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Abstract. We present a novel approach for studying the global dynamics of a vibro-impact pair, that is, a ball moving4
in a harmonically forced capsule. Motivated by a specific context of vibro-impact energy harvesting, we develop the method5
with broader non-smooth systems in mind. The traditional maps between impacts of the ball with the capsule are implicit6
and transcendental and, therefore, not amenable to global analysis. Nevertheless, we exploit the impacts as useful non-smooth7
features to select appropriate return maps that provide a path for studying global behavior. This choice yields a computationally8
efficient framework for constructing return maps on short-time realizations from the state space of possible initial conditions9
rather than via long-time simulations often used to generate more traditional maps. The different dynamics in sub-regions10
in the state space yield a small collection of reduced polynomial approximations. Combined into a piecewise composite map,11
these capture transient and attracting behaviors and reproduce bifurcation sequences of the full system. Further “separable”12
reductions of the composite map provide insight into both transient and global dynamics. This composite map is valuable13
for cobweb analysis, which opens the door to computer-assisted global analysis and is realized via conservative auxiliary maps14
based on the extreme bounds of the maps in each subregion. We study the global dynamics of energetically favorable states15
and illustrate the potential of this approach in broader classes of dynamics.16
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1. Introduction. The prevalence of non-smooth dynamics, characterized by switches, impacts, sliding,19

and other abrupt alterations in behavior, permeates various fields, including physics, biology, and engineer-20

ing [3, 26, 19]. Non-smooth dynamical models are essential for understanding phenomena such as body21

component interactions with non-smooth contacts, impacts, friction, and switching in mechanical systems22

[21, 63, 43, 5], and relay systems, switched power converters, and packet-switched networks in electrical23

and control engineering [21, 22, 9, 33]. In the life sciences, non-smooth dynamics are evident in diverse24

systems such as gene regulatory networks [55, 1] and pulse-coupled neurons [25]. While piecewise smooth,25

non-smooth, and vibro-impact dynamical systems represent vast research fields in nonlinear science, they26

have historically received far less attention than their smooth counterparts. In recent decades, increased27

efforts have pursued a comprehensive understanding of non-smooth bifurcations and related nonlinearities28

(see extensive reviews [19, 35, 36, 6] and references therein). Non-smooth systems and the vibro-impact29

systems we study here fall into the larger class of hybrid systems, whose breadth is reflected in combinations30

of discrete and continuous components with complementary features [14], dynamics obtained from combined31

models and measured or experimental data [65], embedded control systems [10], and perhaps even by the32

Wikipedia description of systems that “can both flow and jump” [73].33

Vibro-impact (VI) systems constitute a distinct class of dynamical systems where impacts substantially34

influence the nonlinear behavior. Typical classes of VI systems include a forced mass and one or more35

stationary rigid barriers or, alternatively, a pair of moving impacting masses, each of which may be subject36

to external forcing. Classic examples include balls bouncing on moving surfaces [48, 43, 42], pendulums37

impacting barriers [64, 20, 69], and VI pairs composed of two oscillating masses that impact each other [49].38

Generally, both masses in the VI pair may undergo forcing, complemented by elastic or inelastic impacts. A39

canonical VI pair, considered in this paper, consists of a forced capsule, with an inner mass moving freely40

within a cavity of a given length and impacting the ends of the capsule. This concept has been explored as41

an effective vibration mitigation alternative to linear tuned mass dampers or continuous nonlinear dampers42

[74, 70, 76, 51, 44, 45, 17, 50]. Recently, a VI pair was proposed as an energy harvesting mechanism, where43
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the impacts between the inner mass and the capsule deform flexible dielectric polymer membranes on the44

capsule ends [75]. These membranes serve as capacitors, as the impacts deform them and change their45

capacitance, thus enabling energy harvesting [41]. Previously, VI pairs have been studied by approximate46

methods, including averaging, multiple scales, and complexification averaging [23, 34, 45, 71], but with47

limited applicability to non-smooth systems with impacts.48

Recently, VI pair systems have been studied precisely using maps, combining the system’s motion be-49

tween the impacts and the impact conditions [32, 31, 27, 76, 47]. The semi-analytical solution of these50

exact equations can provide exhaustive information regarding the bifurcation structure and local stability of51

different types of motion. In the case when the smaller mass is negligible relative to the larger one, between52

impacts this two-degree-of-freedom system can be reduced to a single differential equation for the relative53

displacement of the two masses [59, 49], used to explore, e.g., the interplay between classical and grazing54

bifurcations [61] and comparisons of the influence of instantaneous and compliant impact conditions [16]. In55

settings where the smaller mass is non-negligible, such as in targeted energy transfer, exact maps for the full56

system allow bifurcation analyses over a large range of parameters for modes with efficient energy transfer57

and their loss of stability to inefficient alternating chatter behaviors [39].58

These previous map-based results are primarily based on linear stability analyses, leaving a critical gap59

in analyzing the global, possibly chaotic dynamics of VI systems due to severe limitations of the existing60

global stability methods in handling impacts. One limiting factor in pursuing existing approaches of global61

analyses for the forced VI pair is that it is non-autonomous. As a result, the maps traditionally used in its62

bifurcation analyses yield analytically intractable coupled transcendental maps for the system response and63

impact time, preventing explicit expressions for the system’s state that one would normally use to study64

global dynamics. This fact motivates the new approach we propose here.65

In a broader context, global stability approaches for non-autonomous, non-smooth systems are few and66

far between, which appears to be true also for those hybrid systems described with both continuous and67

discrete dynamics [37, 5, 13, 28, 12]. One notable example is an extension of the Lyapunov function method to68

prove the global stability of the equilibrium state of a non-autonomous bouncing ball [42]. In this setting, the69

Lyapunov-type method involves non-autonomous measure differential inclusions and constructs a decreasing70

step function above an oscillating Lyapunov function. However, its application to non-trivial dynamics of71

VI pairs with two-sided impacts seems elusive. Another notable sample is an averaging Lyapunov function72

approach developed to prove global convergence to absorbing domains of non-trivial attractors in non-smooth73

dynamical systems with a non-autonomous stochastic switching parameter rule [33]. However, this approach74

is irrelevant for non-autonomous VI systems as it is based on knowledge of the averaged autonomous system’s75

attractor. Recently, a computer-assisted proof of chaos in piecewise linear maps was obtained by explicitly76

constructing trapping regions and invariant cones based on word sets representing the dynamics symbolically77

[67]. An area-preserving map-based analysis for the global behavior of the VI pair’s rare, restricted behavior78

was proposed in [11]. Yet, to date, there appear to be no global analyses relevant to applications such as79

energy harvesting, for which the VI pair dynamics of interest include sustained sequences of regular impacts80

on both barriers at the capsule ends, observed over a large range of parameters. Then, we are faced with81

the challenge of global analyses of behavior with at least two (alternating) impacts per forcing cycle. This82

feature is in contrast with other studies of impacting systems that may consider the transition between no83

impacts and a single impact [52], repeated impacts on a single barrier [68], or the global attraction of a84

solution without impacts [42].85

In this paper, we present a novel computer-assisted approach for studying the global dynamics of the86

VI pair, that is, a ball moving in a harmonically forced capsule. Motivated to develop an analytical global87

analysis for this system, we prioritize approaches that include explicit expressions wherever possible. As88

mentioned above, the repeated impacts of the ball with the capsule yield transcendental maps that are89

analytically intractable within existing global analyses. Yet, we exploit them as useful non-smooth features90

in constructing novel two-dimensional (2D) return maps that separate families of important sequences in the91

VI-pair dynamics. These families are used to characterize global dynamics and can be related to bifurcations92

of the VI pair. Computationally efficient short-time realizations of these return maps divide the state space93

according to the different dynamics of these families. Our definition of return maps does not fall into standard94

choices for maps, such as Poincaré, stroboscopic, all impacts, or all returns to a particular state [49, 52, 54, 66].95

Instead, it divides the return maps based on the sequence of impacts that do or do not occur before the system96

returns to a particular impacting state. This innovative perspective is valuable for efficiently partitioning97
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the state space into a few regions corresponding to distinct surfaces formed by maps from different families98

of the sequences of impacts. Identifying the regions with potentially attracting and transient behavior is99

straightforward by inspecting the surfaces’ geometry and gradients relative to the diagonals in the phase100

planes for impact velocity and impact phase. As a result, we can focus a more detailed analysis on smaller101

regions with potentially attractive behavior. These computationally-realized return maps could be directly102

used for purely numerical yet efficient cobweb analysis of the system’s global behavior. However, toward our103

goal of performing computer-assisted analysis and explicitly characterizing the system’s global dynamical104

properties, we go one step further and define reduced polynomial approximations for the maps in each region.105

Combining these polynomials into a piecewise smooth composite map, we demonstrate that it captures106

transient behaviors throughout the state space while reproducing the attracting behaviors. Furthermore, it107

reproduces an important sequence of period-doubling bifurcations and (apparently) chaotic behavior com-108

pared with the bifurcation sequences of the exact systems. In constructing the composite map, we find that109

in some regions with strongly transient dynamics, we can reduce the 2D return maps to a pair of 1D return110

maps without sacrificing the integrity of the attracting dynamics. While not a necessary step, these types of111

“separable” components of the composite map provide transparency for the overall dynamics. Furthermore,112

this composite map derived from the non-smooth VI dynamics is remarkably valuable for cobweb analysis,113

as it is based on simple return maps corresponding to impacts on one end of the capsule rather than on114

compositions of map sequences. Specifically, the separable representations of the 2D map are convenient for115

visualizations within this cobweb phase analysis that captures the different attracting behaviors for different116

parameter regimes.117

Notably, this cobweb analysis motivates a valuable definition of auxiliary maps on the regions identified118

within the construction of the composite map, once the transient and attracting characteristics have been119

identified. For regions with attracting dynamics, the auxiliary map is conservatively based on the extreme120

bounds on the map for each region and thus can be used to bound the attracting domain. A key feature of the121

auxiliary maps is that they simplify the 2D return maps into a set of 1D equations using the bounds for each122

region. Then, a cobweb phase space analysis is used to explore the system’s long-term dynamics, and yields123

a limiting period-two cycle that bounds the attracting domain that contains all the system’s non-trivial124

attractors. With the auxiliary maps based on the polynomial approximations, we can obtain analytical125

expressions for the impact velocity map and, thus, for the attracting domain. Repeated application of the126

auxiliary maps, each with updated bounds obtained from the previous application, yields tighter bounds for127

the attracting domain.128

We outline the process of generating the approximate composite map in terms of a general algorithm129

adaptable for other non-smooth dynamical systems. A key step in the algorithm includes identifying families130

of short sequences of impacts that give the building blocks for the return maps. The resulting division of the131

state space is relatively simple and computationally efficient compared to, e.g., the identification of basins132

of attraction, which require long time computations to find complex regions for dynamics sensitive to initial133

conditions. Likewise, flow-defined Poincaré maps for the global dynamics of periodic and chaotic systems,134

derived from long-time simulations over the entire state space, are often piecewise smooth even though135

they originate from a smooth dynamical system. Geometrical piecewise smooth Lorenz maps [2, 56, 30]136

representing the smooth chaotic dynamics of the Lorenz system are notable examples. Our approximate137

composite map constructed for only short-time realizations of the VI pair is conceptually different from138

classical piecewise smooth maps with regular and chaotic dynamics appearing in various biological, social139

science, and engineering applications [53, 4, 77, 8, 15, 29, 18]. However, it can still be interpreted as a140

geometrical model of the VI pair as it depicts the dynamics and bifurcations remarkably well and derives from141

a polynomial approximation of the state space partitions. The combination of the geometric interpretation142

and the polynomial approximation facilitates our goal of obtaining analytical results for the global dynamics143

directly related to the physical model. These results are in contrast to local analyses and computational144

studies of higher dimensional maps [54, 58].145

In this first development of the approach, we focus on parameter regimes for behaviors that drive146

favorable energy output in a VI pair-based energy harvesting device, behaviors with alternating impacts on147

either end of the capsule. The impact velocity and phase may repeat periodically with period nT , where T is148

the period of the forcing, or the states may have apparently chaotic behavior within the alternating behavior.149

Besides its physical relevance, this choice of parameters facilitates a relatively straightforward presentation150

of the approach while exploring several types of non-trivial dynamics. Nevertheless, as discussed further in151
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the conclusions, we expect that foundational concepts in this analysis are adaptable to other (more complex)152

sequences of impacts.153

The remainder of the paper is organized as follows. Section 2 gives details of the VI pair model, including154

the transcendental form of the maps [60, 61] that motivates the computer-assisted analysis of global dynam-155

ics. Section 3 provides the return maps that form the building blocks of the computer-assisted approach,156

illustrating their key properties. Section 4 provides the general algorithm for constructing a composite map157

realized for the VI pair by approximating the return maps with explicit piecewise polynomial maps over158

relevant regions that comprise the state space. Section 5 compares the trajectories generated using the exact159

and composite maps in the state space and the phase plane. Section 6 develops an auxiliary map based160

on the composite map to identify the globally attracting dynamics and the corresponding domain for three161

qualitatively different types of the VI pair system behavior. Section 7 contains conclusions and a brief illus-162

tration of the relevance of the approach for a VI pair-based energy harvesting device with stochastic forcing.163

Finally, Appendix A provides additional details on the construction of the return map. The supplementary164

material contains the exact map derivation and demonstrates its analytical intractability. It also contains165

the coefficients of the polynomials used in the composite map. Supplementary videos provide additional166

visualizations for constructing and iterating the composite map.167

2. The Model. The model takes the form of the canonical impact pair, comprised of an externally168

forced capsule with a freely moving ball inside. The friction between the ball and the capsule is neglected,169

so the ball’s motion is driven purely by gravity and impacts one of the membranes on the capsule’s ends.170

One application based on the impact pair is a nonlinear vibro-impact energy harvesting device. Each171

end of the capsule is closed by a membrane of dielectric (DE) polymer material with compliant electrodes172

[75]. The deformation of such a DE membrane is the vibro-impact energy harvesting device’s primary means173

of energy generation. When the ball collides with the membrane, this action changes the ball’s trajectory174

and deforms the membrane. The DE membrane’s physical property, being a variable capacitance capacitor,175

allows the change of its capacitance when it is deformed; meanwhile, a bias voltage is applied when the176

deformation reaches its maximum state. After the collision, an extra voltage charge is harvested, and the177

membrane returns to its undeformed state.178

The schematic for the VI pair is given in Fig. 1(a). Neglecting the friction, the system is driven by179

forces generated at impact, gravity, and external harmonic excitation F̂ (ωτ + ψ) with period 2π/ω. Using180

Newton’s Second Law of Motion, the model is described by the following differential equations:181

d2X

dτ2
=
F̂ (ωτ + ψ)

M
,(2.1)182

d2x

dτ2
= −g sinβ,(2.2)183

184

where X(τ) and x(τ) are the dependent variables for the absolute displacement for the capsule and the ball,185

respectively. In addition, M and m are the mass of the capsule and the ball, respectively. Also, ψ is the186

general phase of the forcing.187

Treating the impact time as negligible compared to other time scales in the model, we use an instanta-188

neous impact model given by189 (
dx

dτ

)+

= −r
(
dx

dτ

)−
+ (1 + r)

(
dX

dτ

)
.(2.3)190

Note that this is a reduced model based on the condition M � m, as discussed in detail in [60]. The191

superscripts + and − signify the state of the ball after and before the impact, respectively. The parameter192

r is the restitution coefficient, which is a quantitative measure of the membrane’s elasticity. The range of193

r is [0, 1] with r = 1 being perfectly elastic and r = 0 being inelastic. In this paper, we consider moderate194

elasticity r = 0.5. Additionally, in (2.3), we do not distinguish the states before and after the impact for195

the capsule dX/dτ because the mass of the ball (M � m) is negligible and does not change the state of the196

capsule at impact.197

To focus on the system’s dependence on key parameters, we first non-dimensionalize the system. Fol-198
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(a) (b)

(c)

Fig. 1: (a): Illustration of the VI pair: A ball moves freely within a harmonically forced capsule enclosed by
deformable membranes on both ends. The capsule is positioned with an angle β relative to the horizontal
plane and is excited by an external harmonic excitation F̂ (ωτ + ψ). The mass, length of the capsule, and
mass of the ball are M, s, and m, respectively. (b): The two dashed black lines represent the displacement
of the top and bottom membranes, X(t)∗ ± d/2. The green stars and blue dots indicate the impacts at ∂B
and ∂T , respectively. The red solid lines connect each impact at ∂T and ∂B, representing the estimated ball
movement between each impact. (c): Phase plane in terms of relative variables. The relative displacement
Z(t) oscillates between −d/2 and d/2, and the relative velocity Ż(t) has a sign change at each impact. The
arrows indicate the direction of time. Parameters: d = 0.35, Ż0 = 0.43 and ψ0 = 0.26.

lowing [60], the dimensionless variables X∗(t), Ẋ∗(t), t are the following:199

X(τ) =
‖ F̂ ‖ π2

Mω2
·X∗(t), dX

dτ
=
‖ F̂ ‖ π
Mω

· Ẋ∗(t), τ =
π

ω
· t ,(2.4)200

where ‖ F̂ ‖ is an appropriately defined norm of the strength of the forcing F̂ . Here, we also use Newton’s201

dot notation for differentiation when the derivative is calculated with respect to dimensionless time t.202

In addition to non-dimensionalization, relative variables are used to focus on the system dynamics as203

a whole rather than the separate motion of the ball and capsule. Using the variables X∗, the relative204

displacement Z(t) and relative velocity Ż(t) are given in the dimensionless form:205

Z = X∗ − x∗, Ż = Ẋ∗ − ẋ∗,206

Z̈ = Ẍ∗ − ẍ∗ = F (πt+ ψ) +
Mg sinβ

‖ F̂ ‖
,(2.5)207

where the non-dimensional forcing F (πt+ ψ) = F̂ (ωτ+ψ)

||F̂ || has the unit norm, i.e. ‖ F ‖= 1. For convenience,208

we define ḡ =
Mg sinβ

‖ F̂ ‖
.209

Since we want to evaluate the system from one impact to the next, the system’s state at each impact is210

particularly important. Combining conditions (2.4), (2.5), the impact condition (2.3) can be rewritten using211
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Z and Ż. For the jth impact occurring at time t = tj ,212

Zj = X∗(tj)− x∗(tj) = ±d
2
, for x ∈ ∂B (∂T ) the sign is + (−),213

Ż+
j = −rŻ−j , d =

sMω2

‖ F̂ ‖ π2
.(2.6)214

215

The notations ∂B and ∂T denote the bottom and top membranes, respectively. The parameter d is the216

dimensionless length of the system, used throughout this paper as the bifurcation parameter. In contrast to217

the actual length of the capsule s, d varies with multiple factors, including the device length (s), mass (M),218

angular velocity of the external force (ω), and forcing strength (‖ F̂ ‖). As illustrated in Fig. 1(b),(c), the219

relative position of the system is bounded, Z(t) ∈ [−d/2, d/2]. At the impacts, which is when Zj = ±d/2, the220

relative velocity Żj changes sign: when the impact is on ∂B (Zj = d/2), Ż changes from positive to negative;221

when the impact is on ∂T (Zj = −d/2), Ż switches from negative to positive. Since the displacement at222

each impact is known, either Zj = d/2 or Zj = −d/2, the relative velocity and time (Żj , tj) describe the223

system state at the jth impact.224

We summarize results from [60] for calculating the exact maps for (Żj , tj) between two consecutive225

impacts. Between the impact at tj and the next impact at tj+1, the relative velocity and displacement can226

be derived by integrating (2.5) for t ∈ (tj , tj+1) and applying (2.6):227

Ż(t) = −rŻ−j + ḡ · (t− tj) + F1(t)− F1(tj),228

Z(t) = Z+
j − rŻ

−
j · (t− tj) +

ḡ

2
· (t− tj)2 + F2(t)− F2(tj)− F1(tj) · (t− tj),(2.7)229

230

where F1(t) =
∫
F (πt + ψ) dt and F2(t) =

∫
F1(t) dt. At the jth impact, Z+

j = Z−j . Therefore, the231

superscripts in Ż± are omitted, since (2.7) are in terms Z− and Ż− only. Using the equations (2.7), there232

are four basic nonlinear maps PBB , PBT , PTB , PTT corresponding to motion between consecutive impacts,233

in terms of the four combinations of impact locations: ∂B → ∂B, ∂B → ∂T, ∂T → ∂B, ∂T → ∂T . All234

four maps take the form235

Żj+1 = −rŻj + ḡ · (tj+1 − tj) + F1(tj+1)− F1(tj),236

±d
2

= ±d
2
− rŻj · (tj+1 − tj) +

ḡ

2
· (tj+1 − tj)2 + F2(tj+1)− F2(tj)− F1(tj) · (tj+1 − tj).(2.8)237

238

The maps derived above are based on the system (2.7), which gives the exact map when evaluated at impact239

times t = tj ; specifically, P` : (Żj , tj) → (Żj+1, tj+1) for Żj = Ż(tj). Notice, the sign for ±d/2 is chosen240

depending on the impact locations of Zj , Zj+1, + (−) for ∂B (∂T ).241

Ideally, we would like to transform (2.8) into closed-form expressions for (Żj+1, tj+1) in terms of (Żj , tj),242

which can be used to analyze stability and other (global) dynamic properties of these maps and their243

compositions. Furthermore, if we wish to determine the map for the first return to ∂B for sequences as244

shown in Fig. 1(b),(c), we would seek the exact map for the impact sequence ∂B → ∂T → ∂B, or for two245

consecutive impacts on ∂B, which we refer to as BTB or BB motion, respectively. Here, we use the simpler246

case of BB motion to demonstrate the difficulties in deriving closed-form expressions for such sequences. The247

map PBB is given by (2.8), using Zj+1 = Zj = d/2, we have248

Żj+1 = −rŻj + ḡ · (tj+1 − tj) + F1(tj+1)− F1(tj),249

d

2
=
d

2
− rŻj · (tj+1 − tj) +

ḡ

2
· (tj+1 − tj)2 + F2(tj+1)− F2(tj)− F1(tj) · (tj+1 − tj).(2.9)250

251

For concreteness, we take F (πt+ψ) = cos(πt+ψ). Then F1(t) = 1
π sin(πt+ψ) and F2(t) = − 1

π2 cos(πt+ψ).252

Substituting these into (2.9) and solving for (Żj+1, tj+1), we have253

Żj+1 = −rŻj + ḡtj+1 − ḡtj +
1

π
sin(πtj+1 + ψ)− 1

π
sin(πtj + ψ),(2.10)254

0 = −rŻjtj+1 + rŻjtj +
ḡ

2
t2j+1 − ḡtj+1tj +

ḡ

2
t2j −

1

π2
cos(πtj+1 + ψ) +

1

π2
cos(πtj + ψ)(2.11)255

− 1

π
sin(πtj + ψ)tj+1 +

1

π
sin(πtj + ψ)tj .256

257
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In (2.10), Żj+1 is a function of Żj , tj , as well as tj+1, determined from (2.11). Sorting terms containing tj+1258

to simplify (2.11) yields259

ḡ

2
t2j+1 −

(
rŻj + ḡtj +

1

π
sin(πtj + ψ)

)
tj+1 +

(
rŻjtj +

ḡ

2
t2j +

1

π2
cos(πtj + ψ) +

tj
π

sin(πtj + ψ)
)

260

=
1

π2
cos(πtj+1 + ψ).(2.12)261

262

From these expressions, we see that it is impossible to get a closed form expression for the state (Żj+1, tj+1)263

from the state at the previous impact, (Żj , tj). This motivates the new approach that we discuss in detail264

in Section 3. The formulation in (2.8) is useful when determining conditions for periodic solutions with a265

fixed number of impacts, and their local stability. For example, as in [60], a composition of a fixed number266

of maps provides the basis for previous analyses of periodic solutions, and the corresponding linear stability267

analysis provides information about whether the periodic solutions are stable under small perturbations. In268

this previous work, different types of motion were generally categorized as n:m/pT , where n and m are the269

numbers of impacts on ∂B and ∂T , respectively, T is the excitation period, and p is an integer. Furthermore,270

the impact pair has been demonstrated to yield n:m/pT and n:m/C behaviors, with C indicating complex,271

aperiodic, or chaotic behavior.272

In the remainder of this paper, we use ψj = mod (πtj + ψ, 2π) rather than tj to quantify the impact273

timing within the forcing period of oscillation. Note that ψj is distinct from the general phase ψ in the274

forcing term F (πt + ψ). This relative impact phase ψj is more amenable than tj for considering transients275

and (quasi)-periodic behavior. Figure 2 shows the relative impact velocity Żk and ψk on ∂B, corresponding276

to a sequence of bifurcations with 1:1/T , 1:1/pT for p an even integer, and 1:1/C behavior over a range of277

the dimensionless length d. (Note: Żk and ψk on ∂T not shown.) We focus here on the parameters and278

the range of d yielding 1:1-type behavior, with impacts alternating between ∂B and ∂T that is typically279

favorable for energy output and observed for the system (2.1)-(2.3) over a large range of parameters [60, 61].280

(a) (b)

Fig. 2: Bifurcation diagrams for Żk and ψk generated using the exact map from system (2.7).

Remark 2.1. The numerical results in the bifurcation diagram (Fig. 2) are generated by solving (2.1)-(2.3)281

over a long time, recording the limiting values for Żk and ψk on ∂B for each value of d. The attracting state282

then serves as the initial condition for the next value of d, using a continuation-type method with decreasing d.283

Throughout this paper, the parameters used to generate the simulations are the following: r = 0.5, ‖F̂‖ = 5,284

M = 124.5 g, ω = 5π, β = π/3, g = 9.8 m/s2. Here, the non-dimensional parameter d varies with the length285

of the capsule s, as given in (2.6).286

3. Identification and visualization of the return maps. While the previous analyses capture the287

local stability of branches corresponding to periodic solutions, they do not provide information about the288

global attraction of this behavior or the potential for other attracting behavior. In contrast, here, we seek289

to provide global stability results for the attraction of different types of solutions, including periodic, nearly290

periodic, and chaotic behavior, as shown in Fig. 2. With that in mind, normally we would want to have291

the maps in an explicit form for the system state (Żj , ψj). Equation (2.12) has a solution if the quadratic292
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function on the left-hand side (LHS) and the cosine function on the right-hand side (RHS) intersect, but it293

is impossible to get a closed form expression for tj+1 or ψj+1 and similarly for Żj+1. Further details of the294

derivation of the equations for the maps can be found in Supplementary Section I.295

For the BTB case, the same hurdle arises. In that case, the BTB motion is composed of maps PTB ◦296

PBT , and therefore a closed form first return map for ∂B would require the composition of expressions for297

(Żj+1, tj+1) and (Żj+2, tj+2). The only difference in the equations for these quantities is the sign of ±d/2 in298

(2.9), so the lack of closed-form expressions follows as in (2.12). Therefore, we propose a computer-assisted299

method to transform these non-autonomous, implicit maps into a composition of smooth maps using explicit300

polynomials. To achieve this, we define a novel type of return map that can be combined with phase plane301

analysis to identify regions of state space with potentially attracting or transient behavior.302

There are three key elements to our generalizable approach to the maps:303

1. We exploit the non-smooth impact events in the dynamics, leading to the observation that any304

transient behavior can be broken down into a sequence of a small number of types of return maps305

to ∂B, as shown in Fig. 1(b): those that impact ∂T between sequential impacts on ∂B, and those306

that do not.307

2. The second key element is the ability to approximate these return maps with polynomial functions,308

noting that there may be different choices for this approximation.309

3. We focus on families of return maps for which a valuable phase plane analysis follows naturally, in310

contrast to the maps between different impacts (2.7)-(2.8).311

With sequential impacts on ∂B as a natural framework for defining the maps, we focus on the first return312

maps to ∂B captured by PBTB and PBB. Note that in order to capture all possible transients, one would313

normally have to consider sequences with multiple impacts on ∂T before returning to ∂B, e.g., sequences such314

as BTTB, BTTTB, etc. While we could include these in our analysis, we note that for β > 0 and for the315

values of the forcing amplitude F̂ and restitution coefficient r considered here, these sequences are generated316

in a limited range of larger initial Żk and nearly in-phase ψk. Furthermore, one can show by repeated317

applications of the maps that the larger values of Żk can not be sustained for the given F̂ and r [62, 24], so318

repeated impacts on ∂T are highly transient for these parameters. Therefore, they play a negligible role in319

the global dynamics, particularly as we focus on potentially attracting regions. Some detailed comments on320

this are included under Remark 3.2 below.321

Our approach also allows for considering sequences such as BTBB and BBTB. As discussed in the322

Conclusions, these sequences correspond to grazing bifurcations to 2:1 solutions. Bifurcations to stable 2:1323

behavior do not occur for the parameters considered here and can be demonstrated as transient, so they are324

not considered here.325

Remark 3.1. It is worth noting the distinction between this approach and that of a Poincaré map with ∂B326

as the Poincaré section. Here, we divide the sequences that all return to ∂B into different families, depending327

on which other impacts occur before the system returns to ∂B, considering the maps for the different families328

separately.329

While above, we have used the subscripts j and k somewhat generically for impacts, for clarity with330

respect to the maps in (2.7)-(2.8), we reserve the subscripts j, j + 1, . . . for sequential impacts on either ∂B331

or ∂T . Then, for the sequential impacts on ∂B only, in the following we use the subscripts k, k + 1, . . ., so332

that for k = j and PBTB (PBB), the (k+ 1)th impact on ∂B corresponds to the (j + 2)th ( (j + 1)th) impact333

when counting all impacts. That is, for Zj ∈ ∂B,334

PBTB :(Żj , ψj)→ {(Żj+2, ψj+2) | Zj+1 ∈ ∂T, Zj+2 ∈ ∂B},335

PBB :(Żj , ψj)→ {(Żj+1, ψj+1)| Zj+1 ∈ ∂B}.(3.1)336

Note, for physical clarity, we have slightly abused notation in (3.1), using Zj ∈ ∂B and Zj ∈ ∂T for impacts337

on either end of the capsule, in place of Zj = ±d/2 as discussed following (2.6).338

As illustrated in Fig. 1(b), the sequence length, for example, to (nearly) periodic behavior is not uniform339

over the space of initial conditions and cannot be anticipated a priori. The return map to ∂B gives a flexible340

construction that can be applied over any length of the transient. This framework is well-suited for capturing341

global dynamics through phase plane techniques and can also be applied in stochastic settings for the VI pair342

[40]. In identifying potentially attracting dynamics, we use projections of the return maps in the Żk − Żk+1343

and ψk−ψk+1 phase planes, relative to the corresponding diagonals (see Section 3.1). The maps in (2.7)-(2.8)344
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do not lend themselves to these goals, as these are not (necessarily) return maps.345

For the remainder of the paper, we track the first return maps for impact velocity and impact phase346

(Żk, ψk) on ∂B, using the subscripts k, k + 1, . . . to indicate sequential impacts on ∂B, composed of the347

building blocks in (3.1). Figure 3 shows how the choice of these building blocks divides the state space348

for (Żk, ψk) by viewing this pair as the initial condition, which then yields one of these two return maps.349

Figure 3(a) shows how the (Żk, ψk) plane is divided by tracking the return maps. Figure 3(b) illustrates a350

further division of the state space, necessary for applying straightforward polynomial approximations of the351

return maps, as discussed in the context of the full algorithm described in Section 4. Note that the building352

blocks (3.1) are analogous to short words in the symbolic representations used for piecewise linear maps in353

[67], which form the basis for invariant cones and trapping regions. We note that the trapping region in [67]354

appears to be analogous to what we call the attracting domain in this paper, which is a compact region that355

attracts all non-trivial trajectories of the map.356

(a) (b)

Fig. 3: (a): Using the building blocks in (3.1), the state space Żk − ψk can be partitioned based on two
types of first return maps: PBB (black regions) and PBTB (magenta region). The blue square indicates the
location of R1, a region within the PBTB region that has special properties as studied in detail in Section
4. (b): A further partition of the state space into five regions, convenient for approximation as determined
by the algorithm in Section 4: Regions R1, R2, R4 divide the state space for the BTB motion, and Regions
R3, R5 divide the state space for the BB motion. The partition in panel (b) shows an approximation to the
exact solution in panel (a), so the dividing boundaries between regions do not match exactly those based on
the exact map. The parameter used in (a) is d = 0.26.

Remark 3.2. For the algorithm developed in this paper, we restrict our attention to the range of 0 ≤ ψk ≤ π,357

discussed further in the context of Fig. 7 below. As can be shown for the model (2.1)-(2.3) and the parameters358

considered in this paper, impacts with ψk > π correspond to those where the ball and capsule are moving in359

the same direction, yielding smaller impact velocities and thus transient behavior in both ψk and Żk [59].360

This point is discussed in Section 3.1 below, in the context of projections of the 2D maps for Żk, ψk into361

their corresponding phase planes. Likewise, for the parameter regimes considered in this paper, focusing on362

a range of d with energetically favorable 1:1-type sequences of alternating impacts, the impact velocities in363

the range Ż > 1.0 are transient. Fig. 22 in Appendix A.1 illustrates the additional regions with transient364

BTTB behavior, which can appear for Ż > 1.0. While the approach proposed here can handle these values365

by including additional transient regions, for β > 0 and the parameters considered here, these sequences366

are strongly transient and essentially negligible in the global behavior. Then for simplicity of exposition, we367

restrict our attention to 0 ≤ ψk ≤ π and 0 < Ż ≤ 1.0.368

Figure 4 illustrates the reduction of our representation within the dynamics, focused on the impact369

velocity Żj and phase ψj on ∂B (green stars), in contrast to Fig. 1(b), which shows the exact behavior370

solution at and between the impact time. The first return maps in (3.1) are implicit in form and thus awkward371

to use directly in a global stability analysis. Then, as a first step towards a more explicit approximation, we372

visualize the return maps in (3.1).373
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Fig. 4: The values (Żj , ψj) at impacts (both ∂B (green stars) and ∂T (blue circles)), starting with initial

conditions Ż0 = 0.43 and ψ0 = 0.26 with d = 0.35. Note that the location of the impact determines the sign
of the relative velocity: Żj > 0 for the impact on ∂B, and Żj < 0 for ∂T , and the dotted lines trace the

order in which the impacts happen. In this paper, we focus on the return map for ∂B, denoted (Żk, ψk).

3.1. Visualization of the maps and projections in the phase planes. Given that the return374

maps PBTB, PBB are in terms of the 2D vector (Żk, ψk) we show two separate surfaces for Żk+1 and ψk+1375

generated by them. To build these up, we first show the maps projected in the phase planes Żk − Żk+1 and376

ψk − ψk+1, for a fixed value of 0 < ψk < π, and sweeping through Żk ∈ (0, 1.0). In Fig. 5(a), the resulting377

first return values (Żk+1, ψk+1) are sorted according to BTB and BB motion, as indicated by different colors.378

In Fig. 5(b), in this projection, these two types of behavior can interweave for a single value of ψk, as different379

values of Żk yield a variety of ψk+1 that appear in both the PBTB and PBB return maps.380

Fig. 5: Illustration of Żk+1 and ψk+1, the first return maps on ∂B using (3.1) for fixed ψk = 0.4 and sweeping
through initial values Żk ∈ (0, 1.0) with d = 0.35. The magenta points correspond to the first returns via
BTB type, and the black points represent the first returns of BB type.
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(a) (b)

Fig. 6: Illustration of the 3D surfaces generated using the first return maps PBTB (magenta) and PBB (black)
in (3.1), with d = 0.35. Each initial condition pair (Żk, ψk) has output (Żk+1, ψk+1), graphed on the vertical
axes in panels (a) and (b), respectively. Supplementary Video 1 provides a 360◦ rotating view of the surfaces.

Repeating the application of the first return map (3.1) over the range of initial phase values ψk yields the381

surface visualized in Fig. 6, over a range of initial values in the horizontal Żk−ψk plane. For PBB, shown by382

the black points, in general small values of Żk (approximately Żk < 0.55) map into small values of Żk+1, while383

ψk+1 tends towards values either near 0 or above 2. In the case of PBTB, shown by magenta points, larger Żk384

map into larger values of Żk+1, with the corresponding ψk+1 spread out between 0 and π. The visualization385

of the return maps PBB and PBTB indicates a few features that are important in approximating these surfaces386

with polynomial maps. Not only are the surfaces disconnected, but the surfaces have dramatically different387

gradients corresponding to different regions in the Zk − ψk state space, which leads to the partitioning as388

shown in Fig. 3(b). These regions are identified as part of the algorithm for approximating the surfaces, as389

discussed in detail in Section 4.390

Comparison of the return maps with the diagonals in the Żk−Żk+1 and ψk−ψk+1 phase planes is achieved391

via projections of the return map surfaces on the phase planes, as shown in Fig. 7 and in Appendix A.2,392

Fig. 23. This projection is valuable as we identify potential regions for attracting and transient behaviors,393

following from comparisons of the map surfaces with the diagonals in the phase planes.394

Remark 3.3. To see the significance of the diagonals in the phase planes, recall the classic example of the395

logistic map xn+1 = rxn(1 − xn). The dynamics of the logistic map vary with the parameter r, directly396

related to the slope of the map rxn(1 − xn) at the fixed point x∗n = rx∗n(1 − x∗n), which by definition is at397

the intersection of the phase plane diagonal and the map. The fixed point is an attractor (repeller) if the398

absolute value of its slope is less than (greater than) 1. This fact motivates us to look for potential attracting399

or transient dynamics by studying the intersection between the projections of the maps Żk+1(Żk, ψk) and400

ψk+1(Żk, ψk) in their respective Żk − Żk+1 and ψk − ψk+1 phase planes and the diagonals in those phase401

planes.402

Figure 7 illustrates this comparison for the surfaces in the BTB region with the diagonals in the phase403

planes. There the surfaces, projected into the phase planes, are shown with different colors corresponding to404

different values of ψk, i.e., a different color for each “strand” in the map for fixed ψk and sweeping over Żk405

as in Fig. 5; e.g., the value of ψ = π/2 is medium blue in both panels. Together, these form the complete406

surfaces for Żk+1 and ψk+1 then projected into their respective phase planes. Then, we look for cases where407

the same color strands cross the diagonals in both phase planes. These indicate potential fixed point values408

of (Żk, ψk). To identify regions that contain these potentially attracting values, we look for regions where409

both maps have points near the diagonals of ψk − ψk+1 and Żk − Żk+1. Figure 7 (a)-(b) shows these values410
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Fig. 7: The 2D projection of the PBTB maps (magenta surfaces in Fig. 6) on the phase plane Żk − Żk+1

and ψk − ψk+1. For all panels, d = 0.35. Different colors correspond to the maps for different values of
ψk. Panels (a)-(b) show results for initial condition ψk ∈ [0, π]. Stars show cases where both maps take
values near the diagonals in both phase planes; for red stars the slopes of the surfaces are smaller, suggesting
potentially attracting dynamics near these values for ψk < π/2, while for brown stars the surfaces have
steep slopes suggesting transient dynamics for these values when ψk > π/2. Panels (c)-(d) show results for
initial condition ψk ∈ [π, 2π]; there are no cases where both maps take values near the diagonals, indicating
transient dynamics over this range.

for the PBTB map for 0 < ψ < π, with these points marked near the diagonals in both phase planes. There411

are two clusters of these points: red for those with ψk < π/2 and brown otherwise. Section 4.2 Iteration 2,412

step iii) in the algorithm below discusses the specific criteria for defining values near the diagonals, which413

yields the special region marked in blue in Fig. 3(a) as a potentially attracting region. Similarly, Fig. 7414

(c)-(d) shows the PBTB maps for π < ψ < 2π. While these points may satisfy the criteria for being near the415

diagonals, the steep slope of the curves forming the map for Żk+1 leads us to conclude that these points are416

not in a potentially attracting region, as repeated in Section 4.2 Iteration 2, step iii).417

Appendix A.2, Fig. 23, shows these comparisons of the maps projected into the phase planes for the418

PBB maps. The results of this comparison are discussed both there and in Section 4.2 Iteration 1, step iii),419

leading to conclusions about the transient nature of these regions. Section 4 further articulates these and420

other details in the application of the algorithm, combining visualizations of Figs. 6, 7, 23, and 22 to give421
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further insight into behavior on subdivisions of the return map surfaces together with approximating these422

surfaces with polynomials.423

4. Composition of the Approximate Map. We provide an algorithm for deriving a set of explicit424

piecewise polynomial maps fn and gn for each region Rn in the state space Żk − ψk, approximating the425

surfaces Żk+1 and ψk+1 as shown in Fig. 6. The approximate return maps are given in terms of the variables426

(vk, φk) that denote the approximate relative impact velocity on ∂B and the corresponding impact phase,427

respectively, at the kth return to ∂B. We define the composite approximate map M that combines the428

continuous maps fn, gn for the regions Rn in Fig. 3(b), taking the form429

(vk+1, φk+1) =M(vk, φk) ≡ (fn(vk, φk), gn(vk, φk)), where (vk, φk) ∈ Rn.(4.1)430

Given the complex nature of the surfaces for Żk+1 and ψk+1, the algorithm for constructing the maps431

(fn, gn), leads to refining the regions shown in Fig. 3(a), resulting in the regions Rn for n = 1, 2, 3, 4, 5 in432

Fig. 3(b).433

Before constructing M in (4.1) (derived below, with specifics given in Appendix A.8), we give a first434

illustration that it captures the critical features of (2.7)-(2.8) in the parameter range of interest, using it to435

obtain the bifurcation diagram analogous to Fig. 2. Figure 8 shows the results for vk, φk vs. d, generated436

using M via the continuation-type method described in Remark 2.1. Comparing with the corresponding437

bifurcation diagram for the exact map in Fig. 2, we see that the results fromM capture a number of features438

of the original system, including d values for the period-doubling bifurcations, the attracting values of vk439

and φk for the different branches, and the approximate range of values of vk and φk for the chaotic behavior440

obtained for smaller d in the range shown in Figs. 2, 8.441

(a) (b)

Fig. 8: Bifurcation diagrams generated using the composite approximate map M, defined in (4.1) and
Appendix A.8, with coefficients given in Supplementary Section II. The bifurcation structure obtained using
M reproduces remarkably well that obtained for the exact map (2.7)-(2.8) presented in Fig. 2.

4.1. General Algorithm: Construction of the composite map M. Illustrated in Fig. 9, the442

general algorithm consists of three main activities: identifying an initial partition of the state space based443

on the return map building blocks, iterating on approximations of the return maps on these regions, and444

including updates of the regions as necessary to improve the critical approximations.445

446

Initialize: steps 0)-ii): Partition state space for the definition of the composite map.447

0). Choose a state as the basis for return behavior.448

i). Generate surfaces (Żk+1, ψk+1) corresponding to the different families of the first return maps for this449

state;450

ii). Partition regions in the state space based on these different families of first returns. Label these regions451

as Rn.1, denoting Region n defined on iteration 1.452

453

Iterate on steps iii)-vi) until appropriate fit for surfaces corresponding to first return map for all re-454

gions Rn.m, region n on mth iteration.455
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Fig. 9: Illustration of the general algorithm for constructing the composite map.

iii). Identify potential regions of attraction or transient behavior, e.g. via comparison of the surfaces with456

diagonals in the phase planes; iv). Choose an appropriate order of polynomial fit for the surface(s) in each457

region, via testing different orders of polynomials and, depending on the resolution needed, to identify fn458

and gn for each Rn.m.459

v). If the fit of the polynomial is unsatisfactory, adjust the size of the regions and/or locate new regions for460

additional partitions.461

vi). Optional reduction: for regions that yield immediate transitions to other regions, replace with appro-462

priate resetting conditions.463

464

Finalize465

vii). Once the polynomial approximations are defined for maps for all regions, finalize definitions of regions,466

labeled as Rn, dropping the .m label, together with their corresponding maps (fn, gn). This final step in-467

cludes a definition of the range for each map, as discussed further in the demonstration in Section 5.468

469

Steps iii)-vi) depend on the computer-assisted analysis of several different features of the first return map470

surfaces found in ii). In iii) we compute quantities relevant to the dynamics and geometric characteristics471

of the maps as we make comparisons with the corresponding phase planes (see Remark 3.3). Keeping the472

user-defined constants to a minimum, we must define a level of accuracy and order of the polynomial when473

fitting any of the surfaces in step iv). There is also some flexibility in the size of the region defined for the474

potentially attracting region(s), as used in step v). In Section 4.2, we illustrate the implementation of these475

steps and parameter choices in the concrete context of (2.1)-(2.3) and the corresponding non-dimensional476

form (2.6). There, we also highlight the points about computational efficiency and adjustments of any477

user-defined parameters related to the accuracy of the polynomial approximations.478

Remark 4.1. As demonstrated below, in certain regions Rn where the shape of the map clearly indicates479

transient dynamics, we look for a simple approximation that takes the form of a single variable polynomial480

for each of the variables of interest, e.g., vk+1 = fn(vk) and φk+1 = gn(φk). We refer to these as separable481

maps since we approximate the 2D map for (vk, φk) with two 1D maps that each depend on a single variable.482

Such an approximation supports a cleaner visualization in the phase plane by simplifying the details of the483

transient behavior while approximating it as dictated by the shape of the exact map.484

4.2. Algorithm implementation: a composite map for the VI pair model. We apply the gen-485

eral algorithm outlined above - Initialize, Iterate, and Finalize - to identify appropriate partitions of the486

state space and the approximations for the return maps on these regions for the non-dimensionalized VI pair487
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model as in (2.7). Here, we present this application step-by-step, with the specific details of the composite488

map M given in Appendix A.8.489

490

491

Initialize the partition of the state space.492

0). Choose Z ∈ ∂B as the state for the basis of the first return maps.493

i). Generate surfaces Żk+1 and ψk+1 for BTB and BB behavior as first return maps (2.8) over the range of494

possible initial conditions in the state space (Żk, ψk) (see, e.g., Fig. 3(a)).495

ii). Partition the state space into regions Rn.1 according to these building blocks: BTB and BB: R1.1 cor-496

responds to BTB, R3.1 corresponds to BB behavior for smaller ψk, and R5.1 corresponds to BB behavior497

with larger ψk.498

499

Iteration 1: steps iii)-vi)500

iii). Identify regions of potential attraction and transients as follows.501

• R1.1: entire region of BTB behavior, including both transient regions and potential attracting502

dynamics near the diagonals in the Żk − Żk+1 and ψk − ψk+1 planes.503

• R3.1: The surfaces for BB behavior with sharp gradients in the map near the diagonals. Thus,504

transient BB behavior is expected (see Fig. 23).505

• R5.1: The surfaces for BB behavior are away from the diagonal in the ψk-ψk+1 plane, thus506

transient BB behavior is expected (see Fig. 23).507

iv). Polynomial approximation of surfaces for Żk+1 and ψk+1 in R1.1, R3.1, and R5.1 (see Fig. 6):508

• R1.1, BTB behavior: The surface in this region is a combination of subregions where the surfaces509

for Żk+1 and ψk+1 have more gradual variation, contrasted with others with sharp gradients.510

Thus, an accurate polynomial fit is challenging, which also limits an accurate approximation511

of potentially attracting dynamics near the diagonals in the Żk − Żk+1 and ψk − ψk+1 phase512

planes. This motivates a further partitioning of the BTB region, as described in step v).513

• R3.1, BB behavior: As can be observed in Fig. 6, there are two disjoint surfaces for Żk+1.514

One is a curved surface with sharp gradients for which we use fifth/fourth order polynomials in515

vk/φk for the approximate map (f3, g3) (see Appendix A.6). There is a second segment, nearly516

vertical in Żk+1, discussed in (vi) below.517

• R5.1: As the surfaces for Żk+1 and ψk+1 in R5.1 are away from the diagonal, we use a “sep-518

arable” approximation, as discussed in Remark 4.1. See Appendix A.7 for a discussion of the519

resulting approximate map (f5, g5).520

v). Update regions in terms of additional partitions for R1.1. The different features of the Żk+1 and521

ψk+1 surfaces in R1.1 motivates sub-dividing into two regions:522

• R1.2: identify potentially attracting states, e.g. states for which the repeated images of the523

return map PBTB are near the diagonals in the Żk − Żk+1 and ψk − ψk+1 phase planes. This524

choice of R1.2 limits to cases where the slopes of the surfaces near the diagonals are primarily525

small, e.g., less than unity for some values of d. The details for defining R1.2 are given in526

Iteration 2, step iii), including a quantitative characterization of proximity to the diagonals.527

• R2.2: the remaining states that produce clearly transient BTB behavior. This region includes528

sections of the PBTB map located away from the phase plane diagonals and sections near the529

diagonals with sharp gradients.530

vi). From physical considerations, some maps are replaced with resetting functions and/or approximate531

maps in nearby regions.532

• π < φ < 2π: The transient behavior for this range of φk is discussed in Remark 3.2 above.533

Then, we employ the reset: φk+1 = 1.2 and vk+1 = vk if φk > π or φk < 0 (see Appendix534

A.8). The results are not sensitive to the choice of the user-supplied reset value of φk+1 = 1.2.535

The shape of the surfaces in Fig. 6, consistent with observations from other studies [24, 62],536

suggests that the system moves towards values φ < π/2. At the same time, for the sake of537

generality, we want to choose a value in a transient region consistent with the definition of R2.2538

obtained in Iteration 2 below.539

• The nearly vertical surface in R3.1 mentioned above represents strongly transient behavior,540

consisting of transitions to BTB behavior or other states in R3. This transient behavior is541
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captured by using equations (A.2) throughoutR3.1, without approximating the vertical surface.542

Likewise, there is a small vertical section of the surface ψk+1 inR5.1, also discussed in Appendix543

A.7.544

Iteration 2: steps iii)-vi)545

Iteration 2 is focused on the newly defined R1.2 and R2.2.546

iii). Considering attracting and transient BTB behavior:547

• To identify R1.2 as described in Iteration 1 step v), we introduce a filter R1.2(d) for a given d548

that selects states (Żk, ψk) near the diagonals (Żk, ψk) in the Żk − Żk+1 and ψk − ψk+1 phase549

planes with images (Żk+1, ψk+1) from PBTB near the same diagonals. We then take the union550

of these regions to obtain a region valid for the full range of d of interest. Then, R1.2 is given551

by552

R1.2(d) =
{

(Żk, ψk) :
1

δ
<

∣∣∣∣ψk+1

ψk

∣∣∣∣ < δ and
1

δ
<

∣∣∣∣∣ Żk+1

Żk

∣∣∣∣∣ < δ
}
,553

R1.2 = ∪d∈[0.26,0.35]R1.2(d).(4.2)554555

Of course, the size of R1.2 depends on the choice of the user-defined parameter δ, which char-556

acterizes proximity to the diagonals. As discussed further in Appendix A.3, the choice of δ,557

together with the choice of polynomial order, influences the error of the approximation of the558

surface in the region R1.2. Figure 10 shows an example of the definition of R1.2.559

(a) (b)

Fig. 10: The surface corresponding to PBTB (magenta and blue combined), with d = 0.35, where R1.2 (blue
region), is obtained by using the filter (4.2) (δ = 1.2) to identify return maps located near diagonals in both
the Żk+1 - Żk and ψk+1 - ψk phase planes.

• R2.2 is defined as the remainder of the BTB region, with transient behavior. This conclusion560

follows from Fig. 7, where the remainder of (Żk, φk) in the BTB region either do not correspond561

to points near the diagonals in both Żk+1− Żk and ψk+1−ψk phase planes, and/or are located562

on parts of the surfaces with steep slopes.563

iv). Polynomial approximation of surfaces Żk+1 and ψk+1.564

• R1.2: To capture subtle changes in the attracting behavior near the diagonals, the surfaces for565
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Żk+1 and ψk+1 are approximated with polynomials of degree 3 in vk and degree 2 in φk,566

vk+1(vk, φk) = f1(vk, φk)567

= b0 + b1φk + b2vk + b3φ
2
k + b4φkvk + b5v

2
k + b6φ

2
kvk + b7φkv

2
k + b8v

3
k,(4.3)568

φk+1(vk, φk) = g1(vk, φk)569

= a0 + a1φk + a2vk + a3φ
2
k + a4φkvk + a5v

2
k + a6φ

2
kvk + a7φkv

2
k + a8v

3
k.(4.4)570571

• R2.2: We use a “separable” approximation (see Remark 4.1) that takes the form572

vk+1(vk) = f2(vk) = b20v
5
k + b21v

4
k + b22v

3
k + b23v

2
k + b24vk + b25,573

φk+1(φk) = g2(φk) = a20φ
5
k + a21φ

4
k + a22φ

3
k + a23φ

2
k + a24φk + a25.(4.5)574575

Figure 11(a)-(c) shows (green) curves representative of the transient behavior for this region,576

following from the shape of the surfaces for Żk+1 and ψk+1 shown in panel c) for R2.2. The577

orange curves, showing the separable map in (4.5), approximates this green curve. See further578

discussion in Appendix A.4.579

(a) (b) (c)

(d) (e) (f)

Fig. 11: Illustration of the PBTB surface (magenta surfaces in panels c,f) and its corresponding separable
approximation (green and orange curves) for R2 (panels a, b, c) and R4 (panels d, e, f), with d = 0.35.
Generated using the exact map (3.1), the green curves are chosen to represent the variation of the surface
for fixed ψk or Żk. Specifically, for (c): ψk = 0.35 (left) and Żk = 0.85 (right); for (f): ψk = 1.35 (left)
Żk = 0.12 (right). Panels (a)-(b) and (d)-(e) compare the green curves and the orange curves for the
approximate separable map (4.5) in the phase planes. See Appendices A.4 and A.5 for details.

v). Update regions/additional partitions for R2.2: As seen from the curve shown in Fig. 11, which580

forms the basis of the separable map, the map is not defined on smaller values of Żk in R2.2. This581

suggests a further partition of R2.2 into R2.3 and R4.3, to capture all values of Żk+1, as described582

in Appendices A.4 and A.5.583

vi). No further updates on this optional step.584

585
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Remark 4.2. Here, we note that the individual curves vk+1 = f2(vk) and φk+1 = g2(φk) shown for R2.2586

each overlap with the intervals for vk and φk in R1.2. At first glance, this may seem to cause indeterminacy587

in the application of the map. In particular, since R2 surrounds R1, it is possible that one of vk or φk in588

R2.2 can take a value that also appears in the range for R1.2. However, for (vk, φk) to be in R1.2, both vk589

and φk must be in the intervals corresponding to R1.2. Then (vk+1, φk+1) = (f1, g1) as in (4.3)-(4.4), and590

not the separable approximation (f2(vk), g2(φk)).591

We note that while the separable approximation requires some user choice of representative curves, this592

step is not necessary for determining the composite map M. We include it here as it aids in visualizing the593

dynamics in cobweb phase portraits in Section 5. Furthermore, the separable approximations inspire the594

auxiliary map applied in Section 6 to complete the global analysis.595

Iteration 3: steps iii)-vi)596

This iteration focuses on R2.3 and R4.3.597

598

iii). Considering transient dynamics for R4.3: For values of small vk not covered by the approximate599

map (4.5) in R2.2, we consider surfaces as shown in Fig. 11(f).600

iv). Polynomial approximations of R4.3: Similar to the separable maps defined for R2.2, we use separable601

single variable approximations (f4, g4) for the transient dynamics, given in equation (A.1) and shown602

in Fig. 11(d) and 11(e) .603

v). No additional partitions are needed.604

vi). No further updates needed.605

Finalize606

vii) We finalize definitions of the regions Rn, n = 1, 2, . . . , 5 dropping the .m label. The correspond-607

ing maps (fn, gn) that define the composite mapM are given in the detailed algorithm in Appendix608

A.8.609

We add some remarks about computational efficiency. In this framework, the main computation identifies610

surfaces in regions based on short-time realizations of the impact pair over the state space of initial conditions.611

These contrast with long-time simulations over the entire state space traditionally used in deriving flow-612

defined Poincaré maps for global dynamics of limit-cycle or chaotic systems [30] or for computing basins613

of attraction [57, 38]. A second feature that contributes to efficiency is the comparison of projections of614

the surfaces with the diagonals in the phase planes, as in Figs. 7 and 23. As we seek globally attracting615

dynamics, this division allows us to focus on accurate approximate maps in those regions with attracting616

dynamics, while relatively cheap approximations are sufficient for transient dynamics.617

There are user-defined parameters - polynomial order, surface approximation accuracy, and surface618

values’ proximity to the diagonals in the phase plane, as in determining R1 in (4.2)-(4.4) and Appendix619

A.3. These require some iteration to improve the fit of the polynomial approximation to the surface for the620

region(s) containing the attracting dynamics, but this is not the main computational cost. Furthermore,621

defining R1 as a union over the parameter d of surfaces from (4.2) also aids in the efficiency of this fit.622

As discussed above, here we have made some additional parameter choices to apply separable maps for623

convenience in visualization, but they are not a necessary part of the algorithm. Appendix A.8 includes624

further discussion on values appearing in the algorithm. While certain aspects of the computation-based625

analysis do not rely on finding polynomial approximations for the return maps, we pursue them with the626

goal of explicit expressions for the global analysis obtained in Section 6.3.627

5. Validation of the Composite Map. In this section, the composite map M is validated using628

three distinct types of solutions, showing that it can reproduce the dynamics of different types of solutions.629

The first type of solution is the fixed point ofM, which we call Case FP, corresponding to the 1:1/T solution630

of the full system (2.1)-(2.3). The second type is the period doubled case, i.e., the period-2 cycle of M,631

called Case PD, corresponding to the 1:1/2T behavior in the full system. Lastly, the chaotic dynamics ofM,632

called Case CD, corresponds to the chaotic 1:1/C behavior in the full system. These different dynamics can633

be observed from the bifurcation diagrams in Figs. 2, 8 for d = 0.35, d = 0.30, and d = 0.26, respectively.634

Figure 12 shows the implementation of the composite mapM (dashed green line), with the corresponding635

pseudocode given in Appendix A.8. Initial condition pairs (vk, φk) are selected from transient regions R3636

and R4 to demonstrate that M can reliably predict the long-term system behavior, reaching a potentially637

attracting region after traveling through other transient regions Rn. Similar results were obtained for other638
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(a) (b)

(c) (d)

Fig. 12: Comparison of trajectories in state space from the exact map (3.1) (orange) and the composite map
M (4.1) (green), superimposed on regions Rn used in the definition ofM as specified in Appendix A.8. (a)
and (b) correspond to Case FP, also shown in cobweb phase portraits in Fig. 13(a),(b); (c) corresponds to
Case PD, also shown in Fig. 13(c),(d); (d) corresponds to Case CD, also shown in Fig. 13(e),(f). Parameters
and initial conditions: (a) d = 0.35, φ0 = π/2, v0 = 0.35; (b) d = 0.35, φ0 = 0.1, v0 = 0.2; (c) d = 0.30,
φ0 = 0.1, v0 = 0.2; (d) d = 0.26, φ0 = 0.1, v0 = 0.2. Here, we show representative results for initial conditions
in the transient regions R3 and R4.

randomly selected initial pairs (not shown here). Trajectories forM are plotted together with the trajectories639

generated with the exact map (3.1) (solid orange line). Panels (a) and (b) correspond to Case FP. Panels640

(c) and (d) correspond to Case PD and Case CD, respectively. In all cases, both M and the exact map641

(3.1) trajectories follow each other to reach the same attracting dynamics. Of course, the transient dynamics642

are not reproduced exactly, e.g., given the less accurate separable approximations used in M to facilitate643

visualization of the maps.644

Complementary to the validation of M in Fig. 12, Fig. 13 demonstrates the attracting behavior in the645

projected vk−vk+1 and φk−φk+1 phase planes with initial conditions for small vk and φk (v0 = 0.2, φ0 = 0.1).646

Repeated application of the composite map is demonstrated via cobweb phase portraits, indicating the steps647

toward the attracting behavior. The dynamic behavior is shown for the three types of solutions listed648

above. In both Case FP and PD, the trajectories limit to values within R1 while in Case CD, the long-term649

trajectory takes values in R1 and R2. All of these are consistent with the bifurcation structure shown in650

Fig. 8 (and in Fig. 2).651

For the cobweb analysis using the maps (fn, gn) in the vk − vk+1 and φk − φk+1 phase planes shown652

in Fig. 13, it is possible to visualize the curves for the maps in R2, R4, and R5, as we use separable (1D)653

approximations in those regions. For R1 and R3 we can not show a single curve in this projection, given the654

2D polynomial map used in (4.3)-(4.4) and (A.2), respectively. Instead, shaded regions show the range of vk655

and φk in R1 (gray) and R3 (light blue). Then, the cobweb steps in these regions follow the (surface) maps656

(4.3)-(4.4) and (A.2) for R1 and R3, respectively, for (vk, φk) in these regions, even though specific curves657

are not shown. Given the width of these shaded regions, it is possible to give a maximum and minimum for658

vk+1 and φk+1, which also motivates the auxiliary map defined and applied in Section 6 for R1.659
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Fig. 13: Application of M (4.1) projected on the vk and φk phase planes, with step navigation for (fn, gn)
discussed in the text. Curves show (separable) maps for Regions R2 (green), R4 (red), and R5 (olive).
Shaded regions are for approximate 2D maps for R1 (gray) and R3 (light blue), which can not be drawn
in these projections. Black dashed lines show the respective diagonals. Parameters: Case FP (a),(b):
d = 0.35, v0 = 0.2, φ0 = 0.1; Case PD (c),(d): d = 0.30, v0 = 0.2, φ0 = 0.1; Case CD (e),(f): d = 0.26, v0 =
0.1, φ0 = 0.2. Supplementary Video 2 provides a step-by-step demonstration of using the overlapped curves
in cobwebbing. 20

This manuscript is for review purposes only.



We provide some navigation in order to trace the cobweb behavior for M as shown in Fig. 13. A660

more detailed step-by-step navigation is provided in Appendix A.9 and Supplementary Video 2. Since the661

panels show projections of the higher dimensional maps (fj , gj) in the phase planes, there is an overlap in662

these projections, and thus, one must take care to use the correct map for vk and φk in the overlap region.663

Specifically, for each cobweb step, (vk+1, φk+1) takes a value according to the map for the region that is664

common for both (vk, φk). In all cases shown, the initial condition (vk, φk) for k = 0 takes small values in665

R3. We observe that R3, R4, and R5 overlap in the vk − vk+1 phase plane for these smaller values of vk,666

while in the φk − φk+1 phase plane the curve for R2 and region R3 overlap for smaller φk. Since R3 is the667

only region in common for vk and φk for these small values, we conclude that (vk, φk) ∈ R3, and the first668

step follows (vk+1, φk+1) = (f3(vk, φk), g3(vk, φk)) in (A.2), as shown in Fig. 13. The result gives the new669

(vk, φk), for the next step with k = 1, for which vk remains small while φk has increased (before reaching the670

attracting dynamics observed for later steps in R1). Again R3, R4, and R5 overlap in the vk − vk+1 phase671

plane for these smaller values of vk, while in the φk−φk+1 plane, φk takes a value corresponding to the range672

for R4 only. Then (vk+1, φk+1) follows the map (f4, g4) for R4. Note that the approximate maps for R3 and673

R5 are not applied for vk, even though vk takes values in their range, since φk is not in either R3 or R5.674

Eventually, for a larger k > 1, vk has increased to a range with an overlap between R2 and R1, while φk has675

decreased back to the region with overlap between R2, R1 and R3. Then, the cobweb steps are governed676

by (f2, g2) for (vk, φk) ∈ R2, and by (f1, g1) in (4.3)-(4.4) for (vk, φk) ∈ R1, as already discussed in Remark677

4.2 about the overlap between the green curves and the grey shaded R1 region. From there, the dynamics678

are dictated by the attracting dynamics of R1 for panels (a),(b) and (c),(d) corresponding to Cases FP and679

PD, respectively. In panels (e) and (f), the attracting chaotic dynamics for Case CD alternate between R1680

and R2, as described in Remark 4.2.681

6. The Auxiliary Map Method for Global Dynamics. It is worth noting that a computationally682

realized implicit composite map could have been employed up to this point, bypassing the need for polynomial683

approximations of the surfaces in Fig. 6. While such a map could still offer insights into the system’s global684

dynamics, it would not allow the explicit computer-assisted analysis of the system’s attracting domain. This685

limitation underscores the value of our explicit composite map, which is an analytical tool for deriving686

tight bounds on the size of the system’s non-trivial attractors through analyzing the auxiliary maps, as687

demonstrated in Section 6.3.688

The trajectories above indicate visually that Regions R1 and R2 contain an attracting domain that689

attracts all non-trivial trajectories in R1 and R2 for the considered range of parameter d. In particular, the690

magenta orbits in Fig. 13 highlight the last 10% of the cobweb trajectories, and the stable orbits correspond691

to the solution given by the composite map M (3.1). In Case FP, the solution is a fixed point, shown in692

panel (a)(b), and is contained in R1. In Case PD, the solution has period two and is also contained in R1,693

as shown in panel (c)(d). In Case CD, the solution is chaotic but is also contained within R1 and R2, shown694

in panel (e)(f). Therefore, the stable orbits shown in Fig. 13 indicate the existence of an attracting domain.695

However, determining the bounds for the attracting domain as a subset of regions R1 and R2 directly from696

the 2D composite map is out of reach, especially for multi-period and chaotic dynamics. In Fig. 13, iterations697

of the closed-form composite map visualize the system’s long-term behavior, with explicit curves shown only698

for regions R2, R4, and R5 when projected onto the Żk+1 − Żk and φk+1 − φk planes. In contrast, for R1699

and R3 the maps cannot be visualized under this projection, suggesting that an alternate approach is needed700

to capture global attraction using these cobweb phase portraits. The difference between the regions follows701

from the separable form of the maps in R2, R4, and R5, in contrast to the 2D maps of R1 and R3. This702

observation inspires the design of an auxiliary map, in which we dissect each 2D map into a pair of 1D maps703

based on the lower and upper bounds of the 2D map domain. This definition can then take advantage of704

the separable form and lead to bounds on the composite map’s attracting domain.705

6.1. Constructing the Auxiliary Maps. The auxiliary map is constructed using the bounds on the706

approximate maps (fn, gn) for each Region Rn, where (fn, gn) depends on both variables vk and φk. In707

our case, these regions are R1 and R3. We define the auxiliary maps in terms of the maxima and minima708

of (fn, gn), yielding the form for the upper bound: ξU (vk) : vk → vk+1 and ηU (φk) : φk → φk+1, and709

similarly for the lower bound. This decouples the two 2-D equations into two separable 1-D equations for710

each Rn. The advantage of this formulation is its ability to track the dynamics of velocity vk and the phase711

φk separately, thus facilitating a 1D cobweb phase portrait for each. At the same time, it captures the712
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worst-case scenario and provides conservative bounds on the maximum and minimum range of (fn, gn) at713

each iterate. Furthermore, we show that a repeated application of this auxiliary definition hones in on the714

attracting solutions or regions of the full map. While here we give the construction in terms of general region715

number n, we emphasize that below it is applied for R1 only, as we focus on the attracting behavior.716

The construction of the auxiliary map begins with the bounds for vk and φk for a given Rn: vk ∈717

[vmin
0 , vmax

0 ] and φk ∈ [φmin
0 , φmax

0 ]. Then two curves ξU (vk) and ξL(vk) are determined for vk+1 in terms of718

the max and min of fn over the range of possible φk values,719

ξ(N)
n =


vk+1 = ξ

(N)
U (vk), where ξ

(N)
U := max

φ∈A(N)
n

{fn(vk, φ)},

vk+1 = ξ
(N)
L (vk), where ξ

(N)
L := min

φ∈A(N)
n

{fn(vk, φ)}.
(6.1)720

The auxiliary maps, ξ
(N)
n and η

(N)
n defined similarly below, alternate between the two curves in order to721

provide a sequence of bounds on the maximum and minimum range of (fn, gn). Here, we use a generic initial722

vk, with refinements discussed below and in Section 6.2. The superscript N gives the index of updates of723

the auxiliary map after the first and subsequent applications, particularly valuable when the auxiliary map724

is contracting, as demonstrated below for the specific cases considered in Section 6.2. Likewise, the auxiliary725

map η
(N)
n is given in terms of two maps ηU , ηL that bound φk+1 for vk ∈ [vmin

0 , vmax
0 ]:726

η(N)
n =

{
φk+1 = η

(N)
U (φk), where η

(N)
max := max

v∈A(N)
n
{gn(v, φk)},

φk+1 = η
(N)
L (φk), where η

(N)
min := min

v∈A(N)
n
{gn(v, φk)}.

(6.2)727

To track the (possible) contraction of the region for each update, we define A(N)
n in (6.4)-(6.5) below. There728

A(N)
n = Rn for all N if the region does not contract, while A(1)

n = Rn and A(N)
n ⊆ Rn for N > 1 for a729

contracting region, updated as the auxiliary map is updated. For the system studied here, it is only for730

n = 1 that A(N)
n contracts.731

We then write the full auxiliary map, replacingM (4.1) withM(N)
A , which is composed of a combination732

of maps (fn, gn) and (ξ
(N)
n , η

(N)
n ), with vk, φk corresponding to impact velocities on ∂B as in (4.1). For our733

system it is only A(N)
1 that contracts as N increases, so we define the full auxiliary map as734

(vk+1, φk+1) =M(N)
A (vk, φk),735

M(N)
A (vk, φk) ≡


(ξ

(N)
1 (vk), η

(N)
1 (φk)) for (vk, φk) ∈ A(N)

1 ,

(ξ
(N)
3 (vk), η

(N)
3 (φk)) for (vk, φk) ∈ R3,

(fn(vk, φk), gn(vk, φk)) for (vk, φk) ∈ Rn, n = 2, 4, 5.

(6.3)736

We define region A(N)
1 ⊆ R1 to allow a change in its size over the N updates of the auxiliary construction,737

A(N)
1 = A(N)

1v ×A
(N)
1φ =

{
R1 for N = 1,

B(N)
1 otherwise,

(6.4)738

B(N)
1 = B(N)

1v × B
(N)
1φ ≡ [vmin

` , vmax
` ]× [φmin

` , φmax
` ](6.5)739

for (v`, φ`) =
(
M(N−1)
A

)`
(v0, φ0), `� 1.740

Stated in words, (6.4)-(6.5) simply indicate that for the N th (N > 1) update of (ξ
(N)
1 (vk), η

(N)
1 (φk)), the741

region A(N)
1 is updated to the limiting range of (vk, φk) obtained from a large number of iterations of742

(ξ
(N−1)
1 (vk), η

(N−1)
1 (φk)) using (6.1)-(6.2). Given the separable form of (6.1)-(6.2), both A and B are defined743

in terms of the ranges of v and φ.744

The iteration of (6.1)-(6.2) is particularly valuable for region(s) in which the dynamics are contracting745

since these iterations identify a relaxation within the extremes imposed by the defined maxima and minima,746

leading to an update of the region A(N+1)
1 andM(N+1)

A as in (6.4)-(6.5). Here, we have proposed (6.1)-(6.2)747

starting from generic values of (vk, φk). In Section 6.2, we refine the iterative cobwebbing-type application of748
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the auxiliary maps based on a choice of (vk, φk) that ensures improvements within the worst-case scenario.749

Then, repeated updates for increasing N give conservative bounds on the limiting size of the attracting750

domain.751

6.2. Application of the auxiliary mapM(N)
A . In Section 5, the application ofM via cobweb phase752

portraits indicates that the attracting dynamics are concentrated in R1 for the larger values of d considered753

in this study. Specifically, in Fig. 13, we see attracting solutions contained in R1 in Case FP and PD, while754

the trajectories oscillate between R1 and R2 in Case CD.755

While we could construct an auxiliary map in the setting where the dynamics revisit regions with756

transient dynamics (e.g., R2), this would require a different construction to be useful in demonstrating757

global stability; instead, the attracting dynamics suggest a more efficient approach. From Fig. 13, the758

attracting domain covers values in R1 for Cases FP and PD, and in a region just outside of R1 for Case CD.759

This suggests constructing the auxiliary map on a slightly expanded region R+
1 ⊇ R1, noting that this does760

not reduce the accuracy of the approximation as it uses the more accurate 2D approximation over a larger761

region, reducing the region over which the separable approximation (f2, g2) is used. Then we can expand762

the size of Region R1 to R+
1 sufficiently so that the long-term dynamics remain in R+

1 and R+
1 ⊇ R1, and763

here we consider the auxiliary map for R+
1 only.764

The following are the ranges of the initial region A(1)
1 = R+

1 for the three cases, the fixed point (FP)765

case, the period-doubling (PD) case, and the chaotic dynamics (CD) case of the composite map M:766

Case FP: R+
1 := {(vk, φk) : vk ∈ [0.7, 1] and φk ∈ [0.2, π/3]}(6.6)767

Case PD: R+
1 := {(vk, φk) : vk ∈ [0.65, 1] and φk ∈ [0.13, π/3]}(6.7)768

Case CD: R+
1 := {(vk, φk) : vk ∈ [0.64, 1] and φk ∈ [0.08, π/3]}.(6.8)769

Here, R+
1 is typically an over-estimate of the attracting domain, given that it is based on the approxi-770

mation obtained by comparing the projection of the exact maps with diagonals in the phase planes shown771

in Section 3.772

By iterating the auxiliary maps (6.1)-(6.2), under a “worst-case-scenario” (WCS) cobwebbing application773

described below, we can improve the lower and upper bounds for all trajectories of the composite map M774

(4.1) within repeated updates for the bounds on the attracting domain.775

Figure 14 (a)-(b) illustrates the construction of ξ
(1)
U/L and η

(1)
U/L used in (6.1) and (6.2) for Case FP, with776

A(1)
1 = R+

1 and N = 1. In the vk − vk+1 phase plane, the family of curves f1(vk, φk) do not cross each777

other, so ξ
(1)
U := f1(vk,min(φk)) and ξ

(1)
L := f1(vk,max(φk)) for φk ∈ [0.2, π/3] , thus yielding closed-form778

expressions for ξ
(1)
U/L in terms of f1. In contrast for φk, the family of curves for g1(vk, φk) with fixed vk cross779

each other so that the envelope for g1 is found computationally from the definition of η
(1)
U and η

(1)
L in (6.2).780

Auxiliary maps for R3 can also be constructed using the method described in Section 6.1. However, since781

R3 is a transient region, we do not pursue its construction here but focus on using the auxiliary map in R+
1 .782

We break the WCS cobwebbing process into three steps.783

784

Step 1). We start by considering the evolution over one WCS iterate, using the lower and upper785

bounds ξ
(1)
U/L and η

(1)
U/L in (6.1)-(6.2) for the v and φ components. We apply these maps to the maximum786

and minimum of the upper bound curve ξ
(1)
U (vk) and lower bound curve ξ

(1)
L (vk), respectively, over the full787

range of v in A(1)
1 , i.e., I

(1)
0v = [vmin

0 , vmax
0 ],788

ξ
(1)
U (P ) for P = argmaxv ξ

(1)
U (v), ξ

(1)
L (Q) for Q = argminv ξ

(1)
L (v) .(6.9)789

Reflecting these through the diagonal gives us the first WCS iterates v1, which define a new interval790

I
(1)
1v = [vmin

1 , vmax
1 ]. By the definition (6.9), the first-iterate images of any other point from I

(1)
0v via the791

auxiliary maps also fall inside the updated interval I
(1)
1v . This process and the analogous iteration for ηU and792

ηL are illustrated in Fig. 14, including I
(1)
1v and the analogous I

(1)
1φ shown in green. We notice that both of793

these intervals fall within the range of v and φ for A(1)
1 = R+

1 .794

795
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Fig. 14: (a)-(b): Visualization of the auxiliary maps ξ
(1)
U/L and η

(1)
U/L from (6.1) and (6.2) for R+

1 and d = 0.35.

Here, we dropped the superscript on ξU/L and ηU/L for clarity of visualization. In (a)-(b) f1 and g1 are
graphed for fixed φk and vk values, respectively, confined between their respective lower, ξL(vk) and ηL(φk)
(orange diamonds) and upper, ξU (vk) and ηU (φk) (blue diamonds) bounds. (c): The points P and Q are
the location of the respective maximum and minimum of the maps ξU (blue) and ξL (orange) over the

entire interval I
(1)
0v for v ∈ R+

1 . The images ξU (P ) and ξL(Q) define the reduced interval I
(1)
1v (green). The

black-dotted line indicates the successive application of (6.10), each time applying ξU and ξL to the points

corresponding to their max and min, respectively, over the interval I
(1)
jv , j = 1, 2, . . .. In panel (d) iterations

are similar to those in (c), shown for φk, ηU/L and the auxiliary map (6.11). The first iterate applies (6.11)

to the points R and O, corresponding to the max and min of ηU and ηL on the full interval I
(1)
0φ for φ ∈ R+

1 ,

whose image yields the reduced interval I
(1)
1φ (green). The black-dotted line indicates successive application

of (6.11) to the points corresponding to the max and min of ηU and ηL, respectively, over the interval I
(1)
jφ ,

j = 1, 2, . . ..

Remark 6.1. A single application of the WCS as in Step 1 to the initial region [vmin
0 , vmax

0 ]×[φmin
0 , φmax

0 ] =796

R+
1 , gives bounds for the attracting domain, given by I

(1)
1v × I

(1)
1φ , that is, vmin

1 < vk < vmax
1 and φmin

1 < φk <797

φmax
1 .798

This result from Step 1 represents a conservative bound for the region that attracts all trajectories of799

the 2D composite map M, since the other regions R`, ` 6= 1 are demonstrated as transient, as discussed800

further following Statement 6.1 below. This observation motivates further iterations of this type, seeking801

additional reductions of the attracting domain in Steps 2 and 3.802

Step 2). We repeat the procedure of Step 1 under the WCS scenario, applying (6.1)-(6.2) to the max803

and min of the curves ξ
(1)
U , ξ

(1)
L within consecutive intervals I

(1)
kv , k = 1, 2, . . ., as in (6.9). This repeated804
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Fig. 15: Illustration of the 1st, 2nd, and 11th update of the auxiliary mapM(N)
A (6.3) for Case FP (d = 0.35).

The blue and orange curves show (ξ
(N)
U , η

(N)
U ) and (ξ

(N)
L , η

(N)
L ), respectively for R+

1 and (6.1)-(6.2). The
blue shaded areas between these curves represent the possible values of vk and φk in R+

1 . For each N , 400

steps are taken, and the last 40 steps are highlighted in red. (a)-(b): N = 1 and A(1)
1 = R+

1 , defined in
(6.6). Generic cobwebbing (thin dark line) via (6.1)-(6.2) with initial conditions (v0, φ0) in R2. The first
few steps are governed by (f2, g2) (4.5) (green line). In (a), the limiting behavior of (6.1) (red square) is a

slight underestimate for size of A(2)
1v (yellow) obtained via the WCS cobwebbing (6.10). In contrast, in (b),

results from (6.2) and (6.11) are identical; (c)-(d): N = 2, with the attracting domain from N = 1, A(2)
1v

and A(2)
1φ used as the initial domain size. (e)-(f): N = 11, with the attracting domain from N = 10 [not

shown] used as the initial condition. The generic cobwebbing trajectory converges to a period-2 cycle (pv, qv
in (e) and pφ, qφ in (f)) that determines the size of the attracting domain: A(11)

1v : vk ∈ [0.8488, 0.8490] and

A(11)
1φ : φk ∈ [0.3804, 0.3811]. Note its negligible size and the overall reduction from the original size A(1)

1 .
Results from (6.1)-(6.2) in (c)-(f) yield the same attracting domain as the WCS cobwebbing (6.10)-(6.10).

25

This manuscript is for review purposes only.



application can be expressed mathematically805

(6.10)

vmin
k+1 = min

vk∈I(N)
kv

{ξ(N)
L (vk)},

vmax
k+1 = max

vk∈I(N)
kv

{ξ(N)
U (vk)}, where I

(N)
kv = [vmin

k , vmax
k ], k = 0, 1, 2, . . .

806

for N = 1. These iterations are illustrated in Fig. 14(c)-(d) by the dotted black curves. For example, since807

ξ
(1)
U (vk) is monotonically decreasing on I

(1)
0v , while ξ

(1)
L (vk) is not, the point P falls outside I

(1)
1v , while Q808

is inside. Then, ξL(Q), and Q give the points to use in the application of (6.10). Then I
(1)
2v = [vmin

2 =809

ξ
(1)
L (Q), vmax

2 = ξ
(1)
U (ξ

(1)
L (Q))]. Note that the application of (6.10) yields vmin

1 and vmin
2 that are identical810

to the previous iterate, which implies that I
(1)
2v is the final estimate for the attracting domain for v, B(2)1v ,811

starting with initial domain R+
1 . Likewise iterating for φk from I

(1)
1φ , using812

(6.11)

φmin
k+1 = min

φk∈I(N)
kφ

{η(N)
L (φk)},

φmax
k+1 = max

φk∈I(N)
kφ

{η(N)
U (φk)}, where I

(N)
kφ = [φmin

k , φmax
k ], k = 0, 1, 2, . . .

813

for N = 1, yields I
(1)
2φ = [φmin

2 = η
(1)
L (η

(1)
U (R)), φmax

2 = η
(1)
U (η

(1)
L (O))] ⊂ I

(1)
1φ , following from the shape of814

the curves η
(1)
U and η

(1)
L . The repeated application of (6.11) converges to its period-two cycle that yields the815

approximation for the size of the attracting domain for φ given by B(1)1φ . Then, the reduction of R+
1 obtained816

through WCS cobwebbing is B(2)1 = B(2)1v × B
(2)
1φ .817

The results of Step 2 are specific to starting with an initial domain A(1)
1 = R+

1 which defines ξ
(1)
U and818

ξ
(1)
L , used at each iteration in (6.10) and (6.11). Since the iterations yield B(2)1 ⊂ R+

1 , this suggests that819

additional reductions for the bounds on the attracting domain may be obtained by updating the bounds ξ
(2)
U,L820

and η
(2)
U,L, using (6.4)-(6.5), i.e., using A(2)

1 = B(2)1 ⊂ R+
1 . This leads to Step 3, which we write generically821

for the N th update:822

823

Step 3). Define an updated initial region A(N)
1 = BN1 , obtained via (6.4)-(6.5), with corresponding824

updates for ξ
(N)
U,L and η

(N)
U,L . Then, repeated application of (6.10) and (6.11) yields iterates that converge to825

a 2-cycle. The values of this 2-cycle then give new bounds on the attracting domain, denoted by BN+1
1 .826

In the remainder of this section Steps 1-3 are applied to the FP, PD, and CD cases, to illustrate the827

results of the WCS auxiliary map (6.10)-(6.11). The implications for the attracting domain are discussed in828

Section 6.3.829

While (6.10)-(6.11) refines the generic (6.1)-(6.2) with a WCS choice of (vk, φk) on each iteration, the830

two cobwebbing approaches are equivalent in some cases. This property is determined by the shape of831

ξ
(N)
U,L and η

(N)
U,L (blue and orange curves in Fig. 14). For example, if vmin

k+1 > vmin
k and vmax

k+1 < vmax
k ,832

as in the case of monotonically decreasing ξ
(N)
U,L and η

(N)
U,L , both yield the same result. This observation is833

useful, since cobwebbing based on the generic auxiliary map (6.1)-(6.2) is more straightforward to implement834

computationally since it does not restrict its application to the maximum or minimum on ξ
(N)
U,L and η

(N)
U,L835

curves, as in the WCS approach (6.10) -(6.11). However, in the WCS treatment of general functions ξ
(N)
U,L and836

η
(N)
U,L , the bounds v

min/max
1 and/or φ

min/max
1 might not be improved with further iterates of (6.10) and/or837

(6.11) for fixed N . In such cases (6.1)-(6.2) may underestimate the size of the attracting domain, since838

it does not restrict its application to the maximum or minimum on the upper or lower curves, which the839

WCS approach takes into account. For example, Figure 15(a) shows results from (6.1)-(6.2) iterating from840

a generic vk, obtained from a random initial condition, with a limiting period-2 cycle in red. This is slightly841

smaller than the limiting results from WCS cobwebbing (6.10) and/or (6.11) (yellow bar). In contrast, in842

Fig. 15(b), the intervals are identical, due to the property that η
(1)
L (φk) and η

(1)
U (φk) are monotonically843

decreasing outside A(2)
1φ , so that the WCS cobwebbing procedure repeatedly excludes the previous global844
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Fig. 16: Illustration of the size of the domain AN for each N , showing that the attracting domain size
decreases monotonically for Case FP, reaching 0.000185 and 0.0001867 in the vk, φk directions, respectively.

maximum and minimum over A(1)
1φ . As discussed further below, the generic approach achieves the same845

result as WCS in most of the FP, PD, and CD cases considered here, particularly when applying Step 3,846

that is, additional N updates of the interval A(N)
1 .847

Figure 15(c)-(f) illustrates these updates of region A(N)
1 andM(N)

A . Each row shows results for a different848

update, specifically for N = 2 and N = 11. The red box highlights the last 10% of the cobweb iterations,849

indicating the limiting dynamics for M(N)
A . The size of the corresponding attracting domain (indicated by850

the yellow interval) shrinks with N , and A(N)
1 for N > 1 is updated accordingly, as in (6.4)-(6.5). For851

example, in Fig. 15(a)(b), A(1)
1 = R+

1 for N = 1 with vk ∈ [0.7, 1] and φk ∈ [0.2, π/3], and the limiting range852

shown by the yellow interval is vk ∈ [0.771, 0.909] and φk ∈ [0.297, 0.791]. Continuing with this process for853

increasing N , Figs. 15(c),(f) and (e),(f) illustrate the smaller range of vk and φk given by ξ
(N)
U/L and η

(N)
U/L,854

mirroring the smaller size of A(N)
1 with increasing N . As shown at N = 11, A(11)

1 is significantly smaller855

than A(1)
1 . This contraction property with increasing N is summarized in Fig. 16, which shows how the856

length and width of the attracting domain for vk and φk decreases with increasing N . Thus, even though857

the max/min characteristics of the auxiliary map do not allow the limiting behavior of MA to be a fixed858

point, nevertheless, for Case FP, we see that region A(N)
1 shrinks to a negligible size for large N .859

We also apply the auxiliary map method to estimate the attracting domain for non-trivial dynamics in860

Case PD and Case CD and observe the contraction property from Fig. 17-19 for Case PD and CD.861

Similar to the cobweb illustration of the updates in the Case FP, Fig. 17 and Fig. 19 illustrate the updates862

of the region A(N)
1 and M(N)

A in Case PD and Case CD, respectively. The setup in Fig. 17 and Fig. 19 is863

the same as in Fig. 15, with each row showing results from updates of A(N)
1 . In Case PD, N = 1, N = 2,864

and N = 11 are shown, while Case CD demonstrates the cobwebbing diagrams for N = 1 and N = 6.865

Moreover, in contrast to the Case FP, where the limiting dynamics approaches a point for N large, for Cases866

PD and CD, the attracting domain follows from the attracting period-2 cycle, with a limiting size at a finite867

N dictated by |pv − qv| and |pφ − qφ|. The pairs of points (pv, qv) and (pφ, qφ) shown in Figs. 15,17,19 for868

the largest value of N indicate the maximum q• and minimum p• of period-2 cycle for v and φ. Likewise,869

these values can be used to explicitly determine the size of the globally attracting domain via constructing870

second-iterate maps, as discussed in the next section.871

In Case PD, the limiting dynamics converge to an attracting period-2 cycle for both vk and φk when872

N is large, with much of the size reduction of A(N)
1 occurring in the first two updates, as shown in Fig. 18.873

Similar to Case PD, Fig. 19 shows that the limiting dynamics of Case CD for sufficiently large N yield cycles874

that bound a relatively larger range of vk and φk. Case CD does not allow using the generic cobwebbing via875

(6.1)-(6.2) since the lower bounds ξ
(N)
L (vk) and η

(N)
L (φk) are not monotonically decreasing functions on any876

updated interval.877
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Fig. 17: Illustration of the 1st, 2nd, and 11th update of the auxiliary mapM(N)
A (6.3), for Case PD (d = 0.30),

using the same procedure as in Fig. 15. (a)-(b): N = 1 and A(1)
1 = R+

1 (6.7). Generic cobwebbing (thin dark
line) via (6.1)-(6.2) with initial conditions (v0, φ0) in R2. Similar to Fig. 15(a), in (a) the limiting behavior

via (6.1)-(6.2) (red square) is a slight underestimate for the size of the actual size of A(2)
1v (yellow), obtained

via the WCS cobwebbing (6.10). In (b), they are identical. (c)-(d): N = 2 and A(2)
1 : vk ∈ [0.666, 0.850] and

φk ∈ [0.146, 0.977]. (e)-(f): N = 11 and A(11)
1 : vk ∈ [0.684, 0.832] and φk ∈ [0.156, 0.758], where the size of

A(N)
1 for N > 1 follows directly from the limiting (yellow) behavior in the (N − 1)th update ((6.4)-(6.5)).

The stars with (pv, qv) and (pφ, qφ) in panels (e) and (f) indicate the min and max of the period-2 cycle.
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Fig. 18: Illustration of the attracting domain size for case PD that decreases to a limiting size, with the final
limiting size as 0.1472 and 0.5991 for v and φ, respectively.

6.3. Second-iterate maps for the attracting domain. The auxiliary map method developed in878

the previous subsection opens the door to explicitly characterizing the global dynamics of the composite879

map. Figures 15-19 demonstrate that the final size of the attracting domain is always bounded by a period-2880

cycle. In the scenarios where the WCS cobwebbing was applied (Fig. 15(a) for the FP case, Fig. 17(a) for881

the PD case, and Fig. 19(a)-(d) for the CD case), this orbit is a 2-cycle of the WCS cobwebbing iterative882

procedure (6.10)-(6.11). In the scenarios where the generic cobwebbing (6.1)-(6.2) yields the same result as883

WCS (Fig. 15(b)-(f) for the FP case, Fig. 17(b)-(f) for the PD case), this orbit is a 2-cycle of the auxiliary884

map based on alternating upper and lower bound curves in (6.1)-(6.2).885

Since these 2-cycles bound a subset of the auxiliary map’s phase space, their existence and global stability886

imply the existence of a globally stable attracting domain for the trajectories of the composite mapM (4.1).887

The bounds on the attracting domain are indicated as qv, pv, qφ, and pφ in Figs. 15, 17, and 19 for the largest888

value of N shown. When applicable, computing these values as the roots of m iterations of the maps (6.1)889

and (6.2) for appropriate m, we obtain their stability and thus bounds on the attracting domain for the890

dynamics.891

First, to obtain the bounds on vk and φk used in the (N + 1)th update, we consider the general second-892

iterate WCS maps for vmax
k+2 and φmax

k+2, defined via (6.10) and (6.11), respectively:893

vmin
k+2 = vmax

k+1(vmin
k ), where vmin

k = min
vk−1∈I(N)

(k−1)v

{ξ(N)
L (vk−1)} and vmax

k+1 = max
vk∈I(N)

kv

{ξ(N)
U (vk)},(6.12)894

φmin
k+2 = φmax

k+1(φmin
k ), where φmin

k = min
φk−1∈I(N)

(k−1)φ

{η(N)
L (φk−1)} and φmax

k+1 = max
φk∈I(N)

kφ

{η(N)
U (φk)}.(6.13)895

896

In cases where the WCS cobwebbing via (6.10) is equivalent to the generic cobwebbing using (6.1) as897

detailed in Subsection 6.2, the second-iterate WCS map (6.12) for vmin
k+2 transforms into the second-iterate898

map:899

vk+2(vk) = ξ
(N)
L

(
ξ
(N)
U (vk)

)
.(6.14)900

The maps ξ
(N)
L/U are written explicitly in terms of f1 evaluated at φ

min/max
0 . They do not cross each other,901

analogous to f1 shown in Fig. 14(a). Then, we have the closed-form expression for the first-iterate (6.1) and902

second-iterate map (6.14), where the latter for vk+2 is a 9th-order polynomial of the form903

vk+2(vk) = f1(f1(vk, φ
max
0 ), φmin

0 )904

= α0 + α1v
1
k + α2v

2
k + α3v

3
k + α4v

4
k + α5v

5
k + α6v

6
k + α7v

7
k + α8v

8
k + α9v

9
k .(6.15)905906

Here, αi, i = 1, ..., 9 are polynomials that depend on d and on φmin
0 and φmax

0 , whose coefficients b0, b1, ..., b9907

are listed in Supplementary Section III. The (stable) root vk+2 = vk = pv of (6.15) corresponds to the908

minimum on the limiting behavior of ξ
(N)
1 (6.1), with the maximum qv obtained by909
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Fig. 19: Illustration of the 1st and 6th update of the auxiliary map M(N)
A (6.3), for d = 0.26, corresponding

to Case CD, using the same procedure as in Fig. 15. In panels (a)-(b), the attracting domain (dashed

line) is calculated using one iterate of the WCS cobwebbing (6.10)-(6.11) to obtain A(N)
1v and A(N)

1φ (yellow
interval). Further updates over N offer a slight reduction, with the limiting size shown in (c) and (d). Here,

A(2)
1 : vk ∈ [0.673, 0.789]; φk ∈ [0.093, 0.725] and A(6)

1 : vk ∈ [0.638, 0.803]; φk ∈ [0.088, 0.868] The stars
with (pv, qv) and (pφ, qφ) in panels (c) and (d) indicate the min and max of the period-2 cycle of the WCS
iterative procedure (6.10)-(6.11). Panels (e) and (f) show the decrease of the attracting domain size to a
limiting size with the limiting size equal to 0.166 and 0.780 for v and φ, respectively.

vk = pv, vk+1 = qv = f1(vk, φ
min
0 ) = f1(pv, φ

min
0 ) = ξ

(N)
U (pv),(6.16)910

=⇒ vk+2 = pv = f1(vk+1, φ
max
0 ) = f1(qv, φ

max
0 ) = f1(f1(pv, φ

min
0 ), φmax

0 ) = ξ
(N)
L (pv) .911

These values pv and qv determine explicit bounds for the attracting domain for vk indicated by the red912

boxes for sufficiently large N in Figs. 15(e) and Fig. 17(e) for the FP and PD cases that allow using (6.15).913

Note that deriving such tight bounds for global dynamics directly from the 2D composite map MA via a914

Lyapunov function or similar approaches without the constructive use of the explicit auxiliary maps seems915
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elusive.916

Similarly, the periodic solutions for φk are based on the definition of η
(N)
1 in (6.2). For the FP and PD917

cases, we consider918

φk+2(φk) = η
(N)
L

(
η
(N)
U (φk)

)
.(6.17)919

In contrast to (6.15) for vk, the family of curves g1(vk, φk), in the definition of ηL/U (6.2) cross each other920

for different fixed vk ∈ [vmin
0 , vmax

0 ], analogous to Fig. 14(b). Then, there is no closed-form expression for the921

first- and second-iterate maps φk+1 and φk+2, and ηL/U are determined numerically in (6.17).922

For the FP and PD cases, we calculate pφ and qφ, which give the minimum and maximum of the limiting923

behavior shown by the red boxes in Fig. 15(f) and Fig. 17(f) for sufficiently large N . They are given by924

φk = pφ, φk+1 = qφ = max
vk

g1(vk, φk) = max
vk

g1(vk, pφ) = η
(N)
U (pφ),(6.18)925

=⇒ φk+2 = pφ = min
vk

g1(vk, φk+1) = min
vk

g1(vk, qφ) = min
vk

g1(vk,max
vk

g1(vk, pφ)) = η
(N)
L (η

(N)
U (pφ)).926

The curves obtained from applying the iterates given in (6.15) and (6.17) are shown in Fig. 20(a-d) in the927

FP and PD cases. Panels (a)-(d) illustrate the stability of the fixed points pv and pφ for the period-2 cycle.928

There, the curves show the limiting behavior of the second iterate ofM(N)
A , given by (6.14) and (6.17). They929

intersect the diagonals in the vk+2 − vk and φk+2 − φk phase planes with a slope less than unity. Then, for930

sufficiently large N we obtain the stable fixed points pv and pφ, likewise implying the stability of the fixed931

points qv and qφ, which all together provide the range of the attracting domain for M(N)
A in Fig. 15 and932

Fig. 17.933

In the CD case where the lower bound function ξ
(N)
L (vk) does not allow using (6.15) and (6.17) even934

for sufficiently large updates N , the WCS iterations (6.12) and (6.13) yield a 2-cycle for vmin
k+2 and φmin

k+2,935

respectively:936

vmin
k+2 = pv = min

vk+1

{f1(vk+1, φ
max
0 )}, vmax

k+1 = qv = max
vk
{f1(vk, φ

min
0 )},(6.19)937

φmin
k+2 = pφ = min

φk+1

{η(N)
L (φk+1)}; φmax

k+1 = qφ = max
φk
{η(N)
U (φk)}.(6.20)938

939

Figure 19(c),(d) illustrates the 2-cycle for vmin
k and φmin

k , respectively. Additionally, Fig. 20(e),(f) shows the940

fixed points pv and pφ of the second-iterate WCS map (6.12) and (6.13) that provide the lower bound for941

the attracting domain whose upper bounds, qv and qφ, can similarly be identified from (6.19)-(6.20).942

The following statement summarizes the results for the existence of a globally attracting domain for the943

auxiliary composite map M(N)
A highlighting cases where the generic and WCS iterations provide the same944

results.945

946

Statement 6.1. [Bounds for the attracting domain].947

1). The generic (6.1)-(6.2) and WCS (6.10) -(6.11) iterates yield the same upper and lower bounds functions948

ξ
(N)
U,L and η

(N)
U,L in the case that the auxiliary map M(N)

A in A
(N)
1 ∈ R+

1 satisfies the property on each kth949

iterate,950

(6.21)
argmax

vk−1∈I(N)

(k−1)v

ξU (vk−1) /∈ I(N)
kv = [vmin

k , vmax
k ],

argmin
vk−1∈I(N)

(k−1)v

ξL(vk−1) /∈ I(N)
kv ,

951

952

(6.22)
argmax

φk−1∈I(N)

(k−1)φ

ηU (φk−1) /∈ I(N)
kφ = [φmin

k , φmax
k ],

argmin
φk−1∈I(N)

(k−1)φ

ηL(φk−1) /∈ I(N)
kφ .

953

Then, each successive application of either of these auxiliary maps yields new global maxima of ξ
(N)
U and η

(N)
U954

and global minima of ξ
(N)
L and η

(N)
L on the updated v- and φ-intervals, I

(N)
kφ and I

(N)
kφ . Then, the auxiliary955
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Fig. 20: Second-iterate maps for the Nth update of the auxiliary maps. The curves are obtained from (6.14)
and (6.17). (a)-(b): The FP case for N = 2, 11. The blue curve corresponds to the 2nd update. The purple
curve for the 11th update is invisible due to the strong contraction of the attracting domain after the updates.
(c)-(d): The PD case for N = 2, 11. (e)-(f). The CD case for N = 6. The purple (red) points pv and pφ are
fixed points of the second-iterate maps (6.14) and (6.17) in the FP (PD) cases and correspond to 2-cycles,
defined in (6.16)-(6.18) and depicted in Fig. 15(e)-(f) and Fig. 17(e)-(f), respectively. The blue fixed points
in (e)-(f) correspond to 2-cycles of the WCS auxiliary maps (6.12)-(6.13), also shown in Fig. 19(c)-(d).
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map M(N)
A can be defined by (6.1)-(6.2) and has a stable 2-cycle with alternating values pv and qv for vk956

and pφ and qφ for φk, given in (6.16)-(6.18). These values determine the bounds for the attracting domain957

A
(N+1)
1 = {pv < vk < qv, pφ < φk < qφ} in the composite 2D map M (6.3) in region R+

1 .958

2). The auxiliary mapM(N)
A is defined by the WCS map (6.10)-(6.11) if the kth iterate of the upper and lower959

bound functions ξ
(N)
U/L and η

(N)
U/L in A

(N)
1 ∈ R+

1 does not shrink (or expand) the v-interval and φ-interval, i.e.,960

I
(N)
kv = I

(N)
(k+1)v and I

(N)
kφ = I

(N)
(k+1)φ. Again, the auxiliary map M(N)

A defined via the WCS map has a stable961

2-cycle with alternating values pv and qv for vk and pφ and qφ for φk, given in (6.19)-(6.20). These values962

determine the bounds for the attracting domain A
(N+1)
1 in the composite 2D map M (6.3) in the region R+

1 .963

Remark 6.2. Parts 1) and 2) follow directly from the construction of the auxiliary map M(N)
A , either via964

the generic (6.1)-(6.2), or via WCS iterates (6.10)-(6.11). When (6.21)-(6.22) holds, e.g., when upper and965

lower bound functions ξ
(N)
U/L and η

(N)
U/L are monotonically decreasing in A

(N)
1 ∈ R+

1 , the generic (6.1)-(6.2)966

suffices. In the more general setting of attracting R+
1 , the most conservative one-iterate bound for A(N)

1967

(see Remark 6.1) may be improved by further WCS iterates, i.e., updates via Steps 2-3 in Section 6.2. In968

either case, the iterates converge to a stable 2-cycle, alternating between ξ
(N)
U/L and between η

(N)
U/L, preventing969

the emergence of higher-period orbits due either to the contraction condition (6.21)-(6.22) or to the WCS970

formulation (6.19)-(6.20).971

Note that the FP and PD cases at N ≥ 2 satisfy the condition (6.21)-(6.22) of Statement 6.1 (Fig. 15(c)-972

(f) for the FP case, Fig. 17(c)-(f) for the PD case). In contrast, the upper and lower bound functions in the973

CD case do not obey (6.21)-(6.22) (Fig. 19), so the attracting domain in the CD case is determined by the974

conditions of Part 2) in Statement 6.1.975

As described in Section 6.1, one can apply the auxiliary approach for all regions Rj for j = 2, 3, 4, 5,976

which confirms the transient behavior for regions outside of R1. Combining this transient behavior with the977

results of this section, we have the complete confirmation of the bounds on the attracting domains for M978

for different d, obtained via the limiting regions of the auxiliary map as applied in Sections 6.2, 6.3.979

7. Conclusion. While studying VI systems through local stability analysis has gained significant mo-980

mentum, understanding their global dynamics and bifurcations remains challenging due to the limited ap-981

plicability of classical global stability methods developed for smooth dynamical systems. In particular, the982

engineering literature has focused on linear stability and bifurcations, yet global behavior is important in983

design.984

In this paper, we propose a computer-assisted analysis based on reduced smooth maps for studying the985

global dynamics of the VI pair. The framework is designed to be generic, ideally for application to other986

non-smooth dynamical systems. The global stability analysis is facilitated by an approximation of the exact987

map for the states at impact, specifically the relative impact velocity Żk between the outer (the capsule) and988

the inner (the ball) masses and the impact phase ψk relative to the forcing. The exact non-smooth maps989

for these quantities are given by complex coupled transcendental equations for Żk and ψk. While the non-990

smooth dynamics present a challenge in using commonly defined maps, they also provide an opportunity for991

designing a new approach for impacting systems. Specifically, we use short sequences of returns to one side of992

the capsule to define building blocks for the maps. The output of such a return map yields surfaces for Żk+1993

and ψk+1 in terms of Żk and ψk. Return maps based on these building blocks give the foundation for dividing994

the state space into a few regions with potentially attracting or transient behavior, thus yielding valuable,995

distinguishing features that can be used for global stability results. Generating polynomial approximations996

of the exact return maps for Żk and ψk on each region in state space, we combine these to obtain a997

piecewise smooth approximate composite map to reconstruct the system’s dynamics. This framework is998

computationally efficient. It reduces the main computation to constructing polynomial return maps for only999

short-time realizations of the impact pair over the space of initial conditions. The method calculates a single1000

return, which is a sequence of only a few impacts. This requires limited computation, as compared to,1001

e.g., computing basins of attraction or cell mapping [57, 38, 72], and in contrast to long-time simulations1002

over the entire state space traditionally used in deriving flow-defined Poincaré maps for global dynamics of1003

limit-cycle or chaotic systems. Yet, our approximate return maps can be viewed as geometrical models of1004

VI pair systems, analogous to geometrical Lorenz maps used to analyze global dynamics and bifurcations1005

in the chaotic Lorenz system [2, 56, 30] and its more analytically tractable piecewise smooth counterpart1006
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[7]. Certain aspects of our computation-based analysis do not rely on finding polynomial approximations for1007

the return maps; for example, the efficient comparison of the surfaces projected in the phase planes already1008

identifies potential regions for attracting behavior, on which to focus the computer-assisted analysis. Then,1009

we also pursue polynomial approximations, aiming for explicit expressions for the global analysis.1010

Anchored in relatively simple return maps, our framework is valuable for cobweb analysis in the phase1011

planes of the state variables. The relevant global analysis is facilitated by introducing 1D auxiliary maps1012

based on the extreme bounds of the 2D maps in the regions with different types of dynamics. Repeated1013

updates of these auxiliary maps within regions with attracting dynamics yield attraction basins for limit-1014

cycle and chaotic dynamics. Thus, our computer-assisted method of reducing non-smooth systems into a1015

composite piecewise smooth map provides a framework to study the global dynamics of non-smooth systems1016

with impacts. Here, we have focused on parameter regions corresponding to energetically favorable states1017

in VI pair-based energy harvesting systems, so that the results are relevant for recent designs of VI-based1018

energy harvesters [75] and nonlinear energy transfer [39]. While motivated by a specific vibro-impact energy1019

harvester, nevertheless, our approach uses generic return maps composed of short sequences of impacts that,1020

in turn, decompose the full dynamics. Thus, the paradigm can be generalized for application in other non-1021

smooth systems. It may also be interesting to see if this approach, motivated by a particular class of applied1022

models, is relevant for 2D maps considered in generic mathematical settings [46].1023

Adapting these findings to realistic external environments remains critical for future exploration. Fu-1024

ture work will focus on refining these theoretical frameworks and methodologies to effectively integrate1025

vibro-impact systems into practical applications. This pursuit involves enhancing our understanding of the1026

underlying dynamics and engineering solutions that can withstand and thrive in realistic external environ-1027

ments.1028

Fig. 21: Bifurcation diagrams for Żj from (2.6) based on continuation-type methods for decreasing d (top)
and increasing d (bottom). Blue and black open circles correspond to deterministic forcing, and green and
red dots correspond to additive noise forcing via an Ornstein-Uhlenbeck process ζ, with limiting behavior
ζ ∼ N(0, 0.002). Parameters: r = 0.25, β = π/6.

One example of a realistic external setting is the consideration of the VI energy harvester, illustrated in1029

Fig. 1(a), under stochastic external forcing. Figure 21 gives the bifurcation structure with two different types1030

of periodic behavior for the system (2.1)-(2.3), shown via the impact velocity Żj vs. the non-dimensional1031

capsule length parameter d. Both panels show deterministic (open circles) vs. stochastic (dots) results for1032

Żj . The top and bottom panels show bifurcation diagrams obtained via a continuation-type method for1033

decreasing and increasing d, respectively. Comparing these indicates bi-stability of two different periodic1034

behaviors. For larger d, we observe 1:1 periodic behavior with alternating impacts on ∂T with Żj < 0 and ∂B1035
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with Żj > 0 per forcing period. For smaller d, we observe 2:1 behavior with two impacts on ∂B followed by a1036

single impact on ∂T per forcing period. The bi-stability is apparent from the co-existence of branches for the1037

1:1 and 2:1 solutions in a range of d, approximately 0.221 < d < .216. At the same time, the stochastic results1038

shown by the green and red points indicate the regular appearance of 2:1 behavior, even for larger values of1039

d beyond the region of bi-stability. A preliminary analysis, based on the algorithm from Section 4 with an1040

augmented set of return maps analogous to (3.1), includes both PBTB to capture 1:1 behavior and a new1041

map PBBTB to capture 2:1 behavior. These maps capture the attraction to either 1:1 and 2:1 behaviors or1042

both. Furthermore, this novel return map framework also provides critical information about the stochastic1043

sensitivity of the 1:1 behavior. This information can be generated quickly since the surfaces for the maps are1044

generated from short-time simulations. Furthermore, we can again compare the shape of these surfaces and1045

their projections in the phase planes to focus on smaller regions with potentially attracting dynamics after1046

eliminating larger transient regions. These results, together with the geometry of the surfaces of these maps,1047

analogous to those shown in Fig. 6, efficiently suggest how the noise can bias the dynamics towards 2:11048

behavior when combined with the phase plane analysis. We leave the details of that analysis to future work,1049

noting that the algorithm’s combined flexibility and efficiency allow for a straightforward augmentation that1050

includes new return maps representing the 2:1 behavior. Then, within the dynamical characterization of the1051

state space provided by our algorithm, we can study non-smooth dynamics in a stochastic setting.1052

This paper has focused on the development of a novel return map formulation as the basis for a computer-1053

assisted global analysis, obtaining explicit expressions wherever possible. There are a number of other fea-1054

tures that we expect are valuable for future generalizations that we have not pursued here. For example,1055

we expect that more steps of the algorithm could be automated, such as integrating defined criteria to aid1056

in partitioning and comparing approximations for different orders of polynomials for the composite map.1057

Furthermore, while we have given the algorithm in terms of 2D maps for simplicity of exposition, we expect1058

that the ideas of this approach can be adapted to higher dimensions. In addition, if we relax the demand for1059

a nearly explicit global analysis, we anticipate that accurate auxiliary maps that are purely computation-1060

based could be used to approximate the attracting domain(s).1061

1062
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Appendix A. Return Maps and Composite Map Construction.1214

A.1. Division of state space for the return maps. We show the regions in the state space (Żk, ψk)1215

whose images correspond to BB, BTB, and BTTB motion, with PBB and PBTB as defined in (3.1) in Section1216

3, and PBTTB . Figure 22 shows the full range of ψk, from 0 to 2π, and a larger range of Żk as compared1217

to Fig. 3. The region with φk > π is comprised of mostly BB motion and, as discussed in Remark 3.2 and1218

shown in Fig. 7, is strongly transient. Likewise, the yellow regions, corresponding to BTTB motion, are1219

strongly transient for β > 0, which drives the motion away from multiple impacts on the top membrane ∂T .1220

Therefore, we restrict our attention to the state space with range ψk ∈ [0, π] and Żk ≤ 1.0 (below the yellow1221

regions) when constructing the composite mapM, with a focus on understanding the attracting domain and1222

those regions in state space in close proximity to it.1223
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Fig. 22: Division of the (Żk, ψk) state space, corresponding to exact return maps with BTB motion (blue
and magenta regions), BB motion (black regions), and BTTB motion (yellow regions). Parameter: d = 0.26.

A.2. Phase plane projection of the exact maps. Figure 23 shows the projections of the exact1224

maps, defined by (3.1) in Section 3, on the Żk − Żk+1 and ψk −ψk+1 phase planes, as referenced in Remark1225

3.2. This 2-D projection of Fig. 6 gives separate views of the dynamics for Żk and ψk in their respective1226

phase planes. The points delineate curves for Żk+1 and ψk+1 in the image of the return map, some of which1227

cross both diagonals in the Żk − Żk+1 and ψk − ψk+1 planes. The slopes of the curves that intercept the1228

diagonals suggest that there is a smaller subregion of the state space (Żk, ψk) that is attracting.1229

A.3. Comments on Region R1. In the next six sections of the appendix, we further comment on1230

the details of the algorithm implementation for the specific VI pair model, as discussed in Section 4.2.1231

In order to capture the full dynamics for all d near the diagonals of both phase planes Żk − Żk+1 and1232

ψk−ψk+1, we define region R1 as the union of the subregions obtained using (4.2). Figure 24 illustrates the1233

location of the subregion (green) based on the filter in (4.2) corresponding to one d value. These are shown1234

relative to the union of the subregions over all d in the range of interest (blue). Through this definition, we1235

can use the same map for R1 for all d considered rather than finding different approximate maps for each d.1236

We have explored a range of δ values, δ = 1.2, 1.3, 1.4, which is the filter parameter in (4.2). In summary,1237

a smaller δ yields a smaller R1 which allows a more accurate approximation of f1 and g1 to the surface of the1238

exact map. On the other hand, a larger R1 can capture more dynamics near this region which is desirable. In1239

that case, one can compensate for the increased error associated with larger δ by increasing the polynomial1240

orders in the approximation. Here, we chose δ = 1.2 for the benefit of a simpler expression to construct the1241

approximate map.1242

In considering the choice for the order of polynomials, we note that higher-order polynomials give1243

more accurate approximations, but this will increase the complexity of the 2D map. Hence, we choose the1244

lowest order polynomial such that the approximation can also reproduce similar dynamics to the exact map.1245

In this case, the polynomial map is quadratic in φk and cubic in vk. Specifically, the polynomials given1246

in the map (f1(vk, φk), g1(vk, φk)) (4.3)-(4.4) in R1.2 approximate the surface using the Matlab function1247

fit([x,y],z,fitType) with argument fitType set to "poly23". A detailed comparison between the order1248

of the polynomials used in the approximation and the associated error is given in Table 1 and Fig. 25.1249

Table 1 compares different types of approximation error statistics, R2, and the Summation Squared1250

Error (SSE), using different δ and different orders of polynomials. Figure 25 indicates that a smaller δ gives1251

a better approximation for a given polynomial order, as a larger δ includes more variability of the surfaces1252

for (Ż+1, ψk+1). Table 1 shows that the combination of δ = 1.2 and the polynomial order poly23 gives the1253

best result.1254
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Fig. 23: Similar to Fig. 7 we show the 2D projection of the PBB maps (black surfaces in Fig. 6) on the phase
plane Żk − Żk+1 and ψk − ψk+1 with d = 0.35. Different colors correspond to the maps for different values
of ψk. (a)-(b) shows results for initial condition ψk ∈ [0, π], while (c)-(d) shows ψk ∈ [π, 2π]. Stars show
cases where both maps take values near the diagonals in both phase planes; red stars in (a)-(b) correspond
to values on steep slopes of the surfaces, while blue star ψk < 3π/2 in (c)-(d), also on surfaces with steep
slopes, do not cross the diagonals. These properties indicate transient dynamics for these regions marked
with stars.

A.4. Comments on Region R2. The surfaces generated over R2 correspond to the BTB behavior.1255

As described in Remark 4.1, we use separable maps to represent the dynamics of Region R2. Recall that the1256

separable map takes the form of a single variable polynomial, e.g. vk+1 = f2(vk) and φk+1 = g2(φk) (4.5)1257

in this case. Given the strongly transient nature of the dynamics in R2, also indicated by the steep surfaces1258

shown in Fig. 6, this 1-D approximation with separable maps is sufficient to represent the dynamics of R2.1259

A.5. Comments on Region R4. Similar to Region R2, the surfaces over R4 also correspond to the1260

BTB behavior. However, the surfaces in this region must be approximated separately because of its steep1261

descending surfaces over smaller values of Żk, making it difficult to obtain a good approximation over the1262

combined regions of R2 and R4. The approximate location of R4 is given by {(Ż, ψk) : Żk < 0.55, 1.1 <1263

ψk < 2.5, and Żk > 0.63− 0.53ψk}.1264

Similar to R2, we use separable maps for the approximation in R4, choosing two 1-D maps that represent1265
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Fig. 24: Illustration of the location change of the subregions filtered by (4.2), as shown in green. The blue
region surrounding it is the union of all such regions ∪d∈[0.26,0.35]R1.2, as described in (4.2). Parameters:
(a)-(b): d = 0.35; (c)-(d): d = 0.30; (e)-(f): d = 0.26.
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Fig. 25: Heat maps corresponding to the approximation error in Region R1 with different δ in (4.2). The
approximation errors εv = |Żk+1 − vk+1| are shown in (a),(c),(e) and εφ = |ψk+1 − φk+1| are shown in

(b),(d),(f) for (Żk+1, φk+1) in the exact map and (vk+1, φk+1) in the coupled 2-D approximate map (4.3)-
(4.4) for R1. Note lighter colors indicate larger errors ε. As δ increases, the size of R1 increases, which
includes more variation that yields the larger approximation error. Parameters: d = 0.35 in all panels;
(a)-(b): δ = 1.2; (c)-(d): δ = 1.3; (e)-(f): δ = 1.4.

the dynamics given by the surfaces for Żk+1 and ψk+11266

vk+1(vk) = f4(vk) = b40v
8
k + b41v

7
k + b42v

6
k + b43v

5
k + b44v

4
k + b45v

3
k + b46v

2
k + b47vk + b48,1267

φk+1(φk) = g4(vk) = a40φ
4
k + a41φ

3
k + a42φ

2
k + a43φk + a44.(A.1)12681269

The steep drop of the surface for smaller values of Żk+1, as shown in Fig. 11(f), indicates that the dynamics1270

in R4 is also strongly transient. That is, at the fixed point of vk+1 = f4(vk) the slope is |f ′4(vk)| > 1, as1271

shown in Fig. 11(e).1272

A.6. Comments on Region R3. The approximation for R3 covers the surfaces in Fig. 6 over the1273

region {(Żk, ψk) : 0 < Żk < 0.63 − 0.53ψk} within the state space considered. The approximations for the1274
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δ Poly degree
vk+1 φk+1

R2 SSE R2 SSE

1.2 poly23 0.9992 2.2705×10−5 0.9998 2.2181×10−5

1.3 poly23 0.99827 0.0025092 0.99984 0.0032939

1.3 poly33 0.99827 0.0025055 0.99994 0.0011577

1.4 poly23 0.99735 0.0055033 0.99981 0.0055713

1.4 poly33 0.99735 0.0054874 0.9999 0.0031359

Table 1: Comparison of the approximation error R2 and SSE in R1 for different δ and different polynomial
orders. Here, R2 = 1 − SSE

SST , where the Summation Squared Error and the Summation Squared Total are
given by SSE =

∑n
i (yi−ŷi)2 and SST =

∑n
i (yi−y)2, respectively. Here, yi is the exact value corresponding

to Żk+1 or ψk+1, and ŷi is the estimation vk+1 or φk+1, and y is the average of all exact values Żk+1 or
ψk+1.

lower triangular surfaces in this region are given by1275

vk+1(vk, φk) = f3(vk, φk) = b300 + b301φk + b302vk + b303φ
2
k + b304φkvk + b305v

2
k + b306φ

3
k + b307φ

2
kvk1276

+ b308φkv
2
k + b309v

3
k + b310φ

3
kvk + b311φ

2
kv

2
k + b312φkv

3
k + b313v

4
k + b314φ

3
kv

2
k1277

+ b315φ
2
kv

3
k + b316φkv

4
k + b317v

5
k,1278

φk+1(vk, φk) = g3(vk, φk) = a300 + a301φk + a302vk + a303φ
2
k + a304φkvk + a305v

2
k + a306φ

3
k + a307φ

2
kvk1279

+ a308φkv
2
k + a309v

3
k + a310φ

4
k + a311φ

3
kvk + a312φ

2
kv

2
k + a313φkv

3
k + a314v

4
k + a315φ

4
kvk1280

+ a316φ
3
kv

2
k + a317φ

2
kv

3
k + a318φkv

4
k + a319v

5
k.(A.2)12811282

As discussed in Section 4.1, Iteration 1 steps iv) and vi), there is also a nearly vertical surface in this1283

region, shown in Fig. 6. It represents strongly transient dynamics corresponding to rapid transitions from1284

BB to BTB behavior, so we treat this as immediately transient. As a result, we use the lower triangular1285

surface to capture the dynamics of this region, taking the map (A.2) over all of R3. We find that these1286

surfaces do not shift or change shape with d varying. Therefore, the coefficients in (A.2) are constant instead1287

of being functions of d.1288

A.7. Comments on Region R5. Region R5 corresponds to smaller Żk < 0.55, as in R4, and for1289

larger ψ: 2.5 < ψk < π. The dynamics in this region are BB motion instead of BTB motion, with the map1290

(f5, g5) based on a separable approximation as in R2 and R4. The green curves in Fig. 26(a),(b) capture1291

the dynamics on the surfaces for Żk+1 and ψk+1, and are approximated with orange curves that give the1292

separable maps1293

vk+1(vk) = f5(vk) = |b50v4k + b51v
3
k + b52v

2
k + b53vk + b54|,1294

φk+1(φk) = g5(φk) = a50φ
3
k + a51φ

2
k + a52φk + a53.(A.3)12951296

The coefficients a5i, b5i, i = 0, 1, ..., 4, are functions of d, with a54 = 0 in φk+1.1297

Note there is a small nearly vertical area in the surface for ψk+1, similar to that observed inR3 mentioned1298

in Appendix A.6. As discussed in step vi) of Iteration 1 of the algorithm (Section 4), we treat this as1299

immediately transient, taking the map (A.3) over all of R5.1300
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(a) (b) (c)

Fig. 26: Approximation of (Zk+1, ψk+1) in R5 for d = 0.35, which has ranges Żk < 0.55 and 2.5 < ψk < π.
Panels (a),(b) compare the orange curves for the approximate separable map (A.3) with the green curves
in the corresponding phase planes. In panel (c), the green curves are generated with the exact map (3.1),
giving a separable representation of the variation of the surface for fixed ψk = 3.05 (left) and Żk = 0.12
(right).

A.8. The pseudocode used in the programming the composite map. Here, we provide the1301

pseudocode for the approximate composite map for (vn, φn), as used in Figure 12, with references to the1302

bounds and maps for each region Rn.1303

Algorithm: Composite map for (vn, φn)1304

if φk > π OR φk < 0, then1305

Reset as in Section 4.2, Iteration 1, step vi): φk+1 = 1.2 and vk+1 = vk1306

else if 0.63 ≤ vk ≤ 0.94 AND 0.15 ≤ φk ≤ 0.45. then1307

Use Region R1 approximate maps (4.3)-(4.4):1308

else if vk > 0.63− 0.53φk AND vk > 0.55 AND (vk, φk) /∈ R1, then1309

Use R2 approximate map (4.5):1310

else if vk > 0.63− 0.53φk AND 1.1 < φk < 2.5 and vk < 0.55, then1311

Use R4 approximate map (A.1):1312

else if 2.5 < φk < π AND vk < 0.55, then1313

Use R5 approximate map (A.3):1314

else if vk < 0.63− 0.53φk, then1315

Use R3 approximate map (A.2):1316

end if1317

As discussed in Section 4.2, Iteration 1, step iv), the reset value of φk+1 = 1.2 can be identified based1318

on the shape of the return maps, indicating that the system moves towards φ < π/2. To allow all possible1319

behaviors, a reset value is chosen in a transient region. There could be other values or distributions of values1320

that would give the same results. The remaining constants in the algorithms are not user defined, but follow1321

from the definition of the maps. R3 and R5 are obtained in the first definition of the return map (Section1322

4.2, Iteration 1, step iii), R2 is obtained from the part of the BTB region outside of R1 and R4, with the1323

range of R4 based on the slope of the surface in R2. The bounds for R1 depend on the choice of δ and the1324

order of the polynomial approximation in (f1, g1) as described in Appendix A.3.1325

A.9. Navigation for Fig. 13. We will use Case FP, shown in Fig. 13 (a)(b), to demonstrate how the1326

orbits are drawn in Fig. 13.1327

Step 1: In panel (a), the initial condition is v0 = 0.2. This has possible images in Region R3 and R41328

since maps for these three regions overlap. In panel (b), the initial condition is φ0 = 0.1. This has possible1329

images in Region R2 and R3 since maps for these two regions overlap. Then, the step is taken using the1330

map that is common to both of these, which is Region R3. Then this map gives us (v1, φ1) = (0.093, 2.116).1331

We repeat this process for each k. Here we provide the next steps for both vk and φk until the system1332

reaches Region R1:1333
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Step 2: We observe from (a) that v1 = 0.093 has possible images in Region R3, R4 and R5 since maps1334

for these three regions overlap. From (b), φ1 has possible images in Region R2 and R4. Since the region in1335

common R4, we apply (f4, g4) in this step. This gives us the output (v2, φ2) = (0.799, 1.150).1336

Step 3: We observe from (a) that v2 = 0.799 has possible images in Region R1 and R2, and φ2 = 1.1501337

has possible images in Region R2 and R4. Therefore, the region in common is R2. In this case, we apply1338

maps (f2, g2) to (v2, φ2) and have output (v3, φ3) = (0.843, 0.298).1339

Step 4: We observe from (a) that v3 = 0.843 has possible images in Region R1 and R2, and φ3 = 0.2981340

has possible images in Region R1, R2, and R3. In this case, since both v3 and φ3 have reached R1, we1341

apply maps (f1, g1) to (v3, φ3). The output is (v4, φ4) = (0.844, 0.396), and we observe that it is still in the1342

attraction region R1.1343

From this step forward, we observe that the outputs remain in R1, and hence we repeatedly apply maps1344

(f1, g1).1345
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