can significantly affect 
the model size and achieve acceleration with the help of 
standard hardware [17]-[18]. Network projection [19] refers 
to mapping the network from a higher dimension into a lower 
dimension. In this process, the learnable parameters are 
projected into the subspace while maintaining the highest 
variance in neuron activations based on the principal 
component analysis (PCA) on the neuron activations. 
Network projection replaces a layer with a subnetwork of 
smaller layers with fewer parameters. Suitable network 
projection can reduce the number of learnable parameters and 
retain a high prediction accuracy at the same time. 

Quantization [20] also converts the parameters of CNN, 
from high precision pseudo-continuous values to discrete 
values of low precision. This technique reduces the bit-width 
of each parameter and the overall size of the CNN model. A 
common approach of quantization is to convert the parameters 
from a floating point 32 bits to INT8 format or even fewer bits. 
Due to the noise tolerance of CNN, the network after 
quantization is able to maintain its performance compared to 
the unquantized version.  

The computation of floating point is time and resource 
consuming because it needs the calculation of three parts 
under this format: sign, exponent and mantissa. In comparison, 
a fixed-point value such as INT8 computations can be easily 
performed by full adders which is more efficient for 

Untrained 
Network

Dataset

Trained
CNN Model

Optimized
CNN Model

Deep Spike 
Detector

(a) Simulation Layer

(b) Hardware Layer

Training Model 
optimizaton

Hardware 
optimization

Customized 
hardware

 
 

Fig.2. Two-layer optimization framework. (a) Simulation layer. (b) 
Hardware layer. The untrained model is fed to the input of the simulation 
layer for initial optimizations. The optimized model is sent to the hardware 
layer for customized hardware design. 
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Fig.3. Simulation layer optimization procedures. Structured 
compression techniques  including pruning and network projection 
simplify the original model. Non-structured compression further 
optimizes the 1-D CNN by minimizing the bit-width of the parameters. 



First Author et al.: A Real-time and Hardware Efficient Artefact-free Spike Sorting Using Deep Spike Detection  

embedded or customized hardware. 
In each optimization technique, there is a parameter that 

needs to be modified, which results in different optimization 
outcomes. In the simulation layer, the parameters are max 
pruning iteration turns, target learnable reduction rate and 
quantization bit-width which corresponds to the structured 
pruning, network projection and quantization as shown in Fig. 
3. Aggressive parameter optimization can result in a more 
compressed model, however this will result in a greater 
possibility of accuracy loss. For example, the max pruning 
iteration controls the number of removed convolutional filters. 
If too many filters are removed, the accuracy of the CNN 
model will drop dramatically. To avoid this situation, the 
accuracy of CNN models is examined after each optimization 
run.  
B. Optimization Procedures in Simulation Layer 

The first step of model optimization is to construct a CNN, 
this is regarded as the original or unoptimized model. The test 
dataset (see Section IV. B) is split into three parts for training, 
validation and test datasets with the ratio of 0.7, 0.15, 0.15.  
The proposed deep spike detection algorithm in this paper 
works with two 1-D CNNs, one for the selection of channels 
and one for artefact removal similar to [13]-[14]. Therefore, a 
similar CNN (66×1) is plugged into the two stages to perform 
deep spike streaming over time, where 66 is the sample 
waveform segment for a time duration of 2.5 ms. In the channel 
selection stage, a down-sampling factor of 10 is considered to 
reduce the number of samples for in-channel activity analysis. 
This helps to monitor a larger segment of data with a much 
smaller number of samples and is also aligned with the sparse 
behaviour of neural activities in the recorded data. Considering 
the down-sampling factor, the first CNN accepts a batch of 
(66×1) while it monitors spiking activities in a data segment 
with 660 samples.  

A 1-D CNN model is therefore constructed for the 
optimization procedures. The input layer is a 1-D Array with 
a length of 66 that shows the number of samples per data 
segment, and can be used in channel selection and artefact 
removal stages shown in Fig. 1(b). 
   50 convolution kernels are utilized in each convolution layer. 
In the first convolutional layer (referred to as Conv1 Layer), 
the kernel size is 1×3 for a single input channel. In the next 
two convolutional layers (Conv2 and Conv3 Layers), the 
spatial size of the kernel remains 1×3, but the number of 
channels increases to 50. ReLU layers are placed after each 
convolutional layer and fully connected layer as activation 
functions to improve the learning ability of the model by 
increasing its non-linearity. Maxpooling layers are also 
utilized to reduce the amount of calculation, but maintain the 
important features and information. Fully connected (FC) layer 
is the final layer in the 1-D CNN consisting of 750 neurons.  
   Mini-batch gradient descent with momentum (Mini-batch 
SGDM) is used to solve the optimization problem. With a 
learning rate that starts at 0.01 and is adjusted piecewise, 
increasing by 10 for every 5 training epochs. The maximum 
number of epochs and the batch size are set to 200 and 256 
respectively. Using L2 regularization, grid search was 
conducted from 0 to 5 with a step size of 0.2, the optimal value 
was 1.8. By tracking the validation error, an early stopping 
criterion was used to avoid overfitting on the test data at each 

epoch. The training is stopped after six consecutive epochs if 
the error rises or stays the same. Lastly, drop-out regularization 
was applied. After training, a CNN model with 99.43% 
classification accuracy, 17553 learnable parameters and 
68Kbytes of memory is generated. This CNN model is used 
as the original or unoptimized model for the optimization 
procedures. 
   The optimization procedures will begin with the structured 
compression including pruning and network projection as 
shown in Fig. 3. A validated and examined model after 
structured pruning is then sent to the non-structured 
compression which applies the quantization for further 
implementation cost reduction. Two evaluation metrics are 
used to validate the optimization steps. The first evaluation 
metric is the classification accuracy on the testing dataset (see 
Section IV.B). The second metric is the number of learnable 
parameters of the optimized model. A model with the least 
learnable number and maintaining an accuracy very close to 
100% is the most ideal one. The following steps are carried 
out to find the final optimized model. 

Step 1) Various compressed models are investigated in 
the structured compression stage, by running pruning and 
network projection. The models with classification 
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Fig.4. Classification accuracy of the compressed models in Step 1. 
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Fig.5. Number of learnable parameters in compressed models from Step 
1. The green arrow shows a model with 251 parameters. 
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accuracy above 99% with the least number of learnable 
parameters are retained.  
Step 2) Perform different quantization bit-width on the 
model found in Step1. If the model fails to maintain 
stability following quantization, consider utilizing a 
version of the model with a marginally increased number 
of parameters in Step 1, continuing this process until 
stability is achieved with at least one quantization bit-
width. 
Step 3) Select the model with the least quantization bit-
width while maintaining high accuracy. 

    It is important to note that the maximum number of pruning 
iterations is set to 30, the target reduction of the learnable rate 
is specified within the range of 0 to 0.9, and the quantization 
bit-width is taken into account within the limits of 8 to 2. 

Fig.4 and Fig.5 show the outcome of optimization 
procedures outlined in Step 1. After discarding all the 
unqualified models shown with a red circle in Fig.4, Fig.5 
shows the number of learnable parameters in the qualified 
models. A model with the 251 learnable parameters is sent to 
the quantization step. The selected model with 251 learnables 
from Step1 shows poor stability during the quantization step, 
shown in Fig.6. The accuracy of this model will drop to 93.90% 
when quantized to 8-bits. The accuracy of the optimized CNN 
demonstrates instability and will drop more if quantized to 
fewer bits, therefore this model is quite vulnerable to 
quantization. Another model with 419 learnable parameters 

and 99.62% accuracy is selected for Step2. The same 
quantization process is performed on this model. As shown in 
Fig.7, this model maintains a high classification accuracy of 
99.43% when quantized to 8-bits. This model still maintains 
its performance even when quantized to 4-bits. Its accuracy 
will drop to 96% when quantized by 3-bits.  

In comparison, the former model has the least learnable 
parameters but is unable to resist any quantization, the latter 
model has slightly more parameters but maintains its 
performance after 4 and 3-bits quantization. The latter is a 
more suitable model for deployment for the hardware layer. 
As a result, a 4-bit quantization for the model with 419 
learnables is an ideal option, where the quantized model can 
shrink the memory requirement to a great extent and maintain 
good classification performance at the same time. 

The compact CNN model after structured and non-
structured compressions is generated by max pruning 
iterations of 30, target learnable reduction rate of 0.6 and the 
quantization bit-width set to 4-bits. This CNN has 419 total 
learnable parameters, with a classification accuracy of 99.81%. 
Table I demonstrates the main layers of the non-optimized and 
the optimized CNNs. The weights (W), bias (B) and 
activations (A) are shown in the form of SSCB (spatial, spatial, 
channel, batch). 

From Table I, it can be seen that the channel number 
decreased from 50 to 10. This is due to the fact that the 
structured pruning removed plenty of filters from the original 
model. Also, due to the use of network projection, the 
convolution layers and fully connected layers are all replaced 
by smaller sublayers. For example, the original Conv2 layer 
in the non-optimized model is replaced by three sublayers.  

Utilization of structured pruning and network projection 
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Fig.6. Classification accuracy of the model with 251 learnable 
parameters versus quantization bit-width.   
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TABLE I 
Comparison between the original and the optimized 1-D CNNs. 

Layers Original CNN Optimized CNN Sub-Layers 

Conv1 
Layer 

W: 1×3×1×50 
B : 1×1×50 

A: 1×66×50×1 

W: 1×3×1×1 
B : 1×1×1 

A : 1×66×1×1 

Conv1:  
Conv Layer 

W: 1×1×1×10 
B : 1×1×10 

A : 1×66×1×1 

Conv1: 
Projection Out 

Layer 

Conv2 
Layer 

 

W: 1×3×50×50 
B : 1×1×50 

A: 1×64×50×1 

W: 1×1×10×1 
B : 1×1×1 

A : 1×66×1×1 

Conv2: 
Projection In 

Layer 
W: 1×3×1×1 

B : 1×1×1 
A : 1×64×1×1 

Conv2:  
Conv Layer 

W: 1×1×1×10 
B : 1×1×10 

A : 1×64×10×1 

Conv2: 
Projection Out 

Layer 

Conv3 
Layer 

W: 1×3×50×50 
B : 1×1×50 

A: 1×30×50×1 

W: 1×1×10×1 
B : 1×1×1 

A : 1×32×1×1 

Conv3: 
Projection In 

Layer 
W: 1×3×1×2 

B : 1×1×2 
A : 1×30×2×1 

Conv3:  
Conv Layer 

W: 1×1×2×10 
B : 1×1×10 

A : 1×30×10×1 

Conv3: 
Projection Out 

Layer 

FC 
Layer 

W: 3×750 
B : 3×1 
A: 3×1 

W: 2×150 
B : 2×1× 
A : 2×1 

FC: Projection 
In Layer 

W: 3×2 
B : 3×1× 
A : 3×1 

FC: Projection 
Out Layer 
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resulted in a great compression in a 1-D CNN model size, the 
learnable number decreased from 17553 to 419 (i.e., 41X 
compression rate). Also, considering the 4-bits quantization 
performed on the model, each parameter only occupies 4 bits 
instead of 32 bits. This resulted in a memory decrease from 
70212 bytes to 210 bytes (i.e., 334X memory compression). 
However, the use of network projection results in an increase 
in layer numbers from 12 to 18, where each layer is expanded 
into several smaller sub-layers detailed in Table I. 

III. HARDWARE LAYER OPTIMIZATION 

After applying the optimization techniques in the simulation 
layer, a customized hardware is designed to execute the 1-D 
CNN model. This section will demonstrate the main techniques 
used in the hardware design.  
A. The 1-D CNN Model Architecture 
   The hardware design adopted the idea of pipelining consists 
of several hardware blocks connected in series to perform 
classification, and the model diagram of the proposed network 
model is shown in Fig. 8. The number of input channels in this 
model is set to 66 for channel selection and the artefact removal 
stage. The equivalent model of the fused processing blocks (see 
Section III. C) are shown in more details on the right column. 
   The design in Fig. 8 doesn’t have a global control unit, 
therefore handshaking protocols and signals are used to control 
the pipeline running between the blocks. The data processing 
thereafter is driven only by local handshaking events without a 
global synchronous clock, eliminating any timing uncertainty 

such as skew and jitter associated with clock distribution. The 
handshaking protocol between the modules is reliably governed 
by four signals including ready, ready_in, fetch and fetched. 
The ready and fetched signals are used for communications 
with the upcoming block, and the ready_in and fetch signals 
control the current block as shown in Fig. 8. Consequently, each 
self-timed block functions at its own pace consistently, 
delivering optimal performance that adjusts dynamically to 
varying operating conditions. This also aids in effectively 
reducing the operational cost of the proposed pipeline [21]. 
    Accessing external memory is an energy-consuming 
activity requiring more operations and extra interactions, 
conversely,  accessing local memory is quicker and more 
efficient [22]. To avoid unnecessary data movement 
operations, the overall memory of the complete 1-D CNN 
model is separated into several parts and distributed across 
each hardware block. Therefore, each hardware block has its 
own memory to store parameters belonging to its responsible 
layers. This can be seen as distributed local memory for one 
convolution layer to store the weights and bias data for 
convolution operations.  

B. Convolution Engine 

    The designed and utilized convolution block in the 1-D 
CNN is shown in Fig. 9. There are three main components in 
this block including the convolution engine, shifting array and 
array to store convolution results. Each convolution layer has 
its own block for accelerated classification.  

The convolution engine involves three multiply-accumulate 
(MAC) units connected in series due to the convolution kernel 
size as shown in Fig. 9. The convolution kernel slides through 
the entire array based on the stride size, each time a matrix 
multiplication is performed between the convolution kernel 
and the shifting array. 

Each MAC consists of  a multiplier and an adder [18]. The 
convolution process begins with selecting three elements from 
the shifting array, and convolution is performed with the 
kernel’s coefficients. When a convolution calculation is 
performed, the result is written into a result array, with its 
address (or index) incremented by one for the next 
convolution operation. Also, the shifting array will shift by 
one time to simulate the sliding window of filters. For a 
shifting array with a length of n, (n-2) times of shifting are 
needed to complete the entire convolution process. 

C. Fused Layers and Processing 

For the optimized CNN model from the simulation layer, 
there are plenty of matrix projection operations in the pipeline 
shown in Fig. 8. Inspired by [23], the projection of a larger 
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Fig.8. Architecture of the proposed 1-D CNN using hand-shaking 
protocol.  
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Fig.9. Architecture of convolution block. Three MAC units are used in 
the convolution engine to perform shift-and-convolution per array. 
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matrix into a smaller matrix occurs prior to the convolution 
operation. Following the convolution, the smaller matrix is 
transformed back into a larger matrix and subsequently passes 
through the succeeding layers, including ReLU and 
Maxpooling, until the commencement of the next convolution. 
A High-bandwidth data transfer (66×10) is observed between 
the output of one projection out layer and the next projection 
in layer in Fig. 10 (a). A fused processing block is designed in 
the CNN pipeline to merge several layers together, changing 
the data flow and computation pattern to avoid the high-
bandwidth data transfer as shown in Fig. 10 (b).    
    Taking the fused processing block in Fig. 10  as an example, 
this block needs to manage the tasks of projection out, ReLU 
and projection in layers. The process begins with the projection 
out layer in Fig. 11 which is expressed as 𝑐 =  𝑤் ∙ 𝑎 + 𝑏் , 
where 𝑤, a and 𝑏 are the weights, input array and bias in the 
projection out layer. 𝑇 also refers to the matrix transpose. It 
should be noted that the matrix 𝑐 has m rows and n columns as 
𝑐௜௝ =  𝑤௜𝑎௝ + 𝑏௜ (1 ≪ 𝑖 ≪ 𝑚, 1 ≪ 𝑗 ≪ 𝑛). The matrix 𝑑 after 
ReLU is presented as 𝑑 =  𝑀𝑎𝑥(0, 𝑐)  with m rows and n 
columns, the detailed version is written as 𝑑௜௝ =

 𝑀𝑎𝑥(0, 𝑤௜𝑎௝ + 𝑏௜) (1 ≪ 𝑖 ≪ 𝑚, 1 ≪ 𝑗 ≪ 𝑛). The final layer 
in Fig. 10 (a) and Fig.11 is projection in layer that projects the 
matrix 𝑑  onto 𝑒 =  𝑤ᇱ் ∙ 𝑑 + 𝑏ᇱ . Matrix 𝑒  has 1 row and n 
columns with each element defined as 𝑒௝ =  𝑏ᇱ + ∑ 𝑤௜

ᇱ ∙௠
௜ୀଵ

𝑀𝑎𝑥(0, 𝑤௜𝑎௝ + 𝑏௜) (1 ≪ 𝑗 ≪ 𝑛) , where 𝑤ᇱ  and 𝑏ᇱ  are the 
weights and the biases of the projection in layer.   
   Throughout the fusion process, each element in the output 
array 𝑒 is determined by only one element from the input array 
𝑎. That is a one-to-one mapping from the input array to the 
output array based on the known weights and biases.  

Fig.11 demonstrates the details of a one-to-one mapper and 
the structure of a fused processing block. The weights (𝑤) and 
bias (𝑏) during projection are all stored in three shifting arrays 
and are shifted by once in a clock cycle. 𝑚1 , 𝑚2  and 𝑝𝑠 
represent the multiplier, multiplicand and partial sum ports of 
a MAC unit. The mapping operation is performed in m clock 
cycles, where m  represents the number of rows in the  matrix 
which is 10 in this work. The introduction of this component 
helps fuse several layers together and avoids the high 
bandwidth data transfer between blocks. 
 Because the mapping operation only depends on the 
internal parameters and the input array, several mappers can 
work independently at the same time increasing the 
parallelism of computation. It is important to note that certain 
fused processing blocks incorporate Maxpooling layers, 
resulting in a shift from a one-to-one mapping to a two-to-one 
mapping. Nevertheless, the overall architecture remains 
unchanged, with the addition of a 2-input comparator. 

D. Roof-line Model and Resource Allocation  

Considering the roof-line model [24], a resource allocation 
strategy is adopted to introduce a  balance between workload 
and computational power. The golden point in the roof-line 
model is satisfied when a block is able to use allocated 
computing power and continuously work on data processing 
without an interval (i.e., to avoid bucket effect in the pipeline). 
To achieve this objective, resource allocation must vary across 
different blocks due to the differing quantities of tasks assigned 
to each. 
    First, a block with a relatively low workload is identified.  
Then the processing time of the block for an input batch is 
calculated  as a reference. Finally, the amount of workload in 
the block is adjusted to meet the time specification of the 
design.  Conv3 is set as a benchmark, requiring approximately 
30 clock cycles to finalize the data processing. The resources 
assigned to the other blocks are adjusted based on this reference 
to ensure a balanced time delay. For example, 3 MAC units are 
used in Conv2 to perform the convolution, however it will take 
64 clock cycles to complete the process which means a delay in 
the pipeline. By adding another convolution engine (3 MAC 
units) in Conv2, this block splits the original array into two 
arrays (each 34 long because padding is needed for 
convolution) and performs two convolution processes in 
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Fig.10. (a) High-bandwidth data transfer. (b) Modifying computation 
pattern using fused processing block. This avoids loading the entire 
feature map before computing, equal to low-rank matrix computations. 
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Fig.11. Architecture of the fused processing block. The fusion is 
performed using mappers detailed in the yellow box. 
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Fig.12. Performing two convolutions in parallel to adjust the delay in 
the convolution engine. Example of an array (66×1) splitting into two 
arrays (33×1) for parallel convolution is annotated in the figure. 



First Author et al.: A Real-time and Hardware Efficient Artefact-free Spike Sorting Using Deep Spike Detection  

parallel as shown in Fig. 12. The convolution results are then 
combined to obtain the final array. This will reduce the Conv2 
delay to 30 clock cycles, which simply means no lag in the 
processing pipeline shown in Fig. 8. By changing resource 
allocation in the convolution clocks, the delay is uniformly set 
to 30 clock cycles. MAC resource allocation for Conv1-3 and 
Fused Processing Blocks 1-3 are {6, 6, 6} and {44, 33, 30} 
respectively.  

IV. FPGA AND IMPLEMENTATION RESULTS 

A. Resources and Power Consumption  

Table II summarizes the utilized resources in the optimized 
1-D CNN. As observed, fused processing blocks occupy more 
resources than convolution blocks. The DSP resources are 
mainly allocated to fused processing blocks because they 
perform highly parallel projection tasks. Signal memory block 
consumes plenty of adaptive logic modules (ALMs) and 
combinational adaptive look-up tables (ALUTs) for data 
storage.  

The power consumption statistics come from the power 
analyzer tool in QuartusII, where a clock with 2.5MHz 
frequency is applied to simulate its power consumption. From 
the tool, an overall power consumption of 2.67mW is 
estimated from a 1.1 V supply voltage. 

Table III  demonstrates the hierarchy of power consumption 
in this hardware design. Compared to convolution blocks, 
fused processing blocks consume almost 3X higher power 
consumption. The power consumption by fused processing 
block 1, 2 and 3 are 0.79mW, 0.69mW and 0.55mW 
respectively. Besides, the power consumption of the 
convolution blocks 1, 2 and 3 are 0.24mW, 0.16mW, 0.18mW 
respectively. This trend is consistent with the utilized 
resources, such as registers and DSPs in each block.  

Table IV summarizes the the power consumption of the 
processing pipeline by hardware resources. The DSP block is 
the most power-consuming, while combinational cells and I/O 
consume the least amount of power. In the following sections, 
various testing methodologies are used to evaluate the chip 
performance under different conditions including confirmation 

of its successful adaptation providing high clustering accuracy.  

B. Dataset Information 

     To evaluate the performance of the proposed deep spike 
detector, the Wave_Clus spike bank was used [25]. The 
database in [25] comprises various average spike waveforms 
obtained from the neocortex and basal ganglia of humans. To 
replicate the background noise activity, attenuated spike 
waveforms selected at random from the data library were 
incorporated into the generated datasets. There are four datasets 
in the collected database, each has three spike mean waveforms 
and provides corresponding spike times and their labels. 
Besides, the four datasets are categorized according to the 
different degrees of difficulty (e.g., similarity of spike shape) 
and the noise levels. The datasets are labeled as C_Easy1_noise, 
C_Easy2_noise, C_Difficult1_noise, and C_Difficult2_noise, 
with noise levels represented by standard deviations (𝜎N) of 
0.05, 0.1, 0.15, and 0.2. The terms "Easy" and "Difficult" refer 
to the similarity index between spike shapes in each dataset. 
Easy1 has also additional noise levels of 0.25, 0.3, 0.35 and 0.4 
for further spike sorting performance analysis. Neurons located 
at a considerable distance from the electrode tips are labeled 
artefacts, as they reflect spurious neural events that typically 
show incomplete transitions in polarization or depolarization 
phases.  

C. Classification Performance of the Optimized 1-D CNN 

Due to the quantization processing, the data is stored and 
calculated in the form of fixed-point values. As a result, 
original samples are converted from FL32 to 10-bit fixed-
point values. This format covers the spike variations and 
ensures that the signals preserve the shapes over time. 

The classification performance is evaluated by ModelSim 
simulation and also deploying the processing pipeline on 
Cyclone V 5CSEMA5F31C6 FPGA. For example, amongst 
the 524 batches of testing spike signals, 509 of them are 
classified correctly by both methods. This results in a 
hardware classification accuracy of 97.14%.  

TABLE II 
Resources used in FPGA. 

Block Name ALMs ALUTs 
Dedicated 

Logic Registers 
DSP 

Blocks 
Signal Memory 3931 2258 14 0 

Convolution 
Block 1 

294 173 1196 3 

Convolution 
Block 2 

472 163 1279 2 

Convolution 
Block 3 

275 129 836 2 

Fused Processing 
Block 1 

861 811 1680 10 

Fused Processing 
Block 2 

771 796 943 8 

Fused Processing 
Block 3 

912 844 482 5 

Classifier 58 108 63 2 
Scoreboard 35 49 28 0 

 Used Resources 7609 5331 6521 32 
Used Resources* 3643 3024 6479 32 

* Without memory and score board. 

TABLE III 
Power consumption by hierarchy. 

Block Name Power Consumption 
Signal Memory 0.04mW  

Convolution Block 1 0.24mW 
Convolution Block 2 0.16mW 
Convolution Block 3 0.18mW 

Fused Processing Block 1 0.79mW 
Fused Processing Block 2 0.69mW 
Fused Processing Block 3 0.55mW 

Classifier 0.02mW 
Scoreboard 0.00mW 

Total Hardware Design 
2.67mW (0.57mW at its 

own hierarchy) 

 
TABLE IV 

Power consumption by hardware resources. 
Hardware Resources Type Power Consumption 

DSP Block 1.40mW  
Combinational cell 0.27mW 
Clock enable block 0.32mW 

Register cell 0.53mW 
I/O 0.15mW 

Total Hardware Design 2.67mW 
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This is very close to the derived 99.81% accuracy in 
MATLAB.  One possible explanation for the slight accuracy 
decrease is the accumulated precision loss. In the MATLAB 
model, data is still computed in floating-point format, where 
even a tiny value can be represented. When performing fixed-
point number operations in hardware, any value that falls below 
the current format's precision will be disregarded. While this 
loss of value may be insignificant when only a few operations 
are conducted, it can accumulate over time, leading to an 
increasingly detrimental impact on the overall process as 
computations progress. 

The Classification delay is 42 clock cycles, which is 16.8μs, 
considering a 2.5MHz clock frequency. The main reason is 
that each hardware block has to spend several clock cycles on 
handshaking and state transfer. Also, some blocks have 
complex control logic for internal resource reuse. These 
blocks will spend more time on the internal states for register 
operations, which introduces more cycle lags.  

D. Deep Spike Detection Performance Analysis 

    FPGA implementation of deep spike detection was tested 
using Cyclone V 5CSEMA5F31C6 with a MATLAB/Simulink 
interface to a PC [30]. It embeds two optimized 1-D CNNs into 
the conventional spike processing pipeline for the selection of 
the active neural channels and the removal of artefacts from the 
selected channels, each has an input layer that accepts a 1-D 
array with a length of 66 samples (duration of 2.5 ms). To 
extract the most abstract features, the detected spike events are 
transferred to the PC. Spike waveforms are then transformed to 
fewer dimensions using principal component analysis (PCA) 

[31] and fed into the K-means algorithm to identify the classes. 
Classification accuracy (CAcc) is evaluated by (TPCC/
NTS) ×100%,  where TPCC  is the number of truly detected and 
correctly classified spikes and NTS is the number of truly 
detected spikes. NTS = DTS − (FPS + MS), where DTS is the 
number of detected spikes, FPS is the number of false alarm 
spikes due to noise or overlapping spikes, and MS is the number 
of missed spikes. Table V shows the classification accuracy in 
comparison with Wave_clus [26] and SpikeDeep-classifier 
[15]. The proposed deep spike detection method on FPGA 
demonstrated an accuracy greater than 95%, which shows 
6.86% and  4.45%  improvement over Wave_clus [26] and 
SpikeDeep-classifier [15] respectively. Both Wave_clus [26] 
and SpikeDeep-classifier [15] are developed in software, 
whereas the proposed deep spike detector is implemented on an 
FPGA. For visualization purposes, Fig.13 shows the artefact-
free classification using label prediction and the PCA-based 
projection of waveforms onto two-dimensional (2-D) feature 
space. In all shown cases in Fig.13 (a)-(c), spike events and 
artefacts are sufficiently separated (i.e., the projection borders 
are clear).  
Simulation suggests a power dissipation of 5.6mW when 
running at 10-bit resolution and 2.5 MHz operating frequency 
in the streaming phase.  
Downscaling factor (DF) [32] is a mapping process to estimate 
the dynamic power characteristics of the spike processor in 
different technologies. The key player in the downscaling 
process is the supply voltage (Vsup) of different technologies, 
therefore DF can be expressed as 𝐷𝐹஻௔௦௘/ௌ௖௔௟௜௡௚ =
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Fig.13. Three different examples of artefact removal are shown in (a)-(c). 
Color-coded spike mean waveforms corresponding to different neurons. 
#1 blue, #2 red, #3 black and A in green to represent artefact. 2-D 
projection of #1, #2, #3 and A. The first two principal components, PC1 
and PC2, are used for 2-D projection of spike clusters. The border between 
the neural events and the artefact fully separated. 
 

TABLE V 
Comparison of classification accuracy (CAcc) of the proposed deep spike 
detection on FPGA versus Wave_clus [26] and SpikeDeep-classifier [15] 

on simulated dataset. 
 
 

Dataset 
 
 

𝜎N 
 
 

Spikes 
 

aWave_Clus 
bSpikeDeep-

classifier 

cProposed 
(FPGA) 

 
 
 

Easy  
1 

0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 

3514 
3522 
3477 
3474 
3298 
3475 
3534 
3386 

98.82 
98.81 
98.72 
98.55 
97.32 
89.50 
82.12 
82.60 

99.07 
99.32 
99.10 
98.85 
97.13 
96.75 
93.34 
94.72 

99.43 
99.77 
99.43 
99.44 
98.11 
97.18 
95.83 
95.37 

 
Easy  

2 

0.05 
0.10 
0.15 
0.20 

3410 
3520 
3411 
3526 

96.88 
91.62 
91.30 
84.52 

96.84 
91.30 
92.24 
83.32 

98.16 
94.59 
93.45 
90.33 

 
Difficult 

1 

0.05 
0.10 
0.15 
0.20 

3383 
3448 
3472 
3414 

89.10 
93.44 
66.95 
75.19 

96.79 
93.24 
70.64 
67.70 

97.32 
95.54 
87.14 
85.37 

 
Difficult 

2 

0.05 
0.10 
0.15 
0.20 

3364 
3462 
3440 
3493 

93.52 
94.05 
83.16 
56.17 

95.57 
83.65 
81.86 
77.85 

98.26 
96.48 
93.76 
86.13 

Average 
CAcc 

   

88.15 
 

90.46 
 

95.05 

a) Waveclus [26] uses four-level Haar wavelet, Kolmogorov-Smirnov (KS 
[27]) and superparamagnetic clustering (SPC). 
b) SpikeDeep-classifier [15] is based on two CNNs, one for channel 
selection and the other one for artefact removal. 
c) The proposed model has great generalization capability in channel 
selection. It classified only two out of five hundred and seventy-six channels 
from recorded data using Utah arrays and micro-wires in [28]-[29].  
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ଶ  ൘ . For evaluation of the spike 

processor in this work from base technology (1.1 V supply used 
in FPGA board to scaling technology (65 nm, 0.27 V), both 
operating at the same frequency,  DF| Base/Scaling  is calculated at 
17. This scaling predicts the deep spike detector power 
consumption to 329µW in 65nm. This shows compatibility of 
the proposed design with the implantable brain processing and 
closed-loop applications. The proposed design is set to be 
implemented and validated in future work using 65nm 
technology.  

E. Comparison with the Published Works   

   Table VI presents the features and performance outcomes of 
the proposed deep spike detection spike sorting, in comparison 
to previously published research conducted on FPGAs.  
Valencia et. al. [33]-[34] presented template matching and 
OSort-based clustering modules. Deep spike detector uses more 
registers and DSP compared to [34], however it provides higher 
5% higher sorting accuracy at 2.5 MHz. Note that the deep 
spike detector offers artefact-free spike sorting, as artefacts will 
adversely affect the spike sorting accuracy. Calculated sorting 
accuracy in [33]-[39] assigns equal weights to the artefacts and 
authentic spike waveforms which results in substantial error in 
calculating sorting performance.  The design outlined in [35] 
introduces a spike sorting system that employs a probabilistic 
neural network (PNN). It incorporates a tailored floating-point 
numerical format comprising 1 sign bit, 8 exponent bits, and 7 
fraction bits. The deep spike detector demands comparable 
resources to [35], while also delivering superior sorting 
performance. The work in [36] presents a real-time spike 
sorting system that uses Hebbian learning to implement PCA 
for projecting input spikes to features of interest. They present 
results for 16-bit word length, as well as modelling their designs 
using MATLAB’s fixed-point toolbox. Their target device is an 
Xilinx Spartan-6 FPGA, and their resource utilization was 
reported based on the reconfigurable slices. It is shown that the 
deep spike detector implementation uses higher registers and 
lower LUTs. Note that the design in [36] only reports the 
implementation results of the Hebbian Eigenfilter hardware. 
The reported spike sorting accuracy in [36] is 95% and 87% 
when sorting spikes from three and four neurons, respectively. 
The design presented in [37] has implemented the Bayes 
optimal template matching (BOTM) algorithm for spike sorting 
on a Virtex-6 FPGA. While the maximum operating frequency 
has not been reported, the sorting latency was stated as 53 

sampling cycles at a 20 kHz sampling rate. The  BOTM also 
uses large number of registers and LUTs. The design in [38] is 
intended for high-speed data processing of neural recordings on 
a workstation (offline), and the FPGA communicates with the 
workstation via a PowerPC processor on the interface board. 
The latency of 11 ms in Table. VI is assumed with 24 kHz 
sampling rate. This is the worst-case sorting latency, and 
correlates to 266 clock cycles. Proposed deep spike detector 
achieves a significant reduction in real-time sorting latency 
(16.8μs) and 95.05% sorting accuracy.  

V. CONCLUSION 

    This paper proposed a two-layer framework for efficient and 
real-time hardware implementation of an artefact-free spike 
sorting. Simulation layer applies structured and non-structured 
compression techniques including pruning, network 
projection and quantization to optimize the overall 
implementation cost of the 1-D CNN. Having applied the 
simulation layer, a compact model with 99.81% classification 
accuracy, 41X lower number of parameters and 334X lower 
memory usage was achieved. Following the simulation layer, 
hardware techniques including a customized MAC engine, 
novel fused layers and resource allocation are proposed for a 
power-efficient system allowing the process of spike 
waveforms in real-time. Optimized 1-D CNN loses only a 
small amount of accuracy, while greatly reduces computational 
complexity and processing latency. It only takes 16.8μs to 
perform classification on the Cyclone V 5CSEMA5F31C6 
FPGA evaluation platform at 2.5MHz. The FPGA prototype 
provides 97.14% accuracy on a standard dataset and consumes 
2.67mW from a 1.1 V supply voltage. An accuracy of 95.05% 
is achieved with a power of 5.6mW when the deep spike 
detector is implemented using two optimized 1-D CNNs on the 
Cyclone V FPGA. Compared to the recently published works, 
our design can operate at higher frequencies, while minimizing 
the processing latency, which is ideal for real-time analysis of 
single-unit activity. Future works will focus on further 
reduction of computational cost of the deep spike detector,  
fabrication of the deep spike detector in a specific technology 
and multi-channel spike sorting using collected in-vivo data. 
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