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1 Introduction

To perform jet clustering for hadron collider physics one of three algorithms — kT [1],
Cambridge-Aachen (CA) [2, 3] or anti-kT [4–6], all of which originated in e+e− physics
(see refs. [6–9]) — is a preferred choice. This is due to several desired properties: they are
infrared safe, are flexible enough to capture many different jet signals with minimal parame-
ter changes and excellent implementations of them are publicly available (see FASTJET [10]).
These algorithms are recursive (or iterative) and agglomerative. A recursive algorithm is
well suited to clustering objects when the number of groups is not known from the outset.
Agglomerative algorithms create jets by grouping objects, starting from individual parti-
cles, and continuing to combine the groups of particles into larger groups, until the desired
jet size is reached. Creating jets that are IR safe can be achieved by ensuring that pairs of
particles emerging from soft and/or collinear emissions combine early in this process. Once
these IR splittings have been recombined they cannot influence the rest of the clustering
process.
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Jet definition precedes further algorithmic methods to extract useful physical quanti-
ties. Finding an alternative clustering method that compares favourably to these popular
jet algorithms, and which offers additional features for further analysis, is our goal. Success
in obtaining clusters based on informative transformations of the data offers the possibil-
ity of exploiting such representations. In this paper, we use Laplacian eigenmaps [11] to
represent the particles in an event, a procedure employed in applications such as image
segmentation [12] and called spectral clustering [13]. Spectral clustering has had success in
other physics contexts, such as to identify the motion of vortices [14] in fluid dynamics. It
has also been used to reduce the risk of blackouts in electricity supply, subdividing power
grids into ‘islands’. These are electromechanically stable regions located by minimising
the power flow between them using spectral clustering [15]. A hierarchical, agglomerative
algorithm for the same was introduced in [16]. This agglomerative approach is what we
show in this paper to be suitable also in the context of jet physics.

The plan of this paper is as follows. In the next section, we will introduce the fun-
damentals of the theory of spectral clustering. In the following one, we will describe the
details of the specific method that we have applied. The numerical results will then follow.
Finally, we will draw our conclusions.

2 Theory of spectral clustering

Gathering soft and/or collinear emissions of particles is the target of jet formation, so this
must be decided by localised information. A representation of observable particles that
preserves and accentuates local information motivates the Laplacian eigenmap [11] and
spectral clustering [13], so as to lead us to believe that these are suitable tools for jet
formation. An excellent description of the theory behind spectral clustering can be found
in [17] while a short summary is given in this section.

Before looking at the theory behind this algorithm, a quick illustration of the jets
it can produce is shown in figure 1. This compares the spectral algorithm to the well
known CA one using three events. These events are chosen because they represent different
challenging situations for a jet formation algorithm. Event 1 contains jets that have quite
uniform density and blend smoothly with other jets. Event 2 contains 3 jets in very close
proximity. Event 3 contains jets of variable density. Together their behaviour showcases
some of the reasons to be interested in this algorithm.

Spectral clustering is a method whereby a set of points are represented in a new space,
called the embedding space, in which they can be easily clustered. Coordinates of the
points in the embedding space are expressed in terms of the eigenvectors and eigenvalues
of an associated Laplacian matrix, hence the name.

Input data for spectral clustering must be given as a graph, which is a set of nodes,
in this case representing the particles, and edges which join nodes together, representing
relationships between particles. The edges may be weighted, that is, a positive number is
associated with the edge, called an affinity. Affinity represents the degree of belief that the
nodes connected by the edge should be in the same group: for jet clustering this will be a
degree of belief that the particles came from the same shower.
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Figure 1. Behaviour of the spectral algorithm is compared to the well known Cambridge-Aachen
algorithm using three events from our dataset. Each row contains an event, each column is a
clustering algorithm. Circle colour indicates jet membership, filled circles indicates a b-quark jet.

The theory behind the construction of the embedding space is a relaxation of optimising
criteria that would best partition nodes into separate disconnected subgraphs, by splitting
nodes into groups. In a standard (non-physics) procedure we would start from points with
coordinates, which should be split into a predetermined number, s, of clusters. The points
are represented by nodes of a graph. The edge of the graph joining node (or point) i and j
has weight ai,j , which should grow with the probability of i and j being in the same group.

To identify groups for the points the graph is split into subgraphs, Gk, where k = 1 . . . s.
These groups should not split up points which are connected by edges with high affinity,
but it should also avoid groups of very uneven size. Minimising the NCut objective captures
this aim, where NCut is defined as

NCut = 1
2
∑

k

W (Gk, Ḡk)
vol(Gk) , (2.1)

where W (Gk, Ḡk) is the sum of all the edge weights that must be dropped to separate the
cluster Gk from the rest of the graph, Ḡk, so that W (Gk, Ḡk) = ∑

i∈Gk,j∈Ḡk
ai,j . In the
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denominator, vol(Gk) = ∑
i∈Gk

∑
j ai,j is the sum of all affinities connecting to a point in

Gk. This denominator is used to penalise the formation of small clusters.
In order to determine which point will go in which Gk, a set of indicator vectors must

be found. Membership of cluster Gk will be recorded in the indicator vector hk:

hk i =

1/
√
vol(Gk) if point i ∈ Gk,

0 otherwise.
(2.2)

To find these indicator vectors the graph is represented by the graph Laplacian, L,
a square matrix with as many rows and columns as there are points. To construct this
Laplacian we define two other matrices: an off diagonal matrix Ai,j = (1 − δi,j)ai,j and a
diagonal matrix Di,j = δi,j

∑
q ai,q. Then the symmetric Laplacian can be simply written as

L = D−
1
2 (D −A)D−

1
2 . (2.3)

Considering just one cluster, Gk, when the Laplacian is multiplied by its indicator
vector, the result is the term that NCut seeks to minimise for that cluster,

h′kLhk = 1
vol(Gk)

∑
i∈Gk,j∈Gk

(
δi,j

∑
l

al,i − ai,j

)
= W (Gk, Ḡk)

vol(Gk) . (2.4)

To obtain the sum of all the terms, stack the indicator vectors into a matrix, h′kLhk =
(H ′LH)kk, and the NCut aim described earlier becomes the trace

NCut(G1, G2, . . . Gn) ≡ 1
2

n∑
k=1

W (Gk, Ḡk)
vol(Gk) = Tr(H ′LH), (2.5)

where H ′H = I. This is still a Non-deterministic Polynomial (NP)-hard problem [18].
However, if we relax the requirements made on h in eq. (2.2), allowing the elements of
h to take arbitrary values, then the Rayleigh-Ritz theorem provides a solution. Trace
minimisation in this form is done by finding the eigenvectors of L with smallest eigenvalues,

λmin = min
‖x‖6=0

xHLx

xHx
, (2.6)

where x is the relaxed indicator vector and an eigenvector of L. Notice that L is a real
symmetric matrix and, therefore, all its eigenvalues are real. Due to the form of the
Laplacian, there will be an eigenvector with components all of the same value and its
eigenvalue will be 0. This corresponds to the trivial solution of considering all points to be
in one group. The next c = s eigenvectors of L, sorted by smallest eigenvalue, can be used
to allocate points to s clusters.

These eigenvectors are then used to determine the position of the points in the em-
bedding space. Each eigenvector has as many elements as there are points to be clustered,
so the coordinates of a point are the corresponding elements of the eigenvectors.

The standard method above is designed to form a fixed number of clusters, but typically
we do not know how many jets should be created in an event. We will create an alternative
algorithm, beginning with the principles of spectral clustering and adjusting to the needs of
the physics being studied. Using the positions in embedding space, the points can be gath-
ered agglomeratively, so that we do not need to choose a predetermined number of clusters.
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2.1 Distance in the embedding space

When the relaxed spectral clustering algorithm is used to create an embedding space, points
in each group will be distributed in this embedding space. Each point can be seen as a
vector, its direction indicating the group to which this point should be assigned. Changes
in magnitude of the vectors cause the Euclidean distance between the corresponding points
to grow, however, an angular distance is invariant to changes in magnitude, therefore it is
a suitable measure to use.

2.2 Information in the eigenvalues

When the clusters in the data are well separated, the affinities between groups are close
to 0 and the eigenvalues will also be closer to 0. So a small eigenvalue means that the
corresponding eigenvector is separating the particles cleanly according to the affinities. It
is possible to make use of this information.

In a traditional application of spectral clustering, the number of clusters desired, s, is
predetermined. The embedding space is created by taking c = s eigenvectors with smallest
eigenvalues, excluding the trivial eigenvector. The embedding space then has c dimensions.

When forming jets we do not know from the outset how many clusters to expect in
the dataset, so the number of eigenvectors to keep is not clear. We cannot set c = s.
While we could choose a fixed, arbitrary number of eigenvectors, this is suboptimal. A
better approach is to take all non-trivial eigenvectors corresponding to eigenvalues smaller
than some limiting number, λlimit. For a symmetric Laplacian the eigenvalues are 0 ≤
λ1 ≤ λ2 ≤ · · ·λn ≤ 2, and λk is related to the quality of forming k clusters [19]. Removing
eigenvectors with eigenvalues close to 0 would result in discarding useful information, while
retaining eigenvectors whose eigenvalues are close to 2 would increase the noise. Values of
0 < λlimit < 1 are sensible choices and within this range the choice is not critical. Then,
the number of dimensions in the embedding space will vary, according to the number of
non-trivial eigenvectors with corresponding λ < λlimit.

There is one more manipulation from the information in the eigenvalues. The dimen-
sions of this embedding space are not of equal importance. This can be accounted for by
dividing the eigenvector by some power, β, of the eigenvalue.

Let the eigenvectors for which λ < λlimit be∑
j

Li,jxn j = λnxn i. (2.7)

Then, the coordinates of the jth point in the c dimensional embedding space become
mj =

(
λ−β1 h1 j , . . . λ

−β
c hc j

)
. In effect, the magnitudes of the vectors, mj , in the nth

dimension are compressed by a factor λβn, so the larger λn the greater the compression.

2.3 Stopping conditions

If a recursive algorithm is to be chosen, like the generalised kT algorithm, a stopping
condition is needed. A stopping condition based on smallest distance between points in
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the embedding space was attempted but this was not found to be stable. Choosing an
acceptable value for all events was not possible.

Distance between the last two points to be joined before the desired jets have been
formed varies significantly between events, so minimum separation is not a good stopping
condition. The average distance between points before this last joining is more stable
because it is balanced by two opposing influences. When points are joined together in a
fix number of dimensions the average distance between points rises. If this were used in
physical space it would be roughly proportional to the number of points remaining. So, in
physical space, if we stopped clustering when the average distance exceeded some cut-off,
we would expect roughly the same number of jets in each event. However, the embedding
space has a variable number of dimensions. When lots of clustering still remains to be done
the lower eigenvalues mean that the embedding space has more dimensions, as described
in section 2.2. When the number of dimensions in the embedding space falls, the mean
distance between points will also fall.

As points combine the mean distance will rise, but when fewer combinations with higher
affinity remain the number of dimensions in the embedding space falls, counteracting the
rise in mean distance. In short, the mean distance in the embedding space makes a natural
cut-off. The assertions made here are evidenced in appendix A.

3 Method

In this section the methodology is covered in four parts. Firstly, the algorithm chosen in
this work for applying spectral clustering is given. Secondly, choices and interpretations
for the variable parameters in this algorithm are given. Thirdly, the datasets against which
this method will be measured are specified. Fourthly, the procedure for checking functional
IR safety is described.

Our coordinate system has a z axis parallel to the beam line. Directions perpendicular
to the z axis are termed transverse (T ) and the angle in the transverse plane is labelled φ.
For clarity, note that the variable pseudorapidity is never used in the algorithm proposed,
all references to rapidity y correspond to

y = 1
2 ln E + pz

E − pz
. (3.1)

Rapidity and φ form an orthogonal coordinate system. Distances in the φ coordinate must
respect its cyclic nature. The shortest distance between φi and φj is denoted as

δ(φi, φj). (3.2)

3.1 Spectral clustering algorithm

For every simulated event, the following process is used to identify the jets. To begin with,
relevant cuts are applied to the particles to simulate the detector reconstruction capability.
(These are described in detail in section 3.3.) Then all particles are declared pseudojets and
given an index, j = 1 . . . n, with no particular order. The algorithm is agglomerative, recur-
sively selecting pairs of pseudojets to merge, hence, the first iteration step is labelled t = 1.
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Event 3

Figure 2. The same three events as in figure 1 are used to show the embedding space created
by spectral clustering. To the left the white plot shows the particles in the event as points on the
unrolled detector barrel. The colour of each point indicates the jet it is assigned to, filled circles are
b-jets. On the right, three grey plots show the first 6 dimensions of the embedding space and the
location of the points within the embedding space. The events show the varying levels of clarity in
the embedding space.

When the two pseudojets to be merged, i and j, have been identified, they are combined
using the E-scheme. The E-scheme forms a new pseudojet by summing the 4-momenta of
the two joined pseudojets, p(t+1)k = p(t)i+p(t)j . The steps used to select two pseudojets
to merge proceed as follows.

1. The pseudojets are used to form the nodes of a graph, the edges of which will be
weighted by some measure of proximity between the particles called affinity. To
obtain an affinity, first a distance is obtained. Between pseudojets i and j this is
d(t)i,j =

√
(y(t)i − y(t)j)2 + δ(φ(t)i, φ(t)j)2, where y(t)j is the rapidity of pseudojet j

at step t and φ(t)j is the angle in the transverse plane, likewise for i. No pT (transverse
momentum) dependence is used, unlike in many traditional jet clustering methods.

2. Calculate a singularity factors for all possible merges. This should be 0, if the merge
could include a soft particle or a collinear pair, or tend to 1, otherwise. We use

si,j(t) = 1− κ

κ+ min(pT (t− 1)i, pT (t− 1)j)d(t− 1)i,j
, (3.3)

where κ is a constant, here chosen to be 0.0001.
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3. The affinity must increase as pseudojets become more similar, whereas the distance,
d(t)i,j , will shrink. We chose the affinity a(t)i,j = exp(−d(t)αi,j/σv), where α = 2 is
the standard Gaussian kernel as used in [11]. Distances much larger than σv are only
allowed very small affinities, thus less influence over the clustering.

4. Pseudojets that are far apart have low affinity, hence are unlikely to be good can-
didates for combination. Removing these affinities reduces noise. A fixed number,
kNN, of neighbours of each pseudojet is preserved while all other affinities are set to
zero. Thus, when there are more than kNN pseudojets, each pseudojet has at least
kNN non-zero affinities with other pseudojets.

5. These affinities allow the construction of the normalised Laplacian, which is propor-
tional to −a(t)i,j in the ith row and jth column. For ease of notation, let z(t)j be
a measure of the size a pseudojet j contributes to a cluster. Before the first merge
z(1)j = ∑

k aj,k. Then define three square matrices; A(t)i,j = (1 − δi,j)a(t)i,j which
is commonly known as the adjacency matrix, B(t)i,j = δi,jbi = δi,j

∑
k a(t)i,k which

is commonly known as the degree matrix and Z(t)i,j = δi,jz(t)i which normalises the
Laplacian. The Laplacian can now be written as

L(t) = Z(t)−
1
2 (B(t)−A(t))Z(t)−

1
2 . (3.4)

After each step this Laplacian shrinks by one row and column. If pseudojets i and j
from step t− 1 are merging to form pseudojet i at step t, we have

z(t)i = si,j(t− 1)(z(t− 1)i + z(t− 1)j) + (1− si,j(t− 1))b(t)i. (3.5)

All other pseudojets take the size z(t)q = s(t)z(t−1)q +(1−s(t))bq. This is designed
so that the size of a pseudojet grows cumulatively, but it is reset if soft or collinear
particles merge into it.

6. The eigenvectors of L(t) (q being the eigenvalue index)

L(t)h(t)q = λ(t)qh(t)q, q = 1, . . . c (3.6)

are used to create the embedding of the pseudojets. The eigenvector corresponding
to the smallest eigenvalue represents the trivial solution, which would place all points
in the same cluster (see section 2). All non-trivial eigenvectors, corresponding to
eigenvalues less than an eigenvalue limit, λ(t)c < λlimit < λ(t)c+1, are retained (see
section 2.2). If no eigenvectors are retained by this, the clustering ends here.

7. An eigenvector is divided by the corresponding eigenvalue raised to β. To pre-
vent zero division errors, the smallest eigenvalues are clipped to 0.001, such that
λ′q = min(λq, 0.001). This acts to compress the dimensions that hold less informa-
tion, again, see section 2.2. The embedding space can now be formed. The eigen-
vectors have as many elements as there are pseudojets and the coordinates of the jth

pseudojet at step t are defined to be m(t)j =
(
λ′1(t)−βh1(t)j , . . . λ′c(t)−βhc(t)j

)
.
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8. A measure of distance between all pseudojets in the embedding space is calculated.
In the embedding space angular distances are most appropriate (see section 2.1):

d′(t)i,j = s(t)i,j arccos
(

m(t)i ·m(t)j
‖m(t)i‖‖m(t)j‖

)
, (3.7)

where ‖m‖ is the (Euclidean) length of m. The factor of s(t)i,j ensures that all
soft and/or collinear particles are merged early in the clustering. This is important
because such a merge will reset the size of the pseudojet in step 5.

9. A stopping condition, based on the parameter R, is now checked. Provided the mean
of the square roots of the distances d′(t)i,j is less than the value of R, that is,

2
c(c− 1)

∑
i 6=j

√
d′(t)i,j < R, (3.8)

then the two pseudojets that have the smallest embedding distance are combined.
(Reasons for this stopping condition are given in section 2.3.)

When the mean of the distances in the embedding space rises above R, then all remaining
pseudojets are promoted to jets. Jets with less than 2 tracks are removed and their contents
considered noise. Further cuts may then be applied as described in section 3.3.

These steps will form a variable number of jets from a variable number of particles.
An example of the constructed first embedding space is shown in figure 2. This illustrates
how the embedding space highlights the clusters.

3.2 Tunable parameters

Unlike most deep learning methods currently used in particle physics, spectral clustering
does not have large arrays of learnt parameters. The parameters for the clustering are a
small, interpretable set. Appropriate values were chosen by performing scans and observing
the influence of changes to the parameters on jets formed.

In section 3.1, 6 parameters are named: σv, α, kNN, λlimit, β and R. While these
are more parameters than in generalised kT , for example, we find that the parameters do
not need to take precise values to obtain good performance. The interpretation of these
parameters is as follows.

• σv: introduced in step 3, this is a scale parameter in physical space. The value
indicates an approximate average distance for particles in the same shower, or al-
ternatively, the size of the neighbourhood of each particle. It is closely tied to the
stopping parameter for the generalised kT algorithm, RkT

, and they both relate to the
width of the jets formed. It should take values of the same order of magnitude as RkT

.

• α: also introduced in step 3, this changes the shape of the distribution used to
describe the neighbourhood of a particle. Higher values reduces the probability of
joining particles outside σv. In particular, α = 2 defines a Gaussian kernel.
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• kNN: introduced in step 4, it dictates the minimum number of non-zero affinities
around each point. Lower values create a sparser affinity matrix, reducing noise at
the potential cost of lost signal. Values above 7 are seen to have little impact.

• λlimit: introduced in step 6, it is a means of limiting the number of eigenvectors used
to create dimensions in the embedding space. Only eigenvectors corresponding to
eigenvalues less than λlimit are used. Thus, the number of dimensions in the embed-
ding space can be increased with a larger λlimit. However, as the eigenvalues will
be influenced by the number of clear clusters available, there will not be the same
number of dimensions in each event. Values of 0 < λlimit < 1 are sensible choices, see
discussion in section 2.2.

• β: introduced in step 7, it accounts for variable quality of information in the eigen-
vectors, as given by their eigenvalues, in such a way that the dimensions of the em-
bedding spaces corresponding to higher eigenvalues are compressed, as they contain
lower quality information. (This is discussed in section 2.2.)

• R: introduced in step 9, it determines the expected spacing between jets in the em-
bedding space. As the number of dimensions in the embedding space grows with
increasing number of clear clusters, it will not result in the same or similar number
of clusters each time.

To investigate the behaviour of the clustering when the parameters change, scans
were performed. On a small sample of 2000 events the clustering is performed with many
different parameter choices.

With the aid of MC truth information a metric of success can be created. For each
object we wish to find (e.g., a b-quark) the MC truth can reveal which of the particles that
are visible to the detector have been created by that object. In many cases, a particle seen
in the detector will have been created by two objects, such as a particle coming from a
bb̄ pair: in such cases both objects are considered together. The complete set of visible
particles that came from these objects could be referred to as their descendants. The aim
in jet clustering is to capture only all of the descendants in the same number of jets as
there were objects that created them. So the descendants of a bb̄ pair should be captured in
exactly 2 jets. The use of MC information has also been pursued in [20], for jets originating
from a colour singlet hard particle, namely aW boson. In addition, we will also seek to find
jets emerging from systems which have a colour charge. By allowing the descendants of
groups of interacting showers to be clustered in any configuration that results in the correct
number of jets we avoid the need to associate each descendant to one object (e.g., a b-quark)
uniquely, which is indeed not possible when the objects in question are colour charged [20].

There are two ways a jet finding algorithm can make mistakes in this task: the first is to
omit some of the descendants of the objects being reconstructed, causing the jet to have less
mass than it should; the second is to include particles that are not in the descendants of the
objects being reconstructed, such as initial state radiation or particles from other objects,
causing the jet to have more mass than it should. The effects of these mistakes might

– 10 –



J
H
E
P
0
2
(
2
0
2
2
)
1
6
5

Figure 3. The generalised kT al-
gorithm has 2 parameters that can
be varied. The stopping condition,
RkT

, and a multiple for the expo-
nent of the pT factor. When the
exponent of the pT factor is −1 the
algorithm becomes the anti-kT al-
gorithm. Here, the “Loss”, as de-
scribed in eq. (3.9), is shown as a
colour gauge for a number of pa-
rameter combinations.

cancel in the jet mass, but they are both still individually undesirable, so separate metrics
are made for each of them. The first is “Signal mass lost”, the difference between the mass
of the jets and the mass they would have had if all they contained were the descendants of
the object being reconstructed. The second is “Background contamination”, the difference
between the mass of jets and the mass they would have if they did not contain anything
but descendants of the objects being reconstructed. A “Loss” function is then constructed
as a weighted combination of these two,

Loss =
√
w (Background contamination)2 + (Signal mass lost)2, (3.9)

where w is a weight used to alter the preference for suppressing “Signal mass lost” versus
reducing “Background contamination”. When applying an anti-kT algorithm, increasing
RkT

will result in lower “Signal mass lost”, in exchange for a higher “Background contami-
nation”. We have chosen to make a comparison to RkT

= 0.8 as our sample dataset has well
separated jets and low background. This value of RkT

slightly prefers suppressing “Signal
mass lost” over “Background contamination”, to create the clearest mass peaks. To make
the “Loss” reflect this we choose w = 0.53.

An example of this scan for the generalised kT algorithm is given in figure 3. It can be
seen that, while good results are possible with many values of the pT exponent, RkT

must
fall in a narrow range. We thus deem this choice of stopping condition, RkT

= 0.8, to be
rather fine-tuned.

For spectral clustering there are more than 2 variables to deal with, so a set of two
dimensional slices are extracted. These slices have been chosen to include the best per-
forming combination. They are plotted in figure 4 with the same colour scale as figure 3,
to allow for direct comparison. As can be seen in figure 4, the parameters choices are not
fine-tuned, as many values can be chosen to achieve good results. For example, it can
be seen that some parameters, such as α, kNN, β and λlimit, are relatively unconstrained,
yielding good results for a wide range of numerical choices. Even when R and, especially,
σv yield some large signal “Loss”, say, for R = 1.35 and σv = 0.4, this happens in very
narrow ranges. For definiteness, the parameters used in the remainder of this work are
α = 2, kNN = 5, R = 1.26, β = 1.4, σv = 0.15 and λlimit = 0.4.
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Figure 4. The spectral clustering algorithm has 6 parameters that can be varied (described in
the text). Here, the “Loss”, as described in eq. (3.9), is shown as a colour gauge for reasonable
parameter ranges chosen either by convention (e.g., α is typically 1 or 2) or according to physical
scales (e.g., σv is of order 0.1).

3.3 Particle data

To evaluate the behaviour of the spectral clustering method four datasets are used,1 all
produced for the LHC.

1. Light Higgs: a SM-like Higgs boson with a mass 125 GeV decays into two light Higgs
states with mass 40 GeV, which in turn decay into bb̄ quark pairs. That is, the

1The first two uses a 2-Higgs Doublet Model (2HDM) setup as described in ref. [21] while the last two
are purely Standard Model (SM) processes. Notice that all unstable objects are rather narrow, including
the Beyond the SM (BSM) Higgs states [22, 23], so that we have neglected interference effects with their
irreducible backgrounds.
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process is gg, qq̄ → H125 GeV → h40 GeVh40 GeV → bb̄bb̄, simulated at Leading Order
(LO). (Here, mb = 4.75GeV for the b-quark pole mass.)

2. Heavy Higgs: a heavy Higgs boson with a mass 500 GeV decays into two SM-like
Higgs states with mass 125 GeV, which in turn decay into bb̄ quark pairs. That is,
the process is gg, qq̄ → H500 GeV → h125 GeVh125 GeV → bb̄bb̄, simulated at LO.

3. Top: a tt̄ pair decays semileptonically, i.e., one W± decays into a pair of quark jets
jj and the other into a lepton-neutrino pair `ν` (` = e, µ). That is, the process
is gg, qq̄ → tt̄ → bb̄W+W− → bb̄jj`ν`, simulated at LO. (Note that, here, mt =
172.6GeV and mW = 80.4GeV.)

4. 3-jets: for the purpose of checking IR safety we have used 3-jet events, this being a
rather simple configuration where IR singularities could be observed. That is, the
process is pp→ jjj, simulated at both LO and Next-to-LO (NLO).

Using MadGraph [24] to generate the partonic process and Pythia [25] to shower,
O(105) events for each of these processes are generated. A full detector simulation is not
used, instead, cuts on the particles are imposed to approximate detector resolution, as
detailed below.

The Center-of-Mass (CM) energy used is
√
s = 13 TeV. Each event also contains

(hard) Initial State Radiation (ISR) and soft QCD dynamics from beam remnants, i.e.,
the Soft Underlying Event (SUE). Two versions of each dataset are produced, one with
Multi-Parton Interactions (MPIs) but not pileup, and the second with pileup and MPI.
The simplistic case of clustering on signal without pileup is explored to start with. Pileup
creates substantial additional noise that greatly complicates clustering jets. While various
pileup mitigation and jet grooming techniques might be applied to the data, it is beyond
the scope of this work. However, it is still interesting to see the unadulterated behaviour
of a clustering algorithm in the presence of pileup: we explore this in a later section.

To simulate pileup, 105 minimum bias events are generated in Pythia. For each signal
event, a number of pileup events are merged into the event: this number is drawn from a
Poisson distribution with mean λ = 50. These pileup events are introduced with a vertex
displacement of . ±0.1mm, as described in [26].

Each of these datasets requires different cuts, both at the particle level, to simulate
detector coverage, and at the jet level, to select the best reconstructed events. The cuts
on each dataset are as follows.

1. The reconstructed particles are required to have pseudorapidity |η| < 2.5 and trans-
verse momentum pT > 0.5 GeV. These cuts are likely to remove the majority of
the radiation from beam remnants and reduce ISR. The b-jets are required to have
pT > 15 GeV, which is possibly lower than is realistic [21], but it leaves a larger
number of events to compare the behaviour of jet clustering algorithms.

2. The reconstructed particles are required to have |η| < 2.5 and pT > 0.5 GeV. The
b-jets are required to have pT > 30 GeV, which is realistic for efficient b-tagging
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performance and further reduces ISR and the SUE. As the average jet pT is higher
we can afford this higher pT cut.

3. The reconstructed particles are required to have |η| < 2.5 and pT > 0.5 GeV. The
event is required to have pmiss

T > 50 GeV, where pmiss
T is the missing transverse

momentum due to the neutrino. The lepton in the event must have |η| < 2.4. If the
lepton is a muon then its pT must be > 55 GeV. If the lepton is an electron and it is
isolated (as defined in [27]) then its pT must be > 55 GeV, if it is not isolated then
pT > 120 GeV. The reconstructed jets must have pT > 30 and |η| < 2.4. Finally,
the lepton must be separated from the closest jet by at least

√
∆η2 + ∆φ2 > 0.4 or

prelative
T > 40 GeV. These cuts are copied from [28].

4. The only restriction on the particles is through the pseudorapidity, |η| < 2.5. There
are no cuts on the jets. We adopt this unrealistic condition in order to explore issues
of IR safety, since these are emphasised at low pT .

For all datasets with pileup, any charged tracks that originate from a vertex that
are displaced by at least 75 µm from the primary vertex are removed. This removes the
majority of charged pileup tracks in the dataset, leaving mostly neutral tracks.

The Higgs boson cascade datasets have the desirable property of creating b-jets with
different kinematics: while in case 1 we may expect some slim jets (as on average they are
rather stationary, because of the small mass difference between H125 GeV and h40 GeV) in
case 2 we may see mainly fat jets (owing to the boost provided by the large mass difference
between H500 GeV and h125 GeV). Mass reconstruction requirements for the Light Higgs and
Heavy Higgs follow the same logic. In order to reconstruct a Higgs boson decaying directly
to a pair of b-quarks, we require a separate jet tagged by each b-quark, that is, two jets are
required, each tagged by a b-quark from that Higgs state. To reconstruct a Higgs boson
that decays into a pair of (child) Higgs particles, we require both child Higgs bosons to
have been reconstructed, that is, all four b-jets are found.

In the case of the Top events three masses can be reconstructed from jets, the hadronic
W , the hadronic top and the leptonic top. The hadronic W is reconstructed if both of the
quarks it decayed into have tagged jets: they are permitted to tag the same jet, so the
hadronic W can be reconstructed from one or two jets. The hadronic top is reconstructed
if the b-quark from it has tagged a jet, so the correct b-jet is required in addition to the
requirements on theW . The leptonic top is reconstructed if the b-quark from the top decay
tags a jet and the missing momentum calculation which reconstructs the leptonic W yields
a real mass. If the mass calculation for the leptonic W yields two real masses, the one
closest to the true W mass is selected.

We now proceed to compare spectral to anti-kT and CA clustering. We start from
testing IR safety of the former, while this is a well-known feature of the latter two. We
will then move on to study Higgs boson and top quark events.
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3.4 Checking sensitivity to IR behaviour

The algorithm itself will be IR safe due to the s(t)i,j factors. These factors force any soft
or collinear particles to merge first and ensure that they do not alter the size, z(t)j , of the
pseudojets.

This has been verified by taking toy datasets, which are varied by adding soft particles
or splitting particles in a collinear fashion. The clustering on these datasets never alters
under these variations, until the limits of computational precision are reached.

As the environment required for clustering on MC data is already set up, it is rather
efficient for this study to offer proof that in practice the algorithm is not sensitive to
IR considerations in simulated data. This can be done by showing that an IR sensitive
variable, for example, the jet thrust spectrum, is stable between a LO dataset with no IR
singularities and a NLO one which will instead contain IR singularities. This is a very
important property, as the algorithm must not be modified by any approximation used for
the IR limit in MC simulation.

Showing the jet thrust at LO and NLO for a particular configuration, that is, a partic-
ular selection of clustering parameters, would allow a comparison that would highlight any
differences caused by IR sensitivity. This will be done for illustrative purposes, however,
since even an IR unsafe algorithm, such as the iterative cone one [4], has some configura-
tions for which these singularities are avoided. To provide a more global view, a scan of
parameter configurations must be compared. Thus, for an unsafe algorithm (such as the
iterative cone) the unsafe configuration will be found. It would be cumbersome to compare
all these thrust distributions by eye, however. Instead, we introduce a summary statistic
representing the divergence between two distributions, the Jensen-Shannon score [29].

The Jensen-Shannon score is a value computed between two distributions that in-
creases in magnitude the more these distributions differ. It is a symmetrised variant of
the Kullback-Leibler divergence [29]. The Kullback-Leibler divergence between probability
densities p and q can be written as

DKL(p|q) =
∫ ∞
−∞

p(x) log
(
p(x)
q(x)

)
dx, (3.10)

from which the Jensen-Shannon divergence can be written as

DJS(p, q) = 1
2D

(
p|12(p+ q)

)
+ 1

2D
(
q|12(p+ q)

)
. (3.11)

Here, DJS treats p and q symmetrically and will grow as they become more different. The
spectrum of Jensen-Shannon scores will be plotted for a known IR safe clustering algorithm,
generalised kT , a known unsafe clustering algorithm, iterative cone, and the spectral algo-
rithm. If the Jensen-Shannon scores for spectral are consistently small, then it is IR safe.

4 Results

Before the behaviour of the algorithms is analysed, some plots of kinematic variables are
shown in figure 5. It can be seen that the algorithms do not greatly differ on the kinematics
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Figure 5. Basic jet variables for each of the analysis datasets and three clustering algorithms.
In the first column there are some noticeable differences in the transverse momentum. In the
second column the rapidity shows that the algorithms cluster jets at the edge of the barrel slightly
differently. In the third column the barrel angle shows no noticeable changes.

of the events. Spectral creates jets with similar kinematic features to the CA and anti-kT
algorithms. In particular, spectral clustering does not appear to sculpt any distributions
in any of the datasets involving Higgs bosons and top (anti)quarks.

4.1 IR safety

Shape variables (see the QCD section of ref. [30] for a useful review), such as jet thrust,
sphericity, spherocity and oblateness, are sensitive to IR divergences. For each configuration
of the clustering algorithm we expect an IR safe algorithm to present a stable transition in
a shape variable from the LO to NLO datasets, as significant changes in the spectra would
indicate sensitivity to soft and collinear radiation. The clustering and evaluation here is
done using the 3-jets dataset, as described in section 3.3. Shape variables are calculated
from the total momentum of the 4 jets with highest pT in each event. This comparison is
made in figure 6. It can be seen in this figure that little difference exists between generalised
kT and spectral clustering, so as to reinforce that they are both IR safe.

However, this method of establishing IR safety only looks at one parameter configura-
tion and could be accused of cherry-picking. As described in section 3.4, this can be sys-
tematically compared for many parameter configurations by calculating a Jensen-Shannon
score for each LO and NLO pair of jet shape spectra. If the Jensen-Shannon metric is low,
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Figure 6. Spectra for jet properties created with LO and NLO datasets. The 4 jets with highest
pT from each event are used in aggregate as an average to form these plots. The columns from
left to right are: the jet thrust, sphericity, spherocity and oblateness. Algorithms where configured
(i.e., the settings of R chosen) to give sensible results on this dataset, therefore distributions may
not represent worst case scenarios.

then the two distributions are similar and appear IR safe. To further clarify the result we
include an algorithm known to be IR unsafe, the iterative cone algorithm, as intimated. The
spectral method produces Jensen-Shannon scores very similar to generalised kT methods.
Only the iterative cone algorithm produces high Jensen-Shannon scores thus indicating
significant changes between the LO and NLO spectra. This can be seen in figure 7.

From these two figures it is clear that spectral clustering is not sensitive to IR effects
between LO and NLO data. It behaves at least as well as generalised kT methods. This
contrasts with the iterative cone algorithm, for which the jet shape spectra at LO and
NLO differ significantly for many configurations. This is not unexpected as the spectral
clustering algorithm has been specifically tailored for IR safety. We have thus evidenced
this safety by simulation.

4.2 Mass peak reconstruction without pileup

In this section, the anti-kT and CA algorithms with jet radius RkT
= 0.4 and RkT

= 0.8 are
compared to the spectral algorithm specified in section 3.2. The jets are tagged using MC
truth. To start with, all datasets are considered without pileup. We introduce a tagging
distance metric

dtag :=
√

(yquark tag − yjet)2 + δ(φquark tag, φjet)2,

where δ(φquark tag, φjet) is as defined in eq. (3.2). The identity of the b-quarks created by
a signal particle (either a Higgs boson or a top (anti)quark) is used to tag the closest jet
within dtag ≤ 0.8. In the case of a W decay, the procedure is the same applied to light
quark states. From this point on, only jets tagged this way are considered.

Jet multiplicities, that is, the number of reconstructed jets found per event, are given
for the anti-kT , CA and spectral clustering algorithms. These can be seen for the first
three datasets described in section 3.3 in figure 8. Herein, it is seen that spectral clustering
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Figure 7. Histograms evaluating IR safety from each jet shape variable. Each count is a Jensen-
Shannon score between a probability density of the jet shape variable from LO and NLO data.
Counts at low values indicate insensitivity to IR differences between the LO and NLO data, thus
IR safety.

produces the best multiplicity (i.e., most events where 4 jets are found) for Top events while
for the Light Higgs and Heavy Higgs MC samples it creates a multiplicity closer to that of
anti-kT /CA2 with RkT

= 0.4 than RkT
= 0.8, the first of these being the best performer of

the two. This study provides evidence that spectral clustering, unlike anti-kT , adapts to
the different final states without having to adjust its parameters. The anti-kT algorithm
suggests 0.4 to be the best choice for all datasets, but this is in tension with the fact that
different masses from different datasets do require the anti-kT parameters to be adjusted,
as we shall now see. Mass peaks are constructed from the reconstructed jets as well as,
for the top sample only, from the lepton and neutrino. Again, the anti-kT and CA results
with RkT

= 0.4 and 0.8 are given for comparison.
In figure 9 three selections are plotted for the Light Higgs MC sample. We show

events where all four b-jets are combined into the total invariant mass of the event, thus
reconstructing the mass of the SM Higgs boson. Each event also contains two light Higgs
states, though. These are differentiated by the mass of the particles (generated by them)

2CA and anti-kT being very similar in behaviour.
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Figure 8. Jet multiplicities for the anti-
kT and CA (for two RkT

choices) and spec-
tral clustering algorithms on the Light Higgs,
Heavy Higgs and Top MC samples. For all
such datasets, the hard scattering produces
4 partons in the final state, so maximising
a multiplicity of 4 jets indicates good perfor-
mance.

that pass the particle cuts, as follows. The light Higgs boson reconstructed from the 2b-jet
system with more mass visible to the detector is called the “Light Higgs with stronger
signal” while the one reconstructed with less mass visible in the detector is called the
“Light Higgs with weaker signal”. The correct jets for each Higgs mass reconstruction are
identified using MC truth, so the correct pairings are always made. (If two such dijet
systems are not found the event is not included in the plots). Altogether, it can be seen
that spectral clustering forms the best peaks, narrow and close to the correct mass. In
fact, its performance is comparable to that of anti-kT with RkT

= 0.8 and is clearly better
than the 0.4 option. When the parameters for spectral clustering were chosen, they were
designed to minimise a loss that was based on the behaviour of CA with RkT

= 0.8 on this
Light Higgs dataset.3 Given this, the similarity of the mass peaks is not surprising. It will
be more interesting to see how the algorithm treats a different dataset.

In figure 10 the exercise is repeated for the Heavy Higgs MC dataset. All the parameters
of spectral clustering are the same as in the Light Higgs MC sample yet we note that its
performance is still excellent, with very sharp peaks at the correct masses, although the
three clustering algorithms are overall much closer in performance. Recall that, in figure 8,
it was seen that spectral clustering achieved better multiplicity than anti-kT or CA with
RkT

= 0.8 on this dataset. Furthermore, while the multiplicity of anti-kT and CA with
RkT

= 0.4 is about equivalent, the location of all Higgs mass peaks for anti-kT with
RkT

= 0.4 is slightly worse. So, we are again driven to conclude that spectral clustering is

3See section 3.2.
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Figure 10. Same as figure 9 for the Heavy Higgs dataset. Here, the performance of the spectral
clustering and anti-kT (with both 0.4 and 0.8 as jet radii) clustering algorithms is much closer to
each other.

probably the best performer overall with the added benefit of not requiring any adjustment
of its parameters to achieve this.

Finally, in figure 11, the W and t mass peaks for semi-leptonic tt̄ decays are shown.
Three mass reconstructions are given. The hadronic W is reconstructed from the jets that
come from the quarks it decayed to. Correct decisions about which quarks correspond
to which particle in the hard process are made by using information in the MC: this is
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Figure 11. Three mass selections are plotted for the Top dataset. From left to right we show:
the invariant mass of the light jet system, of the reconstructed leptonic W (as described in the
text) combined with a b-jet and of the hadronic W combined with the other b-jet. Three jet
clustering combinations are plotted as detailed in the legend. The spectral clustering algorithm
consistently outperforms anti-kT with jet radius 0.8 and is slightly worse than the anti-kT /CA one
with RkT

= 0.4, but only in terms of sharpness, not of location of the mass peak.

to prevent performance evaluation of clustering from being confounded by mismatching.
To tag a jet with a quark we use the tagging distance measure dtag. The W will always
decay to a pair of quarks, which may be captured in one jet or separate jets. If either
of the these quarks are too far away from the closest jet to tag it, that is dtag > 0.8,
then it is not associated with any jet and the hadronic W is not reconstructed. The
mass of the hadronic top is then reconstructed in events where the hadronic W could be
reconstructed and the b-jet from the hadronic top is also found. The leptonic top is then
reconstructed in events where a b-jet from the top is combined with the reconstructed W
which decays leptonically. The leptonic reconstruction of the W uses the momentum of the
electron p`, the missing transverse momentum pmiss

T (identified with that of the neutrino)
and the longitudinal neutrino momentum (pνL, which is unknown) in a quadratic equation,
(p`+pmiss

T +pνL)2 = m2
W , of which only the real solutions are plotted. In this case, it can be

seen that spectral clustering is adapting to jets of a different radius. In fact, while before
its behaviour had mostly resembled anti-kT with RkT

= 0.8, it has now moved closer to the
case with RkT

= 0.4. (Semi-leptonic top events would typically be processed using anti-kT
with RkT

= 0.4.) The peaks of spectral clustering are not quite as narrow as those from
anti-kT with RkT

= 0.4, but they improve on RkT
= 0.8 and their location is substantially

correct. Furthermore, the multiplicity obtained by spectral clustering on the Top dataset,
(again, see figure 8), is by far the best of any algorithm. The flexibility of the clustering
process allows it to separate jets that lie close together while still gathering enough mass
from jets in sparser areas to pass the mass cuts.
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Figure 12. Three mass selections for the Light Higgs dataset with pileup, as in figure 9.

4.3 Mass peak reconstruction with pileup

Now the investigations of section 4.2 are repeated with pileup in the data. As mentioned in
section 3.3, the number of pileup vertices is drawn from a Poisson distribution with mean
50. All the same tagging and mass peak constructions are used, so that the two datasets
can be directly compared. Pileup from charged tracks that originate away from the primary
vertex is removed, as a common pileup mitigation technique [26]. All parameters of the
spectral algorithm are left the same as before.

In figure 12 the Light Higgs mass peaks are shown. All jets have suffered, but it can
be seen that anti-kT /CA with RkT

= 0.4 now produces narrower and better positioned
peaks than those of RkT

= 0.8. In the presence of pileup, jets with a wider joining distance
become easily contaminated, and so gain too much mass. Spectral clustering is not quite
insensitive to this effect, but it has not entirely lost its shape, as anti-kT /CA with RkT

= 0.8
has. A broader peak has been created at somewhat too high a mass. Jet grooming would
be needed to produce an acceptable peak here. In the multiplicities plotted in figure 13 it
can be seen that spectral still has a multiplicity comparable to anti-kT /CA with RkT

= 0.4,
now substantially outperforming RkT

= 0.8 which is suffering from merging jets.
Moving on to the Heavy Higgs case, the mass peaks are presented in figure 14. By

comparison to figure 10, where spectral clustering closely mimicked the RkT
= 0.8 cases,

it can be seen that spectral clustering has mostly avoided over-clustering. Although it has
taken on a little extra mass, the peaks have not moved so far from where they were located
without pileup. Any peak is indeed only a little broader than it was without pileup. In
figure 13 it can be seen that the multiplicity for spectral clustering is not as good as for the
RkT

= 0.8 methods, but it still is a fair performer and a good improvement on RkT
= 0.4.

In summary, although it is clear that anti-kT or CA with RkT
= 0.4 is preferable overall

in these cases, spectral clustering has done a respectable job of adapting, substantially
outperforming the 0.8 cases.
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Figure 13. Jet multiplicities, with pileup, as
in figure 8.

Finally, the mass peaks for the Top dataset with pileup are presented in figure 15.
This shows dramatically why anti-kT with RkT

= 0.4 is preferred to anti-kT RkT
= 0.8 for

clustering semileptonic top decays. Here, the mass peaks created by the spectral algorithm
are very nearly undamaged compared to the same without pileup in figure 11. There is a
shift towards higher masses, but not particularly substantial compared to anti-kT /CA with
RkT

= 0.8 and they remain quite sharp. Looking back to the multiplicities with pileup in
figure 13 there is excellent multiplicity from spectral algorithm. Again, it exceeds all other
choices at successfully isolating the jets, unhindered by the varying widths.

4.4 Run time

Given the requirement for an eigenvalue calculation, an O(n3) operation, it is clear that the
spectral clustering algorithm will have longer runtimes than the generalised kT algorithm,
which boasts O(n log(n)) [31]. The initial steps of the spectral algorithm require similar
calculations to generalised kT , so it would be expected to have the same runtime. The
implementation used in this work actually neglects the improvements that took generalised
kT from O(n3) to O(n log(n)), so the time complexity should be at least O(n3). However,
an eigenvector calculation is typically O(n3), and this may be repeated up to n times. So
with a naïve implementation, one would expect the spectral algorithm to require O(n4).

This reasoning makes the results in figure 16 a little surprising. Herein, it is seen
that spectral clustering in fact runs in a little over O(n3), not O(n4). No particular
optimisations were used to achieve this, the implementation of spectral clustering is a
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Figure 14. Three mass selections for the Heavy Higgs dataset with pileup, as in figure 10.
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Figure 15. Three mass selections for the Top dataset with pileup, as in figure 11.
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basic python script of the algorithm set out in subsection 3.1. Specifically, no effort was
made to take advantage of the sparse Laplacian matrix when performing the eigenvector
calculation. Indeed, if anything, the implementation contains more branches than required,
because it was designed to facilitate investigating variations, such as those shown in figure 4.
The eigenvector calculation was performed by the scipy’s [32], function scipy . linalg .eigh.

Nonetheless, further improvements to the run time would be needed to render this a
practical algorithm. Yet, this is outside the scope of this study.

5 Conclusions

Spectral clustering is a popular machine learning algorithm, wherein complex datasets are
transformed to clarify groupings in a new space. In performing this transformation, it
makes use of the spectrum (eigenvalues/eigenvectors) of the Laplacian matrix, which is
constructed from localised information. At no point in the process are large matrices of
learnt parameters, common to deep learning methods, needed. As such, spectral clustering
is a transparent, simple to implement, algorithm using standard linear algebra methods.
Owing to these features, we have found it to also be a promising new method to apply to
jet formation in high energy particle physics events.

For a start, it satisfies the need for IR safety and creates jets with the expected kine-
matics, as dictated by QCD dynamics. Furthermore, while it has many parameters, they
do not appear to be as finely tuned as those of more standard tools, such us sequential (or
iterative) generalised kT algorithms. This can be seen in both parameter scan stability and
its adaptability to various datasets, each capturing physics signals embedding heavy ob-
jects decaying into lighter ones in very different patterns, all yielding complicated hadronic
signatures at the LHC.

The adaptability between datasets is remarkable as a spectral clustering parameter
choice tuned on a light Higgs boson cascade gave excellent performance on both a heavy
Higgs boson cascade and that of top-antitop pairs decaying semi-leptonically. In the case
of the Light Higgs dataset, spectral clustering gave the correct mass peak positions, the
narrowest resonant distributions and a jet multiplicity mapping well the partonic one. This
would not be surprising as it was tuned for that dataset in the first place. In the case of
the Heavy Higgs dataset only anti-kT with RkT

= 0.8 and the spectral algorithm gave
correct mass peaks but spectral clustering offers considerably better multiplicity rates.
This demonstrates that its performance is not dependent on fine tuning its parameters
and hence that the algorithm is adaptable to the same final state with different masses
involved. Finally, spectral clustering was applied to a Top dataset with a different final
state and for which the ideal jet radius differed, i.e., semileptonic decays of top-antitop
pairs. Its equivalent parameter σv was not allowed to vary to account for this, instead it
was applied again with no parameter changes. The algorithm again proved to be adaptable
and modified its behaviour to follow that of anti-kT with RkT

= 0.4, the standard choice
for this kind of analyses.

Pileup was seen to drastically alter the mass peaks formed by anti-kT algorithms: this
is a well-known challenge. What was interesting to see was that the addition of pileup
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did not alter the performance of the spectral algorithm as drastically as it did to those of
the anti-kT and CA algorithms that were favourable without it. Again, this evidences a
flexibility, and relative insensitivity, to the specifics of the clusters needed.

In short, spectral clustering is a novel and promising approach to jet formation, whose
initial development already demonstrates flexibility and excellent performance for numeri-
cal analyses at the forefront of collider physics, open to further improvements, including a
faster implementation, that will be the subject of future publications.

Acknowledgments

We thank A. Chakraborty, J. Chaplais, S. Jain and E. Olaiya for insightful discussions.
HAD-H thanks G.P. Salam for useful advice. HAD-H, BF, SM and CHS-T are supported in
part through the NExT Institute. SM is also supported by the STFC Consolidated Grant
No. ST/L000296/1. BF is funded by the DISCnet & SEPnet scholarship schemes. We
finally acknowledge the use of the IRIDIS High Performance Computing Facility, and asso-
ciated support services, at the University of Southampton, in the completion of this work.

A Stopping condition

To offer some evidence for the assertions made in section 2.3, the behaviour of the mean
distance during clustering is shown in figure 17.

Clustering is performed on the dataset described in section 3.3 called Light Higgs. The
parameters used for the spectral algorithm are the ones given at the end of section 3.2. First,
the upper panel of figure 17 shows the mean distance between pseudojets for 2000 events,
plotted against the number of pseudojets remaining. Each line is shown in yellow until its
value first exceeds R = 1.26, the stopping condition, after which the line becomes green.
When finding jets with spectral clustering, the algorithm would normally be stopped at the
end of the yellow section, as the stopping condition has been reached, the green section is
shown here to illustrate what happens beyond this point. It can be seen that the transition
from yellow to green happens with approximately 3 to 13 pseudojets remaining. This sup-
ports the assertion that a mean distance stopping condition will not force the same number
of jets in each event. It can also be seen that the mean distance does rise smoothly for
most of the clustering sequence, becoming erratic only when less than 5 pseudojets remain.

Second, in the lower panel, the factors that alter the mean distance are plotted. Again,
each of the 2000 events is represented as a single solid line. In blue, change of mean distance
due to merging pseudojets is shown. Normally merging two pseudojets causes the mean
distance to rise, as the embedding space is becoming sparser, however, there are some
configurations in which this does not hold. Occasionally, two points that merge will lower
the mean distance, and the blue line will dip below zero. It can be seen from the plot that
such configurations are less common than those that increase mean distance.

The second panel also shows change of mean distance due to a reduction in the number
of dimensions in the embedding space in red. This universally decreases mean distance, the

– 26 –



J
H
E
P
0
2
(
2
0
2
2
)
1
6
5

510152025
Jets remaining

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
M

ea
n 

Di
st

an
ce

R = 1.26

After cut off
Before cut off
Mean

510152025
Jets remaining

0.6

0.4

0.2

0.0

0.2

0.4

0.6

Ch
an

ge
 in

 M
ea

n 
Di

st
an

ce

Jets merge
Dimension removed

Figure 17. In the upper panel, the mean distance between pseudojets for 2000 events is plotted
against the number of pseudojets remaining. Each line is shown in yellow until its value first exceeds
R = 1.26, the stopping condition, after which the line becomes green. A dotted line shows the aver-
age mean distance across all 2000 events. In the lower panel, the factors that alter the mean distance
are plotted. Again, each of the 2000 events is represented as a single line, and the average is given as
a dotted line. In blue, change of mean distance due to merging pseudojets is shown. In red, change
of mean distance due to a reduction in the number of dimensions in the embedding space is shown.

red lines remain below or at zero. Not every step of the algorithm will reduce the number
of dimensions, and so the red line for an event is frequently zero.

It can be seen that these two factors balance each other to produce a steady trend in
mean distance.

There is a third possibility, very rarely the number of dimensions in the embedding
space will increase. This is not pictured, as it is not possible to visually distinguish the
line from y = 0 and it would clutter the plot.
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