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ABSTRACT

Photon Counting Computed Tomography (CT) Imaging often requires high X-ray exposure due to low photon counts
per channel, leading to prolonged scanning times, which may not be practical. Here, we explored a trade-off between the
number of projections and exposure time per projection to optimize scanning efficiency and image quality. By increasing
projections and reducing exposure, we initially generated noisier datasets, which we denoised using unsupervised, data-
driven techniques. Extending our previous research, we applied unsupervised denoising to synthetic spectral CT datasets
with a distinct K-edge in the X-ray absorption spectrum. We compared our results with an iterative reconstruction
algorithm that uses a total variation constraint in the spatial and a total generalised variation constraint in the spectral
dimension, which uses fewer projections and higher doses for each projection. Although this algorithm employs fewer
projections and higher doses, it matches our method in scanning time, allowing a direct comparison to our methods. Our
approach significantly reduced scanning time by 36-fold compared to traditional full-dose methods, without compromising
image quality. It also eliminates the need for meticulous parameter tuning, simplifying the operational process and
enhancing usability.
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1. INTRODUCTION

Technological advances in Photon Counting Detectors (PCD) have significantly facilitated energy-sensitive imaging appli-
cations by counting individual X-ray photons and resolving their energies.1 This innovation has expanded the boundaries
of imaging technology, making it possible for higher spatial resolution,1–3 accurate material characterization,4 radiation
dose reduction,1,4 reduced beam hardening5 and contrast agent enhancement.1 As a natural extension of these develop-
ments, PCD-Computed Tomography (CT) is expected to go beyond current Dual-Energy CT as the next generation of
X-ray imaging.2

The trade-off between resolution, noise, and the number of projections is a key consideration in tomographic imaging.
Increasing the number of projections with shorter exposure times can enhance spatial resolution and detail, albeit may
increase the noise in each projection.6 Conversely, fewer projections with longer exposure times could offer lower noise for
projections but may compromise spatial resolution and detail, and make the process more time-consuming.7,8 However,
modelling the noise and reducing scanning time in the first scenario is found to be more efficient and cost-effective than
in the second scenario. In this paper, we seek the optimization of this balance in PCD-CT with data-driven and iterative
methods.

We introduce a self-supervised deep learning method Noise2Inverse9 approach with block-based training10–12 for
PCD-CT Imaging, which can be trained on noisy data alone. This paper examines the denoising capability of data-
driven methods to produce high-resolution images from 4D noisy spectral tomography datasets, particularly focusing on
materials that are highly attenuated and have unique K-edge discontinuities in the energy spectrum (as accurate detection
of K-edges is critical for material decomposition). Findings on numerical datasets demonstrate that our approach may
effectively reduce measurement noise and save a significant amount of acquisition time without compromising image
quality.

2. METHODOLOGY

2.1 Photon Noise

The fundamental uncertainty in the measurement of light is described by photon noise, also called Poisson noise-quantum
noise. It is caused by the quantized nature of light and independent photon detection’s.13 In short, photon counting
follows a Poisson process, with independent photon detection described by the probability distribution:



P (N = k) =
e−λt(λt)k

k!
, (1)

where N denotes the number of photons measured by the detector and λ represents the expected photons per pixel
in the detector over the time interval t. As the value of N increases, σ increases by the root square of the signal, so the
signal-to-noise ratio increases in proportion to the N factor.7,8,13 Increasing the X-ray flux or extending the exposure
time (and dose) is one of the methods used to enhance image quality.7,8

2.2 Measurement Model in PCD-CT

The Beer-Lambert law describes X-ray interaction with materials, which depends on the energy of the X-ray beam and the
attenuation coefficient of the material in the scanned object. The general form of Beer-Lambert law for a poly-chromatic
X-ray beam is given by:

Ii(N ) =

∫
N
I0(E)e

−
∫
L µ(E,r)dr

dE (2)

where Ii(E) is measured X-ray intensity (number of photons through the object) recorded by a photon counting
detector in the ith energy bin and I0(E) denotes the incident photon fluence from the X-ray source, at energy level E.
Term µ (E, r) is the linear attenuation coefficient of the materials at energy E and

∫
L
µ (E, r) dr represents the line integral

of attenuation along one ray path from the source to one detector element at one rotation angle and N is the energy range.
Converting the Beer-Lambert law from intensity to absorption and discretizing the integral, we have a linear system as
below:

ỹi = Axi + ϵi, (3)

where A denotes the projection matrix. Term ϵi is the noise and ỹi is the noisy measurement in the ith bin. The
noise level is related to the square root of the total number of detected photons as discussed above. Specifically, PCD-CT
suffers from stronger Poisson noise for narrow bins, as the number of detected photons is less than the total number of
photons.1,2,13

2.3 Self-Supervised Denoising Method

Since PCD-CT suffers from strong noise, self-supervised methods that do not require prior knowledge of the signal and
noise become particularly attractive. These methods first train a model using the noisy images, and subsequently, this
trained model is used to predict clean images from the noisy ones. Most importantly, the main difference between these
models is based on the image sets in the training phase. For example, methods like Noise2Noise14 leverage multiple images
of the same target when clean pairs are unavailable, although this is not applicable in PCD-CT. For a single noisy image
with pixel-wise-independent noise, Noise2Self15 is a viable option. More recently, Noise2Inverse9 (a version of Noise2Noise
and Noise2Self) has been proposed for tomographic imaging. In this approach, noise is independent and zero-mean in the
measurement domain, and by using reconstructions from independent subsets, noise becomes independent in the image
domain.

2.4 Regularized Image Reconstruction

A traditional alternative approach is to use regularised iterative algorithms such as:

argmin
x

{
1

2
∥Ax− ỹ∥22 + αTV(x) + β1,2TGV(x)

}
(4)

where f(x) = 1
2
∥Ax − ỹ∥22 is a data fidelity term that measures the distance between the acquired data and the

forward-projected reconstructed image, and g(x) = αTV(x) + β1,2TGV(x) represent the regularization terms that en-
code smoothness properties for x. Iterative algorithms can solve problem f(x), and the Core Imaging Library (CIL)16

provides the primal-dual hybrid gradient for this purpose. Here we use the total variation (TV) and total generalised
variation (TGV) regularization for g(x), with TV employed for spatial regularization with parameter α, and TGV used
for energy regularization with parameters β1,2.

16 Iterative methods reduce noise and improve image quality, but they are
computationally expensive and require dataset-specific parameter tuning.
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Figure 1: Data-driven approach: The spectral sinogram is obtained over 360 degrees (with 2◦ and 12◦) and
split into 2 mutually exclusive sets, which are reconstructed independently for each energy channel using FDK.
During training, the subsets alternated as input and target to increase training data diversity. The final denoised
images were generated by averaging the inputs used during training and applying the trained network.

2.5 Our approach

The Noise2Inverse requires us to generate input and target images with independent noise. To achieve these requirements,
we followed the approach illustrated in Fig1. First, we acquired sets of projections over an angular range of 360◦ with 2◦ and
12◦ increments, which were then corrupted with Poisson noise using the relevant source spectrum. After adding the noise,
these noisy projections were divided into two subsets, ỹE1,1 and ỹEN ,2, each containing mutually exclusive projections at
equally spaced angles for the same energy channels. After splitting these noisy sinograms, each subset was reconstructed
using energy channel-wise FDK,17 x̃E1,1, . . . , x̃EN ,1 and x̃E1,2, . . . , x̃EN ,2. In the training stage, reconstructions of the first
subset served as the input, and the corresponding target was the image from the second subset. Then, we switched roles:
reconstructions of the second subset became the input, and the target was the image from the first subset. This strategy
allows robust training by increasing the training data for the model. To generate the final denoised images x∗

E1
, . . . , x∗

EN
,

all inputs used in training are averaged and used as input for the trained network.

3. EXPERIMENTS

3.1 Spectral Data Preparation, Acquisition and Reconstruction

A synthetic phantom (Fig.2) was prepared to mimic properties of the real-world datasets,18,19 closely replicating the
physical phantom. The preparation process is detailed in,10,11 initially involved 2D Spatial and 1D Energy dimensions,
but here it was modified to 4D (3D Spatial + 1D Energy) with materials (Fe, Al, ZnO, CeO2). The left image in Fig.2
illustrates the 3D spatial structure while the right one shows a 2D slice of this 3D structure (in x, y coordinates), enriched
by adding the energy (z) dimension as the 3rd. The impact of the K-edge (as a unique marker for material identification)
in the energy spectrum is clearly shown.

The synthetic data used in the experiments were acquired with exposure times of 30 and 5 seconds per projection.
The process of generating a poly-chromatic X-ray source is detailed in,10,11 with the main difference being changes in
tube voltage and energy bins. To closely mimic real experimental conditions,18,19 the generated X-ray source spectrum
(using SpekPy20), produced with a tube voltage of 60 kVp, was interpolated into 200 energy bins. A Tungsten target
at a 12◦ angle was employed, and the X-ray beam was filtered through 0.4 mm Aluminum, 1.5 mm Beryllium, and 1000
mm Air. These parameters were chosen empirically based on visual comparisons with real X-ray source Spectrum.19 The
second column in Fig.3 shows the number of photons detected in a random pixel location over all the energy channels,
giving an idea of the source spectrum used.



Figure 2: Spatial (left) and Spectral (right) visualization. 3D spatial structure of the simulated phantom shows
4 materials which are CeO2 (cerium oxide), ZnO (zinc oxide), Fe (iron) and Al (aluminium). K-edge is shown
in the red arrow in the energy profile over the z-axis.
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Figure 3: Comparison of exposure time and projection numbers. First column: projections (30–projections
and 180–projections). Second column: photons detected in a random pixel (30–second exposure and 5–second
exposure per projection. Scanning time is equal in rows.

To acquire the datasets, we created 4D sinograms (yE1 , yE2 , ..., yEN ) using 4D spectral phantoms and the source
spectrum we generated, employing the same acquisition geometry as in the real data.18 The full angular range of 360◦

was covered with both 2◦ and 12◦ increments (the first column in Fig.3), and the sinograms were then corrupted with
Poisson noise using the relevant X-ray source spectrum I0(E) discussed above. If yp(E) is the simulated clean X-ray
attenuation value for one pixel, then the noisy pixel ỹp(E) for that energy is distributed as:

I0(E)e−ỹp(E) ∼ Poisson
(
I0(E)e−yp(E)

)
, (5)

All noisy projections were split into 2 sets and each of them was reconstructed with the FDK for our training
strategy.17 For comparison of our method, we also employed a traditional iterative reconstruction method that imposes a



TV constraint in the spatial and TGV constraint in the spectral dimension and used all projections for both acquisition
scenarios. Regularization parameters α, and β1,2 were set to 0.002, 0.18 and 0.25, respectively, based on previous studies
that identified these values as yielding the best reconstruction performance in real experimental data.19 We run the
method for 500 iterations per acquisition.

3.2 Network Implementation and Quality Assessment

We utilized the 3D U-Net architecture from,21 implemented using PyTorch, which remains state of the art in many
biomedical image-denoising applications. This multi-channel input layer is tailored for the specific requirements of spectral
image denoising. The network consists of 5 layers and takes 4x16x16x16, where 4 is the energy dimension, as input and
target. Overlap between blocks is 50% in spatial dimension and 75% in spectral dimension. Adam22 optimizer with a
learning rate of 10−4 was used to update the network weights. The mini-batch size was 64 and the employed loss function
is the mean squared error.

The quality of the denoised images was assessed against the ground truth using the structural similarity index measure
(SSIM)23 and peak signal-to-noise ratio (PSNR)24 metrics applied channel-wise to the entire image. We further analyzed
the overall image quality by computing the mean and standard deviation of SSIM and PSNR metrics in the energy
direction (see Table 1). This will help quantify the impact of our experiments across energy channels.
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Figure 4: Comparison of methods at 28 keV for different acquisition strategies.

4. RESULTS AND DISCUSSION

Figures 4-5 show axial and sagittal slices of the images for different methods and different acquisition protocols at 28
keV and 42 keV. Each column in the figures represents a different method, including Ground-Truth in the first column,
FDK in the second column, TV-TGV in the third column, and Ours in the fourth column. The colour bar on the right
indicates the intensity values. Our method had a better performance, especially for high noise (i.e. low photon count)
energy channels (the low and high energy channels, where the source spectrum has limited flux), though the average
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Figure 5: Comparison of methods at 42 keV for different acquisition strategies.

PSNR performance was found to be still better for the TV-TGV for both acquisition setup. Moreover, even though we
employed the same regularization parameters, they did not perform consistently for both acquisitions. This inconsistency
highlights a well-known drawback of iterative methods: the time-consuming process of selecting optimal regularization
parameters for each specific dataset.

Crucially, when the number of projections is decreased and the exposure time is increased, our method struggles to
effectively remove the artefacts resulting from under-sampling (the last two rows in Figs.4-5). While our approach is
efficient the dealing with measurement noise, it is less effective against under-sampling artefacts. Therefore, it is well
suited to optimize the trade-off between noise and artefacts by increasing the number of projections and reducing the
exposure time, which is possible in tomographic imaging.6

Table 1: PSNR and SSIM results (Mean ± SD).

Method PSNR (dB) SSIM

Acquisition: 180pr - 5s

FDK 23.32 ± 3.98 0.37 ± 0.15

TV-TGV 33.01 ± 11.75 0.78 ± 0.27

Ours 30.37 ± 3.67 0.88 ± 0.07

Acquisition: 30pr - 30s

FDK 19.85 ± 3.04 0.22 ± 0.08

TV-TGV 31.65 ± 8.72 0.84 ± 0.24

Ours 26.98 ± 1.61 0.46 ± 0.04



To evaluate the denoising performance across the energy channels, the regions of interest (ROIs) were selected within
the objects of interest and analysis was performed on two ROIs, one of them containing K-edge for each acquisition setup.
The attenuation profiles of two different materials were evaluated as illustrated in Fig6. The attenuation profile was better
preserved over the energy channels with our approach compared to the TV-TGV method in terms of noise. Interestingly,
our approach yielded superior performance in terms of average SSIM for the first acquisition scenario but the average
PSNR of our method was inferior to that achieved by the TV-TGV. However, the high standard deviation of 11.75 in the
PSNR values for the TV-TGV method indicates significant variability across the energy axis, which may contribute to
the less consistent performance compared to our approach (as seen in Tab.1).
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Figure 6: Attenuation profiles of the selected ROIs for both acquisition strategies. The upper line represents
K-edge materials, while the bottom line corresponds to non-K-edge materials.

5. CONCLUSION

In this study, we have demonstrated the application of Noise2Inverse9 to spectral imaging using a block-based training
approach10–12 with a 3D U-Net,21 showing that our approach in spectral imaging does offer a significant improvement in
image quality. This was achieved without needing to fine-tune regularisation parameters which is a drawback of traditional
iterative approaches. A 36–fold reduction in the scanning procedure compared to full-dose methods has been demonstrated
for the synthetic phantom. However, this reduction introduces challenges, as faster scanning increases Poisson noise or
streak artefacts depending on the acquisition strategy. Future work will focus on validating the learned spectral denoising
techniques on real-world experimental data and assessing their performance in faster acquisition strategies by comparing
them with other advanced denoising methods.

6. ACKNOWLEDGEMENTS

This research was funded by the Republic of Turkiye Ministry of National Education.

REFERENCES

[1] Hsieh, S. S., Leng, S., Rajendran, K., Tao, S., and McCollough, C. H., “Photon counting ct: clinical applications
and future developments,” IEEE Transactions on Radiation and Plasma Medical Sciences 5(4), 441–452 (2020).



[2] Taguchi, K., Blevis, I., and Iniewski, K., [Spectral, Photon Counting Computed Tomography: Technology and Appli-
cations ], CRC Press, London, UK (2022).

[3] van der Bie, J., van Straten, M., Booij, R., Bos, D., Dijkshoorn, M. L., Hirsch, A., Sharma, S. P., Oei, E. H., and
Budde, R. P., “Photon-counting ct: review of initial clinical results,” European Journal of Radiology , 110829 (2023).

[4] Long, Y. and Fessler, J. A., “Multi-material decomposition using statistical image reconstruction for spectral ct,”
IEEE Transactions on medical imaging 33(8), 1614–1626 (2014).

[5] Wang, A. S. and Pelc, N. J., “Spectral photon counting ct: Imaging algorithms and performance assessment,” IEEE
transactions on radiation and plasma medical sciences 5(4), 453–464 (2020).

[6] McCollough, C. H., Bartley, A. C., Carter, R. E., Chen, B., Drees, T. A., Edwards, P., Holmes III, D. R., Huang,
A. E., Khan, F., Leng, S., et al., “Low-dose ct for the detection and classification of metastatic liver lesions: results
of the 2016 low dose ct grand challenge,” Medical physics 44(10), e339–e352 (2017).

[7] Hendee, W. R. and Ritenour, E. R., [Medical Imaging Physics ], John Wiley & Sons, New York, NY, USA (2003).
[8] Smith, N. B. and Webb, A., [Introduction to medical imaging: physics, engineering and clinical applications ], Cam-

bridge university press (2010).
[9] Hendriksen, A. A., Pelt, D. M., and Batenburg, K. J., “Noise2inverse: Self-supervised deep convolutional denoising

for tomography,” IEEE Transactions on Computational Imaging 6, 1320–1335 (2020).
[10] Kumrular, R. K. and Blumensath, T., “Unsupervised denoising for spectral ct images using a u-net with block-based

training,” in [Anomaly Detection and Imaging with X-Rays (ADIX) IX ], 13043, 23–32, SPIE (2024).
[11] Kumrular, R. K. and Blumensath, T., “Unsupervised denoising in spectral ct: Multi-dimensional u-net for energy

channel regularisation,” Sensors 24(20), 6654 (2024).
[12] Blumensath, T. and Harrane, I., “Machine learning based 3d xct image enhancement for the inspection of am metal

components using limited x-ray measurements,” Additive Manufacturing (2023).
[13] Hasinoff, S. W., “Photon, poisson noise,” in [Computer vision: a reference guide ], 980–982, Springer (2021).
[14] Lehtinen, J., Munkberg, J., Hasselgren, J., Laine, S., Karras, T., Aittala, M., and Aila, T., “Noise2noise: Learning

image restoration without clean data,” arXiv preprint arXiv:1803.04189 (2018).
[15] Batson, J. and Royer, L., “Noise2self: Blind denoising by self-supervision,” in [International Conference on Machine

Learning ], 524–533, PMLR (2019).
[16] Papoutsellis, E., Ametova, E., Delplancke, C., Fardell, G., Jørgensen, J., Pasca, E., Turner, M., Warr, R., Lion-

heart, W., and Withers, P., “Core imaging library-part ii: multichannel reconstruction for dynamic and spectral
tomography,” Philosophical Transactions of the Royal Society A 379(2204), 20200193 (2021).

[17] Jørgensen, J. S., Ametova, E., Burca, G., Fardell, G., Papoutsellis, E., Pasca, E., Thielemans, K., Turner, M., Warr,
R., Lionheart, W. R., et al., “Core imaging library-part i: a versatile python framework for tomographic imaging,”
Philosophical Transactions of the Royal Society A 379(2204), 20200192 (2021).

[18] Warr, R., Jørgensen, J., Papoutsellis, E., Ametova, E., Cernik, R., and Withers, P., “Hyperspectral x-ray ct datasets
of an aluminium phantom containing three metal-based powders.” https://doi.org/10.5281/zenodo.5825464

(2022). Version 3.
[19] Warr, R., Ametova, E., Cernik, R. J., Fardell, G., Handschuh, S., Jørgensen, J. S., Papoutsellis, E., Pasca, E., and

Withers, P. J., “Enhanced hyperspectral tomography for bioimaging by spatiospectral reconstruction,” Scientific
Reports 11(1), 20818 (2021).

[20] Bujila, R., Omar, A., and Poludniowski, G., “A validation of spekpy: A software toolkit for modelling x-ray tube
spectra,” Physica Medica 75, 44–54 (2020).

[21] Ronneberger, O., Fischer, P., and Brox, T., “U-net: Convolutional networks for biomedical image segmentation,”
in [Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference,
Munich, Germany, October 5-9, 2015, Proceedings, Part III 18 ], 234–241, Springer (2015).

[22] Kingma, D. and Ba, J., “Adam: A method for stochastic optimization,” in [Proceedings of the 3rd International
Conference on Learning Representations (ICLR) ],

[23] Wang, Z., Bovik, A., Sheikh, H., and Simoncelli, E., “Image quality assessment: From error visibility to structural
similarity,” IEEE Trans. Image Process. 13, 600–612 (2004).

[24] Hore, A. and Ziou, D., “Image quality metrics: Psnr vs. ssim,” in [Proceedings of International Conference on Pattern
Recognition ], 2366–2369.

https://doi.org/10.5281/zenodo.5825464

	INTRODUCTION
	Methodology
	Photon Noise
	Measurement Model in PCD-CT 
	Self-Supervised Denoising Method
	Regularized Image Reconstruction
	Our approach

	Experiments
	Spectral Data Preparation, Acquisition and Reconstruction
	Network Implementation and Quality Assessment

	Results and Discussion
	Conclusion
	Acknowledgements 

