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Physics aims to describe natural phenomena through the construction of theoretical
models that capture essential system behaviours, with predictions tested against
observations. In particle physics, the Standard Model (SM) has been a monumental
success but remains incomplete, leaving unresolved challenges such as explaining
neutrino masses, dark matter, the hierarchy problem, and gravity. Moreover, recent
experimental anomalies, including results from scalar searches, hint at new physics and

motivate the exploration of Beyond the SM (BSM) scenarios.

However, performing phenomenological studies in BSM models poses two major
challenges. First, the number of possible models is immense. Second, within a single
model, the parameter space is characterised by high dimensionality, sparsity of feasible
configurations, and the computational cost of numerical evaluations, necessitating

advanced parameter scan algorithms.

This thesis introduces a new formulation for parameter scan algorithms based on an
active search methodology. This approach leverages Machine Learning (ML) modelling
and sequential decision-making techniques, borrowing concepts from Bayesian
Optimisation. A new, sample-efficient parameter scan algorithm, called b-CASTOR, is
proposed. Additionally, a Python library named hep-aid is presented, designed for the
easy use, integration, and development of parameter scan algorithms in
phenomenological studies. Finally, a Reinforcement Learning formulation for
parameter space scans is reviewed. While this approach yielded negative results, the

insights and limitations derived from the project are discussed.

This thesis aims to advance the development of ML-based parameter scan algorithms,
addressing computational challenges and laying the foundations for a systematic

exploration of BSM models.


http://www.southampton.ac.uk




Contents

List of Figures
List of Tables

Acknowledgements

I Introduction, Background, and Problem Definition
1 Introduction

2 The Standard Model and Beyond

2.1 The Standard Model of Particle Physics . . . . .. ... .. ... ... ..
2.1.1 The SM Lagrangian . . . . . .. ... ... .. ... ... ...
2.1.2 Matter Fields . . . . . .. . ..
2.1.3 Gauge Fields . . . . .. .. ...
2.1.4 The Higgssector . . . . . . . . . . . ... .

2.2 Higgs physics . . . . . . . . e

2.3 Challenges and New Physics . . . . . . .. ... ... .. .. ...
2.3.1 New Physics Anomalies . . . . .. .. ... ... ... .......
2.3.2 Higgs Boson Searches . . . . ... ... ... ... .. ... ...

2.4 Beyond the Standard Model . . . . . . ... ... oL
2.4.1 Modified Scalar Sector . . . . . . . ... Lo
2.4.2 Extended Fermion Sector . . . . .. ... .. ... ... ......
2.4.3 New Gauge Groups. . . . . . . . o vt ittt

2.5 Supersymmetry . . . ... .o e e e e e e
2.5.1 SUSY Essentials . . . ... ... .. ... ... ...
2.5.2 The MSSM . . . . . . . e
2.5.3 Beyond Minimality . . . . . ... ... ... oo

2.6 The (B—L)SSM . . . . . . i
2.6.1 Neutral Higgs bosons . . . . . . . ... ... ... ... ...

3 Automated BSM Phenomenology

3.1 High Energy Physics Software . . . . . ... ... ... ... ...

3.2 Parameter Scans . . . . . .. .. e
3.2.1 Baseline parameter scan methods . . . . . . . . ... ... .....
3.2.2 Computational cost . . . . ... ... ... .. ... .. ...

3.2.3 Multiple constraints . . . . . .. ...

ix

XV

xvii

10
11
12
13
15
18
22
23
24
25
25
26
27
28
29
31
32
33



vi

CONTENTS

3.2.4 High-dimensionality . ... ... ... ........

4 Data Modelling

4.1 Regression with Machine Learning . . . . . .. .. .. ...
4.2 Gaussian Processes . . . . . ... ..o
4.2.1 Kernel functions . . . .. ... ...
4.2.2 GP Predictions . . . . . .. ...
4.2.3 DModel selection . . . . .. ..o
4.2.4 Space dimensionality . . . . . . . ... ... L.
4.2.5 Challenges . .. ... .. ... .
4.3 Artificial Neural Networks . . . . . ... .. ... ... ...
4.3.1 Linear Regression. . . . . .. .. ... ... .....
4.3.2 Shallow Neural Networks . . . . ... ... .....
4.3.3 Multi-layer Perceptron . . . . .. . .. ... ... ..
4.3.4 Training MLPs . . . . ... ... ... ... .....
4.3.5 Activation Functions . . . . ... ... ... ...
4.3.6 Modern optimisers . . . . . ... ... ...
4.4 Modelling Techniques Comparison . . . . .. ... .. ...
4.4.1 Theory to practice . . . . . ... .. ..
4.5 Density Estimation . . . . . ... ... o000
4.6 Modelling Takeaway™ . . . . . . . ... ... ... . .....

5 Sampling and Decision Making

5.1 Classical Sampling Techniques . . . . ... ... ... ...
5.1.1 Rejection Sampling . . . . . .. ... ...,
5.1.2 Markov Chain Monte Carlo . . . . ... ... ....

5.1.2.1 Metropolis Hastings . . . . ... ... ...

5.2 Bayesian Optimisation . . . . . . .. .. .. ... ... ...
5.2.1 Optimisation Process . .. ... ... ... .....

5.2.2 Tree-structured Parzen Estimator optimisation

5.2.3 Multi-objective BO . . . . . .. ... 000
5.2.4 BO Takeaway™ . . . . ... ... ... ... .....

5.3 Reinforcement Learning . . . .. .. ... ... ... ....
5.3.1 The Reinforcement Learning framework . . . .. ..
5.3.2 Value functions . . . . . ... ... 0oL
5.3.2.1 Deep Reinforcement Learning . . .. . ..

5.3.3 RL Takeaway™® . . . ... ... .. ... .......

I Research and Results

6 Space Exploration with Reinforcement Learning

6.1 The Environment . . . . . .. .. .. ... 0oL,
6.1.1 Deep Deterministic Policy Gradient . . .. ... ..
6.1.2 Deep Deterministic Policy Gradient . . . . ... ..

6.2 Experiments and Results. . . . .. ... ... ... .....
6.2.1 Toymodels . . .. .. ... ... ... ... .. ...

6.2.2 BSMecase . . . . . . . ..



CONTENTS vii
6.2.3 Finalremarks . . . . . .. .. ... ..o 83

7 Bayesian Active Search on Parameter Space 85
7.1 Introduction . . . . . . . . . . . . .. 85
7.2 Literature review . . . . . . . ... 86
7.3 Active Search Formulation . . . . . . . . ... ... ... L. 88
7.4  Expected Coverage Improvement . . . . . . . .. .. ... ... ... .. 90
7.5 b-CASTOR Batch Evaluation . . . . . . ... ... ... ... ....... 91
7.5.1 b-CASTOR algorithm . . . . ... ... ... ... ... ...... 92

7.5.2 Performance Study . . . . . . .. ... Lo 94

7.6 Results. . . . . . e 96
7.6.1 Double-objective 2D Test Function . . . . . . . ... ... ... .. 96

7.7 The (B—L)SSM and a 95 GeV Higgs Boson . . ... ... ... ..... 99
7.7.1 The (B — L)SSM and a 95 GeV Higgs Boson . . .. ... ..... 101

7.8 Computational Resources . . . . . . . . . ... .. ... ... ... ... 105
7.9 Conclusions . . . . . . . . e 106

8 hep-aid: A new computational framework 109
8.1 Introduction. . . . . . . . . . . e 109
8.2 The hep-aid Library . . . . . . . ... ... 110
8.2.1 Library Overview . . . . . . . . . . . . . e 112

8.2.1.1 Imstallation . . . . ... ... ... ... .. ... ..... 112

8.2.1.2 Test Objective Functions . . . . . ... ... ... .... 113

8.2.2 Searching for BSM Physics . . . ... . ... ... ... .. 116

8.3 HEP Module . . . . . . . . . . . e 117
8.3.1 HEP-stack . .. ... .. .. ... ... 118

8.3.2 HEP Tools . . . .. . . . . . . e 119

8.3.3 Reading and Writing SLHA Files . . . . . . ... ... ... .... 120

8.4 Search Module . . .. ... . . . . ... 122
8.4.1 Objective . . . . . . . . e 122

8.4.2 Parameter Space Sampling . . . .. .. ... ... ... ... ... 123

8.4.21 ASMethods . . .. ... .. ... ... ... 125

8.4.22 MCMC-MH ... ... ... . ... . ... ........ 126

8.4.23 MLScan . . . . . . . . . ... 127

8.5 Conclusions . . . . . . . . . . . e e e 129

9 Summary, Conclusions and Reflections 131
Appendix A Bayes’ theorem 135
Bibliography 137






List of Figures

2.1

2.2

2.3

2.4

2.5

2.6

3.1

Diagram of the constituents of the Standard Model of particle physics
taken from [1], illustrating the fundamental particles that form the atoms,
which in turn make up the chemical elements, the universe, and ourselves.
The quarks (red) and leptons (green) make up matter, while the bosons
(blue) mediate the fundamental forces, with the Higgs boson (purple)
responsible for mass generation through the Higgs mechanism. . . . . . .
Higgs boson production mechanisms: (a) gluon-gluon fusion (ggF), (b)
vector boson fusion (VBF), (c) associated production with a W or Z
boson (WH, ZH), (d) production with a top or bottom quark pair (ttH,
bbH), and (e, f) production with a single top quark (tH). . . . . . . ...
Higgs boson decay channels: (a) into heavy vector boson pairs, (b) into
fermion-antifermion pairs, and (¢, d) into photon pairs or Zy . . . . . ..
Signal strength parameters (u) for various Higgs boson production modes
(left) and decay channels (right) from CMS with 138fb~! of data at 13
TeV. The dashed line indicates the Standard Model prediction ( u = 1
), with statistical (1o, blue) and systematic ( +10 , red) uncertainties
shown, alongside combined (+20) confidence intervals in black. Image
obtained from [2]. . . . . . ...
The signal strength modifier (x) measured by the ATLAS experiment for
a Higgs boson mass of 126 GeV, utilising data from 2011-2012. Individual
measurements are shown for various Higgs decay channels, along with the
combined result (4 = 1.4 £0.3). The vertical dashed line indicates the
Standard Model prediction of ;1 = 1. Image obtained from [3]. . . . . . . .
Universe composition: Dark energy makes up 69% of the universe’s en-
ergy density, dark matter 25%, and atomic matter 5%. Minor compon-
ents include neutrinos (0.1%), cosmic radiation (0.01%), and black holes
(0.005%). Image adapted from [4]. . . .. ... ... ... ... ... ..

A schematic representation of the workflow in High Energy Physics (HEP)
software for theoretical model implementation and phenomenological ana-
lysis. Starting from a Lagrangian, the process involves three key stages:
Model Building, Spectrum Calculation, and Phenomenological Predic-
tions. These tasks can be performed using general model-independent
frameworks (top track) or model-specific tools (bottom track). Tools
used in this thesis are highlighted in orange. . . . . ... .. ... ....
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Chapter 1

Introduction

Physics seeks to describe the natural world through simplified, abstract representations
—models— that capture the essential behaviour of systems. The task of the physicist is
to construct such models and test their predictions against experimental observations.
If a prediction does not align with observation, the model must be ruled out, modified,
or replaced with a new one, and the process begins again. In particle physics, these
models represent fundamental particles and their interactions, serving as a bridge

between theoretical frameworks and experimental observations.

The most successful outcome of such a model-building process is the Standard Model
(SM) of particle physics. This historic achievement, alongside decades of advancements
in the field, culminated in the discovery of the Higgs boson with a mass of 125 GeV at
the Large Hadron Collider (LHC) by the ATLAS [3] and CMS [8] experiments in 2012.
Despite its success, the SM is widely regarded as incomplete. It faces several
observational challenges, such as the explanation of neutrino masses, the unresolved
baryon-antibaryon asymmetry of the universe and the nature of dark matter and dark
energy. Theoretical challenges also exist, including the hierarchy problem, explanation

of the SM’s family structure and the absence of a quantum description of gravity.

Moreover, hints of New Physics (NP), known as anomalies, have been slowly emerging
[9, 10]. These anomalies span a broad energy range and arise from both precision
measurements and direct experimental searches. They include flavour observables, the
anomalous magnetic moment of the muon, the W+ boson mass, and the possible
existence of additional neutral spin-0 particles, the latter being the primary focus of
this work. Notably, anomalous experimental signals around ~ 95, GeV have been
reported in searches for new Higgs bosons. Various experimental analyses support this
anomaly, including a vy (di-photon) excess observed at CMS [11], a 777~ (di-tau)
excess also reported by CMS [12], and a bb excess detected by LEP [13].

Such anomalies can be addressed by Beyond the Standard Model (BSM) scenarios,

motivated by the need to explain these phenomena either individually or collectively.
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Specifically, focusing on theoretical constructions that could account for the
aforementioned 95 GeV anomalies, several BSM scenarios have been proposed

[14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35].
Among these frameworks, we focus on the (B — L) Supersymmetric Standard Model
((B— L)SSM), a non-minimal realisation of Supersymmetry. This model not only
addresses many of the SM’s unresolved issues [36] but also provides a potential
explanation for the vy anomaly at 95 GeV [37]. From a physics perspective, our goal is
to determine whether this BSM scenario can also account for the 777~ and bb
excesses. Within BSM phenomenology such an endeavour is known the Parameter
Scan (PS) problem [38].

The Parameter Scan Problem (PSP) involves a systematic exploration of the
multi-dimensional parameter space of a new physics scenario. This process includes
calculating numerical values for model predictions across various points in its
parameter space, applying experimental and theoretical constraints, and identifying
satisfactory regions that can explain multiple phenomena. The satisfactory regions in
the parameter space are found by checking whether a theoretical prediction matches
within some error margin measured features of anomalous data or respects exclusion
limits if no BSM observations have been made. However, parameter scan (PS)

methods must address several computational challenges, including:

e Sparsity and Disconnected Regions: The regions in the parameter space of
a BSM scenario that can accommodate a combination of experimental results are

often sparse and possibly disconnected.

e High Dimensionality: The parameter space of these models is typically

high-dimensional, covering a wide range of in each dimension.

o Computational Cost: Numerically evaluating a single configuration of a BSM
model using standard High Energy Physics (HEP) software tools is

computationally expensive.

Therefore, selecting a PS method suitable for a specific phenomenological study is not
trivial. Expert knowledge of the BSM model and its computational demands must be

evaluated to perform a successful phenomenological study.

The PSP is commonly framed as a sampling problem [39], often addressed using
Bayesian inference techniques [40]. One widely used approach is Markov-Chain Monte
Carlo (MCMC) [41] methods, which are employed to estimate probability density
functions across the parameter space. Extensions to MCMC, such as the Nested
Sampling method [42], are also highly popular in the High Energy Physics (HEP)
community. While MCMC methods and their variations are effective for probabilistic

inference, model fitting, and have been widely adopted in the physical sciences [39],



they still face the challenges of sparsity, high dimensionality, and computational cost in

the context of BSM parameter space exploration.

Recent advances have explored the integration of Machine Learning (ML) [43, 44]
methods into PS techniques offering a promising approach to addressing challenges
related to efficiency and scalability. Artificial Neural Network (ANNs) based methods
[5, 45] have been proposed, adopting different formulations, such as regression and
classification. For regression, the physical observables are learned in an incremental
manner, while for classification the viability of a parameter space configuration is
treated as a label. Further, in both cases the learned model is incorporated into a
policy to perform an informed sampling strategy. An alternative approach was
developed in [46, 47], using Active Learning (AL) practices to train a Neural Network
(NN) discriminator. The primary aim of this approach is to incrementally learn the
decision boundary in regions of the parameter space where the model is allowed.
Although NN based methods offer diversity in the search space configurations leading
to an informative characterisation of the satisfactory regions, they require large
datasets to achieve high accuracy, which can be challenging when dealing with
computationally expensive HEP toolbox. This sample efficiency problem was noted in
[48], where an alternative strategy was employed. The PSP is re-framed as a
single-objective Black-Box Optimisation (BBO) problem, employing various
optimisation methods, including Evolutionary Algorithms (EA) [49, 50] and Bayesian
Optimisation (BO) [51]. BO is a model based approach for optimising black-box
functions that are computationally expensive to evaluate. It builds a surrogate model,
typically a Gaussian process (GP) [52], to approximate the objective function and uses
an acquisition function to decide where to sample next. By balancing exploration and
exploitation, BO aims to find the global optimum with the least possible function

evaluations.

Practically, PS methods either from the sampling approach or the ML based approach
need to be implemented in a computational framework to be used by the community.
Several PS and sampling libraries have been developed for phenomenology, including
BSM Toolbox [53], xBit [54], EasyScan HEP [55], and BSMart [47]. Each of these
libraries addresses the PS problem with unique software designs and specific usage
goals. They share common features such as integration with a set of HEP packages,
implementation of various PS algorithms, and the use of configuration files to simplify
setup. These tools provide the community with a range of resources tailored to

different applications.

The research projects in this thesis aim to: first, advance the development of ML-based
approaches in the existing literature by proposing a PS method that improves sample
efficiency, particularly in cases where numerical evaluations of BSM models (with the
aforementioned (B — L)SSM as our benchmark example) are computationally

expensive; second, foster innovation in PS algorithm development through the
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introduction of a novel computational framework; and finally, provide insights and
lessons learned from addressing the PSP using different ML approaches such as

formulating the PSP as a Reinforcement Learning (RL) problem.

This chapter on this thesis are structured as follows:

1. The Standard Model and Beyond: The theoretical foundations of particle
physics are introduced, starting with an overview of the SM. This includes an
description of the SM Lagrangian and its fields. A brief discussion follows on the
theoretical and experimental aspects of the Higgs boson. The challenges faced by
the SM, along with anomalies hinting at new physics, are then reviewed.
Subsequently, various BSM scenarios proposed to address these challenges are
examined, to give a sense of the model space, finishing with the introduction of
Supersymmetry and the (B — L)SSM.

2. Automated BSM Phenomenology: It begins with an overview of the HEP
software ecosystem commonly used in phenomenological studies. The PSP is
then defined, along with the computational challenges inherent in conducting
parameter scans, including issues such as high computational cost, multiple
constraints, and high dimensionality. This chapter, highlights the primary
research question that this thesis seeks to address, setting the stage for the

developments described in the later chapters.

3. Data Modelling: An in-depth exploration of ML techniques for regression is
introduced, specifically focusing on how to perform regression given a dataset.
This includes the use of GPs, which learn a distribution over a family of
functions that can describe the dataset, and ANNs, which utilise deterministic

mappings. The discussion builds from linear regression to MLPs.

4. Sampling and Decision Making: A review of a small set of Monte Carlo
sampling algorithms that are well-established in particle physics research and
utilised in this thesis, specifically Rejection Sampling and the MCMC
Metropolis-Hastings (MH). Following this, decision-making frameworks are
introduced, including BO, which plays a crucial role in the new PS methods
proposed in this work, and Reinforcement Learning (RL), a behavioural

framework for optimisation and exploration.

5. Space Exploration with Reinforcement Learning: This chapter explores
the application of RL for the PSP. Although the results were unsatisfactory due
to RL’s sample-intensive nature and the difficulty in creating an effective reward
function, this exploration highlights key limitations and challenges of this
formulation. The insights gained significantly influenced the thesis’s direction,

guiding the development of its primary contributions.



6. Bayesian Active Search on Parameter Space: The PSP is formulated as an
Active Search (AS) Problem which borrows the key elements from BO by shifting
the task to search of a class of points than optimisation. In this approach,
multiple phenomenological signatures of a particular BSM model are set as the
multiple objectives, constrained by experimental measurements. These can refer
to particle masses, Branching Ratios (BRs), production cross-sections or any
model prediction information. We introduce a novel ML approach, named
b-CASTOR, to efficiently scan the parameter space. This method uses GP
surrogates to approximate multiple objectives constrained by experimental
measurements and employs a volume-based acquisition function to ensure a
comprehensive characterisation of the satisfactory region in the parameter space.
Our method outperforms traditional competing algorithms, such as those based
on MCMC methods, offering a more effective strategy for exploring parameter

spaces in computationally expensive BSM scenarios.

7. hep-aid: A new computational framework: This chapter presents hep-aid,
a modular Python library designed for utilising, implementing, and developing
PS algorithms. Originally conceived for sample-efficient, multi-objective AS
approaches, it has proven to be versatile for implementing a variety of PS
methodologies. The library currently integrates three ML-based approaches:
Constraint Active Search (CAS) algorithm, a point-wise multi-objective AS
method, the proposed b-CASTOR algorithm and an NN-based PS algorithm
known as MLScan, which leverages Neural Networks. The library’s modules and
functionalities are designed to be easily extensible and compatible with other
external software used in phenomenology, fostering adaptability and innovation

in PS exploration.

Finally, the search for a definitive BSM model involves two primary search spaces: the
model space—an ever-growing and vast number of BSM scenarios proposed by
researchers—and the parameter space of each model. Each specific parameter
configuration within a single BSM scenario constitutes a distinct model, offering rich
and potentially unique phenomenology. This can result in vastly different predictions
even within the same BSM scenario. The primary results of this thesis advance the
methodologies for exploring the second type of space, the parameter space. However,
these methods have been developed with a long-term vision of creating methodologies

for the automated exploration of the first type of space, the model space.






Chapter 2

The Standard Model and Beyond

2.1 The Standard Model of Particle Physics

The ATLAS [56] and CMS [57] Collaborations at CERN announced the observation of
a Higgs boson with a mass of approximately 125 GeV in 2012. This discovery was a
pivotal milestone for the now strongly established SM [58] of particle physics, a
quantum field theory (QFT) that provides a comprehensive framework for
understanding the universe at its most fundamental level by describing elementary

particles and their interactions, illustrated in Figure 2.1.

The SM is formed by the combination of electroweak theory [59, 60, 58] and Quantum
Chromodynamics (QCD) [61, 62, 63]. Constructed using the principles of QFT, the
SM describes particles as excitations of underlying fields that exist and interact

according to a Lagrangian that is invariant under the gauge symmetry group,
Gam = SU(?))C X SU(?)L X U(l)y (2.1)

The electroweak theory describes the electromagnetic and weak interactions between
quarks and leptons and is based on the gauge symmetry group SU(2)p, x U(1)y, which
corresponds to weak left-handed isospin and hypercharge, respectively. QCD, on the
other hand, is the theory of the strong interaction between coloured quarks and is

based on the gauge symmetry group SU(3)c.

A key component of the SM is the Electroweak Symmetry Breaking (EWSB)
mechanism [64, 65, 66]. This mechanism provides mass to the W* and Z gauge bosons
while keeping the photon massless, preserving the unbroken U(1)ey, symmetry.
Additionally, through their Yukawa interactions with the Higgs field, EWSB enables
the SM to generate masses for quarks and charged leptons, though neutrinos remain

massless within the SM.
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photon H gluon

Higgs boson

;\,u neutino
'\,Tn.':.‘:m

€ QUARKS @ LEPTONS @@ BOSONS @@ HIGGS BOSON

F1cUre 2.1: Diagram of the constituents of the Standard Model of particle physics

taken from [1], illustrating the fundamental particles that form the atoms, which in

turn make up the chemical elements, the universe, and ourselves. The quarks (red)

and leptons (green) make up matter, while the bosons (blue) mediate the fundamental

forces, with the Higgs boson (purple) responsible for mass generation through the Higgs
mechanism.

2.1.1 The SM Lagrangian

The Lagrangian of the SM can be written as a sum of separate Lagrangian terms.
Each term encapsulates the dynamics and interactions of a specific field sector, namely

the gauge, fermion, Higgs, and Yukawa sectors. It is expressed as,
Lsy=Lag+ Cf + £Higgs + Ly (2.2)
The first term describes the dynamics of the gauge fields, the force mediators,

1 1

v 1 4 v
Lo = —4GZVGQ‘ - ZW;L,W;‘ - 4BWB“ (2.3)
where G, , Wi, , and By, are the field strength tensors for the SU(3)c , SU(2)r ,

and U(1)y gauge groups, respectively. The index a runs over the generators of the
respective gauge groups, while  and v are spacetime indices. The second term in
equation (2.2) contains the kinetic terms and gauge interactions of the fermions, the

fields describing matter, which is given by

Ly=i> F'Df (24)
f
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where f represents the set of fermions f = {q,l,ur,dr,er} with ¢ and [ being the
left-handed quark and lepton doublets, and upr, dgr, eg being the right-handed singlets.
The indices ¢ and j label the three generations of fermions, known as flavour indices.
The Higgs field is a scalar field responsible for giving mass to particles through
spontaneous symmetry breaking, with its dynamics and potential described the third

term in equation (2.2) and is given by,
Lhiges = (D, @)1 (D'®) — V (D), (2.5)

The fermions acquire mass through their interactions with the Higgs field, described by

the Yukawa terms corresponding to the last Lagrangian term in equation (2.2),

Ly = ~YSL'ehd — YIQuh® — VIQ' djp® + hc. (2.6)
where Y5, Y7, Yg are the Yukawa coupling matrices, and ® = iy ®* is the conjugate
Higgs doublet.

From the Lagrangian, the interaction terms between particles determine the Feynman
rules of the model. These rules determine the interaction vertices, propagators, and
external states, allowing the systematic calculation of scattering amplitudes. These
amplitudes describe the probability for specific interaction processes, such as particle
production, decay, or scattering events. This quantity forms the foundation for

computing physical observables that can be directly compared with experimental

measurements. Key observables include:
e Cross-sections: Quantify the likelihood of specific particle production processes.

¢ Decay widths: Measure the rates of particle decays.

e Branching ratios: Indicate the fraction of decays proceeding through specific

channels.

o Kinematic observables: These include invariant mass and angular

distributions, which are reconstructed from the momenta of decay products.

2.1.2 Matter Fields

To describe matter, the SM includes three generations of quarks and leptons, each
consisting of left-handed and right-handed chiral components. The left-handed

fermions transform as weak isospin doublets under SU(2)y, , while the right-handed
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fermions are weak isospin singlets,

U, _ u
Ly = ( e) ,€R, = €, Q1 = <d> JUR, = UR,dRr, = dRr
¢©JL L

v, _ C
Ly = ( “) y€Ry = Hp, Q2 = <> JUR, = CR,dR, = SR (2.7)
KL )L

v _ t
Lz = ( i) y€Ry = TR, Q3 = (b) yURy, = tR,dR, = bR
T )L L

The third component of the weak isospin, I3, takes values I3 = :I:% for the upper and
lower components of the left-handed doublets, respectively, and [ J?i = 0 for the
right-handed singlets. The hypercharge Y} is then defined for each fermion by the
relation,

Yy =2Q — 21}, (2.8)

where @ is the electric charge. This assignment ensures that the total hypercharge

and electric charge of all fermions satisfy,
DVp=>Q;=0 (2.9)
! !

which guarantees the cancellation of gauge anomalies [67]. Anomaly cancellation is

crucial for the mathematical consistency and renormalisability of the theory [68].

2.1.3 Gauge Fields

The interactions between matter fields in the SM are mediated by gauge fields, which
correspond to spin-one bosons. The field B, , associated with the generator Y of the
U(1)y group, couples to the hypercharge of matter fields, contributing to both
electromagnetic and weak interactions. Similarly, the fields WJ’Q’?’, associated with the
generators T%(a = 1,2, 3) of the SU(2)y, group, couple to the weak isospin of matter
fields, mediating weak interactions. In the strong interaction sector, there is an octet of
gluon fields G}A”"’8 , which correspond to the eight generators of the SU(3)¢ group.
This correspondence, a manifestation of the gauge principle, is a cornerstone of gauge
theories [69], where the symmetry structure dictates the interactions between matter

and gauge fields.

The generators of the SU(2);, group are half of the Pauli matrices, satisfying the
commutation relations:
7, 7t| = et (2.10)

where €%¢ is the antisymmetric tensor, and the indices a,b,c = 1,2,3 run over the
three generators of SU(2)y,. Similarly, the SU(3)¢ group has eight generators, which

correspond to half of the eight traceless, Hermitian Gell-Mann matrices that satisfy the



2.1.  The Standard Model of Particle Physics 13

algebra,
[T“, T”] — j fabere, (2.11)

where f%¢ are the structure constants of SU(3)c . The generators are normalised such
that:
arb 1 ab
T [T°T"| = 50" (2.12)

Here T is used for both SU(2);, and SU(3)¢ generators, as the context determines the
relevant group. The dynamics of the gauge fields and their interactions are described
by the field strength tensors, which appear in the gauge kinetic terms of the SM
Lagrangian,

G4, = 9,G% — 0,G% + g, f**°G4 G

Wi, = 0, Wi — 0,W + gae™™WhWS (2.13)

B, = 0,B, —0,B,

where g5, g2 and g; are, respectively, the coupling constants of SU(3)¢, SU(2), and
U(1)y. The non-abelian field strength tensors Gf,, and W}, include terms
proportional to their structure constants, which lead to triple and quartic gauge boson

couplings, corresponding to the self-interactions of the gauge bosons.

Finally, the interaction between gauge bosons and matter fields is defined by the

covariant derivative,
. o . P
Dyp = | 0y —igs TG}, — ig2TaW,, — zglEBH . (2.14)

For quarks, this is the full covariant derivative, as quarks are charged under all three
gauge groups. For leptons, the term for SU(3)¢ is absent, as leptons are not

colour-charged.

2.1.4 The Higgs sector

The EWSB mechanism allows the SM to generate masses for the W* and Z gauge
bosons, quarks, and charged leptons, while preserving the described theoretical
framework for fermions and gauge fields. To achieve this, a self-interacting complex

scalar field ® whith hypercharge Y; = +1, transforming as a doublet under SU(2)y,, is

D = (ig) (2.15)

Then, a scalar potential is defined as,

introduced,

V(®) = 120Td + (@@)2 (2.16)
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When 1% < 0, the neutral component of ® develops a vacuum expectation value (vev),

while the charged component remains zero to preserve U(1)em,

0 2 1/2
e () i () o

This induces the spontaneous breaking of SM gauge symmmetry
SU(3)C X SU(Q)L X U(l)y — SU(3)C X U(l)em (2.18)

The global minimum of the potential defines the ground state of the theory.
Spontaneous symmetry breaking implies that the vacuum does not respect the full

symmetry of the Lagrangian.

The Higgs field couples to the W, and B,, gauge fields via the covariant derivative in
the Higgs Lagrangian, as defined in equation (2.5). The covariant derivative, specified
in equation (2.14), excludes the SU(3)¢ term, as the Higgs field is colour-neutral. After
symmetry breaking, the neutral and charged Goldstone bosons, corresponding to the
broken generators, mix with the gauge fields and provide the longitudinal components
of the W* and Z bosons in the unitarity gauge. These bosons acquire masses,

N (1 ) Kl
4z 4 '

miy = (2.19)
A generator of the gauge symmetry remains unbroken, corresponding to the U(1)em
gauge symmetry. Its associated gauge field, the photon, remains massless. Similarly,
the eight colour gauge bosons, the gluons, remain massless, as they correspond to the

conserved SU(3)¢c gauge symmetry with its eight unbroken generators.

The fermions of the SM acquire mass through renormalisable and gauge-invariant
interactions between the Higgs field and the fermions, known as Yukawa interactions.
These interactions are described by the Lagrangian defined in equation 2.6. The
Yukawa coupling matrices encode the strength of the interactions between the Higgs
field and the fermions. When the Higgs field acquires a vev, the Yukawa terms

generate mass matrices,

e u d
ME = Y;]U u Y;JU d __ }/'UU
]

—%7 ij_ﬂv zg_\/i

These mass matrices, however, correspond to the gauge eigenstates of the fermions.

(2.20)

Diagonalising the Yukawa-generated mass matrices through unitary transformations
leads to the physical masses. For the quark sector, the mass matrices M* and M? are

diagonalised separately by the unitary matrices Vi, Vg, VLd, VI‘%, giving,

(V,—f‘)Jr M"Vg = diag (ma, me, my) , (Vfl)Jr Mde%i = diag (mgq, ms, my) . (2.21)
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ensuring that the mass terms in the Lagrangian correspond to quarks with definite
masses. While the right-handed quarks (ug,dr) do not participate in weak
interactions, the left-handed quarks (ur,dr) do through the weak interaction
Lagrangian. This involves the matrix structure V = (V)T V| known as the
Cabibbo-Kobayashi-Maskawa (CKM) matrix, which governs quark flavour mixing and

introduces phenomena such as CP violation in the weak interactions CITE.

For leptons, the Yukawa-generated mass matrix M€ is diagonalised, simiraly as

equation (2.21), with the unitary matrices V; and Vj, leading to
(V)T MoV = diag (me, my,, m,) (2.22)

In the SM, neutrinos remain massless, as no Yukawa terms are introduced for them.

2.2 Higgs physics

The Higgs boson is characterised by the cross sections of its production processes and
the branching fractions of its decays. At the LHC [2, 70], the dominant production
mode is gluon-gluon fusion (ggF'), which involves two gluons fusing through a
top-quark loop to produce a Higgs boson. The next most significant mode is vector
boson fusion (VBF), where two quarks interact via the exchange of W or Z bosons,
which subsequently fuse to generate the Higgs boson. Other production modes include
associated production with a vector boson, commonly referred to as Higgsstrahlung
(WH, ZH), where the Higgs boson is produced alongside a W or Z boson, and
associated production with top or bottom quarks (tH,ttH, bbH). The Feynman
diagrams for the production modes are ilustrated in Figure 2.2. The produced Higgs
boson rapidly decays into various final states, with the leading decay modes including
a pair of fermions (e.g., bb or 7777, a pair of heavy bosons (e.g., WW* or ZZ* ), or a
pair of photons (y7), shown in Figure 2.3. Additionally, it can decay into gluon pairs (
gg ) via a loop-mediated process (the time reversal of diagram (a) in Figure 2.2) or

into rarer channels such as 77, as illustrated in Figure 2.3.

A key tool in this discovery was the utilisation of the signal strength parameter,
denoted by p. This parameter quantifies the level of agreement between observed
signal yields and the expectations from the SM. The signal strength p is defined as the
ratio of the observed rate of a specific process to the rate predicted by the SM. More
formally, for a production mode i and a decay channel f, the signal strength is

expressed as,

g,
= ——, (2.23)



16 Chapter 2. The Standard Model and Beyond

Higgs boson production modes
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FIGURE 2.2: Higgs boson production mechanisms: (a) gluon-gluon fusion (ggF), (b)

vector boson fusion (VBF), (¢) associated production with a W or Z boson (WH, ZH),

(d) production with a top or bottom quark pair (ttH, bbH), and (e, f) production with
a single top quark (tH).

Higgs boson decay channels

a) 1% b) f
14 f
c) W v, Z
< =T
w v

FIGURE 2.3: Higgs boson decay channels: (a) into heavy vector boson pairs, (b) into
fermion-antifermion pairs, and (c, d) into photon pairs or Z~ .

f

where o7 is the observed cross section for the process i« -+ H — f , and azf gv s the

corresponding SM prediction. The observed cross section sz

can be factorised into the
product of the production cross section (o; ) and the branching fraction ( B/ ) for the
decay mode f,

Bl
W= B (2.24)

0. SM * BécM

This factorisation is valid under the narrow-width approximation (NWA) [71], which
assumes that the intrinsic width ( I'gy ) of the Higgs boson is much smaller than its
mass ( my ). Then, the individual signal strength for production and decay can be

defined as p; = 0;/ (04) gy and wl =B/ (Bf)SM.
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In the CMS, at the time of discovery the combined p was found to be 0.87 4 0.23,
currently, ;4 = 1.002 + 0.057 [2], showing excellent agreement with the SM expectation.

cMs 138 fb' (13 TeV) cMs 138 fb™! (13 TeV)
® Observed [] +1s.d. (stat) ® Observed [] +1s.d. (stat)
m— 1 5.d. (Stat @ syst) [ +1s.d. (syst) — 11 5.d. (stat © syst) [ +1s.d. (syst)
—— #2 s.d. (stat @ syst) —— $2 s.d. (stat @ syst)
B Stat Syst B : Stat  Syst
Hggh -@— 097/9% w004 1007 g - 1132000 006 1§
. 0.12 008  +0.09
: uZz —@— 097511 Zoor loos
fver —— 080012 5% 3% !
B ' uw —@— 0.97£009 %005 +0.08
o i 14485 w021 208 ;
— E u —E—é— 0.85#0.10  #0.06  +0.08
Hn —@— 120922 0z 009 -
B : 105557 w015 238
12 _E_ +0.20 0.13
" g 094%5% =015 g2 4045 4042 4017
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FIGURE 2.4: Signal strength parameters (u) for various Higgs boson production modes

(left) and decay channels (right) from CMS with 138 fb~! of data at 13 TeV. The dashed

line indicates the Standard Model prediction ( 4 = 1), with statistical (£1o, blue) and

systematic ( £lo , red) uncertainties shown, alongside combined (42c0) confidence
intervals in black. Image obtained from [2].

Figure 2.4 illustrates the signal strength parameters (u) for various Higgs boson
production modes (left) and decay channels (right), as measured by the CMS
collaboration using 138 fb~! of proton-proton collision data at a centre-of-mass energy
of 13 TeV. A value of ;4 = 1 , indicated by the vertical dashed line, corresponds to
perfect agreement with the SM prediction. The left plot shows p values for different
production processes (as shown in Figure 2.2), while the right plot displays u values for
various decay processes (as shown in Figure 2.3). The confidence intervals for each p
value are represented as error bars: blue and red bands indicate 1o statistical and
systematic uncertainties, respectively, and black lines denote the combined +2¢

intervals.

On the other hand, Figure 2.5 shows the signal strength modifier () measured by the
ATLAS experiment in 2012. The reported combined result of ;4 = 1.4 + 0.3 represents
a combination of the channels displayed in the figure. Currently, the measured value
stands at © = 1.05+0.06 [70].
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FIGURE 2.5: The signal strength modifier (1) measured by the ATLAS experiment for a

Higgs boson mass of 126 GeV, utilising data from 2011-2012. Individual measurements

are shown for various Higgs decay channels, along with the combined result (p =

1.4 £0.3). The vertical dashed line indicates the Standard Model prediction of p = 1.
Image obtained from [3].

Measurements from both CMS and ATLAS show strong consistency with SM
predictions for a Higgs boson with a mass around 125 GeV. Crucially, the discovery
was confirmed with a statistical significance of approximately 5o, signifying the
extremely low probability of the observed excess of events at 125 GeV arising from
random fluctuations. This level of significance provided compelling evidence for the

existence of the Higgs boson.

2.3 Challenges and New Physics

The SM has long been the cornerstone of our understanding of fundamental particles
and their interactions. While it provides a robust framework for describing the
behaviour of known particles, several experimental and theoretical challenges remain
unresolved. These include the discovery of non-zero neutrino masses, the mysteries of
dark matter and dark energy, hierarchy problems associated with the Higgs boson, and
the grand challenge of developing a unified theory that incorporates all fundamental
forces, including gravity. Beyond these, anomalies observed in experimental data
suggest potential deviations from the SM’s predictions, hinting at the existence of New
Physics (NP).

This section introduces these challenges, exploring the limitations of the SM and the
evidence necessitating the construction of theoretical models that go beyond the SM,

either by extending or modifying it, and even by expanding fundamental principles.



2.3. Challenges and New Physics 19

Neutrino masses

In the SM, neutrinos are assumed to be massless left-handed particles. However,
studies of solar, atmospheric, reactor, and accelerator neutrinos have conclusively
demonstrated that neutrinos undergo flavour oscillations, a phenomenon known as
neutrino oscillations (for a review, see [72]). This behaviour is only possible if
neutrinos have non-zero masses and different mass eigenstates. These observations
challenge the original framework of the SM, necessitating extensions or modifications

that can explain neutrino masses.

Neutrino oscillations arise due to a misalignment between the neutrino flavour
eigenstates (ve, v,y ), which interact with the weak force, and the mass eigenstates
(v1,v2,v3), which have definite masses (my, mz2, m3). These two bases are related by a
unitary transformation described by the Pontecorvo-Maki-Nakagawa-Sakata (PMNS)

matrix U,

3
Vo = Z Univi, (a=e,u,1), (2.25)
i=1

here, U,; are the elements of the PMNS matrix. As neutrinos propagate, the difference
in masses between the eigenstates leads to phase differences, resulting in oscillations.
The probability of a neutrino, which travels through vacuum, of flavour a being

detected as a neutrino of flavour § at a distance L from its source is given by:

N Am?l L
P(vo = vg) =Y UaUpUs;Ugjexp | —i 5 T (2.26)
i?j
where Am?j =m?— m? is the mass-squared difference between the eigenstates, E is

the energy of the neutrino.

Dark Matters

So far, the SM is responsible for explaining all the known elementary particles,
including those that make up radiation and baryonic matter. However, these
constitute a small fraction of the total composition of the universe. Astronomical
observations and cosmological theory suggest that baryonic matter contributes only

~ 5% to the mass density of the universe. The main component is dark energy ~ 69%
followed by dark matter with ~ 25%. As illustrated in Figure 2.6.

Dark matter (DM) is the name for the problem of an invisible non-baryonic physical
entity observed in the universe. Invisible, because it does not interact with the
electromagnetic force, only with gravity. Evidence for the existence of DM comes from
a wide range of astronomical scales, from individual galaxies to the entire universe [73].

The three main lines of observational evidence are: rotation curve measurements of
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Dark matter

Dark energy

’ ] Neutrinos
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\ Black holes I

FIGURE 2.6: Universe composition: Dark energy makes up 69% of the universe’s energy
density, dark matter 25%, and atomic matter 5%. Minor components include neutrinos
(0.1%), cosmic radiation (0.01%), and black holes (0.005%). Image adapted from [4].

individual spiral galaxies, which show that the outer regions of galaxies rotate much
faster than can be explained by the visible mass of stars and gas; gravitational lensing
and velocity dispersion of galaxies within clusters; and precise measurements of the
Cosmic Microwave Background (CMB) anisotropies and the distribution of matter in
the universe. All these observations demonstrate that the total observable matter is
insufficient to account for the total mass of the specific physical systems, whether

galaxies, clusters, or large-scale structures (LSS).

Moreover, the data can be explained by incorporating specific properties into DM
models. These include: DM behaves like matter and as a non-relativistic fluid (cold);
DM is non-interacting, meaning its interactions with itself or with ordinary matter are
negligible; and DM is stable, implying it has been present since the early phases of the

universe and has a lifetime greater than the age of the universe.

Dark energy, in contrast to dark matter, is an enigmatic force driving the accelerated
expansion of the universe. Unlike matter, it is evenly distributed across space and does
not form clusters. Its existence is supported by measurements of distant supernovae,
which indicate an accelerating expansion rate. Further evidence comes from studies of
the CMB and LSS. For a more extensive review, see [74]. Despite being the dominant
component of the observable universe, the true nature of dark energy remains one of

the greatest mysteries in modern physics.

Fine-tuning, Naturalness and Hierarchy problems

The hierarchy problem is a fundamental issue in QFT concerning the stability of the
Higgs boson mass under radiative corrections. In the SM, the Higgs mass parameter
receives quantum corrections from loop diagrams involving fermions, gauge bosons,
and the Higgs itself. These corrections generically introduce quadratic divergences,
making the Higgs mass highly sensitive to any new physics at high energy scales, such
as the Planck scale (Mp ~ 10Y GeV).
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A conventional way to present the hierarchy problem is through loop-level calculations,
where the leading quantum correction to the Higgs mass squared, using a momentum
cut-off A, takes the form

A
A2
1672°

omi; ~ (2.27)
This suggests that, unless finely tuned, the Higgs mass should naturally be of the order
of A, which is many orders of magnitude larger than the observed electroweak scale
(O(100) GeV). However, this formulation depends on the choice of regularisation. In
particular, if dimensional regularisation is used, quadratic divergences formally
disappear, as this method expresses divergences as poles in € = 4 — d, rather than
explicit power-law divergences in A. While this avoids the problem in a technical
sense, it does not resolve the fundamental issue: fine-tuning is still required to

maintain a light Higgs boson.

More importantly, even if one regards the SM as an effective field theory valid up to a
scale A, the hierarchy problem persists when new degrees of freedom appear at high
energies. If, for instance, the SM is embedded in a more fundamental theory
containing heavy scalars that couple to the Higgs [75], integrating them out generates
additional corrections to the Higgs mass. Consider a scenario where a heavy scalar

field S couples to the Higgs through the Lagrangian

Lhigh D —As|SPIH[? —m|SP, (2.28)

When this heavy scalar is integrated out, the correction to the mass parameter is

_ s
1672

A
Ap? A? —2m%log —| +... (2.29)
mgs

which explicitly demonstrates that even in a renormalisation scheme where quadratic

divergences are absent, the Higgs mass remains sensitive to the scale mg.

Thus, while dimensional regularisation alters the way divergences appear, it does not
eliminate the underlying fine-tuning issue. Moreover, when new physics at high scales
is included, threshold corrections from heavy fields reintroduce the problem,
reinforcing the necessity of new physics beyond the SM to explain the smallness of the

electroweak scale in a natural way. The later known as the naturalness problem.

In summary, fine-tuning, naturalness, and the hierarchy problem are all considered
significant challenges because they undermine the principle of separation of scales.

These problems are rooted in the Higgs mass’s sensitivity to quantum corrections from
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high-energy scale physics [76], and motivate the search of new theories or mechanisms

to address them.

Parameters

The SM, while highly predictive and experimentally validated, relies on a set of
fundamental parameters that are not derived from the theory but must instead be
determined through experiments and manually input into the framework. These
parameters include particle masses, coupling constants, and mixing angles, leading to
around 19. The SM offers no mechanism or theoretical insight to predict these values,

they are external inputs rather than intrinsic outputs of the model.

Other Fundamental Challenges

In addition to the challenges posed by neutrino masses, dark matter, dark energy, and
the hierarchy problem, several other unresolved questions driven either by
experimental observations or theoretical proposals highlight the need for BSM models.
The matter-antimatter asymmetry of the universe, or baryogenesis, where the SM
alone cannot account for the observed matter-antimatter imbalance. The strong CP
problem, which raises questions about the absence of observable CP violation in strong
interactions. Grand Unified Theories (GUTs) represent another theoretical challenge,
aiming to unify the three fundamental forces described by the SM into a single force

governed by a larger symmetry group at a high energy scale, Agur.'

Ultimately, the grand challenge is to construct a theory that incorporates all
interactions, including gravity. Gravity, unlike the other forces, is described by General
Relativity (GR), a classical theory that explains it as the curvature of spacetime
caused by mass and energy. However, integrating gravity into a quantum framework
has proven to be an immense challenge. Developing a consistent theory of quantum
gravity requires combining the principles of GR with those of quantum mechanics, a
task that has inspired many efforts and ideas, such as string theory and loop quantum
gravity. This unification will be essential for understanding extreme phenomena where
both gravitational and quantum effects are significant, such as black-hole physics and

the conditions of the early universe [80, 81].

2.3.1 New Physics Anomalies

We have discussed some of the major and fundamental problems of the SM, which

have posed challenges for several decades. However, there are other types of hints that

IFor detailed discussions on these challenges, refer to the extensive lectures and reviews on BSM
physics, such as [77, 78, 79].
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call for the construction of BSM frameworks. These include anomalies observed in
current experimental results. An anomalous effect refers to a deviation in a specific
process or observable from the predictions made by our current understanding of the

universe, in this case, the SM.

In [82], a deviation in an experimental measurement is categorised as an anomaly
based on three criteria. The first, Statistical Significance, requires the observed
deviation to have a global statistical significance of at least 3o. Secondly, Experimental
Validation emphasises that the signal should appear in multiple independent channels
or be detected by more than one experiment, ensuring reproducibility and robustness.
Finally, Theoretical Consistency mandates that the deviation be explained by a robust
theoretical model that aligns with existing experimental constraints and established

particle physics knowledge.

As noted in [10], we are in an era of anomalies. Numerous anomalous results have
been reported, with a comprehensive summary and explanation provided in [9] and
[82]. These anomalies span a wide range of energy scales, and include phenomena such
as the anomalous magnetic moment of the muon (a,), nuclear decays suggesting a
light ~ 17 MeV boson, excesses and deficits of electron neutrinos, 5-decay anomalies,
hints of CP violation in hadronic meson decays, and flavour-changing neutral current
semi-leptonic B-decays, among others. In this work, however, we focus specifically on

the anomalies observed in scalar searches.

2.3.2 Higgs Boson Searches

Results from new Higgs boson experimental searches are expressed as limits on the
signal strength p, introduced in Section 2.2. This parameter quantifies the scaling of
the total SM rate for a specific signal channel or an ensemble of channels. Combined
results from Higgs boson searches at CMS [11] and ATLAS [83] in the H — v+ final
state reported excesses of 2.90 and 1.70, respectively, corresponding to a resonant mass

value of 95.4 GeV. The measured signal strength for this result is given as follows:

exp
exp _  ATLAS+CMS _ 0°0(99 = ¢ —vy) _ 0.27+0-10 930
Pyy = Hay T Mgy 5 H ) 000 (2.30)

where ¢ is the possible particle behind the observed anomaly and H is a would-be SM
Higgs boson, both with a 95.4 GeV mass. Additionally, though, two other search
channels presented anomalies which support the possibility of such a y~ resonance.
LEP [13] reported a now long-standing anomaly in searches for light Higgs bosons in
the eTe™ — Z(H — bb) channel, corresponding to a 2.3¢ local excess at a Higgs mass
98 GeV, leading to a signal strength modifier given by

exp 0o (ete™ — Z¢ — Zbb)
Foo' = Gsm (ete= — ZH — Zbb)

= 0.117 + 0.057. (2.31)
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The CMS collaboration has detected an excess in the low-mass region for the
gluon-fusion production mode and decay into 77 pairs [12], which is consistent with
the excess observed in the di-photon search by CMS. For a mass value of 95GeV, CMS
has reported a local significance of 2.6¢. This corresponds to a signal strength

o*P (gg — ¢ —17777)

e =1.24+0.5. 2.32
Hrr oM (gg — H — 7F77) ( )

The various mass values reported are consistent with each other, given the limited
mass resolutions, particularly for the bb and 777~ final states. The results of searches
for light neutral scalars at the LHC, using the vy and 77~ channels, and at LEP,
using the bb channel, collectively provide compelling evidence supporting the
interpretation of these signals as potential indicators of new physics within the

framework of BSM theories.

2.4 Beyond the Standard Model

The historic success and decades of development have shown that, on one hand, the
SM is the most successful theory we have for describing the universe at its smallest
scale. On the other hand, it is not complete. Many of the fundamental challenges
outlined in the previous section highlight the gaps in the SM across a wide range of
energy scales. Theoretical questions remain open, as theory has often been at the
forefront of discovery in the history of physics, a notable example being symmetry.
The current task is to build a successor to the SM, a comprehensive high-energy scale
model that addresses as many of these challenges as possible while containing the SM
at low energy scales, in accordance with the correspondence principle. Such a model is
known as BSM.

In retrospect, the theoretical framework developed for the SM suggests a kind of recipe,
as follows [84]: choose the general gauge symmetry group and the corresponding gauge
bosons, define the number of matter fields, specify the field representation for each
field under the symmetry group, add scalar fields and define the potential to generate
masses, define the covariant derivatives, and write the most general renormalizable
Lagrangian invariant under the chosen group. Use the QFT machinery to calculate
observables and make predictions about both old and new phenomena, then compare

these with experimental observations. If there is a mismatch, revise and try again.

In this section, we outline some of the approaches explored in the literature to extend
the SM, addressing key challenges and explaining new physics, including neutrino
masses, dark matter, and anomalies observed in experimental searches. The landscape
of BSM theories is immense, and this discussion is not intended to be an exhaustive

review. Rather, the goal is to provide an overview of how extensions to different
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sectors of the SM can influence various aspects of particle phenomenology. Often,
modifications to multiple sectors are required simultaneously to ensure theoretical

consistency and alignment with experimental observations.

2.4.1 Modified Scalar Sector

Extending the scalar sector involves introducing additional scalar fields beyond the
Standard Model Higgs boson. One of the most studied examples is the
Two-Higgs-Doublet Model (2HDM) [85], which includes two scalar doublets. This
results in additional physical states: two CP-even scalars (h and H), one CP-odd
scalar (A), and two charged Higgs bosons (H*). Another example is the
Georgi-Machacek Model [86], which extends the scalar sector with scalar triplets,
leading to new phenomena such as doubly charged Higgs bosons (H**). These
additional scalar states can manifest in collider experiments as excesses or resonances

in channels such as di-photon or multi-lepton final states.

New scalar fields can also act as dark matter candidates or mediate interactions
between dark matter and the Standard Model. A simple extension involves adding a
scalar singlet [87], which can be stable and serve as a dark matter particle. Scalars
may also mediate interactions between Standard Model particles and a hidden sector,

resulting in the so-called Higgs-portal dark matter models [88].

Moreover, scalars can facilitate the generation of neutrino masses through mechanisms
like the seesaw mechanism [89]. In the Type II Seesaw, a scalar triplet is introduced

that couples to leptons, giving rise to neutrino masses.

Extended scalar sectors can also enable mechanisms like electroweak baryogenesis,
where additional scalar fields modify the Higgs potential to allow a first-order phase
transition. This is a critical ingredient for explaining the observed matter-antimatter
asymmetry in the universe. For a comprehensive review of extended scalar sector

models and their implications, please see [90].

2.4.2 Extended Fermion Sector

In the SM, fermions include quarks and leptons, arranged in three generations.
Extensions modify this structure by Adding right-handed neutrinos to explain neutrino
masses. Introducing vector-like fermions that couple to the SM Higgs and gauge
bosons without causing anomalies. Including exotic fermions, such as particles with

unconventional charges or representations under the SM gauge group.

Adding right-handed neutrinos is a common approach in seesaw models to explain the

smallness of neutrino masses and neutrino oscillations [89]. Right-handed neutrinos



26 Chapter 2. The Standard Model and Beyond

(vr) are SM gauge singlets, but in some extensions like U(1)B — L, they carry charges
under the additional symmetry. They can generate small neutrino masses through the

Type I seesaw mechanism, where the light neutrino mass is approximately:

with mp as the Dirac mass (typically of the order of quark and charged lepton masses)
and Mp as the large mass of the right-handed neutrino. The heavy neutrinos can also

lead to lepton number-violating processes, such as neutrinoless double-beta decay.

The introduction of Vector-Like Fermions (VLFs) [91, 92] is another path for the
extension of the SM fermion sector. In the SM left-handed and right-handed
components transform differently under the SU(2)r, x U(1)y gauge symmetry. In the
case of VLFs, they possess both left-handed and right-handed components that
transform identically under these symmetries. This unique property allows VLFs to
mix with SM fermions without introducing gauge anomalies, maintaining theoretical
consistency. Such mixing can lead to observable deviations in precision measurements,
including modifications to Higgs boson decays and alterations in electroweak couplings.
For instance, VLFs can influence processes like H — ~ and affect interactions

involving the Z and W bosons.

2.4.3 New Gauge Groups

Extending the gauge sector involves introducing new gauge symmetries and associated

gauge bosons beyond the SM.

A simple and widely studied example is to extend the SM group with an Abelian U(1)’
symmetry. A new boson, known as the Z’ [93], arises as the gauge boson of this
symmetry. The Z’ can mix with the Z boson from the SM via kinetic or mass mixing,
which affects its couplings to SM particles. The U(1)" symmetry must be
spontaneously broken, usually by introducing a scalar field that acquires a VEV,
thereby also modifying the scalar sector. The properties of the Z’ boson, such as its
mass, couplings, and decay channels, depend on the specific realization of the U(1)
symmetry. Popular examples include U(1)p_r,U(1)x, and other flavor-dependent
symmetries like U(1)z,_r;, offering promising insights into dark matter interactions,

flavor physics, and collider phenomenology [94].

Particularly, the U(1)p_, extension, which corresponds to the difference between
baryon number (B) and lepton number (L), modifies the fermion sector by introducing
right-handed neutrinos (vg) to cancel anomalies and enable the seesaw mechanism,
generating small neutrino masses through mixing with light SM neutrinos. The

associated Z’ boson couples to SM fermions in proportion to their (B — L) charges,
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mediating interactions that can be tested in collider experiments or precision flavour

studies.

Grand Unified Theories (GUTs) are motivated by the unification of the SM gauge
interactions into a single framework, with groups like SU(5) [95], SO(10) [96], or Fg
[97]. In these models, a symmetry breaking chain is required to reduce the

higher-dimensional gauge group to the SM gauge group.

GUTs predict new gauge bosons associated with the larger symmetry group, such as X
and Y bosons (in SU(5)). These heavy bosons mediate interactions that violate
baryon and lepton number, leading to proton decay. GUTs also introduce Z’ bosons
through additional U (1)’ symmetries in SO(10) or Eg, with unique couplings to SM
particles. GUTs require additional scalar fields for symmetry breaking, typically

involving fields in higher-dimensional representations.

The fermion sector is also extended, as GUTs unify all SM fermions (quarks and
leptons) into a single representation of the larger symmetry group, often introducing
right-handed neutrinos and exotic fermions. These exotic fermions may include stable
particles that can serve as dark matter candidates. Hence, GUTs offer a rich and
complex phenomenology that can address many unresolved challenges described in
Section 2.3, such as proton decay via new gauge bosons, neutrino masses via the
seesaw mechanism with right-handed neutrinos, and stable exotic fermions as dark

matter candidates.

2.5 Supersymmetry

Supersymmetry (SUSY), proposed in the 1970s [98, 99], is considered as one of the
most appealing candidates for physics beyond the SM. Rather than modifying a single
sector of the SM, it extends all sectors by proposing the existence of superpartners

for every known particle by introducing a symmetry that connects fermions and bosons.

SUSY offers several theoretical and phenomenological advantages [100], addressing key
challenges in particle physics. It provides a solution to the hierarchy problem between
the electroweak and Planck scales by introducing superparticle corrections to the Higgs
mass, stabilising it without fine-tuning. It predicts a naturally light Higgs boson mass,
consistent with experimental results, and facilitates the unification of SM gauge
couplings at high energy scales. SUSY also offers a natural candidate for dark matter
(the Lightest Supersymmetric Particle, or LSP) and incorporates gravity via

supergravity (SUGRA), connecting it to string theory.

The aim of this chapter is to introduce the fundamental concepts of supersymmetric
theories and provide an overview of SUSY, its simplest realisation known as the
Minimal Supersymmetric Standard Model (MSSM), and an extension of the MSSM
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with the potential to explain light scalar anomalies, neutrino masses, and other
phenomena. The later corresponds to the (B — L)SSM model, a U(1)p_ ) extension
of the MSSM, which serves as the primary BSM framework used in this work.

2.5.1 SUSY Essentials

SUSY transforms particles of integer spin (bosons) to those with spin 3 (fermions) and

vice versa via the generators Q, which acts on states as follows,

Q | Fermion) =| Boson), Q | Boson) =| Fermion). (2.33)

This relationship implies that each particle has a corresponding superpartner with spin
differing by % . Extensive literature on SUSY, including its algebra and theoretical

foundations is available, for example, see [101, 102, 103].

To incorporate SUSY into a field-theoretical framework, the superfield formalism is
employed. A superfield is a mathematical object that combines all the component fields
of a supermultiplet (scalars, fermions, gauge fields, etc.) and their interactions,
ensuring consistency under supersymmetry transformations. Examples of

supermultiplets include:

o Chiral supermultiplets, which contain a scalar (spin-0 boson) and its

.. . 1
fermionic partner (spin- 5 ).

o Gauge supermultiplets, which include a gauge boson (spin-1) and its

fermionic partner, the gaugino (spin- % ).

These supermultiplets form the building blocks of supersymmetric theories, providing a
unified framework for bosons and fermions within the Lagrangian. The kinetic terms
for the component fields are derived from the superfields, leading to a canonical kinetic

Lagrangian of the form:

Xaa”Du)\a} (2.34)

N | <.

) 1 a rva
Lyin = Z {(DMS:) (D“Si) + MﬁiDM’y”ﬂh’} + Z {4F#VF‘L +

where D, is the standard covariant derivative and o123, —0q are the 2 x 2 Pauli and
unit matrices. The first term corresponds to the kinetic contribution of the chiral
supermultiplet, which includes a scalar field S; and its fermionic partner ;. The
second term describes the gauge supermultiplet, featuring Fjj, , the gauge field strength

tensor for the spin-1 gauge bosons, and their fermionic partners A, , the gauginos.
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Names Superfield S Spin 0 Spin 1/2 SU3)¢,SU(2),U(1)y

squarks, quarks Q qg= (ﬁL, JL) q=(ur, dr) (3,2, %)

(x3 families ) U g u}r% 3,1, —%)
D R dR (3) 17 %)

sleptons, leptons L L= (v, er) L= (v, er) 1,2, —%)
(x3 families ) E €h e% (1,1,1)
Higgs, higgsinos H, H,= (H} H% | H, = (H} H? 1,2,+3
78 Hy = (Hg H(;) Hy= (HY Hy 1,2,-3

TABLE 2.1: Chiral supermultiplets in the Minimal Supersymmetric Standard Model

(MSSM), showing the names of the fields (squarks, sleptons, and Higgs bosons), their

corresponding superfields, spins, and representations under the SM gauge groups. Ad-
apted from [6].

Interactions between the fields are dictated by the superpotential, which contributes to
the scalar potential and generates Yukawa interactions. The form of the superpotential
is theory-dependent, shaped by the field content, symmetries, and objectives of the

specific supersymmetric model.

It is important to note that SUSY cannot be an exact symmetry in nature, as this
would require superpartners to have the same masses as their SM counterparts, which
contradicts experimental observations. To address this, explicit SUSY-breaking terms
are introduced into the theory. These terms prevent the reappearance of quadratic
divergences while effectively parametrising our current ignorance of the fundamental
SUSY-breaking mechanism. Known as soft SUSY-breaking terms, they give rise to a
low-energy effective SUSY theory.

2.5.2 The MSSM

The MSSM is the simplest realisation of SUSY, extending the SM with the minimal
particle content and interactions required to preserve SUSY while incorporating
SUSY-breaking. All particles in the MSSM are organised into supermultiplets, pairing
each SM particle with its corresponding superpartner, as shown in Tables 2.1 and 2.2.
Additionally, R-parity is imposed to ensure the conservation of lepton and baryon
numbers and to stabilise the LSP.

The most general superpotential that satisfies gauge invariance, renormalisability, and

R-parity conservation is given by [104]:

W= > —Yltag, Q;+YidriHa Q;+YlpiHy Lj+puf, Hy  (2.35)

1,J=gen
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Names Superfield S | Spin 1/2 | Spin 1 | SU(3)¢,SU(2).,U(1)y
gluino, gluon G* G g (8,1,0)
winos, W bosons 4% WEWO | wEW?O (1,3,0)
bino, B boson B B B (1,1,0)

TABLE 2.2: Gauge supermultiplets in the Minimal Supersymmetric Standard Model

(MSSM), showing the names of the gauge bosons and their superpartners (gauginos),

their associated superfields, spins, and representations under the SM gauge groups.
Adapted from [6].

where H - Q = €, HQ" is the product between SU(2)1, doublets with a,b are SU(2)r,
indices and €19 = 1 = —e91. The first three term contain the Yukawa couplings among
generations denoted by Y;j’d’e. In addition to the supersymmetric terms in the
Lagrangian, the MSSM incorporates the explicit SUSY-breaking terms in the Lqog

Lagrangian and is given by,

_[’é\ngtSM —
1 3 8
. o o
5 [MlBB—FMQZW Wa‘i'MgZG Ga—F h.c. ] (236)
a=1 a=1
~t ~ at o~ 2 ~ 2
+ 0 md QIQi +m LiLi+m?, |un,[* +md |dn| +mi In| (237)
i=gen
+m¥, H{Hy +m} H)Hy+ Bu (H, - Hy+ he.) (2.38)
+ Y [A%Y;jﬂ*RiHu-Qj—|—A%Y;?Zl}in-Qj+AijZ-§?Ein-Ej+ h.c.}
i:j:gen

(2.39)

The soft SUSY-breaking Lagrangian in the MSSM includes several key terms. The
gaugino mass terms (M7y, My, M3) provide masses for the bino, winos, and gluinos,
respectively, as seen in the first term (2.36). Scalar mass terms

(in, mp,;, Mai, Mg;, My;, MH, , MH,) correspond to the masses of squarks, sleptons, and
the Higgs fields, appearing in the second (2.37) and third (2.38) terms. The bilinear
B term represents Higgs mixing, which contributes to electroweak symmetry
breaking, as shown in the third term (2.38). Finally, the trilinear terms (Af, Agj, Afj)
couple scalar fields through Yukawa couplings, ensuring proper interactions between

generations, as outlined in the fourth term (2.39).

This framework is known as the unconstrained MSSM, where, in the general case,
around 100 unknown parameters are introduced in addition to the 19 parameters of
the SM. This large parameter space makes any phenomenological analysis in the
MSSM highly complex. To address this, the constrained MSSM (cMSSM) introduces
several simplifying assumptions, imposing constraints on the soft SUSY-breaking

parameters based on a set of universal boundary conditions at the GUT scale.
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These constraints are motivated by the minimal Supergravity (mSUGRA) model,
where SUSY breaking occurs in a hidden sector that communicates with the visible
sector through gravitational interactions mediated by Supergravity. These interactions
are assumed to be flavor-blind, resulting in universal soft SUSY-breaking terms, as
outlined in the equations above. Fixing the GUT scale at My ~ 2 x 1016 GeV, the

unification conditions in mSUGRA lead to the following relations for the soft

parameters:
My = My = M3 =my (2.40)
me, = Mig, = Mgy, = Mp, = My, = MM, = MM, =M (2.41)
d L _
Ay = Ay = Aij = Aodyj (2.42)

where my is the universal scalar mass, Ag is the universal trilinear coupling, and my /o
is the universal gaugino mass. These parameters describe the supersymmetric sector at
the GUT scale, along with the bilinear coupling B and the supersymmetric Higgsino

mass parameter M-

2.5.3 Beyond Minimality

While SUSY and the MSSM were introduced in this work as BSM scenarios that
address several shortcomings of the SM discussed in Section 2.3, such as stabilising the
Higgs mass, achieving gauge coupling unification, and providing a dark matter
candidate, the MSSM is unlikely to be the final theory of nature due to persistent
challenges. One issue is the p problem [105, 106], which questions why the SUSY Higgs
mass term g in the superpotential is of the same order as the SUSY breaking scale,
despite the two scales having different origins, and why it satisfies the hierarchy

u < Mgur, Mpy.

Additionally, the little hierarchy problem emerges because the absence of light
superpartners, as suggested by experimental searches, requires fine-tuning of
parameters to maintain the Higgs mass near the electroweak scale despite large
quantum corrections [76, 107]. Finally, the lack of experimental detection of
superpartners at expected mass ranges, such as at the Large Hadron Collider

[108, 109], significantly constrains the parameter space of these models.

Beyond theoretical considerations, the MSSM also faces challenges from light scalar
search results, particularly the ~ 95 GeV excess observed by CMS and ATLAS in the
diphoton channel, as discussed in the previous sections. This anomaly may hint at the
presence of an additional light scalar state. While the MSSM includes two CP-even
Higgs bosons, accommodating a second light Higgs at 95 GeV, in a manner consistent

with both this excess and existing exclusion limits, is difficult. Such a scenario
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typically requires a non-standard mass hierarchy between the Higgs states [104] and
finely tuned mixing angles [110] to sufficiently suppress the scalar’s couplings to vector

bosons and fermions.

These challenges indicate that while minimal realisations of SUSY are valuable
effective low-energy frameworks, they cannot be the ultimate theories of nature [36].
Extensions like the NMSSM [111], (B — L)SSM [36], or entirely new frameworks are
required to address these unresolved issues and provide a more complete understanding

of fundamental physics [111].

2.6 The (B— L) SSM

The (B — L)SSM [36, 112, 113, 7] is essentially the MSSM extended by a U(1)p_p,

gauge symietry,
Gp—ryssm = U(1)y ® SU(2), ® SU(3). @ U(1)p—1,

wherein the U(1)p_1 symmetry is spontaneously broken through the Higgs
mechanism. The chiral superfields and their quantum numbers are summarized in
Table 2.3. The Superpotential of the model is given by [7]

Wi nyssnt =Y 00,y — Y DO,y — Y B, E H g+ 1 T, o1

+ YL 05 — (0 + Y 0 '
where, i, j are generation indices and all colour and isospin indices are suppresed.
Here, the first four terms corresponds to the MSSM Superpotential, incorporating the
Yukawa interactions with their respective Yukawa couplings, namely Y, Y; and Y.
Additional terms describe the interactions between the (s)neutrinos 2 and the singlet
Higgs Superfield 7). The corresponding Yukawa coupling constants are denoted as y,
and yy. Finally, the p/-term is the bilinear mixing between the singlet Higgs fields 7)
and 7).

The additional soft-SUSY breaking terms are given by [7]

B—L)SSM MSSM 1
Egoft ) = Esoft - )\B)\B/MBB/ - 5)‘B’)\B/MB/

(2.44)

—m2nl* = m2|n> —mp ; (75)" 05 — By + T Hyo{ Lj + Ty g
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Superfield | Spin 0 | Spin 1/2 | Generations | (U(1)y @ SU(2), @ SU(3)c @ U(1)p_1)
Q Q Q 3 1/60223%1/6
b d’ de 3 1/30193®-1/6
U s ut 3 -2/301®3®—1/6
L L L 3 -1/202®19 —-1/2
FE & et 3 1®111/2
7 e Ve 3 0R1R1®1/2
i, Hy H, 1 ~-1/2®221®0
a, H, H, 1 1/202®1%®0
f n fi 1 011 -1
f 7 i 1 IR121x1

TABLE 2.3: Chiral supermultiplets in the (B — L) SSM and representations under the
SUB)c®@SU(2),@U(1)y ®U(1)p_1, gauge groups. Adapted from [7].

The neutral components of the Higgs doublets H? and Hg, as well as the bilepton

fields n and 7, acquire non-zero VEVs as follows:

1 1
HY = — (iog+va+¢a), H)=—
@ = plivatvaton, Hi=1p
1

1
n:ﬁ(i0n+”n+¢n)v ﬁ:ﬁ(i0ﬁ+vﬁ+¢ﬁ)

(iau + Uy + d)u)
(2.45)

where each field is decomposed into its CP-odd component (o), CP-even component

(¢), and the VEV (v) responsible for symmetry breaking.

The VEVs of the bilepton fields n and 7 break the U(1)p_;, symmetry, giving rise to a
new Z' gauge boson associated with the B — L group. In analogy with the MSSM, the
ratio of the VEVs of the bilepton fields is defined as tan 3 = z—z This parameter plays
a crucial role in determining the phenomenology of the B — L sector, including the

masses and mixings of the Z’ boson and other particles, such as the neutral scalars.

After B — L breaking, the term Y/ D;ifiy; in the superpotential generates a Majorana
mass for the right-handed neutrinos. This Majorana mass allows for small masses for

the left-handed neutrinos vy, through the Type-I seesaw mechanism.

2.6.1 Neutral Higgs bosons

In the Higgs sector, the CP-even and CP-odd components of the doublets mix with the
corresponding CP eigenstates of the bilepton fields. This mixing results in four

physical scalar Higgs particles:

(¢da¢ua¢7}a¢ﬁ) — (h17h25h3ah4) (246)

where hj is typically identified as the Standard Model-like Higgs boson,

accommodating the observed Higgs mass of approximately 125 GeV, and the others
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(ha, hg, hg) correspond to additional physical scalar states predicted by the
(B — L)SSM. In the CP-odd sector, the pseudo-scalars are similarly mixed, leading to:

(0d, Ou, 0n, 05) = (GZ, GZ,, Ai‘, Ag‘) (2.47)

Here, GZ and GZ' are the Goldstone bosons that are eaten by the Z and Z' gauge
bosons, respectively, providing their longitudinal components. A{L and AS are the two

physical pseudo-scalar Higgs particles.

These scalar and pseudo-scalar particles are prime candidates for exploration in scalar
searches at colliders. The model naturally accommodates the observed 125 GeV Higgs
boson while leaving room for other scalar resonances, which could explain anomalies

observed in scalar searches.
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Chapter 3

Automated BSM Phenomenology

The previous chapter reviewed what is called model building in particle physics, the
process of constructing theoretical frameworks to describe physical phenomena. Once a
model is defined, phenomenological studies translate its theoretical predictions into

numerical results that can be compared with experimental data. This involves:

1. Symbolic theoretical calculations, such as defining the Lagrangian and

deriving Feynman rules.

2. Numerical evaluations, which calculate observables like cross-sections and

decay rates based on input parameters.

3. Experimental verification, where the numerical predictions of the model are

compared with experimental data from particle colliders like the LHC.

Computational frameworks facilitate these tasks, offering both model-dependent and
model-independent tools to simulate BSM scenarios. In this chapter, we examine the
computational challenges associated with model building, highlighting the main focus

of the present work, the parameter scan problem.

3.1 High Energy Physics Software

Modern particle physics relies heavily on software tools to connect theoretical models
with experimental data. These tools play a crucial role in automating complex
calculations, simulating particle interactions, enabling parameter scans across large
theoretical spaces and verifying experimental measurements with theoretical
predictions. High Energy Physics (HEP) software can be broadly classified into

symbolic, numerical and experimental verification tools, each serving a distinct
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FIGURE 3.1: A schematic representation of the workflow in High Energy Physics (HEP)
software for theoretical model implementation and phenomenological analysis. Starting
from a Lagrangian, the process involves three key stages: Model Building, Spectrum
Calculation, and Phenomenological Predictions. These tasks can be performed us-
ing general model-independent frameworks (top track) or model-specific tools (bottom

track). Tools used in this thesis are highlighted in orange.

purpose in phenomenological studies. Symbolic tools are designed to handle the

analytical aspects of theoretical physics, automating tasks that were traditionally

carried out by hand. They allow researchers to define a model’s Lagrangian, derive

Feynman rules, and compute symbolic expressions for scattering amplitudes and other

processes. Examples of widely used symbolic tools include:

o SARAH: SARAH [114, 115] is a Mathematica package designed for the

analytical and numerical study of BSM theories, including both SUSY and
non-SUSY models. Users can define various aspects of a model, such as particle
content, interactions, symmetries, symmetry breaking, and particle mixing.
Based on this input, SARAH automatically derives the Lagrangian, calculates
one- and two-loop renormalization group equations (RGEs), determines the
tadpole equations, and computes mass matrices for particles. Additionally,
SARAH generates Fortran code compatible with other programs. It can export
model information to software tools such as SPheno, CalCHEP, and MadGraph.
FeynRules [116] is another Mathematica-based package that shares many
features with SARAH, focusing on model implementation, the derivation of

Feynman rules and integration with HEP software.

LanHEP: LanHEP [117] is a model-building program written in the C
programming language, featuring its own symbolic manipulation routines,
distinguishing it from Mathematica-based packages. It supports a wide range of
BSM theories, with the Lagrangian provided by the user in closed form. LanHEP
automatically derives the corresponding Feynman rules and exports them to

various programs within the HEP ecosystem.
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Symbolic tools serve as the foundation for numerical evaluations by exporting results
in standardised formats like Universal FeynRules Output [118] (UFO) or SUSY Les
Houches Accord [119] (SLHA).

Numerical tools build on the results provided by symbolic tools and are responsible for
computing physical observables using specific parameter inputs. These tools handle
tasks such as calculating cross-sections for interactions, determining decay rates and
particle lifetimes, and computing precision observables that include higher-order

corrections. Examples of numerical frameworks include

o SPheno: SPheno [120, 121] is a Fortran-based program designed to compute
precise numerical predictions for SUSY and non-SUSY models using analytical
results generated by SARAH. It calculates the particle mass spectrum, decay
widths, branching ratios, and various low-energy and flavour observables. By
using SLHA files for input and output, SPheno integrates seamlessly into the

broader HEP workflow, making it an essential tool for phenomenological studies.

o CalcHEP: CalcHEP [122] automates the calculation of production
cross-sections, decay widths, and event simulations at the lowest order of
perturbation theory. It supports both SUSY and non-SUSY models, utilising
model information generated by tools such as LanHEP or SARAH. The software
features a user-friendly, menu-driven graphical interface alongside a versatile
batch interface for advanced workflows. Its symbolic module computes squared
matrix elements, exports the results as C-code, and generates corresponding

executables.

o« MadGraph5_aMC@NLO: MadGraph [123, 124] is a versatile software tool for
simulating high-energy particle collisions and generating events. It automates the
calculation of matrix elements for particle interactions using Feynman diagrams,
supporting precise cross-section computations, including next-to-leading-order
(NLO) corrections. The software accommodates a variety of particle physics
models, implemented using tools like SARAH or FeynRules and exported in the
UFO format, enabling the integration of both renormalisable and effective
theories. Written primarily in Python, MadGraph is accessible, making it widely
adopted by the physics community. Its command-line interface allows users to
define processes, configure parameters, and manage various aspects of
simulations, establishing MadGraph as an essential tool for theoretical and

phenomenological research in HEP.

CalcHEP and MadGraphb serve as general purpose event generators simulate the
outcomes of high-energy particle collisions, making them essential for connecting
theoretical predictions to experimental data. These tools model various aspects of

particle interactions, including hard scattering processes, parton showers,
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hadronisation, and even detector-level simulations. In this family of tools PYTHIA
[125] is generally use for simulating parton showers and hadronisation. For
detector-level effects, tools like Delphes [126] are employed to simulate how a detector

records particles’ trajectories, energies, and other properties.

HEP software tools can be categorised as either model-dependent or
model-independent. The programs discussed above fall into the model-independent
category. Examples of model-dependent tools include 2HDMC [127], which specialises
in computing particle spectra, decay rates, and other observables specifically for the
Two-Higgs-Doublet Model (2HDM), and NMSSMCALC [128], which is made for the
Next-to-Minimal Supersymmetric Standard Model (NMSSM). Figure 3.1 provides a
schematic representation of the workflow of HEP software for theoretical model

implementation and phenomenological analysis.

On top of the model building software, tools for experimental validation are crucial to
ensure that theoretical predictions are consistent with existing data. Two essential
tools in this context are HiggsBounds [129] and HiggsSignals [130], which are used to
validate the Higgs sector of BSM theories against experimental constraints!.

Specifically,

o HiggsBounds (HB): Tests whether a given model configuration is excluded by
collider experiments at a specified confidence level, typically 95% C.L. It requires
inputs such as the masses, decay widths, branching ratios, and production
cross-sections of the Higgs bosons predicted by the model computed by tools like
SPheno. These predictions are compared with exclusion limits from experiments
like the LHC and LEP. HB computes a test statistic, k}!B, representing the ratio
of the predicted signal cross-section to the experimental exclusion limit.
Configurations with k!B > 1 are excluded, while those with k!B < 1 are
consistent with the data, ensuring that the explored parameter space adheres to

existing experimental constraints.

o HiggsSignals (HS): Evaluates the compatibility of a model’s Higgs sector with
the properties of the observed Higgs boson in the LHC experiments ATLAS [56]
and CMS [57] in 2012.. Uses the same input as HB to perform a y? analysis,
calculating x%g as the sum of squared differences between predicted and

measured values, normalised by experimental uncertainties.

The research project developed in this thesis uses SARAH to generate BSM model
files, SPheno to calculate the mass spectrum, HB and HS to assess experimental
viability, and MadGraph for cross-section calculations and other BSM observables, as

illustrated in Figure 3.1 on the orange track.

! These two tools were recently unified into the HiggsTools [131] framework.
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3.2 Parameter Scans

Challenges in BSM phenomenological analyses rare closely related to the
computational complexity of the underlying theoretical models. Typically, the
numerical evaluation of a BSM model configuration involves a sequential use of various
HEP software packages, collectively referred to as the HEP-Stack and denoted by
Huiodel- For instance, consider a HEP-Stack consisting of SPheno, HB and HS, where
the goal is to compare the predicted Higgs boson masses of a model with their

experimental constraints using HB and HS. The HEP stack can be expressed as:
Hodel () = HBoHS o SPheno (6) — {mhl,th, k'(I;IB, X2HS} . (3.1)

Here, 0 represents a parameter space configuration, with @ € @, where ® denotes the
full parameter space. This process highlights one of the major challenges in BSM

phenomenology studies: the parameter scan problem (PSP).

The PSP [38] involves a systematic exploration of the multidimensional parameter
space of a model. This process includes calculating numerical values for the predictions
of a model at various points in the parameter space, applying experimental and
theoretical constraints, and identifying satisfactory regions that can explain multiple
phenomena. These satisfactory regions are determined by verifying whether the
theoretical predictions align with measured experimental values within specified error
margins or satisfy exclusion limits when no experimental observations exist. Then,
parameter Scan (PS) methods must overcome several computational challenges,
including high-dimensional parameter spaces, the integration of multiple physical
constraints and the computational cost of single point evaluation of the HEP-Stack.

These challenges will be explored in more detail in the following subsections.

Consequently, selecting an appropriate PS method for a specific phenomenological
study is far from trivial. It requires expert knowledge of the BSM model as well as the

computational aspects involved to ensure a successful and efficient analysis.

3.2.1 Baseline parameter scan methods
Grid scan

The grid scan is the most basic parameter scan method. It is convenient because it is
easy and quick to implement. The method divides the parameter space into a regular
grid of evenly spaced points, with a fixed number of divisions per dimension. The
HEP-Stack is evaluated at each grid point.
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For a d-dimensional parameter space, if each dimension is sampled at n points, the

total number of evaluations N is given by:
N =n?

This exponential growth in the number of grid points makes grid scans impractical for
high-dimensional parameter spaces. The problem is further intensified when the viable
regions of the parameter space are sparse or disconnected, as many grid points may fall

into non-satisfactory regions.

Uniform random scan

The uniform random scan samples points randomly from a uniform distribution across
the parameter space. Unlike the grid scan, it does not require a fixed number of
evaluations per dimension, offering more flexibility. However, it faces the same
challenge as grid scans in high-dimensional spaces: the sparsity of satisfactory regions.
As dimensionality increases, the probability of randomly hitting a viable region

becomes exponentially small, making this method inefficient.

Both methods, grid scan and uniform random scan, also suffer from the computational
cost associated with the HEP-Stack used in PS methods. Since a large number of
samples are required to ensure sufficient coverage of the parameter space, the
computational resource cost can become prohibitively high. These problems arise due
to the curse of dimensionality, where the volume of the parameter space grows

exponentially with the number of dimensions, as explained in Section 3.2.4.

Addressing these limitations requires more adaptive or targeted PS algorithms, which

focus computational resources on promising regions of the parameter space.

3.2.2 Computational cost

The computational cost of evaluating a single model configuration with a defined
HEP-Stack plays a critical role in determining the efficiency and scalability of PS
methods. This computational cost arises primarily from the sequential execution of
HEP Software in a given study. For instance, in the context of the (B — L)SSM model,
with the HEP-Stack denoted as Hg_r)ggas following the structure of equation (3.1).
As shown in Figure 3.2, the average time required per evaluation of the HEP-Stack is
approximately 1 minute. This cost becomes even higher when other tools, such as
those used for particle collision simulations, are included. This relatively high cost can
be prohibitive when performing exhaustive scans over high-dimensional parameter
spaces, where thousands or even millions of points may need evaluation. Points below

the average time represent non-physical parameter space and points with evaluation
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times significantly above the average reflect parameter configurations where SPheno

struggles to converge.
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Ficure 3.2: Chart showing the evaluation of the HEP software stack correspond-
ing to SPheno, HiggsBounds, and HiggsSignals, denoted as H(p_r)ssm- The average
time per HEP stack call (Step) is approximately 1 minute. Points below the average
represent non-physical parameter space, while points above the average correspond to
unusual physical points where SPheno struggles to converge. This plot highlights that
for complex Beyond Standard Model (BSM) scenarios, such as the (B — L) SSM, the
computational cost of HEP software must be considered during parameter scans.

3.2.3 Multiple constraints

PS methods face significant challenges when searching for regions of the parameter
space that satisfy multiple experimental and theoretical constraints in BSM studies.
The current knowledge of particle physics experimental data is systematically compiled
by the Particle Data Group (PDG) [132], which provides the most up-to-date
measurements and exclusion limits. These constraints are critical for validating BSM

models and ensuring consistency with known observations.

The high dimensionality of the parameter space, combined with the complexity of
multiple constraints, makes finding satisfactory model configurations particularly
challenging. Multiple constraints narrow the acceptable parameter space to small,

often disconnected regions, making viable solutions sparse.

3.2.4 High-dimensionality

High-dimensional parameter spaces often encounter the curse of dimensionality, a

concept introduced in [133] that describes the exponential growth of volume with
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increasing dimensions. This phenomenon presents several challenges [134, 135, 136],
including sparsity, where data points become increasingly sparse with the number of
dimensions, making it difficult to identify statistically significant patterns;
computational complexity, as algorithms that perform well in low-dimensional spaces
often become intractable in high-dimensional ones; and issues with distance metrics,
where the concept of proximity loses significance, affecting the performance of

distance-based algorithms. To illustrate the sparsity challenge in the context of

100 4
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Number of Dimensions (d)

Percentage of Points Inside the Sphere

FiGURE 3.3: The relationship between space dimensionality and the percentage of
uniformly generated points that lie inside the unit sphere. The main plot illustrates the
rapid decay in the proportion of points within the sphere as the number of dimensions
increases, highlighting the sparsity of high-dimensional spaces. Insets provide visual
representations for specific cases: the 2D unit circle (left) and the 3D unit sphere
(right), with points inside shown in blue and points outside shown in grey.

parameter scans, consider a two-dimensional parameter space of a model. Suppose the
region within this space that yields physical observables matching certain experimental
data corresponds precisely to the unit disk. To search for points that satisfy this
criterion, we generate uniformly random points within the unit square. In two
dimensions, the unit disk occupies a significant fraction of the unit square, making it

relatively likely to generate satisfactory points.

However, as the dimensionality of the space increases, the situation becomes far more
challenging. Figure 3.3 demonstrates the percentage of points that lie inside the
hypersphere as the dimensionality increases. For each dimension, we generate 107
uniformly random points. In two dimensions, the percentage of points inside the
sphere is approximately 80%, while in three dimensions, it decreases to 50%. For

dimensions higher than eight, the percentage drops to less than 1%.
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This demonstrates that the volume outside the hypersphere grows exponentially with
the number of dimensions, making it exponentially harder to find points inside the unit

hypersphere using a uniform random sampling strategy.

From a data analysis perspective [137], this phenomenon can be explained by the
concept of data orthogonality in high-dimensional spaces. As the number of dimensions
increases, data points tend to become nearly perpendicular to each other. This makes
it harder to find meaningful patterns or correlations in the data. To achieve
statistically reliable results, a much larger number of data points is needed compared
to low-dimensional cases, which significantly increases computational and resource

demands during parameter scans or similar analyses.
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Chapter 4

Data Modelling

Data modelling is a fundamental aspect of Machine Learning (ML), involving the use
of function approximators (FAs) to represent and understand complex relationships
within data. FAs serve as surrogates for the original physics model, enabling
approximate predictions of parameter space configurations at a significantly reduced
computational cost. This approach allows a sequential decision-making algorithm to
leverage these computationally efficient FAs to make informed decisions about where
to target sampling. In this chapter, the focus is on regression techniques, specifically

utilising Multi-Layer Perceptrons and Gaussian Processes as function approximators.

4.1 Regression with Machine Learning

Consider a dataset defined as,

X1 yi1
X y

D=(X,Y}), X=| | eRV" vy=|"7]ecRVm (4.1)
XN YN

where N is the number of data points. Here, X represents the data points in the input
space, known as the feature matrix, where each row x; € R” is a feature vector of n
dimensions corresponding to the i-th observation, Y represents the output target
matrix, where each row y; € R is the target output vector of m dimensions

associated with the i-th observation.

The goal of regression is to construct a mapping function, known as the model,

f:R™ — IR™ that models the relationship between the inputs and outputs.
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Specifically, the problem is to find a function f such that:
f(xi;0) =y, Vie{l,2,...,N}, (4.2)

where 6 are the parameters of the model. ML approaches facilitate the construction of
these models, with algorithms that automatically learn the parameters 6, also known
as hyper-parameters, to best fit the observations in D, without explicitly hard-coding
the parameter values. This is achieved by minimising some predefined loss function L,
which quantifies the error between the predicted outputs Y = f (X;6) and the true

outputs. Typically, this involves solving;:
0" = arg Inein L(Y, f(X;0)), (4.3)

where 0* represents the optimal parameters of the mapping function f. The choice of
the model and loss function depends on the regression task paradigms, two common

paradigms are the probabilistic and the deterministic.

In probabilistic regression, the goal is to predict a distribution over possible outputs,
rather than a single deterministic value. The mapping function f (x;; @) predicts
parameters of the conditional probability distribution p (y; | x;). The loss function in
this context is often derived from the likelihood of the observed data, which quantifies
how probable the true outputs are under the predicted distribution. The probabilistic
approach naturally incorporates uncertainty, as it models not only the central

tendency of the data but also the variance (or spread) of the predictions.

In deterministic regression, the goal is to directly predict the output y; given the input
x;. The mapping function f (x;;0) is assumed to provide a single value or vector that
represents the predicted output. The loss function typically measures the error

between the true outputs and the predicted values.

4.2 Gaussian Processes

Gaussian Processes (GPs) model the entire distribution of possible functions that can
describe a given set of observations as a multivariate Gaussian distribution [52, 138].
This provides not only a point estimate of an objective but also quantifies the

uncertainty associated with that estimate.

For a GP, datasets are considered as realisations of a stochastic process, where any

finite subset of these variables has a joint Gaussian distribution!. A GP defines a

YA stochastic process [139], denoted as f(x), is a collection of random variables indexed by some
parameter x, which can represent time, space, or any other continuous or discrete domain. It is defined
by a joint probability distribution for any finite N-dimensional set of values f (x1),f (x2),...,f (xn)
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probability distribution over functions f(x) which is specified completely by the mean

function p(x) and covariance function k (x,x’) and can be written as,

f(x) ~ GP (u(x), k (x,x)) (4.4)

with,
p(x) = E[f(x)]
k(x,x") = E[(f(x) — p(x)) (f(x) — n(x'))]
where x are values in the input domain and (x,x’) all possible pairs of parameter
values. The covariance function, also known as the kernel function, specifies how the
output of the function at one input x covaries with the output at another input x’.
The choice of kernel function determines the smoothness, periodicity and other

structural properties of the functions sampled from the GP.

4.2.1 Kernel functions

Many kernel functions have been studied [52], and examples of commonly used kernels
are the Radial Basis Function (RBF), Matern and Periodic kernels. The RBF, also
known as the Squared Exponential (SE) kernel, is widely used due to its simplicity and
flexibility. It assumes that the function being modelled is smooth and is defined as:

2
|l — ]|

ksg (z,2') = 0% exp <—2£2> (4.5)

where o2 is the signal variance, controlling the amplitude of the variations and ¢ is the
length-scale parameter, determining how quickly the correlation decays with distance.
The Matern kernel is a generalisation of the RBF kernel, allowing for different degrees

of smoothness. It is given as:

ol (ol — 2|\ V2 |z — |
EMatern ') = o? K,| ——— 4.
Mat (IL’,$) o F(V) ( / / ) ( 6)

where /¢ is a parameter that controls the length-scale, T'(v) is the gamma function, K,
is the modified Bessel function of the second kind and v > 0 controls the level of
smoothness of the modified Bessel function. Common choices for v are v = 0.5, 1.5, or
2.5, with v = 0.5 corresponding to an exponential kernel, and larger values of v

resulting in smoother functions.

Figure 4.1 shows prior function samples from a GP with the covariance matrix
constructed using the SE and Matern kernel. Each function sample consists of 40
points, labelled by their index. The covariance matrix, displayed as a heatmap in the

plot on the right, illustrates how the points covary with one another.
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FIGURE 4.1: Prior function samples from a Gaussian Process (GP) using the Squared

Exponential (SE) kernel (top) and the Matern kernel (bottom). Each function consists

of 40 points indexed on the x-axis, with the corresponding covariance matrix shown as
a heatmap on the right.

4.2.2 GP Predictions

A GP that fits an observed dataset D = {X,Y }, can be used to predict new target
values Y* for new input points X*. GPs assume a joint Gaussian distribution for both

sets of points, described as:

el

where X x x is the covariance matrix constructed using a kernel function k (x;,x;) and

px ]7l Yxx Xxx* D (@7)

X+ Lx*x Zx*x*

px = p(X) is a shorthand notation, also used on X. Multivariate Gaussians are closed
under conditioning, meaning that the conditional distribution of any subset of
variables, such as px, given another subset, such as ux=, is also a multivariate

Gaussian distribution. Specifically:
px | pxe NN(HX|X*aZX\X*)
where the conditional mean and covariance are given as [140]

ixex = px- + Ex-xZx'x (Y — pix) (4.8)

_ -1
Lx+x = Lx*x* — LX*XLxxZXX*
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FI1GURE 4.2: The behaviour of GP regression as the number of training points increases.
The posterior mean ( u, blue curve) progressively aligns with the true function (black
curve) as more training points (black dots) are added. Predictive uncertainty ( +20)
decreases near observed points and across the input space with increasing data density.
Insets show the covariance matrices (%), transitioning from a broad diagonal band in
the prior to a constrained structure, where uncertainty diminishes near observed points.

In general, the prior mean is often assumed to be zero, ux = pux+ = 0, allowing the
GP to only use the covariance function to capture the structure of the data. The
predicted values for Y* can then be estimated using the predictive mean equation from
(4.8) for each input point X*. The variance ag(*, of these predictions is given by the

diagonal entries of the predictive covariance matrix X x« x.

Figure 4.2 illustrates the behaviour of GP regression as the number of training points
increases, highlighting its impact on the posterior mean, uncertainty, and covariance
structure. The posterior mean (u), shown as a blue curve, progressively aligns with the
true function (black curve) as more training points (black dots) are incorporated.
Predictive uncertainty (4+20) decreases near observed points and across the input
space with increasing data density. The covariance matrices (X) displayed as insets,
demonstrate a transition from a broad diagonal band in the prior to a constrained
covariance structure, where the predictive uncertainty decreases in regions close to the

observed points.

Modelling noise

GPs can account for noisy datasets by explicitly incorporating a noise term into the

model. This noise term assumes that the observed data includes both the underlying
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signal and additive noise. The noise term is added to observations as y = f + € where
f is the latent function (true underlying signal) and € ~ N (0, 021) is the noise term,
with o2 representing the variance of the noise, which is taken as a hyper-parameter.
This implies that the covariance matrix of the observed data includes a noise variance
term on the diagonal:

Txx — Zxx + 0.l

The noise term modifies the posterior mean and covariance in equation (4.8) to

account for the uncertainty introduced by the noise.

4.2.3 Model selection

Kernel functions introduce a set of hyperparameters that govern the structure of the
covariance function, such as the length scale, variance, and noise variance (if
applicable). Proper selection of these parameters is essential for ensuring the accuracy
and performance of GP regression. These optimal parameters are typically determined

by maximising the marginal likelihood of the observed data.

For a dataset D = {X,Y}, the marginal likelihood is the probability of the observed
outputs Y given the inputs X and the hyper-parameters of the kernel. It is expressed
as:

p(Y | X,0) =N (Y | px,Exx) (4.9)

where 6 denotes the set of hyperparameters, pux is the mean vector (often assumed to
be zero in a standard GP prior), and X xx is the covariance matrix constructed using

the kernel function. Therefore, the likelihood is expressed as:

1 1 _
p(Y | X,0) = @) T exp <—2 (Y —pux) Iy (Y — MX)) (4.10)

For computational convenience, the logarithm of the marginal likelihood (LML) is

often used:
1 T —1 1 n
logp(Y]X,H):—i(Y—MX) Txx (Y—MX)—§10g|ZXX\—§log27r (4.11)

where n is the number of training points. In this expression the first term quantifies
how well the model fits the data, the second term penalises the model complexity,
preventing over fitting and the third term is a constant term that depends only on n.
The optimal hyper-parameters 6 are obtained by maximising the log marginal
likelihood:

0* = arg max logp(Y | X,0)
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This optimisation is typically performed using gradient-based methods, as the
derivatives of the LML with respect to the hyper-parameters can be computed

efficiently.

The LML can be interpreted as a loss function, but it is fundamentally different from a
manually imposed loss function like Mean Squared Error in common regression
problems. It arises naturally from the probabilistic model where the data is assumed

to follow a Gaussian distribution.

4.2.4 Space dimensionality

GPs inherently support vector-valued inputs, where each input x € R? is a
d-dimensional vector. This flexibility arises from the kernel function, k (x;,x;), which
computes the similarity between any two input vectors x; and x;, regardless of their

dimensionality.

GPs can also model vector-valued functions, where the data maps an input x € R¢ to
an output vector f(x) € RY, with ¢ representing the dimensionality of the output. A
straightforward approach is to model each output dimension independently, which is
the method adopted in this research project for later chapters. However, GPs can also
be extended to capture correlations between different output dimensions, enabling

more expressive models [141].

4.2.5 Challenges

GPs are highly flexible models, but their computational complexity presents a
significant challenge, especially for large datasets. The key computational bottleneck
arises from the need to invert the n x n covariance matrix during training, which scales
as O (n3), and the subsequent prediction step, which scales as O (mn?) for m test
points. This makes exact GP inference and prediction infeasible for datasets with
thousands or millions of points. To address this, various approaches have been

developed to make GPs more scalable [142].

4.3 Artificial Neural Networks

Artificial Neural Networks (ANNs) are parametric models inspired by the structure
and functioning of the human brain. ANNs consist of interconnected units called
neurons or nodes, which are organised into layers. These layers work together in a
hierarchical manner, to process data and perform tasks such as regression or

classifications. The number of layers of a ANN is known as the depth of the model, the
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larger this number the deeper it is, giving the name of the class of models as Deep
Learning models. Learning comes from the way the parameters are optimised, a loss
function is defined based on how well the model, either learns the correct mapping for
a given dataset for regression or classify accurately. The parameters are optmised in

order to minimise this loss.

Multi-Layer Perceptrons (MLPs) are a class of ANNs that are among the most
fundamental architectures in deep learning, also known as Fully-Connected Forward
Networks. To understand neural networks, is useful to start with Linear Regression,

one of the simplest form of modelling.

4.3.1 Linear Regression

When the dataset presents a linear trend, linear regression models the relationship

between an input vector x € R” and an output vector y € R™ using a linear mapping?:
U, = Wi T5 + b;, (4.12)

where w;; are the elements of the weight matrix W € R™*", y; and z; are the

components of y and x, respectively, and b; is the i-th component of b.

The objective is to find the weights W and biases b such that the predicted ¥ closely
approximates the true target values y. This is typically achieved by minimising a loss

function, such as the mean squared error (MSE):

| N
L= NZH}%—}%Hz- (4.13)
i—1

In this equation, i denotes the data index, and N is the number of data points. In
linear regression, the minimisation condition can be obtained analytically by taking
VL = 0. However, in practice, a general data-driven approach often optimises the
parameters using gradient information. This is achieved through gradient descent, an
iterative algorithm that updates the parameters in the direction of the negative
gradient of the loss function. The gradient descent update for each parameter
0 € {W,b} is:

9%9—77%, (4.14)
where 17 > 0 is the learning rate, controlling the step size of the updates. This process

is repeated until the loss converges or a maximum number of iterations is reached.

2Einstein summation convention is used, for example, w;;z; = Zj Wi T;.
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4.3.2 Shallow Neural Networks

Linear mappings are insufficient for when a given dataset, as defined in equation (4.1),
exhibits non-linear dependencies. Shallow neural networks (SNN) address this

limitation by extending linear regression through the incorporation of non-linearities.

A SNN introduces a non-linear activation function, denoted as o(-), which transforms
the output of a linear combination of the input vector. This transformation is

expressed as h = o(z), where:

o = wy)zj + by (4.15)
Here, k =1,..., Ny indexes the nodes of the hidden layer, and w,%) are the elements of

the weight matrix WO, The hidden layer output is subsequently mapped to the
predicted output ¢, through:

N 2 2

9; = wip hy + b (4.16)
where wg,z) are the elements of the weight matrix W(2). These weights define the
dependencies between the hidden layer’s nodes and the desired output vector §. By

expanding hy, the output can be rewritten as:
b = wid'o (wiglz; + ) +5%, (4.17)

The non-linearity introduced by o enables the network to model complex non-linear
patterns in the data, capturing intermediate features or transformations critical for

predicting the target output. An illustration of a SNN is shown in Figure 4.3.

'\.‘: Y ,i Y SN
\7%;&\ - \‘ :
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< '/'l\ // !
. \\. 7
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FIGURE 4.3: Representation of a shallow neural network (SNN) with a single hidden

layer. Input features x are transformed through weights W and biases b(!) into the

hidden layer, which is further processed with weights W) and biases b(?) to produce
the predicted output §.



54 Chapter 4. Data Modelling

The mean squared error (MSE) loss function, as defined in Equation (4.13), remains
applicable. Gradient descent update rules from Equation (4.14) are used to optimise
the parameters of the model, which include the weight matrices and biases, 6 €
{W(l),W(Q),b(l), b(2)}. The gradients are computed using the chain rule, which
propagates the error through the layers. For the loss function £, the gradients with

respect to the parameters are:

oL oL oy
8wi(,?‘) o9, awl(,?) (4.18)
oL oL oy :

ool O op®

7

where o« = 1,2. The individual derivatives are computed as follows:

00 _ (. (1) 0y;
ow'? = o (wiy'z; +8.") PE
o, @ GO o — (4.19)
aw(zl) = w0 (wkj zj+ by )x] (%(;) —w? o (wkj 2+, )
kj 3

Here, o’(-) represents the derivative of the activation function o(-). These expressions
allow us to evaluate a single input, compute the loss function given the current
parameter values @, and calculate the derivatives to propagate the loss information
back through the network. This propagation enables the adjustment of each parameter

based on the error for that input. This procedure is known as back-propagation.

4.3.3 Multi-layer Perceptron

MLPs generalise SNNs by introducing multiple hidden layers between the input and
output layers. These additional layers define the architecture of the MLP and allow
them to model even more complex patterns in data by using hierarchical non-linear

transformations by using the activation functions o (-) in each layer.

For an MLP with L layers, the output at layer « is computed as:

Y = o (wpni* Y 4+ 5) (4.20)
where « indexes the layers, w,(;;.‘) and b,(f) are the weight matrix components and bias

vector for layer o and R0 = x represents the input vector. The final output of the
MLP is given by:

o = wp TR b, (4.21)
where w,g?rl) and b,(CLH) are components of Wt and b+ | respectively, which

map the last hidden layer’s output to the predictions.
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FIGURE 4.4: Tllustration of a deep neural network (DNN) or Multi-Layer Perceptron

(MLP) with multiple hidden layers, with a fully connected architecture. The input

features x are successively transformed through layers using weights W(l), W(Q), w)

and biases b(l), b(g)7 b®). The network outputs the prediction §, with the depth of
the network represented by L, the total number of hidden layers.

4.3.4 Training MLPs

Training MLPs follows the same fundamental principles as SNNs but involves
additional computational complexity due to the deeper architecture. Backpropagation,
extended to handle multiple layers, computes the gradients of the loss function with
respect to all parameters @ = W) b for £ =1,..., L+ 1. These gradients are used
to iteratively update the parameters via gradient descent or its variants. The use of
deeper networks with multiple non-linear transformations enables MLPs to
approximate any continuous function, a property known as the universal

approximation theorem.

4.3.5 Activation Functions

The activation function o(-) is a critical component of an ANN, as it introduces
non-linear transformations that enable the network to capture patterns in data.

Various activation functions have been studied in the literature [143].

The sigmoid function, given by,

(4.22)
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was one of the first activation functions used in ANNs. It maps input values to the
range (0, 1), making it particularly useful for probabilistic interpretations. Its smooth
shape made it suitable for binary classification problems. However, the sigmoid
function suffers from the vanishing gradient problem, where the derivative approaches
zero for large positive or negative inputs. This slows down learning in deep networks.
The Rectified Linear Unit (ReLU), defined as

—— Sigmoid RelLU
1.0 4 10 -

0.0 = 0+

FIGURE 4.5: Comparison of the Sigmoid and ReLLU activation functions. The Sigmoid
function smoothly transitions values between 0 and 1, while the ReLLU function outputs
zero for negative inputs and scales linearly for positive inputs.

ReLU(z) = max(0, z), (4.23)

is the most commonly used activation function in modern neural networks due to its
simplicity and effectiveness. Unlike the sigmoid function, ReLU introduces sparsity by
outputting zero for negative inputs while maintaining linearity for positive inputs.
This behaviour enables efficient gradient flow, computational efficiency, and better
feature extraction, which enhances learning in deep networks. Figure 4.5 illustrates

both activation functions.

However, ReLU can encounter the dying neuron problem, where certain neurons
output zero for all inputs and become inactive. Variants like Leaky ReLLU and

Parametric ReLLU address this issue by allowing small gradients for negative inputs.

4.3.6 Modern optimisers

Gradient Descent randomly initialises the parameters § and updates them by
computing the gradients of the loss function £ over the entire dataset. While effective
for small datasets, this method is computationally expensive for larger ones and highly
dependent on the initial starting point. Stochastic Gradient Descent (SGD) addresses
these issues by computing gradients using a random subset (batch) B of the training

data. Then, the parameter update rule in SGD is given by:

by 2 (4.24)

iE€EB; v
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Modern optimisers [144], such as ADAM, further enhance performance by

incorporating adaptive learning rate techniques.

4.4 Modelling Techniques Comparison

A comparison of modelling techniques, including linear regression, SNNs, MLPs, and
GPs, applied to a synthetic two-dimensional input and one-dimensional output
dataset, is presented in Figure 4.6. The ground truth function is shown in panel (a)
and is defined as:

y = sin (27x1) - cos (2mx2) (4.25)

with 200 input samples z € R? drawn from a uniform distribution over [—1,1]%. The

Shallow Neural Network

Ground Truth Linear Regression

1.0

0.5

—0.5 -0.5

(a) (b) (c)

Multi-layer Perceptron Gaussian Process

—0.5 —0.5

—107, . X . 1.0 L a—ry X . 1.0
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FIGURE 4.6: Comparison of modelling techniques with 200 training samples drawn from
a uniform distribution. (a) Ground truth function. (b) Linear regression. (c) Shallow
neural network (SNN). (d) Multi-layer perceptron (MLP). (e) Gaussian Process (GP).

modelling techniques are compared as follows:

o Linear Regression: Panel (b) illustrates the results of linear regression. As
expected, this model cannot reproduce the oscillatory patterns of y due to its

assumption of linearity.

» Shallow Neural Networks : Panel (c¢) demonstrates an SNN with a single

hidden layer containing 16 nodes and ReLLU activation functions. The model
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captures some non-linear patterns but is limited in its representational

capabilities.

o Multilayer Perceptrons: Panel (d) shows an MLP with two hidden layers,
each containing 32 nodes and ReLLU activations. MLPs can model the underlying
patterns of the ground truth function more effectively than SNNs. However, even
for this relatively simple two-dimensional example, MLPs require substantial

data to perform satisfactorily, highlighting their data dependency.

o Gaussian Processes: Panel (e) illustrates GPs, which excel at capturing the
entire structure of the ground truth function with fewer data points. This
efficiency arises from the prior assumptions encoded in the kernel function,
allowing GPs to infer patterns more effectively from limited data. However, these
assumptions, referred to as inductive bias, can themselves pose challenges if they

are poorly chosen or misaligned with the underlying data.

4.4.1 Theory to practice

As discussed in the previous section, the gradient flow of the loss function £ with
respect to the parameters 6 is crucial for the optimisation of ANNs. The practical
implementation of ANNs has been revolutionised by automatic differentiation

frameworks, which automate the computation of these gradients.

In this work, PyTorch [145] is utilised to implement ANNs. PyTorch is a widely used,
open-source machine learning library that provides robust support for tensor

computation and automatic differentiation.

For GPs, we use both GPyTorch [146] and Scikit-Learn [147]. GPyTorch is a
specialised library for GPs that seamlessly integrates with PyTorch. It uses PyTorch’s
functionalities to provide scalable and efficient implementations of GPs, particularly
for large datasets. This integration ensures compatibility with PyTorch’s GPU
acceleration. Scikit-Learn is used for its baseline implementations of GPs, allowing for
quick experimentation and prototyping. For instance, in panel (d) of Figure 4.6,

Scikit-Learn’s GP regression functionality was utilised.

Additionally, Scikit-Learn serves as a valuable tool for general machine learning

pipeplines, offering utilities such as dataset transformation and normalisation.

4.5 Density Estimation

Since this work focuses on modelling techniques that guide parameter scan algorithms,

estimating density over the available data in the search space is also an option. As the
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last modelling technique, Kernel Density Estimation (KDE) [148], a baseline density

estimation method, is introduced, KDE is a non-parametric method for estimating the

KDE
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FIGURE 4.7: Kernel Density Estimation (KDE) for the modelling test example for the
ground truth equation (4.25)

PDF of a random variable based on observed data. KDEs are essentially smooth
histograms, useful for visualising data distributions without making assumptions about

their underlying form. For multivariate data x € R%, the density p(x) is expressed as:

p(x) = ﬁé}( (X;Xi) (4.26)

where N is the number of data points, h is the bandwidth parameter and h¢ is the
bandwidth scaling factor for d-dimensional space. The parameter h controls the
smoothness of the density estimate by determining the influence range of each data
point. A larger h results in a smoother estimate across a broader region, while a
smaller h captures finer details but risks over-fitting. The h? scaling ensures
normalisation of the density estimate by accounting for the increased volume of
d-dimensional kernels. Challenges of KDEs include the selection of the bandwidth
parameter and high-dimensional spaces, frequently requiring dimensionality reduction
techniques. Figure 4.7 shows the density estimation for the modelling test example for
the ground truth equation (4.25).

4.6 Modelling Takeaway*

GPs benefit from prior knowledge encoded through kernel functions, which can be
combined to represent complex patterns. This characteristic makes GPs highly

data-efficient, as they can generalise effectively with relatively small datasets.

An additional advantage of GPs is their ability to model uncertainty in the output
space. This uncertainty provides valuable information about the noise in the data or,

in cases where the data represents a deterministic yet expensive-to-evaluate function
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(as is the case in this work), highlights unexplored regions in the input space. This
feature makes GPs particularly promising for parameter scanning algorithms and even

for general optimisation tasks.

MLPs, and ANNs more broadly, are versatile as they do not assume specific data
patterns but instead learn them directly from the data. This flexibility comes at the
cost of requiring more data for training. Furthermore, ANNs support various
architectures, enabling tasks beyond regression, such as dimensionality reduction with
auto-encoders [149] or generative modelling with networks architectures like
Generative Adversarial Networks [150]. These approaches are especially powerful for
large datasets involving images, videos, text, or audio. However, such tasks are outside

the scope of this thesis.

In this work, we focus on the small-data regime, characterised by relatively low
dimensional inputs ( D < 20 ) and a modest number of data points ( N < 10 ). This
emphasis on data efficiency allows both MLPs and GPs to remain competitive in terms

of representational capabilities within this context.
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Chapter 5
Sampling and Decision Making

Sampling refers to the process of collecting the right information, while decision
making focuses on using that information to choose the best actions. In this chapter,
we review the foundations of baseline sampling algorithms, which are well-established
for performing parameter space scans. Following this, we explore decision-making
frameworks, specifically Bayesian Optimisation and Reinforcement Learning, both of

which offer powerful approaches for adaptive and informed exploration.

5.1 Classical Sampling Techniques

Sampling involves generating random samples from a probability distribution, and the
goal of sampling algorithms is for the empirical sample distribution to converge to the
true underlying probability distribution as the number of samples increases. The
resulting samples, are crucial for estimating properties of distributions such as mean
and variance, simulate stochastic processes, approximate numerical integration or
optimisation problems, serving as a fundamental tool in particle physics [39, 151] and

science in general [152].

Specifically, sampling refers the process of drawing K parameter configurations
{6, }5_, from a probability density function (PDF) p(6). This PDF, can be
approximated by the samples by the empirical distribution py(6), defined as:

1 K
Pic0) = = D5 (0-0h), (5.1)
k=1

where §(-) is the Dirac delta function, which places all the probability mass at the
sampled points {Hk}é(:l. When K — oo, the empirical distribution pg (6) converges to
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the true distribution p(0) :
Pr(0) = p(0), as K — oo. (5.2)

While this holds inherently for independent and identically distributed (i.i.d.)
sampling, other methods may require additional assumptions. For practical purposes,
this empirical distribution is often visualised using a histogram, which provides a

binned approximation of the sampled data.

Using the sampled {6} mean and variance can be estimated by,
1 & 1 & 2
Ep0)0] ~ 2 > Ok, Var,g[0] = = > (0 —0)7, (5.3)
k=1 k=1

where 0 = % S°K | 0y, in general for any function f(6), the expectation under p(f) can

be approximated as:

Eyo)F(0)] ~ 3 7 (60) (54)
k=1

In the context of parameter scans, approximating and understanding the underlying
distribution is crucial because it corresponds to the likelithood. The likelihood is a
function of the parameters that quantifies how well the observables predicted by a
model align with experimental constraints. More details about the [ikelihood in the

context of particle physics are provided in the next chapter.

Challenges

While direct sampling is ideal for estimating expectations and properties of a
distribution, it is often impractical or infeasible for complex distributions. Many
distributions p(6) are badly normalised, meaning they are defined only up to a

normalising constant:

p0) =20 2= [po)as (5.5)

where Z is the normalising constant, unknown and difficult to compute. Additionally,
as shown in the previous chapter, sampling methods also suffer from the curse of
dimensionality, wherein the probability mass often concentrates in small regions of the
parameter space, requiring specialised sampling techniques to explore these regions

effectively.

5.1.1 Rejection Sampling

Rejection sampling (RS) [153] is one of the simplest Monte Carlo methods to sample

from a complex target distribution p(x). It relies on a proposal distribution ¢(z),
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FIGURE 5.1: Rejection sampling example on a one-dimensional target distribution,
showing density histograms of accepted (blue) and rejected (grey) samples, with the
target distribution p(z) depicted in orange.

which is easy to sample from, to approximate p(z). The proposal distribution needs to

cover the target distribution and satisfy the condition:
Mq(z) = p(z) (5.6)

for all x, where M > 1 is a scaling factor. The algorithm works as follows,

1. Generate a sample x ~ q(z).
2. Generate a uniform random number u ~ Uniform(0,1).

: p(z)
3. Accept z if u < Ma()*

4. Repeat until enough samples are accepted.

p(x)

Here, Ma(z) is the acceptance probability. The scaling parameter M controls the

trade-off between validity and efficiency. A large M ensures that the inequality
condition in equation (5.6) holds for every = but results in many rejected samples,
reducing the algorithm’s efficiency. A small M increases the acceptance rate, improving

efficiency, but requires careful tuning to avoid violating the inequality condition.

Determining M is one of the difficulties in RS [153]. Additionally, RS may struggle
when the target distribution exhibits multiple modes or sharp peaks, features

commonly encountered in particle physics phenomenology studies.

An example of RS on a one-dimensional target density is shown in Figure 5.1. The
target distribution is constructed as a mixture of two Gaussian distributions, defined

as:
p(z) =04-N(z|p1=0,00=1)4+06-N (x| p2=5,00=1). (5.7)

The proposal distribution used is a Gaussian A (0,10), chosen to adequately cover

both modes of the target density. In this experiment, 3,000 accepted samples were
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required, which required drawing 9, 522 samples from the target distribution. This

corresponds to a simple efficiency metric, calculated as:

N,
Efficiency = —2<<ted o 100 (5.8)

drawn

resulting in an efficiency of 31.51%. If querying the target distribution is
computationally expensive, efficiency becomes critical, as lower efficiency implies more

wasted samples and higher computational cost.

5.1.2 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) [41] methods are a powerful class of algorithms
for sampling from a complex target distribution p(x), particularly those that are
high-dimensional or unnormalised. The key idea behind MCMC is to construct a
Markov chain that has the desired target distribution p(z) as its stationary
distribution, denoted by m(z). By running the chain for a sufficient number of

iterations, the samples generated by the chain approximate the target distribution.

A Markov chain is a sequence of states {z;};°, where the probability of transitioning

to the next state depends only on the current state:

(i1 | e, -1, ..) = p(Teg1 | 1) (5.9)

This is known as the Markov property and simplifies the sampling process while
ensuring flexibility and localisation in exploring the state space. The stationary
distribution 7(z) of the Markov chain is the distribution that remains invariant under

the chain’s transitions:
7 (2) = /F(SL‘)p (' | z) da. (5.10)

MCMC methods are designed to construct a Markov chain whose stationary

distribution is the desired target distribution.

5.1.2.1 Metropolis Hastings

The Metropolis-Hastings (MH) algorithm is a cornerstone of the MCMC family of
methods [39, 153]. The MH algorithm begins by selecting an initial state zo from the
state space. Following initialisation, at each iteration ¢ the algorithm performs the

following steps:

1. Proposal Generation: A candidate state x’ is proposed based on a proposal

distribution g (2’ | x).
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2. Acceptance Probability: The candidate state p’ is evaluated using the

acceptance probability:

o p@) |
a(x ) = (1, (@) (@ | xt)) , (5.11)

where p(x) is the target distribution.

3. Acceptance or Rejection: A uniform random number u ~ Uniform(0, 1) is
drawn. If u < a(2’,2¢), the candidate 2’ is accepted, and the next state is set as
x¢11 = x'. Otherwise, the candidate is rejected, and the chain remains in its

current state: xyy1 = @y.

This process is repeated until a sufficient number of samples are collected to

approximate the target distribution.

A common choice for the proposal distribution q (x' | x¢) is a Gaussian centred on the
current state z;, with variance o2. This choice simplifies the acceptance probability
when ¢ (2’ | x1) = q (x| o), satisfying the balance condition, as the proposal terms
cancel out. However, the variance of the proposal plays a critical role in the
algorithm’s performance; a large variance increases the likelihood of proposing
candidates far from the current state, which may lead to frequent rejections and slow
convergence. A small variance results in limited exploration of the state space,
potentially preventing the chain from adequately sampling the target distribution. The
optimal choice of variance balances the exploration and acceptance rate, often tuned
experimentally or using adaptive techniques. The standard deviation is also known as

the step size or scale parameter.

Another element often used in the algorithm is the burn-in period. From the starting
state to a pre-defined number of iterations Npym—in are discarded since these initial
samples of the Markov chain may not represent the target distribution, as the chain

has not yet approached to its stationary distribution.

The behaviour of the algorithm is illustrated in Figure 5.2, sampling from the target
distribution defined in Equation 5.7 using a Gaussian proposal with ¢ = 0.2. The total
chain length is 5,000 , with 4,690 proposals accepted. The grey portion indicates the
burn-in period, during which the chain stabilises to a stationary distribution. This
figure demonstrates the sensitivity of the Metropolis-Hastings algorithm to the
standard deviation (o) of the proposal distribution. Two cases are shown: ¢ = 0.2 and
o = 1. In the top panel ( 0 = 0.2 ), the chain exhibits slow exploration of the target
distribution and insufficient sampling of all modes, spending most of its time in the
highest mode. In contrast, in the bottom panel ( 0 = 1), the step size allows the chain
to efficiently transition between modes, resulting in a more accurate approximation of

the target distribution.
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F1GURE 5.2: Metropolis-Hastings sampling from the target distribution in Equation
5.7 using Gaussian proposals with o = 0.2 (top) and ¢ = 1 (bottom). The total chain
length is 5,000 , with 4,690 proposals accepted for o = 0.2. The grey portion represents
the burn-in period. The figure highlights the sensitivity of the algorithm to o, showing
slow exploration and mode trapping for ¢ = 0.2, while ¢ = 1 achieves better mode
transitions and a more accurate approximation of the target distribution.

Challenges

MCMC-MH performs well in higher dimensions because it generates candidate states
using small, local moves, allowing efficient exploration of the local geometry of the
target distribution. With a properly scaled step parameter, the algorithm can also
transition between modes of the target distribution. However, determining the optimal
step size is a significant challenge, as it depends on the specific characteristics of the
target distribution. To address this, various tuning methods have been proposed, such
as dynamically adjusting the step size based on the acceptance rate. Alternatively,
running multiple chains in parallel can improve exploration but at the cost of increased
computational demand [154]. Finally, the algorithm relies on the assumption that the
chain is sufficiently long to reach the stationary distribution, ensuring an accurate
approximation of the target distribution. As shown in the top panel of Figure 5.2, if
the chain had been stopped around iteration 3000, the smaller mode at u = 0 would

not have been discovered.

These methods can become computationally prohibitive when the underlying physics
simulations are particularly complex or expensive. For example, both methods require
querying the physics model in every iteration, even for rejected samples, which further

increases computational costs. One alternative is to use adaptive MCMC methods, or



5.2.  Bayesian Optimisation 67

advanced techniques such as MultiNest [42] or Hamiltonian MCMC [155], to improve
efficiency; however, in this work, we focus on other active approaches. Specifically, we
adopt a more efficient strategy by approximating the behaviour of the underlying

physics model using function approximators.

5.2 Bayesian Optimisation

Bayesian Optimisation (BO) [156, 51] is a machine-learning-based optimisation
framework designed to efficiently identify optimal solutions for an objective function.
Formally, BO seeks to solve:

" = argmax f(x) (5.12)

Where X C R? is the search space, typically a hyper-rectangle, and f is the objective
function to be optimised. The objective function often represents a computationally
expensive or difficult-to-evaluate real-world process or simulation. BO operates

through three primary components:

e The objective function f: the function being optimised.

« The surrogate model f: an approximation of f used to reduce computational

cost.

o The acquisition function «(z): a mathematical construct guiding the selection
of the next point to evaluate, defined such that high values correspond to

potentially high values of f.

The surrogate model } approximates the expensive objective function f, enabling
efficient optimisation.The Bayesian aspect of this method arises from its use of Bayes’
theorem to update the probabilistic surrogate model of the objective function as new
data becomes available (see Appendix A). The acquisition function a(x) leverages this
surrogate model to identify promising regions for evaluation. Specifically, o(x; })

balances two competing aspects:

o Exploitation: Prioritising regions where the surrogate model predicts high
objective function values.
« Exploration: Prioritising regions of high uncertainty in the surrogate model to

gather more information about the objective function.

This balance is referred to as the exploitation-exploration trade-off.
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FIGURE 5.3: Bayesian Optimisation (BO) process starting with five random initial
training points (black dots). The true objective function is shown as a solid black line,
while the Gaussian Process (GP) surrogate model updates in each iteration are repres-
ented by the mean p (solid blue line) and standard deviation o (shaded region). The
bottom panel shows the Expected Improvement (EI) acquisition function for iterations
t =1,2,6, and 9, with the next evaluation point x* identified as the maximum of the
acquisition function (red dot and vertical red line). The figure illustrates the iterative
refinement of the surrogate model and the selection of evaluation points, converging
towards the objective function’s optimum.

5.2.1 Optimisation Process

BO typically begins with a small, randomly generated initial dataset to initialise the
surrogate model. For probabilistic surrogate models, such as GPs described in Section
4.2, the posterior mean p(x) and posterior standard deviation o(z) represent the
surrogate model’s predictions for f(x) at any point z € X. The acquisition function
a(z; j‘) combines these predictions to rank potential evaluation points. The point xz*,
corresponding to the maximum of the acquisition function, is selected as the next

evaluation point for the objective function, f (z*), in the current iteration.
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Common acquisition functions [51] are described below.

Probability of Improvement (PI)

api(z) =@ (W) (5.13)

where @ is the cumulative distribution function of the standard normal distribution,

and fpest is the best observed objective function value so far.

PI focuses on maximising the likelihood of improvement over fpest . This makes the

optimisation process conservative, favouring safe incremental improvements.

Expected Improvement (EI)

/L(SC) - fbest

agi(z) = o(x)[2®(2) + ¢(2)], where z = o)

(5.14)

where ¢(z) is the PDF of the standard normal distribution.

EI balances exploration and exploitation by considering both the magnitude and
likelihood of improvement. As a result, it provides a more flexible optimisation

approach, balancing incremental improvements with exploration of uncertain regions.

Figure 5.3 illustrates the BO process. The initialisation begins with five randomly
chosen points, represented as black dots, which serve as the initial training set. The
true objective function is depicted as a solid black line. During each iteration, the GP
surrogate model is updated, shown as the mean p (solid blue line) along with its
standard deviation ¢ capturing the uncertainty, and fitted to the observed black points.
The EI acquisition function is displayed in the bottom panel for iterations ¢t = 1,2, 6,
and 9. The figure highlights how the maximum value of the acquisition function, z*
determines the next evaluation point for the objective function, marked by a red dot
on the top plot and a vertical red line in the acquisition panel. This visualisation
demonstrates the iterative refinement of the surrogate model and the selection of new

evaluation points, converging towards the optimum of the objective function.

5.2.2 Tree-structured Parzen Estimator optimisation

The Tree-Structured Parzen Estimator (TPE) algorithm is a variant of BO methods
[157, 158], commonly used for hyperparameter optimisation in machine learning.
Instead of relying on uncertainty estimates from models like GPs, TPE employs

probability density estimators, often referred to as Parzen Estimators or Kernel
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Density Estimators (KDE), as described in Section 4.5. These estimators act as

surrogate models to directly approximate p(x | y), formulated as follows:

p(z|y) = {l(m) %f Ve (5.15)
g(x) ify >y,

where [(z) and g(x) are the KDE probability densities modelling the two groups of
observations. The value y* is defined to be a quantile « of the observed y values
satisfying p (y < y*) = . In TPE, p(x,y) is parameterised as p(y)p(x | y) to facilitate
the optimisation of EI acquisition function, although an explicit model for p(y) is not
needed since with these considerations the EI acquisition function becomes

proportional to [157]:

g9(z) -
El(z) x <7+ rla —7)) (5.16)

Maximising this equation leads to selecting points z that predominantly align under
the distribution /(x) rather than g(x).

5.2.3 Multi-objective BO

The BO description in the previous section focuses on a single objective function.
However, many real-world problems involve multiple conflicting objectives that must
be optimised simultaneously. In Multi-Objective BO (MOBO) [51], the goal is not to
find a single optimal solution but rather a set of solutions that represent trade-offs
among the objectives, known as the Pareto front. Formally, MOBO seeks to optimise a

vector-valued objective function:

f(z) = [fi(z), fo(2),. ., fu(2)], (5.17)

where m is the number of objectives. Optimality is given by the Pareto set P* is the
set of solutions in search space that cannot be improved in one objective without
degrading another. The Pareto front F* is the image of the Pareto set in the objective

space, corresponds to the trade-offs between objectives in the objective space.

In MOBO acquisition functions are adapted to handle multiple objectives and help
find Pareto-optimal solutions. They focus on different goals, such as managing
high-dimensional search spaces [159], ensuring diversity in both the inputs and outputs

[160], and improving the size of the Pareto front’s coverage [161].

5.2.4 BO Takeaway*

The introduction of the surrogate model J and the acquisition function a(z; f)

transforms the optimisation problem for f, as defined in equation (5.12), into the
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aq ~ a g nax « A’ . vi.lé;

The key difference is that f is inexpensive to evaluate at any point in the search space.
This allows equation (5.18) to be solved using standard optimisation algorithms.
Classical optimisation routines, such as L-BFGS-B [162], are often employed in BO

computational libraries.

In MOBO, the Pareto set represents solutions where no objective can be improved
without compromising another. While finding this set is valuable, it may not always
capture the full diversity of potential solutions, potentially overlooking certain regions
of interest. Ensuring a well-distributed set of solutions is crucial for the effectiveness of

Parameter Scan (PS) algorithms.

The elements and language of BO are integral to implementing PS algorithms. The
acquisition function can be used not only to search for optima but also for other
purposes, such as searching for diverse solutions (see Chapter 7). Probabilistic models,
such as GPs, play a key role in guiding exploration of unknown regions in the
parameter space and evaluating the risk associated with sample evaluations based on
their uncertainty estimates. In this thesis, we adopt this framework to develop and

implement PS methods.

5.3 Reinforcement Learning

5.3.1 The Reinforcement Learning framework

Reinforcement Learning (RL) [163] is a generic framework to describe and solve any
decision-making problem where a sequential strategy is needed to achieve a goal. The
optimal strategy is found by learning from the interaction of two entities. The agent,
the part of the system that learns from taking actions, and the environment, which
reacts to the agent’s actions and is defined as everything that lies outside the agent
such as the configurations and dynamics of the problem. The environment generates a
numerical signal called the reward, which characterises the task’s final goal and guides

the agent’s learning process.

Focusing on discrete sequential decision problems, each interaction is performed in a
time step t, an abstract unit of time defined for the task. In a given interaction
between the agent and the environment, the agent observes a representation of the
environment s; € S, called the state where S is the state space, the set of all possible
states. Based on this state, the agent takes an action a; € A(s;) where A(s;) is the
action space, a set of all the available actions at a given state s;. The environment is

affected by this action and generates a new state based on the one-step dynamics of
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F1GURE 5.4: Illustration of the RL framework. The agent interacts with the environ-

ment by performing an action a;, which leads to a state transition from s; to s;+1. The

environment provides feedback to the agent based on its actions, enabling the agent to
learn and adapt its policy over time.

the problem defined by the state-transition probability functions p (si+1 | ¢, a¢) and
provides a scalar reward signal r; through a reward function R : S x A — R. The
information generated in each time step (s, az, 7441, S1+1) is known as a transition or
an experience tuple. A completed cycle from an initial state sg to a terminal state st
is called an episode and the chain of sequential experience tuples is defined as the
episode’s trajectory. With these elements we can completely specify the environment
as a Markov Decision Process (MDP) [164] minimally defined by the tuple

MDP (S, A, P,R,v), (5.19)

where 0 < v < 1, is the discount factor and determines the value of future rewards at a

times step ¢ though the discounted return,

T
Gt = Riy1 +YRii2 + YRz + - = Z V¥Rt s (5.20)
k=0

The Markov property, introduced in 5.1.2 on equation (5.9), of a decision process is
due to the fact that the transition probabilities and the reward function depends only
on the present information of the environment; specifically, given equation (5.9), the

reward at the state s; is:

R (st41 | st,ae, Si—1,a0-1 -+ ,81,a01) = R (Se41 | s¢,a¢) - (5.21)

The agent chooses an action a; by observing a state s; according to a distribution
function a; ~ 7(a¢|s) called the policy. The policy can be also a deterministic
function, in that case is commonly denoted by a; = p(s;). Thus, an complete episode’s

trajectory is given by,

T
Tr =[] p (sex1 | sesae) 7 (e | s¢). (5.22)

t=0
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Then, the expected discounted return can be defined as,
J(T['(St)) = IETTrGt (523)

The goal of a RL algorithm is to find an optimal policy 7* for every state, which

maximises the expected discounted return,

T = arg max J(m) (5.24)

5.3.2 Value functions

We can define additional information about actions and states which serves as a
measure of the effectiveness of the policy. First the value of a state s under a policy «
is given by,

vr(s) =E; [Gy | St = s (5.25)

which represents the expected return of a trajectory sampled from a policy 7, starting

from the state s, and can be written recursively in terms of the trajectory as,

ve(s) =Y w(als)Y p(s,r]sa)r+yvx(s)],Vs €S (5.26)

a s'r

Second, the value of taking an action a in a state s, will help to compare different
possible actions in the same state giving us information on what action is the best for

a given state. This information is given by the action-value function, also known as the

Q-function,
qr(s,a) =E;[Gy | St = s, A = d] (5.27)
which can be written as,
Gr(s,a) =Y _p(s',r|s,a)[r+yvx (s)],Vs € S, Va € A(s) (5.28)

Therefore, finding the optimal value function,
v+(s) = maxuvr(s),Vs € S (5.29)
or the optimal Q-function function,
¢ (s,a) = m%xqw(s,a),Vs € 5,Va € A(s) (5.30)

lead us to the optimal policy as well, solving in this way, the RL problem.



74 Chapter 5. Sampling and Decision Making

5.3.2.1 Deep Reinforcement Learning

Classical methods for finding optimal policies in Reinforcement Learning (RL) rely on
tabular approaches, where value functions, such as V(s) and Q(s, a) , are represented
explicitly as tables. These methods include algorithms like Dynamic Programming
(e.g., Policy Iteration and Value Iteration) and Temporal Difference methods (e.g.,
Q-Learning and SARSA). These techniques iteratively compute the optimal values for
all states or state-action pairs and derive policies based on these values. While effective
for small-scale problems with discrete and manageable state and action spaces, these
methods become computationally infeasible in scenarios with large or continuous
state-action spaces due to the exponential growth of the table size, and suffering from

the curse of dimensionality (see Section 3.2.4).

Deep Reinforcement Learning (Deep RL) uses deep ANNs to model the value functions
V(s), Q(s,a) , or policies m(als), integrating the representational aspect of ANNs
with the decision-making framework of RL to approximate optimal policies. This
approach is advantageous in scenarios with large or continuous state and action spaces,

where tabular methods [163] are computationally infeasible.

A notable breakthrough of Deep RL is AlphaGo, developed by DeepMind [165], which
in 2016 became the first Al system to defeat a world champion Go player. AlphaGo
employed a combination of deep ANNs, supervised learning from expert human Go
plays, and RL to master the game’s complex strategies, a task previously thought to
be beyond the reach of Al due to the immense state and action spaces involved. This
success not only demonstrated the practical capabilities of Deep RL but also
underscored its ability to tackle highly strategic, long-horizon decision-making

problems.

5.3.3 RL Takeaway*

RL has proven to be an effective approach for problems requiring sequential
decision-making strategies to identify optimal policies. It has demonstrated historical
milestones in Al development, such as mastering the game of Go. However, these
advancements also highlight the immense potential of Deep RL in the physical sciences.
The key distinction is that, unlike board games, the rules of nature’s game are

unknown, adding an additional layer of complexity and opportunity for exploration.

Deep RL has been applied to improve MCMC methods [166] and has been compared
to variational inference approaches [167]. It has also been utilised for optimising
hyper-parameters in ANNs [168]. Therefore, with an appropriate translation of the
PSP into the RL framework, RL algorithms could be valuable for exploring the

parameter spaces of BSM models. This experiment is detailed in Chapter 6.
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Chapter 6

Space Exploration with

Reinforcement Learning

In this chapter, we explore the application of RL to solving the PSP. While the results
were unsatisfactory, primarily due to the sample-intensive nature of RL and the
challenges in designing an effective reward function, this exploration provides valuable
insights. Presenting these negative results is crucial for illustrating the limitations and
challenges faced, as well as the lessons learned. This initial investigation also played a
pivotal role in shaping the direction of this thesis, motivating the development of the

main contributions presented in next chapters.

6.1 The Environment

As introduced in Section 5.3 and Equation (5.19), the RL environment is practically
defined by formulating the state space, the action space, and the reward. In this
chapter, we follow the same formulation as in previous chapters, where we consider the
HEP-Stack or general objective function denoted by H : X — ), where X represents

the search space and ) the objective space.

To transform the parameter scan problem into a Markov decision process, a state is
defined as a configuration x € X'. At each time step ¢, the state corresponds to the
current tested parameters, denoted as s; = x;. An action is defined as the difference

vector for the current configuration, a; = dx.

The reward can then be defined in terms of a Gaussian likelihood over the objectives:

L(y,y") ZHeXp{—M} (6.1)

202
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where o is the standard deviation. The primary difference from previous formulations
of the PSP is that, instead of constraints on the objectives, a single set of optimal
values is required. These optimal values are denoted as y; € y* for i = 1,...,m, where
m is the dimensionality of the objective space. A simple configuration for the reward

function can then be expressed as:

R(st) = k(Li+1(Yer1,Y") — Le(ye, ")) (6.2)

where k > 0 is a proportionality constant. This configuration encourages the agent to
prioritise improvements in the likelihood, thereby optimising it. An alternative
configuration could use the likelihood directly as the reward. However, this approach
results in a static environment reward, driving the agent to optimise the likelihood

without accounting for diversity in the solutions.

The reward becomes dynamic, depending on the states visited within the episode at
step t. This is achieved by calculating the density of the visited states in the search
space using a kernel density estimation (KDE), as introduced in Section 4.5.

Consequently, an alternative formulation for the reward function can be expressed as:

R(st) = L(yt,y") exp(—pi(Xy)) (6.3)

where p; (X;) represents the KDE for X, the set of states visited up to step ¢. Here,
the likelihood provides a static reward that is modulated by the density of the visited
states, encouraging exploration of a diverse set of new states during the episode.
Therefore, starting from a random parameter configuration state s;, an optimal policy
trained in this environment would be capable of sampling N points per episode,
covering the entire S region, without directly evaluating the objective function H

during the testing phase.

6.1.1 Deep Deterministic Policy Gradient

The environment definition in the previous section determines the selection of the RL
algorithm. Since the problem operates in a continuous action space, an RL algorithm

capable of handling such spaces is required.

Deep Deterministic Policy Gradient (DDPG) [169, 170] is an off-policy, model-free RL
algorithm designed for continuous action spaces. It extends the Deterministic Policy
Gradient (DPG) algorithm by incorporating concepts from Deep Q-Networks (DQN),
such as experience replay and target networks, to improve stability and learning

efficiency.

DDPG employs two neural networks:
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o The Actor network, pg (s¢), which represents a deterministic policy mapping

states to actions.

 The Critic network, Qg (s¢,a¢), which estimates the Q-value of a state-action

pair and evaluates how good an action is in a given state.

The parameters of these networks, 6 for the Actor and ¢ for the Critic, are optimised
through training. Additionally, target networks (slow-moving copies of the Actor and
Critic) are maintained and updated gradually to improve training stability by reducing

oscillations in learning.

6.1.2 Deep Deterministic Policy Gradient

DDPG follows an actor-critic framework where the Critic guides the Actor’s learning
process. The Critic network is trained using the Bellman equation to minimise the
difference between its predicted Q-values and the target Q-values derived from the

reward signal:

L($,D)= E [(qu(&a)—(T+’Y(1—d)Q¢mg (s',uemg@'))))?}, (6.4)

(s,a,r,s",d)~D

where D is the dataset from Experience Replay Memory (ERM), which stores past
experiences (s,a,r,s’,d) and allows the model to learn from uncorrelated samples

rather than sequential ones. This mitigates issues related to non-i.i.d. data in RL.

The Actor network is trained to select actions that maximise the Q-values given by the
Critic:
max Egp [Qy (5, 10(5))] (6.5)

By following the gradient of the expected Q-value, the Actor learns to improve its

policy over time.

Since the policy is deterministic, DDPG introduces noise to encourage exploration:
W (se) = p(se | 0F) + N, (6.6)

where N is an exploration noise term, often modelled using Gaussian noise or
Ornstein-Uhlenbeck noise for temporally correlated exploration. A flow diagram for
the DDPG algorithm is shown in Figure 6.1.
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FIGURE 6.1: Flow diagram of the Deep Deterministic Policy Gradient (DDPG) al-
gorithm: (1) The environment provides the current state s¢. (2) The Actor network
receives the state and generates an action a;. (3) The environment returns the reward
r¢ and the next state s;1, storing the experience tuple (s¢, at, rt, s¢+1) in the Experi-
ence Replay Memory (ERM) D. (4) A batch of experiences is sampled from the ERM
and processed by the Actor and Critic networks. (5) The loss functions are computed.

6.2 Experiments and Results

6.2.1 Toy models

As an initial test experiment, the environment setup was implemented using the

Egg-box test function, defined as:

5
H(z,y) = (2 + cos g cos g) (6.7)

The focus was on the range (10,15), with a ring-shaped likelihood. Figure 6.2
illustrate this setup for an example objective observable H* = 100. The distributed

1s- Model observable 1s. Likelihood
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FIGURE 6.2: Span over a squared region (10,15) of the Egg-Box model (left) and the
likelihood (right) for a objective observable y* = 100

DDPG algorithm was executed using a reward configuration based on the likelihood,
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FIGURE 6.3: Evolution of states during a test episode after training.

modulated by the exponential density calculated via the KDE (defined in Equation
(6.3)). The terminal state was set at 7" = 100. Within this environment setup, the
objective function is not evaluated during the test phase. Consequently, the policy can
operate on an arbitrary large number of randomised states at testing time,
transforming the states at each time step of the episode. This behaviour is illustrated

in Figure 6.3.

Results from the test episode showed that, although the reward function was designed
to encourage sample diversity, the ring-shaped likelihood was captured at the second
time frame. Subsequently, the agent transformed the states into seemingly optimal
random points. However, based on the true objective function, it is evident that these
points are not genuinely optimal due to the degeneracy of the ring-shaped likelihood.
Repeated experiments demonstrated that the agent consistently converged to random

points identified early in the training phase.
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FIGURE 6.4: Trajectory of the agent in the output mass space during a single search
episode. The colour gradient from light to dark orange indicates progression over time

steps. The agent begins near (my, = 125,,musm = 220) and converges towards the
target region mypsm = 125, though it fails to reach the optimal value for mys in this
run.

6.2.2 BSM case

Focusing on a simplified phenomenological case study using the (B — L)SSM model, we
aim to fit the two lighter Higgs states in the model to both the discovered Higgs boson
at 125 GeV and the newly observed anomaly at 95 GeV. The search and output spaces
are defined respectively by X and ):

X : (Mo, My o, tan 8, Ag), Y : (mp,mpsm)

where the optimal output values used to compute the reward function (6.3) are defined
as my = 95 GeV and mysm = 125 GeV. The ranges for the parameters in the search
space are defined in Table 7.2.

After training, we display the performance of the policy during a single search episode.
The output space, corresponding to the Higgs masses, is shown in Figure 6.4, where
lighter orange points represent earlier time steps and darker shades correspond to later

ones.

We observe that the agent begins sampling from a random initial point, roughly at
(mp = 125, mysm = 220) and quickly moves to the vicinity of mysu = 125. However,
in this particular test run, it approaches my, =~ 20 which deviates from the

experimentally optimal value.
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FIGURE 6.5: Search space exploration during a single episode, shown in (Ag,tan 3)
and (Mo, My /o) subspaces. The agent fixes Ag and explores the other parameters over
time, as indicated by the light-to-dark orange progression.

The search space for the same episode is shown in Figure 6.5. Here, we observe
another unexpected behaviour: the policy learns to fix one parameter—in this case,
Ap—while exploring the remaining dimensions. Although this strategy is viable in
principle, as good parameter regions can indeed be found for a fixed Ay, it is not the
desired behaviour of a search algorithm. Ideally, we aim to explore the full satisfactory

region that yields the target outputs, rather than converge prematurely on a subspace.

6.2.3 Final remarks

Guiding the trained agent towards discovering a comprehensive description of the &
region proved challenging, as it required careful construction of the reward function
and advanced exploration techniques within reinforcement learning algorithms.
Exploring alternative formulations of the environment presents a promising direction

for future research.

The algorithm did not consistently converge to the same regions in the parameter
space; this may be due to the algorithm’s limited exploration capabilities. To enhance
exploration and accelerate convergence, we experimented with a distributed version of
DDPG, in which multiple copies of the policy network interact with the environment
and collect experiences in parallel. While the distributed version improved training
speed, it did not enhance exploration as anticipated. This outcome can be attributed
to the fact that DDPG is a model-free algorithm [169]. In the terminology employed in
this thesis, it does not utilise a surrogate model, relying instead directly on objective

function evaluations for training.
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Finally, an advantage of RL is its natural operation on discrete action spaces, which
broadens its application to not only formulating the PSP as an RL problem but also
exploring discrete model spaces. This approach is currently utilised in BSM
phenomenology for model space exploration instead. For instance, it has been applied
to investigate the Froggatt-Nielsen family of models for quark masses [171], as well as
in Graph Reinforcement Learning [172], where BSM models are represented within a
graph structure. In the latter, RL algorithms are employed to explore configurations
such as vector-like leptons and dark U(1) gauge symmetry models. Moreover, RL has
been used in String Theory [173] to navigate the landscape of string vacua. However,
in these applications, the PSP presents a computational challenge, as a parameter

space scan is always required to evaluate the viability of a given model.
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Chapter 7

Bayesian Active Search on

Parameter Space

7.1 Introduction

The SM was introduced in Chapter 2, with its completion with the discovery of the
Higgs particle with a mass of 125 GeV at the LHC in July 2012 [8, 3]. Section 2.3
reviewed the challenges of the SM including Neutrino masses, dark matter and
hierarchy problems and many other theoretic fundamental problems, such as the
explanation of Gravity at the quantum scales. Also, Section 2.3 introduced the concept
of New signals, leaving clear that the construction for a theory Beyond the SM is key
for the current status of particle physics. From the model landscape review in Section
2.4 for models explaining different combinations of these phenomena concluding we
focus now the (B — L) SSM model, as a distinctive example of a model realisation of
Supersymmetry that can explain the anomalous experimental signals at ~ 95 GeV
reported in searches for new Higgs bosons as a study case for parameter scan algorithm

development.

The research presented in this in this chapter proposes a newly developed PS
methodology, improving sample efficiency for performing PS, where numerical
evaluations of BSM models (with the aforementioned (B — L)SSM being out
benchmark example) are computational expensive. We formulate the PSP as an Active
Search (AS) problem, a framework using the elements of BO but with the aim of
search instead of optimise. In this approach, multiple phenomenological signatures of a
particular BSM model are set as the multiple objectives, constrained by experimental
measurements. These can refer to particle masses, Branching Ratios (BRs), production
cross-sections or any model prediction information. Thus, we introduce a batched
Bayesian Multi-Objective (BMO) AS algorithm, which we name b-CASTOR, which
stands for batched Constraint Active Search with TPE Optimisation and Rank based
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sampling. This algorithm provides a comprehensive characterisation of the entire
satisfactory region in the parameter space of the BSM model under study.

Additionally, it ensures sample diversity within the discovered region.

b-CASTOR uses GP surrogate models to approximate the objectives, as in BO and the
Expected Coverage Improvement acquisition function, introduced in [174]. This policy
aims to increase the volume coverage within the satisfactory region of the search space
to propose new candidate solutions in a sequential manner, obtaining the sample
diversity. Lastly, a sampling strategy that allows for multi-point evaluations is
developed, leading to a dense collection of samples from the satisfactory region. This
strategy also provides tunable control over the exploration and exploitation trade-off of

the search strategy.

The methodologies and findings discussed in this chapter have been published in [175],

and the accompanying code for result replication is accessible at [176].

7.2 Literature review

As mentioned in the introduction, Bayesian inference techniques are employed for
parameter scans, framing the PSP as a sampling problem [39]. The goal is to sample
from the posterior probability, which is proportional to the product of the likelihood
and the prior, indicating how likely the BSM model is to explain certain objective
observables. Monte Carlo methods [41] are used to sample from this target probability
density, following the methodology outlined in Chapter 5. Although these methods
scale well to higher dimensions, they typically require a large number of samples to
reach the stationary target distribution. Moreover, due to the Markovian nature of
these methods, the parameter space is explored step by step, with each move
depending only on the current state rather than the full sampling history. MCMC
methods such as Metropolis-Hastings also struggle when the target density is

multi-modal, requiring more advanced exploration strategies.

MultiNest [177] is a Bayesian inference algorithm based on nested sampling [42],
widely used in the physical sciences. It addresses the challenges of multi-modality and
degeneracy in complex target distributions and also provides the Bayesian evidence,
which is essential for model comparison. However, it still suffers from sample
inefficiency, requiring many likelihood evaluations, and can struggle with narrow or

isolated modes.

The sample efficiency can be improved by integrating a surrogate model into the
sampling algorithm. This surrogate can be used to approximate either the likelihood
function or the observables directly, making the evaluation of parameter configurations

computationally cheaper. The behaviour of the sampling process is governed by a
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specific algorithm, which may use the surrogate to guide the selection of new parameter
points. This guiding mechanism can be referred to as the decision strategy or policy.
For instance, in Metropolis-Hastings MCMC, the decision strategy corresponds to the
acceptance ratio criterion, while in BO, it is represented by the acquisition function.
The choice and design of this policy determines whether the PS algorithm behaves

more like a sampling method, an optimisation routine, or a search strategy.

The integration of these elements into PS algorithms is rapidly growing in the
literature. One of the earliest examples is [5], where a ANN is used as a surrogate
model to approximate multiple observables directly, after which a predefined likelihood
is evaluated. This surrogate-based likelihood is then sampled using Rejection
Sampling, which selects a desired number of configurations to be evaluated using the
actual objective function — the computationally expensive physics simulation. The
ANN is retrained continually with new evaluations. This approach essentially
decouples the expensive likelihood evaluations from the sampling process and through
continual retraining of the ANN enables the surrogate to adapt and improve over time.
However, the algorithm remains fundamentally a sampling-based approach, rather
than a directed search. Its sampling behaviour does not adaptively target
underexplored or high-uncertainty regions. Although some diversity is introduced via
uniform random sampling, this is generally inefficient and lacks a principled strategy to

balance exploration and exploitation.

Following this, [45] introduced both regression and classification approaches, utilising a
MLP as the surrogate model for each task. The decision strategy involves evaluating a
fixed number of random samples using the surrogate, after which the selection process
differs depending on the task. In the regression approach, points are selected based on
a x? test to target regions of interest. In the classification approach, the probability of
belonging to the region of interest is used to identify the decision boundary. These
approaches improves versatility by letting researchers tailor the task (best fit vs
boundary), but remains fundamentally passive, relying on ML to guide sampling

rather than actively searching for new, diverse, or informative points.

Another emerging ANN-based approach is presented in [46], which applies active
learning to iteratively learn the decision boundary between ”"good” and ”"bad” regions
of the parameter space using a neural network classifier as a surrogate. Unlike the
previous decision strategies discussed, this method dynamically prioritises points with
high classification uncertainty—typically located near the boundary—enabling the
algorithm to focus computational resources where information gain is greatest. To
avoid clustering and promote exploration, a diversity measure based on electrostatic
repulsion between candidate points is incorporated into the selection process,
controlled by a weighting parameter that balances uncertainty and diversity. This

iterative process supports the efficient discovery and refinement of the region of
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interest. In addition, AL offers benefits such as robustness to sharply varying

likelihoods and improved exploration of multiple disconnected regions.

Despite their differences in strategy, all of these approaches share a reliance on
sample-intensive neural network surrogate models. These models require repeated
training on expanding datasets and depend heavily on large numbers of evaluations to
accurately approximate complex parameter space structures, which can limit overall

sample efficiency.

Without considering sample efficiency, if the evaluation of the physics model is
computationally inexpensive, one can implement a PS method that relies solely on a
sophisticated decision strategy, focusing on the search for diversity and
characterisation of the region of interest without the need for a surrogate model. This
direction is explored by [48, 178], where the parameter space problem is framed as a
black-box optimisation task. These studies employ evolutionary and genetic algorithms
to navigate the parameter space, leveraging the inherent diversity and adaptability of
these methods to efficiently explore complex, high-dimensional landscapes. By treating
the model evaluations as black-box functions, these approaches can effectively identify
viable regions that satisfy the desired physical constraints, even in scenarios where

traditional sampling methods may struggle.

Therefore, at present, no existing method combines sample-efficient surrogate models
with a decision strategy (or policy) that actively guides the search toward discovering
a diverse set of parameter configurations by leveraging the entire history of collected
data points. Such an approach would avoid oversampling in already well-explored
regions while simultaneously offering best-fit proposals. The methodology proposed in
this chapter introduces a PS algorithm that fulfils these characteristics. Finally,
numerous other proposals are emerging, as this remains an active area of research; see

[43, 44] for an extensive review and growing list of related methodologies.

7.3 Active Search Formulation

AS is a search methodology that utilises existing knowledge — a series of evaluations —
of an objective function to identify points to sample that belong to a rare category.

The rare category in this work refers to the subset of all available parameter values x
of a BSM model whose corresponding observables y returned by a HEP-Stack, H(x),

that satisfy a set of constraints denoted by 7.

An AS method is characterised by three main components, the objective function, the
search policy and the surrogate model. The objective function represents the HEP-stack
and is treated as a black-box function with n input dimension and m output

dimension, where m is the number of objectives. The objective function is denoted by
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y = H(x) where H : R" — R™ and x = (21, x2,. .. ,l‘n)T is the input vector, and

-
y = (Y192, Ym)
by the vector T = [11, T2, ..., Tm]. Therefore, the goal of the search policy is to suggest

is the output vector. Constraints on the objectives are denoted

candidate points that belong to the satisfactory set S, the set of configurations that

satisfy the set of constraints, 7,
S={x|y=HEE)Ay=7,i=1,...,m}. (7.1)

Depending on the parameter scan method, the search policy can suggest a batch of
points X™* ~ 7(-) or a single point * ~ 7(-). Within the AS framework, the policy
uses a surrogate model to propose this batch. The search policy direct exploration by
proposing data points from uncertain, i.e. underrepresented, areas of the data in the
search space, or to direct exploitation by choosing data points expected to yield the
most useful information according to the predictions of the surrogate model, balancing

the exploration-exploitation trade-off.

Surrogate models are introduced in Chapter 4. As a brief review, surrogates are
defined as a function f : IR™ — R, where n is the dimension of the search space and
m the number of objectives. This function aims to approximate y ~ f(x) based on the
dataset D, available at the iteration t of the search. The surrogate f is typically
computationally less expensive than the objective function H and is well-defined across
the entire parameter space X, therefore allows the policy to explore the entire space at
low computational cost to determine the batch X™*. In this chapter Gaussian Processes

(GPs) are assumed to serve as the probabilistic surrogate models (see Section 4.2).

Therefore, a PS algorithm within the AS framework, is an iterative process, where in
cach iteration t the dataset Dy := (X4, Y¢) := ({x;}5_y, {y;}5-1) is constructed to fit
the surrogate model f. The search policy then uses this surrogate model to propose a
batch of candidate points, X* ~ (- | f), that are likely to fall within the satisfactory
region S. Each sample point in X* is then evaluated in the objective function

Y* = H(X*) and the dataset D;y; is updated according to Dyyq = Dy U (X*,Y™*).

Dt = (Xt, Yt)

\ D¢y =Dy U (X*vY*)]

Yt ~ f (Xt; Dt)

Y = H(X)

(X* ~a(x|D)]

FIGURE 7.1: A Parameter Scan (PS) algorithm formulated within the Active Search

(AS) framework. AS is an iterative process where, in each iteration ¢ , a surrogate

model is fitted to the current dataset D;. A search policy a(z|D) then leverages the

surrogate to suggest a batch of points X* for evaluating the objective function #. The
results are added to the dataset, and the process repeats.
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7.4 Expected Coverage Improvement

The Expected Coverage Improvement (ECI) search policy was developed for the
Constraint Active Search method [174]. ECI provides a diversity measure in the search
space X by defining a hyper-sphere of radius 7 around a parameter space point x,

called the neighbourhood, given by
N, (x) = {x':d(x,x') <r} (7.2)

where d is the Euclidean distance. The total neighbourhood for a set of input points X

given a dataset D is defined as the coverage neighbourhood,

NT(X) = U NT(X),

xeX

Thus, the volume utility function can be defined,
us(D) = Vol (IN,.(D) N S) (7.3)

where us measures the total volume of S covered by the neighborhood IN, (D). We
also define the total volume covered as up. CAS aims to discover the dataset D that
covers as much volume of the satisfactory region S as possible through the

maximisation of the ECI policy function,
a (x| D) = By [us (DU (x,y)) — us (Dy)] (7.4)
Therefore, at time step ¢ of the search, the policy proposes a configuration x* through

x* = arg max o (x| Dy) (7.5)
However, the equation (7.7) assumes the direct evaluation of the multi-objective
function. Instead, probabilistic surrogate models can be used as follows. Given a point
x, an indicator variable Z(x) = 1[y(x) = 7| shows whether the point lies within the S
region. The GP surrogate models are then used to calculate the probability of this
occurring, denoted as p (Z(x) = 1| D;), through,

p(Z() =11D0) = [ oly| u(x).v(x))dy (7.6

where ¢ is the Normal PDF, and u(x) and v(x) are the GP’s posterior mean and
variance, respectively, evaluated at x. Finally, for m objectives modeled by m
independent GPs, p (Z(x) = 1| D;) is the product of probabilities associated with

each model. With these definitions, equation (7.7) can now be estimated using the
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FIGURE 7.2: At the bottom, an example of a GP modelling a one-dimensional single-
objective function Hqp is shown. The mean function and standard deviation are dis-
played, with low uncertainty in values near the observations. At the top, the ECI
function, a(x | D), is evaluated using the GP model depicted at the bottom. In this
example the hyper-sphere radius parameter is r = 0.01. The figure demonstrates a CAS
algorithm iteration, higher ECI regions lie within the constraints (grey band), with the
optimal ECI point (red star) being the candidate point to query in Hip.

surrogate models, and is given by,

a (x| D) =Ez [Vol ({N;(x) NSz} \IN, (X))] (7.7)

Figure 7.2 shows «(x | D) evaluated using the GP at the bottom for a one-dimensional
single-objective function Hip. The figure demonstrates that regions with higher ECI
values lie within the constraints, represented by the grey band. The star point marks
the highest ECI evaluation, and sampling this point will increase the covered S volume

in this one-dimensional example.

From a BO perspective, reviewed in Section 5.2, the ECI acquisition function
fundamentally redefines the focus of optimisation, shifting it towards a search for

diverse samples that lie within the satisfactory set.

7.5 b-CASTOR Batch Evaluation

Originally, the optimisation of ECI is made point-wise and sequentially, with well
established routines, such as L-BFGS-B [162]. These classical optimisation methods
are sufficient, given the original focus of ECI on experiment design, where the global
search budget was relatively low, with order of O(10?) points. However, in this work,

our goal is to densely populate S, i.e., to collect as many samples from S as possible.
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Since ECI, eq. (7.7), depends directly on the size of the dataset D; at iteration ¢ of the
search process, the time required to optimise it increases accordingly. To evaluate
equation (7.5) efficiently we use the Tree-structured Parzen Estimator (TPE)
algorithm [157], introduced in Section 5.2.2.

The TPE optimisation process evaluates ECI a number of times to generate a
historical dataset Drpg := (X, (X)) known as trials, from which the optimal
parameter value x* in eq. (7.5) is identified. Drpg contains parameter configurations
with sub-optimal ECI values, but which lie within the satisfactory region S. Hence,
evaluating this subset of sub-optimal configurations on H accelerates the collection of
parameter space points within §. For this purpose, instead of selecting a single
estimated maximal point x* to evaluate H(x*), we sample a set of Npaten parameter
points X* = [x5,X],.., X}, ] from Drpg and evaluate every point on H in each
iteration of the search. This method, referred to as batch evaluation, accelerates the
filling of the S region in the search process, as the HEP-Stack H allows parallel

evaluations of each configuration in the batch.

The batch X* is sampled according to a rank-based sampling strategy that
interpolates between pure greedy prioritisation and uniform random sampling, initially
developed in the context of Reinforcement Learning [179] and called stochastic

prioritisation. In this scheme, each % € X is assigned a rank k(%) so that,
rk(%;) < rk(%;) for a(X;) > a(X;). (7.8)

This determines the probability of sampling

Tk(f(i)iﬁ

P&) = Zijex rk(x;)=F’

(7.9)

where 8 determines the extent to which «(X) prioritises selection, with 8 = 0
corresponding to uniform sampling. Thus, points with higher ECI value will be more
likely to be sampled, while also enabling exploration of the parameter space by

sampling low value ECIL.

7.5.1 b-CASTOR algorithm

We named this batched CAS algorithm as b-CASTOR, which stands for batched
Constrained Active Search with TPE Optimisation and Rank based sampling. Here
the search policy involves three main techniques: the ECI acquisition function, the
TPE algorithm to optimise it, and the Stochastic Prioritisation sampling method from
the optimisation history to provide the batch X*. TPE is used to accelerate the
optimisation step in each iteration of b-CASTOR. This enables the collection of larger

datasets during the search. Stochastic Prioritisation facilitates a faster convergence
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and provide control over the amount of exploration. The pseudo-code is described in
Algorithm 1.

Algorithm 1 b-CASTOR

1: Initialise parameters: Ny (number of initial points), Nppg (number of TPE trials), Npatch
(batch size), T' (number of search iterations) and § (prioritisation parameter).

2: Generate a initial dataset Dy with Ny points.

3: fori=1,T do

4:  Fit Surrogate models to D;.

5:  Optimise ECI using TPE algorithm with Nppg trials generating Dppg.

6:  Assign a rank rk(%) for each % € X in Drpg following eq. (7.8).

7: Sample a batch X* = [x{, x], ..,x}‘vbatch] from Drpg using probabilities P(%;) from eq.
(7.9).

: Evaluate X* in HEP-Stack Hyiodel
9:  Update Dj41 = D; U (X*,Y")
10: end for

Specifically, the algorithm starts by initialising a specific number of points', denoted as
Ny, creating the initial dataset Dy. Each search iteration ¢ involves fitting an
independent GP model to each objective, using the current observation dataset D;.
The ECI policy is then optimised and sampled by the b-CASTOR strategy, detailed in
Section 7.5, obtaining the batch of points X*. Each sample point in X* is then
evaluated in the HEP-Stack Hytodel under study and the dataset D;41 is updated
according to D1 = Dy U (X*,Y™*). This iterative process continues until it reaches
the pre-established number of total iterations, Tjter, or when a total number of samples

is met, denoted by Tsamples-

A schema illustrating an iteration at step ¢ of the b-CASTOR Algorithm is shown in
Figure 7.3. In this example, the search is conducted within a 2D double-objective
function, defined in Section 7.6.1, where the region S is depicted as a the shaded area.
The process is detailed as follows: (a) For each point in the current dataset, the
neighbourhood is defined as a centred disk with a predefined radius r. (b) Independent
GPs are used to model each objective dimension in Y given the current dataset. (c)
These GPs are employed to evaluate the ECI function over the whole search space
(possible in this toy example), where high ECI values suggest a greater likelihood of
expanding the volume coverage of the S region by the current dataset. (d) Using the
b-CASTOR sampling strategy, described in 7.5.1, a batch X* is selected from the ECI
to ensure a diverse collection of samples from areas with high ECI values, the batch is
represented with the blue crosses. This batch is then evaluated on the objective
function, updating the current dataset for the subsequent iteration, ¢ + 1. During the
search, the radius defining the neighbourhood undergoes a linear decay to ensure a

dense filling of the S region.

1We use a Sobol sequence [180], a quasi-random low-discrepancy sequence of points in the search
space.
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FIGURE 7.3: Schema of an iteration at step ¢ of the b-CASTOR Algorithm. In this
example, the search is performed in a 2D double-objective function, defined in section
7.6.1 with S displayed as the shaded area. (a) For each point in the current dataset, the
neighbourhood is defined as a centered disk. (b) Independent GPs model each objective
dimension in Y. (c¢) The GPs are used to calculate the ECI function. Regions with
high ECI values indicate where it is more likely to increase the volume coverage of the
S region. (d) The b-CASTOR sampling strategy is employed to select a batch X* from
the ECI, aiming to obtain a diverse set of samples from regions with high ECI values.
The objective function is then evaluated on this batch, updating the current dataset
for the next iteration t + 1.

7.5.2 Performance Study

We compare our algorithm with a Markov chain Monte Carlo (MCMC) method,
specifically, the Metropolis-Hastings (MH) algorithm [181, 39] (hereafter, denoted by
MCMC-MH). The sampling with the MH is performed with the construction of a joint
likelihood for the objectives. For each objective y;, constrained by either a threshold a

or a window with limits [a, b], we define a likelihood given by

o(y;,a) yi > a
L(yi) = {1—0(y;,a) yi<a (7.10)
o(yi,a) —o(yi,b) a<wy; <b
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where o is the Sigmoid function and is defined as,

1

U(y,a) = m (711)

Here € is a parameter that controls the smoothness of the Sigmoid function and a
shifts the center of the Sigmoid. Then, the total likelihood for a point (x,y) used for
MCMC-MH sampling is defined as,

Ly) = [T £(w) (7.12)

Given an initial proposal step-size, we adjust this step-size actively to reach a target
acceptance rate of 0.234 [182]. The scale is increased by 10% if the acceptance rate is
above a the threshold and decreased by 10% if the acceptance rate is below.

Lastly, two main metrics are monitored for both search strategies. The satisfactory
points per objective function call and the ratio of satisfactory points to total points in

the dataset per call.

In section 7.6, we perform a grid hyper-parameter search for Nrpg, § and r (defined in
eq. (7.2)) for a test objective function. We also implement a linear decay in

7 = {Tinitial, Tfinal } along the search process. This configuration on r enables an early
discovery of the S region and subsequent fine resolution filling. The values of Tipjtial

and rgp,) are also considered in the grid hyper-parameter search.

[B(01,02) Ju(01,02)

S region

J
h

—5.0 =25 0.0 2.5 5.0
0

FIGURE 7.4: Ground truth for the 2D double-objective test function f55(61,62) as per
eq. (7.13), featuring contour levels to demonstrate the constraints on the objectives.
On the left, the S region within the search space is depicted.
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7.6 Results

7.6.1 Double-objective 2D Test Function

We constructed a simple double-objective, 2D test function, denoted fgg ("), from the
Booth and Himmelblau functions [183], a uni- and multi-modal function, respectively,
defined as

fB(61,02) = log [(01 + 205 — 7)% + (261 + 02 — 5)?]

fr(01,02) = log [(9% 0y~ 11)2 4 (01 + 63 7)2} ' (7.13)

fpr(0) = {

The parameter space is defined as * € [—5,5]. Additionally, the search process is

subject to the constraints on the objectives given by

Tty = {fB(al’ez) —eEh (7.14)

fH(Hl,eg) < 3.

This simple set-up imitates the complexity of sparse and disconnected satisfactory
regions in the search space of multiple objectives. The ground truth satisfactory

regions for both objectives in fgg(61,02) are shown in Figure 7.4.

The original CAS algorithm, a sequential point-wise search process employing a
classical optimisation method, is illustrated in Figure 7.5. The figure depicts the
constraints on the objectives as solid black lines across all panels, while the dashed
lines represent the GP-approximated S boundaries at the final iteration. The first two
panels, from left to right, show the GP approximation of the objectives over the entire
search space. The rightmost panel presents the search results, with sampled points
displayed as pink scatter dots. Even without our modified optimisation strategy, CAS
demonstrates promising results, characterising S with a pseudo-grid of points. The
distance between points is approximately ~ r, where » = 0.01 (in this case, the search

space is normalised to [0, 1]).

For b-CASTOR, we performed a hyper-parameter grid search for the number of policy
evaluations Nrpg, priority scaling 8 (eq. (7.9)) as well as the parameter resolution
limits 7ipitial and Tapa) in eq. (7.2). The hyper-parameter search space is defined by the
set of values in Table 7.1, together with the fixed hyper-parameters. We selected
Nrpg = 500, 8 = 2, rinitial = 0.02 and rgpa = 0.0002. For the MCMC-MH algorithm,
an initial step size of 0.4 was established, optimised for the potential discovery of the
disconnected S regions. In order to evaluate the consistency of convergence for both
the b-CASTOR and MCMC-MH algorithms, we performed 10 searches. For this we
have set the hyper-parameters as mentioned and restricted the search to 2200 calls to
the objective test function. This was done in anticipation of the application to

querying the HEP-Stack, where the complexity of the search is dominated by time
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FIGURE 7.7: b-CASTOR results for different independent runs.
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(a) (B) ()

FIGURE 7.8: MCMC-MH results for different independent runs.

needed for evaluating each query. The performance metrics are presented in Figure 7.6.
b-CASTOR achieved an average of 2090 satisfactory parameter values by the end of
the search (excluding the initial dataset), indicating that 94.57% of the objective
function calls resulted in parameter space configurations that satisfy the constraints on
the objectives. In contrast, MCMC-MH recorded an average of 338 satisfactory points
at the end of the search, corresponding to 15.29% of the total calls. Out of the 10
searches conducted, the results of three runs per algorithm are illustrated in Figures
7.7 and 7.8.

Hyper-parameter Value

Ny 10

Nbatch 10

Tsamples 2200

NTpE {100, 300, 500}

B {1,2}

(Pinitial,Tfinal ) {(0.2,0.02), (0.02,0.002), (0.02,0.0002) }

TABLE 7.1: b-CASTOR hyper-parameters for the search in fgy. Values in brackets
define the hyper-parameter grid search space.

The superior performance of b-CASTOR over MCMC-MH is evident from the results
shown in these plots. A high number of TPE trials allows the collection of a large
number of samples, which are distributed across high values of the ECI acquisition
function. By setting a quadratic priority parameter, 8 = 2, the ranked-sampling
strategy is adjusted to strictly favour exploitation over exploration. Consequently, in
each search iteration, the proposed batch X* is more likely to contain a set of
parameter values that meet all the constraints — a satisfactory set — and show sufficient
variability in the parameters found — a diverse set — leading to a high sample efficiency
of the search. Figure 7.7 demonstrates that with b-CASTOR the S region can be
accurately characterised without having to explore the entire search space. In contrast,
MCMC-MH in Figure 7.8 exhibits lower sample efficiency, with many evaluations

spread across areas surrounding the S region.
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b-CASTOR preserves the sampling efficiency of the original CAS algorithm, as
illustrated in Figure 7.5. However, it leverages ECI information to sample more

densely in uncovered regions of S, rather than simply forming a pseudo-grid of points.

Furthermore, as mentioned in section 7.5.1, setting the radius parameter r in eq. (7.2)
to have a linear decay allows early exploration when the initial size of the radius is
relatively big compared to the search space leading to a comprehensive initial
estimation of the satisfactory region. Subsequently, since the radius decreases with
each iteration, the & region gets densely populated. However, sections of the S region
not identified in the initial low-resolution phase are likely to remain undiscovered. This
behaviour is observed in Figure 7.7 (c), where a small segment of the S region in the
top-left quadrant remains undetected. Nonetheless, b-CASTOR extends its exploration
to uncover additional sections of the S region once the previously discovered areas are
fully covered, by leveraging the uncertainty estimation of the surrogate model on

unexplored regions in the search space.

7.7 The (B — L)SSM and a 95 GeV Higgs Boson

Results for new Higgs boson experimental searches are introduced in Section 2.3.2 and
are briefly reviewed here for convenience. Combined results from CMS and ATLAS in
the di-photon decay channel reported excesses of 2.90 and 1.70, respectively, at a mass
of 95.4 GeV. LEP experiments observed a 2.3 o excess in the ete™ — Z(H — bb)
channel at a Higgs mass of 98 GeV. Finally, CMS detected a 2.60 excess in the
gluon-fusion production mode with decay into 777~ pairs at a mass of 95GeV. The

signal strength modifiers reported for those results are:

exp
exp _  ATLAS+CMS _ 0°0(99 = ¢ —7y) _ 0.27+0-10 715
Pyy = Hay T oSM(gg 5 H ) 000 (7.15)

ep O (eTe” — Z¢ — Zbb)

= — = 0.117£0.057 7.16

Hob oM (ete~ — ZH — Zbb) ’ (7.16)
exp + -

o = OO0 9902 TIT) 5 (7.17)

oM (g9 — H — 7t77)

Together, these results provide strong indications of potential new physics, potentially

involving a light neutral scalar.

The (B — L)SSM is introduced in , In Section 2.6, the neutral Higgs bosons of the

(B — L)SSM model were introduced. In this model, the CP-even sector results in four
physical scalar states (hi, ha, hg, hs) we then perform a parameter search, to fit the two
lighter Higgs states in, as solutions consistent with the experimental reports in

equation 7.15.
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The dimensionality of the search space is reduced by fixing mz = 2500 GeV,
tan 8/ = 1.15, gpr, = 0.53 and g¢}3; = 0.14 [184, 113, 185], restricting the search space

X to eight model parameters
X = {m eR®:z = (MO,Ml/g,tanﬁ,Ao,,u,u/,Bu,BM/)} (7.18)

in the ranges described in Table 7.2.

Parameter Range
My 100 — 1000 GeV
M /o 1000 — 4500 GeV
tan 3 1-60
Ag 1000 — 4000 GeV
n 1000 — 4000
w 1000 — 4000
B, 10° — 107
B, 10° — 107

TABLE 7.2: Ranges defining the search space for each parameter in the (B — L)SSM.

We define the objective space ) as the space of physical observables and informative
outputs generated by the HEP-Stack Hp_r)sgnm- These outputs are the desired
targets that we seek to constrain to specific values. Specifically, we aim for the masses
of the lighter Higgs particles in the model, denoted as mj, and my/, to have mass values
of 125 GeV and 95 GeV respectively, with a certain precision. Additionally, the signal
strength modifier ;77 should satisfy the experimental value defined in (2.30). Lastly,
we require the experimental checks from HB and HS to yield positive outcomes,
ensuring that k{'® < 1 and XIQ—IS < 136.6, these are the default values of the two

programs. Thus, we formulate a five-dimensional objective space ) as follows:
Y={yeR®:y = (mp,mysu, 1", xks, k%) } (7.19)

with constraints defined in a vector 7 for latter reference,

mysm = 125 £ dm GeV
My =95+ dm GeV
Toy = qu?7 = 0271009 (7.20)
Xas < 136.6
kB <1

where we take dm = 5 GeV as an acceptance window for the masses. As previously

mentioned, for a particular parameter space configuration x € X, the HEP-Stack
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H(p—r)ssm to evaluate is formed by SP, HB, HS and MG? (see Section 3.2.2).
High-precision spectrum calculations typically require approximately 120 seconds on
average for each query to the HEP-Stack. However, in certain parameter space
configurations, this time can extend up to 300 seconds. The computational cost
emphasises the need for the search algorithm to prioritise sampling efficiency, which
means maximising the number of positive parameter space configurations per

H(p—r)ssm evaluations.

7.7.1 The (B— L)SSM and a 95 GeV Higgs Boson

We now examine the first phenomenology case study with (B — L)SSM model. The

objective function is defined as follows:

H(B—L)SSM : (MOaM1/27tanﬁaA(]’,uv,u/)B,u)B,u’) — (mh’ath“TaM’y,y’X%S?k(I){B)

where each objective is constrained by 7 specified in eq. (7.20). One issue that arises
in sampling methods for BSM phenomenology is to guarantee the physical validity of
each parameter configuration. In certain BSM models, SP fails to converge to a
physical spectra for a significant portion of points within the search space, being the
case for the (B — L)SSM. In [5] they addressed this challenge by employing a NN
classifier as a preliminary step to regression on observables. In [186] they include these
points as points outside the satisfactory set, assigning them a zero likelihood. In this
work, for we discard the non-physical points and only work with valid parameter space

configurations.

The hyper-parameters for the b-CASTOR search are outlined in table 7.3. We have
allocated a greater number of TPE trials compared to the test function. This decision
is based on findings from section 7.6.1, which demonstrated that an increase in TPE

trials enhances the sample efficiency of the b-CASTOR search process.

Figure 7.9 illustrates the performance of both algorithms throughout the search
process. b-CASTOR identified 1636 satisfactory configurations, constituting up to 50%
of the total Hp_r)ggum calls, which amounted to 3240. In contrast, MCMC-MH was
able to find only 25 satisfactory configurations, representing a mere 0.008% of the total

calls.

The results obtained from each algorithm, b-CASTOR and MCMC-MH, are depicted
in Figures 7.10 and 7.11, respectively, using corner plots. These plots constitute a
triangular grid of 2-Dimensional (2D) scatter plots for each pair of variables,

supplemented by marginal histograms for individual variables. The figures integrate a

In this analysis, the gluon fusion production of the 95 GeV Higgs boson was computed using an
effective Higgs—gluon—gluon vertex. While this approach can lead to inaccuracies in scenarios with
significant loop contributions or suppressed top couplings, it remains a reasonable approximation.
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Hyper-parameter Value
No 400
Nbatch 30

Ts (Total samples) 3240
Nrpg 2500

B 2
(Tinitialarﬁnal) (10_2, 10_6>

TABLE 7.3: b-CASTOR hyper-parameters for the search in H(p_r)s3m-

101 0.5
TZ: 0.4
(3 102 4 i
0 o 037 b-CASTOR
g w MCMC-MH
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10" £
—— b-CASTOR A 0.1
MCMC-MH
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Hp-1 ssm calls Hp-1 ssm calls
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FIGURE 7.9: Performance metrics for b-CASTOR (blue) and MCMC-MH (orange),
for the search in Hp_pr)sgm fitting 53

Soan

selection of relevant dimensions from both the search space, X, and the objective
space, V; specifically, { Mo, M /o, tan 8, Ag} from X and {my, mysm, 7} from Y. The
dimensions of interest in the objective space are highlighted with green axes titles and

green bands marking the constraints, defined in eq. (7.20), within each plot.

Upon comparing Figures 7.10 and 7.11, it is evident that, with an equivalent number
of function calls, b-CASTOR comprehensively characterises the S region in a sample
efficient manner, in contrast to MCMC-MH, which encounters difficulties in accurately
characterising this region. b-CASTOR concentrates on exploring the neighbourhood
areas of the identified portion of the S region, simultaneously ensuring these portions
are densely populated. Conversely, MCMC-MH explores a more extensive area within
the valid search space, centred around a few S points, as we can read from the blue
marginal plots of the search space dimensions { My, My, tan 3, Ap} in Figure 7.11,
without prioritising samples within the & region. This sampling behaviour results from

the nature of the Gaussian proposal distribution in the MCMC-MH algorithm.

Subsequently, wp, can be included in the objectives, using the experimental value
defined in eq. (2.31). The objective space is then defined as follows:

y’y’y—‘rbb = {y € lRﬁ Y= (mhlathMa Ky s [obbs X%—IS& k(l){B>} (721)
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bands represent the experimental constraints on the objectives.

constrained to

mysm = 125 £ dm GeV
My = 95 + dm GeV
P = 0271048
e py = 0.117+0.057 (722
Xhs < 136.6
kB <1

where we considered dm = 5 GeV. Incorporating up, necessitates the addition of the
relevant cross-section, computed by MG, thereby increasing the computational cost
associated with H(p_r)ssy- Consequently, we conduct the b-CASTOR search utilising
the same hyper-parameters as in Table 7.3, albeit with a reduced total sample budget
of ~ 1000 function calls, owing to the increased computational cost. b-CASTOR

achieved 5% of satisfactory points, which corresponds to ~ 50 points. Under identical
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(with black axis titles) and {my/,mysm, u?7} (with green axis titles), respectively.
Green bands represent the experimental constraints on the objectives.

settings, MCMC-MH failed to identify any satisfactory configurations restricted to the
same number of function calls. We allowed MCMC-MH to continue running until it
located at least one satisfactory point, achieving a rate of approximately 1 in 4000.
The results for the discovered S points by b-CASTOR are shown in Figure 7.12.

Finally, we conducted a b-CASTOR search for the three reported signal-strength
modifiers fiy~, pp, and gy, with experimental values defined in egs. (2.30), (2.31) and
(2.32), respectively. The search was unable to identify satisfactory parameter space
configurations, suggesting that the (B — L)SSM cannot simultaneously accommodate
the three signals, within the designated search parameter space X, as defined in eq.

(7.18), with parameter ranges specified in Table 7.2.
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7.8 Computational Resources

For this work, Iridis 5 [187] was utilised. Iridis 5 represents the fifth generation of the
University of Southampton’s High-Performance Computing (HPC) facility. Specifically,
the resources used to obtain the results presented in the previous section correspond to
a single computing node. The number of CPU cores employed matched the size of the
batch, denoted as Npaicn- For example, in the case of Figure 7.10, where the
b-CASTOR algorithm was employed with Npaien = 30, 30 CPUs within a single

computing node were utilised over the course of two consecutive days.

For the comparison of algorithms focused on the number of samples, the MCMC-MH

algorithm (Figure 7.11) was performed using 30 parallel chains, employing the same
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FIGURE 7.13: Scatter plots of the data set derived from the five-dimensional b-
CASTOR search, evaluated in MG for iy, pp, and pirr. It illustrates that while
none of the points satisfy the three experimental signal-strengths modifier values sim-
ultaneously, a small set of points (marked with red crosses) meet the criteria for both
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number of CPUs. This was carried out until the number of points reached

approximately 3200, as depicted in Figure 7.9.

7.9 Conclusions

In this chapter, we have introduced b-CASTOR, a novel multi-point multi-objective
active search method for computationally expensive BSM scenarios. It effectively
identifies S, the satisfactory region of the corresponding parameter space that can
accommodate a combination of desired values for the objectives while achieving high
sample efficiency due to the use of probabilistic surrogate models for approximating
the multiple objectives. It provides sample diversity in the search space by leveraging
the ECI acquisition function, a volume based metric that operates to maximise the

covered volume of the & region.

b-CASTOR was evaluated using two case studies. The first case involved a
double-objective and a 2D test function designed to replicate the complexity of sparse
and disjoint satisfactory regions. The second case focused on BSM phenomenology,
specifically employing the (B — L)SSM scenario to allocate the observed signal at
approximately 95 GeV from Higgs searches. Specifically, in this work, we attempt to
find explanations to three possible data anomalies emerged at the above mass value in
the vv, 77 (at the LHC) and bb (at LEP) invariant masses.

We conducted a comparative analysis between our proposed search method,
b-CASTOR, and a MCMC-MH. Our findings illustrate the effectiveness of our

algorithm in characterising the S region within the parameter space of the
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(B — L)SSM model, by efficiently finding solutions herein in the case of the longest

established anomaly, i.e. the one in the vy channel, obtained in the form a light scalar
state, h. However, considering updated experimental data for the channels h — 77 and
h — bb, our approach did not find points capable of simultaneously explaining all three
channels. Nonetheless, it identified points capable of satisfying the signal strengths /.,

and pp, concurrently.

b-CASTOR is robust to the choice of the resolution parameter r, since the
optimisation of the ECI was replaced by a stochastic sampling strategy. However,
when r is gradually reduced the search is benefited by filling finely the unexplored
satisfactory areas. Our experiments have consistently found that this configuration on
r causes a large scale discovery of the § region early in the early stages of the search.
The exploration-exploitation trade-off in our algorithm is determined by the interplay
between the trials used for each ECI optimisation, the quantity of samples obtained
through the Rank-based sampling strategy, and their prioritisation level. An increase
in the number of ECI optimisation trials improves the accuracy of policy optimisation
but makes surrogate model inference less time efficient. Then, a higher degree of
prioritisation leads to an increase in sample efficiency but diminishes exploration,
consequently reducing the potential for discovery of the satisfactory region. However,
the issue of low exploration can be mitigated by increasing the number of Rank-based
samples. Nonetheless, adding more samples per iteration results in slower re-training
of the surrogate model in each iteration. Therefore, utilising probabilistic surrogate
models capable of scaling to larger datasets and with faster inference time efficiency,
such as Bayesian Neural Networks (BNNs) [188], represents a potential avenue for

further development.
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Chapter 8

hep-aid: A new computational

framework

8.1 Introduction

In this chapter, we introduce a new Python library, hep-aid, which provides a
modular framework for developing PS algorithms for BSM phenomenology and also
adopts the principles of related libraries. It manages the HEP software and provides
components to ease the utilisation, implementation, and development of PS algorithms
for phenomenological studies. The library comprises two main modules: the hep

module and the search module.

The hep module facilitates the integration of the HEP software ecosystem into Python
scripts. It allows users to perform a first-principles computation of observable
quantities to compare with experimental data for each parameter space point using a
stack of HEP software, collecting the output with a single function call. From the HEP
tools reviewed in chapter 3, currently a subset of the SARAH [189, 114] family of
programs is implemented in hep-aid. The search module manages PS algorithms,
following an AS [190] paradigm in which a search policy and a surrogate model are
employed to explore the parameter space of a multi-objective function to find

parameter configurations where the objectives satisfy a set of constraints.

This framework allows the integration of potentially any PS method, such as MCMC
or ML based sampling methods. The connection between the PS algorithms in the
search module and the HEP software in the hep module is established through the
construction of an objective function. The search module includes an objective
function constructor, which defines the search space, objectives, and constraints based

on a predefined configuration. It also maintains an internal dataset of samples with
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functionalities for saving, loading, and exporting datasets in formats such as a Pandas
DataFrame [191] or a PyTorch [145] tensor.

We demonstrate the use of the library through quick tests and real BSM scan
examples, with a focus on the (B — L)SSM benchmark phenomenology study case from
Chapter 7. This library can effectively replicate those results, as the original code for

their reproduction also utilises hep-aid.

8.2 The hep-aid Library

The hep-aid library provides a modular framework for performing parameter scans in
BSM scenarios, currently using SPheno [121, 120], HiggsBounds (HB) [129],
HiggsSignals (HS)! [130] and MadGraph (MG) [124], which we call the HEP-stack (see
chapter 3, section 3.2 ). It is focused on the AS [190] paradigm, where a
multi-dimensional multi-objective function needs to be defined and the PS algorithm
searches for satisfactory configurations in the parameter space given a set of
constraints on the objectives. The search is done using a surrogate model, which is
fitted to the collected data, to approximate the objective function and to assess which
regions of parameter space to explore by querying the HEP-stack. This yields
parameter configurations where the objectives satisfy the constraints. We call this
region the satisfactory region. Originally the library was created to give the user
simple access to use the b-CASTOR [175] and Constraint Active Search (CAS) [174]
algorithms for PS but, given the modular structure of it, many parameter scan
algorithms can be implemented: e.g., hep-aid already includes a MCMC method using
the MCMC-MH [193, 194], and MLScan [5], a NN based sampling algorithm for BSM
phenomenology. The library is divided into two key modules, the hep module and the

search module, illustrated in Figure 8.1.

The hep module facilitates the integration of the HEP software ecosystem into Python
scripts. The hep.stack module integrates SPheno, HB, HS and MG in a sequential
stack of software. Technically, this has four HEP-stacks, ranging from SPheno used
independently to the full chain incorporating all four HEP programs, and the user can
utilise any of these HEP-stacks depending on the phenomenological study. Each
HEP-stack includes operational utilities, assisting in handling and managing data,
mainly SUSY Les Houches Accord (SLHA) [119] files, and running the software
externally. The HEP-stacks need to be initialised with a pre-defined configuration file.
This configuration file contains information about the SPheno inputs that will undergo

a parameter scan and the necessary directories for the HEP tools used in the scan.

IThe two programs have recently been incorporated into the HiggsTools distribution [192], which
would also be easily embedded in hep-aid.
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FIGURE 8.1: Diagram showing the general structure of the hep-aid library, which

includes two main modules: hep and search. The search module contains the objective

and methods submodules. The objective submodule allows users to plug in any

custom objective function. The hep module serves as a specialised external objective

function that integrates with HEP software and can be seamlessly used by the objective
submodule for integration.

from hepaid.hep.stack import HEPSTACK

C = 'hep_stack_config.yml
stack = HEPSTACK[ ' SPhenoHBHSMG5' 1( hep_config=hep_config)

benchmark_point = [800, 2300, 20, 3800, 3900, 3900, le6, le6]
result = hepstack.sample(benchmark_point)

hp = result['SLHA']J['MASS']['entries']['25']['value']
h = Lt['SLHA'J['MASS']['entries']['35']['value']
sult['HB']['obsratio']

sq_hs = result['HS']['csq(tot)"']

FIGURE 8.2: Example code demonstrating the initialisation of the HEP-stack with

SPheno, HB, HS, and MG using a HEP-stack class specific to the (B — L)SSM. The

corresponding SPhenoHBHSMG5 object runs a parameter configuration defined by an

array, returning results in a Python dictionary. Key outputs, such as the Higgs particle

masses (mhp, mh), the HB ratio (r_hb), and the HS x? (csq_hs), can be extracted for
analysis.

The library offers a quick installation method integrated as a command-line feature,
along with a function to create a template HEP-stack configuration file. Once the
configuration file is defined and the HEP-stack is initiated, the hep.stack module
enables the user to run a parameter space configuration defined as a simple array. This
array corresponds to the input parameters for SPheno, as specified in the configuration
file. The result contains all the input and output information of the HEP tools used in
the HEP-stack, formatted as a Python dictionary.

The search module provides all the necessary components for performing a search on
a multi-objective function, either by using the hep module or by defining a custom
function. It also includes PS algorithms and tools to support experimentation and the

development of new PS methods. Since we adhere to the AS approach, hep-aid also
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includes surrogate models to approximate the objective function under study. These
features are implemented in three main sub modules, search.objective,
search.methods and search.models. The objective module contains the Objective
class, which is the objective function constructor it needs to be initialised with a
configuration file stating the search space dimensions with their ranges, the objectives
variables and the information of the constraints. The Objective class internally
manages the sampling of the objective function, stores the dataset, performs data
processing to export to the surrogate models, and saves the dataset to disk. The
methods module contains all the PS methods available currently, namely, MCMC-MH
[193, 194], b-CASTOR [175], CAS [174] and MLScan [5]. Each method is constructed
by inheriting the Method base class which loads a specific configuration file and saves
or loads checkpoints to continue the search. A set of metrics is recorded in each PS
method, such as the total number of parameters sampled, and those that satisfy the
constraints. Further metrics may be customised for different use cases. Finally, if the
parameter scan algorithms follow an AS approach, they will use the surrogate models
implemented in the search.models module currently containing Gaussian Processes
(GPs) for the AS algorithms and a simple Multi-Layer Perceptron (MLP) for the
MLScan method.

The workflow idea that hep-aid proposes is that the users define an objective function
using the Objective class and define its configuration file. They can then run the
preferred PS method which uses the initiated Objective object. For BSM
phenomenological analyses using the hep module, the workflow needs to be more
elaborated since the objective function needs to be constructed in a appropriate
manner compatible with the Objective class, by retrieving the necessary values of
masses, cross sections, Branching Ratios (BRs), etc.: see the code example in Figure
8.2.

8.2.1 Library Overview

Here, we describe in detail how to make use of hep-aid.

8.2.1.1 Installation

The library is publicly available in GitHub?. To install hep-aid one needs to clone the

repository first, then proceed as illustrated in Figure 8.3.

git clone https://github.com/mjadiaz/hep-aid.git
pip install.

F1GURE 8.3: Commands to clone the repository and install the hep-aid package.

https://github.com /mjadiaz/hep-aid.
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8.2.1.2 Test Objective Functions

To provide a practical overview of how to use various functionalities of hep-aid, we
utilise the test function introduced in chapter 7 equation (7.13) . This is a
two-dimensional, double-objective function comprising both uni-modal and
multi-modal objectives, with partially overlapping constraints for each objective that
defines the satisfactory region. The ground truth satisfactory region is shown in Figure
7.4. The general pipeline for using a parameter scan with hep-aid is illustrated in the

example code in Figure 8.4. When the search method is executed in the command line,

from hepaid.search.objective.test import init_him_boo_fn
from hepaid.search.method import bCASTOR

test_objective = init_him_boo_fn()

bcastor = bCASTOR(objective=test_objective)

bcastor.run()

FI1GURE 8.4: Quick start guide illustrating the following: initialising a two-dimensional
double objective test function, selecting and starting the b-CASTOR method, then
running the search.

a progress bar displays key metrics related to the search. In Figure 8.4, which
demonstrates the b-CASTOR method, the progress bar will track the success rate,
total points sampled, valid points count, and satisfactory points count. It also provides
the current iteration and the parameter r, defining the radius of the neighbourhood
around each parameter vector. Further details on this algorithm are provided in
Section 8.4.2. The dataset generated from the search is stored in
test_objective.dataset. This dataset can be visualised using a corner plot, a
technique that displays pairwise correlations between multiple variables alongside their
marginal distributions. In this context, the plot illustrates the various dimensions of
the search space and potentially the objective dimensions. The corner plot can be
generated using the utility module hepaid.search.objective.plot, as demonstrated

in Figure 8.5.

Every ML-based active PS method which is used retains a copy of the fitted surrogate
model in the method.method attribute. This model can be accessed after completing
the search and will correspond to the model used in the latest iteration of the search
loop. Figure 8.6 demonstrates how to use routines from the .plot module, e.g.,
generate meshgrid and reshape model _output, and to create filled contour plots
that visualise the objective approximations generated by the surrogate model fitted to

the current dataset. The hep-aid framework currently includes four main PS
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from hepaid.search.objective.plot import CornerPlot

# Define 'good' for satisfactory points, 'bad' for the rest

good = test_objective.satisfactory.prod(axis=1).astype(bool) 11400 ® €S

bad = ~good 2 e ¢S
=

# Export dataset as a DataFrame 4200 g

df = test_objective.as_dataframe() (@)

# Initialise CornerPlot for visualisation
cp = CornerPlot(
figsize=(4, 4), =
parameters=test_objective.input_parameters,
colormap="'winter_r'

100

) £
— =}

) ) < O 2
# Add traces for satisfactory and unsatisfactory points 50 Q
cp.add_trace(df[good], r'$\in \mathcal{S}$', alpha=1) O
cp.add_trace(df[bad], r'$\notin \mathcal{S}$', alpha=1)

. pall 0

# Update legend and clean up figure 4
cp.update_legend( ) 7
cp.clean()

# Save figure
cp.fig.savefig('plots/bcastor_run_result_himboo.png', dpi=300)

FI1GURE 8.5: Code snippet that demonstrates the use of the CornerPlot utility to visu-

alise data points classified as satisfactory or unsatisfactory. The dataset is filtered using

the Objective.satisfactory attribute, and traces are added to distinguish between
the two classifications.

from hepaid.search.objective.plot import generate_meshgrid
from hepaid.search.objective.plot import reshape_model_output

# Generate the grid
dim_ranges = [(0, 1), (0, 1)]
steps_per_dim = [50, 50]

grid_points, meshgrids = generate_meshgrid( 1.00 9.0
dim_ranges, steps_per_dim 7.5
) 0.75 6.0
4.5
# Use the trained surrogate model < 0.50 3.0
mean, sigma = bcastor.model.predict(grid_points) 15
0.25 0.0
# Reshape mean with the grid dimensions —-1.5
reshaped_preds= reshape_model_output( 0.00 i —3.0
model_output=mean([:,i], 0.0 1.0 0.0 0.5 1.0

steps_per_dim=steps_per_dim B [
).detach().numpy()
XX, Yy = meshgrids

# Create plot with routines like contourf or imshow

FIGURE 8.6: Example code for the application of the generate meshgrid and

reshape_model_output routines from the hepaid.search.objective.plot module,

as well as the evaluation of the GP surrogate model b—CASTOR.model on the generated
grid, illustrating the fitted model predictions based on the current dataset.

methods: MCMC-MH, b-CASTOR, CAS, and MLScan. The details of each algorithm

are described in Section 8.4.2.

The flexible structure of the hep-aid library allows users to switch between methods
seamlessly by following the procedure displayed in Figure 8.4. This flexibility
facilitates straightforward performance comparisons between different algorithms, as

demonstrated in Figure 8.7. The figure presents the efficiency, measured by the ratio of
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F1cURE 8.7: Performance comparison of b-CASTOR, MLScan, and MCMC-MH for

a two-dimensional, double-objective test function. The mean is displayed for five runs

for b-CASTOR as well as MLScan, and ten runs for MCMC-MH. The top-right plot

displays the efficiency measured as the ratio of satisfactory to total points, S, as a

function of the dataset size, Dyyy. The top-left plot shows the corner plot for b-

CASTOR, while the bottom-left and bottom-right plots present the corner plots for
MLScan and MCMC-MH, respectively.

satisfactory to total points S, as a function of dataset size Dg;,. for b-CASTOR,
MLScan, and MCMC-MH on a two-dimensional, double-objective test function. The
search for each algorithm is conducted over five independent runs for b-CASTOR and
MLScan, and ten runs for MCMC-MH. Figure 8.7 highlights the superior sample
efficiency of b-CASTOR compared to the other two methods; however, MLScan
exhibits greater exploration within the parameter space, showing robustness for mode
discovery. MCMC-MH demonstrates an S, of zero in some runs due to suboptimal
random starting points, highlighting a key weakness of this algorithm?®. This
comparison illustrates the importance of selecting a PS method based on user needs, as
each algorithm has distinct strengths that can be used depending on the requirements

of the specific use case.

3This analysis can be replicated with the code examples available in git-
hub.com/mjadiaz/hepaid_tutorials.
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8.2.2 Searching for BSM Physics

To perform parameter searches in BSM phenomenology studies, the HEP-stack
software must be installed separately. Therefore hep-aid provides a command-line
utility for installing the specific HEP software used in the previous chapter and in
[175]. This setup aims to facilitate reproducible phenomenological scans by sharing
BSM spectrum files. By running the command hepaid install-HEP-stack-cli in
the directory containing the SPheno and Universal FeynRules Output (UFO) [195]
files, hep-aid will install the required software with the appropriate versions?. In this
manual, we demonstrate how to conduct a parameter scan within the (B — L)SSM to
identify Higgs mass values that can explain an experimental signal around 95 GeV in
terms of a BSM Higgs boson, alongside the 125 GeV SM-like Higgs state. This signal is
supported by multiple experimental analyses searching for new Higgs bosons, including
a di-photon () excess observed by CMS [11], a di-tau (7777) excess also reported by
CMS [12], and a bb excess detected by LEP [13]. The search space in this case is
defined by

X = {x cR®:z = (MO,Ml/z,tanﬁ,Ao,u,/j,BM,Bw)} : (8.1)

For demonstration purposes, we simplify the objective space to include only the masses
of the two lightest Higgs particles in the (B — L)SSM, i.e., the output space is defined
by

y:{y€R2:y:(mh/,thM)}. (8.2)
Then the task for the search method is to find parameter space points that satisfy the
constraints
mpsm = 125+ dm GeV,
My =95+ dm GeV,

where dm is a user defined mass window. In this case we will consider dm = 5 GeV.
Figure 8.8 illustrates the use of the b-CASTOR algorithm to conduct a search within
the (B — L)SSM. The objective function must be defined: in this example, we use the
hep_stack_fn utility function, which enables the use of a HEP-stack object for
evaluating a single parameter space point. The result is returned as a nested Python
dictionary containing, in this instance, the input and output files for SPheno. To
generate the required output from the objective function, we use the
create_simple_dict utility function, which queries the result dictionary as shown in
Figure 8.2 but in an automated manner. This function takes the list of keys from the
masses_spheno_config.yml configuration file and returns only the specified keys and
their values for the input and output parameters defined in the configuration file. The
configuration format is designed to be compatible with the Objective object

constructor by including the key_chain and output_parameters elements.

4The companion repository provides the UFO and SPheno files for the (B — L)SSM model, enabling
the replication of the example study.
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: 100
: 1000

from hepaid.search.objective import Objective . [:M "f“_m‘w T On ey
from hepaid.hep.stack import hep_stack_fn :
from hepaid.hep.utils import create_simple_dict : 3000
from hepaid.search.method import bCASTOR { SUU‘: T
: ["LHS", "MINPAR", "entries", "2", "value"]
. . . 8 o
stack_config_path = 'configs/hep_stack_config.yml' . 60.
objective_config_path = 'configs/masses_spheno_config.yml' : "uniform
method_config_path = 'configs/bcastor.yml’ - : ["LHS", "MINPAR®, "entries", "3", "value"]
: 100
: 4000
def calculate_higgs_masses(x): . ['>H‘S""?‘.',"IW.P P _—
results = hep_stack_fn(x,stack_config_path) :
return create_simple_dict(objective_config_path, results) f;%g
i uniform
: ["LHS", "EXTPAR", "entries", "11", "value"]
hep_objective = Objective( 8
: 1000
function=calculate_higgs_masses, . 8000
function_config=objective_config_path : "uniform
) : ["LHS", "EXTPAR", "entries”, "12", "value"]
;163
e me : le8
_ : “uniform
method.— bQ\STOR( : ["LHS", "EXTPAR", "entries", "13", "value"]
objective=hep_objective,
hyper_parameters=method_config_path :ii
) s S
method. run() : ["LHS", "EXTPAR", "entries", "14", "value"]
: [\,LHH,. S", “"entries", "25", "value"]
: ["SLHA", "MASS", “"entries", "35", “value"]
S [lrgt*, 90.41, [*1t*, 100.4]]
: [["gt", 120.0], ["1t", 130.4]]

FIGURE 8.8: Code example demonstrating the definition of the objective function,

calculate higgs masses, and the initialisation of the Objective constructor. Here,

create_simple_dict resolves the key chains in the nested result dictionary, retaining

only the objective keys and their corresponding values. The search configuration file

for HEP-stack is also provided, showing the search space configuration, the objectives
and their constraints.

The results can be visualised using the CornerPlot class of hep-aid, as shown in
Figure 8.9%, which displays the distribution of points within and outside the S region.
In this case, the two classes of points are not clearly separable, as the distributions of
satisfactory and non-satisfactory points overlap, as shown in the marginal histograms
in the corner plots. However, the number of non-satisfactory points is relatively small,
given that b-CASTOR demonstrates nearly 95% efficiency in the top-right plot. The
search was conducted with an initial dataset of 400 points. The configuration file for
b-CASTOR used in this example is shown in Figure 3.

8.3 HEP Module

The HEP module in hep-aid, located in hepaid.hep, provides infrastructure for
managing and executing HEP software. As mentioned, for phenomenological analysis,
a collection of HEP tools, referred to as a HEP-stack, is typically required to run

sequentially for a single parameter space point of the BSM scenario under study. In

5Note that the search does not consider (X%IS, kup, v~ ) as objectives, as was done in Chapter 7.
The S region expands significantly when only the masses matching the desired values are taken into
account.
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FI1GURE 8.9: Corner plot visualisation of point distributions within and outside the S

region. The top-right plot shows the b-CASTOR efficiency, with nearly 95% of points

meeting satisfactory constraints. The red dashed line shows the initial number of points
for the search.

fact, hep-aid aims to simplify the setup and execution of a HEP-stack by abstracting
away the details of each tool initialisation and execution. It thus allows the user to

perform HEP phenomenology analyses in a simple manner from a Python script or a
Jupyter notebook.

8.3.1 HEP-stack

Every HEP-stack is implemented as a Python class and stored in the HEPSTACK
dictionary. Each HEP-stack needs to be initialised with a pre-defined configuration file.
This configuration file contains information about the input parameters that will
undergo a parameter scan and the necessary directories for the HEP tools used in the
scan. For instance, the HEP-stack composed by the SPheno-HB-HS-MG sequence can
be accessed as shown in Figure 8.2. For this HEP-stack, a configuration file is shown in
Figure 8.10. With the HEP-stack initialised, we can define a Benchmark Point (BP)
within the search space specified in Eq. (7.18). We then execute the HEP-stack using
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: 'SPhenoHBHSMG5' ;
: 'BLSSM'

¢ 'path/to/output’
: 'datasets
: True .1
e 'MINPAR'
: 'path/to/reference_slha' ' g 9
. 'path/to/SPheno’ : 'MINPAR'
: 6 : 3
8 U ¢ 'MINPAR'
'path/to/hb/build’ :
8 B
. 6 : 'MINPAR'
g 1l :
‘path/to/hs/build’ 3 Wl
¢ 'EXTPAR'
path/to/MG5_aMC 12
'EXTPAR'
"path/to/mg5_script.txt'
¢ 13
'EXTPAR'
: 14
'"EXTPAR'

FicUure 8.10: Configuration file for the HEP-stack named SPhenoHBHSMG5. The file
includes all relevant information for the HEP tools, and on the right, details about the
parameters needed to conduct a search using SLHA block information.

the .sample(x) method, as shown in Figure 8.2. The result includes all the input and
output information from the four HEP tools used in the HEP-stack, presented as a
Python dictionary. To obtain the objective parameters within ), defined in Eq.
(7.19), we can simply query the result dictionary using their corresponding chain of

keys, as illustrated in Figure 8.2.

8.3.2 HEP Tools

The hep-aid package implements the hepaid.hep.tools module, which provides
classes and methods for managing high-energy physics tools such as SPheno, MG, HB,
and HS. This module offers a simplified interface for running computations with
minimal boilerplate code. It also handles the automatic management of input and
output files, including the creation of necessary directories, and parses tool-specific

output formats into structured Python objects for further analysis.

The classes defined within this module corresponds to a specific tool. The structure of
each tool class is defined by the BaseTool class which includes run() and results()
methods. As an example, Figure 8.11 demonstrates how SPheno can be initialised and

run in a straightforward manner. HB and HS are also implemented in hep-aid, as
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from hepaid.hep.tools import SPheno

from hepaid.hep.tools import HiggsSignal

dir = "path/to/SPheno-4.0.4"
1it_dir "path/to/output/files"
L_name "MODEL"

1s = HiggsSignals(
heptool_dir='path/to/HS',
spheno = SPheno(heptool_dir, output_dir, model_name) utput_dir='path/to/output/files’,
neutral_higgs=6,
charged_higgs=1
spheno.run(input_slha_file) )

output_slha e = spheno.results hs.run()
hs_result = hs.results

FIGURE 8.11: Using SPheno and HiggsSignals: The parameter heptool_dir cor-

responds to the path to SPheno’s directory, output_dir corresponds to the directory

where the output will be stored, and model _name is the name of the previously com-

piled model. The process is analogous for HiggsSignals, here heptool_dir refers to
the directory containing the build.

mentioned®. The HB and HS tools can be used as shown in Figure 8.11, following the
same structure as SPheno. Lastly, the MG HEP tool is implemented to run in script
mode. In this case, the run(mgb_script_path) method takes the path to the script as
input. The results("path/to/process/output") method finally takes the path of
the MG output generated by the command output example_process.

8.3.3 Reading and Writing SLHA Files

The basis for input/ouput in the HEP module in hep-aid is the SLHA format

[196, 119]. Libraries for manipulating SLHA files exist in literature already. The
Pyslha [197] library is a well-established and widely used tool for SLHA file
manipulation. Pyslha includes functions for calculating spectrum properties, making it
a comprehensive solution for handling SLHA files in various contexts. Additionally, it
offers capabilities for generating mass spectrum plots in various formats through the
slhaplot script. Another notable library is [198], which efficiently manages both
individual SLHA files and directories containing multiple files, with a particular
emphasis on reading speed optimisation. This library allows for efficient data filtering
through Targeted Data Extraction when specific blocks and entries are known.
Furthermore, xSLHA (a Python parser for files written in the SLHA format) can

process large files where spectra are separated by specific keywords.

However, in hep-aid implements its own SLHA, module.lass, which treats SLHA
files like Python dictionaries, allowing users to access blocks and entries with familiar
syntax. This simplifies data extraction and manipulation without the need for a
specialised Application Programming Interface (API). The SLHA class retains file

comments, preserving valuable metadata, explanations, and references essential for

5The two programs have recently been incorporated into the HiggsTools distribution [192], which
would also be easily embedded in hep-aid.
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reproducibility and context. It supports the DECAY1L and HiggsTools blocks, with a
focus on SPheno input files, which include a unique "on/off" configurations. An
example on how the SLHA module is used is displayed in Figure 8.12. The main
objective of creating such a module is to support the construction of large spectrum
datasets, by providing functionalities for exporting SLHA files as nested Python
dictionaries, facilitating integration with JavaScript Object Notation (JSON) and
enabling the storage of multiple SLHA files within a single zipped JSON file.

from hepaid.hep.read import SLHA

slha_file = 'LesHouches.in.BLSSM'
slha_data = SLHA(slha_file)

print(slha_data)

parameter_blocks = slha_data.keys()
print(parameter_blocks)

minpar_block = slha_data['MINPAR']
print(minpar_block)

FIGURE 8.12: Using the SLHA class for the default input SLHA file of the (B — L)SSM.
Blocks and entries exhibit dictionary-like behaviour and can be exported as a Python
dictionary for efficient storage and communication with other modules.

Under the hood, every line representing data in a block is structured with a
BlockLineSLHA class which stores the numerical entries, values, comments, and line
category. Note that entries are defined as everything apart from the value of each line.
The blocks are represented with a BlockSLHA class, which stores each line, the block
header and additional information in this header. Lastly, the SLHA extracts
automatically the information of an SLHA file and organises it with BlockSLHA and
BlockLineSLHA. This modular design lets users customise the library behaviour or add
support for new SLHA blocks, as needed. The hepaid.hep.read module also includes
utilities for reading results from HB, HS, and single MG process generation, to extract
the cross-section and the number of events. These routines are used in the
hepaid.hep.tools module, where each HEP tool includes its results by calling the

corresponding hepaid.hep.read routine. As an example, Figure 8.11 shows how
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SPheno returns the resulting SLHA file by internally calling the SLHA class in
hepaid.hep.read.

8.4 Search Module

In hep-aid, a Parameter Scan Algorithm is implemented as an AS process. AS,
introduced in chapter 7 section 7.3, is an iterative search methodology that consists of
three main components: the objective function, the search policy, and the surrogate
model. At each iteration ¢, a dataset D; is updated with new evaluations from the
objective function. The surrogate model is then made to fit this dataset to refine its
approximations and guide the search policy in proposing new candidate points within
the satisfactory region. Therefore, technically hep-aid comprises three core
components. In this section, we describe the main components, modules and additional
utility functions that hep-aid implements to utilise, implement and develop parameter

scan methods.

8.4.1 Objective

The interface between an objective function and a parameter scan method is managed
by the Objective class. This class handles an external multi-objective function, where
the objective function is treated as a black-box. By design, the multi-objective
function must be defined as a Python function. This function takes the parameter
configuration input x as an array and outputs a dictionary. The dictionary includes
keys and values that correspond to the names of the input dimensions and the
objectives, along with their respective values. The necessary parameters are defined in
the configuration file to initialise the Objective class. This is illustrated in Figure 8.13

for a two-dimensional, single-objective Egg Box model function.

The Objective class provides a key feature in hep-aid: the ability to integrate any
black-box function. This allows users to input any function, including external
software, as long as the function accepts input x as an array and outputs a vector y.
This capability also serves as the mechanism by which the HEP module is integrated

into the Objective class.

The Objective object stores the function in its Objective.function attribute and
reads the configuration file to create a search space utility using scikit-optimize
[199]. This search space facilitates the normalisation of the internal dataset, stored in
Objective.dataset, which is essential for fitting surrogate models. The dataset is
dynamically updated whenever the function is called through the
Objective.sample(x) method, adding the new set x,y to the internal dataset. The

historical Objective.dataset is formatted as a Python dictionary. However, the
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from hepaid.search.objective.objective import Objective

import numpy as np
: 0
def egg_box(x): : 31.41
—0 f = (2 + np.cos(x[0] / 2) * np.cos(x[1] / 2)) ** 5 : uniform

return {'x1': x[0], 'x2': x[1], 'f': f}
HIN0)
: 31.41
test_objective = Objective( : uniform
function=egg_box, o [f]
function_config='egg_box_config.yml',
cas=False
) : [['gt', 80],['lt',160]]

10
-225
) 200
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150
g 0 125
100
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F1GURE 8.13: Definition of the Egg Box model as a function, which serves as the

objective function to initialise the Objective class. The function accepts an array of

input parameters and outputs a Python dictionary containing all the parameters, both

input and output. These parameters and their ranges are defined in a configuration file,

along with the objective dimensions and their constraints. Additionally, the contour
plot of the egg box function is displayed at the bottom.

Objective.x, Objective.X, and Objective.Y attributes hold the input data in the
original space, the input data in the normalised space, and the output data in the
original space, respectively. The method
Objective.as_dataframe(satisfactory=True) return the dataset as a Pandas
DataFrame [191]. The Objective.satisfactory attribute generates a boolean
matrix, S;;, with the same dimensions as Objective.Y. This matrix identifies which
elements in Objective.Y satisfy the constraints defined in the configuration file.
Consequently, taking the vertical product, S; = []; S;;, of Objective.satisfactory
produces a boolean array. This array labels as True the configurations in

Objective.dataset that meet the specified constraints.

Lastly, the method Objective.save(path) saves the internal dataset as a compressed
JSON file. Then, the method Objective.load(path, process=True) loads a
previously saved JSON file, updating the internal dataset and all relevant information
if the process argument is set to True. This allows the continuation of the search

process with a parameter scan algorithm or for plotting purposes.

8.4.2 Parameter Space Sampling

The hepaid.search.methods module includes all the implemented PS algorithms.
Currently, these methods are MCMC-MH, b-CASTOR, CAS, and MLScan. Due to the
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varying requirements of each parameter scan algorithm, hep-aid implements a base
class called Method. This class is designed to be inherited by PS algorithms and
encapsulates the essential functionalities needed for managing hyperparameters,
tracking standard and custom metrics, handling checkpoints, and managing file
directories. Every method that inherits from this base class will receive an Objective
instance and a hyperparameter file as arguments. The file can be provided by the user
as a string path or a DictConfig [200]. If neither is provided, the default configuration
file will be used. The Method class also offers utility methods to save and load the state
of the search process, including the state of the objective function, current metrics
being tracked, and the hyperparameter configuration file. Each instance of the Method
class initialises a Metrics object responsible for tracking standard metrics related to
the search process. These metrics include the total number of points evaluated, the
number of valid points, the number of satisfactory points, the success rate, and the
current iteration counter. Additionally, users can extend the metrics functionality by

defining custom metrics that can be updated during the search process.

There is a defined general structure for the hyperparameter configuration file, as
illustrated in Figure 8.14. Each instance of the Method class will read the following
hyperparameters. The run_name refers to the path to the directory where checkpoints
and configuration files will be saved. The parallel parameter is defined as a boolean
parameter to enable the parallel evaluation of specific processes during the search.
This works in conjunction with the n_workers parameter, which dictates the number
of parallel processes based on available resources. For example, this setup is used for
evaluating the objective function of the batch X ™ suggested by the policy, by using the
function batch_evaluation located in hepaid.search.objective.utils. Except for
MCMC-MH, search methods require an initial dataset, which is configured via the
initial dataset hyperparameter. The initial dataset.n_points specifies the
number of points to be generated, while initial dataset.generate is a boolean
indicator for the dataset generation. This is useful, for instance, when the user wishes
to continue from previous checkpoints where the complete initial dataset is not needed.
The initial dataset is generated by the function generate_initial dataset. The
total_iteration parameter sets the total number of iterations for the search loop.

Additional parameters will depend on the specific algorithm and are explained below.

Hyperparameter Description
run name Directory path for saving checkpoints and configuration files.
parallel Boolean parameter to enable parallel evaluation of processes.
n_workers Number of parallel processes based on available resources.
initial_dataset Configures initial dataset required by most search methods.
initial dataset.n _points Number of points to generate in the initial dataset.
initial dataset.generate Specifies whether the initial dataset should be generated.
total iteration Sets the total number of iterations for the search loop.

TABLE 8.1: Hyperparameters for a PS method implemented by inheriting the Method
class.
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8.4.2.1 AS Methods

As mentioned, hep-aid implements two AS methods, CAS and the b-CASTOR
algorithm introduced in chapter 7. Therefore, the additional hyperparameters relevant
for CAS are located in the configuration file as eci.num_samples, which specifies the
number of sample points for which an individual hypersphere is approximated, and the
resolution block. In this context, resolution.constant_resolution allows for
switching between a fixed radius or a linear decay in the radius. The
resolution.value sets the value, typically ranging between 0 and 1, as the search
space is normalised. The parameters resolution.initial and resolution.final are
used when the linear decay mode is enabled. Additionally, resolution.r_decay_steps

specifies the number of iteration steps during which the decay takes place.

Hyperparameter Description
eci.num samples Number of sample points for approximating each hypersphere.
resolution.constant _resolution Switches between fixed radius and linear radius decay.
resolution.value Sets radius value, typically between 0 and 1 (normalised space).
resolution.initial Initial radius value for linear decay.
resolution.final Final radius value for linear decay.
resolution.r decay steps Number of steps for radius decay.

TABLE 8.2: Hyperparameters used for CAS in hep-aid.

Then, the additional hyperparameters required by b-CASTOR include those from CAS
related to the resolution parameter, as well as the following ones. For the batch
sampling settings, we have batch_sampling.tpe_trials, which indicates the number
of trials for optimising the ECI function using the TPE algorithm. Next,
batch_sampling.rank samples specifies the number of samples obtained from the
historical data of the TPE optimisation using the stochastic prioritisation technique.
This process determines the size of the batch X*. The batch_sampling.alpha
parameter controls the degree of prioritisation in rank-based sampling; a higher value
prioritises sample efficiency. The interaction between the alpha and rank samples
hyper-parameters determines the balance between exploration and exploitation in the
algorithm. Empirically, setting alpha=2 provides a good balance of efficiency and
diversity within the satisfactory region. A higher number of rank_samples, i.e., a

larger batch size, allows for more chances for exploration.

Hyperparameter Description
batch_sampling.tpe_trials Number of TPE trials for optimising the ECI function.
batch sampling.rank samples Number of samples obtained through rank based sampling (batch X* size).
batch_sampling.alpha Prioritisation degree in rank-based sampling.

TABLE 8.3: Additional hyperparameters (with respect to the CAS ones) relevant to
the b-CASTOR algorithm.

Figure 8.14 shows the complete configuration file for the b-CASTOR algorithm, which
can also be used for the CAS algorithm. The file is displayed in YAML format.
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¢ "blssm/run" .
¢ True . le-6
: : False
: True, : 100
: 30 : le-2
: 400 : le-6
: "checkpoint" 1 2500
. 5 : 30

: 250 @30

: 500

FicUre 8.14: Configuration file for the b-CASTOR algorithm. The left side dis-

plays the general structure of a configuration file for a parameter scan implemented

in hep-aid. The right side displays the parameters relevant to the CAS algorithm

in the resolution block, where additional batch sampling blocks are required for the
b-CASTOR algorithm.

The technical implementation for both the CAS and b-CASTOR algorithms is as
follows. We used the ECI acquisition function implementation provided by the
BoTorch library [201]. Additionally, we integrated GP models, available in
hepaid.search.models, from the GPytorch library [146], a repository for scalable GP
inference built on PyTorch [145]. We further utilise the TPE implementation available

in Optuna [202], an open-source hyperparameter optimisation framework.

8.4.2.2 MCMC-MH

The MCMC-MH algorithm is introduced in chapter 5.1. The hyperparameters defined
in the configuration file include burn_in, which defines the number of initial iterations
to discard, allowing the chain to converge to the target distribution and helping to
eliminate dependence on the starting value. The initial _scale parameter sets the
initial step size for generating proposal states from the current state. The
adapt_frequency parameter defines how often to adjust the scale of the proposal
distribution during the sampling process, based on the observed acceptance rate.
Lastly, the target_acceptance_rate specifies the desired acceptance rate for proposal
moves, guiding the adaptation of the proposal distribution scale and influencing the
amount of exploration of the parameter space while ensuring efficient convergence to

the target distribution.

Hyperparameter Description
burn_in Number of initial iterations for burn-in.
initial_scale Initial step size for generating proposal states.
adapt_frequency Frequency of adjusting the scale on burn-in.
target_acceptance_rate Desired acceptance rate for proposals.

TABLE 8.4: Hyperparameters relevant for the MCMC-MH algorithm.
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For a PS, the target distribution is the likelihood constructed from the constraints in
the objectives. In hep-aid, this likelihood can be provided as a function. If not,
hep-aid will use a default likelihood constructed with sigmoid windows for each

objective and its constraints as defined in chapter 7 in equations 7.10, 7.5.2 and 7.12.

8.4.2.3 MLScan

The Machine Learning Scan method [5], termed MLScan in hep-aid was designed for
efficient sampling and exploration of parameter spaces using a Machine Learning
surrogate model for the observables, fitting in the description of AS. It uses an MLP
Neural Network as a surrogate model. The search policy in this case is performing
Rejection Sampling (see section 5.1.1) over the likelihood, but this time the likelihood

is evaluated using the predictions from the MLP model.

Counts

FIGURE 8.15: On the left, the predictions across the entire parameter space of the

surrogate MLP in the final iteration of the search from Figure 8.16 are shown. On the

right, the points identified by the MLScan method are displayed using the corner plot
functionalities of hep-aid.

The implementation in hep-aid begins with an initial dataset, similar to previous
methods. In each iteration, the MLP is trained using the currently available dataset,
retaining the model parameters from previous iterations to perform incremental
learning. The rejection sampling technique is used to generate the batch X*, with the
size of this batch controlled by the hyperparameter num_samples. The scaling of the
acceptance probability for the rejection sampling method is controlled by the
parameter m_factor. By adjusting this factor, users can manage the balance between
sample quality and the diversity of generated samples, thus affecting both the
efficiency and effectiveness of the sampling process. The MLScan method also adds
extra random samples to encourage exploration, with the number of samples controlled

by the hyperparameter extra_random samples.
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import torch

from hepaid.search.objective.test import init_egg_box_fn
from hepaid.search.method.mlscan import MLScan

from hepaid.search.method.eci import smooth_box_mask

def likelihood(x):
if not isinstance(x, torch.Tensor):

num_samples: 100

x = torch.tensor(x) checkpoint:
f = x[:,1] n_step_save: 500
lh = smooth_box_mask(f, 80., 160., le-3 ) name: chckpnt

run_name: mlscan/run
total_iterations: 100
Tnitialise Fags model parallel: false
n_workers: 4
initial_dataset:
generate: True,

return 1h

test_objective = init_egg_box_fn()

Fine the confi Lion
n he cont tion

hp = 'datasets/mlscan/run/eggs/hprms.yaml’ n_points: 200

model:
# Initialise method and run layer_sizes: [2, 60,60,60,1]
mlscan= MLScan( dropout_prob: 0.0
objective=test_objective, learning_rate: 0.01
likelihood=1ikelihood, num_epochs: 500
hyper_parameters=hp step_size: 5
) gamma: 0.999
mlscan.run() threshold: le-8

FIGURE 8.16: A code example demonstrating the utilisation of the MLScan method, a

neural network-based sampling method introduced in [5], is provided. Users must define

a likelihood function. Since the Egg Box model is already implemented in hep-aid, it

can be readily used. Initialising the MLScan method requires a configuration file, as
shown in the code snippet on the right.

For MLScan an additional hyper-parameter block, named model_hyperparameters, is
required for configuring the MLP’s architecture and training. The layer_sizes
parameter receives a list specifying an input layer, an arbitrary number of hidden
layers with their respective number of neurons, and the output layer neurons. The
dropout_prob indicates the level of dropout regularisation in each layer. The
learning rate controls the magnitude of weight updates during training, while
num_epochs defines the number of complete passes through the training dataset.
Additionally, the step_size determines how frequently the learning rate is adjusted,
and gamma specifies the decay rate for the learning rate, allowing it to decrease
gradually. Finally, the threshold acts as a stopping criterion for training when the

loss function fall below this value.

Finally, the MLScan class takes an argument for the likelihood function, which the user
must define, as shown in Figure 8.16. In this example, hep-aid can be used to
replicate the results from [5] using the Egg Box model test function, which is currently
implemented in hep-aid. The results of running the MLScan search on the Egg Box
model are displayed in Figure 8.15.
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Hyperparameter Description
num_samples Batch size for rejection sampling.
m_factor Scales acceptance probability in rejection sampling.
extra random samples Number of additional random samples for exploration.
model_hyperparameters Configures MLP architecture and training.
layer_sizes Defines neuron counts for MLP layers.
dropout_prob Dropout rate for regularisation.
learning rate Step size for weight updates.
num_epochs Total training dataset passes.
step_size Interval for adjusting learning rate.
gamma Learning rate decay factor.
threshold Loss threshold for stopping criterion.

TABLE 8.5: Hyperparameters relevant for the MLScan algorithm.

8.5 Conclusions

This chapter introduced hep-aid, a new Python library designed to facilitate PS
algorithms for BSM phenomenology. The library provides a modular framework that
integrates HEP software, simplifying the implementation and development of PS
algorithms while offering essential functionalities for phenomenological analysis.
Originally the library was created to give researchers simple access to use the
b-CASTOR and CAS algorithms for parameter scans. However, its development lead
to a modular structure allowing the implementation of further PS algorithms existing

in the literature such as MLScan.

We demonstrated the utility of the library by performing multi-objective searches on
test functions and comparing the performance of different PS algorithms. In this
connection, b-CASTOR exhibited superior sample efficiency while achieving a
comprehensive characterisation of the satisfactory parameter region. The experiments
with the MLScan algorithm instead highlighted its robust exploration capabilities, due
to the stochastic nature of its policy. However, for BSM phenomenological studies, a
NN classifier needs to be implemented to enhance the sample efficiency of this
algorithm. (All MIL-based such approaches were also demonstrated to be superior to
the more standard MCMC-HS one.) Additionally, we illustrated the application of the
library in a real BSM case study, fitting the masses of the lightest Higgs particles in the
(B — L)SSM to explain new physics signals in v, 7777, and/or bb final states [175].
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Chapter 9

Summary, Conclusions and

Reflections

Chapter 1 provided an overview of the theoretical framework established through
decades of research in particle physics, culminating in the SM and the theoretical and
observational challenges it faces. It explored how the SM can be extended to account
for signals of new physics and address theoretical challenges, highlighting the vast
model space that has emerged over the years. SUSY was introduced, with a particular
focus on the (B — L)SSM model—a non-minimal realisation of SUSY—used as a

benchmark for the development of parameter scan algorithms.

Chapter 2 introduced the computational challenges associated with BSM
phenomenology, particularly the parameter space exploration problem, which is the

primary research question addressed in this thesis.

Chapters 3 and 4 presented the necessary mathematical background for developing
machine learning-based parameter scan algorithms. GPs and MLPs were introduced,
along with methods for training them. The main sampling algorithms were reviewed,
and decision-making was explained through two perspectives: optimisation and

reinforcement learning.

In Chapter 7, the active search formulation for parameter scan methods is introduced,
alongside the b-CASTOR algorithm—a novel multi-point, multi-objective active search
method specifically designed for computationally expensive BSM scenarios. This
method efficiently identifies the satisfactory region (S) within the parameter space by
utilising probabilistic surrogate models and the ECI acquisition function, which
maximises the covered volume of & while maintaining high sample diversity and

efficiency.

We demonstrated the effectiveness of b-CASTOR through two case studies: a
double-objective 2D test function and a (B — L)SSM scenario. In the latter, the
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algorithm was applied to investigate three anomalies at approximately 95 GeV in the
vy, 77, and bb channels. While b-CASTOR successfully identified solutions explaining
the longest-established vy anomaly, it was unable to concurrently satisfy all three

channels, though it identified points meeting signal strengths for 11, and pu.

The method is robust to the choice of the resolution parameter r, with gradual
reductions enabling finer exploration of unexplored regions. Our experiments highlight
the trade-offs between exploration and exploitation in b-CASTOR, influenced by ECI
optimisation trials, sample prioritisation, and the number of Rank-based samples.
Future advancements could focus on incorporating scalable probabilistic surrogate

models and the development of performance metrics.

In chapter 7 we specifically compare our approach with MCMC-MH, as the latter is
well-established in the community. Nevertheless, it is important to note that this
comparison might not be entirely fair [39]. MCMC-MH operates under assumptions
that we are testing against, such as requiring a long enough Markov Chain so that the
MH algorithm samples the full posterior probability density function across the entire
parameter space. This comparison serves as a proof-of-concept that a search algorithm
could better suit our objectives of comprehensively characterising the S region in a
sample-efficient manner. Exploring b-CASTOR, performance against emerging
approaches from the ML and AI community within HEP [186, 203, 46, 45] could yield
valuable insights into potential enhancements and application scenarios. The first
direct comparison of this kind was made on [204] and described in chapter 8 that

introduced the hep-aid Python library.

The hep-aid library, presented in Chapter 8, is the result of extensive development
starting from the initial experiments in this thesis. It has proven to be a valuable tool
for PS development, particularly from an Active Search and ML perspective. Its key
strengths are its modularity, support for PS algorithm development, and ease of use for
implemented PS methods. The HEP module includes the SARAH family and original
tools for SLHA file manipulation.

Future work on hep-aid will aim to improve its design to support the creation of new
PS algorithms, including combining existing components. For example, using the
rejection sampling feature from MLScan to sample from the ECI policy function,
applied in CAS and b-CASTOR, could improve exploration capabilities—a direction
already under investigation. Another area for development is integrating hep-aid with
other PS libraries, especially those linked to a wide range of HEP software. The main
goal of hep-aid remains to provide a versatile platform for developing and

benchmarking PS algorithms, with a focus on ML-based approaches.

As highlighted in the introduction, the quest for a definitive BSM model requires
navigating both the model space and the parameter space of each candidate. The
development of the b-CASTOR PS algorithm and the hep-aid Python library



133

represents the core contributions of this thesis. These tools are designed to push the
boundaries of parameter space exploration, achieving greater sample efficiency and
precision. By employing surrogate models, such as GPs or MLPs trained on parameter
configuration datasets that thoroughly capture the satisfactory regions of a BSM, it
becomes possible to evaluate critical metrics like the fine-tuning of a model or the
integral of a likelihood over observables. These metrics can then feed into external
discrete optimisation algorithms that explore the model space, enabling the discovery
of not just optimal configurations, but the most compelling BSM scenarios. Workflows
operating on the model space have been proposed in the literature [205, 171, 172].
However, they often avoid parameter space scanning due to its high computational

cost—a limitation directly addressed by the methods presented in this thesis.

The PS methodology proposed in this thesis was applied to the (B — L)SSM model, a
BSM scenario already known to offer solutions to the new physics signals under
consideration. This work lays the foundation for future advancements in several key
directions. First, efficiently identifying and sampling the complete satisfactory region
of the parameter space for any BSM model, even when feasible benchmark points are
unknown. The sample-efficient PS algorithms developed can be readily utilised
through hep-aid, providing a practical and accessible tool for phenomenological
testing. Second, incorporating a larger number of constraints to explore and test the
high dimensionality in both search and objective spaces. Pushing the limits of the
b-CASTOR algorithm could offer insights into more scalable PS algorithms, whether
by employing advanced surrogate models or developing novel policies. Third,
integrating kinematic observable information, whether through raw momentum data or
predefined kinematic variables. In this work, we utilised the mass values from scalar
searches, but emerging ML methodologies could enable the direct use of momentum
data.
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Appendix A

Bayes’ theorem

Consider a dataset D. The probability distribution for the parameters 8 of a model M,
given D, can be estimated using the so-called Bayes’ Theorem [41],
P(D|6,M)P(O|M) L(6)r(0)

P(0|D,M)= PO D) = =27 (A1)

Every component in this formula is crucial to understanding how Bayes’ theorem
provides a framework for updating our beliefs about model parameters given observed
data. The term P(0 | M), denoted as m(8), is the prior. It encodes our prior
assumptions or knowledge about the parameters @ before observing the data. The
term P(D | @, M) is the likelihood, which represents the probability of the observed
data D given the parameters # and the model M. Importantly, the likelihood is

interpreted as a function of the parameters:
L£(60)=L(6; D, M) (A.2)

In this interpretation, the likelihood measures a relative score for different parameter
values based on how well they explain the observed data. Unlike a probability

distribution, the likelihood is not normalised, as shown by:
/me9¢1

The denominator, P(D | M), is known as the evidence or marginal likelihood of the
model. It is commonly denoted as Z = P(D | M) and is computed by integrating out

the model parameters:

zz/amﬂmw (A.3)

Finally, the posterior P(0 | D, M) represents the probability distribution of the
parameters 0 given the observed data D and the model M. It reflects our updated

belief about the parameters after taking the data into account.
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The posterior is often challenging to compute directly due to the intractability of
high-dimensional integrals coming from the evidence, the likelihood may lack an
analytical form and the parameter space might be vast, with significant contributions

from the likelihood and prior confined to small regions.
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