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A B S T R A C T

Current studies on maritime navigation risks often overlook interactions between ships, dynamic surroundings, 
and static environmental factors, limiting insights into navigation safety in complex scenarios. This research 
presents an innovative methodology to quantify and integrate multi-source heterogeneous navigation risks, 
enabling a comprehensive assessment of overall risk levels. The framework comprises four components. First, a 
spatiotemporal risk monitoring domain model, developed using historical AIS data, incorporates risk monitoring 
and forbidden domains, enabling precise localisation and timing of risk evaluation. Second, heterogeneous 
navigation risk evaluation functions, addressing dynamic target and static environment risks, capture ships’ 
varying sensitivities to diverse risk sources. Third, risk quantification methods evaluate dynamic risks from 
temporal and spatial perspectives while categorising static risks into three types. Finally, an adaptive fusion 
method hierarchically aggregates multi-source risk data into a unified profile, reflecting navigators’ risk 
perception. Real-world AIS data validate the framework, constructing spatiotemporal risk models for three ship 
types and analysing navigation scenarios such as crossing, overtaking, and multi-ship encounters. Results 
demonstrate the framework’s capability to enhance precision in navigation risk assessment, providing actionable 
insights and robust support for autonomous navigation and intelligent maritime systems. This methodology 
offers a promising tool for advancing safety in complex maritime environments.

1. Introduction

Maritime transport is responsible for over 90 % of global trade vol
ume and serves as a cornerstone of the global economy [1,2]. Ensuring 
the safety of ships, which constitute the backbone of the maritime 
transport industry, is crucial for its sustainable development [3,4]. The 
integration of big data analytics, Artificial Intelligence (AI) and smart 
navigation systems is driving a transformative shift toward ship auto
mation. Autonomous navigation systems are emerging as a fundamental 
component of maritime intelligence [5–7]. Accurate risk assessment in 
maritime navigation is paramount for enabling these autonomous sys
tems, supporting both optimal route planning and effective collision 
avoidance strategies.

Current research on ship navigation risk assessment primarily 

follows three avenues. The first focuses on collision risk, where existing 
methodologies can be broadly divided into index-based and safety 
boundary approaches [8–10]. Index-based methods are widely adopted 
for their simplicity and computational efficiency [8]. However, these 
approaches often suffer from oversimplified assumptions. For instance, 
they frequently overlook crucial variables such as ship size distributions. 
Moreover, they tend to rely heavily on subjective expert judgements, 
which may introduce bias into the analysis. Safety boundary methods, 
subdivided into collision diameter and ship domain models, attempt to 
address these limitations by refining risk perimeters [9]. Ship domain 
models can be categorised into three distinct types: empirical [11], 
knowledge-based [12] and analytical approaches [13–15]. Each type 
presents unique challenges in maritime applications [13]. Empirical 
models, whilst data-driven, are constrained by their heavy reliance on 
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historical datasets. Knowledge-based models incorporate expert expe
rience but may introduce subjective biases into the assessment process. 
Analytical models, despite their mathematical rigour, often prove too 
specific to particular scenarios, which not only limits their broader 
application but also increases their computational demands.

A second research direction addresses grounding and allision risks. 
The assessment of grounding risks predominantly follows two method
ological approaches: probability-based analysis [16] and 
consequence-based evaluation [17]. In contrast, allision risk assessment 
is more object-specific, requiring distinct analytical frameworks for 
different marine structures. These structures encompass fixed in
stallations such as bridges [18] and offshore wind turbines [19], as well 
as maritime infrastructure, including production platforms [20] and 
navigational aids [21]. Despite their contributions, these studies often 
suffer from oversimplified models and limited generalisability across 
diverse navigational scenarios.

The third research direction investigates the complex interplay of 
navigational risks and their underlying causes. Various analytical ap
proaches have been developed to understand these interactions. These 
include probabilistic methods such as Bayesian networks [22] and N-K 
models [23], human-centric frameworks like Human Factors Analysis 
and Classification System (HFACS) [24], and dynamic modelling ap
proaches, including system dynamics [25] and ship domain safety 
methods [11]. These techniques have proved particularly valuable in 
analysing complex scenarios, such as multi-ship encounters in congested 
waterways. Whilst these methodologies have advanced our under
standing of specific risk scenarios, they fall short in providing a holistic 
assessment of heterogeneous navigational risks. Ships routinely 
encounter multiple risk sources simultaneously—including collision, 
grounding and allision risks—within dynamic maritime environments. 
These risks often manifest in complex combinations, creating intricate 
risk landscapes that existing models struggle to capture fully. The 
development of a robust framework for evaluating such multi-source 
heterogeneous risks is crucial, particularly as risk assessment un
derpins critical functions in autonomous navigation, including route 
planning and collision avoidance systems.

In general, most current research on maritime navigation risk 
assessment focuses on the risk of ship collisions. Li et al. [26] designed a 
data-driven collision risk analysis model to investigate the impact of 
COVID-19 on global ship collision risk. Xin et al. [27] developed a traffic 
clustering approach to identify high-risk multi-ship collision areas in 
complex waterways. These studies on the collision risk in large-scale 
waterways provide reference for port management decision-making, 
but have limited guidance for ship route planning and collision avoid
ance decision-making. Therefore, some studies have shifted to the 
perspective of individual ships in explaining collision risk. Liu et al. [28] 
were the first to introduce the elliptical ship domain into the velocity 
obstacle method and assessed ship collision risk from the perspective of 
risk evolution. Other studies have focused on specific types of risks, such 
as grounding [29,30], allision [18], static risks related to Port State 
Control (PSC) inspections [31], and pirate threats [1,32], providing 
decision support for addressing individual risks. However, these studies 
mostly focus on a single type of risk, lacking a comprehensive assess
ment of the heterogeneous risks from multiple sources during ship 
navigation. Therefore, it is necessary to design a tool from the 
perspective of ship officers to accurately reflect the comprehensive risk 
level of the heterogeneous risks from multiple sources during ship 
navigation.

Based on the identified challenges, this paper presents several key 
contributions. 

1) It develops an advanced risk monitoring model that effectively in
tegrates historical Automatic Identification System (AIS) data mining 
with real-time risk assessment. Unlike existing approaches that rely 
on simplified assumptions, this model captures and replicates the 
complex cognitive patterns and timing of risk assessments conducted 

by experienced ship officers. This innovation enhances the precision 
of maritime risk predictions by closely aligning with actual navigator 
decision-making processes.

2) It introduces sophisticated heterogeneous risk evaluation functions 
that systematically differentiate and quantify dynamic and static 
risks within a unified framework. In contrast to traditional methods 
that treat all risks uniformly, these functions account for officers’ 
varying sensitivities to different types and directional hazards. This 
advancement enables a more nuanced and realistic understanding of 
navigational risks in complex maritime environments.

3) An adaptive risk quantification method is proposed that surpasses 
conventional approaches by comprehensively integrating both 
spatial and temporal dimensions. This method presents an effective 
approach to assessing the overlap between spatio-temporal moni
toring domains. Unlike traditional methods that focus on either 
spatial or temporal aspects, this integrated approach significantly 
improves both early warning capabilities and risk assessment 
accuracy.

4) The research sets up a comprehensive multi-source risk fusion model 
that effectively integrates diverse navigation risks. This model pre
vents risk overaccumulation while maintaining sensitivity to indi
vidual risk sources.

Together, these contributions provide a robust framework for 
enhancing the understanding and management of navigational risks in 
complex maritime environments, thereby fostering safer maritime op
erations and informed decision-making.

The remainder of the paper is organised as follows: Section 2 presents 
the literature review, summarising the main research directions in ship 
navigation risk assessment. Section 3 introduces our methodological 
framework in detail. This encompasses four main components: the 
spatiotemporal risk monitoring domain model, heterogeneous naviga
tion risk evaluation functions, a novel approach for quantifying multi- 
source heterogeneous risks, and an adaptive fusion method for inte
grating these risks. Section 4 provides the experimental analysis of the 
framework, while Section 5 discusses the findings and their implica
tions. Finally, conclusions are highlighted in Section 6.

2. Literature review

Ship navigation risk research employs a ship-centric approach to 
examine interaction-induced hazards in maritime operations. This field 
encompasses three fundamental risk categories: ship-to-ship collisions, 
grounding incidents in shallow waters, and structural damages resulting 
from the complex interactions between ships and their operational 
environment. Based on the nature of risk sources, this study categorises 
ship navigation risks into two broad classifications: dynamic target risks, 
which involve mobile entities in the maritime environment, and static 
environmental risks, which pertain to fixed geographical and infra
structural elements.

2.1. Dynamic target risk assessment

Dynamic target risk refers to the risk generated from interactions 
between a ship and other target ships during navigation, namely the risk 
of collisions between ships. Based on the analysis of numerous maritime 
traffic accidents, ship collisions constitute a significant portion of all 
accident types and are a key focus of maritime traffic risk research [33]. 
The evaluation of ship navigation risks serves as a vital foundation for 
navigational route design and collision avoidance manoeuvres for offi
cers, as well as being a critical component in achieving autonomous ship 
navigation. The microscopic approach to ship collision risk assessment 
originates from the ship officer’s perspective, focusing on sensing the 
collision risk in the ship’s surrounding environment and making colli
sion avoidance decisions accordingly. This method can be subdivided 
into the index method and the safety boundary method [8,9].
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The index method involves using geometric parameters as indicators 
to assess encounter situations or combining them into new formulas to 
evaluate potential ship collision risks [8]. Owing to its simplicity and 
ease of use, this method has become the most frequently applied 
approach in collision avoidance decision-making for ship officers. 
Research in this area has been conducted along three lines: examining 
officers’ sensitivity to different parameters, improving the model’s 
perception of ship encounter scenarios, and designing risk quantification 
formulas tailored to specific situations. 1) Exploring the contribution of 
different indicators to collision risk and using expert knowledge [34], 
fuzzy mathematics [35], and neural networks [36] to determine indi
cator weights. 2) Introducing additional parameters like mutual dis
tance, relative bearing, and relative speed, with the aim of more fully 
reproducing ship encounter scenarios [37,38]. 3) Developing risk 
quantification formulas for situations such as multi-ship encounters [39] 
and ship-bridge collisions [40]. While the index method offers simplicity 
in modelling and relatively fast computation, it still faces several chal
lenges. For instance, the index method often relies on overly idealised 
conditions, which do not reflect the real movement of ships. It abstracts 
ships and obstacles as point masses, overlooking the impact of object 
size on collisions and assuming all targets continue their current motion 
states unchanged. Indicator selection and weight determination often 
lack data or theoretical backing, and their accuracy depends heavily on 
the subjective influence of the selected experts.

The safety boundary method quantifies ship collision risks by using 
the spatiotemporal proximity between ships to measure their closeness 
[9]. Relevant research first introduced the concept of collision diameter 
to describe the spatiotemporal relationships between ships, and the 
subsequent expansion of this concept contributed to the creation of ship 
domains [41,42]. Researchers have investigated historical data, prior 
knowledge, and specific scenario analyses, developing three types of 
ship domain models: empirical ship domain models [11], 
knowledge-based ship domain models [12], and analytical ship domain 
models [13–15]. Each of these modelling methods has unique features, 
and they are not contradictory, allowing flexible combinations [13]. The 
safety boundary method partially addresses the limitations of the index 
method and, due to its modelling flexibility, has seen broad application. 
However, it still has several challenges. For example, the collision 
diameter method sets a threshold for relative distance between ships or 
between ships and obstacles but does not factor in the ships’ dynamic 
states. It classifies encounters exceeding this threshold as safe, neglect
ing the ambiguity of collision risks. The suitability of empirical ship 
domain models is highly dependent on the quality and volume of data, 
and handling massive datasets raises the computational cost of this 
method. The accuracy of knowledge-based ship domain models heavily 
relies on proper extraction of prior knowledge features and can also be 
influenced by experts’ subjective judgment. Analytical ship domain 
models are typically designed for specific environments, leading to 
limited generalisability. Moreover, they involve more parameters and 
are more complex than other models.

2.2. Static environmental risk assessment

Static environmental risk refers to the risks arising from interactions 
between a ship and relatively fixed environmental factors during its 
navigation [43]. For instance, risks such as grounding or damage can 
occur when a ship enters non-navigable areas, such as shallow waters, 
lands, reefs, or buoys. At present, research on the evaluation of 
grounding and damage risks is much less extensive compared to ship 
collision risks.

Regarding grounding, the Pederson [44] models estimate the risk of 
ship grounding by integrating the probability density function of traffic 
flow at the interface between the ship’s navigation and obstacles. 
Likewise, Youssef et al. [45] analysed the statistical characteristics of 
random variables related to ship grounding accident data in order to 
estimate the probability of ship grounding. Khaled et al. [46] analysed 

the maritime accident records in Bangladesh from 1981 to 2013 using 
the IWRAP MK2 software. Besides statistical analysis, fault tree and 
Bayesian network are also frequently used to evaluate the probability of 
ship grounding. Cenk Sakar et al. [47] developed a method that com
bines fault tree and Bayesian network to evaluate the risk of ship 
grounding. Jiang et al. [48] employed a Bayesian network to evaluate 
the risk of ship grounding in the Three Gorges reservoir area, taking into 
account ship characteristics, organisational factors, hydrological con
ditions and human factors. Fu et al. [30] developed an accident 
graph-Bayesian network model to study the causal relationships among 
ship grounding accidents in the Arctic region and identify the proba
bility of such accidents happening. Besides grounding accident records 
and AIS data, environmental factors like water depth, seabed topog
raphy and meteorological conditions are also utilised in the analysis of 
grounding risk to enhance the accuracy of the assessment. As an 
example, Abaei et al. [49] developed a framework to estimate the 
probability of ship grounding when navigating through shallow water 
areas, highlighting the influence of wave height on the risk of ship 
grounding. Likewise, Zhang et al. [29] presented a method that applied 
big data analysis to assess the probability of ship grounding. To 
accomplish this, they integrated data from AIS, meteorological obser
vations and bathymetric surveys to evaluate the grounding risk of ro-ro 
passenger ships sailing in the Gulf of Finland. Yang et al. [43] developed 
a quantitative framework for channel grounding risk based on the 
empirical ship domain, employing water depth data and terrain data to 
evaluate the grounding risk in the waterways of the Yangtze River 
Estuary.

For allision incidents, Liu et al. [50] developed a probabilistic ana
lytics method to evaluate the ship-buoy contact risk for striking ship 
identification at the coastal areas by combining buoy domain and 
bounding box models. Wu et al. [51] proposed a fuzzy logic-based 
ship-bridge allision warning model, using ship position, trajectory, 
ship-bridge distance and environmental factors as parameters. Yu et al. 
[52] developed a semi-quantitative risk model based on the Bayesian 
network and evidence reasoning approach to evaluate the allision risk 
between ships and offshore wind farms.

The assessment methods for static environmental risks mentioned 
above, while covering scenarios like grounding and allision, still have 
certain limitations. Most of the research focuses on risk assessment in 
specific static navigation environments, with the methods applicable to 
risks in particular geographic settings. This limitation means that the 
models require adjustment or redevelopment when applied to other 
geographic environments, constraining their generalisability. Most of 
the models still depend on traditional methods like statistics, fault trees, 
and Bayesian networks, and are unable to handle highly dynamic nav
igation environments. Furthermore, there is a lack of effective quanti
tative standards to uniformly evaluate the overall level of static 
environmental risk across different types of static risk sources. Conse
quently, these methods are challenging to provide a basis for path 
planning and collision avoidance decision-making.

2.3. Navigation risk fusion

The ship navigation system is a complex system involving real-time 
interactions between humans, ships, and the surrounding environ
ment. Different risk factors influence each other and give rise to multi- 
source and heterogeneous risks. Some research scholars have investi
gated the interrelationships between accident causes using coupling 
analysis methods. Fan et al. [23] proposed a framework for examining 
the coupling effects in the operational modes of maritime autonomous 
surface ships. Zhang et al. [24] investigated the problem of 
human-organisation factors risk coupling in maritime pilotage by using 
the human factors analysis and classification system and the system 
dynamics method. Zhou et al. [22] built a three-hierarchy Bayesian 
network to assess the holistic container shipping risk, which includes 28 
root risks identified by the PESTLE framework. Furthermore, some 
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research has focused on the fusion methods for multi-source navigation 
risks. Chen et al. [11] developed a risk warning method based on the 
probability of ship domain overlap for multi-ship encounter scenarios, 
which enabled the quantification of the overall risk in multi-ship en
counters. Yang et al. [43] proposed a weighted risk fusion formula to 
conduct a holistic quantitative assessment of multi-source grounding 
risks in ship navigation.

The aforementioned methods effectively analyse both the coupling 
relationships of specific risk factors and the risks in multi-ship encoun
ters. However, they lack a comprehensive framework for understanding 
maritime risks, particularly regarding their multi-source and heteroge
neous nature during navigation. This limitation calls for a more inte
grated risk assessment approach. Existing studies primarily focus on 
isolated risk assessments, failing to capture the interactive effects among 
multiple risk sources in complex waterways. This limitation hinders the 
comprehensive understanding of concurrent maritime hazards. There
fore, a systematic framework is urgently needed to address two critical 
aspects: analysing dynamic risk interactions in changing environments 
and conducting a holistic assessment of multi-source, heterogeneous 
risks.

2.4. Research gaps

The literature review reveals three major developments in maritime 
risk assessment: dynamic target risk assessment has progressed from 
index-based to safety boundary methods, static environmental risk 
research has expanded to incorporate multiple analytical approaches for 
specific scenarios, and risk fusion studies have begun addressing the 
interconnected nature of maritime risks. These advances reflect the 
field’s evolution toward more sophisticated and integrated approaches. 
However, a comprehensive framework capable of effectively handling 
heterogeneous risks while maintaining practical utility remains a sig
nificant challenge in maritime navigation safety. The research on navi
gation risk assessment is categorised based on different study subjects, as 
shown in Table 1. Despite advancements in maritime navigation risk 

assessment, several critical gaps remain that this study aims to address: 

(1) Inadequate integration of multi-source risks: Current methodol
ogies predominantly assess individual risk types in isolation, 
thereby failing to comprehensively capture the interactive and 
cumulative effects of heterogeneous risks encountered during 
maritime navigation. This limitation constrains the understand
ing of complex risk landscapes inherent in dynamic maritime 
environments.

(2) Oversimplified risk assessment models: Many existing risk 
assessment frameworks rely on idealised assumptions and overly 
simplified parameters, often neglecting critical variables such as 
ship size and operational behaviour. Consequently, these models 
may yield inaccurate and potentially misleading evaluations of 
navigational risks in real-world scenarios.

(3) Insufficient consideration of human factors: The integration of 
human decision-making processes into risk assessment frame
works remains inadequate. Current approaches frequently over
look the varying sensitivities of ship officers to different types of 
navigational hazards, thereby failing to account for the com
plexities of human cognition in automated navigation systems.

(4) Limited early warning capabilities: Existing risk assessment tools 
often lack robust mechanisms for providing timely and effective 
risk warnings. This deficiency impedes proactive decision- 
making by maritime operators, ultimately increasing the likeli
hood of maritime accidents and compromising safety.

These identified gaps elucidate the necessity for a more compre
hensive and integrated approach to maritime risk assessment, which this 
study seeks to address through its innovative framework and 
methodologies.

3. The proposed methodology

This study presents a comprehensive framework for quantifying and 

Table 1 
Comparison of relevant navigation risk assessment methods.

Research 
subjects

Reference Method Data Risk 
integration

Support collision/ allision avoidance 
decision-making

DT Zhao et al. [34] evidential reasoning - N Y
DT Bukhari et al. [35] fuzzy inference system AIS N Y
DT Ahn et al. [36] fuzzy inference system expert knowledge N Y
DT Li et al. [37] D-S evidence theory AIS N Y
DT Goerlandt et al. [38] fuzzy expert system expert knowledge N Y
DT Liu et al. [39] cooperative game theory AIS Y Y
DT Ma et al. [40] Monte Carlo simulation & Bayesian 

network
AIS N N

DT Altan [42] collision diameter AIS, current N Y
DT Chen et al. [11] ship domain AIS Y Y
DT Silveira et al. [15] ship domain AIS N Y
SE Yang et al. [43] ship domian AIS, water depth, channel Y Y
SE Youssef et al. [45] statistical analysis accident report N N
SE Sakar et al. [47] fault tree analysis & Bayesian 

network
accident report Y N

SE Jiang et al. [48] Bayesian network accident report Y N
SE Abaei et al. [49] Bayesian network & the 

hydrodynamic model
ship geometry data N N

SE Liu et al. [50] ship domian AIS, bouy data, accident report Y Y
SE Wu et al. [51] ship domain & IF-THEN AIS, wind, sea sate N Y
SE Yu et al. [52] evidential reasoning & Bayesian 

network
AIS Y N

SE Zhang et al. [29] Dynamic time warping & Douglas 
Peucker

AIS, water depth Y Y

DT & SE Khaled et al. [46] Bayesian network AIS Y N
DT & SE Bakdi et al. [53] ship domain AIS, water depth N N
DT & SE The proposed 

framework
ship domain AIS, water depth, traffic separation 

schemes (TSS)
Y Y

DT: dynamic target risk.
SE: static environmental risk.
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fusing multi-source heterogeneous navigation risks aimed at providing a 
detailed mapping of overall risk levels in ship navigation. The frame
work is structured into four key components:

Section 3.1 details the construction of a spatiotemporal risk moni
toring domain model, which integrates risk monitoring with restricted 
areas using historical AIS data mining techniques. This module estab
lishes the foundation for monitoring navigational risks and identifying 
forbidden areas. Section 3.2 introduces functions for evaluating het
erogeneous navigation risks, focusing on both dynamic target risks and 
static environmental risks. It addresses the types of risks ships encounter 
during navigation, enabling a more precise risk assessment. Section 3.3
develops quantification methods for these risks, analysing dynamic 
target risks from temporal and spatial perspectives, while also catego
rising and assessing static environmental risks. This module provides the 
necessary tools to quantify risk levels based on ship movements and 
environmental changes. Section 3.4 presents a multi-source heteroge
neous navigation risk fusion method, which is aligned with the princi
ples of officers’ risk perception. It incorporates real ship trajectories 
across various scenarios such as crossing, overtaking, and multi-ship 
encounters, ultimately offering a comprehensive risk analysis.

In summary, these sections collectively establish a cohesive meth
odology for risk monitoring and evaluation, with each submodule 
contributing to a comprehensive risk assessment framework. The sub
modules are interlinked, starting from risk identification and evaluation 
(Sections 3.1 and 3.2), to quantification (Section 3.3), and finally risk 

fusion and analysis (Section 3.4). Together, they form an integrated 
approach to heterogeneous navigation risk assessment, with each part 
playing a crucial role in refining the overall model. The entire frame
work is illustrated in Fig. 1.

3.1. Spatiotemporal risk monitoring domain model

3.1.1. Extraction of relative position relationships between ships
The study uses historical trajectory data to analyse ships’ relative 

positions over time, capturing their spatiotemporal distribution patterns 
in target waters. This analysis reveals principles that guide safe navi
gation distances. Additionally, the Closest Point of Approach (CPA), a 
key metric for describing ship encounters, offers valuable insights into 
determining safe distances between ships. Therefore, relative positions 
and CPAs are systematically used in this study to quantify safe naviga
tion distances.

To determine the relative positions between ships, both the relative 
distance and bearing are calculated. First, a set of Maritime Mobile 
Service Identity (MMSI) numbers is generated from the dataset con
taining all ship trajectories. Then, this MMSI set is traversed to identify 
the ‘own ships.’ Using the timestamps in each own ship’s AIS data, other 
ships with different MMSI numbers present at the same moment are 
identified.

Let the geographic coordinates of the own ship and target ship be 
represented as (lonos, latos) and (lonts, latts), respectively. The relative 

Fig. 1. Framework of quantifying and fusing multi-source heterogeneous navigation risks.
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distance and bearing between these two ships are then calculated using 
Eqs. (1) and (2). 

Drelative =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(lonts − lonos)
2
+ (latts − latos)

2
√

(1) 

where Drelative represents the relative distance between the target ship 
and the own ship. lonos and latos are the longitude and latitude co
ordinates of the own ship, respectively, while lonts and latts stand for the 
longitude and latitude coordinates of the target ship, respectively. 

Brelative = arctan((lonts − lonos) / (latts − latos)) + ΔB (2) 

The value of ΔB is calculated according to Eq. (3). 

ΔB =

⎧
⎨

⎩

0∘

180∘

360∘

(lonts − lonos) ≥ 0, (latts − latos) ≥ 0
(latts − latos) < 0

(lonts − lonos) < 0, (latts − latos) ≥ 0
(3) 

Calculating the distance between ships is challenging due to their 
positions in a spherical coordinate system. To address this, the 
geographic coordinates are converted into Cartesian coordinates using 
the Mercator projection. This transformation follows Eqs. (4)–(7). 

r0 =
(

a earth
/ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − e2 ∗ sin2φ0

√ )
∗cos φ0 (4) 

q= ln tan(π/4+ lat/2)+0.5∗ e∗ ln ((1 − e∗sin (lat))/(1+e∗sin (lat)))
(5) 

loncart = lon ∗ r0 (6) 

latcart = lat ∗ r0 (7) 

where r0 denotes the radius at the standard parallel, and φ0 is the 
standard latitude used in the Mercator projection. a earth represents the 
semi-major axis of Earth’s ellipsoid, e designates Earth’s first eccen
tricity, and q is defined as the isometric latitude. The terms loncart and 
latcart refer to the longitude and latitude of the ship in the Cartesian 
coordinate system, respectively.

Therefore, after the coordinate system transformation, Eqs. (1) and 
(2) are updated to Eqs. (8) and (9). 

Drelative =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
loncart

ts − loncart
os

)2
+
(
latcart

ts − latcart
os

)2
√

(8) 

Brelative = arctan
( (

loncart
ts − loncart

os
) / (

latcart
ts − latcart

os
))

+ α (9) 

where loncart
os and latcart

os represent the longitude and latitude of the own 
ship in the Cartesian coordinate system, respectively. Similarly, loncart

ts 
and latcart

ts indicate the longitude and latitude of the target ship in the 
Cartesian coordinate system, respectively.

After completing the above steps, the relative position data of the 
own ship is obtained and non-dimensionalised by the ship’s length. 
Then, multiple sets of coordinate points are extracted by traversing the 
MMSI set. These relative positions are visualised using a heatmap, which 
is discretised into grids of 0.2 × 0.2 times the ship length. The heatmap 
has a height of 16 times the ship length and a width of 10 times the ship 
length.

In this study, the CPA is defined as the point where the distance 
between two ships is minimised during an encounter. After calculating 

the relative position data between ships, the minimum distance is 
identified as the CPA. The detailed processing flow is shown in Table 2. 
Finally, the series of CPAs are visualised on a heatmap.

3.1.2. Fit the spatiotemporal risk monitoring domain
After generating the heatmaps for relative position relationships and 

CPAs, an approximately elliptical low-density area is observed near the 
centre of the ships. As shown in Fig. 2, the low-density area in the 
relative position relationship heatmap is larger than that in the CPA 
heatmap.

To extract the features of two low-density ship domains, the 
boundaries of the two domains are fitted using the least squares method 
according to Eq. (10). 

((x − xc ∗ L)/a ∗ L)2
+ ((y − yc ∗ L)/b ∗ L)2

= 1 (10) 

where (x, y) represents the coordinates of points on the fitted boundary 
of the ship domain. L is the ship’s length in metres, while a and b are the 
semi-major and semi-minor axes of the fitted ship domain, respectively. 
(
xc, yc

)
denotes the centre point of the fitted ship domain.

A larger domain boundary can be defined as the navigation risk 
monitoring boundary. As shown in Fig. 3(a), if obstacles, non-navigable 
waters, or the domains of other ships intrude into the own ship’s risk 
monitoring domain, a navigation risk is identified. Conversely, a smaller 
domain boundary serves as the ship’s forbidden domain. As illustrated in 
Fig. 3(b), if obstacles, non-navigable waters, or the domains of other 
ships enter the own ship’s forbidden domain, the navigation risk is 
considered excessively high.

3.2. Heterogeneous navigation risk evaluation functions

During navigation, ships engage in complex real-time interactions 
with the external environment, which give rise to multi-source and 
heterogeneous risks. Multi-source risks refer to scenarios where risk 
originates from multiple sources. For instance, in multi-ship encounter 
situations, interactions with multiple target ships may generate multiple 
collision risk factors. Heterogeneous risks, on the other hand, highlight 
the diversity of risk types. For example, in narrow waterways, ships not 
only face collision risks with target ships but also encounter risks such as 
straying off the navigational channel or grounding. These multi-source 
and heterogeneous risks pose significant challenges to maritime safety.

This study examines the risks arising from the real-time interactions 
between ships and their external environment during navigation. It 
particularly emphasises the spatiotemporal interactions between ships, 
static navigational environments, and dynamic obstacles. The goal is to 
uncover the underlying mechanisms of these heterogeneous navigation 
risks. To this end, the study classifies them into two categories: dynamic 
target risks and static environmental risks.

Dynamic target risks arise when a ship encounters other moving 
targets (e.g., other ships) during navigation. These risks stem from the 
relative motion between the ship and dynamic targets, as well as po
tential conflicts in their navigational paths, which could lead to severe 
accidents such as collisions.

Static environmental risks, on the other hand, result from a ship’s 
interaction with fixed or relatively stationary environmental factors (e. 
g., channel topography, meteorological, and hydrological conditions) 

Table 2 
CPA calculation process.

CPA calculation process

Input:MMSIset , D − listrelative;MMSIset is the set containing the MMSI numbers of all ships, and D − listrelative represents the list containing the relative position distances of all ships. 
Output:MD − listrelative: This is the list containing the distances of the CPA for all ships. 
1:for i in MMSIset : 
2: MDi = min(D − listirelative) 
3: MD − listrelative.append(MDi) 
4:return MD − listrelative
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during navigation. These risks often arise from the complexity and 
unpredictability of the environment, potentially leading to accidents 
such as grounding, reefing, or loss of control under adverse weather 
conditions.

After modelling both the risk monitoring and forbidden domains, the 
framework for quantifying navigational risks for ships is established. 
However, to derive specific values for different types of navigational 
risks, it is necessary to define spatial risk functions that represent the risk 
levels. Yang et al. [43] developed grounding evaluation functions that 
illustrate the distribution of risks from both longitudinal and lateral 
perspectives. They used an asymmetric Gaussian function to capture the 
sensitivity of risks from different directions. Referring to these functions, 
an asymmetric Gaussian function is adopted to construct the heteroge
neous navigation risk evaluation functions.

First, four semi-axes of the risk monitoring domain are defined as Ri,f , 
Ri,a, Ri,s, and Ri,p. Here, Ri,f and Ri,a represent the forward and after semi- 
axes of ship i’s longitudinal risk monitoring domain, respectively, while 
Ri,s and Ri,p indicate the starboard and port semi-axes of ship i’s lateral 
risk monitoring domain. These semi-axes are calculated according to Eq. 
(11). 
⎧
⎪⎪⎨

⎪⎪⎩

Ri,f = (b + yc) ∗ L
Ri,a = (b − yc) ∗ L
Ri,s = (a + xc) ∗ L
Ri,p = (a − xc) ∗ L

(11) 

where the parameters are the same as those in Eq. (10).
The dynamic target risk evaluation functions are constructed as the 

product of longitudinal and lateral dynamic target risk evaluation 
functions, decaying along the four semi-axes. The decay rates are 
controlled by the parameters Ri,f , Ri,a, Ri,s and Ri,p. In general, officers 

tend to prioritise dynamic target risks over static environmental risks 
[54]. Therefore, the decay rates of the dynamic target risk evaluation 
functions are uniformly set to low values.

To evaluate the longitudinal dynamic target risk for ship i, the 
function DSRi,Lon(y) is calculated as specified in Eq. (12). Parameters Ri,f 

and Ri,a are key factors that determine the decay rate of DSRi,Lon(y). 

DSRi,Lon(y) = exp
(
−
(

yα
/(

(1 + sign(y))Ri,f − (1 − sign(y))Ri,a
))2

)

(12) 

α = (ln( 1/r0))
0.5
, r0 = 0.5 (13) 

sign(x) =
{

1, if x ≥ 0
− 1, if x < 0 (14) 

The lateral dynamic target risk evaluation function, DSRi,Lat(x), fol
lows a similar structure to the longitudinal dynamic target risk evalua
tion function DSRi,Lon(y). Parameters Ri,s and Ri,p define the right and left 
semi-axes of the domain, respectively, and control the decay rate of 
DSRi,Lat(x). This function is calculated according to Eq. (15). 

DSRi,Lat(x) = exp
(
−
(

xα
/(

(1 + sign(x))Ri,s − (1 − sign(x))Ri,p
))2

)

(15) 

For a given ship i, the dynamic target risk is assumed to be the 
product of its longitudinal and lateral dynamic target risks. The specific 
risk value is determined according to Eq. (16). The spatial distribution of 
the dynamic target risk evaluation function is shown in Fig. 4(a). 

Fig. 2. Comparison of relative position and CPA heatmaps.
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DSRi(x, y) = DSRi,Lon(y) ∗ DSRi,Lon(x)

= exp
((

−
(
yα

/(
(1 + sign(y))Ri,f +

(
1 − sign(y)Ri,a

)))2
)
+
(

−
(

xα
/(

(1 + sign(x))Ri,f − (1 − sign(x))Ri,a)
))2

))

(16) 

The grounding risk evaluation functions proposed by Yang et al. [43] 
are adopted as the static environmental risk evaluation function. This 
grounding risk model assesses risk in navigational waters by calculating 
the overlapping areas between empirical ship domains and 
non-navigable waters, aligning with the evaluation approach of the 
proposed model.

For a given ship i, its static environmental risk is calculated according 
to Eq. (17). The spatial distribution of the static environmental risk 
evaluation function is shown in Fig. 4(b). 

SRi(x, y) = SRi,Lon(y) × SRi,Lat(x)

= exp
((

−
(
2yα

/(
2 ∗ (1 + sign(y))Ri,f +

(
1 − sign(y)Ri,a

)))2
)
+
(

−
(

2xα
/(

(1 + sign(x))Ri,f − (1 − sign(x))Ri,a)
))2

))

(17) 

To further analyse the differences between the static environmental 
risk function and the dynamic target risk function, their profiles along 
the Y-axis and X-axis were plotted. As shown in Fig. 5(a), both functions 
decay at the same rate along the positive Y-axis; however, the dynamic 
target risk function decays more slowly in the negative Y-axis direction. 
This indicates that, at equivalent positions on the negative half of the Y- 
axis, the dynamic target risk is assessed to be higher than the static 
environmental risk. Similarly, Fig. 5(b) shows that the dynamic target 
risk function also decays more slowly along the X-axis, suggesting that at 

Fig. 3. Spatiotemporal risk monitoring domain model.
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corresponding positions on the X-axis, the dynamic target risk is higher 
than the static environmental risk. This is consistent with the higher 
sensitivity of officers to dynamic target risks, as noted in [54].

3.3. Quantification method of heterogeneous navigation risk

This study considers two main types of navigation risks: dynamic 
target risks and static environmental risks. The former addresses colli
sion risks between ships based on their relative positions and motion 
trends, while the latter accounts for risks from shallow waters, land 
proximity, and channel deviation, which are evaluated through the 
spatiotemporal relationship between ships and these static hazards. The 
following sections present a comprehensive methodology for quanti
fying these identified risks.

3.3.1. Quantification method of dynamic target risk
Heterogeneous navigation risks are subdivided into dynamic target 

risks and static environmental risks. Dynamic target risk refers to the 

risk arising from an encounter scenario between the own ship and a 
target ship. This type of risk results from the interaction between two or 
more dynamic entities. Therefore, it must be quantified from both a 
spatial and a temporal perspective. The spatial perspective is based on 
the relative positions of the ships, while the temporal perspective con
siders the relative motion trends of the ships.

From a spatial perspective, risk is determined when the spatiotem
poral risk monitoring domain of the target ship overlaps with that of the 
own ship. For example, in Fig. 6(a), ship B’s domain intrudes into ship 
A’s domain, creating a risk between ships A and B, while there is no 
overlap between ships A and C, indicating no risk between them. To 
quantify the dynamic target risk, the integral of the dynamic target risk 
function is calculated over the overlapping area. However, the result 
may be greater than 1, making direct application for risk warnings 
difficult. Thus, the results need to be normalised. The overlapping area 
of the two ships’ domains is labelled as Ai (red diagonal lines in Fig. 6
(b)), and the integral over this area is DRi. The centroid of Ai is con
nected to the ship’s centre, forming a translation line (green dashed 

Fig. 4. The spatial distribution of risk evaluation functions (ship length of 150 m).

Fig. 5. Risk evaluation function: (a) Longitudinal dynamic target risk evaluation function & Longitudinal static environmental risk evaluation function; (b) Lateral 
dynamic target risk evaluation function & Lateral static environmental risk evaluation function.
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line). Ship B is then moved along this line until its domain touches the 
forbidden boundary of ship A. The new overlapping area is labelled Aj 

(blue squares in Fig. 6(b)), and the integral over this area is DRj. Finally, 
the dynamic target risk is calculated as the ratio of DRi to Rj, expressed 
as DRc = DRi/DRj.

From a temporal perspective, dynamic target risk must be quantified 
based on the motion trends between ships. Suppose there is an own ship 
(ship A) and a target ship (ship B). As shown in Fig. 7, the coordinates of 
the two ships at time t are 

(
xat , yat

)
and 

(
xbt , ybt

)
, respectively. The 

relative position vector between the ships at time t can be calculated 
using Eq. (18). 

BAt
⇀

= OBt
⇀

− OAt
⇀

= (xbt − xat , ybt − yat) (18) 

where OAt
̅̅→ is the position vector of ship A at time t, OBt

̅̅→ represents the 
position vector of ship B at time t, and BAt

̅̅→ denotes the relative position 
vector between ship A and ship B.

The velocity vector coordinates of the ships at time t are calculated 
using Eq. (19): 

v→= (v ∗ sinα, v ∗ cosα) (19) 

where v→ stands for the velocity vector of the ship, v is the magnitude of 
the ship’s speed, and α represents the ship’s heading.

As shown in Fig. 7, the time margin for a potential collision is 
calculated by dividing the distance from the target ship (ship B) to the 
forbidden boundary of the own ship (ship A) under the current motion 
state by the velocity component of the other ship in that direction. The 
time margin can be calculated using Eq. (20). 

Tm =
|BAt |

⇀
− dbat

VBAt
⇀ (20) 

where Tm represents the time margin; BAt
⇀ 

is the relative position vector 

between ship A and ship B; and VBAt
⇀ 

stands for the projection of the 

relative velocity vector between ship A and ship B onto BAt
⇀ 

at time t, 
calculated using Eq. (21). The term dbat denotes the distance between 
ship B and the forbidden boundary of ship A when ship B is travelling 
towards it under the current motion state. 

VBAt
⇀

= vBAt
⇀ ⋅ BAt

⇀ /⃒
⃒
⃒BAt

⇀ ⃒
⃒
⃒ (21) 

where vBAt
⇀ designates the relative velocity vector between ship A and 

ship B, calculated using Eq. (22). 

vBAt
⇀

= vBt
̅→

− vAt
̅→

= (vbt
⇀

∗ sinαbt − vat
⇀

∗ sinαat, vbt
⇀

∗ cosαbt − vat
⇀

∗ cosαat)

(22) 

The temporal margin (Tm) characterises the relative motion states 
between ships. When Tm is negative, the ships are moving apart. A zero 
Tm indicates that ships have reached their closest relative distance. 
Conversely, a positive Tm suggests that ships are approaching each other. 
From a temporal perspective, the collision risk exhibits an inverse 
relationship with the time margin. To quantify this risk level, a power 
function is employed to evaluate the dynamic target risk at time t based 
on the time margin. The mathematical representation of the dynamic 

Fig. 6. Schematic diagram of the dynamic target risk scenario.

Fig. 7. Schematic diagram of collision time margin calculation.
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target risk value from the temporal perspective is expressed in Eq. (23). 
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

DRT = 0, ⇀ VBAt ≤ 0

DRT = 1
/
(1 + (k ∗ Tm)

n
), ⇀ VBAt > 0,

⃒
⃒
⃒BAt

⇀ ⃒
⃒
⃒ > dbat

DRT = 1, ⇀ VBAt > 0,
⃒
⃒
⃒BAt

⇀ ⃒
⃒
⃒ ≤ dbat

(23) 

where DRT represents the dynamic target risk value of the ship from a 

temporal perspective at time t; VBAt
⇀ 

denotes the projection of the rela

tive velocity vector between ships A and B at time t onto BAt
⇀

; BAt
⇀ 

in
dicates the relative position vector between ships A and B; dbat signifies 
the distance between ship B and ship A’s forbidden boundary, measured 
along ship B’s current trajectory; k and n are empirical parameters 
controlling the power function’s shape and decay rate, respectively, 
determined through expert knowledge, with k set to 0.02 and n set to 2 
in this study.

Following the acquisition of dynamic target risk results from both 
spatial and temporal perspectives, a comprehensive spatiotemporal risk 
quantification becomes essential. Maritime observations indicate that 
officers exhibit lower sensitivity to velocity variations during actual 
navigation, primarily focusing on inter-ship distance variations for risk 
assessment. The spatial perspective of dynamic target risk, therefore, 
carries greater significance in navigational decision-making compared 
to its temporal counterpart. The temporal perspective serves as a com
plementary indicator to the spatial risk assessment. Based on these 
considerations, the risk fusion methodology proposed by Chen et al. [11] 
has been adopted, which employs catastrophe theory to construct an 
integrated spatial-temporal risk fusion model. The mathematical 
expression is presented in Eq. (24). 

DRt =
( ̅̅̅̅̅̅̅̅̅̅̅

DSRt
√

+
̅̅̅̅̅̅̅̅̅̅
DRT3

√ )/
2 (24) 

where DRt represents the comprehensive spatiotemporal dynamic target 
risk value at time t; DSRt denotes the spatial dynamic target risk value at 
time t; DRT signifies the temporal dynamic target risk value at time t.

3.3.2. Quantification method of static environmental risk
Static environmental risk encompasses three primary components: 

proximity to shallow waters and reefs, approach to land, and deviation 
from designated channels. Maritime navigation requires maintaining 
safe distances from non-navigable areas whilst adhering to designated 
channels, which offer optimal water depth conditions and professional 
maintenance through dredging operations. Areas beyond these channels 
typically present suboptimal depth conditions due to geographical 
constraints and other factors, thereby elevating navigational risks for 
deviating ships. The quantification of static environmental risk utilises 
the spatiotemporal relationship between ships, non-navigable waters, 
and channels. This methodology involves integrating the static envi
ronmental risk function across the intersection of the ship’s domain with 
non-navigable waters, whilst channel deviation risk is computed 
through the integration of the risk function over areas where the ship’s 
domain extends beyond channel boundaries.

Static environmental risk assessment is conducted based on diverse 
environmental scenarios. As illustrated in Fig. 8, ships A, B and C are 
located within the navigational channel. Ship B’s risk monitoring 
domain extends beyond the channel boundary, whilst ship C’s domain 
intersects with shallow waters inside the channel. Consequently, ship A 
exhibits no static environmental risk, whereas ships B and C demon
strate significant environmental risk factors. Similarly, ships D and E, 
situated outside the channel, both present static environmental risks due 
to their respective risk monitoring domains: ship D’s domain intersects 
with a reef area, whilst ship E’s domain overlaps with terrestrial 
boundaries.

The quantification of static environmental risk is achieved by inte
grating the environmental risk evaluation function over the domain 

Fig. 8. Illustration of static environmental risk (within the channel: Ship A, Ship B, Ship C; outside the channel: Ship D, Ship E).
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formed by the intersection between the spatiotemporal risk monitoring 
region and non-navigable areas. Risk normalisation is performed based 
on the spatial relationship between the ship and non-navigable areas 
within the static environment. This method corresponds to the 
grounding risk evaluation model established by Yang et al. [43]. Hence, 
detailed computational procedures are omitted for brevity. Fig. 9 illus
trates the risk normalisation process for static environmental scenarios.

3.4. Multi-source heterogeneous navigation risks fusion

Multi-source heterogeneous navigation risks encompass two primary 
dimensions. The first dimension addresses the diversity of risk types, 
comprising static environmental risks (including channel deviation and 
proximity to non-navigable waters) and dynamic target risks (such as 
spatiotemporal collision risks). The second dimension pertains to the 
multiplicity of risk sources encountered during navigation, exemplified 

by simultaneous interactions between the subject ship and multiple 
target ships in multi-ship scenarios.

A comprehensive understanding of multi-source heterogeneous 
navigational risks requires systematic methodological development. The 
primary methodological requirements encompass two critical aspects. 
The first aspect involves the standardisation of quantification scales and 
risk dimensions through rigorous protocols. The second aspect focuses 
on the normalisation of risk outcomes, which serves to enhance the 
effectiveness of warning mechanisms.

Based on empirical observations of maritime officers’ risk perception 
mechanisms, three fundamental principles have been synthesised for the 
development of the multi-source navigational risk fusion model. 

(1) The maximum navigational risk value is bounded at 1; when any 
individual risk type reaches this threshold, the fused navigational 

Fig. 9. Schematic diagram of static environmental risk normalisation.
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risk value automatically assumes this maximum value, prevent
ing further risk accumulation.

(2) For scenarios where individual risks remain below 1, the inte
grated navigational risk value must be: Less than 1; Greater than 
or equal to the maximum individual risk value associated with 
the ship and hazard source.

(3) The navigational risk value maintains a strict lower bound of 0.

The total static environmental risk for a specific ship is denoted as 
SRn. This ship possesses n distinct sources of static environmental risk. 
Each individual risk value is represented as sri (where i = 1, 2, …, n). 
These values are systematically arranged in ascending order. The 
computation of the ship’s total static environmental risk follows Eq. 
(25). 

SRn = 1 −
∏n

i=1
(1 − sri) (25) 

The total dynamic target risk for a specific ship is expressed as DRm. 
This ship encompasses m distinct sources of dynamic target risk. Each 
individual dynamic risk value is denoted as dri (where i = 1, 2, …, m). 
These values are systematically arranged in ascending order. The 
calculation of the ship’s total dynamic target risk is executed using Eq. 
(26). 

DRm = 1 −
∏m

i=1
(1 − dri) (26) 

Following the determination of static and dynamic risks, the 
comprehensive fusion value of multi-source navigational risk for the 
ship can be derived through Eq. (27). 

R =

{
1, if max(SRn,DRm) = 1

max(SRn,DRm) + (1 − max(SRn,DRm)) ∗ min(SRn,DRm), otherwise
(27) 

where R denotes the fusion value of the multi-source navigational risk 
for the ship, SRn stands for the total static environmental risk for the 
ship, and DRm is the total dynamic target risk for the ship.

4. Experimental analysis

4.1. Experimental dataset description

Ningbo-Zhoushan Port, handling over 3500 daily ship movements, 
maintains its position as the world’s busiest port by throughput. To 
address the heightened navigational risks in this high-density traffic 
area, the International Maritime Organization (IMO) has implemented 
comprehensive routing measures. The traffic management system 
comprises 18 TSSs, 8 precautionary zones, and a deep-water channel, as 
illustrated in Fig. 10(a). The study utilises AIS data from May 2019, 
comprising 17,487 ships with 12,132,476 trajectory points. The spatial 
distribution of maritime traffic is visualised through a density map in 
Fig. 10(b), whilst bathymetric data for non-navigable area identification 
is shown in Fig. 10(c).

To ensure the reliability and accuracy of our analyses, we imple
mented a rigorous data preprocessing protocol on the raw AIS data. This 
process included several key steps. First, we performed data cleaning by 
removing entries with speeds below 3 knots, which typically indicate 
non-navigational states such as mooring or construction, following 
established maritime practice and previous studies [43,55] .Our sensi
tivity analysis confirmed that varying this threshold between 2–4 knots 
did not significantly affect the main findings. This refinement focused 
our dataset on active navigation scenarios, enhancing analytical rele
vance. Next, we addressed gaps in static AIS data, such as missing ship 
dimensions and ship types, by cross-referencing established maritime 
databases. This static information supplementation ensured our dataset 
contained complete and accurate information critical for modelling 
navigational risks. We also excluded specific ship types, including tug
boats and supply ships, which often operate close to other ships and 
could introduce noise into our analysis. This exclusion improved the 
clarity of spatiotemporal relationships in the dataset. Finally, we ach
ieved temporal consistency across AIS timestamps by employing cubic 
spline interpolation, smoothing the trajectory data and filling temporal 
gaps for coherent ship movement analysis. These preprocessing steps 
resulted in a high-quality dataset that accurately reflects ship move
ments within the port area, thereby enhancing the reliability of subse
quent analyses and the effectiveness of the empirical ship domain 
models used to quantify navigation risks.

Fig. 10. Study area and related dataset.
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4.2. Modelling results of the spatiotemporal risk monitoring domain

The spatiotemporal risk monitoring domain model is constructed 
using AIS data, following the methodology outlined in Section 3.1. The 
data preprocessing involves sequential steps: error removal, static in
formation completion, exclusion of low-speed and engineering ships, 
and trajectory interpolation. Through iterating MMSI numbers and 
timestamps, the relative positions of ships and their closest points of 
encounter are computed, generating a heat map as shown in Fig. 11. The 
boundaries and forbidden areas of the ship risk monitoring domain are 
then derived from the heat map using the least squares method, as 
illustrated in Fig. 12.

In the Ningbo-Zhoushan Port waters, cargo ships predominate, 
whilst container ships and oil tankers are less prevalent. This distribu
tion is reflected in the heat map of ship relative positions, where bulk 
carrier density significantly exceeds that of container ships and oil 
tankers. The fitted risk monitoring model reveals distinct characteristics 
across ship types, with detailed parameters presented in Table 3.

Cargo ships exhibit the smallest scale among the three ship types. 
Container ships present a larger model scale, with a notably extended 
vertical axis compared to cargo ships, likely reflecting their higher 
operational speeds and consequent need for greater longitudinal safety 
distances. Oil tankers demonstrate the largest scale, particularly in the 
lateral dimension, primarily due to their larger block coefficient 
requiring increased lateral safety margins during navigation.

To derive the ship forbidden domain model, the CPA is computed 

from the relative positions of ships. Following similar patterns to the risk 
monitoring domain model, the forbidden domain exhibits varying scales 
across different ship types, with detailed parameters presented in 
Table 4. Cargo ships demonstrate the smallest scale, whilst container 
ships show larger dimensions, and oil tankers present the most extensive 
forbidden domain. Fig. 13 illustrates the combined effects of both risk 
monitoring and forbidden domain models for various ship types.

4.3. Dynamic target risk case

The validation of the dynamic target risk quantification method 
employs analysis of representative scenarios, including crossing en
counters, overtaking situations and multi-ship interactions. The assess
ment utilises real ship trajectories from typical encounter scenarios, 
incorporating key parameters: relative distance, relative speed, relative 
bearing, approach speed, DCPA and TCPA. Critical time points are 
examined to evaluate dynamic risk variations, particularly during 
collision avoidance manoeuvres and sudden risk transitions.

4.3.1. Dynamic target risk in ship encounter scenarios
The crossing encounter scenario involves two ships (Ship A and Ship 

B), with their detailed specifications presented in Table 5. According to 
COLREG rules, Ship A assumes the give-way responsibility whilst Ship B 
maintains its course as the stand-on ship. At 340 s into the encounter, 
Ship A executes a port turn manoeuvre, successfully passing astern of 
Ship B. The encounter trajectories and parameter variations are 

Fig. 11. Heatmap: relative position between ships & CPAs.
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Fig. 12. Spatiotemporal risk monitoring domain.

Table 3 
Parameter table of the risk monitoring domain model.

Ship type xc(L) yc(L) a(L) b(L)

Cargo ship − 0.03562 0.09361 0.61479 1.94903
Container ship 0.05043 − 0.03185 0.82526 4.04729
Oil tanker − 0.00411 0.10305 1.42387 4.20973

Table 4 
Parameter table of the forbidden domain model.

Ship type xc(L) yc(L) a(L) b(L)

Cargo ship − 0.00356 − 0.03561 0.44825 1.11928
Container ship 0.08574 0.06479 0.55730 1.66490
Oil tanker − 0.02014 − 0.08032 0.98560 2.67047
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illustrated in Figs. 14 and 15.
The dynamic target risk analysis reveals several critical moments 

during the encounter. At 340 s, Ship A’s risk value increased from 0 to 
0.0101, coinciding with its collision avoidance manoeuvre. The risk 
peaked at 0.79381 at 637 s, corresponding to the minimum relative 
distance of 225.54 m and maximum relative and closing speeds. A sig
nificant risk reduction occurred at 646 s, dropping from 0.79286 to 

0.50794, as the ships transitioned from approach to separation phase. 
The risk ultimately dissipated at 784 s, with the negative approaching 
speed indicating rapid separation between the ships. Fig. 16 illustrates 
the dynamic target risk variations throughout this crossing encounter.

An overtaking scenario involves two cargo ships (Ship C and Ship D), 
with their specifications detailed in Table 6. In accordance with the 
International Regulations for Preventing Collisions at Sea (COLREG) 
rules, Ship C assumes the give-way responsibility whilst Ship D main
tains course as the stand-on ship. At 683 s into the encounter, Ship C 
executes a port turn manoeuvre, successfully passing on Ship D’s port 
side. The encounter trajectories and parameter variations are illustrated 
in Fig. 17 and Fig. 18.

The overtaking scenario demonstrates distinct risk characteristics 
compared to crossing encounters, featuring prolonged close-proximity 
operations and gradual risk escalation prior to avoidance manoeuvres. 
The dynamic target risk value exhibited a steady increase from 0.3342 to 
0.4742 before 683 s when Ship C initiated its port turn and acceleration 
for overtaking. At 997 s, Ship C, positioned on the port side of Ship D, 
executed a starboard turn, elevating the risk value to 0.5411. The 
overtaking completion at 1054 s resulted in a risk reduction to 0.4807, 
with both ships achieving initial stability. Subsequently, Ship D’s speed 
increase diminished the relative distance, causing the risk value to peak 
at 0.6872 at 1448 s. Ship C’s subsequent starboard turn increased sep
aration, and at 1661 s, the negative closing speed confirmed mutual 
separation. The risk completely dissipated by 2395 s. Fig. 19 illustrates 
these dynamic target risk variations throughout the overtaking scenario.

4.3.2. Dynamic target risk in multi-ship encounter scenarios
A multi-ship encounter scenario involves three ships (Ships E, F, and 

G), with their detailed specifications presented in Table 7. The 
encounter comprises Ship E approaching from northwest to southeast, 
whilst Ships F and G proceed from east to west. At 300 s into the 
encounter, Ship E executes a port turn manoeuvre, enabling all three 
ships to maintain safe separation distances throughout the passage. The 
encounter trajectories and parameter variations are illustrated in 

Fig. 13. Spatiotemporal risk monitoring domain: risk monitoring domain & forbidden domain.

Table 5 
Ship information in crossing encounter scenarios.

Ship MMSI Type Length (m) Width (m)

A 412,436,260 Container ship 75.0 10.0
B 413,921,000 Cargo ship 162.0 26.0

Fig. 14. Diagram of crossing encounter scenarios.
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Figs. 20 and 21.
The multi-ship encounter analysis reveals distinct risk patterns be

tween Ship E and its interaction partners. The risk between Ships E and F 
initially exceeded 0.1 at 326 s, peaking at 0.5786 at 524 s. A significant 
risk reduction occurred at 556 s, dropping from 0.5474 to 0.2363, 
coinciding with the transition from positive to negative approach speed. 

This risk subsequently diminished below 0.1 by 623 s. The interaction 
between Ships E and G showed risk elevation beyond 0.1 at 426 s, 
reaching its maximum of 0.9500 at 702 s. A marked decrease from 
0.9471 to 0.4829 occurred at 710 s, corresponding to the shift in 
approach speed direction. The risk subsided below 0.1 by 830 s. The 
fusion risk analysis demonstrated earlier sensitivity, exceeding 0.1 at 
288 s. It exhibited two notable peaks: a secondary peak of 0.7050 at 555 
s, followed by an immediate reduction to 0.5056 as Ships E and F 
separated, and a primary peak of 0.9504 at 702 s. The fusion risk 
diminished below 0.1 at 830 s, marking the end of the critical interaction 
phase. Fig. 22 illustrates these dynamic risk variations throughout the 
multi-ship encounter.

4.4. Multi-source heterogeneous navigation risks case

The comprehensive assessment of navigational risk necessitates the 
integration of both static environmental and dynamic target risk com
ponents. Analysis of crossing encounters and multi-ship scenarios en
ables examination of ship-environment interactions and inter-ship 
influences, quantified through their respective risk values. The inte
gration of these components through a multi-source risk quantification 

Fig. 15. Parameter diagram of crossing encounter scenarios.

Fig. 16. Dynamic target risk of crossing encounter scenarios.

Table 6 
Ship information in overtaking encounter scenarios.

Ship MMSI Type Length (m) Width (m)

C 412,433,130 Cargo ship 98.0 16.0
D 413,439,510 Cargo ship 60.0 14.0

Fig. 17. Diagram of overtaking encounter scenarios.
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formula yields a total risk value, providing an accurate representation of 
overall navigational risk evolution. Having previously examined dy
namic target risks in crossing and multi-ship encounters, subsequent 
analysis focuses on static environmental risk variations and their inte
gration into total risk assessment.

4.4.1. Ship crossing encounter scenarios
The static environmental risk for Ship A manifests primarily across 

three temporal phases: initial navigation (0–87 s), channel entry 
(600–758 s), and pre-channel exit (1167–1363 s). During initial navi
gation, the risk value initiates at 0.3737 and diminishes rapidly, 
reflecting proximity hazards to an island and potential deviation into 
non-navigable areas. The risk subsides as Ship A progresses southeast
ward, increasing distance from the island.

The channel entry phase at 600 s marks peak static environmental 
risk, attributed to the ship’s proximity to channel boundaries. This risk 
metric indicates potential channel deviation probability rather than 
definitive accident occurrence. The risk subsequently decreases as the 
ship establishes greater separation from channel boundaries. The pre- 
channel exit phase, commencing at 1167 s, exhibits renewed risk 
elevation due to proximity to channel margins.

The total risk assessment in crossing encounters amalgamates static 
environmental and dynamic target risks, with significant multi-source 
risk integration occurring between 340–784 s. The total risk profile 
predominantly mirrors static environmental risk patterns, with notable 
elevation at 340 s due to increasing dynamic target risk during the 
crossing encounter. A marked risk spike occurs at 600 s, driven by 
heightened static environmental risk, followed by a rapid decline as both 
risk components diminish. Fig. 23 illustrates these multi-source navi
gational risk variations throughout the crossing encounter.

4.4.2. Multi-ship encounter scenarios
Ship E’s static environmental risk manifests across three distinct 

phases: initial navigation (0–67 s), channel entry (616–709 s), and 
channel exit (1160–1204 s). The initial phase commences with a risk 
value of 0.3869, diminishing rapidly thereafter. This elevated initial risk 
stems from proximity to an island, presenting potential drift hazards into 
non-navigable areas. The risk subsides as Ship E progresses southeast
ward, establishing greater separation from the island.

The channel entry phase at 616 s exhibits peak static environmental 
risk due to proximity to channel boundaries. Risk levels subsequently 

Fig. 18. Parameter diagram of overtaking encounter scenarios.

Fig. 19. Dynamic target risk of overtaking encounter scenarios.

Table 7 
Ship information in multi-ship encounter scenarios.

Ship MMSI Type Length (m) Width (m)

E 416,077,000 Container 148.2 21.7
F 412,362,540 Cargo ship 72.0 12.0
G 413,275,680 Oil tanker 183.0 32.2
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decrease as the ship establishes greater separation from these bound
aries. The channel exit phase, beginning at 1160 s, demonstrates 
renewed risk elevation due to reduced channel boundary margins.

The total risk assessment in the multi-ship encounter scenario in
tegrates static environmental and dynamic target risks, with significant 
integration occurring between 288–830 s. The risk profile exhibits three 
distinct peaks. The first peak (0.7050) at 555 s, coinciding with the 
maximum Ship E-F dynamic target risk. The second peak (0.9955) at 
627 s, reflecting the concurrent high static environmental risk and Ship 
E-G dynamic target risk. The third peak (0.9520) at 698 s, driven by peak 
Ship E-G dynamic target risk despite minimal static environmental risk. 
The risk profile initiates rapid elevation at 288 s due to concurrent risk 
acceleration between Ships E-F and E-G, subsequently declining 
following the final peak. Fig. 24 illustrates these multi-source naviga
tional risk variations throughout the encounter.

5. Discussion and implications

5.1. discussion of the proposed framework

This study presents a quantitative fusion evaluation framework for 
assessing multi-source and heterogeneous navigation risks during ship 
voyages. The framework comprises four key components: 

(1) Modelling spatio-temporal risk monitoring domains 
A model integrating risk monitoring and forbidden areas for 

ships was developed through AIS data mining. This data-driven 
approach mitigates subjective biases, offering a clearer depic
tion of spatio-temporal ship distributions. Our model defines a 
more precise forbidden area, derived from the distribution of CPA 
data, thereby identifying critical areas for various dynamic and 

Fig. 20. Diagram of multi-ship encounter scenarios.

Fig. 21. Parameter diagram of multi-ship encounter scenarios.
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static obstacles. Unlike previous works, which relied on direct 
contact to determine risk, our forbidden area quantifies the 
threshold for potential accidents, significantly enhancing risk 
monitoring accuracy.

(2) Designing risk assessment functions 
Heterogeneous navigation risks were categorised into dynamic 

target risks and static environmental risks, with asymmetric 
Gaussian-based assessment functions developed for each cate
gory. Risk levels are highest near the ship’s centre and diminish 
with distance, modulated by four adaptive radius parameters that 
reflect ship size. This variation captures the differing sensitivities 
of ship officers to risks originating from various directions. 
Notably, the proposed model assigns a lower decay rate to dy
namic target risks compared to static risks, effectively reflecting 
the heightened sensitivity to moving threats.

(3) Quantifying navigation risks 
The proposed approach incorporates adaptive risk quantifica

tion methods tailored to different hazards. By assessing the 
overlap of spatio-temporal risk monitoring domains, dynamic 
target risks are characterised more effectively than through 
traditional methods, which often oversimplify interactions by 
considering ships and obstacles solely as point masses. Addi
tionally, static environmental risks are assessed by examining 
their overlap with non-navigable areas. This method acknowl
edges the impact of ship size on risk levels and incorporates 
spatio-temporal dynamics, addressing limitations in prior studies.

(4) Fusing multi-source heterogeneous risks 
The risk fusion model integrates diverse risk types—static 

environmental risks and dynamic target risks—while accounting 
for multiple sources in multi-ship scenarios. The model operates 
under three principles: 1) the maximum navigation risk is capped 
at 1, preventing cumulative risk values from exceeding this 
threshold; 2) the comprehensive risk value remains below 1 when 
no individual risk reaches this maximum; and 3) risk values are 
constrained to non-negative values. Distinct fusion functions for 
static and dynamic risks were developed, utilising a multiplica
tive equation to prevent inflated risk values. Additionally, a 
comprehensive fusion equation was designed to adapt to varying 
risk magnitudes. This multi-tiered approach ensures precise 
overall risk assessments while responding effectively to diverse 
navigation risks, thereby enhancing maritime safety evaluations.

This study exhibits certain limitations in the modelling of environ
mental and human factors. On one hand, the modelling of environ
mental factors primarily focuses on local features, such as waterway 
width and obstacle distribution, while the dynamic risks under complex 
environmental conditions (e.g., extreme weather and tidal variations) 
lack systematic analysis, potentially affecting the model’s applicability 
and accuracy. On the other hand, the impact of human factors has not 

Fig. 22. Dynamic target risk of multi-ship encounter scenarios.

Fig. 23. Multi-source heterogeneous navigation risks of crossing 
encounter scenarios.

Fig. 24. Multi-source heterogeneous navigation risks of multi-ship 
encounter scenarios.
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been fully quantified, particularly the complexity of interactions be
tween human operational behaviour and environmental conditions in 
emergency scenarios, which has not been effectively incorporated into 
the model. These limitations may constrain the comprehensiveness and 
practicality of the model in real-world maritime risk assessment.

5.2. Theoretical and practical of implications

Based on the discussion above, the implications of each point are as 
follows: 

(1) Advancements in spatio-temporal risk monitoring. 
This study presents a novel spatio-temporal risk monitoring 

model based on AIS data mining, offering improved maritime risk 
prediction. By employing a precise forbidden domain to define 
critical proximity thresholds, it surpasses traditional contact- 
based methods. This advancement enables more accurate risk 
assessment and timely decision-making, marking progress in 
data-driven maritime safety.

(2) Innovative risk evaluation functions. 
The study introduces asymmetrical Gaussian-based risk func

tions to distinguish between dynamic and static risks, reflecting 
ship officers’ directionally varying sensitivities. By prioritising 
dynamic obstacles, the tailored evaluation functions capture the 
heightened awareness needed for moving threats. This approach 
enhances traditional models with adaptive risk assessments 
closely aligned to real-world maritime operations.

(3) Refined navigation risk quantification. 
The proposed risk quantification method goes beyond simple 

spatial measures by including both spatial and temporal di
mensions. By evaluating the degree of overlap between ships’ 
spatio-temporal monitoring fields, the model considers ship size 
and movement evolution, offering a dynamic risk measure that 
adapts to different ship encounter scenarios. This methodology 
addresses the limitations of previous studies, providing early 
warnings by evaluating the threat posed when obstacles enter the 
forbidden domain. It enhances early risk detection, providing 
actionable insights for proactive navigation risk management.

(4) Comprehensive multi-source risk fusion. 
The study’s multi-source risk fusion model effectively in

tegrates various types of navigation risks, from static environ
mental risks to dynamic collision risks. By setting a cap on the 
maximum risk level and dynamically adjusting fusion co
efficients, the model prevents risk overaccumulation while 
maintaining sensitivity to individual risk sources. This layered 
fusion approach enables an accurate, balanced risk assessment 
that can support safer maritime navigation, offering a reliable 
framework for managing diverse and complex risk scenarios. This 
methodology not only improves overall maritime safety but also 
sets a new standard for risk sensitivity in multi-source maritime 
risk assessments.

The implications for various stakeholders are summarised as follows:
The study’s advancements in spatio-temporal risk monitoring and 

navigation risk quantification provide port authorities with improved 
tools for managing ship traffic, reducing collision risks, and optimising 
traffic flow. These frameworks enable proactive hazard mitigation, safer 
navigation, and more efficient resource allocation.

Regulators benefit from enhanced risk evaluation functions and 
multi-source risk fusion models, which offer a dynamic framework for 
setting safety standards and assessing compliance. This approach aligns 
with real-world conditions, enabling more precise guidelines for 
acceptable risk levels and supporting the development of modern reg
ulatory frameworks.

For ship operators and crews, the study introduces adaptive risk 
functions that account for dynamic and static risks, offering real-time 

monitoring and early warnings. These features support safer naviga
tion by improving awareness of immediate threats and enabling 
informed decision-making to reduce accidents.

The study also assists insurers by refining risk assessment processes 
through more comprehensive factors, including ship routes, port activ
ities, and traffic density. This enables data-driven premium evaluations, 
improving risk management and incentivising safer operations across 
the industry.

Developers of maritime navigation technologies can leverage the 
study’s models to create advanced tools integrating spatio-temporal risk 
monitoring and multi-source risk fusion. Such innovations are particu
larly valuable for autonomous ships, which rely on precise real-time 
data for safe navigation.

Lastly, accurate risk monitoring benefits environmental stakeholders 
by reducing the likelihood of collisions and groundings that could harm 
marine ecosystems. These insights support mitigation planning and 
promote the protection of sensitive environments in high-risk areas.

By addressing these diverse needs, the study fosters a cohesive 
maritime safety ecosystem, enhancing operational efficiency, naviga
tional safety, and environmental protection across the sector.

6. Conclusions

This paper presents a novel framework for the quantification and 
integration of multi-source heterogeneous navigation risks in maritime 
environments. The framework addresses the challenges associated with 
fusing and quantifying the diverse risks encountered by ships during 
navigation. Real ship trajectory data from typical scenarios, including 
crossing encounters, overtaking, and multi-ship meetings, were utilised 
to analyse navigation risks.

This paper distinguishes itself from previous research in several key 
aspects. First, a spatiotemporal risk monitoring domain model was 
developed by mining historical AIS data. Through analysis of the relative 
positional distribution of ships and patterns of CPAs, risk monitoring 
and forbidden domains were extracted, enabling the quantification of 
risk monitoring timings. Second, heterogeneous navigation risk evalu
ation functions were designed using asymmetric Gaussian functions to 
capture ships’ sensitivity to different types and directions of risks. 
Finally, an adaptive-weighted risk fusion method, grounded in mariner 
risk perception, was proposed to enable the integrated representation of 
multi-source heterogeneous navigation risks.

Future work will prioritise improving the model’s accuracy by 
integrating dynamic environmental factors, including wind, waves, 
currents, and tides, to better capture environmental variability. 
Furthermore, incorporating human factors into risk quantification, such 
as leveraging maritime accident data to assess the influence of human 
errors on evaluation outcomes, will enhance the model’s comprehen
siveness and reliability.
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