

1 **Evidence of focusing the MHC class I immunopeptidome by tapasin**2 **Rachel Darley¹, Patricia T. Illing², Patrick Duriez³, Alistair Bailey¹, Anthony W. Purcell², Andy van**
3 **Hateren^{1\$} and Tim Elliott^{4\$*}**4 ¹ Institute for Life Sciences and Centre for Cancer Immunology, Faculty of Medicine, University of
5 Southampton, Southampton, SO17 1BJ, UK6 ² Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute, Monash
7 University, Clayton, Victoria 3800, Australia8 ³ Cancer Research UK Protein Core Facility, Faculty of Medicine, University of Southampton,
9 Southampton, SO16 6YD, UK10 ⁴ Centre for Immuno-Oncology and CAMS-Oxford Institute, Nuffield Department of Medicine,
11 University of Oxford, Old Road Campus, Headington, Oxford, OX3 7BN, UK.12 ^{\$} These authors share senior authorship.13 *** Correspondence:** tim.elliott@immonc.ox.ac.uk14 **Keywords:** MHC class I, tapasin, TAPBPR, peptide editing, peptide selection, immunopeptidome.15 **Abstract**16 Major Histocompatibility Complex class I (MHC-I) molecules bind and present peptides to cytotoxic
17 T cells, protecting against pathogens and cancer. MHC-I is highly polymorphic and each allotype is
18 promiscuous, and capable of binding a unique and diverse repertoire of peptide ligands. The
19 peptide editing chaperone tapasin optimises this allotype specific repertoire of peptides, resulting
20 in the selection of high affinity peptides. MHC-I allotypes differ in the extent they engage tapasin.
21 This suggests that tapasin-dependent MHC-I allotypes should present a less diverse repertoire that
22 is enriched in higher-affinity peptides, and which are present in higher abundance, than tapasin
23 independent MHC-I allotypes, which should present a broader repertoire containing peptides with a
24 lower average affinity. Experimental verification of this hypothesis has been confounded by the
25 different peptide binding specificities of MHC-I allotypes. Here, we independently investigated the

26 peptide focusing function of tapasin by introducing a point mutation into a tapasin independent
27 MHC-I allotype that dramatically increased its tapasin dependence without substantially altering its
28 peptide binding specificity. This allowed us to demonstrate ligand focusing by tapasin at both the
29 repertoire level *in cellulo*, and by using an *in vitro* system in which tapasin was artificially tethered
30 to MHC-I, at the individual peptide level. We found that tapasin had a greater influence on tapasin
31 dependent MHC-I molecules, and that tapasin modulated peptide selection according to peptide-
32 MHC-I complex stability, disfavouring short-lived peptide-MHC-I complexes. Thus, tapasin
33 dependent MHC-I molecules experience greater tapasin filtering, resulting in less diverse MHC-I
34 immunopeptidomes that are enriched in high affinity peptide-MHC-I complexes.

35 **1 Introduction**

36 Major Histocompatibility Complex class I (MHC-I) molecules are an important component of the
37 adaptive immune response and provide protection from pathogens and cancer by binding
38 intracellular peptides and presenting them at the cell surface to specialised immune cells including
39 cytotoxic T cells. The peptides presented by MHC-I molecules (the MHC-I immunopeptidome) are
40 predominantly selected from a diverse pool of peptides transported into the endoplasmic reticulum
41 following proteasome mediated degradation of intracellular proteins and defective nascent
42 polypeptides, which can be further refined by aminopeptidases within the ER.

43 MHC-I peptide selection is orchestrated by peptide loading complexes (PLC), which are
44 ~~centered~~centred upon TAP peptide transporters and include a number of chaperones: tapasin;
45 calreticulin; and ERp57, and which synergistically co-ordinate recruitment of nascent MHC-I
46 molecules and their peptide loading [1]. Of the PLC constituents, tapasin assists MHC-I to
47 preferentially select high affinity peptides for presentation, forming stable, long-lived peptide-MHC-
48 I complexes [2-5]. Once loaded with peptide, MHC-I complexes are released from the PLC and exit
49 the ER, where some MHC-I allotypes encounter further scrutiny from the tapasin homologue
50 TAPBPR [6]. Like tapasin, TAPBPR refines the peptides presented by MHC-I, preferentially favouring
51 high affinity peptides [7,8]. Empty or sub-optimally loaded MHC-I (i.e. those MHC-I molecules
52 containing low affinity binding peptides) may also be returned to the ER following retrieval from the
53 endoplasmic-reticulum–Golgi intermediate compartment in a calreticulin dependent manner [9-11].

54 MHC-I molecules are highly polymorphic, with MHC-I allotypes binding different repertoires of
55 peptides depending on the molecular composition of their peptide-binding grooves [12,13]. In
56 addition, MHC-I allotypes differ in their dependence upon tapasin for the selection of peptide
57 cargoes that permit stable cell surface expression [2,14-16]. While all MHC-I allotypes benefit from
58 tapasin to some extent, this ranges from allotypes such as HLA-B*44:02 for which tapasin is
59 essentially obligatory for peptide selection and cell surface expression, to allotypes such as HLA-
60 B*44:05 which can efficiently select and present a repertoire of peptides at the cell surface in the
61 absence of tapasin [2,14,15,17]. Additionally, TAPBPR has specificity for a select group of MHC-I
62 allotypes, with a strong preference for some HLA-A gene products [6,18,19].

63 Tapasin and TAPBPR mediated peptide editing therefore underpins the diversity of the MHC-I
64 immunopeptidome that is presented to T cells and is an important factor in determining the
65 breadth of an immune response and protection against potentially lethal infections and cancer
66 [14,20,21]. Experimental and computational studies have suggested that the diversity of peptides
67 presented by different human MHC-I allotypes varies [22-26]. In humans, the cell surface expression
68 levels of four MHC-I allotypes was shown to be inversely correlated with the breadth of their
69 immunopeptidomes [24,25,27]. Interestingly, Chappell et al noted that the cell surface expression
70 levels of these allotypes correlated with their tapasin dependence [15,27]. Indeed, the tapasin
71 dependence of a wide variety of HLA-A and HLA-B allotypes was measured and shown to be
72 inversely correlated with the number of peptides derived from HIV that elicited an immunogenic
73 response [14]. Collectively, these studies suggest that tapasin dependent MHC-I allotypes may
74 present a less diverse range of peptides, which is enriched in high affinity peptides and present at
75 higher surface expression levels, compared with tapasin independent MHC-I allotypes, and that
76 these factors are important determinants for successful immune responses. Similarly, a more
77 diverse repertoire of peptides was identified in TAPBPR depleted cells compared with TAPBPR
78 expressing cells, suggesting that TAPBPR restricts the diversity of peptides presented by some MHC-
79 I molecules [7]. However, tapasin or TAPBPR mediated focusing of MHC-I peptide repertoires has
80 not been formally demonstrated, mostly because of the difficulty of distinguishing between
81 whether the differential peptide focusing experienced by MHC-I allotypes is a consequence of
82 variation in their ability to bind tapasin, or TAPBPR, and exploit their peptide editing potential, or

83 because of differences in peptide selectivity imposed by the composition of the peptide binding
84 grooves.

85 We recently demonstrated the relationship between tapasin activity and repertoire focusing by
86 tuning the level of tapasin expression and measuring changes in peptide editing intensity [28]. Here,
87 we build upon these findings by measuring the influence that tapasin dependence has on the
88 composition of immunopeptidomes selected by highly similar human MHC-I molecules. We next
89 characterised how tapasin modulates MHC-I peptide selection and the magnitude of tapasin
90 optimisation experienced by MHC-I allotypes using an *in vitro* system.

91

92 **2 Materials and methods**

93 **Analysis of HLA-B*44:02, HLA-B*44:05 and HLA-B*44:05-W147A immunopeptidomes**

94 Plasmids encoding full length HLA-B*44:02, HLA-B*44:05 and HLA-B*44:05-W147A proteins, and
95 the generation of stable transfectants of 721.220 cells reconstituted with human tapasin have been
96 described previously [29]. Approximately 5×10^8 cells were grown for each cell line, and cell pellets
97 were snap frozen. Cell lysis and MHC-I peptide isolation were performed as previously described in
98 detail [30]. Briefly, cell pellets were lysed by cryomilling and incubation in a non-denaturing lysis
99 buffer (0.5% Igepal CA-630, 50 mM Tris pH 8.0, 150 mM NaCl, 1 x Roche Complete protease
100 inhibitor cocktail). MHC-I complexes were captured from the lysate using 7.5 mg of anti-MHC-I
101 antibody, W6/32, immobilised on protein A Sepharose and subsequently dissociated with 10%
102 acetic acid. The peptides were fractionated and separated from β_2 m and heavy chain components
103 by reversed-phase high performance liquid chromatography (RP-HPLC). The peptide containing
104 fractions were concentrated and chromatographically distant fractions were combined to generate
105 nine pools, reconstituted in 15 μ L 0.1% formic acid containing 500 fmol iRT reference peptides [31].
106 Pools were analysed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) using a
107 SCIEX 5600+ mass spectrometer, equipped with a NanoUltra cHiPLC system (Eksigent) and a
108 Nanospray III ion source. Peptides were trapped on a cHiPLC trap column (3 μ m, ChromXP C18CL,
109 120 \AA , 0.5 mm x 200 μ m), by loading at 5 μ L/min in 0.1% formic acid, 2% acetonitrile, prior to
110 elution over a cHiPLC column (3 μ m, ChromXP C18CL, 120 \AA , 15 cm x 75 μ m) at 300 nL/min with

111 increasing acetonitrile over 75 minutes. The mass spectrometer was operated as follows: ion spray
112 voltage 2400 V, curtain gas 25 l/min, ion source gas 20 l/min, interface heater temperature 150 °C,
113 MS1 range 200-1800, MS1 accumulation time 200 ms, MS2 range 60-1800, and MS2 accumulation
114 time 150 ms. The top 20 ions meeting the following criteria were selected for MS/MS fragmentation
115 with rolling collision energy: >200 Da, charge state +2 to +5, >40 cps, dynamic exclusion 30 seconds
116 after two occurrences. Mass spectra were interpreted by database search against the
117 Uniprot/SwissProt [32] reviewed human proteome accessed October 2018 using PEAKS Studio X_{PRO}
118 (10.6 build, Bioinformatics Solutions Inc.) and a contaminant database contain the iRT reference
119 peptide sequences using the following parameters: Instrument Triple TOF, fragmentation CID,
120 parent mass error tolerance 25ppm, fragment mass error tolerance 0.1Da, enzyme none, digest
121 mode unspecific, variable modifications Oxidation (M) +15.99 and Deamidation (NQ) +0.98, max
122 variable modifications per peptide 3, False discovery rate (FDR) estimation enabled. A 5% peptide
123 FDR was applied. Peptides identified from similar isolations of MHC class II from closely related
124 721.221 derived cell lines were excluded from downstream analyses. Analyses were performed
125 using peptides of 8-13 amino acids, non-redundant by sequence (i.e. modifications were not
126 considered), consistent with MHC-I ligands.

127 Peptide motifs were assigned via MixMHCp (v2.1, ref: [33]) with two motifs specified for HLA-
128 B*44:02 as described in Ref [34]. Peptide affinities were predicted using NetMHCpan 4.1 [35], and
129 were represented in nM values, with HLA-B*44:05 specified as the reference HLA supertype for
130 HLA-B*44:05-W147A. Gibbs clustering was performed using Gibbs Cluster 2.0 using pre-set
131 parameters for MHC class I ligands of length 8-13 [36].

132 **Data availability**

133 Mass spectrometry proteomics data have been deposited in the ProteomeXchange Consortium via
134 the PRIDE [37] partner repository under the accession code PXD054743.

135 **Synthetic peptides**

136 The following peptides were used in *in vitro* peptide competition experiments:

137 HLA-B*44:05 and HLA-B*44:05-W147A: SEIKETNDTW, AETYVEGQRI, YEGQFKDNMF, AEDELAMRGF,
138 EEVEQGVKF, SEIVGSIKM, EEGPSSVRF, SEDEGNLRF, SEMKVSSTW, SEMKVSSTWL, QEMPWNVRM,

139 HESGASIKI, AENEELHQLW, TEVLSNVKF, YEHEKDLVW, DENPQLKL, KEQNYSDVVL, LESDSFLKF,
140 AELESVLSHL, LEAEADKIGL, AEFALKVEEF, AELFMEQQHL, AETEGILQKL, EEFGKAFSF. Apart from
141 EEFGKAFSF, the HLA-B*44:05 and HLA-B*44:05-W147A peptides used in the peptide competition
142 experiments were selected from the analysis of the immunopeptidomes or from the Immune
143 Epitope Database [38].

144 HLA-B*35:01 and HLA-B*35:03: YPLHEQHGM, APLHEQHGM, YALHEQHGM, YPAHEQHGM,
145 YPLKEQHGM, YPLHAQHGM, YPLHEAHGM, YPLHEQAGM, YPLHEQHAM, YPLHEQHGA, LPSSADVEF,
146 LPSKADVEF, FPSDSWCYF, FPSDSWAYF, QFADVIVLF, FPFKYAAAF, KPIVVLHGY, LPPLDITPY,
147 LPPAWQPFL, TPERMAEAGF, CPTENEPDL, CPTENEPDY, EPDLAQCF, EPDLAQCFY. The HLA-B*35:01
148 and HLA-B*35:03 peptides used in the peptide competition experiments were selected from
149 references [39-46].

150 HLA-A*02:01: YLENGKETL, YLVAEKVTV, KLWEAESKL, KLVKEVIAV, GLDDIKDLKV, FLLAEDTKV,
151 SLLENLEKI, FLFEPVVKA, YVVPFVAKV, FLPSDCFPSV, NLVPMVATV, NAVPMVATV, IYSYMDDLYV,
152 IYQYMDDLYV, ICQYMDDLYV, YQYMDDLYV, VLIGPTPVNII, VLVGPTPVNI, VLVGPTPINI, VLIGPTPVNI.
153 The HLA-A*02:01 peptides used in the peptide competition experiments were selected from
154 references: [7,47].

155 The fluorescent tetramethylrhodamine (TAMRA) labelled peptides: EEF^{TAMRA}GKAFSF and
156 YPLK^{TAMRA}EQHGM, where K^{TAMRA} denotes TAMRA labelled lysine and the unlabelled competing
157 peptides were synthesised by Syn Peptides (Shanghai, China). The following UV-labile conditional
158 peptide ligands were utilised: SEIDTVAjY, KILGFVFjV, KPIVVLjGY and LPSSADjEF, where j represents
159 3-amino-3-(2-nitro)phenyl-propionic acid. The UV conditional peptides and the TAMRA labelled
160 FLPSDC^{TAMRA}FPSV peptide, where the side chain of cysteine was labelled with 5-TAMRA-maleimide,
161 were synthesised by Peptide Synthetics (Fareham UK). All peptides were reconstituted in dimethyl
162 sulfoxide (DMSO).

163 **Production of peptide-receptive MHC-I molecules**

164 Plasmids encoding human β_2 -microglobulin and HLA-A*02:01-fos have been described previously
165 [7]. Nucleotides encoding amino acids 1 to 275 of the mature HLA-B*44:05, HLA-B*44:05-W147A,
166 HLA-B*35:01 and HLA-B*35:03 allotypes were amplified with primers 5'-

167 ATACATATGGGCTCCCACTCCATGA-3' and 5'-GGAACCTCCCTCCATCTCAGGGTGAG-3' from DNA
168 encoding HLA-B*44:05 [2], HLA-B*44:05 W147A [29], HLA-B*35:01 and HLA-B*35:03 (originally
169 kindly supplied by Prof. Raghavan and described in Ref [15], and which had been subsequently sub-
170 cloned into pCDNA3.1). Nucleotides encoding the fos leucine zipper were amplified with primers 5'-
171 AGATGGGAGGGAGGTTCC-3' and 5'-CGCAAGCTTTAATGGGC-3' from DNA encoding HLA-A*02:01-
172 fos. The purified products from the MHC-I and fos PCR reactions were used in a third reaction using
173 primers 5'-ATACATATGGGCTCCCACTCCATGA-3' and 5'-CGCAAGCTTTAATGGGC-3' to create
174 constructs encoding the MHC-I-fos allotypes. Following agarose gel electrophoresis and digestion of
175 the purified products with restriction enzymes the MHC-I-fos sequences were cloned into pET22b
176 (Invitrogen). The fos leucine zipper sequences were removed from HLA-B*44:05-fos and HLA-
177 B*44:05-W147A-fos by amplifying with primers 5'-ATACATATGGGCTCCCACTCCATGA-3' and 5'-
178 GCCAAGCTTCTACTCCATCTCAGG-3' to create HLA-B*44:05 and HLA-B*44:05-W147A constructs
179 without the fos leucine zipper. Following agarose gel electrophoresis and digestion of the purified
180 products with restriction enzymes the HLA-B*44:05 and HLA-B*44:05-W147A sequences were
181 cloned into pET22b (Invitrogen).

182 Peptide loaded MHC-I complexes were obtained by combining solubilised heavy chain inclusion
183 bodies with solubilised human β_2 m inclusion bodies and the appropriate UV labile peptide: HLA-
184 B*44:05, HLA-B*44:05-fos, HLA-B*44:05-W147A and HLA-B*44:05-W147A-fos: SEIDTVAjY; HLA-
185 B*35:01-fos: KPIVVLjGY; HLA-B*35:03-fos: LPSSADjEF; HLA-A*02:01-fos: KILGFVFjV in 8 M urea, 50
186 mM MES pH 6.5, 0.1 mM EDTA. Refolding was initiated by 14-fold dilution with cold 100 mM Tris pH
187 8, 2 mM EDTA, 0.4 M L-arginine hydrochloride, 5 mM reduced glutathione and 0.5 mM oxidised
188 glutathione added over three hours whilst stirring to achieve final concentrations of 1 μ M heavy
189 chain, 2 μ M β_2 -microglobulin and either 10 μ M (HLA-A*02:01), 30 μ M (HLA-B*35:03) or 40 μ M
190 (HLA-B*35:01, HLA-B*44:05 and HLA-B*44:05-W147A) peptide. Two days later, the protein mixture
191 was concentrated and purified by size exclusion chromatography using a Superdex 200 packed
192 26/600 gel filtration column (Cytiva) and phosphate buffered saline.

193 **Production of conjugated Tapasin-jun-ERp57 C60A proteins and TAPBPR proteins**

194 Plasmids encoding human tapasin-jun with a twin strep affinity purification tag, and ERp57
195 containing the C60A mutation [48], and the purification of tapasin-jun-ERp57 C60A conjugates, have
196 been described before [49].

197 Nucleotides encoding amino acids 22 to 406 of human TAPBPR and a His6 affinity purification tag
198 were amplified by PCR using primers 5'-AGCGCGTCTCCAATGAAGCCCCACCCAGCAGAG-3' and 5'-
199 AGCGCGTCTCCTCCCTTAGTGATGGTGATGGTGGTG-3' and a plasmid encoding human TAPBPR with a
200 His6 tag kindly supplied by Prof. Louise Boyle [50], and subcloned after the BM40 signal peptide of
201 pDSG102 vector (IBA Life Technologies). DNA encoding human TAPBPR with His6 tag (hTAPBPR-
202 His6) was transfected into MEXI29E cells (IBA Life Technologies) and transfectants were grown in
203 culture for seven days. The cell suspension was centrifuged at 4,000 rpm for 60 minutes and the
204 supernatant passed through a 0.2 μ m filter. hTAPBPR-His6 protein was then purified using a 5 ml
205 Nickel Excel column (Cytiva) and equilibration (20 mM sodium phosphate, 0.5 M NaCl, pH 7.4) and
206 elution buffers (20 mM sodium phosphate, 0.5 M NaCl, 500 mM imidazole, pH 7.4). The eluted
207 material was concentrated using 10 k Da spin concentrator columns (Amicon) and further purified
208 using a Superdex 200 packed 26/600 gel filtration column (Cytiva) and 20 mM sodium phosphate,
209 100 mM NaCl, pH 7.2. The protein was concentrated to around 4 mg/ml, aliquoted and frozen.

210 ***In vitro* peptide competition experiments**

211 Peptide competition experiments were prepared in PBS supplemented with 0.5 mg/ml bovine
212 serum albumin (BSA) and a final concentration of 1.67% DMSO. The indicated concentrations of
213 MHC-I molecules were supplemented with 20x excess β_2 -microglobulin and exposed to 366 nm light
214 for 20 minutes at 4 °C. Twenty μ l of the UV exposed proteins were added to a 96 well microplate,
215 with each well containing 40 μ l of a titration (0 - 83.33 μ M) of an unlabelled peptide competitor, 2-3
216 nM of the appropriate TAMRA labelled peptide, and 300 nM tapasin-jun-ERp57 (HLA-B*44 and HLA-
217 B*35 experiments), or 300 nM TAPBPR (HLA-A*02:01 experiments) or neither tapasin-jun-ERp57 or
218 TAPBPR. Samples were prepared in duplicate and incubated overnight at 25 °C.

219 HLA-B*44:05-fos and HLA-B*44:05-W147A-fos proteins were used at 375 nM with 2 nM
220 EEEGK*AFSF peptide. HLA-B*44:05 and HLA-B*44:05-W147A proteins were used at 160 nM with 2
221 nM EEEGK*AFSF peptide. HLA-B*35:01-fos and HLA-B*35:03-fos proteins were used at 225 nM with

222 3 nM YPLK*EQHGM peptide. HLA-A*02:01-fos protein was used at 50 nM with 2 nM FLPSDC*FPSV
223 peptide.

224 Fluorescence polarisation measurements were taken using an I3x (Molecular Devices) with
225 rhodamine detection cartridge. Binding of TAMRA-labelled peptide is reported in milli polarisation
226 units (mP) and is obtained from the equation: $mP = 1000 \times (S - G \times P) / (S + G \times P)$, where S and P are
227 background subtracted fluorescence count rates (S = polarisation emission filter is parallel to the
228 excitation filter; P = polarisation emission filter is perpendicular to the excitation filter and G
229 (grating) is an instrument and assay dependent factor. IC₅₀ values were calculated by performing
230 non-linear regression in GraphPad Prism using the one phase decay model, with plateaus
231 constrained to 50. Apart from the experiments involving the HLA-B*44:05 and HLA-B*44:05-W147A
232 proteins, each peptide was tested in at least two independent experiments, with the mean IC₅₀
233 values being taken from the replicate experiments.

234 ***In vitro* indirect measurements of peptide-MHC-I complex half-lives**

235 Indirect peptide dissociation experiments were conducted essentially as described in ref [51].
236 Experiments were performed in PBS supplemented with 0.5 mg/ml BSA and a final concentration of
237 1.67% DMSO. The indicated concentrations of MHC-I molecules were supplemented with 20x
238 excess β_2 -microglobulin and exposed to 366 nm light for 20 minutes at 4 °C, before being incubated
239 with an equimolar concentration of each of the unlabelled peptides, or no peptide (no peptide
240 control), overnight at 25 °C in a volume of 105.6 μ l. The next day 48 μ l was added to each well of a
241 96 well microplate, before 12 μ l of the appropriate TAMRA labelled peptide was added to each well,
242 and fluorescence polarisation measurements were periodically taken at 25 °C for ~200 hours.
243 Samples were prepared in duplicate. Each peptide was tested in at least two independent
244 experiments.

245 HLA-B*44:05-fos and HLA-B*44:05-W147A-fos proteins were used at 375 nM with 4 nM
246 EEEGK*AFSF. HLA-B*35:01-fos and HLA-B*35:03-fos proteins were used at 225 nM with 3 nM
247 YPLK*EQHGM peptide. HLA-A*02:01-fos protein was used at 50 nM with 2 nM FLPSDC*FPSV
248 peptide.

249 Peptide-MHC-I half-lives were calculated by performing non-linear regression in GraphPad Prism
250 using the one phase association model, with plateaus constrained to the maximum polarisation that
251 was measured in the no peptide control.

252

253 **3 Results**

254 **Tapasin skews the immunopeptidome selected by tapasin dependent MHC-I molecules in favour**
255 **of high affinity peptides.**

256 The HLA-B*44:02 and HLA-B*44:05 MHC-I allotypes have been frequently used to investigate
257 tapasin function as they differ by just one amino acid residue (HLA-B*44:02: Asp116, HLA-B*44:05:
258 Tyr116). They share similar peptide binding preferences [17,26] and are both similarly poor
259 substrates for TAPBPR [18], but vary drastically in tapasin dependence [2,14,15,17,29]. We have
260 found that *in vivo*, the W147A mutation increases the tapasin dependence of the otherwise highly
261 tapasin independent HLA-B*44:05 molecules (supplementary figure 1b, c and e and ref [29]). Thus,
262 tapasin enhances peptide loading of W147A molecules to a level that is intermediate between
263 highly tapasin dependent HLA-B*44:02 and highly tapasin independent HLA-B*44:05 molecules.
264 ~~tapasin independence of HLA-B*44:05 molecules can be reversed by introducing a tryptophan to~~
265 ~~alanine mutation at position 147 (W147A, supplementary figure 1 and ref [29]).~~ Importantly, this
266 mutation did not substantially change peptide binding specificity as assessed by peptide
267 stabilization assays, where five known HLA-B*44 binding peptides increased the recovery of
268 radiolabeled W147A molecules to an approximately similar extent as HLA-B*44:02 and HLA-B*44:05
269 molecules-(supplementary figure 2). Therefore, the W147A mutant allowed us to investigate the
270 effect of tapasin on the peptide presentation profile of ~~a-the HLA-B*44:05 molecule in relative~~
271 ~~isolation of differences in peptide binding specificities, that otherwise has the same peptide binding~~
272 ~~preference as HLA-B*44:05.~~ We therefore sought to compare the immunopeptidomes selected by
273 HLA-B*44:02, HLA-B*44:05 and HLA-B*44:05-W147A molecules that experience differential benefit
274 from tapasin, using monoallelic antigen presenting cells.

275 Most of the peptides identified from each cell line were unique to each immunopeptidome, with
276 only 696 peptides (around 56.8% of all peptides) identified in all three data sets (figure 1a). There

277 were between ~3400-~5500 peptides identified in each immunopeptidome (figure 1b). All three
278 MHC-I allotypes had similar ligand length distributions, with peptides of nine or ten residues being
279 most prevalent (figure 1e,c). Whilst most peptides showed the P2 glutamic acid anchor residue
280 anticipated for HLA-B*44 ligands, Gibbs cluster analysis of the pooled immunopeptidomes revealed
281 1228 peptides with a highly distinct motif characterised by enrichment of hydrophobic residues at
282 P2, proline at P3 and leucine at the C-terminus (figure 1d, non-B44). This motif is similar to that
283 reported for HLA-C*01:02 [52] and 66 % of these peptides were predicted to bind HLA-C*01:02 by
284 NetMHCpan4.1 [35] (supplementary table 1). These peptides are likely to be derived from residual
285 HLA-Cw1 expression reported for the 721.220 line [16] which high resolution typing of the related
286 721.221 cell line reveals to be HLA-C*01:02 [53]. Although it should be noted that the majority of
287 these peptides are also predicted to bind non-classical HLA-E (and HLA-G) (supplementary table 1).
288 Indeed, this cluster contained, VMAPRTLIL which is a well-recognised HLA-E ligand from certain
289 classical HLA leader sequences, including HLA-C*01:02 [54,55]. Thus, except for 51 peptides in this
290 cluster that possessed glutamic acid at P2, we termed these peptides likely non-HLA-B*44
291 (supplementary table 1) due to potential contribution by endogenous HLA-C and non-classical HLA
292 of the parental 721.220 cell line.

293 When the potential non-HLA-B*44 peptides were omitted, we found that, as previously reported
294 [34], the HLA-B*44:02 immunopeptidome was best represented by two peptide motifs, with ~5~~50~~
295 of peptides having a motif with almost exclusively glutamic acid at position 2, while tryptophan,
296 phenylalanine, tyrosine, or leucine dominate the C-terminal position (figure 1e1d, and
297 supplementary figure 3 shows the motifs of the molecules without the omission of the potential
298 non-HLA-B*44 peptides). In comparison ~~~39~~⁴⁴ % of HLA-B*44:02 bound peptides had a motif with
299 similar preferences at positions 2 and 9 but had an additional specificity for amino acids with basic
300 or polar side chains at position 7.

301 The HLA-B*44:05 immunopeptidome was best represented by a single motif, which was like the
302 most prevalent HLA-B*44:02 motif, with glutamic acid strongly preferred at position 2, and amino
303 acids with hydrophobic side chains preferred at the C-terminal position. The HLA-B*44:05 W147A
304 immunopeptidome closely resembled that of HLA-B*44:05, having a single motif with very similar
305 specificities at positions 2 and 9. One slight difference was a preference for hydrophobic side chains
306 at position 7, particularly leucine, phenylalanine, isoleucine, and valine, which would, presumably,

307 be prevented from binding to wildtype HLA-B*44:05 by the bulky tryptophan side chain of position
308 147. ~~All three MHC I allotypes had similar ligand length distributions, with peptides of nine or ten~~
309 ~~residues being most prevalent (figure 1d)~~. This analysis therefore confirms that the specificity of the
310 HLA-B*44:05-W147A peptide binding groove is ~~almost identical~~highly similar to that of wild-type
311 HLA-B*44:05.

312 ~~Interestingly, we found no evidence for an increase in the proportion of peptides terminating in~~
313 ~~tryptophan in the HLA-B*44:05-W147A immunopeptidome (10.94%) compared with the wild-type~~
314 ~~HLA-B*44:05 immunopeptidome (12.18%), suggesting that the increased proportion of Trp-terminal~~
315 ~~peptides bound to HLA-B*44:02 (27.99%) arises from differences in peptide binding groove~~
316 ~~chemistry and not the action of tapasin as has been previously suggested [26]~~.

317 We next compared the predicted affinities of the peptides recovered from these MHC-I molecules.
318 As we could not definitively determine whether the potential non-HLA-B*44 derived peptides were
319 eluted from HLA-C/E/G molecules co-immunoprecipitated with HLA-B*44 molecules, or if these
320 peptides were low affinity peptides eluted from the HLA-B*44 molecules we compared the effect of
321 omitting these potential non-HLA-B*44 derived peptides from our analysis. We found that
322 regardless of whether the potential non-HLA-B*44 derived peptides were included (figure 1e, left)
323 or omitted (figure 1e, right), the predicted affinity of the median peptide was highest for the
324 peptides identified from HLA-B*44:02 expressing cells and lowest for the HLA-B*44:05
325 immunopeptidome, with HLA-B*44:05-W147A peptides being intermediate (figure 1e where high
326 affinity peptides have lower nM values than low affinity peptides, table 1). As expected, the
327 peptides likely to derive from non-HLA-B*44 molecules endogenously expressed in the 721.220 cells
328 were predicted to bind HLA-B*44 with very low affinity (figure 1e, non-HLA-B*44, where low affinity
329 peptides have higher nM values than high affinity peptides), and their removal resulted in an
330 increase in the proportion of peptides with the expected B44 anchor residues (figure 1f).
331 found that each immunopeptidome contained a diverse range of predicted affinities (figure 1e).
332 Notably, the predicted affinity of the median peptide was highest for the peptides identified from
333 HLA-B*44:02 expressing cells and lowest for the HLA-B*44:05 immunopeptidome, with HLA-
334 B*44:05-W147A peptides being intermediate (figure 1e where high affinity peptides have lower nM
335 values than low affinity peptides, table 1). Analysis of the content of the immunopeptidomes

336 ~~revealed that for HLA B*44:02 there was a greater proportion of peptides with the preferred amino~~
337 ~~acid side chains at positions 2 and the C terminal position than there was for HLA B*44:05 (table 2,~~
338 ~~figure 1f, left plot). Notably, for HLA B*44:05 W147A there was a modestly greater proportion of~~
339 ~~peptides with the preferred motif compared with HLA B*44:05, consistent with the modestly~~
340 ~~greater predicted affinity (figure 1e). Additionally, the distribution of affinities that were predicted~~
341 ~~for the peptides in the HLA B*44:02 and HLA B*44:05 W147A immunopeptidomes were also~~
342 ~~asymmetrically skewed in favour of high affinity peptides compared with the predicted affinities of~~
343 ~~the peptides in the HLA B*44:05 immunopeptidome (table 1, where for HLA B*44:02 and HLA-~~
344 ~~B*44:05 W147A there were higher skewness and higher kurtosis values in the distribution of~~
345 ~~predicted affinities than there was for HLA B*44:05). Thus, for HLA B*44:02 and HLA B*44:05-~~
346 ~~W147A the distribution of predicted affinities was dominated by high affinity peptides with a longer~~
347 ~~"tail" of low affinity peptides, while for HLA B*44:05 the distribution of predicted affinities for the~~
348 ~~peptides was more symmetrically distributed.~~

349 ~~Analysis of the content of the immunopeptidomes revealed that for HLA B*44:02 there was a~~
350 ~~greater proportion of peptides with the preferred amino acid side chains at positions 2 and the C~~
351 ~~terminal position than there was for HLA B*44:05 (table 2, figure 1f, left plot). Notably, for HLA~~
352 ~~B*44:05 W147A there was a modestly greater proportion of peptides with the preferred motif~~
353 ~~compared with HLA B*44:05, consistent with the modestly greater predicted affinity (figure 1e).~~
354 ~~When this analysis was repeated considering only those peptides that were uniquely identified~~
355 ~~within one of the immunopeptides (table 2, figure 1f, centre plot) this showed: there were lower~~
356 ~~proportions of peptides matching the motifs for all three MHC I molecules, consistent with these~~
357 ~~peptides having lower binding affinity; and that for HLA B*44:05 there was a smaller proportion of~~
358 ~~peptides matching the motif than there was for HLA B*44:02 and HLA B*44:05 W147A.~~

359 ~~We next compared the predicted affinities of the peptides that were uniquely found in either the~~
360 ~~HLA B*44:05 or HLA B*44:05 W147A immunopeptidomes or were common to both. We found that~~
361 ~~the predicted affinity of the median peptide was higher for those peptides that were unique to the~~
362 ~~HLA B*44:05 W147A immunopeptidome compared with those peptides that were unique to the~~
363 ~~HLA B*44:05 immunopeptidome (figure 1g). Additionally, the distribution of predicted affinities of~~
364 ~~the unique HLA B*44:05 W147A peptides was also asymmetrically skewed towards high affinity~~
365 ~~peptides compared with those peptides uniquely found in the HLA B*44:05 immunopeptidome~~

366 ~~(table 3). Analysis of the content of the HLA-B*44:05 or HLA-B*44:05-W147A immunopeptidomes~~
367 ~~showed that there was a slightly greater proportion of peptides matching the motif in the peptides~~
368 ~~that were uniquely observed in the HLA-B*44:05-W147A immunopeptidome (table 4, figure 1f, right~~
369 ~~plot).~~

370 Taken together, these results ~~suggest are consistent with that~~ tapasin preferentially skewing the
371 ~~repertoires of peptides presented by~~ tapasin-dependent HLA-B*44:02 and HLA-B*44:05-W147A
372 ~~molecules present~~ ~~repertoires of peptides that are skewed~~ in favour of the most highly stable
373 peptides, with an increased prevalence of preferred amino acid side chains at positions 2 and 9. This
374 suggests tapasin-dependent MHC-I molecules have less diverse peptide repertoires than tapasin
375 independent MHC-I molecules.

376 **Enhanced tapasin mediated focusing of peptides competing for binding to HLA-B*44:05-W147A**
377 **compared with HLA-B*44:05.**

378 To test whether HLA-B*44:05-W147A selects a higher affinity peptide cargo than HLA-B*44:05 as a
379 result of its interaction with tapasin, we utilised an approach pioneered by Chen and Bouvier to
380 observe tapasin function *in vitro*, in which MHC-I are placed in close proximity to monomeric
381 tapasin molecules, or tapasin-ERp57 heterodimers, via a jun/fos leucine zipper [5]. We conducted *in*
382 *vitro* peptide competition experiments in which each of 24 peptides (twelve 10 mers and twelve 9
383 mers) that were predicted to cover a wide range of affinities individually competed against the high
384 affinity tetramethyl rhodamine (TAMRA) labelled index peptide EEEFGK^{TAMRA}AFSF for binding to
385 either HLA-B*44:05-fos or HLA-B*44:05-W147A-fos. EEEFGK^{TAMRA}AFSF binding and dissociation
386 experiments are shown in supplementary figure 34. We found for both HLA-B*44:05 and HLA-
387 B*44:05-W147A the affinities that were predicted were correlated with experimentally determined
388 binding affinities as measured by IC50 values (figure 2a, table 2).

389 Using this approach, we could directly demonstrate tapasin-mediated peptide focusing as tapasin-
390 jun-ERp57 diminished the ability of experimental peptides with lower affinity than the index peptide
391 to compete for binding to both HLA-B*44:05-fos and HLA-B*44:05-W147A-fos (i.e. there was a
392 higher IC50 in the presence of tapasin-jun-ERp57 in figure 2b). This effect was most apparent for
393 peptides with intrinsic IC50s of 5 μ M or greater and was dependent on the leucine zipper to tether

394 MHC-I and tapasin-jun-ERp57, as MHC-I molecules lacking the C-terminal fos sequence did not
395 undergo substantial repertoire editing (figure 2c).

396 Peptide binding half-lives measured for the peptide-MHC-I-fos complexes were inversely related to
397 the intrinsic IC50 measurements (figure 2d). We quantified the magnitude by which tapasin-jun-
398 ERp57 changed the ability of peptides to compete for binding to HLA-B*44:05-fos or HLA-B*44:05-
399 W147A-fos (the “tapasin editing effect”) and plotted this against the peptide-MHC-I complex half-
400 lives (figure 2e). For HLA-B*44:05-fos and HLA-B*44:05-W147A-fos proteins, the magnitude by
401 which tapasin-jun-ERp57 modulated peptide competition increased as the half-life of the peptide-
402 MHC-I-fos complex decreased, such that the least stable peptide-MHC-I-fos complexes experienced
403 the greatest tapasin-jun-ERp57 function and became poorer competitors: i.e. these peptides would
404 be more susceptible to being edited out of the repertoire (figure 2e).

405 By comparing only those peptides that bound to HLA-B*44:05-fos and HLA-B*44:05-W147A-fos
406 similarly (supplementary figures 45a-b) we found that, with the exception of EEEGKAFSF peptide,
407 tapasin-jun-ERp57 had a greater influence on peptides competing for binding to HLA-B*44:05-
408 W147A compared with HLA-B*44:05 (figure 2f). This indicates that some low affinity peptides that
409 are selected for presentation by HLA-B*44:05 are likely to be preferentially edited out of the
410 repertoire by introducing the W147A mutation – as a direct result of higher tapasin dependence
411 and more aggressive peptide filtering.

412 **Tapasin modulates the ability of peptides to compete for binding to HLA-B*35:01-fos and HLA-
413 B*35:03-fos.**

414 The HLA-B*44:05 and HLA-B*44:05-W147A allotype pair provides a convenient way of isolating the
415 impact of tapasin on peptide repertoire editing, independent of substantial differences in MHC-I
416 peptide binding specificity. We next compared the impact of tapasin on two naturally occurring,
417 related alleles to seek further evidence that the intensity of tapasin-jun-ERp57 optimisation
418 increases with the tapasin dependency of an MHC-I allotype. We undertook the same analysis of
419 HLA-B*35:01-fos and HLA-B*35:03-fos, which differ by a single residue at position 116 (HLA-
420 B*35:01: Ser116, HLA-B*35:03: Phe116), and bind similar, although not identical peptide
421 repertoires [56-58]. Although both allotypes can efficiently assemble with peptides independently
422 of tapasin, we and others have observed a modest difference in tapasin dependence of these MHC-I

423 allotypes, with HLA-B*35:01 being slightly more independent than HLA-B*35:03 (supplementary
424 figure 1 and refs [14,15]).

425 We conducted *in vitro* peptide competition and indirect peptide dissociation experiments using
426 YPLK^{TAM^{RA}}EQHGM TAMRA labelled index peptide (YPLK^{TAM^{RA}}EQHGM binding and dissociation
427 experiments shown in supplementary figure 56) and a panel of 24 peptides that covered a wide
428 range of predicted binding affinities for each allotype (figure 3a, [table 2](#)). We found that tapasin-
429 jun-ERp57 decreased the ability of intermediate affinity peptides (those with intrinsic IC50 values
430 between 0.4 μ M and 50 μ M in peptide competition experiments, and half-lives of 2-25 hours in
431 indirect dissociation assays) to compete for binding to both HLA-B*35:01-fos and HLA-B*35:03-fos
432 (figure 3b-d). In contrast, tapasin-jun-ERp57 had comparatively much smaller effects on the
433 competitive abilities of low affinity peptides (intrinsic IC50 values greater than 50 μ M and half-lives
434 shorter than 2 hours) which competed poorly against the fluorescent index peptide even in the
435 absence of tapasin, and of high affinity peptides (intrinsic IC50 values smaller than 0.4 μ M and half-
436 lives longer than 25 hours), which competed potently against the fluorescent index peptide.

437 Fourteen peptides bound to HLA-B*35:01-fos and HLA-B*35:03-fos with similar affinity
438 (supplementary figure 4e5c-d), and we found that tapasin-jun-ERp57 [had a greater influence on](#)
439 [modulated](#) the ability of [nine-many](#) of these 14 peptides to compete for binding to HLA-B*35:03-fos
440 [to a greater extent](#) than [was apparent](#) for HLA-B*35:01-fos (figure 3e). This was consistent with the
441 slightly greater tapasin dependence of HLA-B*35:03 observed by us and others (supplementary
442 figure 1 and ref [14]) and consistent with HLA-B*44:05-W147A receiving greater optimisation from
443 tapasin than HLA-B*44:05.

444 **TAPBPR modulates the ability of peptides to compete for binding to HLA-A*02:01-fos.**

445 We, and others, have previously shown that the tapasin orthologue, TAPBPR, which is not part of
446 the peptide loading complex and most likely acts on peptide-MHC-I complexes released from the
447 PLC as a further quality control checkpoint, also has a peptide editing function similar to tapasin [6-
448 8]. We therefore sought to determine whether TAPBPR might focus the peptide repertoire of HLA-
449 A*02:01, a relatively tapasin independent allotype that, unlike HLA-B*44:02, HLA-B*44:05, HLA-
450 B*35:01 and HLA-B*35:03 receives considerable benefit from TAPBPR mediated peptide editing
451 [7,8,18]. We carried out peptide competition experiments with a panel of 20 peptides that were

452 predicted to cover a wide range of affinities (figure 4a, [table 2](#)) and the high affinity
453 FLPSDC^{TAMRA}FPSV index peptide (FLPSDC^{TAMRA}FPSV binding and dissociation experiments shown in
454 supplementary figure [67](#)). TAPBPR modulated the ability of peptides to compete for binding to HLA-
455 A*02:01 (figures 4b-d). TAPBPR made low affinity peptides, with intrinsic IC50 values of 3 μ M or
456 greater, and half-lives of less than 50 hours, substantially poorer competitors for binding.
457 Conversely, TAPBPR made most peptides with intrinsic IC50 values less than 3 μ M, and half-lives of
458 50 hours or longer, stronger competitors for binding to HLA-A*02:01 (figure 4b-d). The divergent
459 effects that TAPBPR had on the ability of peptides to compete for binding to HLA-A*02:01 suggests
460 that the index FLPSDC^{TAMRA}FPSV peptide has an IC50 value of around 3 μ M, (approximately 20-fold
461 lower than was measured for unlabelled FLPSDCFPSV [0.14 μ M]). Thus, we found that TAPBPR can
462 also modulate the peptide repertoire in an analogous fashion to tapasin.

463

464 **4 Discussion:**

465 The highly polymorphic nature of MHC-I molecules has long been known to define peptide binding
466 specificity and, at least in mammals, dependence upon tapasin and TAPBPR for the acquisition of
467 high affinity peptides. Recently, it has been suggested that the tapasin dependence of human MHC-I
468 allotypes is inversely correlated with the diversity of their immunopeptidome [\[14,27,59\]](#). Our
469 analysis of the HLA-B*44:02, HLA-B*44:05 and HLA-B*44:05-W147A immunopeptidomes provides
470 direct evidence that tapasin dependent MHC-I allotypes generally bind peptide repertoires that are
471 enriched in higher affinity peptides, closely complimenting the specificities of MHC-I anchor
472 pockets. In comparison, tapasin independent MHC-I allotypes generally bind peptide repertoires
473 that have lower average affinity and are less well suited to MHC-I anchor pocket specificities, and
474 are likely to contain a greater diversity of peptide sequences. ~~Additionally, those peptides that were~~
475 ~~unique to the HLA-B*44:02 and HLA-B*44:05-W147A immunopeptidomes were skewed towards~~
476 ~~higher affinity peptides, more closely complimenting the MHC-I peptide binding groove specificity,~~
477 ~~compared with those peptides unique to the HLA-B*44:05 immunopeptidome.~~ This suggests, that
478 when tapasin is allowed to engage HLA-B*44:02 molecules or HLA-B*44:05 molecules in cells
479 because of either aspartic acid at position 116 (HLA-B*44:02) or the W147A mutation (HLA-
480 B*44:05-W147A), this results in more aggressive peptide focusing.

481 It is thought that MHC-I molecules transition between “closed” peptide bound states with low free
482 energy and “open” peptide receptive states with higher free energy, with iterations of this process
483 underpinning peptide exchange [22,23,29,60-65]. The mechanism by which tapasin independent
484 MHC-I allotypes can self-edit their peptide repertoire remains to be determined. One possibility is
485 that MHC-I allotypes like HLA-B*44:05 can independently self-edit their peptide repertoire because
486 they have an intrinsic ability to adopt and transition between open and closed states. Indeed, as
487 differences in MHC-I-fos-tapasin-jun-ERp57 binding affinities are unlikely in the context of an
488 artificially tethered interaction, a potential mechanistic explanation for the greater tapasin
489 optimisation experienced by tapasin-dependent (HLA-B*44:05-W147A-fos or HLA-B*35:03-fos)
490 molecules is that for tapasin dependent molecules there is a slower rate of transition from open to
491 closed states, as has been suggested previously [29]. Thus, tapasin dependent MHC-I allotypes have
492 less intrinsic potential to transition between states and are consequently hard-wired to experience
493 greater benefit from tapasin when it is available.

494 An alternate mechanism by which the W147A mutation increased the tapasin dependence of HLA-
495 B*44:05 involves the hydrogen bond formed between the tryptophan at position 147, which is
496 highly conserved in classical MHC-I, and the penultimate carbonyl group of the peptide. It is likely
497 that in the absence of this hydrogen bond, there is increased conformational flexibility surrounding
498 the C-terminal portion of the peptide and in the α 2-1 sub-helix, which are key interaction surfaces
499 for tapasin [1,66-68] or TAPBPR [69,70]. The abrogation of this hydrogen bond tethering peptide to
500 the MHC-I peptide binding groove is likely to have facilitated a higher affinity interaction with
501 tapasin, allowing greater potential for tapasin assisted peptide editing to occur [65]. A nother thi
502 possibility is that the ability to self-edit peptide repertoires involves the displacement of low affinity
503 peptides from the peptide binding groove without substantial rearrangements of protein domains.
504 In such a scenario, our experiments indicate that the combination of tryptophan at position 147 and
505 tyrosine at position 116 are integral to the self-editing ability of HLA-B*44:05 while the combination
506 of tryptophan and aspartic acid at these positions does not permit self-editing for HLA-B*44:02.
507 However, the mechanism by which these residues are involved in self-editing remains to be
508 determined. While molecular models of MHC-I self-editing have been proposed based on analysis of
509 selected MHC-I allotypes [29,71-76], these models do not provide a universal mechanism of self-

510 editing that is applicable for all tapasin independent MHC-I allotypes, and it is possible that different
511 mechanisms may operate in different MHC-I allotypes.

512 There may be multiple physiologically relevant consequences of variable degrees of repertoire
513 editing by tapasin and TAPBPR. For tapasin dependent MHC-I allotypes, and for those MHC-I
514 molecules that bind TAPBPR strongly, the extent of peptide focusing is likely to change in line with
515 the expression levels of tapasin and TAPBPR, along with other components of the MHC-I antigen
516 processing and presentation pathway. While cytokines released in response to inflammation may
517 enhance MHC-I mediated antigen presentation, viral immune evasion proteins may target key
518 proteins, including tapasin, to avoid MHC-I antigen presentation [77,78]. Similarly, some cancers
519 lose expression of proteins involved in MHC-I mediated antigen presentation, including tapasin,
520 generally leading to tumour progression and poorer prognoses [20,79,80]. Thus, those MHC-I
521 molecules that can independently optimise their peptide repertoire may be less susceptible to
522 down regulation of tapasin.

523 Our data supports recent suggestions that in humans, tapasin dependence and immunopeptidome
524 diversity are inversely correlated [14,27,59]. Thus, tapasin dependency is likely to result in a more
525 focused profile of presented peptides in which fewer, higher affinity peptides are presented at
526 relatively higher abundance. There are also substantial differences in the diversity of MHC-I
527 immunopeptidomes presented by different chicken MHC-I allotypes, with MHC-I
528 immunopeptidome diversity being correlated, not with tapasin dependence, but with the structure
529 of the MHC-I peptide binding groove and the specificity of the co-evolving polymorphic TAP peptide
530 transporters [27,59,81,82]. Importantly, in both chickens and humans, diverse MHC-I
531 immunopeptidomes have been shown to correlate with resistance to certain infectious pathogens
532 [14,27,59]. Additionally, vaccination studies in rhesus macaques have shown that presentation of a
533 diverse pool of peptides by non-classical Mamu-E MHC-I molecules, equivalent to HLA-E in humans,
534 resulted in enhanced immune responses [83]. Thus, the protective benefit of diverse MHC-I
535 immunopeptidomes appears to be an evolutionarily conserved feature of MHC-I molecules. MHC-I
536 molecules with promiscuous peptide binding specificities, or the ability to select and present a
537 broad peptide repertoire in the absence of tapasin/TAPBPR might be considered survival
538 “generalists” [59]. By comparison, MHC-I molecules with fastidious peptide binding specificities, or
539 high dependency on tapasin/TAPBPR for repertoire editing may be beneficial for responding to new,

540 and perhaps especially virulent pathogens, and therefore may be classified as survival “specialists”
541 [59]. Similarly, in the context of tumour immunology, a generalist approach (e.g. low tapasin
542 dependence, mild editing) may be more protective against tumours that express multiple tumour
543 specific neoepitopes, whereas for those that express a paucity of neoepitopes a more specialist
544 approach (e.g. high tapasin dependence, aggressive editing) may be preferable.

545 In conclusion, our data are consistent with a scenario in which the dependence of individual MHC-I
546 allotypes upon tapasin for optimal peptide selection underpins the diversity of their
547 immunopeptidomes [14,27,59]. Our *in vitro* observations of tapasin-jun-ERp57 and TAPBPR
548 mediated peptide focusing illustrate how tapasin or TAPBPR filters the immunopeptidome
549 according to individual peptide-MHC-I complex stability.

550 **Conflict of Interest:**

551 AWP is a member of the scientific advisory board (SAB) of Bioinformatic Solutions Inc. (Canada) and
552 is a shareholder and SAB member of Evaxion Biotech (Denmark). He is a co-founder of Resseptor
553 Therapeutics (Australia). None of these entities had any influence on this publication. The other
554 authors declare that the research was conducted in the absence of any commercial or financial
555 relationships that could be construed as a potential conflict of interest.

556 **Author Contributions:**

557 **Rachel Darley:** data curation, formal analysis, investigation, methodology, project administration,
558 resources provision, validation, visualization. **Patricia T. Illing:** data curation, formal analysis;
559 funding acquisition, investigation, methodology, project administration, resources provision,
560 validation. **Patrick Duriez:** resources provision. **Alistair Bailey:** formal analysis, validation. **Anthony**
561 **W. Purcell:** funding acquisition, supervision, writing. **Andy van Hateren:** conceptualization, data
562 curation, formal analysis, investigation, methodology, project administration, resources provision,
563 supervision, validation, visualization, writing. **Tim Elliott:** conceptualization, funding acquisition,
564 supervision, validation, writing.

565 **Funding:**

566 This work was funded by a Cancer Research UK programme grant A28279 (award to TE), by National
567 Health and Medical Research Council Australia (NHMRC) project grants 1122099 and 1165490
568 (awarded to AP), while PI was supported by a NHMRC Early Career Fellowship (1072159) and a
569 Monash University Faculty of Medicine, Nursing and Health Sciences Senior Postdoctoral
570 Fellowship. AP acknowledges salary support from a NHMRC Principal Research Fellowship
571 (1137739).

572 **Acknowledgements:**

573 The authors acknowledge Charlotte Barton for her technical help during a project placement.

574 **Tables:**

575 **Table 1. Descriptive statistics for HLA-B*44:02, HLA-B*44:05 and HLA-B*44:05-W147A**
576 ~~immunopeptidomes. Skewness is a measure of how symmetrical a distribution is. A skew greater~~
577 ~~than 1.0 (or less than -1.0) denotes substantial skewness and a non-symmetrical distribution.~~
578 ~~Kurtosis is a measure of whether the “tails” of a distribution match the Gaussian distribution. A~~
579 ~~Gaussian distribution has a kurtosis of 0. A distribution with more values in the tails (or values~~
580 ~~further out in the tails) than a Gaussian distribution has a positive kurtosis. The affinity of all~~
581 ~~peptides identified in each immunopeptidomes was predicted (“All peptides”), or after peptides~~
582 ~~potentially derived from endogenous non-HLA-B*44 molecules were omitted (“Omitting potential~~
583 ~~non-HLA-B*44 peptides”).~~

	<u>All peptides</u>			<u>Omitting potential non-HLA-B*44 peptides</u>		
	<u>B*44:02</u>	<u>B*44:05</u>	<u>B*44:05-W147A</u>	<u>B*44:02</u>	<u>B*44:05</u>	<u>B*44:05-W147A</u>
Number of values	4798	5436	3391	4410	4499	3011
Median	134	1652	992	109.9	1170	798.7
Std. Deviation	11372	13289	12645	7868	7577	9118
Std. Error of Mean	164.2	180.2	217.1	118.5	113.0	166.2

Skewness	2.079	1.420	1.663			
Kurtosis	2.801	0.3476	1.193			

584

585 **Table 2. Analysis of the contents of immunopeptidomes.** The number of peptides with the
 586 preferred motif was calculated as a percentage of either the total immunopeptidome ("all
 587 peptides"), or of the peptides uniquely identified for one MHC I molecule ("unique peptides"). The
 588 HLA-B*44:02 and HLA-B*44:05-W147A motifs were glutamic acid at position 2 and any of
 589 tryptophan, phenylalanine, tyrosine, leucine, isoleucine or methionine at the C-terminal position.
 590 The HLA-B*44:05 motif was glutamic acid at position 2 and any of tryptophan, phenylalanine,
 591 leucine, isoleucine or methionine at the C-terminal position.

592

	B*44:02	B*44:05	B*44:05- W147A				
All peptides	79	74	76				
Unique peptides	43	39	42				

593

594 **Table 3. Descriptive statistics for peptides that were common to both HLA-B*44:05 and HLA-**
 595 **B*44:05-W147A immunopeptidomes, or unique to one immunopeptidome.**

	Common	B*44:05 unique	B*44:05-W147A unique
Number of values	1240	4196	2151
Median	839	1937	1090
Std. Deviation	13705	13164	11963

Std. Error of Mean	389.2	203.2	257.9
Skewness	1.379	1.436	1.863
Kurtosis	0.1293	0.4240	2.080

596

597 **Table 4. Comparison of the HLA-B*44:05 or HLA-B*44:05-W147A immunopeptidomes.** The
 598 peptides that were uniquely identified within either the HLA-B*44:05 or HLA-B*44:05-W147A
 599 immunopeptidomes (“4405 unique” or “W147A unique”) or were found in both
 600 immunopeptidomes (“common”) were calculated as in table 2.

	Common	B*44:05 unique	W147A unique
All peptides (%)	74	74	75

601

602 **Table 2. Correlation analyses of the relationships between predicted affinity and measured IC50.**
 603 Pearson correlation analyses were performed for the indicated MHC-I molecules to determine
 604 whether the predicted affinities correlated with the measured IC50 values. The coefficient of
 605 determination (R^2) is the fraction of variance that is shared between both variables. The p value
 606 represents the result of a test of the null hypothesis that the data were sampled from a population
 607 in which there is no correlation between the two variables.

MHC-I molecule	B*44:05	W147A	B*35:01	B*35:03	A*02:01
R^2	0.4886	0.4304	0.1280	0.3619	0.7957
P value	0.0001	0.0005	0.0861	0.0019	<0.0001

608

609 **Figure legends:**

610 **Figure 1: The immunopeptidomes of the tapasin dependent HLA-B*44:02 and HLA-B*44:05-W17A**
611 **molecules contain greater proportions of high affinity peptides than tapasin independent HLA-**
612 **B*44:05 molecules.**

613 a) Venn diagram showing the number of peptides that were unique to each immunopeptidome, or
614 which were shared.

615 b) Bar graph depicting the number of peptides identified within each immunopeptidome that were
616 8-13 amino acids long.

617 c) Bar graph depicting the frequency of peptides identified within the immunopeptidomes that
618 were 8-13 amino acids long.

619 e)d) Motifs representing the immunopeptidomes of the HLA-B*44:02, HLA-B*44:05 and HLA-
620 B*44:05-W17A molecules after Gibbs clustering and omission of potential non-HLA-B*44
621 binding peptides that did not have glutamic acid at position 2. At each position of a nonameric
622 peptide there is a stack of amino acids with the height of the letter representing the frequency
623 at which that residue was found. Only peptides that were 8-13 amino acids long were
624 considered and were assigned to one (HLA-B*44:05, HLA-B*44:05-W147A, and non-HLA-B*44)
625 or two motifs (HLA-B*44:02, as described previously ref [34]). For HLA-B*44:02, ~116% of
626 peptides had no clear motif, and are not presented.

627 e)a) Bar graph depicting the frequency of peptides identified within the immunopeptidomes that
628 were 8-13 amino acids long.

629 e) Graphs depicting the predicted affinities of the peptides identified within each
630 immunopeptidome with or without omission of the potential non-HLA-B*44 derived peptides.
631 The y axises represents the predicted affinity with nM units, calculated using NetMHCpan as
632 detailed in the methods, with high affinity peptides having low nM values. Each dot represents a
633 peptide, with the median indicated by a black horizontal bar. The left-hand graph shows the
634 predicted affinities when all peptides are included, the right-hand graph shows the predicted
635 affinities when the potential non-HLA-B*44 derived peptides were omitted.

636 f) Graphs depicting the proportion of peptides containing the preferred motif of the indicated
637 MHC-I molecule. This was calculated as a the percentage of all the peptides that contained the
638 preferred motif within each immunopeptidome (“all”, left upper plot), or after potential non-

639 non-HLA-B*44 derived peptides were omitted ("minus non-HLA-B*44", lower plot). The HLA-
640 B*44:02 and HLA-B*44:05-W147A motifs were glutamic acid at position 2 and any of
641 tryptophan, phenylalanine, tyrosine, leucine, isoleucine or methionine at the C-terminal
642 position. The HLA-B*44:05 motif was glutamic acid at position 2 and any of tryptophan,
643 phenylalanine, leucine, isoleucine or methionine at the C-terminal position. ~~as a percentage of~~
644 ~~those the peptides uniquely identified for one MHC I molecule ("unique", centre plot). The right~~
645 ~~plot ("05 vs 147A") shows the percentage of peptides uniquely identified within either the HLA-~~
646 ~~B*44:05 or the HLA-B*44:05-W147A immunopeptidomes or were found in both (common).~~
647 g) ~~Graph depicting the predicted affinities of the peptides identified within the HLA-B*44:05 and~~
648 ~~HLA-B*44:05-W147A immunopeptidomes as in figure 1e. "Common" denotes peptides that~~
649 ~~were identified in both the HLA-B*44:05 and HLA-B*44:05-W147A immunopeptidomes, while~~
650 ~~peptides that were found only in one immunopeptidome were classified as either "B4405~~
651 ~~unique" or "W147A unique".~~

652

653 **Figure 2: Tapasin-jun-ERp57 focuses the repertoire of peptides selected by HLA-B*44:05-fos and**
654 **HLA-B*44:05-W147A-fos.**

655 a) For HLA-B*44:05-fos and HLA-B*44:05-W147A-fos molecules, the affinities of the peptides used
656 in the competition experiments were predicted and plotted against the measured mean intrinsic
657 IC50 values. The predicted affinities of the competing peptides are represented in nM units,
658 with high affinity peptides having low nM values. The ~~measure~~-intrinsic IC50 values are the IC50
659 values measured in the absence of tapasin-jun-Erp57 and are shown in μM units, with high
660 affinity peptides having low μM values.

661 b) Peptide competition experiments were conducted in which unlabelled peptides individually
662 competed against EEEGK^{TAMRA}AFSF peptide for binding to either HLA-B*44:05-fos or HLA-
663 B*44:05-W147A-fos in the presence or absence of tapasin-jun-ERp57. Binding of
664 EEEGK^{TAMRA}AFSF peptide was measured by fluorescence polarisation and IC50 values calculated
665 for each peptide (IC50 value is shown in μM units, with high affinity peptides having low μM
666 values). Each peptide was tested at least twice, and the mean of the replicate experiments is
667 reported. Peptides whose ability to compete for binding is not affected by tapasin-jun-ERp57

668 will fall along the diagonal dashed line. A faint dashed vertical line indicates a concentration
669 discussed in the text.

670 c) Peptide competition experiments were conducted with HLA-B*44:05 or HLA-B*44:05-W147A
671 molecules without fos leucine zipper sequences in which peptides competed for binding in -the
672 presence or absence of tapasin-jun-ERp57.

673 d) The half-lives of the complexes formed between the unlabelled peptides and HLA-B*44:05-fos
674 or HLA-B*44:05-W147A-fos were indirectly measured and plotted against the mean intrinsic
675 IC50 values. Each peptide was tested at least twice, and the mean half-life of the replicate
676 experiments is reported in hours (high affinity peptide-MHC-I complexes have long half-lives).

677 e) The magnitude that tapasin-jun-ERp57 changed the ability of peptides to compete for binding to
678 the HLA-B*44:05-fos or HLA-B*44:05-W147A-fos molecules was calculated and is reported as
679 the “tapasin editing effect” (shortened to “tapasin effect” on the y axis of the graph). When
680 tapasin-jun-ERp57 made a peptide a weaker competitor, this was calculated as the ratio of IC50
681 measured in the presence of tapasin divided by the intrinsic IC50 and was plotted as a positive
682 number. When tapasin-jun-ERp57 made a peptide a stronger competitor, this was calculated as
683 the ratio of the intrinsic IC50 divided by the IC50 measured in the presence of tapasin and was
684 plotted as a negative number. For each peptide, the tapasin editing effect was plotted against
685 the mean half-life measured for that peptide-MHC-I-fos complex.

686 f) Bar graph showing the “tapasin editing effect” observed for selected peptides competing for
687 binding to HLA-B*44:05-fos or HLA-B*44:05-W147A-fos. Peptides which either competed for
688 binding to HLA-B*44:05-fos or HLA-B*44:05-W147A-fos with similar intrinsic IC50s (peptide
689 sequence in green), or formed complexes with HLA-B*44:05-fos or HLA-B*44:05-W147A-fos
690 with similar half-lives (peptide sequence in orange), or had both similar intrinsic IC50s and
691 similar half-lives (peptide sequence in pink) were selected and the magnitude by which tapasin-
692 jun-ERp57 changed the ability to compete was compared. The tapasin editing effect (“tapasin
693 effect” on y axis) measured in each experiment is shown as an open symbol, with the height of
694 the bar indicating the mean, and the error bar indicating the standard deviation between
695 replicates. To facilitate comparison of how tapasin changed the ability of different peptides to
696 compete for binding, the data is plotted to show the magnitude by tapasin changed their ability
697 to compete irrespective of whether a peptide became a poorer or stronger competitor.

698

699 **Figure 3: Tapasin-jun-ERp57 focuses the repertoire of peptides selected by HLA-B*35:01-fos and**
700 **HLA-B*35:03-fos.**

701 a) For HLA-B*35:01-fos and HLA-B*35:03-fos molecules, the affinities of the peptides used in the
702 competition experiments were predicted and plotted against the measured mean intrinsic IC50
703 values as in figure 2a.

704 b) Peptide competition experiments were conducted as described in figure 2b with HLA-B*35:01-
705 fos or HLA-B*35:03-fos molecules. Faint dashed vertical lines indicate concentrations discussed
706 in the text.

707 c) The half-lives of the complexes formed between the unlabelled peptides and HLA-B*35:01-fos
708 or HLA-B*35:03-fos were indirectly measured and plotted against the mean intrinsic IC50 values
709 as in figure 2d.

710 d) The magnitude that tapasin-jun-ERp57 changed the ability of peptides to compete for binding to
711 the HLA-B*35:01-fos or HLA-B*35:03-fos molecules was calculated as before (“tapasin editing
712 effect”) and plotted against the mean half-lives measured for that peptide-MHC-I-fos complex.
713 Faint dashed vertical lines indicate half-lives discussed in the text.

714 e) Bar graph showing the “tapasin editing effect” observed for selected peptides competing for
715 binding to HLA-B*35:01-fos or HLA-B*35:03-fos. Peptides which either competed for binding to
716 HLA-B*35:01-fos or HLA-B*35:03-fos with similar intrinsic IC50s (peptide sequence in green) or
717 had both similar intrinsic IC50s and formed complexes with HLA-B*44:05-fos or HLA-B*44:05-
718 W147A-fos with similar half-lives (peptide sequence in pink) were selected and the magnitude
719 by which tapasin-jun-ERp57 changed the ability to compete was compared and is presented as
720 in figure 2f.

721

722 **Figure 4: TAPBPR focuses the repertoire of peptides selected by HLA-A*02:01-fos.**

723 a) For HLA-A*02:01-fos molecules, the affinities of the peptides used in the competition
724 experiments were predicted and plotted against the measured mean intrinsic IC50 values as in
725 figure 2a.

726 b) Peptide competition experiments were conducted in the presence or absence of TAPBPR. Each
727 peptide was tested at least twice, and the mean of the replicate experiments is reported. A faint
728 dashed vertical line indicates a concentration discussed in the text.

729 c) The half-lives of the complexes formed between the unlabelled peptides and HLA-A*02:01-fos
730 were indirectly measured and plotted against the mean intrinsic IC50 values as in figure 2d.

731 d) The magnitude that TAPBPR changed the ability of peptides to compete for binding to the HLA-
732 A*02:01-fos molecules was calculated (in the same manner as for tapasin) and plotted as the
733 “TAPBPR editing effect” as in figure 2e (shortened to “TAPBPR effect” on the y axis of the
734 graph). This was plotted against the mean half-lives measured for the peptide-MHC-I-fos
735 complexes on the x axis.

736

737

Supplementary Material

738 **1 Supplementary methods.**

739 **Generation of tapasin deficient, and tapasin-reconstituted, MHC-I expressing cell lines**

740 DNA constructs encoding HLA-B*35:01 or HLA-B*35:03 in the pMSCVneo plasmid were kindly
741 provided by Prof M. Raghavan [15] and sub-cloned into the pMCFRpuro plasmid. Stable
742 transfectants of tapasin-deficient 721.220 cells, or tapasin-reconstituted 721.220-tapasin cells,
743 expressing HLA-B*35:01, HLA-B*35:03 were generated as described [29].

744 **MHC-I pulse chase thermostability assays**

745 MHC-I thermostability assays were performed essentially as described [2]. In brief, tapasin-deficient
746 .220 cells, or tapasin-reconstituted .220-tapasin cells, expressing the indicated MHC-I molecules
747 were radiolabelled with 10 μ Ci/ml 35 S Translabel for six minutes, chased for the indicated period,
748 before the cells were lysed. The lysates were heated to 37°C for 12 minutes, before being cooled,
749 and MHC-I- β_2 m complexes immunoprecipitated with W6/32 antibody. The eluted proteins were
750 separated by SDS PAGE, and the gels were stained with Coomassie brilliant blue and an image of the
751 gel taken, before the gels were dried and exposed to phosphor screens. The intensities of the
752 radiolabelled heavy chain bands were measured using Personal Molecular Imager FX and quantified
753 using Quantity One software and normalised according to the corresponding intensity of
754 immunoprecipitated W6/32 antibody heavy chain bands in the Coomassie stained gel image.

755 **Flow cytometry measurements of MHC-I cell surface expression**

756 Cells were stained with W6/32 antibody followed by anti-mouse FITC secondary antibody in the
757 dark, washed and analysed on a FACSCalibur flow cytometer (BD Biosciences).

758 **MHC-I pulse chase maturation assays**

759 MHC-I pulse chase maturation assays were performed as described [2,29].

760 **MHC-I peptide stabilization assays.**

761 Tapasin-deficient .220 cells expressing the indicated MHC-I molecules were incubated at 37°C for 40
762 minutes in 4 ml of methionine and cysteine free RPMI media that was supplemented with 10%
763 dialysed FCS and 2 mM L-glutathione. The cells were radiolabelled with 7.8 MBq of 35 S Translabel
764 for 30 minutes at 37°C before the radiolabelling was quenched by the addition of 20 ml ice cold PBS,
765 and the cells lysed. The lysates were divided into five aliquots and incubated for 30 minutes on ice
766 with either 0, 1, 2, 5 or 20 μ M of the following known HLA-B*44 binding peptides (FEDLRVLSF,
767 VETPIRNEW, TENGSFVAGY, EENLLDFVRF or SEIDTVAKY, refs [84-87]). MHC-I molecules were
768 immunoprecipitated using W6/32 antibody as detailed above and separated by SDS PAGE gels.

769 **Supplementary figure 1: The HLA-B*35:01, HLA-B*35:03, HLA-B*44:02, HLA-B*44:05 and HLA-**
770 **B*44:05-W147A MHC-I molecules differ in their dependence upon tapasin.**

771 a) Representative images of ^{35}S pulse labelled MHC-I thermostability assays of the indicated MHC-I
772 molecules expressed in tapasin deficient 721.220 cells (- tapasin) or tapasin reconstituted
773 721.220-tapasin cells (+ tapasin). Only the portion of the gel showing the heavy chain band is
774 shown.

775 b) Bar graph depicting how much tapasin improved the thermostability of the indicated MHC-I
776 molecules. This was calculated as the ratio of the percentage of thermostable MHC-I recovered
777 in the presence of tapasin divided by the percentage of thermostable MHC-I recovered in the
778 absence of tapasin after a chase of 120 minutes. Dots represent results from individual
779 experiments, and vertical lines depict the standard deviation observed between experiments.
780 The data for HLA-B*44:02, HLA-B*44:05 and HLA-B*44:05-W147A is published in ref [29].

781 c) Bar graph showing the cell surface expression level of the indicated MHC-I molecules
782 transfected into tapasin deficient 721.220 cells (- tapasin) or tapasin reconstituted 721.220-
783 tapasin cells (+ tapasin) following staining with W6/32 antibody and flow cytometry analysis.
784 Dots represent the mean fluorescent intensity measured in an experiment, and vertical lines
785 depict the standard deviation observed between experiments. The data for HLA-B*44:02, HLA-
786 B*44:05 and HLA-B*44:05-W147A is published in ref [29].

787 d) Representative images of ^{35}S pulse chase MHC-I maturation assays of the indicated MHC-I
788 molecules expressed in tapasin deficient 721.220 cells (- tapasin) or tapasin reconstituted
789 721.220-tapasin cells (+ tapasin). W6/32 immunoprecipitated samples were digested (+) or
790 mock digested (-) with endoglycosidase H (endo H). ER and ES denote immunoprecipitated
791 MHC-I molecules that are resistant (ER) or sensitive (ES) to digestion with endoglycosidase H.

792 e) Graphs depicting the percentage of immunoprecipitated MHC-I molecules that were resistant to
793 digestion with endoglycosidase H at each chase point in the absence (left) or presence of
794 tapasin (right). Vertical error bars denote the standard deviation observed between
795 experiments. The maturation of HLA-B*44:02, HLA-B*44:05 and HLA-B*44:05-W147A in 721.220
796 or 721.220-tapasin cells is published in ref [29].

797

798 **Supplementary figure 2: Peptide stabilization assays with tapasin-deficient cells expressing HLA-
799 B*44:02, HLA-B*44:05 or HLA-B*44:05-W147A.**

800 MHC-I peptide stabilization assays of the indicated MHC-I molecules expressed in tapasin deficient
801 721.220 cells. The cells were radiolabelled before the cells were lysed. Aliquots of lysates were
802 incubated with the indicated peptide for 30 minutes before MHC-I molecules were
803 immunoprecipitated and separated by SDS PAGE. Only the portion of the gel showing the heavy
804 chain band is shown. Graphs show the density of the heavy chain bands for the indicated MHC-I
805 molecules. The anomalous data point for HLA-B*44:05-W147A incubated with 2 μM FEDLRVLSF
806 (denoted with an asterisk above) was omitted from the graph for clarity.

807

808 **Supplementary figure 3: Analysis of the immunopeptidomes without peptides potentially derived
809 from non-HLA-B*44 molecules.**

810 Motifs representing the immunopeptidomes of the HLA-B*44:02, HLA-B*44:05, HLA-B*44:05-W17A
811 molecules without any peptides being omitted from the analysis. Peptides were assigned to one
812 (HLA-B*44:05 and HLA-B*44:05-W147A) or two motifs (HLA-B*44:02, as described previously ref
813 [34]). For HLA-B*44:02, ~11% of peptides had no clear motif, and are not presented.

814

815 **Supplementary figure 4: Peptide binding and peptide dissociation experiments with HLA-B*44:05-**
816 **fos and HLA-B*44:05-W147A-fos in the presence or absence of tapasin-jun-ERp57.**

817 a) Peptide binding experiment in which 160 nM HLA-B*44:05-fos was supplemented with 3.2 μ M
818 β_2 -microglobulin and UV exposed, before being added to 2 nM EFGK*AFSF peptide in the
819 presence or absence of 300 nM tapasin-jun-ERp57. Fluorescence polarisation was measured at
820 25 °C.

821 b) Peptide binding experiment with HLA-B*44:05-W147A-fos as in supplementary figure 4a.

822 c) Peptide dissociation experiment in which 160 nM HLA-B*44:05-fos was supplemented with 3.2
823 μ M β_2 -microglobulin, UV exposed and incubated overnight with 2 nM EFGK*AFSF peptide. The
824 next day, 66.7 μ M EENLLDFVRF peptide competitor was added in the presence or absence of
825 300 nM tapasin-jun-ERp57. Fluorescence polarisation was measured at 25 °C.

826 d) Peptide dissociation experiment with HLA-B*44:05-W147A-fos as in supplementary figure 4c.

827

828 **Supplementary figure 5: Identification of similar binding peptides.**

829 a) The mean intrinsic IC50 value of each peptide competing for binding to HLA-B*44:05-fos is
830 shown on the x-axis, while the mean intrinsic IC50 value measured for each peptide competing
831 for binding to HLA-B*44:05-W147A-fos is shown on the y-axis. To identify peptides with similar
832 abilities to compete for binding to both HLA-B*44:05-fos and HLA-B*44:05-W147A-fos, the ratio
833 by which the intrinsic IC50s differed was calculated. Peptides with an intrinsic IC50 ratio of less
834 than 2 are shown in green or shown in pink if the peptides also have a half-life ratio of less than
835 2, all other peptides are shown in grey.

836 b) The mean half-lives of the peptide-HLA-B*44:05-fos complexes are shown on the x-axis, while
837 the mean half-lives of the peptide-HLA-B*44:05-W147A-fos complexes are shown on the y-axis.
838 To identify peptides that formed complexes with HLA-B*44:05-fos and HLA-B*44:05-W147A-fos
839 with similar half-lives, the ratio by which the half-lives differed was calculated. Peptides with a
840 half-life ratio of less than 2 are shown in orange or shown in pink if the peptides also have an
841 intrinsic IC50 ratio of less than 2, all other peptides are shown in grey.

842 c) The mean intrinsic IC50 value of each peptide competing for binding to HLA-B*35:01-fos is
843 shown on the x-axis, while the mean intrinsic IC50 value measured for each peptide competing
844 for binding to HLA-B*35:03-fos is shown on the y-axis. Peptides with similar intrinsic IC50 ratios
845 were calculated as in supplementary figure 5a.

846 d) The mean half-lives of the peptide-HLA-B*35:01-fos complexes are shown on the x-axis, while
847 the mean half-lives of the peptide-HLA-B*35:03-fos complexes are shown on the y-axis.
848 Peptides with similar half-life ratios were calculated as in supplementary figure 5b.

849

850 **Supplementary figure 6: Peptide binding and peptide dissociation experiments with HLA-B*35:01-
851 fos and HLA-B*35:03-fos in the presence or absence of tapasin-jun-ERp57.**

852 a) Peptide binding experiment in which 225 nM HLA-B*35:01-fos was supplemented with 4.5 μ M
853 β_2 -microglobulin and UV exposed, before being added to 3 nM YPLK*EQHGM peptide in the
854 presence or absence of 300 nM tapasin-jun-ERp57. Fluorescence polarisation was measured at
855 25 °C.

856 b) Peptide binding experiment with HLA-B*35:03-fos as in supplementary figure 6a.

857 c) Peptide dissociation experiment in which 225 nM HLA-B*35:01-fos was supplemented with 4.5
858 μ M β_2 -microglobulin and UV exposed and incubated overnight with 3 nM YPLK*EQHGM
859 peptide. The next day, 66.7 μ M YPLHEQHGM peptide competitor was added in the presence or
860 absence of 300 nM tapasin-jun-ERp57. Fluorescence polarisation was measured at 25 °C.

861 d) Peptide dissociation experiment with HLA-B*35:03-fos as in supplementary figure 6c.

862

863 **Supplementary figure 7: Peptide binding and peptide dissociation experiments with HLA-A*02:01-
864 fos in the presence or absence of TAPBPR.**

865 a) Peptide binding experiment in which 50 nM HLA-A*02:01-fos was supplemented with 1 μ M β_2 -
866 microglobulin and UV exposed, before being added to 2 nM FLPSDC*FPSV peptide in the
867 presence or absence of 300 nM TAPBPR. Fluorescence polarisation was measured at 25 °C.

868 b) Peptide dissociation experiment in which 50 nM HLA-A*02:01-fos was supplemented with 1 μ M
869 β_2 -microglobulin and UV exposed and incubated overnight with 2 nM FLPSDC*FPSV peptide. The
870 next day, 66.7 μ M FLPSDCFPSV peptide competitor was added in the presence or absence of
871 300 nM TAPBPR and fluorescence polarisation was measured at 25 °C.

872

873 **Supplementary table 1: Peptide lists and analysis of potential non-HLA-B44 peptides.** The first
874 three tabs of the spreadsheet provide lists of peptides that are 8-13 amino acids and non-redundant
875 by sequence (i.e. modifications were not considered) that were identified within each
876 immunopeptidome (B4402 peptides, B4405 peptides, W147A peptides). The potential non-HLA-
877 B*44 peptides identified by Gibbs clustering are designated 1 for potential non-HLA-B*44 ligands or
878 0 for potential HLA-B*44 ligands. The fourth tab provides a list of 1228 potential non-HLA-B*44
879 binding peptides that were identified by pooling and clustering all peptides (NonB44 cluster
880 analysis). This tab provides an analysis of the potential sources of these peptides and their predicted
881 binding affinity to HLA-B*44, HLA-C*01:02, HLA-E or HLA-G molecules. The fifth tab (Non B44
882 peptides) provides a list of 1177 potential non-HLA-B*44 binding peptides, i.e. peptides identified

883 by clustering that do not have glutamic acid at position 2. The sixth tab (Overlaps) details the extent
884 to which peptides are shared between immunopeptidomes or were unique. The analysis was
885 conducted including potential non-B*44 peptides and is replicated omitting these peptides.

887 1. Domnick A, Winter C, Susac L, Hennecke L, Hensen M, Zitzmann N, et al.: **Molecular basis of**
888 **MHC I quality control in the peptide loading complex.** *Nat Commun* 2022, **13**:4701.

889 2. Williams AP, Peh CA, Purcell AW, McCluskey J, Elliott T: **Optimization of the MHC class I**
890 **peptide cargo is dependent on tapasin.** *Immunity* 2002, **16**:509-520.

891 3. Howarth M, Williams A, Tolstrup AB, Elliott T: **Tapasin enhances MHC class I peptide**
892 **presentation according to peptide half-life.** *Proc Natl Acad Sci U S A* 2004, **101**:11737-
893 11742.

894 4. Wearsch PA, Cresswell P: **Selective loading of high-affinity peptides onto major**
895 **histocompatibility complex class I molecules by the tapasin-ERp57 heterodimer.** *Nat*
896 *Immunol* 2007, **8**:873-881.

897 5. Chen M, Bouvier M: **Analysis of interactions in a tapasin/class I complex provides a**
898 **mechanism for peptide selection.** *EMBO J* 2007, **26**:1681-1690.

899 6. Boyle LH, Hermann C, Boname JM, Porter KM, Patel PA, Burr ML, et al.: **Tapasin-related**
900 **protein TAPBPR is an additional component of the MHC class I presentation pathway.**
901 *Proc Natl Acad Sci U S A* 2013, **110**:3465-3470.

902 7. Hermann C, van Hateren A, Trautwein N, Neerincx A, Duriez PJ, Stevanovic S, et al.: **TAPBPR**
903 **alters MHC class I peptide presentation by functioning as a peptide exchange catalyst.**
904 *Elife* 2015, **4**.

905 8. Morozov GI, Zhao H, Mage MG, Boyd LF, Jiang J, Dolan MA, et al.: **Interaction of TAPBPR, a**
906 **tapasin homolog, with MHC-I molecules promotes peptide editing.** *Proc Natl Acad Sci U*
907 *S A* 2016, **113**:E1006-1015.

908 9. Howe C, Garstka M, Al-Balushi M, Ghanem E, Antoniou AN, Fritzsche S, et al.: **Calreticulin-**
909 **dependent recycling in the early secretory pathway mediates optimal peptide loading of**
910 **MHC class I molecules.** *EMBO J* 2009, **28**:3730-3744.

911 10. Wearsch PA, Peaper DR, Cresswell P: **Essential glycan-dependent interactions optimize MHC**
912 **class I peptide loading.** *Proc Natl Acad Sci U S A* 2011, **108**:4950-4955.

913 11. Neerincx A, Hermann C, Antrobus R, van Hateren A, Cao H, Trautwein N, et al.: **TAPBPR**
914 **bridges UDP-glucose:glycoprotein glucosyltransferase 1 onto MHC class I to provide**
915 **quality control in the antigen presentation pathway.** *Elife* 2017, **6**.

916 12. Falk K, Rotzschke O, Rammensee HG: **Cellular peptide composition governed by major**
917 **histocompatibility complex class I molecules.** *Nature* 1990, **348**:248-251.

918 13. Rotzschke O, Falk K, Deres K, Schild H, Norda M, Metzger J, et al.: **Isolation and analysis of**
919 **naturally processed viral peptides as recognized by cytotoxic T cells.** *Nature* 1990,
920 **348**:252-254.

921 14. Bashirova AA, Viard M, Naranbhai V, Grifoni A, Garcia-Beltran W, Akdag M, et al.: **HLA**
922 **tapasin independence: broader peptide repertoire and HIV control.** *Proc Natl Acad Sci U*
923 *S A* 2020, **117**:28232-28238.

924 15. Rizvi SM, Salam N, Geng J, Qi Y, Bream JH, Duggal P, et al.: **Distinct assembly profiles of**
925 **HLA-B molecules.** *J Immunol* 2014, **192**:4967-4976.

926 16. Greenwood R, Shimizu Y, Sekhon GS, DeMars R: **Novel allele-specific, post-translational**
927 **reduction in HLA class I surface expression in a mutant human B cell line.** *J Immunol*
928 **1994, 153:5525-5536.**

929 17. Zernich D, Purcell AW, Macdonald WA, Kjer-Nielsen L, Ely LK, Laham N, et al.: **Natural HLA**
930 **class I polymorphism controls the pathway of antigen presentation and susceptibility to**
931 **viral evasion.** *J Exp Med* 2004, **200**:13-24.

932 18. Ilca FT, Drexhage LZ, Brewin G, Peacock S, Boyle LH: **Distinct Polymorphisms in HLA Class**
933 **I Molecules Govern Their Susceptibility to Peptide Editing by TAPBPR.** *Cell Rep* 2019,
934 **29**:1621-1632 e1623.

935 19. Sun Y, Papadaki GF, Devlin CA, Danon JN, Young MC, Winters TJ, et al.: **Xeno interactions**
936 **between MHC-I proteins and molecular chaperones enable ligand exchange on a broad**
937 **repertoire of HLA allotypes.** *Sci Adv* 2023, **9**:eade7151.

938 20. Dhatchinamoorthy K, Colbert JD, Rock KL: **Cancer Immune Evasion Through Loss of MHC**
939 **Class I Antigen Presentation.** *Front Immunol* 2021, **12**:636568.

940 21. Walker-Sperling V, Digitale JC, Viard M, Martin MP, Bashirova A, Yuki Y, et al.: **Genetic**
941 **variation that determines TAPBP expression levels associates with the course of malaria**
942 **in an HLA allotype-dependent manner.** *Proc Natl Acad Sci U S A* 2022, **119**:e2205498119.

943 22. Carignano A, Dalchau N: **A theory for how the antigen presentation profile influences the**
944 **timing of T-cell detection.** *bioRxiv* 2018.

945 23. Dalchau N, Phillips A, Goldstein LD, Howarth M, Cardelli L, Emmott S, et al.: **A peptide**
946 **filtering relation quantifies MHC class I peptide optimization.** *PLoS Comput Biol* 2011,
947 **7**:e1002144.

948 24. Paul S, Weiskopf D, Angelo MA, Sidney J, Peters B, Sette A: **HLA class I alleles are associated**
949 **with peptide-binding repertoires of different size, affinity, and immunogenicity.** *J*
950 **Immunol** 2013, **191**:5831-5839.

951 25. Kosmrlj A, Read EL, Qi Y, Allen TM, Altfeld M, Deeks SG, et al.: **Effects of thymic selection**
952 **of the T-cell repertoire on HLA class I-associated control of HIV infection.** *Nature* 2010,
953 **465**:350-354.

954 26. Kaur A, Surnilla A, Zaitouna AJ, Mumphrey MB, Basrur V, Grigorova I, et al.: **Mass**
955 **Spectrometric Profiling of HLA-B44 Peptidomes Provides Evidence for Tapasin-**
956 **Mediated Tryptophan Editing.** *J Immunol* 2023, **211**:1298-1307.

957 27. Chappell P, Meziane el K, Harrison M, Magiera L, Hermann C, Mears L, et al.: **Expression**
958 **levels of MHC class I molecules are inversely correlated with promiscuity of peptide**
959 **binding.** *Elife* 2015, **4**:e05345.

960 28. Boulanger DSM, Douglas LR, Duriez PJ, Kang Y, Dalchau N, James E, et al.: **Tapasin-**
961 **mediated editing of the MHC I immunopeptidome is epitope specific and dependent on**
962 **peptide off-rate, abundance, and level of tapasin expression.** *Front Immunol* 2022,
963 **13**:956603.

964 29. Bailey A, Dalchau N, Carter R, Emmott S, Phillips A, Werner JM, et al.: **Selector function of**
965 **MHC I molecules is determined by protein plasticity.** *Sci Rep* 2015, **5**:14928.

966 30. Purcell AW, Ramarathinam SH, Ternette N: **Mass spectrometry-based identification of MHC-**
967 **bound peptides for immunopeptidomics.** *Nat Protoc* 2019, **14**:1687-1707.

968 31. Escher C, Reiter L, MacLean B, Ossola R, Herzog F, Chilton J, et al.: **Using iRT, a normalized**
969 **retention time for more targeted measurement of peptides.** *Proteomics* 2012, **12**:1111-
970 1121.

971 32. UniProt C: **UniProt: the Universal Protein Knowledgebase in 2023.** *Nucleic Acids Res* 2023,
972 **51**:D523-D531.

973 33. Bassani-Sternberg M, Gfeller D: **Unsupervised HLA Peptidome Deconvolution Improves**
974 **Ligand Prediction Accuracy and Predicts Cooperative Effects in Peptide-HLA**
975 **Interactions.** *J Immunol* 2016, **197**:2492-2499.

976 34. Gfeller D, Guillaume P, Michaux J, Pak HS, Daniel RT, Racle J, et al.: **The Length Distribution**
977 **and Multiple Specificity of Naturally Presented HLA-I Ligands.** *J Immunol* 2018,
978 **201**:3705-3716.

979 35. Reynisson B, Alvarez B, Paul S, Peters B, Nielsen M: **NetMHCpan-4.1 and NetMHCIIpan-**
980 **4.0: improved predictions of MHC antigen presentation by concurrent motif**
981 **deconvolution and integration of MS MHC eluted ligand data.** *Nucleic Acids Res* 2020,
982 **48**:W449-W454.

983 36. Andreatta M, Alvarez B, Nielsen M: **GibbsCluster: unsupervised clustering and alignment of**
984 **peptide sequences.** *Nucleic Acids Res* 2017, **45**:W458-W463.

985 37. Perez-Riverol Y, Csordas A, Bai J, Bernal-Llinares M, Hewapathirana S, Kundu DJ, et al.: **The**
986 **PRIDE database and related tools and resources in 2019: improving support for**
987 **quantification data.** *Nucleic Acids Res* 2019, **47**:D442-D450.

988 38. Vita R, Mahajan S, Overton JA, Dhanda SK, Martini S, Cantrell JR, et al.: **The Immune Epitope**
989 **Database (IEDB): 2018 update.** *Nucleic Acids Res* 2019, **47**:D339-D343.

990 39. Khanna R, Silins SL, Weng Z, Gatchell D, Burrows SR, Cooper L: **Cytotoxic T cell recognition**
991 **of allelic variants of HLA B35 bound to an Epstein-Barr virus epitope: influence of**
992 **peptide conformation and TCR-peptide interaction.** *Eur J Immunol* 1999, **29**:1587-1597.

993 40. Thammavongsa V, Schaefer M, Filzen T, Collins KL, Carrington M, Bangia N, et al.: **Assembly**
994 **and intracellular trafficking of HLA-B*3501 and HLA-B*3503.** *Immunogenetics* 2009,
995 **61**:703-716.

996 41. Morel S, Ooms A, Van Pel A, Wolfel T, Brichard VG, van der Bruggen P, et al.: **A tyrosinase**
997 **peptide presented by HLA-B35 is recognized on a human melanoma by autologous**
998 **cytotoxic T lymphocytes.** *Int J Cancer* 1999, **83**:755-759.

999 42. Mandruzzato S, Stroobant V, Demotte N, van der Bruggen P: **A human CTL recognizes a**
1000 **caspase-8-derived peptide on autologous HLA-B*3503 molecules and two unrelated**
1001 **peptides on allogeneic HLA-B*3501 molecules.** *J Immunol* 2000, **164**:4130-4134.

1002 43. Sidney J, del Guercio MF, Southwood S, Engelhard VH, Appella E, Rammensee HG, et al.:
1003 **Several HLA alleles share overlapping peptide specificities.** *J Immunol* 1995, **154**:247-
1004 259.

1005 44. Reker S, Becker JC, Svane IM, Ralfkiaer E, Straten PT, Andersen MH: **HLA-B35-restricted**
1006 **immune responses against survivin in cancer patients.** *Int J Cancer* 2004, **108**:937-941.

1007 45. Hourigan CS, Harkiolaki M, Peterson NA, Bell JI, Jones EY, O'Callaghan CA: **The structure of**
1008 **the human allo-ligand HLA-B*3501 in complex with a cytochrome p450 peptide: steric**
1009 **hindrance influences TCR allo-recognition.** *Eur J Immunol* 2006, **36**:3288-3293.

1010 46. Menssen R, Orth P, Ziegler A, Saenger W: **Decamer-like conformation of a nona-peptide**
1011 **bound to HLA-B*3501 due to non-standard positioning of the C terminus.** *J Mol Biol*
1012 1999, **285**:645-653.

1013 47. Abdul-Jawad S, Ondondo B, van Hateren A, Gardner A, Elliott T, Korber B, et al.: **Increased**
1014 **Valency of Conserved-mosaic Vaccines Enhances the Breadth and Depth of Epitope**
1015 **Recognition.** *Mol Ther* 2016, **24**:375-384.

1016 48. Dick TP, Bangia N, Peaper DR, Cresswell P: **Disulfide bond isomerization and the assembly**
1017 **of MHC class I-peptide complexes.** *Immunity* 2002, **16**:87-98.

1018 49. Illing PT, van Hateren A, Darley R, Croft NP, Mifsud NA, King S, et al.: **Kinetics of Abacavir-**
1019 **Induced Remodelling of the Major Histocompatibility Complex Class I Peptide**
1020 **Repertoire.** *Front Immunol* 2021, **12**:672737.

1021 50. Porter KM, Hermann C, Traherne JA, Boyle LH: **TAPBPR isoforms exhibit altered association**
1022 **with MHC class I.** *Immunology* 2014, **142**:289-299.

1023 51. Brown LV, Wagg J, Darley R, van Hateren A, Elliott T, Gaffney EA, et al.: **De-risking clinical**
1024 **trial failure through mechanistic simulation.** *Immunother Adv* 2022, **2**:ltac017.

1025 52. Di Marco M, Schuster H, Backert L, Ghosh M, Rammensee HG, Stevanovic S: **Unveiling the**
1026 **Peptide Motifs of HLA-C and HLA-G from Naturally Presented Peptides and**
1027 **Generation of Binding Prediction Matrices.** *J Immunol* 2017, **199**:2639-2651.

1028 53. Creary LE, Guerra SG, Chong W, Brown CJ, Turner TR, Robinson J, et al.: **Next-generation**
1029 **HLA typing of 382 International Histocompatibility Working Group reference B-**
1030 **lymphoblastoid cell lines: Report from the 17th International HLA and Immunogenetics**
1031 **Workshop.** *Hum Immunol* 2019, **80**:449-460.

1032 54. Lin Z, Bashirova AA, Viard M, Garner L, Quastel M, Beiersdorfer M, et al.: **HLA class I signal**
1033 **peptide polymorphism determines the level of CD94/NKG2-HLA-E-mediated regulation**
1034 **of effector cell responses.** *Nat Immunol* 2023, **24**:1087-1097.

1035 55. Llano M, Lee N, Navarro F, Garcia P, Albar JP, Geraghty DE, et al.: **HLA-E-bound peptides**
1036 **influence recognition by inhibitory and triggering CD94/NKG2 receptors: preferential**
1037 **response to an HLA-G-derived nonamer.** *Eur J Immunol* 1998, **28**:2854-2863.

1038 56. Hill AV, Elvin J, Willis AC, Aidoo M, Allsopp CE, Gotch FM, et al.: **Molecular analysis of the**
1039 **association of HLA-B53 and resistance to severe malaria.** *Nature* 1992, **360**:434-439.

1040 57. Falk K, Rotzschke O, Grahovac B, Schendel D, Stevanovic S, Jung G, et al.: **Peptide motifs of**
1041 **HLA-B35 and -B37 molecules.** *Immunogenetics* 1993, **38**:161-162.

1042 58. Steinle A, Falk K, Rotzschke O, Gnau V, Stevanovic S, Jung G, et al.: **Motif of HLA-B*3503**
1043 **peptide ligands.** *Immunogenetics* 1996, **43**:105-107.

1044 59. Kaufman J: **Generalists and Specialists: A New View of How MHC Class I Molecules Fight**
1045 **Infectious Pathogens.** *Trends Immunol* 2018, **39**:367-379.

1046 60. Bouvier M, Wiley DC: **Structural characterization of a soluble and partially folded class I**
1047 **major histocompatibility heavy chain/beta 2m heterodimer.** *Nat Struct Biol* 1998, **5**:377-
1048 384.

1049 61. Kurimoto E, Kuroki K, Yamaguchi Y, Yagi-Utsumi M, Igaki T, Iguchi T, et al.: **Structural and**
1050 **functional mosaic nature of MHC class I molecules in their peptide-free form.** *Mol*
1051 *Immunol* 2013, **55**:393-399.

1052 62. Yanaka S, Ueno T, Shi Y, Qi J, Gao GF, Tsumoto K, et al.: **Peptide-dependent conformational**
1053 **fluctuation determines the stability of the human leukocyte antigen class I complex.** *J*
1054 *Biol Chem* 2014, **289**:24680-24690.

1055 63. Wieczorek M, Sticht J, Stolzenberg S, Gunther S, Wehmeyer C, El Habre Z, et al.: **MHC class II**
1056 **complexes sample intermediate states along the peptide exchange pathway.** *Nat Commun*
1057 2016, **7**:13224.

1058 64. Wieczorek M, Abualrous ET, Sticht J, Alvaro-Benito M, Stolzenberg S, Noe F, et al.: **Major**
1059 **Histocompatibility Complex (MHC) Class I and MHC Class II Proteins:**
1060 **Conformational Plasticity in Antigen Presentation.** *Front Immunol* 2017, **8**:292.

1061 65. van Hateren A, Elliott T: **The role of MHC I protein dynamics in tapasin and TAPBPR-**
1062 **assisted immunopeptidome editing.** *Curr Opin Immunol* 2021, **70**:138-143.

1063 66. Muller IK, Winter C, Thomas C, Spaapen RM, Trowitzsch S, Tampe R: **Structure of an MHC**
1064 **I-tapasin-ERp57 editing complex defines chaperone promiscuity.** *Nat Commun* 2022,
1065 **13**:5383.

1066 67. Jiang J, Taylor DK, Kim EJ, Boyd LF, Ahmad J, Mage MG, et al.: **Structural mechanism of**
1067 **tapasin-mediated MHC-I peptide loading in antigen presentation.** *Nat Commun* 2022,
1068 **13**:5470.

1069 68. van Hateren A, Elliott T: **Visualising tapasin- and TAPBPR-assisted editing of major**
1070 **histocompatibility complex class-I immunopeptidomes.** *Curr Opin Immunol* 2023,
1071 **83**:102340.

1072 69. Thomas C, Tampe R: **Structure of the TAPBPR-MHC I complex defines the mechanism of**
1073 **peptide loading and editing.** *Science* 2017, **358**:1060-1064.

1074 70. Jiang J, Natarajan K, Boyd LF, Morozov GI, Mage MG, Margulies DH: **Crystal structure of a**
1075 **TAPBPR-MHC I complex reveals the mechanism of peptide editing in antigen**
1076 **presentation.** *Science* 2017, **358**:1064-1068.

1077 71. Bailey A, van Hateren A, Elliott T, Werner JM: **Two polymorphisms facilitate differences in**
1078 **plasticity between two chicken major histocompatibility complex class I proteins.** *PLoS*
1079 *One* 2014, **9**:e89657.

1080 72. Zacharias M, Springer S: **Conformational flexibility of the MHC class I alpha1-alpha2**
1081 **domain in peptide bound and free states: a molecular dynamics simulation study.**
1082 *Biophys J* 2004, **87**:2203-2214.

1083 73. Sieker F, Springer S, Zacharias M: **Comparative molecular dynamics analysis of tapasin-**
1084 **dependent and -independent MHC class I alleles.** *Protein Sci* 2007, **16**:299-308.

1085 74. Lan H, Abualrous ET, Sticht J, Fernandez LMA, Werk T, Weise C, et al.: **Exchange catalysis by**
1086 **tapasin exploits conserved and allele-specific features of MHC-I molecules.** *Nat Commun*
1087 2021, **12**:4236.

1088 75. Abualrous ET, Fritzsche S, Hein Z, Al-Balushi MS, Reinink P, Boyle LH, et al.: **F pocket**
1089 **flexibility influences the tapasin dependence of two differentially disease-associated**
1090 **MHC Class I proteins.** *Eur J Immunol* 2015, **45**:1248-1257.

1091 76. Sun Y, Pumroy RA, Mallik L, Chaudhuri A, Wang C, Hwang D, et al.: **CryoEM structure of an**
1092 **MHC-I/TAPBPR peptide-bound intermediate reveals the mechanism of antigen**
1093 **proofreading.** *Proc Natl Acad Sci U S A* 2025, **122**:e2416992122.

1094 77. Bennett EM, Bennink JR, Yewdell JW, Brodsky FM: **Cutting edge: adenovirus E19 has two**
1095 **mechanisms for affecting class I MHC expression.** *J Immunol* 1999, **162**:5049-5052.

1096 78. Park B, Kim Y, Shin J, Lee S, Cho K, Fruh K, et al.: **Human cytomegalovirus inhibits tapasin-**
1097 **dependent peptide loading and optimization of the MHC class I peptide cargo for**
1098 **immune evasion.** *Immunity* 2004, **20**:71-85.

1099 79. Sokol L, Koelzer VH, Rau TT, Karamitopoulou E, Zlobec I, Lugli A: **Loss of tapasin correlates**
1100 **with diminished CD8(+) T-cell immunity and prognosis in colorectal cancer.** *J Transl*
1101 *Med* 2015, **13**:279.

1102 80. Shionoya Y, Kanaseki T, Miyamoto S, Tokita S, Hongo A, Kikuchi Y, et al.: **Loss of tapasin in**
1103 **human lung and colon cancer cells and escape from tumor-associated antigen-specific**
1104 **CTL recognition.** *Oncoimmunology* 2017, **6**:e1274476.

1105 81. Walker BA, Hunt LG, Sowa AK, Skjodt K, Gobel TW, Lehner PJ, et al.: **The dominantly**
1106 **expressed class I molecule of the chicken MHC is explained by coevolution with the**
1107 **polymorphic peptide transporter (TAP) genes.** *Proc Natl Acad Sci U S A* 2011, **108**:8396-
1108 8401.

1109 82. Tregaskes CA, Harrison M, Sowa AK, van Hateren A, Hunt LG, Vainio O, et al.: **Surface**
1110 **expression, peptide repertoire, and thermostability of chicken class I molecules correlate**
1111 **with peptide transporter specificity.** *Proc Natl Acad Sci U S A* 2016, **113**:692-697.

1112 83. Hansen SG, Wu HL, Burwitz BJ, Hughes CM, Hammond KB, Ventura AB, et al.: **Broadly**
1113 **targeted CD8(+) T cell responses restricted by major histocompatibility complex E.**
1114 *Science* 2016, **351**:714-720.

1115 84. DiBrino M, Parker KC, Margulies DH, Shiloach J, Turner RV, Biddison WE, et al.: **Identification of the peptide binding motif for HLA-B44, one of the most common HLA-**
1116 **B alleles in the Caucasian population.** *Biochemistry* 1995, **34**:10130-10138.

1117 85. Archbold JK, Macdonald WA, Gras S, Ely LK, Miles JJ, Bell MJ, et al.: **Natural**
1118 **micropolymorphism in human leukocyte antigens provides a basis for genetic control of**
1119 **antigen recognition.** *J Exp Med* 2009, **206**:209-219.

1120 86. Walker S, Fazou C, Crough T, Holdsworth R, Kiely P, Veale M, et al.: **Ex vivo monitoring of**
1121 **human cytomegalovirus-specific CD8+ T-cell responses using QuantiFERON-CMV.**
1122 *Transpl Infect Dis* 2007, **9**:165-170.

1123 87. Nicholas B, Bailey A, Staples KJ, Wilkinson T, Elliott T, Skipp P: **Immunopeptidomic analysis**
1124 **of influenza A virus infected human tissues identifies internal proteins as a rich source**
1125 **of HLA ligands.** *PLoS Pathog* 2022, **18**:e1009894.

1127