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Abstract
It is well understood that attentional selection is required to deploy visual attention to relevant objects within displays during 
visual search tasks. Interactive search, an extension of visual search, refers to tasks wherein an individual must manipulate 
items within their environment to uncover obscured information whilst searching for a target object. Here, we conducted two 
independent interactive search experiments where participants were asked to interact with virtual cubes to locate a target 
T shape embedded onto the side of one of the cubes. Our goal here was to investigate the drivers of attentional selection 
within interactive searches. To do so, we manipulated the effort required to rotate cubes (Experiment 1) and the quantity of 
shapes attached to the cubes (Experiment 2). Our findings suggest that the perceived effort required to interact with an object 
is an extremely strong driver of attentional selection within interactive search behaviors. Here, targets may be slower to be 
detected when that target is obscured within or by an object that conveys, in some shape or form, greater difficulty to examine 
compared with other objects. These findings provide an exciting first step towards understanding the factors that influence 
selection during interactive searches. Data and experimental code for all experiments in this study can be accessed online via 
this web address: https://​osf.​io/​2zyvf/?​view_​only=​ae4f4​f2c36​ab4e6​aae5d​a3e99​fb819​88. Experiments were not preregistered.
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You are late for work, and you cannot remember where you 
placed your car keys. You start rummaging through your 
desk, picking up books, moving piles of notes, frantically 
trying to find where you left them. This scenario is an exam-
ple of an interactive search task: A task wherein the observer 
must manipulate items or physically change their viewing 
position to uncover hidden or obscured information whilst 
searching for a target (Sauter et al., 2020). A handful of 
studies have investigated interactive search in detail, ranging 
from simple tasks, such as searching for marbles (Gilchrist 
et al., 2001) or LEGO® bricks (Hout et al., 2022; Sauter 
et al., 2020), to more societally important and complex tasks, 
such as police personnel searching through houses for drugs 

and weapons (Riggs et al., 2017, 2018). Interactive searches 
are not limited to only the physical domain but are com-
monplace in virtual environments as well where individuals 
will typically manipulate and change visual displays (Drew 
et al., 2013; Godwin et al., 2024; Solman et al., 2012, 2013).

The study of interactive search is an extension of visual 
search, one of the most extensively studied tasks in cogni-
tive psychology (Chan & Hayward, 2013; Wolfe, 2020). In 
visual search, it has long been known that it is impossible to 
process all items within the visual field at once, and instead 
visual attention must be deployed to subsets of objects in the 
visual display. Early models of visual attention characterized 
this process as a dichotomy between top-down and bottom-
up control (Corbetta & Shulman, 2002; Itti & Koch, 2000; 
Wolfe, 1994). Here, top-down input describes the current 
goals of the searcher (e.g., searching for a red object) and 
bottom-up input describes the physical salience of a stimulus 
(e.g., a bright object amongst dull objects, a horizontal line 
amongst vertical lines, and so forth).

It was widely believed that these top-down and bottom-
up inputs combined to create an attentional “priority map” 
which dictated where visual attention should be deployed 
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(Wolfe, 1994). However, later research made it clear that 
the deployment of visual attention could not be entirely 
explained via this top-down/bottom-up dichotomy. Summa-
rizing the issues relating to this, Awh et al. (2012) argued 
that models at the time were too simplistic to account for 
scenarios wherein attentional selection biases could not be 
attributed to either top-down or bottom-up control. As such, 
they presented a model that included new sources of input 
to the attentional selection process. These new sources were 
grouped together under the heading of “selection history”, 
a new category to account for the effects of priming (e.g., 
Maljkovic & Nakayama, 1994) and reward (Anderson et al., 
2011; Hickey et al., 2010a, b, 2015) on attentional control. 
More recently, Wolfe (2021) expanded upon these sources 
of input and suggested that attentional control is influenced 
by five factors: top-down control, bottom-up control, his-
tory (priming), value (reward), and scene guidance. Here, 
scene guidance refers to the utilization of previously learned 
semantic knowledge about the world to guide visual atten-
tion away from areas where targets are unlikely to be (e.g., 
Henderson & Hayes, 2017; Le‐Hoa Võ & Wolfe, 2015; 
Pedziwiatr et al., 2021; Võ et al., 2016; Võ & Wolfe, 2013; 
Wolfe et al., 2011). Overall, it is now generally understood 
that in addition to top-down and bottom-up control, many 
factors work in tandem to influence attentional selection via 
a priority map (Godwin et al., 2014; Wolfe, 2021; Wolfe & 
Horowitz, 2017).

There is, to our knowledge, no past research examin-
ing the factors that influence selection during interac-
tive searches. Here, our goal was to test whether two new 
sources of input could guide selection during interactive 
search. These two new sources of input were physical effort 
and patch value. Here, physical effort refers to the energetic 
expenditure required to interact with objects, and patch value 
is an established term within the foraging literature that 
describes the perceived value assigned to different objects/
areas containing resources (e.g., Charnov, 1976).

We examined these two new sources of input by conduct-
ing two interactive search experiments using a novel meth-
odology wherein participants interactively searched for a tar-
get T shape amongst distractor L shapes embedded onto the 
sides of a set of virtual cubes. Participants interacted with 
cubes by rotating them with their computer mouse. Here, 
when a participant clicked on a cube and simultaneously 
dragged their cursor across the display, the selected cube 
rotated in the direction of the cursor movement. To ensure 
effortful interaction, cubes only rotated during cursor move-
ments. In Experiment 1, we manipulated physical effort by 
making 50% of the cubes “heavy” to rotate and 50% “light”. 
In Experiment 2, the resources used to influence patch value 
was the number of shapes embedded onto the sides of the 
cubes. Here, 50% of cubes were made to be “information-
rich” by embedding a shape onto each cube face and 50% 

were made to be “information-poor” by embedding a single 
shape onto only one of their six possible faces. Across both 
experiments, we utilized color to encourage participants to 
form associations between different cube types (i.e., assign-
ing a blue color to heavy cubes and a yellow color to light 
cubes in Experiment 1, or a green color to information-
rich cubes and a pink color to information-poor cubes in 
Experiment 2). Examples of trials from both experiments are 
depicted in Fig. 1, and demonstrations of the experiments 
with a small number of trials can be found here https://​jatos.​
psych​ology.​soton.​ac.​uk/​publix/​kCXBj​Tn2jof.

Physical effort

In visual search tasks, very little physical effort is required to 
search. Eye movements are the most common of all behav-
iors (Bargary et al., 2017) and require very little energetic 
expenditure to conduct (Araujo et al., 2001). In contrast, 
interactive search tasks often require energetic expenditure 
via body movements; typically, the upper limbs, as individu-
als manually manipulate objects with their hands. It is well 
established that individuals will try to minimize engaging in 
tasks that require high energetic expenditure (Anderson et al., 
2025; Klein-Flügge et al., 2016; Kurniawan et al., 2010; 
Prévost et al., 2010). Indeed, perceived physical effort has 
been shown to further influence engagement in safe versus 
dangerous work practices (Wickens, 2014), the limbs used 
to reach and grab objects (Morel et al., 2017; Wang et al., 
2021), and the decisions made in complex workspaces such 
as airplane cockpits (Steelman et al., 2011; Wickens, 2015).

In the context of interactive searches, reducing the num-
ber of high-effort tasks one engages in is logical, given that 
there are two dissociable cognitive processes that must 
work in tandem when doing so: the action system for body 
movements and the identification system for target detection 
(Goodale & Milner, 1992; Jeannerod, 1994; Solman et al., 
2012). In cases where high physical effort is involved, more 
resources must be provided to the action system, thus likely 
impairing the identification system. This is neatly high-
lighted in a study by Park et al. (2021). Here, participants 
were asked to engage in a visual search task whilst simul-
taneously gripping a “handgrip” device. Whilst searching, 
participants had to either grip the device with a high grip 
force (analogous to high physical effort) or a low grip force. 
In high-grip-force trials, participants were more prone to 
interreference from distractors in comparison with the low-
grip-force trials. Overall, then, it seems likely that in sce-
narios where the likelihood of uncovering a target is equal 
between objects, attentional deployment should be biased 
towards objects that indicate a low level of physical effort 
to interact with.

https://jatos.psychology.soton.ac.uk/publix/kCXBjTn2jof
https://jatos.psychology.soton.ac.uk/publix/kCXBjTn2jof
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Patch value

Patch value is an established term within the foraging lit-
erature, and it describes the perceived value assigned to 
different areas containing resources (e.g., Charnov, 1976). 
The foraging literature has historically focused on the crite-
ria animals and individuals use to determine when to leave 
the current patch that they are obtaining resources from 
(Charnov, 1976; Ehinger & Wolfe, 2016; Wolfe, 2013; 
Zhang et al., 2017). The perceived value assigned to spe-
cific patches can be influenced by a range of factors (e.g., 

Bettinger & Grote, 2016; Charnov, 1976; Eliassen et al., 
2009; Norberg, 1977), including the quantity of resources 
one can obtain from a specific patch (Bremset Hansen et al., 
2009; Fryxell, 1991; Van Beest et al., 2010). Here, greater 
value is given to patches containing large quantities of 
resources (Bremset Hansen et al., 2009).

This bears particular importance when considering inter-
active search tasks. Here, we propose that interactive search 
tasks can be further conceptualized as a form of foraging 
task where searchers must make decisions regarding patch 
value (Bella-Fernández et al., 2022; Nahari & El Hady, 

Fig. 1   Trial Structure and Procedure for Experiment 1 and Experi-
ment 2. Note. Figure depicts the procedure of a typical trial for both 
Experiment 1 and Experiment 2. The red circles and arrows were not 
visible to the participant and are included here to aid visibility. Par-
ticipants used their cursor to click on a fixation cross presented in the 

middle of the screen to start a trial. The display was then revealed, 
and participants then interacted and rotated cubes using their cursor. 
Once the target was found (or deemed absent), the participant ended 
the trial with a keyboard press. This whole process then repeated for 
120 trials. (Color figure online)
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2025). When searching, individuals must manipulate and 
move objects to reveal either other obscured items or sec-
tions currently not visible to the searcher (i.e., inside an 
object, behind an object, and so on). However, instead of 
foraging for food, searchers here are instead foraging for 
visual information (Nahari & El Hady, 2025). As such, it 
seems likely that should searchers attempt to be optimal 
in their search strategy and follow the same rules found 
within the foraging literature (e.g., Ehinger & Wolfe, 2016), 
then they should bias their searches towards areas that are 
resource-rich and capable of providing large quantities of 
information to the searcher. Likewise, this also makes sense 
at a probabilistic level: If one does not know where a target 
may appear, focusing on areas with the largest number of 
potential targets would be a far more efficient strategy than 
focusing on those areas with only a small number of poten-
tial targets.

Experiment 1

In Experiment 1, we started by investigating the role of 
physical effort within interactive search. Based on the pre-
viously mentioned literature, we predicted that within our 
experiment, due to the increased physical effort required to 
rotate heavy cubes, participants would become more likely 
to examine the light cubes first within each trial. Likewise, 
due to the increased effort associated with heavy cubes, 
we further predicted that participants would become less 
exhaustive in their searching of heavy cubes, as evidenced 
by a reduction in the number of cube faces a participant 
revealed and viewed throughout a trial.

Method

Ethical approval

Ethical approval was given for Experiment 1 by the University 
of Southampton’s Ethics Committee on 26 September 2023 
(ERGO NUMBER: 95398.A1).

Participants

A priori power analyses were conducted using the simr pack-
ing in R (Green & MacLeod, 2016) on pilot data from 15 
participants. To avoid the issues associated with “observed 
power” (see Hoenig & Heisey, 2001, for an explanation), target 
effect sizes were based on prior research. Power analyses were 
conducted for each dependent variable being analyzed, and a 
minimum sample size of 35 participants was recommended to 
obtain a power level of 0.80.

A total of 40 participants were recruited from the Univer-
sity of Southampton. Of this sample, ages ranged from 18 

to 21 years (M = 18.88, SD = 0.99). Seventy-five percent of 
the sample were women, 22.50% were men, and 2.50% were 
nonbinary.

Stimuli and apparatus

Stimuli were created using the open-source software Blender 
(Hess, 2010). Displays consisting of these stimuli were then 
generated using Three.js (an open-source JavaScript library 
for displaying three-dimensional graphics within web brows-
ers; Danchilla, 2012) and embedded into a standard jsPsych 
framework (an open-source JavaScript library for building 
web-based psychological experiments; De Leeuw, 2015).

The stimuli for Experiment 1 consisted of four different 
types of virtual cubes: heavy and light cubes containing an 
L distractor shape on each of their six faces, and heavy and 
light cubes containing a distractor L shape on five of their 
six faces and a single target T shape on the remaining sixth 
face. Heavy and light cubes were assigned a single inde-
pendent color at the start of the experiment, which did not 
change throughout the remainder of the experiment. This 
was to ensure that participants would associate a specific 
cube color with the effort required to rotate them. Colors 
were selected from a list of 16 ordered colors used in previ-
ous visual search experiments (e.g., Menneer et al., 2007; 
Stroud et al., 2012). Each consecutive color was approxi-
mately equally spaced from the previous in CIE xyY space. 
The color chosen for heavy cubes was randomized for each 
participant to reduce any risk of biases towards specific 
colors. The color selected for the light cubes was always 
eight steps away from the previously selected heavy cube 
color in the color list. This ensured that colors were as maxi-
mally different as possible to help strengthen the association 
between color and effort.

Each search display contained two heavy and two light 
cubes, each of which were randomly assigned to one of eight 
possible locations on the screen and then randomly rotated 
through each of their axes by up to 360º. As shown in Fig. 2, 
on each trial, cubes were placed within one of two concen-
tric circles (inner or outer) each of which contained eight 
equidistant locations. A single trial could not contain cubes 
in both the inner and outer circles simultaneously. This was 
to ensure that the distance from the center of the screen to 
each cube was equal at the start of the trial to reduce the 
likelihood that participants would simply interact with the 
cube closest to the center. Fifty percent of trials were inner-
circle trials and 50% were outer-circle trials. The order in 
which trials were presented was randomized.

Participants completed the study using their own com-
puters or laptops. They were informed to press the M key 
of their keyboard if they believed that the display contained 
a target and the Z key if they believed the display did not 
contain a target. Participants interacted by clicking on a cube 
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and simultaneously dragging their cursor across the screen. 
Here, when the participant clicked and dragged their cur-
sor, the selected cube rotated in the direction of the cursor 
movement. A cube only rotated whilst the participant was 
clicking and dragging.

Design and procedure

Once participants consented to taking part, they were pro-
vided with detailed instructions on what was required to 
complete the experiment, followed by a training segment 
wherein participants could learn and practice how to rotate 
cubes with their computer mouse. Following this, partici-
pants completed five practice trials with accuracy feedback 
before starting the real trials, which contained no feedback. 
All participants then completed a total of 120 trials. Before 
each trial, participants had to click a fixation cross to reveal 
the display. The display then remained on screen until the 
participant made a response to end the trial. Following a 
participant response, the next trial’s fixation cross was dis-
played, and the process repeated. This process is depicted 
in Fig. 1A.

A target cube was present on 50% of the 120 search trials 
and absent on the remaining trials. The order in which par-
ticipants completed trials was randomized. Within each trial, 
two of the four cubes were always substantially more diffi-
cult to rotate than the other two cubes. This was achieved by 

reducing the cursor sensitivity whenever a participant inter-
acted with these heavy cubes, resulting in the cubes rotating 
at a slower rate and thus requiring ~2–3 times the number of 
clicks and drags to rotate them by the same magnitude as a 
light cube. The same color contingencies were used during 
the practice trials as were during the real trials. All stimuli 
were evenly split between heavy and light conditions.

Results

Data cleaning

Before any analyses, all data underwent preplanned clean-
ing procedures based on those used in prior online search 
experiments (Godwin et al., 2024; Godwin & Hout, 2023). 
A breakdown for the number of participants/trials removed 
at each stage of cleaning can be found in Table 1.

First, trials shorter than 250 ms or longer than 60 s were 
removed from the dataset. The upper limit of this criterion 
was decided upon from what we deemed to be an acceptable 
time to have exhaustively checked all four cubes. Likewise, 
it was implausible that a participant would be able to engage 
with the array and respond in under 250 ms. Finally, any 
trials where a participant had responded that the target was 
present but never revealed the face of the cube containing 
the target T shape were removed from the dataset.

Fig. 2   Cube-placing procedure. Note. Figure depicts all the possible 
locations that cubes could have been placed for each trial. The out-
lines of the circles and locations were not visible to the participant. 
Participants had to use their cursor to click on a fixation cross pre-

sented in the middle of the screen before a display was revealed; this 
was to ensure that their cursor starting position would be from the 
center of the screen for each trial. (Color figure online)

Table 1   Data cleaning steps for each experiment

Note. Fast trials = trial response times <250 ms; slow trials = trial response times >60,000 ms; “guessing trials” refers to target-present trials in 
which participants responded present yet never revealed the face of the cube containing the target
No participants were removed from either dataset

Experiment 1 (effort manipulation) Experiment 2 (information manipulation)

Removal step Trials removed Remaining trials Trials removed Remaining trials
Raw data 0 (0.00%) 4,800 (100%) 0 (0.00%) 5,400 (100%)
Fast/Slow trials 20 (0.42%) 4,780 (99.58%) 1 (0.02%) 5,399 (99.98%)
Guessing trials 11 (0.23%) 4,769 (99.35%) 2 (0.04%) 5,397 (99.94%)
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After all cleaning steps, the final dataset consisted of 
4,769 trials from 40 participants.

Analytic approach

All effects were modelled through Bayesian generalized lin-
ear mixed-effects models (BGLMM) via the brms package 
in R (Bürkner, 2017; R Core Team, 2023). The reliability 
of effects was confirmed using Bayes factors, calculated via 
the bayestestR package in R (Makowski et al., 2019). Bayes 
factors greater than 1.00 indicate stronger evidence towards 
the alternative hypothesis, and Bayes factors less than 1.00 
suggest stronger evidence towards the null hypothesis. For 
the purpose of the discussion, we have deemed an effect to 
be trustworthy if both its 95% credible interval (CI) did not 
pass through zero, and it possessed a Bayes factor of greater 
than 3.20.

Where relevant, models used the following fixed factors: 
presence (absent, present), trial index (a continuous value 
used as a measure of time through experiment), effort type 
(heavy, light), and next closest object type (heavy, light). 
Across all analyses, trial index was rescaled and centered to 
improve model fitting and interpretation (Kreft et al., 1995). 
Each model included random intercepts and slopes for par-
ticipant ID and presence. This allowed for individual varia-
tion between participants and trial types within each model.

The likelihood of a participant selecting a light cube was 
calculated by coding any interaction with light cubes as a 
1 and any interactions with heavy cubes as a 0. This was 
then modelled using a Bernoulli distribution with a logit 
link function. Likewise, a Poisson distribution was used to 
model the total number of cube faces viewed by participants. 
Our analyses focused only on participants’ first and second 
interactions. Our reason for doing so was that since each trial 
contained only four cubes, the third and fourth interactions 
were typically a mirror of the first and second interactions. 
For example, if a participant’s first two interactions were to 
the two light cubes, then their remaining interactions would 
be to the two remaining heavy cubes and vice versa.

Each model was fitted using four chains, with 11,000 
iterations and 1,000 warmup iterations to allow for accurate 
Bayes factors (Makowski et al., 2019). All Gelman–Rubin 
statistics were below 1.10 for all parameters and visual 
inspection of the chains indicated good mixing.

Response accuracy and response times

Overall, for target-absent trials, participants had high accu-
racy with few false alarms (M = 0.98, SD = 0.13) and com-
pleted the trials within a reasonable time (M = 20,609.03 ms, 
SD = 7,388.47 ms). For target-present trials, participants had 
good accuracy (M = 0.92, SD = 0.27) and completed trials 
within a reasonable time (M = 9,775.11 ms, SD = 7,201.42 

ms). We carried out no further analyses on response accu-
racy or response times. Our remaining analyses focused on 
the order of interactions and search exhaustiveness.

First interaction choice

Our first analysis focused on the likelihood of a participant 
selecting a light cube as their first interaction of a trial. 
Model effects and their corresponding CIs and Bayes factors 
can be found in Table 2 and descriptive statistics in Fig. 3.

We observed a strong main effect of trial index on the 
likelihood of a participant selecting a light cube first, with 
no other effects emerging. Here, participants became sub-
stantially more likely to select a light cube first as the experi-
ment progressed. As can be seen in Fig. 3, across the first 

Table 2   Model effects and Bayes factors—Likelihood of selecting a 
light cube first

Note. CIs = credible intervals; BF = Bayes factor; bolded CI values 
= CIs that did not pass through zero; bolded BF values = BF >3.20. 
Values in parentheses represent the associated standard error values. 
Effects were deemed reliable if CIs did not pass through zero and BF 
>3.20

Parameter Estimate CIs R-Hat BF

Intercept 1.04 (0.22) 0.62, 1.47 1.00 6.58×103

Presence (Absent–
Present)

0.02 (0.15) −0.29, 0.32 1.00 0.16

Trial Index 0.52 (0.08) 0.37, 0.68 1.00 5.16×105

Presence × Trial 
Index

−0.08 (0.16) −0.38, 0.23 1.00 0.17

Fig. 3   Likelihood of selecting a light cube first (Experiment 1). Note. 
Shaded areas represent ±SE. Trial index has been binned into incre-
ments of 20 trials for the purposes of visualization only. SE = stand-
ard error. (Color figure online)
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20 trials, participants’ likelihood of selecting a light cube 
first was ~0.67 for target-absent trials and ~0.70 for target-
present trials. By the time participants reached the end of the 
experiment, this likelihood increased substantially to ~0.80 
for both target-absent and target-present trials.

Second interaction choice

Our next analysis focused on the likelihood that the second 
cube a participant examined would also be a light cube. 
Here, we focused only on trials where participants did not 
find the target within their first interaction. At the start of 
each trial, the participant had to click on a central fixation 
cross to reveal the display. As such, a participant’s atten-
tion should have been focused on the center of the display 
(Anwyl-Irvine et al., 2021). For each trial, all cubes were 
equidistant from the center of the display, thus reducing 
the likelihood that participants would simply select the 
closest cube to their current position. However, after a 
participant had made their first interaction, the distance of 
other cubes from their current position was no longer equi-
distant. As such, a participant may have been influenced to 
interact with cubes that were closer to their current posi-
tion and adopt a “nearest next” strategy. Therefore, an 
additional factor was included in the model which meas-
ured whether the next closest cube to the previous interac-
tion was either a heavy or light cube. Model effects and 
their corresponding CIs and Bayes factors can be found in 
Table 3 and descriptive statistics in Fig. 4.

Within this analysis, two main effects were observed. 
First, participants became more likely to select a light cube 
as their second interaction as the experiment progressed. 
Next, we found a strong effect of next closest object type 
on the likelihood of examining a light cube second. Here, 
participants were more likely to examine a light cube second 
if the next closest cube to their current position was also a 

light cube. However, it is worth noting that even on trials 
where the next closest cube was not a light cube, participants 
were still ~60–70% more likely to examine a light cube over 
a heavy cube. In line with our predictions, these findings 
further highlight the impact of effort on interaction order.

Number of faces viewed

Our final analysis focused on how exhaustive participants 
were as they searched the displays. We measured this in 
terms of the number of cube faces participants viewed across 
each trial. For an exhaustive search, we would expect a par-
ticipant to have viewed six faces per cube, or 12 faces per 
cube type (i.e., heavy vs. light). Model effects and their cor-
responding CIs and Bayes factors can be found in Table 4 
and descriptive statistics in Fig. 5.

For this analysis, we observed main effects for presence 
and effort type, both of which were subsumed by a Pres-
ence × Effort Type interaction. Post hoc contrasts were con-
ducted to further understand this interaction. Overall, we 
observed a clear difference between the number of faces 
viewed between heavy and light cubes. In target-absent 
trials, this effect was extremely small, with a Bayes factor 
below the 3.20 cutoff (Estimate = −0.02, lower CI = −0.03, 
upper CI = −0.01, BF10 = 2.14), however, in target-present 
trials, this difference was much more substantial (Estimate 
= −0.24, lower CI = −0.26, upper CI = −0.22, BF10 = 
1.77×1032). Put simply, participants viewed on average ~2 
less cube faces for heavy cubes compared with light cubes 
but only within target-present trials. Since participants pre-
dominantly examined the light cubes first, this reduction in 
search exhaustiveness was likely a result of participants find-
ing the target before needing to reveal the additional faces 
of the heavy cubes.

Table 3   Model effects and Bayes factors—Likelihood of selecting a light cube second

Note. CIs = credible intervals; BF = Bayes factor; bolded CI values = CIs that did not pass through zero; bolded BF values = BF >3.20. Values 
in parentheses represent the associated standard error values. Effects were deemed reliable if CIs did not pass through zero and BF >3.20

Parameter Estimate CIs R-Hat BF

Intercept 1.36 (0.29) 0.79, 1.95 1.00 585.01
Presence (Absent–Present) 0.30 (0.24) −0.16, 0.78 1.00 0.52
Trial Index 0.63 (0.13) 0.37, 0.89 1.00 1.92×103

Next Closest Object Type (Heavy–Light) 1.03 (0.22) 0.60, 1.47 1.00 3.20×103

Presence × Trial Index 0.11 (0.26) −0.40, 0.61 1.00 0.28
Presence × Next Closest Object Type −0.07 (0.41) −0.86, 0.74 1.00 0.41
Trial Index × Next Closest Object Type −0.15 (0.24) −0.63, 0.33 1.00 0.29
Presence × Trial Index × Next Closest
Object Type

0.39 (0.44) −0.48, 1.25 1.00 0.66
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Discussion

In Experiment 1, participants engaged in an interactive 
search for a target T shape attached to the side of virtual 
cubes. Cubes were interacted with by clicking and dragging 
on them with a computer mouse, which resulted in a rotation 
of the selected cube. On each trial, two of the four poten-
tial cubes were made to be physically effortful to interact 
with by reducing their sensitivity to the computer cursor. 
Our reasons for doing so were twofold. First, it is generally 
understood that there are many attributes that contribute 
towards attentional selection whilst searching (Awh et al., 
2012; Wolfe, 2021). Second, previous literature investigating 

the role of physical effort and energy expenditure has been 
shown to influence a range of different behaviors (Ander-
son et al., 2025; Klein-Flügge et al., 2016; Kurniawan et al., 
2010; Morel et al., 2017; Prévost et al., 2010; Steelman 
et al., 2011; Wang et al., 2021; Wickens, 2014, 2015). As 
such, we believed that when individuals are given a way to 
associate specific colors with increased physical effort, their 
attentional selection will become biased by this information 
with the overarching goal of reducing energetic expenditure.

We found strong evidence in favor of the notion that 
the effort associated with examining a given object indeed 
biased attentional selection within interactive searches. 
Put simply, participants focused on the easy-to-examine 

Fig. 4   Likelihood of selecting a light cube second (Experiment 1). Note. Shaded areas represent ±SE. Trial index has been binned into incre-
ments of 20 trials for the purposes of visualization only. SE = standard error. (Color figure online)

Table 4   Model effects and Bayes factors—Total number of faces viewed per cube type

Note. CIs = credible intervals; BF = Bayes factor; bolded CI values = CIs that did not pass through zero; bolded BF values = BF >3.20. Values 
in parentheses represent the associated standard error values. Effects were deemed reliable if CIs did not pass through zero and BF >3.20

Parameter Estimate CIs R-Hat BF

Intercept 2.34 (0.01) 2.32, 2.35 1.00 Inf
Presence (Absent–Present) −0.27 (0.01) −0.29, −0.24 1.00 7.26×1020

Trial Index 0.00 (0.01) −0.01, 0.01 1.00 0.01
Effort Type (Heavy–Light) 0.10 (0.01) 0.08, 0.13 1.00 3.32×1010

Presence × Trial Index 0.03 (0.01) 0.00, 0.05 1.00 0.17
Presence × Effort Type 0.19 (0.02) 0.15, 0.24 1.00 9.18×1006

Trial Index × Effort Type 0.03 (0.01) 0.01, 0.05 1.00 0.36
Presence × Trial Index × Effort Type 0.03 (0.02) −0.02, 0.07 1.00 0.05
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light cubes first and then moved towards the more difficult-
to-examine heavy cubes later in each trial. This focus on 
the easy-to-examine cubes grew as the trials progressed. 
These findings were in line with our predictions. Due to the 
increased effort required to rotate heavy cubes, we expected 
participants to search these cubes less exhaustively and thus 
view fewer of their faces throughout a trial. However, we 
only observed this in target-present trials. In target-absent 
trials, participant remained exhaustive regardless of the 
effort condition.

The pattern of these findings provides two main take-
aways from this experiment. The first is that the effort 
required to interact with objects appears to be a very strong 
driver of attentional selection indeed. It is worth noting here 
that within the first 20 trials, the likelihood of selecting a 
light cube first was ~70%. As such, the bias towards light 
cubes was learned and applied almost immediately. This is 
further supported by the fact that when the next closest cube 
was not a light cube, the likelihood of selecting a light cube 
was still ~70–75%. Here, participants would still travel the 
extra distance to ensure that their second interaction was to 
the next available light cube. The second is that the increased 
effort was not enough to deter participants from still exam-
ining the heavy cubes. Here, if participants could not find 
the target on the light cubes, they would still exhaustively 
examine the heavy cubes.

Experiment 2: Patch value

In Experiment 2, we conducted a further study to deter-
mine whether perceived patch value influenced attentional 
selection during interactive search. To do so, we again 
asked participants to rotate and search through sets of vir-
tual cubes for a T shape embedded onto the side of one of 
the cubes. Half of the cubes were made to be “information-
rich” by embedding a shape to each of their six faces, and 
the remaining half were made to be “information-poor” by 
attaching a shape to only one of their six faces (hereafter 
we refer to these as rich and poor cubes for brevity).

We proposed that our interactive search task be further 
conceptualized as a foraging task for visual information 
(Bella-Fernández et al., 2022; Nahari & El Hady, 2025). 
With this in mind, the previous foraging literature suggests 
that individuals should become optimal in their strategies and 
prioritize patches that are more likely to contain high quanti-
ties of the resources they are foraging for (Bremset Hansen 
et al., 2009; Cain et al., 2012; Fryxell, 1991; Van Beest et al., 
2010). As such, we predicted that participants would be more 
likely to examine the rich cubes before they examined the 
poor cubes. Likewise, since uncovering the additional blank 
faces on poor cubes would not result in any new informa-
tion being uncovered, we further predicted that, compared 
with rich cubes, participants would be less exhaustive when 

Fig. 5   Total number of faces viewed ~ effort type (Experiment 1). 
Note. Shaded areas represent ±SE. Trial Index has been binned into 
increments of 20 trials for the purposes of visualization only. SE = 

standard error. Total viewed faces are summed and averaged for each 
cube type. Dashed line indicates the max number of potential faces a 
participant could view for each cube type. (Color figure online)
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searching through poor cubes and overall would stop interact-
ing with poor cubes following the reveal of their stimulus.

Methods

All methodological details for Experiment 2 are identical to 
Experiment 1, except where described below.

Ethical approval

Ethical approval was given for Experiment 2 by the Univer-
sity of Southampton’s Ethics Committee on 26 September 
2023 (ERGO NUMBER: 95398.A1).

Participants

As with Experiment 1, a priori power analyses were carried 
out using the simr packing in R (Green & MacLeod, 2016) 
on pilot data from 15 participants. Power analyses were con-
ducted for each dependent variable being analyzed. These 
analyses revealed that for a power level of 0.80, a minimum 
sample size of ~40 participants was required.

A total of 45 participants were recruited from the Univer-
sity of Southampton. Of this sample, ages ranged from 18 to 
21 years (M = 19.04 years, SD = 1.31), with 91.11% being 
women, 6.67% men, and 2.22% nonbinary.

Stimuli and apparatus

The cubes used for Experiment 2 differed slightly from Exper-
iment 1. We used four different types of cubes: rich and poor 
cubes containing only distractor L shapes, and rich and poor 
cubes containing either five L shapes and a single target T 
shape for rich cubes or a single target T shape for poor cubes. 
Each cube face had either a single shape attached to them or 
nothing at all. The same color contingencies from Experiment 
1 were also used for Experiment 2. Within each trial, two of 
the four cubes were always poor and the other two were rich. 
All stimuli were evenly split between information types.

Design and procedure

The procedure for Experiment 2 was identical to Experiment 
1 with the only difference being the stimuli used. A typical 
trial is depicted in Fig. 1B.

Results

Data cleaning

All data underwent the same preplanned cleaning procedures 
as Experiment 1 before any analyses were carried out (see 
Table 1).

Analytic approach

For the most part, the same analytic approach from Experi-
ment 1 was used for Experiment 2. All analyses used the 
same coding methods and model structures as Experiment 1. 
It is however important to note that the likelihood of select-
ing a light cube was changed to be the likelihood of selecting 
an information-rich cube. Likewise, the model factor effort 
type was changed to information type (rich, poor), and the 
model factor next closest cube type was changed from light 
and heavy to poor and rich. In comparison with Experiment 
1, we conducted one additional analysis on the time it took 
participants to stop rotating poor cubes following stimulus 
reveal. For this analysis, stop times were recorded in ms 
and log transformed. A Gaussian distribution with the log 
transformed stop times were used to model effects for this 
measure.

Response accuracy and response times

Overall, for target-absent trials, participants had high accu-
racy with few false alarms (M = 0.99, SD = 0.09) and com-
pleted the trials within a reasonable time (M = 13,298.53 
ms, SD = 5,308.53 ms). For target-present trials, participants 
had good accuracy (M = 0.96, SD = 0.20) and completed the 
trials at a reasonable pace (M = 6,137.18 ms, SD = 4,719.52 
ms). We carried out no further analyses on response accu-
racy or response times. The remaining analyses focused on 
the order of interactions and search exhaustiveness.

First interaction choice

Our first analysis focused on the likelihood of a participant 
selecting a rich cube as their first interaction of a trial. Model 
effects and their corresponding CIs and Bayes factors can be 
found in Table 5 and descriptive statistics in Fig. 6.

We observed an extremely strong effect of trial index on 
the likelihood of selecting a rich cube. Here, participants 
became substantially less likely to select a rich cube first as 
the experiment progressed. As can be seen in Fig. 6, regard-
less of trial type, participants started with a probability of 
selecting a rich cube of ~0.60 and finished with a probability 
of ~0.25. This finding was the polar opposite of what we 
predicted.

Second interaction choice

Our next analysis focused on the likelihood of participants 
selecting a rich cube as their second interaction. To recap, 
as with Experiment 1, following an initial interaction, cubes 
were no longer equidistant from a participant’s current area 
of attention. As such, we again included an additional model 
factor which measured whether the next closest cube to the 
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previous interaction was either a poor or rich cube. This set 
of analyses only included data from trials where participants 
had not located the target during their previous interaction. 

Model effects and their corresponding CIs and Bayes factors 
can be found in Table 6 and descriptive statistics in Fig. 7.

For this analysis, we observed two main effects: next clos-
est cube type and trial index. First, participants were overall 
more likely to select a rich cube as their second interaction if 
the next closest cube to their previous interaction was also a 
rich cube. Next, when accounting for the effects of next clos-
est cube type, overall, participants became less likely to select 
a rich cube as their second interaction as the experiment pro-
gressed. This was again not in line with our predictions.

Number of faces viewed

Our next analysis focused on a participant’s search exhaus-
tiveness as measured by the number of cube faces that a 
participant viewed throughout a trial. Model effects and their 
corresponding CIs and Bayes factors can be found in Table 7 
and descriptive statistics in Fig. 8.

We observed several effects within this analysis, all of 
which were subsumed by a three-way Presence × Trial 
Index × Information Type interaction. Post hoc contrasts 
and trend analyses were carried out to further understand 
this interaction.

These analyses showed that participants viewed sub-
stantially fewer faces of the poor cubes compared with the 

Table 5   Model effects and Bayes factors—Likelihood of selecting an information-rich cube first

Note. CIs = credible intervals; BF = Bayes factor; bolded CI values = CIs that did not pass through zero; bolded BF values = BF >3.20. Values 
in parentheses represent the associated standard error values. Effects were deemed reliable if CIs did not pass through zero and BF >3.20

Parameter Estimate CIs R-Hat BF

Intercept 0.36 (0.18) 0.01, 0.71 1.00 0.50
Presence (Absent–Present) 0.01 (0.13) −0.24, 0.26 1.00 0.13
Trial Index −.10 (0.07) −1.23, −0.96 1.00 1.08×1020

Presence × Trial Index −0.01 (0.14) −0.27, 0.26 1.00 0.14

Fig. 6   Likelihood of selecting an information-rich cube first (Experi-
ment 2). Note. Shaded areas represent ±SE. Trial Index has been 
binned into increments of 20 trials for the purposes of visualization 
only. SE = standard error. (Color figure online)

Table 6   Model effects and Bayes factors—Likelihood of selecting an information-rich cube second

Note. CIs = credible intervals; BF = Bayes factor; bolded CI values = CIs that did not pass through zero; bolded BF values = BF >3.20. Values 
in parentheses represent the associated standard error values. Effects were deemed reliable if CIs did not pass through zero and BF >3.20

Parameter Estimate CIs R-Hat BF

Intercept −0.01 (0.16) −0.32, 0.31 1.00 0.05
Presence (Absent–Present) −0.10 (0.21) −0.52, 0.32 1.00 0.23
Trial Index −0.33 (0.10) −0.53, −0.14 1.00 25.07
Next Closest Object Type (Rich–Poor) 1.06 (0.18) 0.70, 1.43 1.00 4.71×105

Presence × Trial Index −0.32 (0.19) −0.70, 0.06 1.00 0.76
Presence × Next Closest Object Type 0.36 (0.35) −0.32, 1.04 1.00 0.59
Trial Index × Next Closest Object Type −0.34 (0.18) −0.70, 0.03 1.00 0.99
Presence × Trial Index × Next Closest
Object Type

0.46 (0.35) −0.23, 1.14 1.00 0.82
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rich cubes in both target-absent trials (Estimate = 0.28, 
lower CI = 0.27, upper CI = 0.29, BF10 = 1.07×1066) and 
target-present trials (Estimate = 0.04, lower CI = 0.03, 
upper CI = 0.06, BF10 = 84.51). This effect, however, was 
dependent on how far through the experiment a participant 
was. For target-absent trials, as the experiment progressed, 
participants decreased the number of faces viewed for poor 
cubes (Estimate = −0.08, lower CI = −0.10, upper CI = 
−0.06, BF10 = 6.94×106). In contrast, in target-present 
trials, as the experiment progressed, participants gradu-
ally viewed fewer cube faces for the rich cubes until there 
was no longer a difference between poor and rich cubes 

(Estimate = −0.07, lower CI = −0.09, upper CI = −0.04, 
BF10 = 633.69).

Put simply, participants viewed ~2 fewer faces from the 
poor cubes compared with the rich cubes. However, this dif-
ference became more pronounced as the experiment pro-
gressed for target-absent trials and much less pronounced for 
target-present trials. This was in line with our predictions.

Time to stop interacting following reveal

Finally, we examined the time it took participants to stop 
rotating poor cubes following stimulus reveal. Our goal here 

Fig. 7   Likelihood of selecting an information-rich cube second (Experiment 2). Note. Shaded areas represent ±SE. Trial index has been binned 
into increments of 20 trials for the purposes of visualization only. SE = standard error. (Color figure online)

Table 7   Model effects and Bayes factors–Number of faces viewed per cube type (Experiment 2)

Note. CIs = credible intervals; BF = Bayes factor; bolded CI values = CIs that did not pass through zero; bolded BF values = BF >3.20. Values 
in parentheses represent the associated standard error values. Effects were deemed reliable if CIs did not pass through zero and BF >3.20

Parameter Estimate CIs R-Hat BF

Intercept 2.26 (0.01) 2.25, 2.28 1.00 Inf
Presence (Absent–Present) −0.22 (0.01) −0.24, −0.19 1.00 4.37×1022

Trial Index −0.04 (0.01) −0.05, −0.03 1.00 6.33×105

Information Type (Rich–Poor) −0.16 (0.01) −0.18, −0.14 1.00 3.03×1014

Presence × Trial Index 0.01 (0.01) −0.01, 0.03 1.00 0.02
Presence × Information Type 0.11 (0.02) 0.07, 0.15 1.00 2.28×103

Trial Index × Information Type 0.00 (0.01) −0.03, 0.02 1.00 0.01
Presence × Trial Index × Information Type 0.15 (0.02) 0.10, 0.19 1.00 8.19×105
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was to determine whether participants would become opti-
mal in their searching by not continuing to interact with a 
poor cube following the reveal of the stimulus. As such, this 
analysis focused only on interactions with poor cubes where 
the stimulus was not visible at the start of the trial. Model 
effects and their corresponding CIs and Bayes factors can be 
found in Table 8 and descriptive statistics in Fig. 9.

Here, we observed a Trial Index × Presence interaction, 
which we further followed up with post hoc trend analy-
ses. These analyses revealed that the time taken to stop 
interacting following stimulus reveal reduced across both 
target-present (Estimate = −0.07, lower CI = −0.10, upper 
CI = −0.05, BF10 = 5.81×103) and target-absent (Estimate 
= −0.15, lower CI = −0.17, upper CI = −0.13, BF10 = 
1.04×1012) trials, however, this reduction was more substan-
tial for target-absent trials. Here, participants spent longer 
interacting following stimulus reveal in target-absent trials 

compared with target-present trials at the start of the experi-
ment, before reducing to a similar level as target-present 
trials.

Overall, then, it seems that participants initially were 
more thorough in their searching of poor cubes in target-
absent trials at the start of the experiment but learned that 
further examining cubes where no additional information 
could be gained was inefficient and costly and thus was a 
nonoptimal search strategy.

Discussion

The goal of Experiment 2 was to investigate whether vary-
ing patch values could influence attentional selection within 
interactive search. As with Experiment 1, we had partici-
pants conduct an interactive search for a target T shape 
attached to the side of a virtual cube. Within each trial, 50% 

Fig. 8   Number of faces viewed per cube type (Experiment 2). Note. 
Shaded areas represent ±SE. Trial index has been binned into incre-
ments of 20 trials for the purposes of visualization only. SE = stand-

ard error. Total viewed faces are summed and averaged for each cube 
type. Dashed line indicates the max number of potential faces a par-
ticipant could view for each cube type. (Color figure online)

Table 8   Model effects and Bayes factors—Time to stop interacting following reveal

Note. CIs = credible intervals; BF = Bayes factor; bolded CI values = CIs that did not pass through zero; bolded BF values = BF >3.20. Values 
in parentheses represent the associated standard error values. Effects were deemed reliable if CIs did not pass through zero and BF >3.20

Parameter Estimate CIs R-Hat BF

Intercept 6.31 (0.04) 6.22, 6.39 1.00 8.46×10178

Presence (Absent–Present) −0.04 (0.03) −0.11, 0.02 1.00 0.09
Trial Index −0.11 (0.01) −0.13, −0.09 1.00 2.09×1014

Presence × Trial Index 0.07 (0.02) 0.04, 0.11 1.00 43.80
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of the cubes were rich, containing six embedded shapes per 
cube, and the remaining 50% were poor, containing only 
a single embedded shape. We found that, contradictory to 
our predictions, participants developed an attentional bias 
towards examining the poor cubes before examining the 
rich cubes which became stronger over the course of the 
experiment. However, we also found that in target-absent 
trials participants became less exhaustive in their searching 
of poor cubes—as evidenced by a reduction in faces viewed 
and a decrease in time taken to stop interacting following 
stimulus reveal—but remained exhaustive for rich cubes. 
This suggested that, in line with our predictions, participants 
learned that no additional information could be gained from 
revealing the remaining empty faces of the poor cubes and 
instead learned that their energy should be spent gathering 
resources from the rich cubes instead.

It was surprising to find that some of our results for 
Experiment 2 were misaligned with our predictions. In fact, 
some findings were the polar opposite of what was predicted. 
Fortunately, there is a simple explanation that can unify and 
explain the results of our two experiments in a parsimonious 
manner, of which we shall now turn to.

General discussion

Interactive search is commonplace within the real world 
yet research into the behaviors involved within interactive 
search has barely scratched the surface. Across these two 
experiments, we have identified two new forms of attentional 
selection that can arise during interactive search. Our predic-
tions for both experiments were drawn from prior research 

into attentional selection, the influence of physical effort on 
behaviors, and foraging behaviors (Anderson et al., 2025; 
Awh et al., 2012; Wickens, 2014; Wolfe, 2021).

For Experiment 1, we predicted that participants would 
examine all light cubes first and then the heavy cubes after 
with the aim of reducing energetic expenditure, or more sim-
ply put, physical effort. Overall, we found physical effort to 
be an extremely strong attribute for influencing attentional 
selection within interactive search. Participants consistently 
chose to examine the light cubes before the heavy cubes, 
even when doing so required travelling a greater distance. 
However, this increased effort was not strong enough to deter 
participants from still exhaustively searching through heavy 
cubes on target-absent trials.

For Experiment 2, we predicted that participants would 
examine the rich cubes first followed by the poor cubes with 
the aim of maximizing the quantity of visual information 
they could obtain within any single search. However, we 
found the opposite: Participants developed a bias towards 
examining the poor cubes before the rich cubes, which grew 
stronger over the course of the experiment. Additionally, in 
target-absent trials, participants became less exhaustive in 
their searching of poor cubes but remained exhaustive for 
rich cubes.

This prompts an important question: Why were our pre-
dictions upheld for Experiment 1 but not for Experiment 2? 
We believe that a simpler explanation than first proposed 
can provide a clearer description of what might be occur-
ring with respect to attentional selection during interactive 
searches. It is our belief that the unifying factor here across 
both experiments is, in fact, effort, and that what we have 
observed in our results is a consequence of a strategy aimed 
at minimizing both physical and cognitive effort, and sub-
sequently, energetic expenditure.

Let us turn to Experiment 1 to begin to explain this in 
detail, and we can do this by considering two simple strat-
egies. In a difficult-first strategy, searchers focus on the 
heavy cubes followed by the light cubes; in an easy-first 
strategy, searchers focus on the light cubes first followed 
by the heavy cubes. On half of the trials, a target is found 
before all cubes are examined: in fact, on average, with 
four cubes per trial, a target will be found by the time that 
two cubes have been examined in a trial. Of course, once 
a target has been found, the trial ends, and no more cubes 
are examined. Should a searcher engage in a difficult-first 
strategy, they will expend the highest possible amount of 
energy and effort per cube before finding the target; but 
should a searcher engage in an easy-first strategy, they will 
expend very little energy and effort in comparison before 
finding the target. It therefore makes sense that searchers 
focused on an easy-first strategy in Experiment 1: Doing 
so enabled them to conserve their effort and energy to a 
substantial degree.

Fig. 9   Time to stop interacting following reveal. Note. Shaded areas 
represent ±SE. Trial index has been binned into increments of 20 tri-
als for the purposes of visualization only. SE = standard error. (Color 
figure online)
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The same argument can be used to re-cast and explain the 
results of Experiment 2, which were contrary to our predic-
tions. If one does not know where a target may appear, then 
focusing on areas with the largest number of potential targets 
would be a more efficient strategy than focusing on areas 
with only a small number of potential targets. Thus, partici-
pants in our task were engaging in a nonoptimal strategy. 
However, if effort is taken into consideration, then the costs 
of examining the rich and poor cubes becomes important. 
With many more objects to examine, the rich cubes ulti-
mately would have required more energetic expenditure and 
processing time than the poor cubes to fully examine. Thus, 
when considering the effort involved in search, a difficult-
first strategy for Experiment 2 would involve examining 
all rich cubes before poor cubes, and an easy-first strategy 
for Experiment 2 would instead involve examining all poor 
cubes before rich cubes. Clearly, then, the search system is 
prioritizing effort and energetic expenditure when selecting 
candidate objects for detailed inspection during interactive 
search and overruling other considerations such as the quan-
tity of resources a patch contains or the perceived probability 
that a given cube would contain a target object.

Overall, then, our two experiments combined highlight 
that during interactive search, searchers adopt an “easy-
first” strategy, focusing on objects that can be rapidly, eas-
ily, or with little effort rejected as distractors or accepted as 
containing a target. In fact, though counterintuitive in some 
regards, our findings neatly dovetail with those reported in 
studies of visual search. Across a number of visual search 
studies, participants have been shown to use suboptimal 
search strategies in an attempt to reduce perceived cogni-
tive effort (Irons & Leber, 2016, 2018; Zhang & Leber, 
2024). As noted above, to our knowledge this is the first set 
of experiments that have been conducted with the aim of 
better understanding attentional selection during interactive 
search, and we have generated a novel set of findings regard-
ing prioritization during interactive searches. At a theoretical 
level, these findings can help to better understand how, when 
and why regions are examined during interactive search.

It is, however, important to note that our findings may be 
driven not by a focus on “easy” objects first but rather by a 
focus on those objects that can be examined quickly.

Under this view, the longer a participant spends exam-
ining an object, the more energy and resources they must 
expend doing so. By prioritizing objects that can be accepted 
or rejected quickly (e.g., light and poor cubes), participants 
may therefore have been focused on reducing energetic 
expenditure by being more efficient with their time.1 Here, 
we did not plan on controlling for this possibility, and so 
drawing conclusions in this regard is beyond the scope of the 
current set of experiments. However, we plan on pursuing 
this in future research wherein the time taken to examine 
objects is held constant.

At a practical level, our findings also bear importance 
on interactive search tasks. Whether in the digital or physi-
cal world, we expect searchers to de-prioritize interactively 
examining objects that indicate in some way that they will 
require extensive effort to search. Doing so could cause these 
objects to not be examined at all should a searcher be under 
time pressure and thus terminating their searches rapidly. In 
our simple interactive search tasks here, performance was 
high and the cubes that needed more effort did not show 
evidence of targets being missed. However, it may be the 
case that in interactive search tasks that require substan-
tially more effort overall, such as when searching for targets 
hidden throughout a house (Riggs et al., 2018), individuals 
may become more likely to avoid these objects altogether. 
This is indeed a possibility that we plan to examine within 
future experiments.
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