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Hydrofoils are the biggest performance differentiators on modern racing yachts. They 
significantly affect the speed, the state and the trim of the yacht system. This requires detailed 
optimisation and the modelling of the whole system during the optimisation. However, due to the 
high computational cost, hydrofoils are still optimised in isolation of the yacht system with most 
studies using only a small number of design variables. This introduces inaccuracies and leaves 
considerable potential inaccessible.  

Therefore, a stationary physics model of an entire yacht is developed. It includes an advanced 
lifting line method for hydrofoil force prediction and a detailed parametric model of the hydrofoil 
with 68 design variables. As this is too computationally expensive to optimise with conventional 
strategies, the physics model is integrated into a gradient-based optimisation routine, where the 
gradient is computed with the adjoint method. The adjoint method can compute the gradient at 
small cost, independent of the number of design variables, and is the key to detailed design. The 
adjoint method is only applied to the bottleneck of the physics model using algorithmic 
differentiation. The remainder of the model is differentiated with the easier to implement finite 
difference method. The combined gradients are provided to an optimisation algorithm.  

The framework is used to optimise the hydrofoils of an AC75 America’s Cup yacht. It is validated 
with a parametric study and literature. A single-condition optimisation of the hydrofoil is 
performed for upwind 𝑉MG. The optimum foil shows a maximum anhedral angle, a low chord and 
a high span together with a detailed twist distribution that leads to the desired elliptical lift 
distribution. Aft sweep, a convex leading edge and raked wing tips are used to further increase 
performance. The optimised foil is 1.58 kts or 6.6 % faster than the initial foil. This results in a 
race-dominating time saving of 84 s over a typical race. This highly detailed design and the 
resulting performance gains have only been made possible through the use of the adjoint method. 
The framework is extended to account for additional courses and wind speeds in a multi-
condition optimisation. The optimal multi-condition foil is similar to the single-condition foil but 
with a planform that shifts the center of lift further aft. This is favorable for the included high-
speed cases as it produces more righting moment. This finding has only been enabled through 
the use of the full physics model. The final multi-condition foil is 7.2 % faster than the initial foil 
and saves 82 s over a race. The multi-condition foil is compared to foils optimised for the 
individual conditions. The individual foils perform best in their respective niches, whereas the 
multi-condition foil performs best across the range of conditions.  

This study has undertaken the first adjoint, system-based optimisation of a hydrofoil. The use of 
the entire physics model eradicates inaccuracies and the adjoint method allows highly detailed 
design. The method solves in 1.5 h on a standard desktop PC, demonstrating its significant 
efficiency. Due to this efficiency, more physics and any number of design variables can be 
included. It can be applied to any foiling craft and is also suitable for similar applications in 
maritime and aerospace technology. 
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“You are probably frightened at times, scared, worried, you hate it, you absolutely 
despise the fact that you are involved, but when you get to the finish you know why, 
because there is nothing like it, it gets in your blood, and you can’t get rid of it” 

Sir Peter Blake on the Whitbread Round the World Yacht Race 
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Definitions and Abbreviations  

𝐴𝑖   Area of segment 𝑖 [m2]  
𝐴𝐹   Foretriangle area [m2] 
𝐴𝐽  Jib area [m2] 
𝐴𝑀  Mainsail area [m2] 
𝐴𝑁   Nominal area [m2] 
𝐴𝑅   Aspect ratio 
𝐶𝐷   Drag coefficient 
𝐶Di  Induced drag coefficient 
𝐶Dpj  Jib profile drag coefficient  
𝐶Dpm  Mainsail profile drag coefficient  
𝐶𝐻   Heeling force coefficient  
𝐶𝐿   Lift coefficient  
𝐶Lj  Jib lift coefficient  
𝐶Lm  Mainsail lift coefficient  
𝐶𝑅   Driving force coefficient  
𝑐  Chord length [m] 
𝑐𝑟𝑜  Root chord [m] 
𝐷  Drag force [N] 
𝐷  Induced drag [N] 

𝒅𝒗  Hydrofoil design variables [m, °] 
𝑑𝑧  Sink (ride height) [m] 
𝐸HM  Mast height above shear [m] 
𝐹  VPP Function [kts] 
𝐹𝐴  Average shear height [m] 
FAE𝑥1 Foil arm extension station 1 x-position [m] 
FAE𝑐1   Foil arm extension station 1 chord [m] 
FAE𝑥2 Foil arm extension station 2 x-position [m] 
𝑭𝒊  Force at control point 𝑖 [N] 
FWP𝑡15 Foil wing portside station 15 twist [°] 
𝑓  Function 
𝒇𝒎  force- and moment vector [N, Nm] 
𝑓𝑖   Function 𝑖 
𝑓𝑥   Force in 𝑥-direction [N] 
𝑓𝑦  Force in 𝑦-direction [N] 
𝑓𝑧  Force in 𝑧-direction [N] 
ℎ  Submersion [m] 
𝐿  Lift force [N] 
𝑙𝑖   Lagrangian multiplier 𝑖 
𝒍𝒊  Length of segment 𝑖 [m] 
𝑙𝑒𝑥𝑡   Extension lengths [m] 
𝑙𝑠𝑝𝑎  Semi span [m] 
𝑁i,p(𝑢)  Nonrational B-spline basis function in u-direction 
𝑁j,q(𝑣) Nonrational B-spline basis function v-direction 
𝑚𝑥   Moment around 𝑥-axis [Nm] 
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𝑚𝑦   Moment around 𝑦-axis [Nm] 
𝑚𝑧   Moment around 𝑧-axis [Nm] 
𝑷i,j  Control points of NURBS-Surfaces 
𝑝, 𝑞  Degrees of NURBS surfaces in u- and v-direction 
𝒑  Point a function is evaluated for 
𝑅𝐹   Frictional resistance [N] 
𝑅𝑇   Total resistance [N] 
𝑟𝑡𝑎𝑝  Taper ratio 
𝒓𝒊𝟎𝒋  Vector from node 𝑖0 to control 𝑗 
𝒓𝒊𝟏𝒋  Vector from node 𝑖1 to control 𝑗 
𝑟𝑖0𝑗,𝑟𝑖1𝑗  Magnitudes of 𝒓𝒊𝟎𝒋 and 𝒓𝒊𝟏𝒋 
𝑺  NURBS surface 
𝑠  Span [m] 
𝑡  Thickness [m] 
𝑢, 𝑣  Directions of NURBS surfaces 
𝒖∞  Unit vector in the direction of the freestream 
𝑽𝒊  Local velocity at control point 𝑖 [m s-1] 
𝑉MG  Velocity made good [kts] 
𝑉𝑆  Boat speed [kts] 
𝑉TW  True wind speed [kts] 
𝑽∞  Free-stream velocity [m s-1] 
𝒗𝐣𝐢  Influence of horseshoe vortex 𝑗 on control point 𝑖 [m-1]  
𝑤  Downwash 
𝑤i,j  Weights of control points of NURBS surfaces 
𝑥𝑖   Input variable 𝑖 
(1 + 𝑘)  Form factor 
 
α  Angle of attack/incidence [°] 

𝛽𝑎   Apparent wind angle [°] 
𝛽𝑡   True wind angle [°] 
𝛤𝑗   Strength of horseshoe vortex 𝑗 [m2 s-1] 
𝛿𝑒   Elevator rake [°] 
𝛿𝑓   Flap angle [°] 
𝛿𝑟   Rudder angle [°] 
𝛿ra  Rake angle [°] 
𝛿𝑤𝑖𝑛  Wing rake angle [°] 
ϵ  Downwash angle [°] 
𝜃  Pitch angle [°] 
λ  Leeway angle [°] 
𝝃  Free variable vector 
𝜌  Density [kg m-3] 
τ  flat parameter 
𝜑  Heel angle [°] 
 
as  Automatically spaced 
AVL   Athena Vortex Lattice 
CAD  Computer-aided design 
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CFD  Computational fluid dynamics 
CVS  Circolo della Vela Sicilia 
CoG   Centre of gravity 
ETNZ  Emirates Team New Zealand 
FEA  Finite element analysis 
FSI  Fluid-structure interaction 
GUI  Graphical user interface 
IMS  International measurement system 
IPOPT Interior Point Optimizer 
LLT  Lifting line theory/method 
LRPP  Luna Rossa Prada Pirelli 
NURBS Non-uniform rational B-Splines 
NSGA2 Non-Dominated Sorting Genetic Algorithm 
PSQP  Preconditioned Sequential Quadratic Programming 
RANS  Reynolds-averaged Navier-Stokes 
RANSE Reynolds-averaged Navier-Stokes equations 
RNZYS Royal New Zealand Yacht Squadron 
RYS  Royal Yacht Squadron 
SLSQP Sequential Least Squares Programming 
SNOPT  Sparse non-linear optimiser 
TWS  True wind speed 
VPP  Velocity prediction program 
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Chapter 1 Introduction 

1.1 Motivation 

The numerical optimisation of an engineering component requires three things: a parametric 

model that describes the component as a function of design variables, a physics model that 

computes the performance of the component based on the current set of design variables and 

an optimisation algorithm that identifies the best performing set of design variables in an iterative 

process. This is true for many optimisation problems. In some cases however, it is not the 

component performance itself that is of interest, but rather the performance of a system of which 

the component is a part. One such example are hydrofoils (components) on racing yachts 

(system). Hydrofoils are lifting surfaces operated underwater to lift the hull of a yacht out of the 

water and are used for example in the America’s Cup, the Formula 1 of sailing. The aim in the 

America’s Cup is to have the best performing yacht on the racecourse, so the system 

performance is paramount. If in such cases an isolated component optimisation is performed, 

two problems occur. First, the optimal component performance might not directly translate to 

the optimal system performance, as entire aspects of how the component influences the system 

are not considered. Secondly, if the influence of a component on the state of the system is so 

large that it significantly affects the state of the system, the isolated optimisation does not 

account for the changes in system state during the optimisation. This introduces inaccuracies 

and falsifies the optimal solution.  

In hydrofoil optimisation both effects are prominent. Only modelling the component 

performance, for example in terms of lift to drag ratio, neglects important aspects such as the 

total lift and the righting moment generated which significantly affect the yacht. Constraints can 

be used to ensure a foil delivers the required forces and moments, but these requirements are 

then fixed and were derived from some initial design. Therefore, the optimisation does not have 

the possibility to identify a foil design with, for example, a higher righting moment leading to higher 

performance. Furthermore, the design of the hydrofoils has a significant influence on the state 

and the trim (i.e. control) of the yacht. Optimising the component in isolation means that every 

foil is assessed for an initial state and trim which is not updated throughout the optimisation (e.g. 

leeway angle and rake angle). This ignores the changes in state and trim associated with changing 

foil designs and introduces inaccuracies. The significance of this was shown by Paulin et al. 

(2015) for an America’s Cup test boat. Two promising hydrofoils were compared using a 

stationary physics model of the yacht. The model predicted differences in boat speed of more 

than 20%. Other state variables, such as the leeway angle, changed by a factor of 2.2 and the 

control-variable rake by a factor of 2. Nevertheless, the current practice is to optimise hydrofoils 
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in isolation of the yacht system neglecting these significant changes in yacht state and trim. The 

reason for this is the lower complexity in the development and validation of the physics model 

and the lower computational requirements. Modelling a whole system requires significantly more 

computational resources than modelling a single component.  

Components of a system, which have a strong influence on the system, also promise large 

potential performance gains. To fully extract this potential, detailed optimisation with a high 

number of design variables is needed. A detailed optimisation of the spineform, the planform and 

the twist distribution of an America’s Cup foil requires roughly 70 variables. This extends to 

hundreds of variables if section design is to be included. However, the computational time of 

most optimisation strategies scales poorly with the number of design variables and makes 

detailed design impossible. For example, a parametric study with 70 variables and five values 

tested each would require 570 model evaluations, making it practically incomputable. This is the 

reason why published hydrofoil optimisations usually only employ between two to ten design 

variables. The only option for detailed optimisation is gradient-based optimisation which scales 

better with the number of design variables. However, also gradient-based methods can become 

prohibitively expensive if the gradient is approximated using the typical finite difference method. 

For the approximation of a single gradient with 70 design variables, 71 evaluations of the physics 

model are needed, and the gradient must be computed numerous times during the optimisation. 

Other differentiation techniques exist but are similarly as costly. The only exception is the adjoint 

method which is a reverse application of the chain rule to a function. By differentiating in reverse, 

the gradient can be computed at small computational cost independent of the number of input 

variables. This allows the optimisation of thousands of design variables and is the key to detailed 

design. However, applying the chain rule to a function in the form of computer code is complex 

and requires significant implementation efforts compared to the relatively simple finite difference 

method.   

System performance is often also heavily influenced by external factors and the optimal 

component design might be sensitive to these factors. If the factors vary across the operation of 

the system, this must be accounted for in the optimisation.  America’s Cup yachts are raced on 

upwind- and downwind courses in different wind speeds. The different wind directions and 

speeds significantly affect the performance and the state of the system. The optimal design of the 

hydrofoil is thereby sensitive to these conditions. Therefore, optimising the hydrofoil for a single 

condition neglects this dependency and multi-condition optimisation should be conducted 

instead. This adds another layer of complexity. In published hydrofoil optimisations, this 

variability is mostly not considered.  
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In summary, this requires a sophisticated hydrofoil optimisation strategy with a model of the 

entire system to deliver the correct optimum solution and many variables to fully extract the 

immense potential. The only way a full physics model of the entire yacht system can be integrated 

into a detailed optimisation routine is a gradient-based strategy, where the adjoint method is used 

to compute the gradient. The method must also account for varying wind speeds and directions. 

1.2 Aims and objectives 

The aim of this research is to integrate a full physics model of an entire yacht and a detailed 

parametric model into a computationally efficient hydrofoil optimisation framework to obtain 

accurate yacht performance predictions and the ability to fully exploit the design space, with the 

ultimate goal to gain a competitive advantage in sailing races like the America’s Cup.  

To achieve this aim the following projects are defined with their respective objectives: 

I. Reviewing the current state of scientific knowledge in hydrofoil optimisation 

a. Reviewing the literature relevant to the topic of hydrofoil optimisation 

b. Gaining insights into the hydrofoil optimisation methodologies of high-performance 

sailing teams 

 

II. Development and first applications of the AC75 physics model 

a. Development of a parametric model of the AC75 hydrofoil relating design variables 

to the hydrofoil geometry 

b. Development of an advanced lifting line model of the AC75 hydrofoil that enables 

the computation of the forces and moments produced by a certain hydrofoil 

geometry 

c. Development of the full physics model of the AC75 using the VPP FS-Equilibrium to 

enable accurate performance assessment of the AC75 for a given hydrofoil 

geometry  

d. Validation of the VPP model with real life performance data recorded during the 

last America’s Cup 

e. VPP-driven parametric study on the five main hydrofoil design variables to gain first 

insights into their effect on boat performance and to have a benchmark for the first 

optimisation results 
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III. Development of an adjoint system-based hydrofoil optimisation framework 

a. Preparation for and differentiation of the parametric- and the lifting line model 

using the algorithmic differentiation tool ADOL-C 

b. Development of a finite difference-based routine to approximate the gradients of 

the physics model excluding the lifting line method  

c. Combination of the adjoint gradients from the lifting line method and the 

parametric model with the finite difference-based gradients from the remainder of 

the physics model 

d. Integration of the models and differentiation routines into a system-based single-

objective optimisation  

e. Validation of the approach using simple optimisation case studies 

f. VPP-driven optimisation with the aim to maximise the velocity made good of the 

yacht for a single condition 

 

IV. Extension of the framework to multi-condition optimisation 

a. Development of a routine to compute the gradients of multiple conditions and 

averaging them to achieve a single objective 

b. Integration of the gradient averaging method into the optimisation routine 

c. Multi-condition optimisation with the aim to maximise the average velocity made 

across multiple conditions 

1.3 Report structure and publications 

In this section, the structure of the report is presented. Three journal papers form the main body 

of the work and are accompanied by this introduction, a chapter on the literature review, a 

conclusionary chapter and an appendix. 

Chapter 1 - Introduction has introduced a class of optimisation problems where a component 

of a system, that has a strong influence on the system performance and state, is to be optimised. 

One such problem are hydrofoils. This requires the development of an optimisation algorithm 

capable of accurate system performance analysis and detailed optimisation which was set out 

as the aim of this research. A set of objectives has been defined to achieve this aim. The 

objectives have been grouped into projects that correspond to the following chapters.  

Chapter 2 - Literature review corresponds to objectives I a. – b. It presents and discusses the 

literature relevant to achieving the aim of the thesis. This includes an introduction to the yacht 

system, to hydrofoils, to hydrofoil performance models and to optimisation strategies. It pays 

special emphasis on optimisation approaches for problems with a high number of design 
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parameters, i.e. gradient-based methods, and approaches for gradient computation. 

Furthermore, it presents published hydrofoil optimisation methods and the approach of one 

America’s Cup team.  

Chapter 3 - VPP-Driven Parametric Design of AC75 Hydrofoils (Paper 1) 

Tannenberg, R., Turnock, S. R., Hochkirch, K. and Boyd, S. W. (2023) ‘VPP-Driven 

Parametric Design of AC75 Hydrofoils’, Journal of Sailing Technology 2023, vol. 8, no. 1, 

pp. 161 – 181. https://doi.org/10.5957/jst/2023.8.9.161 

This paper corresponds to objectives II a. – e. In the paper, the development of the full stationary 

physics model of the AC75 in the VPP FS-Equilibrium is presented. This includes the detailed 

parametric model of the foil geometry and the hydrodynamic model of the foil computing the 

hydrofoil forces and moments. The models accurately predict the performance of the yacht on 

the racecourse with a given foil. The hydrodynamic model and the entire physics model are 

validated. Using the developed physics model, a parametric study, systematically varying the 

main hydrofoil design variables, is conducted. The parameters include the anhedral angle, the 

span, the chord, the taper ratio and the rake of the foil. This allows first insights and forms a good 

benchmark for a first, simple test of the optimisation algorithm developed later. The parametric 

study predicts a difference of 13.3% 𝑉MG from the slowest to the fastest foil highlighting the 

immense potential of hydrofoil optimisation. To fully extract this potential, detailed optimisation 

is required. The parametric study as a conventional optimisation tool is not feasible for detailed 

design. Therefore, a gradient-based optimisation approach, where the gradient is computed 

using the adjoint method is proposed. The paper won the Best Student Paper Award from the 

Journal of Sailing Technology in 2023 and the Mandles Prize for Hydrofoil Excellence in 2024. 

Chapter 4 - Development of an Adjoint System-Based Hydrofoil Optimisation Framework 

using Algorithmic Differentiation (Paper 2) 

Tannenberg, R., Hochkirch, K., Walther, A., Turnock, S. R. and Boyd, S. W. (2025) 

‘Development of an Adjoint System-Based Hydrofoil Optimisation Framework using 

Algorithmic Differentiation’, under review at Optimisation and Engineering. 

This paper corresponds to objectives III a. – f. Chapter 2 has highlighted the need for accurate 

performance prediction capabilities which was achieved through the development of the AC75 

physics model in Chapter 3. It has also shown that detailed design is required to fully extract the 

potential of foil design and that conventional methods cannot cope with the high numbers of 

design variables required for detailed optimisation. Hence, in this chapter an innovative 

optimisation approach is developed. It allows the use of the physics model to evaluate the 

performance of a candidate and the optimisation of potentially hundreds of design variables. This 

https://doi.org/10.5957/jst/2023.8.9.161
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is achieved through the differentiation of the physics model with a combination of finite 

differences and the adjoint method. The adjoint method is used for the bottleneck of the routine. 

Finite differences are used to differentiate the parts of the program that are not affected by the 

high number of input variables. The two gradient parts are combined and provided to the 

optimisation algorithm IPOPT. The resulting method is first benchmarked against the parametric 

study and finds the same optimal values for the five variables. Thereafter, the method is used to 

optimise the twist distribution of a simple foil, which successfully achieves the desired elliptical 

lift distribution. Finally, a full optimisation with 68 design variables is performed. It optimises the 

planform, the spineform and the twist distribution of the foil in detail. The optimisation is 

executed for a single upwind condition and delivers a feasible, smooth and high-performance foil 

with a trust-worthy convergence history. 

Chapter 5 - Multi-Condition Hydrofoil Optimisation Using an Adjoint VPP (Paper 3)  

Tannenberg, R., Hochkirch, K., Turnock, S. R. and Boyd, S. W.  (2025) ‘Multi-Condition 

Hydrofoil Optimisation Using an Adjoint Velocity Prediction Program’, under reiview at 

Ocean Engineering. 

This paper corresponds to objectives IV a. – c. Hydrofoils are operated across a wide range of 

conditions. In yacht racing, this includes different wind speeds and different courses. The optimal 

design is thereby sensitive to these conditions. However, the previous optimisations have been 

performed for a single condition only. Therefore, the framework is extended to optimise the 

hydrofoil for multiple conditions. This is achieved by computing and then averaging the 𝑉MG and 

gradients for every condition resulting in a multi-condition, but single-objective optimisation 

approach. The most-likely conditions for an America’s Cup race are determined from historical 

weather data for a specific time and venue resulting in three wind speeds (8, 11 and 14 kts true 

wind speed 𝑉TW) and a respective up- and downwind course, so six conditions in total. The 

optimal multi-condition foil is compared to the individual optimal foils.  

Chapter 6 – Conclusions summarises the key findings of this study and draws conclusions. It 

discusses the novelty and the limitations of the approach. A section on further work proposes 

areas of future work to increase the capabilities of the method. The general approach is not 

limited to hydrofoils and yacht racing but can be applied to any similar optimisation problem. 

Potential other applications are presented.  

Appendix A – Algorithmic differentiation of the lifting line method and the parametric model 

presents the implementation work that was required to differentiate the bottleneck of the AC75 

physics model with the algorithmic differentiation tool ADOL-C. It is presented for the reader who 

wishes to get an insight into the implementation process. The appendix introduces the original 
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implementations, presents the general steps required for differentiation with ADOL-C and their 

application to the parametric and the lifting line model.  

1.4 Author contributions  

The three journal papers have been co-authored by Prof. Stephen W. Boyd and Prof. Stephen R. 

Turnock from the University of Southampton, as well as Dr. Karsten Hochkirch from the DNV Ship 

Performance Center. In the following, they are referred to as S.W.B., S.R.T. and K.H, respectively. 

The second paper has also been co-authored by Prof. Andrea Walther from the Humboldt-

Universität zu Berlin, she is referred to as A.W. Rafael Tannenberg is referred to as “the 

candidate”. 

Paper 1: In this paper, the candidate has developed and validated the VPP model of the AC75 

yacht, as well as the parametric models of the hydrofoil and its integration into the VPP. He has 

written the script conducting the parametric study, has produced and analysed the results. He 

also wrote the manuscript. The VPP model is set-up in the software FS-Equilibrium, which was 

developed by K.H. General guidance and supervision was provided by S.W.B. and S.R.T. All 

authors reviewed the manuscript.  

Paper 2: In this paper, the candidate has developed the adjoint system-based optimisation 

strategy and implemented it. He produced and analysed the results. He also wrote the 

manuscript. The system-model is based on the software FS-Equilibrium, which was developed 

by K.H. The adjoint version of the bottleneck of the system-model was obtained through ADOL-C, 

an algorithmic differentiation tool partly developed by A.W. Advice on how to use ADOL-C to 

differentiate FS-Equilibrium was provided by K.H. and A.W. General guidance and supervision 

was provided by S.W.B. and S.R.T. All authors reviewed the manuscript.   

Paper 3: In this paper, the candidate developed and implemented the multi-condition approach. 

He produced and analysed the results. He also wrote the manuscript. The system-model is based 

on the software FS-Equilibrium, which was developed by K.H. General guidance and supervision 

was provided by S.W.B. and S.R.T. All authors reviewed the manuscript.  
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1.5 Further publications 

Other publications have been published as part of this project but are not part of the thesis. This 

includes the three following conference papers: 

1. Tannenberg, R., Turnock, S. R., Hochkirch, K. and Boyd, S. W. (2023) ‘VPP-Driven 

Parametric Study on AC75 Hydrofoil Design’, 6th InnovSail Conference. Lorient, France. 

 

2. Tannenberg, R., Hochkirch, K., Walther, A., Turnock, S. R. and Boyd, S. W. (2024) 

‘Development of an Adjoint VPP-Driven Hydrofoil Optimisation Framework’, 8th High 

Performance Yacht Design Conference. Auckland, New Zealand.  

 

3. Tannenberg, R., Hochkirch, K., Turnock, S. R. and Boyd, S. W.  (2025) ‘Adjoint Optimisation 

of Hydrofoils for Multiple Conditions’, 25th Chesapeake Sailing Yacht Symposium, 

Annapolis, Maryland, USA. 

In addition, a student project has been initiated to develop an accurate force model of the AC75 

sail plan based on a boundary element method. The project was undertaken by Michele Melis in 

the form of a Master thesis with the Technische Universität Hamburg-Harburg and the University 

of Southampton. The project has led to a conference paper co-authored by the candidate and a 

publication in the Journal of Sailing Technology. A second master project was started developing 

a structural model of the AC75 foil. This project was conducted by Christian Hülß. Both projects 

were initiated and co-supervised by the candidate. These are: 

4. Melis, F. M., Tannenberg, R., Boyd, S. W., Scharf, M. and Abdel-Maksoud, M. (2024) ‘AC75 

Aerodynamic Force Prediction Using a 3D Panel Code’, 8th High Performance Yacht 

Design Conference. Auckland, New Zealand.  

 

5. Melis, F. M., Tannenberg, R., Boyd, S. W. and Abdel-Maksoud, M. (2024) ‘AC75 

Aerodynamic Performance Prediction via BEM, Journal of Sailing Technology 2024, vol. 9, 

no. 1, pp. 143 - 174. https://doi.org/10.5957/jst/2024.9.1.143 

 

6. Hülß, C.A. (2023). Deformation Model for AC75 foil optimisation. Master Thesis, University 

of Southampton.  
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Chapter 2 Literature review  

2.1 The yacht system  

Modern sailing racing yachts are incredibly complex systems. They feature sophisticated sail 

plans, hull geometries and hydrofoils and are made from advanced materials. Complex control 

systems and electronics are used to assist the sailors. The design of the yachts is a multi-

disciplinary and highly technological endeavour. The most advanced yachts are sailed in the 

America’s Cup, the Formula 1 of sailing. Similar to Formula 1, the teams can develop the boat 

within a certain rule. This makes the competition a design race. The yacht type currently sailed in 

the America’s Cup is the AC75. The AC75 rule was written for the 36th America’s Cup (Royal New 

Zealand Yacht Squadron and Circolo Della Vela Sicilia, 2020) and updated for the 37th (Royal New 

Zealand Yacht Squadron and Royal Yacht Squadron, 2023). The AC75 is shown in Figure 2.1. 

 

Figure 2.1: AC75 type yacht with its six degrees of freedom 
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The yacht has six degrees of freedom. These are the three translational degrees surge, sway and 

heave, and the three rotational degrees roll/heel, pitch and yaw. The forces and moments acting 

on the yacht system are usually resolved into these six degrees of freedom. They correspond to 

𝑓𝑥, 𝑓𝑦, 𝑓𝑧, 𝑚𝑥, 𝑚𝑦  and 𝑚𝑧. If all forces and moments are in equilibrium in all six degrees of freedom, 

the boat is sailing in a steady state. If they are not in equilibrium, the yacht behaves dynamically. 

This is for example the case in manoeuvres. The forces acting on the AC75 are generated by its 

components. The five main components of the AC75 are:  

Sail plan – The AC75 features a conventional jib paired with a double skin mainsail on a rotating 

mast. The double skin mainsail has higher aerodynamic efficiency than conventional sails and 

includes complex control systems. These allow a high degree of shape control and enable, for 

example, deep camber for high lift coefficients. The rotating mast permits alignment of the 

leading edge with the flow. This increases efficiency further. The sails provide the drive force (𝑓𝑥) 

that propels the yacht. They also produce less desirable side force (𝑓𝑦) and the resulting heeling- 

(−𝑚𝑥), pitching- (𝑚𝑦) and yawing moments (𝑚𝑧). The sail plan is controlled by the sail trimmers 

using hydraulic control systems. 

Hull – The hull of the AC75 is mainly an aerodynamic component since the yachts usually have a 

flight time of 100% during a race. Nevertheless, their take-off behaviour is very important, 

especially in light winds. The hull accommodates most of the control systems, the crew and 

batteries that power the hydrofoil control. The hull mainly produces aerodynamic drag (-𝑓𝑥), side 

force (𝑓𝑦) and gravitational force (-𝑓𝑧) plus the resulting moments.  

Crew – The AC75 is sailed by a crew of 11 (or 8 according to the new rule) that are responsible for 

steering, trimming and “flying” the yacht. Parts of the crew are so called “grinders” or “cyclers” 

generating hydraulic pressure. This hydraulic pressure is used to control the sails. The weight of 

the crew produces down force (-𝑓𝑧), righting- (𝑚𝑥) and pitching moment (𝑚𝑦).   

Rudder – The rudder is used to steer the yacht but also provides pitch stability with the horizontal 

elevator attached to its end. The rudder can be raked forward or aft to change the amount of 

pitching moment the elevator produces. The rudder and elevator produce drag (-𝑓𝑥), side force 

(±𝑓𝑦) and vertical lift or downforce (±𝑓𝑧) plus the accompanying moments (±𝑚𝑥, ±𝑚𝑧, ±𝑚𝑧). The 

rudder and elevator are adjusted by the crew.   

Hydrofoils – The AC75 is equipped with two main hydrofoils, one on each side of the yacht. The 

leeward foil is canted into the water and provides vertical lift (𝑓𝑧) to support the weight of the 

yacht. Additionally, it generates the side force (-𝑓𝑦) to counter the side force from the sails and 

the hull. It also generates righting (+𝑚𝑥), pitching (-𝑚𝑦) and yawing moments (-𝑚𝑧). The windward 

foil is canted out of the water to reduce hydrodynamic drag (-𝑓𝑥) and generate righting moment 
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(+𝑚𝑥) based on the foil’s weight. Each foil consists of the foil arm, the extension of the arm and 

the foil wings. The foil wings and the extension are open to development within certain rules. This 

is discussed in detail in Paper 1. The foil wings are equipped with one or two flaps allowing the 

flight controller to regulate the forces produced.  

Hydrofoils, and especially T-foils on canting arms, are a relatively new technology in the 

America´s Cup. The results are a steep learning curve and a large potential for performance 

gains. The AC75 rule was written to specifically promote hydrofoil development and therefore, 

the hydrofoils have been assigned a large design space compared to other components. This 

increases the potential for performance gains and makes the hydrofoils the biggest performance 

differentiators on the AC75. According to Dan Bernasconi, the Chief-Designer of Team New 

Zealand, the foils “…may well be the area which decides the next America’s Cup” (America's Cup, 

2020a). This requires sophisticated hydrofoil design and optimisation techniques.  

2.2 Hydrofoils 

Hydrofoils are lifting surfaces comparable to the wing of an airplane but operated underwater to 

lift a boat partially or fully out of the water. They can also be used to produce side force and 

increase righting moment. Hydrofoils have a very effective lift to drag ratio at semi-displacement 

and planning speeds and can therefore significantly reduce the overall drag of a watercraft. This 

is shown in Figure 2.2. Hydrofoils have been applied to sailing yachts, fast ferries and military 

vessels in the past, see for example Gilruth (1951), Buermann and Hoerner (1964) and Baron Von 

Schertel (1973), but have remained a niche technology due to their complexity. This changed with 

the introduction of hydrofoils to the 34th America’s Cup in 2013 which has led to a renewed and 

widespread interest. They have been applied to many sailing yachts, surf boards and power boats 

since and are an area of active research. They are seen as a key technology in the decarbonisation 

of small and fast watercraft (e.g. Tyde, 2024).  

 

Figure 2.2: Differences in resistance of a boat with and without hydrofoils  
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Hydrofoils can have a variety of shapes and can be mounted to a vessel in different 

configurations. The types used in high performance sailing are mainly L-foils or T-foils. L-foils have 

the strut of the foil attached to one end of the foil, whereas T-Foils have it attached to the middle 

of the foil. Y-Foils are a variation of T-Foils and have their wing arranged at an anhedral angle. This 

is shown in Figure 2.3. In addition, hydrofoils can be tapered, swept, raked and twisted or exhibit 

more complex shapes. The “front-view” is called the spineform, the “top-view” the planform.  

 

Figure 2.3: Hydrofoil design aspects 

The shape of the hydrofoils significantly affects the vessel they are applied to. It influences the 

performance but also the whole state and trim of the boat. This has been demonstrated by Paulin 

et al. (2015) at the example of a C-Class catamaran. The study compared the two L-foils shown 

in Figure 2.4a for their performance in multiple conditions. The performance was assessed with 

a full stationary physics model of the catamaran developed in the VPP FS-Equilibrium. Both foils 

were considered promising but were found to exhibit very different performances. This is shown 

in Figure 2.4b. Foil “g2b” for example shows a 16% higher velocity made good for a true wind angle 

𝛽𝑡  = 49° and a true wind speed 𝑉TW = 9 m/s. Foil “sls03” on the other hand leads to a 20% higher 

boat speed (𝑉𝑆) sailing downwind (𝛽𝑡= 123° and 𝑉TW = 6 m/s). This shows the immense 

importance of hydrofoil design and optimisation in a game where fractions of a second can decide 

a race. The influence of the foil design is so big that not only the boat speed changes but also the 

whole state and the trim of the boat. For example, the state variable “leeway” changed up to 3°, 

the rake of the foil changed 2° (Figure 2.5a and b). This significant influence on the state and trim 

of the yacht must be considered in hydrofoil design and optimisation.  

   

Figure 2.4: Spineform (a) and boat speed (b) of two foils for a C-Class yacht (Paulin et al., 2015) 
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Figure 2.5: Leeway angle (a) and rake angle (b) of two foils for a C-Class yacht (Paulin, 2013) 

Hydrofoils exhibit complex physics. These involve two-dimensional and three-dimensional 

effects, as well as cavitation and free-surface effects. A short introduction to these physics is 

given in the following, for a detailed description see Molland and Turnock (2022) and Faltinsen 

(2005). Hydrofoil sections are used to bend the streamlines of a flow. This is either achieved by 

orienting them at some angle of incidence α with respect to the free-stream direction or by using 

a cambered section shape. The streamline curvature causes a pressure drop on one side of the 

foil and a pressure increase on the other side. The consequence is the force shown in Figure 2.6a. 

This force is commonly decomposed in the lift force, that acts normal to the free-stream 

direction, and the drag force, that acts in the direction of the free-stream. The higher the angle of 

attack (or the camber), the more lift is produced. Initially, the amount of lift varies roughly linearly 

with the angle of attack up to a point called stall. Here, the flow starts to separate from the upper 

surface of the foil causing a reduction in lift. This is shown on Figure 2.6b where the lift is 

presented in terms of the non-dimensional lift coefficient 𝐶𝐿. The profile drag of the foil section 

(or the sectional profile drag coefficient 𝐶𝐷) varies parabolically with the angle of incidence and is 

a sum of the skin friction drag and the viscous pressure drag of the foil section.  

  

Figure 2.6: (a) Hydrofoil section at an angle of incidence, (b) lift- and drag characteristics of the 

section with respect to the angle of incidence; (Molland and Turnock, 2022) 
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Extending the foiling problem to three dimensions introduces additional effects. While 2D foils 

only experience flow in the chordwise direction, 3D-foils are also subject to spanwise flow. The 

pressure differential between the upper- and the lower face of the foil leads to a flow across the 

tip trying to equalise this differential. This results in the formation of tip vortices as shown in Figure 

2.7a. The tip vortices cause a downward flow component commonly referred to as “downwash”. 

The downwash 𝑤 rotates the local velocity downwards by an angle ϵ, reducing the effective angle 

of attack of the foil and rotating the lift force backwards (𝐿0). The part of the lift now pointing in 

the original free-stream direction is additional drag and called lift induced drag or short induced 

drag (𝐷𝑖). This phenomenon is shown in Figure 2.7b.  

 

Figure 2.7: (a) tip vortices , (b) change in effective angle of attack due to downwash; (Molland 

and Turnock, 2022) 

Prandtl (1921) has shown that for a constant span wing the induced drag is minimal when the 

downwash is constant across the span of the foil. This is achieved if the lift distribution along the 

span is elliptical as shown in Figure 2.8. The lift distribution is elliptical for a straight wing of 

elliptical planform. A rectangular planform causes a more rectangular lift distribution and a 

triangular planform a more triangular distribution. Additionally, the twist distribution and the 

sweep of the foil can be employed to modify the lift distribution. For complex foil geometries the 

downwash of a foil can also become negative in some parts of the wing. This is called “upwash”. 

Apart from upwash and downwash, complex 3D-foils can also experience interaction effects 

between different parts of the foil. This is the case for foils with anhedral angle and sweep for 

example. 

 

Figure 2.8: Lift and downwash distribution across the span of a wing 
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A further effect, not limited to 3D-foils, is cavitation. Cavitation is a formation of voids in the liquid 

occurring when the local pressure in the fluid drops below the vapour pressure. This can for 

example be caused by a hydrofoil producing very low pressure on the suction side. The result is a 

sudden loss of lift and an increase in drag. Furthermore, when the cavities reach a region with 

higher pressure again, they collapse and create shockwaves that can damage the foil. Cavitation 

is a concern for hydrofoils at the higher end of the speed range and in manoeuvres.  

Free-surface effects are caused by the presence of the interface of the water and the atmosphere. 

Operating a hydrofoil close to this interface has several consequences. If the foil is operated at 

very low speeds, the free-surface acts like a wall and increases the performance of the foil (wing-

in-ground effect). However, if the foil is operated at higher speeds, the free-surface causes a 

reduction of lift and an increase in drag due to wave-making. This is explained in detail in Section 

3 of Paper 1. Additional drag can arise from water particles being projected in the air (spray). A 

further concern is ventilation. Very similar to cavitation it arises when the local pressure becomes 

very low. The proximity to the free surface allows air to be sucked down into the low-pressure 

region. This aeration also causes a sudden loss of lift. For further information see Faltinsen 

(2005). 

2.3 Performance modelling 

To understand and efficiently optimise the performance of hydrofoils, their physics must be 

modelled mathematically to some extent. Different models for hydrofoil force prediction are 

available. These can be used for isolated analysis or as part of VPPs or simulators. They vary in 

accuracy and complexity and require the correct trade-off to be made. Semi-empirical models 

exist for simple foil geometries, for example Whicker and Fehlner (1958), but complex shapes 

require numerical models. These include the simpler and less computationally expensive 

potential flow methods and the more expensive and accurate viscous methods. Available 

potential flow methods are for example the lifting line method (LLT), the vortex lattice method and 

the panel method. For a detailed introduction to those see Katz and Plotkin (1991). Viscous 

methods are commonly referred to as computational fluid dynamics (CFD) and include Reynolds-

averaged Navier-Stokes- and higher-level methods. The different methods are presented in Table 

2.1. A “+” indicates direct modelling capability, a “+-“ indirect or partial modelling capability and 

a “–“ no modelling capability. The order of computational time required for a single solve of a 

method on a normal PC is given in the last column.  
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Table 2.1: 3D fluid dynamic models for wings 

Method Complex 
foils 

Flow 
separation 

& stall 

Bulbs Free-
Surface 
effects 

Cavitation Ventilation Computational 
time 

Prandtl´s 
LLT 

- - +- - - - milliseconds 

Advanced 
LLT 

+ +- +- +- - - milliseconds 

Vortex 
Lattice 

+ - +- +- - - seconds 

Panel 
code 

+ - + +- - - minutes 

RANS + + + +- +- +- hours 

Higher 
level CFD 

+ + + +- +- +- Days/weeks 

 

Table 2.1 shows that viscous methods are the most capable approaches and can model complex 

foil geometries with bulbs even in fully stalled cases. With some addition they are also capable of 

modelling cavitation and free-surface effects including ventilation. However, a single solve of 

such a method requires potentially hours of computational effort. Hence, RANS methods provide 

a good option for detailed assessment of the flow surrounding a hydrofoil, but they are less 

suitable for use within VPPs or simulators. They are used for validation of lower-fidelity methods 

(e.g. Rousselon, 2020) and isolated hydrofoil optimisations as discussed in Section 2.5. Higher-

level CFD methods are not common in hydrofoil design and optimisation.  

In contrast, potential flow methods are much cheaper to solve computationally and are 

frequently used in VPPs and simulators. Except for Prandtl’s original lifting line method, they are 

all capable of modelling complex hydrofoils. Prandtl’s method cannot model sweep, anhedral or 

the operation of foils at a leeway angle due to the use of 2D-vortices to model the lift of the 

sections of the foil. Advanced lifting line methods exist that make use of 3D-vortices and can 

model such features. Non-linear lift-curve slopes and iterative solvers can be used to model the 

onset of stall. Viscous lift- and drag coefficients can be included to account for the sectional 

shape of the foil. One example is the method of Phillips and Snyder (2000). A transformation of a 

second foil across the free-surface plane can be used to model the loss of lift caused by the 

presence of the free-surface. This is called the “biplane-analogy”. For more information see 

Section 3 of Paper 1. Similarly capable are vortex lattice methods. These can additionally model 

the camber of a foil directly but cannot account for stall. Both methods however assume thin, 

foil-like geometries and cannot directly model features such as bulbs. Options to include bulbs 

are for example empirical models or slender body theory. Panel codes can directly model “thick” 

geometries but cannot model stall and require significantly more computational time to solve 
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when compared to lifting line methods. Potential flow methods have frequently been used for 

hydrofoil force modelling in the America’s Cup (Wilkins; Rousselon, 2020; Fischer, 2021).  

Hydrodynamic models of hydrofoils can compute the forces and moments the foils produce and 

measures of efficiency such as lift to drag ratio. However, they do not model how a hydrofoil 

affects the yacht system. This requires a physics model of the entire yacht. These models are 

usually developed in velocity prediction programs. They require models of all aero- and 

hydrodynamic components of the yacht, as well as gravity models. The first VPP was developed 

at Massachusetts Institute of Technology by Kerwin (1978). It relied on data from wind tunnel- and 

towing tank investigations for each individual yacht. Later, semi-empirical models were used 

based for example on the ORC sail coefficients (Offshore Racing Congress, 2016) and the Delft 

Systematic Yacht Hull Series (Keuning and Sonnenberg, 1978). Additionally, numerical models 

have been introduced such as potential flow codes (Caponnetto et al., 1999) and fully integrated 

RANS solvers for both the aero and hydro modules (Böhm, 2014; Artemis Technologies, 2021; 

Robin et al., 2023). Furthermore, simplified models for the fluid-structure interaction between the 

air flow and the sails (Roux et al., 2008) and the water flow and hydrofoils have been presented 

(Horel and Durand, 2019).   

To solve for the velocity on a given course at a given true wind speed, the VPPs search for a state 

where all forces provided from the force modules equate to zero. The forces can be assessed for 

a minimum of two degrees of freedom (surge and roll) up to all six. To find the equilibrium, an 

iterative approach or an optimisation routine can be used. Usually, the state variables are defined 

to balance the forces (for example boat speed for 𝑓𝑥  and leeway for 𝑓𝑦) and trim variables are used 

to optimise the performance (for example crew position or the flattening of the sails). These VPPs 

are called stationary. A typical solver set-up for a conventional yacht is presented in paper 1. This 

traditional solving strategy is valid for conventional and stable vessels. Hydrofoiling boats like the 

AC75 are inherently unstable and require a different set-up. This is also discussed in paper 1. 

Another approach is to assess the dynamic behaviour of a yacht by computing the forces and 

their effects on the boat in a time-series. These programs are referred to as dynamic velocity 

prediction programs (DVPPs) and can be controlled by scripted autopilots or by human 

interaction (sailing simulators).   

Several commercial VPPs exist, like for example WinDesign (Wolfson Unit, 2024), the North VPP 

(North Sails, 2024) and the ORC VPP (Offshore Racing Congress, 2024). The most sophisticated 

velocity prediction algorithms are used by the America’s Cup teams and in other high-

performance yacht design applications. The programs usually have both a stationary and a 

dynamic mode. Examples are FS-Equilibrium used in the Oracle Team USA campaigns 

(Hochkirch, 2018) and Gomboc from Emirates Team New Zealand (SumToZero, 2021). Both FS-
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Equilibrium and Gomboc incorporate a lifting-line approach for hydrofoil modelling. In addition, 

FS-Equilibrium incorporates a vortex lattice method and Gomboc a panel code. Both also employ 

a simplified fluid-structure interaction method for the hydrofoils based on an Euler beam-

bending/twist model coupled to the potential flow models. Apart from the commercial VPPs, 

proprietary codes have also been used to model the performance of foiling boats, for example for 

the AC72 (Hagemeister and Flay, 2019), the Nacra 17 (Graf et al., 2020; Knudsen et al., 2023) and 

the AC75 (Patterson and Binns, 2022; Rodriguez et al., 2022).   

For the optimisation of hydrofoils, a suitable performance model must be chosen. Typically, this 

is either a potential flow model or a RANS method. These however only model the foil in isolation.  

Paulin et al. (2015) have shown the immense influence of hydrofoils on the yacht state and trim, 

so an isolated optimisation does not account for such changes. Therefore, a full, stationary 

physics model of the yacht is chosen for this study. The physics model is developed in the VPP 

FS-Equilibrium. FS-Equilibrium has been employed for various projects in the past. This includes 

the simulation of manoeuvres of an IMS yacht (Richardt et al., 2005), the training of starting 

manoeuvres for America’s Cup helmsmen (Binns et al., 2008) and the performance evaluation of 

different wind-assisted propulsion technologies (Hollenbach et al., 2020; Hochkirch and 

Bertram, 2022). FS-Equilibrium has also been applied to foiling boats such as the C-Class 

Catamaran Groupama (Paulin et al., 2015), the International Moth (Boegle et al., 2012; Eggert et 

al., 2020), the AC50 (Hansen et al., 2019) and the QFX Lake Racer (Melis et al., 2022). For a 

detailed description of FS-Equilibrium see paper 1.  

The physics model of the entire yacht must include a force model of the hydrofoil. Solving for the 

steady sailing state of the yacht requires numerous hydrofoil force predictions and an 

optimisation requires numerous sailing states to be solved. This means that the computational 

time required for a foil force prediction heavily affects the time required for the optimisation. 

During an America’s Cup campaign many optimisations must be run to first validate the approach 

and then use it throughout the campaign. This includes for example optimisations for different 

starting points, different discretisations and updating the optimal foil design, if advancements in 

other areas requires this (e.g. new foil control systems). Therefore, the time for an optimisation 

cannot be more than a couple of days on a standard PC at maximum (Fischer, 2021). Viscous 

methods for foil force prediction in combination with the VPP would result in an optimisation time 

of years. This could be reduced with the use of computing clusters but would still require weeks 

and significant cost. Therefore, potential flow methods must be used. FS-Equilibrium features an 

advanced lifting line method and a vortex lattice method. For this project, the lifting line method 

is chosen. It is cheaper to evaluate, can directly employ viscous profile lift and drag coefficients 

and can be made non-linear to account for the onset of stall.  
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2.4 Optimisation  

This section briefly introduces optimisation techniques and methods for gradient computation. 

For a detailed introduction to optimisation see Martins and Ning (2022) and Keane and Prasanth 

(2005). For a detailed introduction to gradient computation see Griewank and Walther (2008). 

Furthermore, examples of gradient-based optimisations, where the gradient is computed using 

the adjoint method, are presented for various fields. Approaches to hydrofoil optimisation are 

discussed in detail in Section 2.5.  

2.4.1 Optimisation strategies and algorithms 

Optimisation in the mathematical context is the process of finding the minimum or maximum of 

a function with respect to input variables. The function to optimise is called the objective 

function. It can for example represent a biological, financial or an engineering 

system/component. The input or design variables describe this system/component. They must 

be independent and can be bounded to be within a feasible range. Additional constraints can be 

introduced via constraint functions to ensure structural soundness of an engineering component 

for example.  

Different approaches exist for identifying the set of input variables that results in the minimum or 

maximum of the function. Simple approaches sample the design space in a regular- (e.g. 

parametric studies) or a random manner (e.g. Latin Hypercubes) with the best sample chosen. 

Sampling is simple to set-up and allows the use of the objective function in a black box manner 

but requires high numbers of objective function evaluations. Therefore, the methods are good for 

identifying trends but are not suitable for detailed optimisation. As discussed in the Introduction, 

a parametric study with 70 design variables and five values tested per variable would require 570 

function evaluations. This is practically incomputable, even for cheap functions. More 

sophisticated optimisation strategies/algorithms use an iterative approach. The information of a 

current function evaluation is used to inform the point/s evaluated in the next iteration/s. 

Generally, there are two types of optimisation algorithms, gradient-free and gradient-based 

approaches. Gradient-free or zeroth-order algorithms use no other information than the objective 

values. They are easy to set-up and the objective function is again used as a black box. Examples 

are genetic- or particle swarm methods. Gradient-based algorithms additionally use gradient 

information (first-order information). The gradient of the function with respect to the input 

variables informs locally as to how to change the variables to get closer to the (local) optimum. 

This additional information helps the algorithms to converge more efficiently, especially for high 

numbers of design variables. Figure 2.9 shows how the number of function evaluations required 

scales with the number of input variables for gradient-free and gradient-based methods. For this 
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example, the evaluations required by the gradient-based method grew from 67 to 206, the 

number of function calls required by the gradient-free method grew from 103 to 32,000 (Martins 

and Ning, 2022). This makes gradient-free methods prohibitively expensive for detailed 

optimisation and means that gradient-based algorithms are the only option for such problems.    

 

Figure 2.9: Number of function evaluations required for optimisation vs number of input 

variables from Martins and Ning (2022) 

The downside of gradient-based methods is that they only search locally. This means that an 

identified minimum is only guaranteed to be the global minimum if the function is convex. If a 

function has multiple extrema and the optimiser is started in the vicinity of a local extremum, it 

will only find this local optimum as opposed to the global one. Starting the optimiser from multiple 

locations reduces this risk significantly (Multi-start). A preceding search with a global 

optimisation algorithm is another possibility but this is usually too computationally costly for 

problems with large numbers of input variables. In general, gradient-based strategies require the 

objective function and potential constraint functions to be differentiable.  

A further technique is reducing the cost of the objective function by creating a meta- or surrogate 

model. This means several function evaluations are used to train a response surface representing 

the objective function. The optimisation is then performed on this much cheaper to evaluate 

response surface. Suitable meta models are polynomials, splines, kriging models or even 

artificial neural networks. For details see Forrester et al. (2008). However, meta-models are only 

of advantage if the number of function evaluations required for training them is lower than the 

number of function evaluations required in a normal optimisation. The function calls required to 

train the model thereby scale poorly with the number of design variables. This is described as the 

“curse of dimensionality” by Martins and Ning (2022) or as Keane and Prasanth (2005) put it: “as 

problem dimensions rise, the ability to construct any kind of accurate surrogate rapidly 

diminishes”.  



Chapter 2 

42 

Optimisation cannot only be performed for multiple design variables but also for multiple 

objectives. For a sailing yacht for example, one might wish to optimise its performance in light- 

and strong winds. If it is unclear how to weigh these two objectives against each other, multiple 

optimisations with different weightings of the objectives can be performed. The different optimal 

designs form the “Pareto front” in a diagram that has the two objective values on the ordinates. 

The user can then pick the design that appears to be the best trade-off. This is known as the 

weighted sum approach. More efficient and capable ways of computing the Pareto front exist, but 

in any case, they require multiple optimisations to be run. If possible, the weighting should hence 

be determined beforehand (for example based on the likelihood of light and strong winds) to 

maintain a single objective which requires only one optimisation run.   

This project aims to optimise high numbers of design variables to fully extract the immense 

potential of hydrofoils. Following the previous discussion, this is only possible with gradient-

based methods. Several different gradient-based optimisation algorithms exist. Martins and Ning 

(2022) propose BFGS-methods (Broyden–Fletcher–Goldfarb–Shanno) for unconstrained 

problems and SQP- (Sequential quadratic programming) or IP-methods (Interior point) for 

constrained problems. While the optimisation problem in this project is unconstrained, future 

additions to the routine will likely require the introduction of constraint functions. Therefore, SQP- 

and IP-methods are considered. Lyu et al. (2014) have compared different optimisation 

algorithms for the optimisation of eight design variables defining the twist distribution of an 

aircraft wing. The results are shown in Figure 2.10. The gradient-free genetic algorithm NSGA2 

required 12,757 iterations to identify the optimal twist distribution, the SQP-based optimisers 

SNOPT, PSQP and SLSQP required 27, 17 and 14, respectively. The IP-based optimiser IPOPT 

used 13. IPOPT has also been successfully used in conjunction with ADOL-C before (e.g. Gauger 

et al., 2012), so it is chosen as the optimiser for this project.  

IPOPT is an interior point line search filter method for large-scale nonlinear optimisation 

problems developed by Wächter and Biegler (2006). The objective and potential constraint 

functions can be convex or non-convex but must be twice differentiable. Variables can be 

bounded with lower and upper bounds. IPOPT either uses supplied gradients or approximates the 

first order information with finite differences. For unconstrained problems, such as the problem 

in this thesis, it employs the BFGS-method. BFGS is a quasi-Newton method, which uses first and 

second order information of the function to find its minimum. In contrast to Newton-methods, 

the second order information is approximated with the first order information from the last two 

iterations. This means the second order information does not have to be computed, which can be 

computationally costly. Multiple starting points or a preceding global search should be 

considered to mitigate the risk of only identifying a local optimum. For a general introduction to 

interior point and BFGS methods see Martins and Ning (2022). 
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Figure 2.10: Performance of different optimisation algorithms for the optimisation of the twist 

distribution of an aircraft wing with eight design variables (Lyu et al., 2014); 

Gradients computed via the adjoint method 

2.4.2 Gradient computation 

Gradient-based optimisation requires the computation of the gradient of the objective function 

and potential constraint functions at every iteration of the optimisation process. The gradient is 

the direction and rate of fastest increase of a scalar-valued function 𝑓 with respect to its input 

variables 𝑥𝑖. If a function has more than one output the individual gradients are presented in the 

Jacobian matrix 𝐽, where the rows are the transposed gradients (Equation 1).  

𝐽𝑓 = [
∇𝑓1

𝑇

⋮

∇𝑓𝑚
𝑇
]  =  

[
 
 
 
 
𝜕𝑓1
𝜕𝑥1

⋯
𝜕𝑓1
𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝑓𝑚
𝜕𝑥1

⋯
𝜕𝑓𝑚
𝜕𝑥𝑛]

 
 
 
 

 

Equation 1: Jacobian matrix  

Different methods for gradient computation exist. These include symbolic differentiation, finite 

differences, the complex step method, and algorithmic differentiation. While symbolic 

differentiation is widely used in calculus, it is unsuitable for numeric optimisation. Finite 

differences in contrast are extensively used in numerical optimisation. This approximation of the 

gradient is simple to implement and does not require anything but the function values. Therefore, 

they are the only option to obtain gradients of black box functions. Finite differences work by 

evaluating the function for an initial set of design variables, then perturbating the first design 

variable by a small step ℎ and then evaluating the function again. The difference in the output is 
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divided by the step size. This is shown in Equation 2 and must be repeated for any other design 

variable. The step is taken forwards which makes it a forward finite differencing scheme.  

𝜕𝑓

𝜕𝑥1
= 

𝑓(𝑥1 + ℎ) − 𝑓(𝑥1) 

ℎ
 

Equation 2: Forward finite differencing scheme 

While finite differences are simple to implement, they suffer from poor efficiency. A function with 

70 input variables requires 71 function evaluations for gradient approximation. This is expensive. 

Furthermore, the accuracy of the gradients depends on the step size. A high step size is 

inaccurate due to a high truncation error. Therefore, the step size should be reduced maximally 

to reduce the truncation error. The smaller the step size however, the higher the error due to 

subtractive cancellation. This dilemma means that finite difference-based gradients can never 

be fully accurate and can hinder rapid convergence.  

The complex step method is also an approximation of the gradient but uses a complex step as 

opposed to the real step in the finite difference method. Therefore, the inputs and outputs must 

be made complex variables, and the function must be solved using complex arithmetic. This 

requires the source code to be modified and means the function cannot be used as a black box. 

The method does not require a subtraction to be performed, so the only source of inaccuracy is 

the truncation error. This can be reduced by reducing the step size and vanishes if the step size is 

small enough. Similarly to finite differences, the time required to compute the gradient scales 

linearly with the number of input variables.  

The third option for differentiation of complex functions (in the form of computer code) is called 

algorithmic differentiation. A computer code consists of a series of basic operations. These 

operations can be differentiated symbolically and then chained together using the chain rule. This 

results in gradients accurate to machine precision and can be performed manually or with 

algorithmic/automatic differentiation tools. Manual differentiation is time-consuming and error-

prone, so automatic differentiation is to be preferred. Intuitively, the application of the chain rule 

is started from one input variable, differentiating to the output variables and then repeating this 

process for the remaining input variables. This is called forward differentiation and requires one 

partial derivative to be evaluated per input variable. Therefore, the number of function evaluations 

again linearly scales with the number of design variables, albeit less significantly when compared 

to the previous methods. This makes the method inefficient for problems with large numbers of 

input variables, but only few outputs. Conversely, the chain rule can also be applied in reverse, 

starting at one output, differentiating to the inputs. This requires the evaluation of one partial 

derivative per output variable, independent of the number of input variables. The evaluation of 

one partial derivative is thereby roughly as expensive as a forward function pass. This makes it 
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extremely powerful for sophisticated optimisation problems that usually have high numbers of 

input variables but only one or a few outputs. This method is known as reverse differentiation or 

the adjoint method and allows the optimisation of any number of design variables at small cost.  

Two types of reverse algorithmic differentiation tools exist. These are based on either source 

transformation or on operator overloading. Source transformation tools transform the given code 

into the differentiated version of the code. This differentiated version can then be compiled and 

evaluated. Source transformation tools are for example ADIFOR (Bischof et al., 1992), OpenAD 

(Hovland et al., 2002), TAF (Giering et al., 2005) and TAPENADE (Hascoet and Pascual, 2013). In 

contrast, operator overloading methods differentiate the computer code at run time. This is 

achieved by recording all operations and resulting intermediate variables of the function during a 

normal evaluation. The information is stored on a so-called tape that depicts a simpler internal 

representation of the actual code. This internal representation can then be differentiated in 

reverse. The taping procedure is facilitated by replacing the typical floating point data type double 

with a specific data type. This datatype (often called adouble for active double) allows to save the 

intermediate values on the tape during a normal solve of the function. Operators such as +, * and 

sin are overloaded to record what operations were carried out. The overloaded operators and the 

special data type are provided by the algorithmic differentiation tool. The benefit of operator 

overloading is that a single code is maintained and developed, while source transformation 

requires the maintenance of the normal version and the differentiated version of the code. The 

downside of operator overloading is that it is slightly more computationally expensive. Exemplary 

operator overloading-based tools are JAX for Python (Schoenholz and Cubuk, 2020), CasADI for 

MATLAB (Andersson et al., 2012) and ForwardDiff.jl for Julia (Revels et al., 2016). The program to 

be differentiated in this project is FS-Equilibrium, which is written in C++. Several tools for the 

differentiation of C++ code exist. Examples are FAD (Aubert et al., 2001), CoDiPack (Sagebaum et 

al., 2019) and ADOL-C (Walther and Griewank, 2012). The most widely used tool for C++ programs 

is ADOL-C, so it was chosen for this project. For the full list of algorithmic differentiation tools see 

Bücker et al. (2024a).  

ADOL-C is a program for automatic differentiation by overloading in C++. It is under sustained 

development at the Department of Mathematics at the Humboldt-Universität zu Berlin. The tool 

can compute derivatives of any order for a given source code in C or C++. It features both a 

forward and a reverse mode. For the differentiation with ADOL-C, several steps must be 

performed. First, the source code of the program must be fully available to ADOL-C, which means 

it cannot rely on pre-compiled libraries that are linked to the code. Parts of the code which have 

such a reliance must therefore be replaced beforehand. In a second step, every variable that 

influences the gradient must be declared as an active variable by assigning it the type adouble 

instead of the normal C++ double precision floating point datatype double. Variables that do not 
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influence the gradient can remain of the passive type. A special initialisation must be carried out 

to specify the input variables (also referred to as the independent variables) and the output 

variables (or dependent variables). The part of the computer program that should be 

differentiated (also called the active section) must be marked. Finally, the function to compute 

the gradient or the jacobian can be called. For a detailed introduction see Walther and Griewank 

(2022). For a simple example of differentiation with ADOL-C and the details of the differentiation 

of the lifting line method and the parametric model see Appendix A.  

2.4.3 Algorithmic differentiation and adjoint optimisation examples 

Algorithmic differentiation and adjoint optimisations have been performed in many fields 

including Biology (Hovland et al., 1997; ADIFOR), Medicine (Jee et al., 2005; ADOL-C), Physics           

(Kim et al., 2006; TAPENADE) and Engineering. For a data base of algorithmic differentiation 

applications see Bücker et al. (2024b). Examples in engineering range from electrical engineering 

(Hart et al., 2006; ADOL-C), over controller design (Röbenack, 2007; ADOL-C), to structural 

optimisation (Tadjouddine et al., 2006; ADIFOR). Most extensively however, it has been applied 

to aerodynamic shape optimisation. Potential flow-based adjoint optimisations have been 

performed with lifting line methods (Hodson et al., 2017), vortex lattice methods (Kontogiannis 

and Laurendeau, 2021) and panel codes (Sarikaya and Tuncer, 2022). Examples for CFD-based 

optimisations are Bischof et al. (1992)(ADIFOR), Schlenkrich et al. (2008)(ADOL-C) and Albring et 

al. (2015)(CoDiPack). Aerodynamic adjoint optimisations have also been performed with high 

level CFD models such as Large Eddy simulations (Roth and Ulbrich, 2013). Algorithmic 

differentiation has also been applied to CAD-tools (Computer-aided design) to allow the adjoint 

optimisation of geometries parameterised in full CAD-programs as opposed to small, tailored 

parametric models (Banović et al., 2018; Mykhaskiv et al., 2018; ADOL-C). This was extended to 

an industrial airfoil design tool including CAD- and CFD-models (Banović et al., 2020; ADOL-C). 

In the field of maritime engineering, adjoint optimisations have been applied for example to ship 

hulls (Lavimi et al., 2024), propeller blades (Lee et al., 2014) and hydrofoils. The applications to 

hydrofoils are discussed in detail in the next section.   
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2.5 Hydrofoil optimisation  

Several hydrofoil optimisation approaches are discussed in the literature. Some of them consider 

section optimisation, others the optimisation of the spine- and the planform. In rare cases both 

are optimised together. Optimisation techniques include sampling, gradient-free optimisation, 

meta-modelling and adjoint approaches. This section introduces the published hydrofoil 

optimisation strategies with a focus on spine- and planform optimisation as section optimisation 

is not part of this study. It also discusses the approaches used in the America’s Cup. These might 

be the most advanced approaches but are usually kept secret. Nevertheless, an interview with 

the America’s Cup designer Martin Fischer has shone light on some of the strategies used by at 

least one America’s Cup team.  

Early hydrofoil optimisations have been performed mostly for section shapes with the aim to 

delay cavitation. A detailed description of this body of work is given by Garg et al. (2017). Examples 

are Brockett (1966), Eppler and Shen (1979), Shen and Eppler (1981) and Kinnas and Fine (1993). 

Brockett published design charts to identify optimum foils for different conditions in 1966. The 

underlying data was computed from steady two-dimensional flow investigations with an empiric 

correction for viscous effects. Eppler and Shen employed boundary layer and profile theory 

methods to find optimum shapes for delayed cavitation inception for symmetric sections in 1979 

and asymmetric sections in 1981. Kinnas and Fine carried out analysis on hydrofoils with partially 

cavitating flows in 1993.  

Section optimisations with gradient-free optimisation algorithms have been performed by 

Mishima and Kinnas (1996) and Zeng and Kuiper (2012). These were based on lower-fidelity 

methods and limited to five and ten design variables, respectively. A multi-objective section 

optimisation was performed by Kostas et al. (2017). It was based on a Boundary-Element method 

in conjunction with a genetic algorithm and optimised eight design variables. Djavareshkian and 

Esmaeili (2014) performed an optimisation of the thickness and camber of a foil section operated 

near the free-surface. The approach made use of an artificial neural network as surrogate model 

and a particle swarm optimiser. The foil section was modelled with Navier-Stokes and a volume 

of fluid method for the free-surface. Silva (2014) optimised the section for a C-Class catamaran 

with the aim to maximise lift, while preventing cavitation. The method used XFoil (Drela, 1989) 

and a gradient-free optimisation algorithm. Again eight design variables were optimised. Sacher 

et al. (2017) performed an optimisation of a hydrofoil section with deformable elements at the 

trailing edge for an AC50. The routine aimed to reduce the drag for four different sailing conditions 

with corresponding boat speeds and lift forces. Additionally, four constraint functions (for four 

different boat speeds) were implemented to prevent cavitation making use of criteria based on 

the cavitation number. XFoil in conjunction with a non-linear elasticity method was used to solve 
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the FSI problem. The optimisation was based on a derivative-free method. To reduce the 

computational time of the optimisation with 11 design variables, a surrogate-based approach 

was chosen. Peri (2023) has performed section optimisations for cases with no free-surface, with 

free-surface and with free-surface and cavitation for maximum lift to drag ratio with six design 

variables. The investigations were based on a RANS solver with a volume of fluid method for free-

surface and a Schnerr-Sauer cavitation model (Schnerr and Sauer, 2001). The method used a 

meta model and regular sampling. A denser sampling was then performed around the area of the 

best performing foil from the first sampling. This process was repeated until the density of points 

was deemed sufficient.   

Several methods have also been published regarding the design and optimisation of the spine- 

and planforms of hydrofoils. These optimisations are more specific to the type of hydrofoiling 

craft they are applied to and are performed for motor vessels as well as sailing yachts. Besnard 

et al. (1998) have performed an optimisation of single and biplane foils with varying numbers of 

struts for a large fast ferry. The global design variables were the foil depth, the thickness to chord 

ratio and the aspect ratio. These were optimised in a parametric study. However, each of these 

configurations also included a section optimisation aiming for maximum lift without cavitation 

and flow separation. The section optimisations were performed by a gradient-based optimisation 

algorithm with finite differences for gradient computation. The section modelling was performed 

with an interactive boundary layer approach, while the 3D foil geometries were analysed with a 

higher-order panel method. A finite element model was used to ensure structural integrity. 

Kandasamy et al. (2011) optimised the hydrofoil for a semi-foiling fast ferry with a parametric 

study on the foil rake, the foil position and the foil span. The study included the catamaran hull 

and was performed using unsteady RANS simulations. The aim was to reduce wave-making 

responsible for erosion in a narrow passage. The parametric study included four foil rake values 

and four longitudinal foil positions, as well as four demi-hull spacing values. The demi-hull 

spacing defines the span of the foil.  

Parametric studies have also been applied to the hydrofoil design for sailing yachts. Ploe (2018) 

for example, performed a parametric study for a C-class catamaran hydrofoil. The approach was 

to design and numerically test families of foils in which only one parameter was altered. The four 

design variables described the spineform of the foil. 110 different foil geometries were generated 

and analysed using a hydrodynamic tool based on XFoil (Drela, 1989) and Athena Vortex Lattice 

(Drela and Youngren, 2021). The foil with the most favourable combination of heave stability and 

drag was considered the best performing. A comparable approach was employed by Guida et al. 

(2020) for the foils of the Nacra 17. Families of foils were created with varying cant and elbow 

angles, tip configurations and aspect ratios. Unsteady RANS simulations were performed for 

each individual foil using the commercial CFD software Star-CCM+ (Siemens Digital Industries 



Chapter 2 

49 

Software, 2020). The simulations were performed for a fixed value of the ride height, the leeway- 

and the rake angle. The foils were ranked according to their lift to drag- and side force to drag 

ratios.  

Hydrofoils for sailing yachts have also been optimised using gradient-free optimisation 

algorithms. Meneghello et al. (2016) performed the optimisation of an L-foil for a sailing multihull. 

The hydrofoil performance was modelled using AVL (Athena Vortex Lattice) (Drela and Youngren, 

2021). The aim was to minimise the drag of the foil while keeping side force and vertical lift 

constant. The optimisation was limited to seven design variables. The spineform of the foil was 

defined with a Bezier curve with four variables. A second curve with three parameters was used 

to describe the planform of the foil. The optimisation achieved an increase of lift to drag ratio by 

a factor of 2.3 compared to a baseline foil. The optimisation strategy was improved for better 

convergence by Alimohammadi et al. (2017).  

Phelivan Solak et al. (2023) have performed a multi-fidelity surrogate-based optimisation for a 

kite foil type wing. The aim was to minimise drag while keeping vertical lift and side force constant. 

Ten design variables were used with the addition of the state variable heel. The construction of 

the surrogate model was conducted with many data points from a potential flow solver (796) and 

a small number of RANS simulations (4). The optimisation has required two weeks and returned 

an unfeasible result with a high prediction error.  

A high fidelity surrogate-based optimisation was conducted by Ploe (2018). The approach was 

based on an unstructured finite volume Navier-Stokes solver. The optimisation was performed 

for two design variables, tip angle and the tip twist, and the state variable immersion. Rake and 

leeway angles were automatically adjusted to satisfy vertical lift and side force requirements. The 

method solved in two weeks on a large workstation.    

Gradient-based optimisations have been performed by Tozzi (2004) for two-dimensional and 

three dimensional hydrofoils with potential flow models. The objective of the optimisations was 

the minimisation of the drag to lift ratio. Conjugate gradient and steepest descent algorithms 

were used to optimise a handful of design parameters. The gradients were computed using a 

central finite difference scheme. The author derived an adjoint formulation of the problem for 

future optimisation with large numbers of design variables.  

Garg et al. (2017) have performed an adjoint hydrofoil optimisation. The approach used high-

fidelity methods like Ploe but is considerably different. Garg’s methodology is not limited to the 

hydrodynamics of the foil but also accounts for its structural behaviour. The FSI problem was 

solved using the CFD-solver ADflow (Kenway et al., 2019) coupled to the FEA-solver TACS 

(Kennedy and Martins, 2014). The adjoints were readily provided by the two solvers using 
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automatic differentiation. To optimise the foil geometry the gradient-based optimisation 

algorithm SNOPT (sparse non-linear optimiser) (Gill et al., 2005) was chosen. This allowed the 

optimisation of 210 design variables in a deformation-based geometric model. Constraint 

functions were utilised to account for cavitation, structural integrity and build tolerances. The 

routine was used for single- and a multi-point optimisation. The single-objective optimisation on 

192 cores took 12h and achieved an overall efficiency gain of 12.4% compared to the baseline 

foil. The multi-point optimisation required 51h and attained an average efficiency gain of 8.53%. 

This lower gain is due to the foil having to perform across multiple points, each of which has a 

different optimum foil design.  

Another multi-point adjoint hydrofoil optimisation was performed by Liao et al. (2022). The 

optimisation concerned a T-foil and had the aim to reduce drag. 198 design variables were used 

describing the planform (span, chord distribution and sweep), the twist distribution and the 

section shapes in several locations along the foil. Additionally, the rake of the foil was optimised. 

The foil performance was evaluated using ADflow (Kenway et al., 2019). 204 constraints were 

enforced to ensure for example the required amount of lift and the absence of cavitation. The 

optimal foil achieved a drag reduction of 18.9%. The optimisation required four days on 240 cores. 

A subsequent optimisation of a composite foil included the optimisation of the composite lay-up 

(Ng et al., 2025).  

An adjoint optimisation was also performed by Luna Rossa for the hydrofoils of the AC75 during 

the 36th America’s Cup (Fischer, 2021). The optimisation was based on a hydrostructural model 

consisting of a lifting line method and a finite element code. The adjoint versions of the models 

were implemented by hand. The aim of the optimisation was to minimise drag while enforcing the 

required amount of vertical lift and side force. Cavitation was considered with simplified 

empirical formulations. The multi-point optimisation was based on six conditions derived from 

VPP simulations with an initial hydrofoil (up- and downwind 𝑉MG-courses in three different wind 

speeds). These conditions remained constant throughout the optimisation. However, new foil 

candidates do lead to different conditions, e.g. different boat speeds and leeway angles, which is 

not accounted for and introduces inaccuracies. Therefore, a second VPP analysis was conducted 

after the first optimisation run was finished. The second VPP analysis was based on the optimal 

foil of the first run and was used to update the set of conditions. A second optimisation was then 

performed based on the updated conditions and started from the optimal foil of the first run.  
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2.6 Summary 

Hydrofoils are the biggest performance differentiators on modern racing yachts such as the 

AC75. They significantly influence the speed of the yacht but also its state and trim. This calls for 

accurate and detailed optimisation.  

Optimisation requires a performance model of the component/system to optimise and an 

optimisation strategy/algorithm. Different models for hydrofoil performance prediction are 

available. These range from potential flow-based methods for hydrofoil force modelling to 

dynamic simulators of the entire sailing yacht.  

The large performance potential also calls for highly detailed design. High numbers of design 

variables should be optimised with gradient-based methods, where the gradient is computed 

using the adjoint method. The implementation of the adjoint method is best executed with 

algorithmic differentiation tools but requires access to and significant preparation of the source 

code.  

Numerous hydrofoil optimisation approaches are proposed in the literature with different 

performance models and optimisation strategies. The most capable approaches are based on 

the adjoint method and either potential flow models or RANS methods. One such approach was 

developed by Luna Rossa. The optimisation was performed with an adjoint lifting line method. 

However, this isolated optimisation of the foil did not account for the changes in state and trim of 

the yacht during the optimisation. To reduce the resulting inaccuracies, the state and trim was 

updated after a first optimisation run and used as the base for a second.  

The next step in hydrofoil optimisation must be to directly include a physics model of the entire 

yacht in an adjoint optimisation process. This eradicates the inaccuracies and opens the 

possibility for the optimiser to purposely identify foils that lead to higher performing sailing states.  
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Chapter 3 VPP-Driven Parametric Design of AC75 

Hydrofoils  

 

Tannenberg et al. (2023) “VPP-Driven Parametric Design of AC75 Hydrofoils”, Journal of Sailing 
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Abstract. Hydrofoils are a vital part of modern racing yachts such as the AC75, which was 
sailed in the 36th America’s Cup and should hence be optimised thoroughly. The literature 
shows that hydrofoil design and optimisation usually focuses on the lift and drag characteristics 
in isolation of the yacht ‘system’. Although these characteristics relate to hydrofoil 
performance, they do not directly translate to the performance of the yacht on the racecourse. 
In this paper we perform a parametric study of the main design variables of the hydrofoil that 
is based on a model of the entire yacht in the Velocity Prediction Program (VPP) FS-
Equilibrium. The hydrofoil forces are modelled using an advanced lifting line method and 
empirical formulations for a bulb. This accurately captures the foil design influence on the 
boat´s performance. The VPP is coupled to a parametric model of the foil based on NURBS 
surfaces (Non-uniform rational B-Splines) which was used to systematically generate 72 
different designs. The candidates were tested in three wind speeds for up and downwind 
performance. The best performing design has maximum span and anhedral angle, and 
minimum chord with some of the weight stored in a bulb. The study shows that the assessment 
of hydrofoils where the performance is measured in boat speed is an extremely valuable tool. 
 
Keywords: Velocity Prediction; Hydrofoil; Parametric Study; Optimisation; AC75. 
 
 
Nomenclature 
 
𝐴𝑖 Area of segment 𝑖 [m2] 
𝐴𝐹 Foretriangle area [m2] 
𝐴𝐽 Jib area [m2] 
𝐴𝑀 Mainsail area [m2] 
𝐴𝑁 Nominal area [m2] 
𝐴𝑅 Aspect ratio 
𝐶𝐷 Drag coefficient 
𝐶Di Induced drag coefficient 
𝐶Dpj Jib profile drag coefficient  
𝐶Dpm Mainsail profile drag coefficient  
𝐶𝐻 Heeling force coefficient  
𝐶𝐿 Lift coefficient  
𝐶Lj Jib lift coefficient  
𝐶Lm Mainsail lift coefficient  
𝐶𝑅 Driving force coefficient  
𝑐 Chord length [m] 
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𝑑𝑧 Sink (ride height) [m] 
𝐸HM Mast height above shear [m] 
𝐹𝐴 Average shear height [m]  
𝑭𝒊 Force at control point 𝑖 [N] 
𝑓𝑖 Function 𝑖 
𝑓𝑥 Force in 𝑥-direction [N] 
𝑓𝑦 Force in 𝑦-direction [N] 
𝑓𝑧 Force in 𝑧-direction [N] 
ℎ Submersion [m] 
𝑙𝑖 Lagrangian multiplier 𝑖 
𝒍𝒊 Length of segment 𝑖 [m] 
𝑁i,p(𝑢) Nonrational B-spline basis function in u-direction 
𝑁j,q(𝑣) Nonrational B-spline basis function v-direction 
𝑚𝑥 Moment around 𝑥-axis [Nm] 
𝑚𝑦 Moment around 𝑦-axis [Nm] 
𝑚𝑧 Moment around 𝑧-axis [Nm] 
𝑝, 𝑞 Degrees of NURBS surfaces in u- and v-direction 
𝑃i,j Control points of NURBS-Surfaces 
𝑅𝐹 Frictional resistance [N] 
𝑅𝑇 Total resistance [N] 
𝑆 NURBS surface 
𝑠 Span [m] 
𝑡 Thickness [m] 
𝑢, 𝑣 Directions of NURBS surfaces 
𝑽𝒊 Local velocity at control point 𝑖 [m s-1] 
𝑉MG Velocity made good [kts] 
𝑉𝑆 Boat speed [kts] 
𝑉TW True wind speed [kts] 
𝑽∞ Free-stream velocity [m s-1] 
𝒗𝐣𝐢 Influence of horseshoe vortex 𝑗 on control point 𝑖 [m-1]  
𝑤i,j Weights of control points of NURBS surfaces 
(1 + 𝑘) Form factor 
 
𝛽𝑎 Apparent wind angle [°] 
𝛽𝑡 True wind angle [°] 
𝛤𝑗 Strength of horseshoe vortex 𝑗 [m2 s-1] 
𝛿𝑒 Elevator rake [°] 
𝛿𝑓 Flap angle [°] 
𝛿𝑟 Rudder angle [°] 
𝜃 Pitch angle [°] 
λ Leeway angle [°] 
𝝃 Free variable vector 
𝜌 Density [kg m-3] 
τ flat parameter 
𝜑 Heel angle [°] 
 
ETNZ Emirates Team New Zealand 
IMS  International Measurement System 
NURBS Non-uniform rational B-Splines 
VPP  Velocity prediction program 
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1. Introduction 

The 36th America´s Cup saw the introduction of the first fully foiling monohull yacht class, the 
AC75, in Auckland in 2020. The yachts were sailed with great success and reached speeds 
above 53 kts that were not seen in the previous America’s Cups. The AC75 was also appointed 
as the class for the 37th America´s Cup which will be held in Barcelona in 2024. The design 
class allows development in certain areas within the rules originally set out by the Royal New 
Zealand Yacht Squadron and the Circolo Della Vela Sicilia (2020). This includes the design of 
the hydrofoils which has proven to be extremely important as it has a huge influence on the 
performance of the yachts. Figure 3.1 shows the AC75 with its two main hydrofoils. The 
windward foil of the AC75 is canted out of the water to provide righting moment while the 
leeward foil is canted into the water to generate hydrodynamic lift. The foils are equipped with 
flaps that can be used to control the amount of hydrodynamic force generated. The cant angle 
of the leeward foil can be changed to adjust the ratio of generated side force to vertical lift as 
well as the amount of generated righting moment. The hydrofoil can be divided into two parts: 
the foil arm and the foil wing, both shown in Figure 3.1. The design of the foil arm is mainly 
fixed by the rule while the foil wing geometry is open to development within the `Foil box´ 
shown in Figure 3.2. The wing must be symmetric around the `Foil wing symmetry plane´ and 
must be placed within 10 and 12 m forward of the transom. In addition, the wing, the flaps and 
the internal control systems must weigh 921 kg to ensure the yacht has a reasonable amount 
of righting moment. To meet this weight requirement, while enabling a wing with low volume 
and low associated wetted surface area, the wings are made from a combination of steel and 
lead. The design space also allows a bulb to incorporate some of the weight. Emirates Team 
New Zealand (ETNZ) and American Magic chose to use bulbs and wings with smaller chord, 
while Luna Rossa and INEOS Team UK chose wings with larger chord and no bulb. Further 
differences included different taper ratios and anhedral angles. ETNZ’s foil had no anhedral 
angle (T-Foil), while the other teams opted for Y-Foils as seen in Figure 3.1. 

 

Figure 3.1: AC75 Luna Rossa based on Gattini (2020) 

This work investigates 72 different hydrofoil designs with varying extension lengths (which 
translate to different anhedral angles), semi spans, root chords, taper ratios and wing rakes. 
The weight of every candidate is computed and a bulb is automatically sized to meet the weight 
requirement. The study includes design candidates that approximately represent the foils of 
the four teams in the last America´s Cup. The designs are evaluated in terms of their 
performance in up- and downwind conditions in the three true wind speeds (𝑉TW) 8, 11 and 14 
kts using the VPP FS-Equilibrium. Although the AC75 rule has slightly changed for the next 
edition (Royal New Zealand Yacht Squadron and Royal Yacht Squadron, 2023), the 
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performance predictions in this study are based on the original rule to enable meaningful 
comparison with publicly available performance data from the last America´s Cup. 

 

Figure 3.2: Foil Box 

 

2. Velocity prediction model 

FS-Equilibrium is a common workbench for the analysis of stationary and dynamic states of 
sailing yachts. The different forces acting on a yacht are modelled in so called ‘force modules’ 
for given conditions. A state for which the forces from the modules equate to zero in all degrees 
of freedom is called a valid steady sailing state. The program determines the steady sailing 
state by means of a Newton-Raphson method. The method alters the state variables of the 
yacht until force equilibrium is found. A Hooke-Jeeves algorithm can be used on top to 
maximise the performance of the yacht by optimising the trim variables. For example, common 
trim variables are the flat-parameter for the depowering of sails or the position of the crew. FS-
Equilibrium has been successfully used for hydrofoiling boats in the past such as the C-Class 
Catamaran Groupama (Paulin et al, 2015), the International Moth (Eggert, 2018), the AC50 
(Hansen et al, 2019) and the QFX Lake Racer (Melis et al, 2022). For more information on the 
VPP see Hochkirch (2018). 
 
 
2.1 Solver set-up 
 
The stationary mode of FS-Equilibrium was used to compute the steady sailing states of the 
AC75. It is limited to the states where the boat is fully foiling. This increases the robustness of 
the solver while it does not affect the evaluation of a foil´s performance because the only foil 
designs considered are those that can fully support the yacht in all evaluated conditions. 
However, the AC75 is sailed very differently compared to normal displacement yachts, which 
must be reflected in the set-up of the solver. In contrast to a traditional sailing yacht the 
trimming of the boat is much more dynamic, and a non-optimum trim might lead to a capsize 
instead of a valid sailing state which is just slightly slower. Table 3.1 shows the state variables 
(blue) and trim variables (grey) that the Newton-Raphson uses to balance the individual forces 
and moments for a conventional sailing yacht and the AC75. As for conventional yachts, the 
boat speed 𝑉𝑆, the leeway angle 𝜆 and the rudder angle 𝛿𝑟  are employed to balance 𝑓𝑥, 𝑓𝑦 and 
𝑚𝑧 , respectively. 𝑓𝑧 however, must be balanced by a trim variable as the AC75 foils are not 
passively controlling the ride height. Hence, the state variable ̀ ride height´ (or sink) 𝑑𝑧 has little 
influence on the heave forces as long as the yacht is fully foiling. The trim variable `flap angle´ 
𝛿𝑓 must be employed instead. Furthermore, the moments around the x-axis (𝑚𝑥) must be 
balanced by a trim variable. For normal yachts this balance is achieved by increasing the heel 
angle 𝜑 which increases the righting moment from the keel and decreases the heeling moment 
from the sails. Increasing the heel angle of the AC75 however does not result in an increase 
in righting moment. Therefore, the moment must be balanced by a trim parameter controlling 
the forces from the rig which is the sail´s flat-parameter τ. The pitching moment (𝑚𝑦) of the 
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AC75 can either be balanced by the pitch angle 𝜃 as with normal yachts or with the elevator 
rake 𝛿𝑒. The elevator rake is constantly trimmed to maintain a target pitch angle and is hence 
better suited for balancing 𝑚𝑦 as it better reflects the sailing style of the AC75. 
 

Table 3.1: Different solver set-ups (state variables blue, trim variables grey) 

 Conventional Yacht AC75 
𝑓𝑥 boat speed 𝑉𝑆 boat speed 𝑉𝑆  
𝑓𝑦 leeway angle λ leeway angle λ 
𝑓𝑧 sink 𝑑𝑧 flap angle 𝛿𝑓 
𝑚𝑥 heel angle 𝜑 flat τ 
𝑚𝑦 pitch angle 𝜃 elevator rake 𝛿𝑒 
𝑚𝑧 rudder angle 𝛿𝑟 rudder angle 𝛿𝑟 

 Hooke-Jeeves Fixed targets 
 flat τ heel angle 𝜑 
 crew x-position  pitch angle 𝜃 
 crew y-position ride height (sink) 𝑑𝑧 

 

The pitch angle as well as the ride height (sink) and the heel angle are however still relevant 
for solving the sailing state but are fixed targets and must hence not be optimised. The target 
values were estimated from race data from America’s Cup (2020). It suggests that the boats 
are on average pitched bow down by around 2°, heeled to windward by around 1.5° and fly 
0.8 m above the waterline (this results in the hull being clear of the water by about 0.4 m). This 
fixing of state variables does mean a slight simplification of the problem but greatly increases 
the robustness of the routine as the optimisation loop using the Hooke-Jeeves algorithm can 
be neglected completely and only the Newton-Raphson method has to be employed. The 
resulting problem is expressed using Lagrange multipliers (𝑙𝑖 ≠ 0) within the functional  

𝐹 =  −𝑉𝑆 + 𝑙0 ∑𝑓𝑥  +  𝑙1 ∑𝑓𝑦  +  𝑙2 ∑𝑓𝑧  +  𝑙3 ∑𝑚𝑥  +  𝑙4 ∑𝑚𝑦  +  𝑙5 ∑𝑚𝑧 ,  (1) 
 

where the first order condition for an extremum is  

𝐹  =
 !    min →  ∇𝐹  =

 !   0. (2) 
 

This leads to a non-linear equation system with 12 equations: 

𝑓0 = 
𝜕𝐹

𝜕𝑉𝑆
    0  =

! , 𝑓1 = 
𝜕𝐹

𝜕𝜆
    0  =

! , 𝑓2 = 
𝜕𝐹

𝜕𝛿𝑓
    0  =

! ,

𝑓3 = 
𝜕𝐹

𝜕τ
    0  =

! , 𝑓4 = 
𝜕𝐹

𝜕𝛿𝑒
    0  =

! , 𝑓5 = 
𝜕𝐹

𝜕𝛿𝑟
    0  =

! ,

𝑓6 = 
𝜕𝐹

𝜕𝑙0
    0  =

! , 𝑓7 = 
𝜕𝐹

𝜕𝑙1
    0  =

! , 𝑓8 = 
𝜕𝐹

𝜕𝑙2
    0  =

! ,

𝑓9 = 
𝜕𝐹

𝜕𝑙3
    0  =

! , 𝑓10 = 
𝜕𝐹

𝜕𝑙4
    0  =

! , 𝑓11 = 
𝜕𝐹

𝜕𝑙5
    0  =

! .

(3) 
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Using the following notation for the free variable vector 

 
𝝃 = (𝑉𝑆 , 𝜆, 𝛿𝑓 , τ, 𝛿𝑒 , 𝛿𝑟 , 𝑙0,  𝑙1,  𝑙2,  𝑙3,  𝑙4,  𝑙5)

𝑇 , (4) 
 
 
the equation system in (3) can be written as follows: 
 
 

𝑓𝑖(𝝃)    0  =
!        for  𝑖 = 0…11. (5) 

 
 
Using a Taylor expansion as approximation for 𝑓𝑖 in the vicinity of a selected point ~𝝃𝑥 and 
neglecting higher order terms yields a system of linear equations: 

 

𝑓𝑖(𝝃𝑥 + ∆𝝃)  ≈  𝑓𝑖(𝝃𝑥) + 
𝜕𝑓𝑖
𝜕𝜉0

|
𝝃𝑥

∆𝜉0 + ⋯+ 
𝜕𝑓𝑖
𝜕𝜉11

|
𝝃𝑥

∆𝜉11        for  𝑖 = 0…11, (6) 

 
 
where the partial derivatives of 𝑓𝑖 are computed using a forward finite differencing scheme. In 
each iteration a correction is calculated, and the procedure is stopped when a predefined 
accuracy is achieved, see Press et al. (1988) for more detail. A comparable approach was 
used by Patterson and Binns (2022), where the flap angle was balanced in a separate loop at 
every step of the Newton-Raphson.  
 
 
2.2 Force modules 
 
The forces of the AC75 are modelled with force modules for the gravitational forces, the 
aerodynamics of the sails and the hull, and the hydrodynamics of the foil, the rudder and the 
elevator. The gravity modules are used to model the forces and moments arising from the 
weight of the different components such as the hull and the crew. The weights of the 
components and crew were taken from the AC75 rule, while their lever arms were estimated 
from pictures. Inertia terms can be neglected completely for this stationary analysis.  

Table 3.2: Projected areas, Centres of effort and Drag coefficients of the AC75 hull 

 Projected area [m2] Centre of effort [m] 𝐶𝐷 

Front 7.4 8 0.25 

Side 33.7 0 0.8 

Top 79.8 0.5 0.8 

 

The aerodynamic forces and moments arising from the hull are modelled with a simple force 
module based on drag coefficients in the three planes, the respective areas and centres of 
effort as shown in Table 3.2. The drag coefficients are taken from Hoerner (1965) for a 
comparable geometry whilst the areas and centres of effort are measured from a generic AC75 
hull shown in the GUI of FS-Equilibrium in Figure 3.3.  
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Figure 3.3: Graphical User Interface of FS-Equilibrium showing the employed hull 

 
The sail plan of the AC75 consists of several conventional jibs and a soft double skin mainsail 
both end-plated to the deck. The double skin mainsail is a complex component that enables 
trimming of the sheeting angle, the twist, and the depth and position of the large possible 
maximum camber in several locations along the span of the sail. The variable camber allows 
the generation of high lift coefficients which are used at take-off and deep true-wind angles in 
lighter winds. The end-plated double skin sail in combination with the rotating mast is also 
significantly more efficient than a conventional mainsail in general. In addition, the top of the 
mainsail can be inverted to generate righting moment. To capture these advanced features 
and trim possibilities a sophisticated sail model is under development. However, at this stage, 
a simplified approach is taken by using the coefficient-based model for conventional rigs 
originated by Hazen (1980) presented below. The exact implementation follows that of the 
2003 IMS VPP, that also accounts for the blanketing of the sails. A medium and a large Jib, in 
combination with the main sail, are modelled in so called ‘configurations’ and can be used 
according to the analysed conditions. The sail plan in this study corresponds to the sail plans 
of Luna Rossa, American Magic and INEOS Team UK which did not have the lower deck and 
extended luff like ETNZ. The details of the configurations are given in Table 3.3. The nominal 
area 𝐴𝑁 is computed as the sum of the mainsail area 𝐴𝑀 and the area of the foretriangle 𝐴𝐹 =
95.3 m2. 

Table 3.3: Configurations of the two sail plans 

Configuration Jib area 𝐴𝐽 
[𝑚2] 

Main area 
𝐴𝑀 [𝑚2] 

Nominal 
Area 𝐴𝑁 

Aspect 
Ratio 𝐴𝑅 

Medium Jib + Main 64.2 142 237.3 4.37 

Big Jib + Main 74.4 142 237.3 4.37 

 

Based on the sail areas and the force coefficients of the individual sails (Jib: 𝐶Lj and 𝐶Dpj, Main: 
𝐶Lm and 𝐶Dpm), which are depending on the apparent wind angle 𝛽𝑎, the lift and drag 
coefficients (𝐶𝐿 and 𝐶𝐷) of the aggregate sail sets are computed with 
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𝐶𝐿 = 
𝐶Lj 𝐴𝐽 +  𝐶Lm 𝐴𝑀 

𝐴𝑁
 𝜏 (7) 

and 

𝐶𝐷 = 
𝐶Dpj 𝐴𝐽 +  𝐶Dpm 𝐴𝑀 

𝐴𝑁
+ 𝐶Di. (8) 

 
𝐶Di is the induced drag coefficient: 
  

𝐶Di = 𝐶𝐿
2  (

1

𝜋 𝐴𝑅
+ 0.005) , (9) 

where the aspect ratio is 

𝐴𝑅  =  
(1.1 (𝐸HM + 𝐹𝐴))2

𝐴𝑁
. (10) 

 
𝐸HM is the mast height above the shear line and 𝐹𝐴 is the average freeboard height, both in 
meters. For more detail see Larsson et al (2014) and Molland et al (2017). The aggregated 
coefficients are given in Figure 3.4 as a function of the apparent wind angle and are then 
transformed into the driving force coefficient  

𝐶𝑅 = 1.3 (𝐶𝐿  sin(𝛽𝑎) − 𝐶𝐷 cos(𝛽𝑎)), (11) 
 
and the heeling force coefficient  
 
 

𝐶𝐻 = 𝐶𝐿  cos(𝛽𝑎) + 𝐶𝐷 sin(𝛽𝑎). (12) 
 
 

 

Figure 3.4: Aggregated lift and drag coefficients of the configuration “Medium Jib + 
Main” 
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As the forces predicted by the IMS model do not account for the increased efficiency due to 
the end-plated main, the rotating mast and the double skin sail, a factor on the driving force is 
included. According to Bergstrom and Ranzén, reported in Larsson et al (2014), the lift 
coefficient of a sail with a gap between the boom and the deck of 7% of the mast height leads 
to a 22% increase in drag coefficient and a decrease in lift coefficient of 13% compared to an 
end-plated sail. For an AC75-typical apparent wind angle of 13°, this results in a 20% gain in 
driving force due to end-plating. A significant additional performance increase is expected due 
to the rotating mast and double skins, not to mention the more advanced trimming possibilities. 
Therefore, a factor of 1.3 is applied to the driving force as shown in Equation 11. This achieves 
accurate results on most courses as presented in Section 5.  
 
3. Hydrodynamic foil model 
 
The forces and moments generated by the hydrofoil of the AC75 are modelled using an 
advanced lifting line method based on the formulation of Phillips and Snyder (2000) as 
summarized by Reid (2020). In contrast to the original lifting line method by Prandtl (1918), the 
approach employs horseshoe vortices at every station along the span and a vectorised form 
of the Kutta-Jukowski-Law. Every horseshoe vortex consists of a bound vortex and two semi-
infinite vortices. The semi-infinite vortex sheet is oriented in the negative x-direction, so 
opposite to the direction of travel. The control points are located in the middle of every segment 
at quarter chord. Employing the vectorised lifting law includes the influence of the bound 
vortices on each other which is required to correctly model the effects of leeway, sweep or 
anhedral. Furthermore, it enables modelling the influence of multiple wings on each other. The 
method solves for the strength of each horseshoe vortex 𝛤𝑗 by relating two definitions of the 
force generated per segment. The force generated by every bound vortex is calculated from 
 

d𝑭𝒊 =  𝜌𝛤𝑖𝑽𝒊  ×  d𝒍𝒊 , (13) 
 
 
where the local velocity at each control point is computed with 
 

𝑽𝒊  = 𝑽∞  +  ∑𝛤𝑗  𝒗𝐣𝐢 ,

𝑁

𝑗=1

(14) 

 
where 𝒗𝒋𝒊 is the induced velocity of horseshoe vortex 𝑗 at control point 𝑖 normalised by the 
vortex strength. Relating the vectorised vortex lifting law to a definition of the lift based on the 
sectional lift coefficient results in a non-linear system of equations which is solved iteratively. 
Due to the non-linearity, the method can account for the effects of stall but is potentially 
unstable. Therefore, the approach was reduced to a linear problem by applying a linear lift-
curve slope to increase robustness and reduce computational time. This yields the linear 
system of equations 

 

𝜌𝛤𝑖 |(𝑽∞  +  ∑𝛤𝑗  𝒗𝐣𝐢 

𝑁

𝑗=1

) × d𝒍𝒊 | −  
1

2
 𝜌 𝑽∞

2 𝐶𝐿(𝑽𝒊)d𝐴𝑖 = 0. (15) 

 
           
For a more general introduction to lifting line methods and other numerical models for 
hydrofoils see Molland and Turnock (2021). Each part of the hydrofoil is discretised using 40 
segments with a cosine-distribution as recommended by Phillips and Snyder (2000) for the 
best trade-off between accuracy and computational time. The parts of the hydrofoil that are 
above the waterline are `cut off´ and not included when computing the forces (Figure 3.5).  
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Figure 3.5: AC75 foil discretised with 40 stations per foil part and cut-off at the free 
surface 

 

The loss in lift due to the free surface is modelled using a second transformed foil according 
to the biplane analogy (Faltinsen, 2005) shown in Figure 3.6a. The analogy is applicable if the 
submerged Froude number 

𝐹𝑁ℎ = 
𝑉𝑆

√𝑔ℎ
(16) 

 

is higher than 10/√ℎ/𝑐, where 𝑉𝑆 is the velocity, 𝑔 the gravitational field strength, ℎ the 
submersion and 𝑐 the chord. For the average tip chord in the study 𝑐 =  0.25 m and the 
submersion of the outboard wing at the tip ℎ ~ 0.25 m (ℎ/𝑐 =  1), the required minimum 
submerged Froude number is 10. The actual submerged Froude number for the average boat 
speed in the study 𝑉𝑆  =  19  m s-1 is 12.13 at the outboard tip and therefore satisfies the 
criterion. At the root of the half wing, where the average submersion is 0.82 m and the average 
chord is 0.6 m (ℎ/𝑐 =  1.37), the criterion of 8.54 is not satisfied (𝐹𝑁ℎ  =  6.69), but the effect 
of the free-surface is smaller due to the higher ℎ/𝑐 ratio (see Figure 3.6b). More importantly, 
the loss in lift prior to the required submerged Froude number is even higher, so there is no 
harm in applying the biplane-image as long as 𝐹𝑁ℎ does not tend to zero. Close to 𝐹𝑁ℎ = 0, the 
lift is increased due to the free surface, but such low Froude numbers were not experienced in 
the study. 

  
Figure 3.6: (a) Biplane transformation around the free-surface plane; (b) Change in lift 

coefficient as function of the submerged Froude number for different ℎ/𝑐-

ratios, red bars represent 𝐹𝑁ℎ =  10/√ℎ/𝑐; Derived from Faltinsen (2005) 

The sectional lift coefficient at every station is computed from the lift-curve-slope and the zero-
lift-angle. The zero-lift-angle is provided in the form of a response surface as a function of the 



Chapter 3 

63 

flap angle and the span 𝑠 of the foil using a sequential interpolation based on C-splines. 
Similarly, the sectional profile drag coefficient per station is computed from a response surface 
depending on the flap angle, the Reynolds number, the lift coefficient and the span. The 
response surface is based on an inverted distance weighting function. The underlying data of 
both surfaces was computed using viscous XFoil simulations. For the extension of the foil arm, 
which has to be symmetric according to the AC75 rule, a NACA 0008 section was used while 
the foil wings have an asymmetric Eppler 874 hydrofoil section. Figure 3.7 shows the two 
response surfaces of the Eppler 874 section with the corresponding data points. The green 
colour indicates a fitting error below 1%. The range of points is chosen such that the AC75 foil 
will operate in this range at all times. Wave-making drag, spray drag, and junction drag are 
not/not yet considered.  
 

 
Figure 3.7: Response surfaces for the Eppler 874 section, zero-lift-angle (a), sectional 

profile drag 𝑪𝐃𝐯 (b) at 𝑹𝒆 = 𝟑 × 𝟏𝟎𝟕 and 𝒔 = 𝟎; Ctrl corresponds to flap angle 

 

 
Figure 3.8: Comparison of lift to drag ratios (𝐿/𝐷) as a function of angle of attack 

computed by the advanced lifting line method and Whicker and Fellner 
(1958) at 𝑅𝑒 = 1.8 × 106 

The advanced lifting line method is validated with the semi empirical equations for low-aspect-
ratio foils presented by Whicker and Fehlner (1958). The chosen geometry has an aspect ratio 
of 3, a taper ratio of 0.45 and 0° sweep at the quarter chord line. A NACA0015 section is used 
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with no twist along the span. Figure 3.8 shows the resulting lift to drag ratios as function of the 
angle of attack plus the difference of the two models. It shows that the difference is usually 
below 5% and only exceeds it at 10° angle of attack.  

The lifting line method returns the hydrodynamic forces and moments generated from the lifting 
surfaces. Additionally, the force module computes the weight of the current foil design based 
on a weighted average density of 8305 kg m-3 of the involved materials (75% high density steel, 
20% lead and 5% hydraulic oil to represent the control systems). If the foil design does not 
meet the required 921 kg, an ellipsoidal bulb is automatically sized to meet the requirement. If 
the foil is exceeding the required weight, it is marked as too heavy. The module also computes 
the gravitational forces and moments of the foil which are added to the hydrodynamic forces. 
The centre of gravity of the foil is hereby computed based on the current design. If a bulb is 
included, the additional hydrodynamic drag is computed using a form factor approach 
(Equation 17). The frictional resistance 𝑅𝑓 is calculated from the area of the bulb and the 
friction drag coefficient derived from the ITTC line (Specialist Committee of 23rd ITTC, 2002). 
The form factor (1 + 𝑘) is computed based on the chord 𝑐 and the thickness 𝑡 of the bulb 
according to Equation 18. The bulb drag and the corresponding moments are added to the 
forces and moments computed previously and returned to the Newton-Raphson method as a 
whole. Very small bulbs might lead to a slightly lower overall drag opposed to an increased 
drag as they reduce junction drag, this however cannot be modelled with the lifting line method.  

𝑅𝑇 = 𝑅𝐹(1 + 𝑘) (17) 
 
 

(1 + 𝑘) = 1 + 2
𝑡

𝑐
+ 60 (

𝑡

𝑐
)
4

(18) 
 
 
4. Parametric model 
 
The parametric model of the hydrofoil serves to generate the shape of a hydrofoil from a set 
of design variables. The foil geometry is provided to the lifting line method in the form of ‘ruled 
surfaces’ which are based on NURBS surfaces. NURBS surfaces are defined as  
 
 

𝑆(𝑢, 𝑣) =  
∑ ∑ 𝑁i,p(𝑢)𝑁j,q(𝑣)𝑤i,j𝑃i,j

𝑚
𝑗=0

𝑛
𝑖=0

∑ ∑ 𝑁i,p(𝑢)𝑁j,q(𝑣)𝑤i,j 
𝑚
𝑗=0

𝑛
𝑖=0

       for   0 ≤ 𝑢, 𝑣 ≤ 1, (19) 

 
 
where 𝑃i,j are the control points, 𝑢 and 𝑣 the directions alongside the surface (𝑢 spanwise, 𝑣 
chordwise) and 𝑝 and 𝑞  are the degrees in the 𝑢- and 𝑣-direction, respectively. 𝑁i,p(𝑢), 𝑁j,q(𝑣) 
are the nonrational B-spline basis functions and 𝑤i,j are the weights of the control points. For 
more detail see Piegl and Tiller (1997).  
 
From the NURBS surfaces the lifting line method derives the relevant geometrical information 
such as the chord and the twist along the span of the foil. Figure 3.9 on the left shows an AC75 
foil described by 86 input variables which are used to generate the underlying NURBS surfaces 
developed as part of this research. This sophisticated model is detailed enough to re-create 
the shapes of the hydrofoils seen in the 36th America’s Cup. Two of which are shown in Figure 
3.9 on the right representing geosims of the ETNZ (upper) and Luna Rossa (lower) foils, 
respectively. Although very complex foil shapes can be generated, the sheer number of input 
variables makes it impossible to examine parametrically. This sophisticated parametric model 
will be used in an adjoint optimisation in the future that allows the optimisation of hundreds of 
design variables in a very effective manner. 
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Figure 3.9: NURBS-based parametric model of the AC75 foil using 86 design 

 
For the purposes of this paper however, a simplified NURBS-model was developed as shown 
in Figure 3.10. The foil is defined through the extension length, semi span, root chord, taper 
ratio and wing rake which are examined in the parametric study. The model exploits the 
symmetry requirements, which means that the portside half wing is mirrored to define the 
points of the starboard half wing. The z-position of the wing tips is fixed on the bottom of the 
foil box to enable the definition of the spine form with just the extension length and the semi 
span. Winglets are not considered. Both parametric models are based on the C++ library 
TinyNURBS (Jayaraman, 2022) and use the python library NURBS-python (Bingol, 2022) for 
visualisations. The parametric model is coupled to the lifting line method internally for 
increased computational efficiency and user-friendliness.  
 

 
 

Figure 3.10: Simple parametric model of the AC75 hydrofoil showing the control points 
employed to define the hydrofoil geometry 
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5. VPP validation 
 
The AC75 VPP model is validated with real live data recorded during the last America’s Cup 
(America´s Cup, 2020). Ten races were sailed in light to moderate conditions, of which three 
races are selected to cover this range. In race one the average wind speed was around 13 kts, 
while races three and seven were sailed in 9 and 11 kts, respectively. From these three races, 
situations were chosen where both teams (ETNZ and Luna Rossa) sailed in comparable 
conditions. This means that there were no visible differences in wind speed and that the yachts 
were far enough apart to not interfere with each other. Per race, four such situations are 
selected, two sailing upwind and two sailing downwind. The results are presented in Table 3.4, 
where true wind speed 𝑉𝑇𝑊, boat speed 𝑉𝑆 and velocity made good 𝑉MG are given in knots and 
the true wind angle 𝛽𝑡 is presented in degrees. In addition to the 𝑉MG measured at the specified 
time, the variation in 𝑉MG in a ten second window is provided in brackets. For comparison, two 
foils similar to those of ETNZ and Luna Rossa were modelled and tested. The designs are 
based on the simplified parametric model, so they do not perfectly represent the details of the 
real foils, but they do have the similar root chords, taper ratios and anhedral angles. The hull, 
the sail plan and the remainder of the yacht are however not altered. The velocity polars of the 
two foils are computed for the true wind speeds 9, 11, and 13 kts. A macro is defined in FS-
Equilibrium that initiates the force balance and plots the polars for every wind speed. The larger 
jib is used in 9 and 11 kts 𝑉TW, while the medium sized jib is used in 13 kts. 

 
Table 3.4: America’s Cup race data from ENTZ and Luna Rossa (LRPP) 

 
Race Time ETNZ 

𝑽𝐓𝐖 
[kts] 

ETNZ 
𝑽𝑺 

[kts] 

ETNZ 
𝑽𝐌𝐆  
[kts] 

ETNZ 
𝜷𝒕 
[°] 

LRPP 
𝑽𝐓𝐖 
[kts] 

LRPP 
𝑽𝑺 

[kts] 

LRPP 
𝑽𝐌𝐆  
[kts] 

LRPP 
𝜷𝒕 
[°] 

1 01:27 13 36 24 (22 - 
25) 

48.2 13 34 24 (24 - 
27) 

45.1 

 01:50 14 38 27 (26 - 
27) 

44.7 14 36 24 (24 - 
26) 

48.2 

 13:31 13 42 35 (34 - 
36) 

146.4 13 42 36 (34 - 
36) 

149 

 21:14 13 43 37 (36 - 
37) 

149.4 13 43 36 (34 - 
36) 

146.8 

3 02:29 8 33 21 (20 - 
22) 

50.5 9 30 17 (16 - 
20) 

55.5 

 11:57 9 33 19 (19 - 
22) 

54.8 10 29 15 (12 - 
21) 

58.9 

 06:08 10 38 30 (29 - 
30) 

142.1 10 35 27 (27 - 
28) 

140.5 

 16:28 9 36 31 (29 - 
32) 

149.4 10 36 27 (26- 
28) 

138.6 

7 02:30 11 36 24 (23 - 
25) 

48.2 11 32 21 (17 - 
21) 

54.5 

 09:30 11 32 24 (21 - 
24) 

41.4 11 31 22 (18 - 
23) 

44.8 

 05:42 11 40 34 (33 - 
35) 

148.2 11 40 28 (27 - 
29) 

134.4 

 15:10 11 42 33 (33 - 
34) 

141.8 11 42 30 (28 - 
30) 

135.6 

 
 
Figure 3.11 shows the velocity polars for both yachts which also include the measured points 
from Table 3.4 (single points with red edging). Firstly, it can be seen that all velocity polars are 
smooth curves which suggests a very robust solver set-up. Secondly, the presented polars for 
11 kts 𝑉TW show very good agreement of the predicted and the measured performances. This 
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is also true for the polars in 13 kts. The polar of Luna Rossa in 9 kts shows excellent agreement 
on upwind courses but is underperforming in the downwind cases. This can be explained by 
the use of the IMS sails aero module which does not model the high achievable camber of the 
double skin main sail. This feature allows the generation of high lift coefficients and hence high 
drive forces, beneficial in these conditions. This effect is less visible at higher wind speeds or 
when sailing upwind, where the boats are operated with less camber. The polar of ETNZ in 9 
kts 𝑉TW is underperforming on all courses which can be explained by the sail plan which is 
based on those of the challengers and does not have the extended sail area the ETNZ boat 
had in reality. This extended sail area is assumed advantageous at low wind speeds. The 
discrepancy on downwind courses is higher which is again due to not modelling the deep 
camber. Similar trends were observed by Patterson and Binns (2022).  
 

 

 Figure 3.11: Velocity polars of the two foil designs of ETNZ and Luna Rossa 
compared to the real-life data points from Table 3.4 (points with red edging) 

 
While the generated polars show very good agreement with the measured data, they are still 
heavily influenced by the tuning of the aerodynamic model of the sails (factor of 1.3 on driving 
force) which introduces uncertainty. They also lack in perfectly modelling downwind 
performance. As a consequence, the development of an aerodynamic sails model that can 
reflect the AC75 sails accurately is part of current work. The module will be based on a machine 
learning model trained with a panel code.  
 
 
6. Parametric study 
 
The parametric study examines the foil design parameters extension length, semi span, root 
chord, taper ratio and wing rake. The spine form of the foil is defined with the extension length 
and the semi span while the plan form of the foil is specified with root chord and taper ratio. 
The fixed rake of the wing is defined by the wing rake variable. The study is carried out for any 
combination of the variable values specified in Table 3.5. The parameter set-up and the values 
are chosen to maximise the understanding of the parameters, while keeping the number of 
required simulations as low as possible. The range of variable values results in a total of 72 
design candidates. The simple parametric model originally also incorporated a variable to 
define the sweep of the foil. However, initial results have shown that any amount of sweep is 
reducing the performance of a design compared to its non-swept version. Therefore, this 
variable was excluded for the sake of simplicity. The performance of all candidates is evaluated 
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on up- and downwind courses in three different wind speeds, 8, 11 and 14 kts 𝑉TW, best 
representing the range of conditions recorded during the last America´s Cup. The courses 
sailed in the up- and downwind conditions are selected according to the courses that resulted 
in the highest 𝑉MG in Section 5. The leeward foil is canted out by 25° to maximise righting 
moment while being just fully submerged. Running the study was automated using a python 
script and the batch mode of FS-Equilibrium.  
 

Table 3.5: Parameter values 

Parameter Values 
Extension length 600 mm, 950 mm, 1300 mm 

Semi span 1750 mm, 1880 mm 
Root chord 400 mm, 800 mm 
Taper ratio 0.25, 0.5 
Wing rake 0.0°, 2.0°, 4.0 ° 

 
 
6.1 Results 
 
Figure 3.12 and Figure 3.13 show the up- and downwind performances of the 72 foil candidates 
in 11 kts 𝑉TW. Figure 3.14 presents the upwind performance in 8 kts 𝑉TW, the slowest of the 
assessed conditions, and Figure 3.15 the downwind performance in 14 kts 𝑉TW, the fastest 
condition. The legend of the figures can be used to determine what spine and planforms the 
candidates have. These are defined by the extension length, the semi span, the root chord 
and the taper ratio. The figures show three candidates within every taper ratio band. These 
three designs share the same spine and planforms but have different wing rakes. The first 
candidate within every band has a wing rake of 0.0°, followed by the rakes 2.0° and 4.0°. If a 
point is not shown, no foiling equilibrium could be found. All foils weigh exactly 921 kg. 
 

 

 
Figure 3.12: Foil performance in 11 kts upwind at 𝛽𝑡 =  47.5° 

 
Figure 3.12 and Figure 3.13 show that foils with lower extension lengths and hence higher 
anhedral angles perform better than foils with higher extension lengths. This is true for up- and 
downwind conditions in all three evaluated wind speeds (see also Figure 3.14 and Figure 3.15) 
and can be explained by two effects. Firstly, the extension of the foil is mainly only used to 
connect the arm and the wing and is not actively employed to generate side force or vertical 
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lift. Therefore, it is better to store the required weight in a larger wing that is then operated at 
a lower wing rake or flap angle or in the bulb which has a lower wetted surface area for the 
same volume. Storing the required weight in a longer extension only causes additional drag. 
Secondly, the foils with higher extension length generally have a longer spine than the same 
foils with lower extension. Having a fixed volume, the components are therefore automatically 
longer and slenderer, which means that their ratio of wetted surface area to stored weight is 
higher.  

 
Figure 3.13: Foil performance in 11 kts downwind at 𝛽𝑡 =  140° 

 
A further benefit of the foils with anhedral angle is that the two flap segments (one on each half 
wing) can be used independently. When the foil is canted out, the ride height can be adjusted 
with the flap of the almost horizontal outboard half wing and the leeway angle can be controlled 
with the flap of the almost vertical inboard half wing. Furthermore, it also allows to shift the 
centre of effort further outboard, and hence to increase the righting moment generated by the 
foil. However, these effects cannot yet be reflected in the AC75 VPP model. Nevertheless, a 
shorter extension also means that the outboard side of the wing operates closer to the free 
surface when canted out compared to a higher extension foil. This does reduce the lift 
generated and increases the drag due to wave-making. It potentially also promotes cavitation 
and ventilation. The reduced lift is modelled using the biplane image, which is best suited for 
the design space and conditions explored and seems to not outweigh the benefits of the high 
anhedral angle. Wave-making drag, and potential cavitation and ventilation are not included. 
This means that in reality a foil with medium extension could outperform the lowest extension 
foil and could be an explanation why the three challengers in the America´s Cup with Y-foils 
did not chose to have the highest possible anhedral angle. Another explanation could be that 
the constraint on centre of gravity in the AC75 rule is active above a certain anhedral angle.  
 
The semi span of the foil influences both the planform area of the foil and the aspect ratio. At 
lower boat speeds such as sailing upwind in 11 kts and up- and downwind in 8 kts 𝑉TW the 
higher semi span performs better as it reduces the dominant induced drag (Figure 3.12 and 
Figure 3.14). At higher boat speeds (sailing downwind in 11 kts and up – and downwind in 14 
kts 𝑉TW , Figure 3.13 and Figure 3.15) the slightly lower span performs better. In these 
conditions the profile drag is dominant which can be reduced by decreasing the area of the 
foil. This outweighs the higher induced drag caused by the lowered semi span. A foil where 
the root chord would be further reduced instead of the semi span would however still perform 
better, as it would reduce viscous drag while keeping induced drag constant.   
 
The root chord has the highest influence on the yacht´s performance in this study. This can be 
partially explained by the high difference between the root chord values, especially compared 
to the values of the semi span. It is however also caused by the large effect of the root chord 
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on the area of the foil, as it also influences the tip chord via the taper ratio. The smaller root 
chord performs significantly better in 11 and 14 kts and going downwind in 8 kts 𝑉TW due to 
the significantly lower area (Figure 3.12, Figure 3.13 and Figure 3.15). This also applies to 
most candidates in the slowest condition (sailing upwind in 8 kts 𝑉TW, Figure 3.14). However, 
some candidates (Candidates 2, 26,  42, 49, 50, 51 and 62) cannot support the weight of the 
yacht in this condition due to their low planform area, especially if they also have the lower 
semi span and the lower taper ratio. As the foil must be able to support the yacht in even slower 
conditions such as during take-off or during a tack and the span is limited by the rule, the root 
chord has to be chosen carefully and should not be too low. The root chord is also relevant to 
structural aspects which are not yet considered. 
 

 
Figure 3.14: Foil performance in 8 kts upwind at 𝛽𝑡 =  57.5° 

 
The taper ratio also influences the area of the foil but less significantly than the root chord as 
it only affects the tip chord. Generally, the smaller taper ratio leads to higher 𝑉MG as the foils 
do not require the larger area in most conditions. The weight is better stored in the bulb which 
has a lower wetted surface area to weight ratio. An exception are the candidates with the 
smaller taper ratio of those mentioned above, that could not support the weight of the yacht 
anymore.  

 

 
Figure 3.15: Foil performance in 14 kts downwind at 𝛽𝑡 =  140° 
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The wing rake of the hydrofoil determines the angle of attack at every section, where a higher 
rake results in higher lift forces. To control the amount of lift generated, the crew uses the flap 
angle which can be trimmed actively. The results show that the foils with the lowest rake (0.0°) 
perform best in most conditions. The Eppler 874 section has a zero-lift angle of -0.5°, so the 
foil is generating positive lift at 0.0° rake even if the flap is not actuated. The amount of lift 
produced without the flap engaged is, however, not sufficient to support the weight of the yacht. 
Candidate 13 with 0.0° rake for example is operated at a flap angle of 8° in 11 kts 𝑉TW upwind. 
Candidates 14 and 15 with the higher rakes are operated at 5.6° and 3.1° flap angle, 
respectively and are slower than Candidate 13. This shows that the foils with lower rake angles 
and higher flap angles are more efficient. This is true for all conditions assessed except the 
upwind condition in 8 kts 𝑉TW. Here candidate 13 with a rake of 0.0° and a flap angle of 10° is 
performing less than candidate 14 with 2.0° rake and 7.4° flap angle. This suggests that too 
high flap angles reduce efficiency again. To increase the efficiency of candidate 13 at low boat 
speeds, the yacht could be sailed at a lower bow-down pitch, which would reduce the required 
flap angle.  
 
The study has shown that candidate 13 with the shortest extension, the larger span, the smaller 
root chord and taper ratio and the smallest rake performs best across the range of conditions. 
The worst performing design is candidate 72, the T-Foil with high semi span, high root chord, 
high taper ratio and highest rake. Candidate 13 is on average 13.3% faster than candidate 72 
and shows the immense influence of hydrofoil design on performance. However, while 
candidate 13 is performing best in the assessed conditions, it might have a too low planform 
area to support the yacht during take-offs and tacks. This would render the foil unsuitable and 
shows that at least one such condition should be included in the design process. Including 
such a condition would potentially favor Candidate 19, the best performing foil among the 
designs with higher root chord. Ultimately, also the weighting of the assessed conditions has 
a huge influence on the design. A higher weighting of the faster conditions for example could 
have favored candidate 1 with the lower semi span.  
 
 
6.2 Parametric study results vs real life observations  
 
In contrast to the trends observed in the parametric study, the 36th America´s Cup has shown 
that ETNZ with their T-Foil was faster than the challengers with their Y-Foils. While this can 
partially be caused by other components of the yacht, such as the larger sail plan of ETNZ or 
the different hull which is not reflected in this study, it is supposedly also driven by the hydrofoil 
design. The study has assumed that the foil is fully submerged at all times with the outboard 
tip of the wing just operating below the free surface. This is a valid assumption for the foils of 
the challengers that have been operated fully submerged. ETNZ, however, employed their foil 
as a surface piercing foil at higher boat speeds which allowed the reduction of wetted surface 
area when not needed. The parametric study has shown similar trends, as the foils with lower 
span performed better in high-speed conditions. In surface-piercing operation, the T-foil is 
assumed superior as the angle at which it pierces the surface is larger which reduces the risk 
of ventilation. While the operation as a surface piercing foil can be modelled with the developed 
VPP model, it would require the introduction of the cant angle as another parameter of the 
study with relatively many values. The parametric examination of the cant angle is therefore 
not feasible, but its optimisation will be part of the adjoint hydrofoil optimisation routine currently 
under development. Moreover, the model cannot account for ventilation which would probably 
result in the Y-Foils still being favored in the surface piercing mode. In addition, ETNZ has 
used a single control system to actuate both flaps simultaneously. This meant that they could 
not change the direction of the force vector anymore but allowed them to remove one control 
system which reduced the required volume and associated wetted surface area. This is not 
reflected in this study, which assumed a constant density. The performance results have 
shown a high sensitivity to wetted surface area and hence both effects are expected to have 
a significant influence. Finally, the foil benefitted from its low chord which is in line with the 
findings of this study. 
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7. Conclusions 
 
Hydrofoils are the biggest performance differentiators on sailing yachts like the AC75 and have 
a significant influence on the performance and the sailing state of the yacht. However, they are 
mostly designed and optimised in terms of their lift and drag characteristics which do not 
directly reflect the performance of the yacht on the racecourse. Therefore, a physics model of 
the AC75 has been developed in the VPP FS-Equilibrium and used to assess the effects of 
the main hydrofoil design variables on the performance of the yacht in different conditions. The 
results showed that the candidate with the shortest extension, the longer span, the smaller root 
chord and taper ratio and the lowest rake performed best across the range of conditions. 
Furthermore, the results have shown how valuable the VPP driven approach is as it allows the 
direct and accurate comparison of the candidates in terms of their performance on the 
racecourse.  
 
While the parametric study is helpful to identify the trends in foil design it is not suitable for 
detailed optimisation as it would require a prohibitively expensive amount of VPP simulations. 
Therefore, a VPP driven gradient based optimisation strategy is proposed as shown in Figure 
3.16. Gradient based optimisation is deemed significantly more efficient than parametric 
studies and gradient free optimisation. The straightforward way to compute a gradient is the 
finite difference method where each input variable is slightly perturbated, one at a time, to 
approximate its influence on the 𝑉MG. This is a valid for optimising smaller numbers of variables. 
However, to approximate a single gradient of the advanced parametric model shown in Figure 
3.9 with 86 design variables, 87 VPP simulations would be required. This is again too 
expensive. For cases with such a high number of input variables the only feasible method to 
compute the gradient is the adjoint method. This method allows to compute the gradient at the 
run time of just a handful of VPP simulations independent of the number of input variables. 
Therefore, it enables the optimisation of thousands of design variables and hence very detailed 
design in a short time. This adjoint VPP is currently under development and has achieved 
promising results in first optimisations. 
 

 
Figure 3.16: Adjoint VPP driven optimisation strategy 
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Abstract. Various optimisation problems concern a component of a system, whose influence 
is so large that it significantly affects the state of the system. In these cases, an isolated 
optimisation of the component does not account for the changes in system state during the 
optimisation. This introduces inaccuracies. At the same time, the large influence of the 
component results in large potential performance gains. This requires detailed optimisation. 
The logical consequence is to model the whole system at every step of the optimisation and 
to use a large number of design variables. Both of these aspects can however increase 
computational time so significantly that the approach becomes infeasible. One such problem 
are hydrofoils in yacht racing. Hydrofoils are the equivalent to airfoils but operated underwater 
to lift the hull of a yacht out of the water. The design of the hydrofoils has an immense influence 
on the performance, the state and the trim (i.e. control) of the “yacht” system. To model this 
whole system, a stationary physics model of the entire yacht is developed. The model is 
integrated into a detailed optimisation routine that requires 70 design variables, which makes 
it prohibitively expensive to solve with derivative free methods. Therefore, a gradient-based 
optimisation strategy is developed, where the gradient is computed using the adjoint method. 
The adjoint method allows to compute the gradient independent of the number of input 
variables at a small cost. The adjoint method is only applied to the bottleneck of the yacht 
model using the algorithmic differentiation tool ADOL-C. The remainder of the model is 
differentiated using finite differences. The overall gradients are provided to the optimisation 
algorithm IPOPT. The optimisation strategy is applied to the AC75 America´s Cup class and 
used to optimise its hydrofoil for velocity made good (𝑉MG) in an upwind condition. The 
optimised foil shows significant improvement over the baseline foil and demonstrates the 
immense capabilities of adjoint system-based optimisation. Due to the vast efficiency of the 
adjoint method, the framework can be extended to optimise thousands of design variables.  
 
Keywords: Hydrofoil; Optimisation; Adjoint Method; Algorithmic Differentiation; System-
Based. 
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Nomenclature 
 
𝐴𝑖 Area of segment 𝑖 [m2] 
𝐶𝐿 Lift coefficient 
𝑐𝑟𝑜 Root chord [m] 
𝐷 Drag force [N] 
𝒅𝒗 Hydrofoil design variables [m, °] 
𝐹 VPP Function [kts] 
𝑭𝒊 Force at control point 𝑖 [N] 
𝐹 Function 
𝐹𝑖 Function 𝑖 
𝑓𝑥 Force in 𝑥-direction [N] 
𝑓𝑦 Force in 𝑦-direction [N] 
𝑓𝑧 Force in 𝑧-direction [N] 
𝒇𝒎 force- and moment vector [N, Nm] 
𝐿 Lift force [N] 
𝑙𝑖 Lagrangian multiplier 𝑖 
𝒍𝒊 Length of segment 𝑖 [m] 
𝑙𝑒𝑥𝑡 Extension lengths [m] 
𝑙𝑠𝑝𝑎 Semi span [m] 
𝑁i,p(𝑢) Nonrational B-spline basis function in u-direction 
𝑁j,q(𝑣) Nonrational B-spline basis function v-direction 
𝑚𝑥 Moment around 𝑥-axis [Nm] 
𝑚𝑦 Moment around 𝑦-axis [Nm] 
𝑚𝑧 Moment around 𝑧-axis [Nm] 
𝑝, 𝑞 Degrees of NURBS surfaces in u- and v-direction 
𝒑 Point a function is evaluated for 
𝑷i,j Control points of NURBS-Surfaces [m] 
𝑟𝑡𝑎𝑝 Taper ratio 
𝒓𝒊𝟎𝒋 Vector from node 𝑖0 to control 𝑗 
𝒓𝒊𝟏𝒋 Vector from node 𝑖1 to control 𝑗 
𝑟𝑖0𝑗,𝑟𝑖1𝑗 Magnitudes of 𝒓𝒊𝟎𝒋 and 𝒓𝒊𝟏𝒋 
𝑺 NURBS surface [m] 
𝒖∞ Unit vector in the direction of the freestream 
𝑢, 𝑣 Directions of NURBS surfaces 
𝑽𝒊 Local velocity at control point 𝑖 [m s-1] 
𝑉MG Velocity made good [kts] 
𝑉𝑆 Boat speed [kts] 
𝑉TW True wind speed [kts] 
𝑽∞ Free-stream velocity [m s-1] 
𝒗𝐣𝐢 Influence of horseshoe vortex 𝑗 on control point 𝑖 [m-1]  
𝑤i,j Weights of control points of NURBS surfaces 
𝑥𝑖 Input variable 𝑖 
𝛽𝑡 True wind angle [°] 
𝛤𝑗 Strength of horseshoe vortex 𝑗 [m2 s-1] 
𝛿𝑒 Elevator rake [°] 
𝛿ra Rake angle [°] 
𝛿𝑟 Rudder angle [°] 
𝛿𝑤𝑖𝑛 Wing rake angle [°] 
λ Leeway angle [°] 
𝝃 Free variable vector 
𝜌 Density [kg m-3] 
τ Flat parameter 
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as  Automatically spaced 
AVL   Athena Vortex Lattice 
BFGS Broyden–Fletcher–Goldfarb–Shanno 
CFD  Computational Fluid Dynamics 
CoG   Centre of Gravity 
DOF  Degree of freedom 
ETNZ Emirates Team New Zealand 
FEA  Finite Element Analysis 
IMS  International Measurement System 
IPOPT Interior Point Optimizer 
LLT  Lifting line theory/method 
LRPP Luna Rossa Prada Pirelli 
NURBS Non-uniform rational B-Splines 
RANS Reynolds-averaged Navier Stokes 
VPP  Velocity prediction program 
 
 
1. Introduction 
 
Various optimisation problems concern a component of a system, whose influence is so large 
that it significantly affects the state of the system. In these cases, an isolated optimisation of 
the component does not account for the changes in system state during the optimisation. This 
introduces inaccuracies and uncertainty but only requires a single evaluation of the component 
model per iteration of the optimisation. Modelling the whole system mitigates the inaccuracies 
but requires significantly more computational resources as the whole state of the system must 
be computed at every iteration during the optimisation process. Solving for the state requires 
numerous component model evaluations itself plus the modelling of the other components in 
the system. Simultaneously, the large influence of the component results in large potential 
performance gains, which calls for detailed optimisation. To fully exploit the design space a 
high number of design variables is required. However, the run time of an optimisation often 
scales with the number of variables, which makes detailed design prohibitively expensive. This 
is especially the case when the whole system is modelled.  
 
 

 
Figure 4.1: AC75 Luna Rossa based on Gattini (2020) 
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One such component are the hydrofoils on racing yachts. Hydrofoils are the equivalent to 
airfoils but operated underwater to lift the hull of a yacht out of the water. Their effective 
lift/drag-ratio allows the yacht to reach speeds much higher than with the hull in the water. The 
design of the hydrofoils thereby has an immense influence on the performance, the state and 
the trim (i.e. control) of the system, i.e. “the yacht”. This was shown by Paulin et al. (2015) at 
the example of a C-Class catamaran. Two promising hydrofoil designs were compared using 
a stationary physics model of the yacht. The model predicted differences in boat speed of up 
to 20%. Other state variables, such as the leeway angle, changed up to 200%. The control-
variable rake changed up to 220%. Conventional hydrofoil optimisations are performed in 
isolation of the yacht system neglecting these immense changes in yacht state. They are 
usually based on the state of an initial hydrofoil design. Hence, new candidates are evaluated 
for a state that they will never experience in reality.  
   
In addition, the high cost of the hydrodynamic model of the foil and/or the optimisation strategy 
limits the number of design variables. Examples are the optimisations performed by 
Meneghello et al. (2016) and Ploe (2018). Meneghello used a lower fidelity vortex lattice 
method, while Ploe modelled the hydrofoil forces with high fidelity computational fluid dynamics 
(CFD). Despite both contributions employing surrogate models, their approaches were limited 
to seven and two design variables, respectively. A detailed optimisation of the spine- and 
planform of the foil, as well as its twist distribution, requires a much higher number of design 
parameters (70 – several hundreds if section design is to be included). The only feasible option 
for more than 70 design variables is a gradient-based algorithm combined with the adjoint 
method for gradient computation. The adjoint method computes the gradient independent of 
the number of input variables at a small cost but requires extensive implementation efforts. 
Adjoint optimisations have been performed in many fields including Biology (Hovland et al., 
1997), Medicine (Jee et al., 2005), Physics (Kim et al., 2006) and Engineering. Examples in 
engineering range from electrical engineering (Hart et al., 2006), over controller design 
(Röbenack, 2007), to structural optimisation (Tadjouddine et al., 2006). In the context of 
hydrofoil optimisation, Garg et al. (2017) conducted an adjoint hydrostructural optimisation 
using high fidelity CFD and finite element analysis (FEA). The use of the adjoint method 
resulted in the ability to optimise 200 design variables. This optimisation was, however, also 
carried out in isolation of the yacht system.  
 
This work presents the development of an adjoint hydrofoil optimisation strategy where the 
whole yacht system is considered. The system is modelled with a six-degree-of-freedom 
stationary physics model of the yacht developed in the velocity prediction program (VPP) FS-
Equilibrium. The adjoint version of the VPP model is derived using the algorithmic 
differentiation tool ADOL-C (Walther and Griewank 2020). The adjoint method is however only 
applied to the bottleneck of the VPP, which corresponds to the parametric model of the 
hydrofoil and the lifting line method computing the hydrofoil forces. This represents the first 
part of the gradient. The remainder of the program (solver and other force modules) is 
differentiated using the simpler finite difference method (second part of the gradient). This 
saves implementation time and preserves modularity. The two gradient parts are combined 
using the chain rule and are provided to the optimisation algorithm IPOPT (Interior Point 
Optimizer) (Wächter and Biegler 2006) at every step of the optimisation.  

 
Figure 4.2: Foil Box 
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The methodology is applied to an AC75 type yacht. The AC75 is the foiling monohull class 
currently sailed in the America´s Cup, the Formula 1 of sailing. Figure 4.1 shows an AC75 
operating with the windward foil out of the water to provide righting moment and the leeward 
foil in the water to produce hydrodynamic lift and side force. The main foils consist of two parts 
which are the foil arm and the foil wing. The design of the foil wing is open to development 
inside the `Foil box´ (Figure 4.2) and must be symmetric around the `Foil wing symmetry 
plane´. Furthermore, the foil wing has to weigh exactly 921 kg. The wings are built from a 
combination of steel and lead to accommodate this weight while having a low volume and 
wetted surface area. Some of the weight can be stored in a bulb and one or two flaps are used 
for force control. In the last America’s Cup, Emirates Team New Zealand (ETNZ) and American 
Magic used bulbs and wings with small chord while Luna Rossa Prada Pirelli (LRPP) and 
INEOS Team UK opted wings with no bulb and larger chord. ETNZ´s foil had no anhedral 
angle (T-Foil) and a single flap, the other teams chose Y-Foils with two flaps. 
 
The developed framework is first used to optimise five design variables describing the general 
design of the AC75 hydrofoil. The results are compared to the findings of a parametric study 
recently published by Tannenberg et al. (2023) which acts as a first test of the routine. The 
parametric study used the same yacht model and variables. As a second test, the twist-
distribution of a straight T-Foil with no taper ratio is optimised. This case is analysed to 
determine if the optimiser can tailor the twist-distribution such that the desired elliptical lift-
distribution is achieved. With the two tests completed, a detailed optimisation of the entire foil 
is performed. The detailed optimisation has 68 design variables describing the spine- and the 
planform of the foil as well as the twist distribution in detail.  

 
2. Velocity prediction model 
 
The physics model of the AC75 is developed in the VPP FS-Equilibrium and is briefly 
introduced in this section, for a more thorough description see Tannenberg et al. (2023). For 
more information on FS-Equilibrium see Hochkirch (2018). FS-Equilibrium is a workbench for 
sailing yacht performance prediction and can compute stationary and dynamic sailing states. 
“Force modules” are used to model the different components of the yacht and return the forces 
and moments they produce. Once all forces and moments equate to zero in the six degrees of 
freedom (DOF), a steady sailing state is reached. This steady sailing state is determined using 
a Newton-Raphson method. The method modifies state and trim variables until force 
equilibrium is found. FS-Equilibrium has been applied to hydrofoiling yachts before such as the 
C-Class Catamaran Groupama (Paulin et al., 2015), the International Moth (Eggert, 2018), the 
AC50 (Hansen et al., 2019) and the QFX Lake Racer (Melis et al., 2022). 
 
 

 
Figure 4.3: FS-Equilibrium´s graphical user interface showing a generic AC75 
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FS-Equilibrium is used to compute the steady sailing states of the AC75, by balancing the six 

forces and moments   

𝒇𝒎 = (𝑓𝑥 , 𝑓𝑦, 𝑓𝑧, 𝑚𝑥 , 𝑚𝑦 , 𝑚𝑧)
𝑇
. (1) 

Table 4.1 shows the state and trim variables used to balance the forces of the AC75 model. 
These variables do not exclusively influence one degree of freedom but are the variables with 
the highest influence on the respective degree of freedom. For simplification reasons the foil 
wings are raked rather than controlled with flaps as on the real yachts. The remaining state 
variables, heel angle, pitch angle and ride height (sink) are fixed for increased robustness.  

Table 4.1: Solver set-up of the AC75 physics model 

DOF Balancing variable with the 
highest influence on the DOF 

𝑓𝑥 boat speed 𝑉𝑆 (state) 
𝑓𝑦 leeway angle λ (state) 
𝑓𝑧 rake angle 𝛿ra (trim) 
𝑚𝑥 sail-power (flat) τ (trim) 
𝑚𝑦 elevator rake 𝛿𝑒 (trim) 
𝑚𝑧 rudder angle 𝛿𝑟 (trim) 

 

The problem is expressed with Lagrange multipliers (𝑙𝑖 ≠ 0) in the function 

𝐹 =  −𝑉𝑆 + 𝑙0 ∑𝑓𝑥  +  𝑙1 ∑𝑓𝑦  +  𝑙2 ∑𝑓𝑧  +  𝑙3 ∑𝑚𝑥  +  𝑙4 ∑𝑚𝑦  +  𝑙5 ∑𝑚𝑧 ,  (2) 
 

where the first order condition for the optimum is  

𝐹  =
 !    min →  ∇𝐹  =

 !   0. (3) 
 

This leads to a non-linear system of equations: 

𝐹0 = 
𝜕𝐹

𝜕𝑉𝑆
    0  =

! , 𝐹1 = 
𝜕𝐹

𝜕𝜆
    0  =

! , 𝐹2 = 
𝜕𝐹

𝜕𝛿ra
    0  =

! ,

𝐹3 = 
𝜕𝐹

𝜕τ
    0  =

! , 𝐹4 = 
𝜕𝐹

𝜕𝛿𝑒
    0  =

! , 𝐹5 = 
𝜕𝐹

𝜕𝛿𝑟
    0  =

! ,

𝐹6 = 
𝜕𝐹

𝜕𝑙0
    0  =

! , 𝐹7 = 
𝜕𝐹

𝜕𝑙1
    0  =

! , 𝐹8 = 
𝜕𝐹

𝜕𝑙2
    0  =

! ,

𝐹9 = 
𝜕𝐹

𝜕𝑙3
    0  =

! , 𝐹10 = 
𝜕𝐹

𝜕𝑙4
    0  =

! , 𝐹11 = 
𝜕𝐹

𝜕𝑙5
    0  =

! .

(4) 

 
 
This non-linear system of equations is solved using the Newton-Raphson method. This solver 
set-up allows the direct inclusion of a further optimisation variable. This feature is not yet used 
but can be relevant for including the optimisation of an additional state variables in the future. 
For the current problem, the Newton-Raphson could also be directly employed for force 
balancing. This is more computationally efficient. A similar approach was used by Patterson 
and Binns (2022). 
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The force modules of the AC75 are presented in Table 4.2. For details see Tannenberg et al. 
(2023). The forces and moments generated by the hydrofoils are modelled using an advanced 
lifting method (LLT) as presented in the next section.   
 

Table 4.2: AC75 force modules 

Component Model Comments 
Platform gravity Gravity model Weight and CoG from AC75 rule 

Crew gravity Gravity model Weight from rule, CoG estimated 
Hull aero Coefficient-based Coefficients from Hoerner (1965) 
Sails aero Tuned IMS2003 Factor of 1.3 on driving force 

Rudder hydro Lifting Line Based on Phillips and Snyder (2000) 
Main foil hydro Lifting Line (adjoint) Same as for Rudder, but adjoint 

 
 
 
3. Hydrodynamic foil model  
 
The forces and moments produced by the main hydrofoils of the AC75 are computed with a 
lifting line method. The method was originally derived by Prandtl (1918) and is a non-viscous 
method for 3D foil force prediction. Viscosity is of importance in stalled cases or when the flow 
separates. For the desired operation of a hydrofoil, this is not the case, and the lifting line 
method has an accuracy similar to viscous methods such as Reynolds-averaged Navier 
Stokes (RANS). RANS methods require hours of computational time on multiple cores for a 
single foil force evaluation and are not suited for the use within yacht models that involve 
numerous such evaluations to compute the sailing state. Lifting line methods on the other hand 
solve in milliseconds on a single core and are the most common method for foil force prediction 
in stationary and dynamic yacht simulators (e.g. SumToZero, 2021). The lifting line method 
uses vortices in the free stream to represent how a foil section affects its surrounding flow. 
Multiple vortices are oriented along a line that follows the span of the foil. For a comprehensive 
introduction to lifting line methods see Katz and Plotkin (1991). A variation of Prandtl´s method 
is used for this study. This advanced method was developed by Phillips and Snyder (2000) 
and employs horseshoe vortices at every station along the span and a vectorised form of the 
Kutta-Jukowski-Law. Each horseshoe vortex is formed of a bound vortex and two semi-infinite 
vortices. The vectorised lifting law includes the influence of the bound vortices on each other. 
This is required to model the effects of leeway, sweep and anhedral. It also includes the 
influence of multiple surfaces on each other. The method solves for the strength of each 
horseshoe vortex 𝛤𝑗 by relating two definitions of the force generated at every segment. The 
force produced by each bound vortex is computed with 
 

d𝑭𝒊 =  𝜌𝛤𝑖𝑽𝒊  ×  d𝒍𝒊 , (5) 
 
where the local velocity at every control point is calculated from 
 

𝑽𝒊  = 𝑽∞  +  ∑𝛤𝑗  𝒗𝐣𝐢 .

𝑁

𝑗=1

(6) 

 
The velocity 𝒗𝒋𝒊 is the induced velocity of horseshoe vortex 𝑗 at control point 𝑖 normalised by 
the vortex strength and is computed with  

 

𝒗𝐣𝐢 = 
1

4𝜋
[

𝒖∞  ×  𝒓𝒊𝟏𝒋

𝑟𝑖1𝑗(𝑟𝑖1𝑗 − 𝒖∞ ∗ 𝒓𝒊𝟏𝒋)
+

(𝑟𝑖0𝑗 + 𝑟𝑖1𝑗)(𝒓𝒊𝟎𝒋 × 𝒓𝒊𝟏𝒋)

𝑟𝑖0𝑗𝑟𝑖1𝑗(𝑟𝑖0𝑗𝑟𝑖1𝑗 + 𝒓𝒊𝟎𝒋 ∗ 𝒓𝒊𝟏𝒋)
− 

𝒖∞  ×  𝒓𝒊𝟎𝒋

𝑟𝑖0𝑗(𝑟𝑖0𝑗 − 𝒖∞ ∗ 𝒓𝒊𝟎𝒋)
] (7) 
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where the first term in the brackets is the outbound semi-infinite vortex influence, the second 
term the bound vortex influence and the third term the inbound semi-infinite vortex influence 
of segment 𝑖 on colocation point 𝑗. The vectors 𝒓𝒊𝟎𝒋 and 𝒓𝒊𝟏𝒋 point from the semi-infinite vortices 
to the colocation point and 𝑟𝑖0𝑗 and 𝑟𝑖1𝑗 are the lengths of these vectors. The bound vortex term 
is excluded when    𝑖 = 𝑗, as the bound vortex is not causing downwash on its own segment. 
Relating the lift based on the sectional lift coefficient to the vectorised vortex lifting law results 
in a non-linear equation system. This is solved iteratively but is potentially unstable. Hence, 
the method was reduced to a linear problem through a linear lift-curve slope and yields the 
following system of equations 

 

𝜌𝛤𝑖 |(𝑽∞  +  ∑𝛤𝑗  𝒗𝐣𝐢 

𝑁

𝑗=1

) × d𝒍𝒊 | −  
1

2
 𝜌 𝑽∞

2 𝐶𝐿(𝑽𝒊)d𝐴𝑖 = 0. (8) 

 
           
For a more general introduction to hydrofoils and associated models see Molland and Turnock 
(2021). The two half wings of the foil are discretised with 30 stations each, while the extension 
uses 10, all with equal spacing. This is in contrast to the 40 stations per part with cosine-
spacing proposed by Phillips and Snyder (2000) but delivers much more robust results in the 
optimisation. The cosine-distribution has led to unrealistic optimal geometries especially in the 
region of the junction. This was amplified by the small spacing at the junction caused by the 
high number of stations. Parts of the foil that are above the waterline are not considered (Figure 
4.4). The loss in lift caused by the presence of the free surface is modelled with a second 
transformed foil.  The biplane analogy (Faltinsen, 2005) is used, which is best suited for the 
design space and conditions explored.  
 
The force module of the main hydrofoil additionally computes the forces and moments from 
the weight of the foil based on an integration of the sectional areas along the span using 
Simpson´s rule. An average density of 8305 kg m-3 of the involved materials (75% high density 
steel, 20% lead and 5% hydraulic oil to represent the control systems) is used. A bulb is 
automatically sized to meet the weight requirement of 921 kg. The centre of gravity of the foil 
is determined by taking moments of the sectional areas around the junction of the foil arm and 
the foil arm extension. The resistance of the potential bulb is computed using a form factor 
approach. The lifting line method combined with the form factor captures the general trends 
well but loses accuracy in the region of the bulb. Implementing a slender body model would 
enhance the accuracy in the area but should also be treated with caution and results should 
be validated with viscous CFD simulations. Furthermore, wave-making drag, and spray drag 
are not/not yet considered. The model is available in normal mode for finding the steady sailing 
state and in adjoint mode for gradient computation as explained later. 
 

 
Figure 4.4: AC75 foil discretised with 30 stations per half wing and 10 stations at the 

extension using an equal distribution 
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4. Parametric model  
 
The parametric model serves to generate the shape of the hydrofoil from the set of design 
variables. The lifting line method reads the geometrical information of the hydrofoil from ruled 
surfaces which entail for example the position of each segment, its chord length and twist. The 
ruled surfaces are provided from the parametric model in the form of NURBS (Non-rational 
uniform B-spline) surfaces. NURBS surfaces are defined as  
 

𝑺(𝑢, 𝑣) =  
∑ ∑ 𝑁i,p(𝑢)𝑁j,q(𝑣)𝑤i,j𝑷i,j

𝑚
𝑗=0

𝑛
𝑖=0

∑ ∑ 𝑁i,p(𝑢)𝑁j,q(𝑣)𝑤i,j 
𝑚
𝑗=0

𝑛
𝑖=0

       for   0 ≤ 𝑢, 𝑣 ≤ 1. (9) 

 
where 𝑁i,p(𝑢), 𝑁j,q(𝑣) are the nonrational B-spline basis functions, 𝑷i,j are the control points 
and 𝑤i,j are the weights of the control points. The directions 𝑢 and 𝑣 are alongside the surface 
(𝑢 spanwise, 𝑣 chordwise) and 𝑝 and 𝑞 are the degrees in the 𝑢- and 𝑣-direction, respectively. 
See Piegl and Tiller (1997) for more detail. The cross-sections of the foil at every station (i.e. 
the “thickness” of the foil) are supplied through their sectional properties (i.e. lift curve slopes, 
the zero lift angles and the profile drag coefficients). This is discussed in detail in Tannenberg 
et al. (2023). 
 

  

Figure 4.5: Simple parametric model with 5 variables (a), detailed model with 68 
variables (b); design variables bold; as = automatically spaced 

 
Figure 4.5a shows the simple parametric model which was used in the parametric study. It 
describes the hydrofoil with the parameters extension length 𝑙𝑒𝑥𝑡, semi span 𝑙𝑠𝑝𝑎, root chord 
𝑐𝑟𝑜, taper ratio 𝑟𝑡𝑎𝑝 and wing rake 𝛿𝑤𝑖𝑛. This simple model is used in a first optimisation to 
compare the optimisation results with the findings of the parametric study.  
 
The twist-distribution optimisation and the detailed optimisation of the hydrofoil are performed 
using the advanced parametric model shown in Figure 4.5b. This model is based on 68 design 
variables and allows thorough optimisation of the spine and plan form of the foil as well as the 
twist distribution. The extension of the foil arm has four stations which are defined by the x-
coordinates of every leading-edge point and the chords. The y-coordinates and the twists are 
set to zero due to the symmetry requirement. The stations are equally spaced in z-direction 
between the end of the foil arm and the root of the foil wing. This results in 8 variables for the 
extension. The portside half wing has 15 stations. Every station is defined by the x-and z-
values of the leading edge, a chord and a twist variable. Station 15 additionally has a y-variable 
that defines the span of the wing. Its z-value is however fixed at the bottom of the foil box. The 
y-value of station 1 is zero due to the symmetry constraint. The intermediate stations are 
spaced equally in between. This results in 60 variables for the portside half wing, which is 
mirrored around the foil wing symmetry plane to generate the starboard half wing. This model 
is sophisticated enough to re-create the shapes of the hydrofoils seen in the 36th America’s 
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Cup as shown in Figure 4.6 representing the ETNZ (a) and LRPP (b) hydrofoil, respectively. 
The models are based on the C++ library TinyNURBS (Jayaraman, 2022) and use the python 
library NURBS-python (Bingol, 2022) for visualisations. The parametric models are internally 
coupled to the lifting line method to allow seamless gradient computation as discussed in the 
next section. 
 

     
Figure 4.6: Remodelled hydrofoils of ETNZ (a) and LRPP (b) 

5. Model validation 
 
The correct functioning and accuracy of the hydrodynamic model of the foil and the entire 
physics model of the yacht are crucial for reliable optimisation results. The hydrodynamic 
model has been validated in terms of lift/drag-ratio. The whole yacht model was validated with 
real life race data from the last America´s Cup (America´s Cup, 2020). Both showed good 
agreement as discussed in Tannenberg et al (2023). Herein, a more thorough validation is 
performed for the lift-distribution computed by the hydrofoil model. The predicted lift-
distributions are benchmarked against the distributions computed by Athena Vortex Lattice 
(AVL) (Drela and Youngren, 2022) and those found in the literature for two standard foil 
shapes. It is also analysed if the computation of the weight and the centre of gravity of the foils 
is executed correctly. 
 
The lift-distribution along the span of the foil is an important characteristic in hydrofoil design 
with respect to induced drag. Figure 4.7 shows the lift-distributions for a half-wing with no taper 
and one with a taper ratio of 0.25, both with constant twist. The lift-distributions are predicted 
by a lifting line method and a computational fluid dynamics code (Hospodář et al., 2022). The 
straight wing shows a lift-distribution with a more rectangular shape than the desired elliptical 
shape due to the constant chord. The taper of the second foil reduces the lift generated towards 
the tip which results in a more triangular shape. 
 

 
Figure 4.7: Lift-distributions of a non-tapered and a tapered wing (Hospodář et al. 

2022) 



Chapter 4 

86 

Two similar foils are analysed with the lifting line method used in the optimisation framework 
and AVL for further comparison. The results are shown in Figure 4.8. Both, the lifting line 
method and AVL predict the rectangular and the triangular lift-distributions observed in Figure 
4.7. Slight differences between the two can be seen towards the tip in the rectangular 
distribution and in the middle between the root and the tip of the tapered foil. The lift-distribution 
of the tapered foil predicted by the lifting line method also shows a slight drop in lift at the root. 
This is not predicted by the other models. In general, however, the methods show good 
agreement, and the lifting line method is hence deemed suitable for lift-distribution prediction. 

 

 
Figure 4.8: Lift-distribution predicted by the lifting line method and AVL for the 

constant chord wing (a) and the tapered wing (b) 

The hydrofoil force module also computes the weight and the centre of gravity of the foil. The 
sectional area of the foil is integrated along the span which results in a 2.5D approach rather 
than a full 3D approach. Moments of the sectional areas are used to compute the centre of 
gravity. This is perfectly acceptable if the spine of the foil is straight but can lose accuracy if 
the spine is curved. Therefore, foils with different amounts of curvature have been tested and 
compared to a full 3D approach implemented in a commercial computer aided design software. 
The weight error was 3.2% for the foil with the highest curvature and 0% for a straight foil. The 
centre of gravity error was 4% for the highest curvature foil and 0% for the straight foil. This is 
deemed sufficient.  
 
 
6. Optimisation strategy 
 
This section presents the logic of the VPP driven hydrofoil optimisation routine while the details 
of the gradient computation are discussed in the next chapter. Figure 4.9 shows the flow of the 
proposed routine. In a first step, the optimisation point is defined. This is the true wind angle 
(𝛽𝑡) and true wind speed (𝑉TW) the yacht sails in and hence the condition for which the foil is 
optimised. At a later stage, multiple of those points will be considered to optimise for a broader 
range of conditions. At this stage however, only one condition can be assessed in one 
optimisation run. In the second step, the design parameters of an initial foil are defined. The 
parameters are passed to the parametric model which generates the initial hydrofoil geometry. 
The VPP is now run solving for the equilibrium sailing state of the AC75 in the set condition 
with the initial hydrofoil. This is an iterative process where the hydrofoil forces are calculated 
numerous times by the advanced lifting line method for changing states and trims (VPP loop). 
The lifting line method is directly coupled to the parametric model from which it receives the 
geometric information. Once a valid equilibrium sailing state is found, the VPP returns the 
achieved 𝑉MG and passes it to the optimisation algorithm IPOPT. The optimisation is currently 
performed for 𝑉MG but with a fixed 𝛽𝑡. This means optimising for 𝑉MG is the same as optimising 
for 𝑉S, but 𝛽𝑡 will be included as an optimisation variable in the future. Additionally, the cant 
angle will be included as an optimisation variable. It is currently fixed to the position that 
generates the highest righting moment, while preventing the tip from piercing the surface. 
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Figure 4.9: Adjoint VPP-driven optimisation routine 

 
IPOPT also requires the gradient of the function (VPP including lifting line and parametric 
model) which is computed next and passed to the optimiser. This three-step process is 
described in detail in the next section. Based on the 𝑉MG and the gradient, IPOPT computes a 
set of design variables which results in a higher 𝑉MG. This new set is fed back to the parametric 
model which updates the geometry and the VPP is run again. The new 𝑉MG and gradient are 
fed to IPOPT again which comes up with an even better performing set of design variables 
(Optimisation loop). This process is repeated until the design has converged to the optimum.  
 
The most expensive part of this routine is the computation of the gradient. The runtime required 
for it increases with every design variable. This makes the VPP driven optimisation of a high 
number of variables infeasible when the gradient is approximated with finite differences. The 
next section presents an innovative approach that allows to compute the gradient at a small 
run time independent of the number of input variables. As a result, thousands of variables can 
be optimised efficiently. Interior point methods also require second order derivatives. These 
are approximated by IPOPT using a BFGS (Broyden–Fletcher–Goldfarb–Shanno) method.  
 
 
7. Gradient computation 
 
The gradient is the direction and rate of fastest increase of a scalar-valued function 𝑓 with 
respect to its input variables 𝑥𝑖 at the point 𝒑 = (𝑥1, … , 𝑥𝑛). If a function has more than one 
output the individual gradients are presented in the Jacobian matrix, where the rows are the 
transposed gradients (see Equation 13). Gradients can be computed in several ways, the 
easiest of which is finite difference, where an approximation of the gradient is obtained by 
evaluating a function once for an initial set of input variables, then perturbating a single variable 
and calculating the function again. This is repeated for every design variable. From the 
difference in the outputs and the step sizes the gradient is approximated. Hence, for a function 
with 68 input variables (hydrofoil design variables 𝒅𝒗) and 1 output (𝑉MG), 69 function 
evaluations (VPP runs) are required. This is prohibitively expensive. Another possibility is to 
differentiate the function using the chain rule starting from the input variables differentiating to 
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the output variable (also referred to as forward differentiation). This can either be done by hand 
or by automatic/algorithmic differentiation tools that can automatically differentiate computer 
code. Similar to finite difference, one partial derivative has to be evaluated per input variable. 
Hence, the time required to compute a gradient is also similar to finite difference and depends 
on the number of input variables. Both approaches are, however, independent of the number 
of output variables, so these methods are better used for functions with a small number of 
inputs and a large number of outputs. For typical optimisation problems the opposite is the 
case most often. In such cases the hand differentiation/algorithmic differentiation can also be 
applied starting from the outputs differentiating to the inputs. This is called reverse 
differentiation or the adjoint method. It means the gradient of a function can now be computed 
independent of the number of input variables and its complexity only depends on the number 
of output variables. This is extremely powerful for optimisation problems with large numbers of 
input variables. More details on algorithmic differentiation including the stated complexity 
results can be found in Griewank and Walther (2008). 
 
Differentiating a computer code however is a complex and time-consuming process even if 
algorithmic differentiation tools are used. Finite differences in contrast are simple to implement. 
To reduce development time, while making the run time independent of the number of input 
variables a hybrid approach was developed. The adjoint method is only applied to the 
bottleneck of the routine, while finite differences are used where it does not significantly affect 
run time. Consequently, the gradient parts are joined together. The resulting gradient 
computation runs at a small multiple of a single normal evaluation of the VPP model. 
 
The bottleneck of the VPP driven routine is the parametric model and the lifting line method. 
This includes the routine which computes the bulb size and forces. Here the Jacobian has to 
be computed for the six forces and moments 𝒇𝒎 the hydrofoil produces with respect to the 
large number of design variables 𝒅𝒗. In case of the advanced parametric model, this results in 
68 input variables and 6 output variables. Applying the adjoint method here means the 
Jacobian can be computed by evaluating six partial derivatives only. This holds true for any 
number of input variables. For the simple parametric model with five input variables 𝒅𝒗 =
(𝑙𝑒𝑥𝑡 , 𝑙𝑠𝑝𝑎 , 𝑐𝑟𝑜, 𝑟𝑡𝑎𝑝, 𝛿𝑤𝑖𝑛)𝑇  the Jacobian looks as follows  
 

 𝐽𝒇𝒎(𝒅𝒗) =
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=
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         (10) 

 
 
where the rows of 𝐽𝒇𝒎(𝒅𝒗) are the transposed gradients of every force/moment with respect 
to 𝒅𝒗. The Jacobian 𝐽𝒇𝒎(𝒅𝒗) of the big parametric model is computed in the same fashion but 
has 68 columns. The Jacobian is derived using the algorithmic differentiation tool ADOL-C, 
which uses the concept of operator overloading to differentiate C/C++ code. Thereby, the full 
source code must be available and has to be prepared for differentiation. This means all pre-
compiled libraries have to be replaced in the first step before the whole routine is templated to 
facilitate a special datatype required for differentiation. This datatype allows the storage of 
primal values and to compute the derivatives. The templating includes any part of the code 
that influences the gradient, so from the overlaying lifting line class down to the functions of 
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vector- and matrix libraries, in total 8000 lines of code. Functions that interact with the 
remainder of the VPP, that runs in the normal datatype, have to be wrapped to ensure 
seamless communication. Special entry points must be implemented that can call the lifting 
line method with standard datatype for normal VPP solving and the special datatype for 
gradient computation. The included “adolc”-header provides the overloaded operators and the 
functions to compute the Jacobian. For more information on ADOL-C see Walther and 
Griewank (2020).  
 
The remainder of the VPP computes the 𝑉MG influenced by the forces and moments acting on 
the yacht produced by the various components of the yacht (e.g. sails and foils). The total 
forces are the sum of the components forces. To link the design variables to the performance 
of the yacht, the effect of the forces and moments on the yacht´s performance must be 
included. This requires the computation of the gradient of 𝑉MG with respect to 𝒇𝒎, so from 6 
input variables to 1 output variable. Again, the number of inputs is higher than the number of 
outputs, which would generally favor the adjoint method, but the total number of inputs is small. 
Hence, the efficiency gain of the adjoint method is negligible while the implementation time 
can be reduced significantly by employing finite differences. The gradient is given by  
 
 

 𝛻𝑉MG(𝒇𝒎) =   [
𝜕𝑉MG

𝜕𝑓𝑥
(𝒇𝒎)

𝜕𝑉MG

𝜕𝑓𝑦
(𝒇𝒎)
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𝜕𝑉MG

𝜕𝑚𝑦
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𝜕𝑉MG

𝜕𝑚𝑧
(𝒇𝒎)]

𝑇

(11) 

 
 
and is computed with a forward finite differencing scheme. Using the chain rule [𝑓(𝑔(𝑥))]′ =

𝑓′(𝑔(𝑥)) ∗ 𝑔′(𝑥), the two parts can be linked together, where 𝑔′(𝑥) corresponds to  𝐽𝒇𝒎(𝒅𝒗) 
and 𝑓′(𝑔(𝑥)) to ∇𝑉MG

𝑇(𝒇𝒎). The resulting gradient is 
 
 

 ∇𝑉MG
𝑇(𝒅𝒗) = ∇𝑉MG
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𝜕𝑐𝑟𝑜

(𝒅𝒗)
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𝜕𝑟𝑡𝑎𝑝

(𝒅𝒗)
𝜕𝑉MG

𝜕𝛿𝑤𝑖𝑛

(𝒅𝒗)] (12)

 

 
 
and represents the influence of the hydrofoil design variables on the 𝑉MG of the yacht. For 
example, the partial derivative of 𝑉MG with respect to 𝑙𝑒𝑥𝑡 is hence given by 
 
 

 
𝜕𝑉MG

𝜕𝑙𝑒𝑥𝑡
(𝒅𝒗) = (

𝜕𝑓𝑥
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𝜕𝑙𝑒𝑥𝑡
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𝜕𝑚𝑦
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𝜕𝑚𝑧

𝜕𝑙𝑒𝑥𝑡

𝜕𝑉MG

𝜕𝑚𝑧
).    (13)  

 
 
The gradient 𝛻𝑉MG(𝒅𝒗) of the big parametric model is computed in the same manner but has 
68 rows. 𝛻𝑉MG(𝒇𝒎) remains similar. Splitting the gradient computation in two parts has a 
further benefit. The Newton-Raphson method solves for the steady sailing state in an iterative 
process. The valid steady sailing state is the last step of this process where all forces and 
moments equate to zero. 𝐽𝒇𝒎(𝒅𝒗) is only influenced by this final state of the boat, so the last 
step of the Newton-Raphson. A full differentiation using finite differences for example would, 
however, include one full solving process per input variable plus the initial. Hence, numerous 
states are computed that do not affect 𝐽𝒇𝒎(𝒅𝒗) and are not required for the approximation of 
𝛻𝑉MG(𝒇𝒎). With the split gradient computation this can be exploited. The steady sailing state 
is computed and then 𝐽𝒇𝒎(𝒅𝒗) is evaluated for the last step only. This requires little effort 
compared to a full solve, especially as the adjoint method is used. The gradient 𝛻𝑉MG(𝒇𝒎) is 
then computed with 6 further VPP runs, which represents the influence of the forces and 
moments on the 𝑉MG. This means 7 VPP runs plus the computation of 𝐽𝒇𝒎(𝒅𝒗) and results in 
a significant further reduction in computational time. The Jacobians and the full gradients have 
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been validated with finite difference approximations of gradients and showed excellent 
agreement. The computation of the gradient with the combined adjoint/finite difference method 
is thereby 36 times faster than a purely finite difference-based approach for 68 design 
variables.  
 
8. General design optimisation 
 
The first optimisation using the VPP-driven framework is conducted with the simple parametric 
model. The results of this optimisation are compared to the findings of the parametric study to 
ensure a correct implementation and set-up of the optimisation routine. In the parametric study, 
72 different designs were tested comprising of any combination of the values listed in the 
“Values”-column in Table 4.3. The 𝑉MG of these candidates were computed for up- and 
downwind conditions in 8, 11 and 14 kts 𝑉TW.  

 
Table 4.3: Comparison Set-up 

Parameter  Values Initial Design 
Extension length 𝑙𝑒𝑥𝑡 0.6 m, 0.95 m, 1.3 m 0.95 m 

Semi span 𝑙𝑠𝑝𝑎 1.75 m, 1.88 m 1.815 m 
Root chord 𝑐𝑟𝑜 0.4 m, 0.8 m 0.6 m 
Taper ratio 𝑟𝑡𝑎𝑝 0.25, 0.5 0.375 
Wing rake 𝛿𝑤𝑖𝑛 0.0°, 2.0°, 4.0 ° 2.0° 

 
 
For the comparison the upwind condition in 11 kts 𝑉TW was selected, the results of which are 
shown in Figure 4.10. In the upwind conditions in 11 kts 𝑉TW, candidate 15 with the lowest root 
chord (0.4 m) and taper ratio (0.25) performed best. The small half wings result in low-wetted 
area foils as a larger portion of the weight is stored in the bulb. The round shape of the bulb 
has less wetted surface area per weight. This is accompanied by the lowest extension length 
(0.6 m), which again reduces wetted surface area and hence profile drag. The induced drag is 
reduced by maximising the span (1.88 m). The wing rake of 4 degrees is faster than the other 
settings. The influence is however negligible as the design variable wing rake is nearly identical 
to the control variable rake which is used for balancing the forces in z-direction. Candidate 15 
was 12% faster than candidate 70, the slowest in the study, and demonstrates the immense 
influence of hydrofoil design on yacht performance.  
 

 
Figure 4.10: Foil performance in 11 kts at 𝛽𝑡 = 47.5°, candidate 15 with highest 𝑉MG in 

red 
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The corresponding adjoint optimisation run with the simple mode is started from the middle of 
the value ranges in Table 4.3 which is detailed in the “Initial Design”-column and shown in 
Figure 4.12a. The lowest and highest values of every variable are used as bounds. The 
convergence criterium is set to 1x10-4 in conjunction with an acceptable level criterium stopping 
the run if the changes are below 1x10-3 for five consecutive iterations. The maximum number 
of iterations is limited to 25.  

 
Figure 4.11: Convergence history of the general design optimisation in 11 kts upwind 

 
The optimisation run converges to the optimal solution within 16 iterations as shown in Figure 
4.11. From a practical point of view however the optimal foil is already found at the fifth iteration 
after which the further design changes are negligible. The final foil is presented in Figure 4.12b 
and exactly corresponds to candidate 15, the fastest candidate from the parametric study. This 
proves the correct functioning of the approach. The optimum foil is 1.44 kts and hence 6.02% 
faster than the initial foil. This corresponds to a time saving of 12.8 s on a 1.5 nautical mile 
upwind leg. Two more optimisation runs were started, one from the lower bounds and one from 
the upper bounds. Both runs again identify the design corresponding to candidate 15 as 
optimal. The runs are solved to the acceptable level in 12 and 16 iterations, respectively. This 
suggests a uni-modal design space and reinforces the results from the initial run. A pure finite 
differences-based run found the same result. Due to the low number of input variables both 
methods were equally fast in this case and solved in a matter of minutes on a standard desktop 
PC. 
 
 

   

Figure 4.12: Initial foil (a), optimal foil corresponding to Candidate 15 (b) 
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The 36th America´s Cup was won by ETNZ with a yacht that was clearly the fastest in the fleet. 
The boat featured a T-foil with no anhedral and this foil is believed to have played a major role 
in the yacht´s superior performance. This is in contrast to the findings of the parametric study 
that suggests that the higher the anhedral angle is, the better the foil performs. The reason 
that the ETNZ´s T-foil performed better than the Y-foils is that it allowed the use of a single flap 
and a single control system. This meant that they could not change the direction of the force 
vector anymore, but it significantly reduced the required volume and wetted surface area. This 
possibility of reducing the required volume due to a single flap on the T-foil was not considered 
in the parametric study. The study is based on a constant density representative of a foil with 
two flaps/control systems. For a constant density foil with two flaps, the maximum anhedral foil 
is still superior as it has the lowest wetted surface area for the given density and is hence 
identified correctly as the optimal foil. A further benefit of the T-foil is that it can be used as a 
surface piercing foil at higher speeds which allows the reduction of wetted surface area when 
not needed. This is not possible for Y-foils that pierce the surface at a smaller angle which 
promotes ventilation. As ventilation cannot be modelled and the foil wing is assumed fully 
immersed at all times, this factor is also not influencing the optimisation towards a lower 
anhedral.  
 
 
9. Twist-distribution optimisation 
 
According to Prandtl (1921), the induced drag of a hydrofoil is minimal when the lift-distribution 
is elliptic across the span of the foil. This can be achieved through a tailored twist-distribution. 
To validate whether the optimisation framework is capable of identifying the correct twist-
distribution, an optimisation of the twist-distribution across 15 stations is performed with the 
aim to maximise 𝑉MG. The optimisation is commenced for a straight T-foil without taper shown 
in Figure 4.13a. The green lines represent the 15 sections where the twist can be modified by 
the optimisation algorithm on the outboard half wing. The inboard half wing is affected in the 
same way to fulfill the symmetry requirement of the foil wing. The convergence criterium is set 
to 1x10-4 in conjunction with an acceptable level criterium stopping the run if the changes are 
below 1x10-3 for five consecutive iterations. The maximum number of iterations is set to 50 
accounting for the higher complexity of the problem compared to the general design 
optimisation. 
 
 

 
Figure 4.13: Base foil for the twist-distribution optimisation, green lines represent the 

twist variables (a), convergence history of 11 kts upwind twist-distribution 
optimisation (b) 

 
The optimisation run converges after 42 iterations to the optimal solution as shown in Figure 
4.13b. The twist-distribution of the initial and the optimal foil are shown in Figure 4.14a and the 
resulting lift-distributions in Figure 4.14b. The initial foil has a constant twist of 2° which, in 
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conjunction with the constant chord and the absence of sweep, leads to the rectangular lift-
distribution also observed in Figure 4.7 and Figure 4.8a. This requires a reduction of the lift 
towards the tip (Station 15) and an increase of the lift towards the junction to achieve the 
desired elliptical lift-distribution. The optimal foil shows this characteristic and the resulting 
elliptical lift-distribution and proves that the optimisation framework is able to correctly optimise 
the twist-distribution for minimum induced drag. The optimal foil is 0.1 kts or 0.44% faster in 
terms of 𝑉MG. Two more optimisation runs have been started, one from a twist-distribution with 
a decreasing twist towards the tip and one from a distribution with an increasing twist towards 
the tip. Both runs identified the same optimal twist-distribution as the initial run and solved to 
the acceptable level within 39 and 47 iterations, respectively. The runs solved in roughly 30 
minutes on a standard desktop PC. 
 

 
Figure 4.14: Twist-distribution (a) and lift-distribution (b) of the initial and optimal foil 

 

 
10. Detailed optimisation 
 
Following the successful optimisations of the general design of the foil and the twist-
distribution, a detailed optimisation is performed. The detailed optimisation uses the large 
parametric model with 68 design variables which allows the optimisation of the general design, 
the twist-distribution and a detailed spine- and plan form in a single run. The large, hybrid 
adjoint/finite-difference gradient was validated with the full finite difference gradient showing 
excellent agreement between the two methods. The computation of the gradient using the 
hybrid method is thereby 36 times faster than the full finite difference method. This 
demonstrates the immense efficiency of the developed approach.  
 
The detailed optimisation is also started from the initial geometry shown in Figure 4.12a. The 
same limits on extension length, semi span and chord along the wing apply (smallest allowed 
chord at every station corresponds to the chord at this location with minimum root chord and 
minimum taper ratio in the small parametric model). This allows validation with the previous 
results and a fair comparison between the general design optimisation and the detailed one. 
The model has additional freedom in the x- and z-position of every station (defined through the 
respective leading-edge point). The x-values can be manipulated by +- 0.2 m and the z-values 
can move between the bottom of the box and the waterline in the canted case. Bounding the 
foil at the waterline rather than the top of the box ensures that all designs are fully submerged. 
This still allows foils such as candidate 15 with the minimum extension length. Furthermore, 
the twist at every station is open to optimisation with +- 3°. The chord of the extension can be 
changed by +- 0.2 m from the initial design. The optimisation run is subject to the same 
convergence criteria as the previous runs with a maximum number of 150 iterations to account 
for the much higher dimensionality. The convergence history is shown in Figure 4.15. 
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Figure 4.15: Convergence history of 11 kts upwind optimisation, detailed model 

 
The optimisation run terminates with the maximum number of iterations of 150 reached. The 
routine fails to fully converge to the given criteria within this limit. A higher number of maximum 
iterations has also not led to convergence, which suggests that the gradients are not perfectly 
accurate or the function has a very flat valley. The convergence history also shows small dents 
in the performance at for example iteration 120, which further suggests that the gradients are 
not perfectly accurate in some cases. These slight inaccuracies are introduced in the second 
part of the gradient computation. Here, the accuracy of the gradient is depending on the 
convergence of the Newton-Raphson determining the sailing state. Different step sizes and 
convergence criteria for the Newton-Raphson have been tested and the best setting has been 
used for the above run. Other settings have led to worse convergence in the optimisation. The 
step size of the gradient computation of ∇𝑉MG

𝑇(𝒇𝒎) also plays a role. A delta of 0.001 N and 
0.001 Nm has delivered the best results. However, despite the lack of perfect convergence, 
the changes in the design towards the end of the optimisation are negligible from an 
engineering perspective. Hence, the convergence is deemed sufficient. 
 
The final foil is 1.58 kts and hence 6.6 % faster than the initial foil in terms of 𝑉MG. For an 
upwind leg of 1.5 nautical miles, this results in 14 s time saving over the initial foil. Compared 
to the optimal foil of the general design optimisation, the detailed optimisation has increased 
the performance by a further 0.58 % or 0.139 kts 𝑉MG. Over a single race consisting of six legs, 
this results in a 7.2 s timesaving or a 94 m lead (4.1 boat lengths). This is a very significant 
advantage in this highly competitive event, where every fraction of a second and every meter 
counts. Having a faster yacht additionally has strategic and tactical advantages that are likely 
to amplify these performance gains.  
 
The final foil has the same extension length and semi span as Candidate 15 which 
demonstrates the correct functioning of the routine with respect to the general design. The 
chord at all 15 half wing stations is minimised to the lower bounds. This results in the same 
root chord and taper ratio as Candidate 15 which was also at the lower bounds and proves 
that the method can find the correct results for high numbers of design variables. The chord at 
the stations of the extension is reduced as much as possible to further reduce wetted surface 
area. The bulb is therefore slightly larger. This was expected and is reasonable. The final foil 
is shown in Figure 4.16.  
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Figure 4.16: Final foil of the detailed optimisation 

 
The view from the top in Figure 4.16 shows that the final foil of the detailed optimisation is 
slightly swept aft and has a curved leading edge. This was not directly expected but appears 
to help in achieving the elliptical lift-distribution shown in Figure 4.17b. A separate optimisation 
run where the sweep was prohibited, however, also achieved an elliptical lift-distribution 
through a slightly higher twist towards the tip and a slightly lower one close to the junction. 
Therefore, it is not clear why the sweep should be beneficial. However, it is striking how smooth 
the swept and curved leading edge is. Whether this is only the optimum of the numerical model 
or also physically cannot yet be determined. 
 

 
Figure 4.17: Twist-distribution (a) and lift-distribution (b) of the initial and the detailed 

optimal foil 

 
The twist-distributions of the initial and the final foils are shown in Figure 4.17a. The initial foil 
has a constant twist of 2° which leads to a slightly triangular load distribution. The optimal foil 
has a lower twist towards the root (Station 1) and a higher twist towards the tip to counter this 
trend. The result is the desired elliptical lift-distribution that results in minimum induced drag. 
This is shown in Figure 4.17b. The initial foil produces a higher lift as the optimised candidate 
when expressed in terms of 𝐶𝐿 ∗ 𝑐. This is due to the larger surface area of the small foil. 
However, the optimised foil is resulting in higher speeds and the forces produced by the 
hydrofoil scale with the velocity squared. If the velocity is considered, both foils produce similar 
amounts of vertical lift and can support the yacht. 
 
Several more optimisation runs have been started from different initial designs. This included 
different plan forms, spine forms and twist-distributions. In some cases, the same optimum as 
in the first run was found. In others, the foil designs were not able to achieve force equilibrium 
anymore after a certain number of iterations. In these cases, it is clear that the final foils are 
not the optimum. It shows that the results of such a detailed optimisation must be treated with 
caution. Nevertheless, the method has delivered consistent results from many other starting 
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points reinforcing the findings of the initial run. The optimisation runs solved in roughly 1.5h on 
a standard desktop PC, demonstrating the efficiency of the method.  
 
The results prove the capability of the method to conduct detailed design, while it is also 
capable of optimising the general dimensions such as the span and the extension length. This 
capability has resulted in a significant 𝑉MG gain of 0.139 kts compared to the general design 
optimisation. The gains are expected to be even higher in optimisations for slower wind and 
hence boat speeds where the induced drag and the twist distribution has a higher influence. 
In addition, the detailed model allows further freedom to explore the design space, such as 
winglets for example, which was herein limited to enable validation and fair comparison with 
the general design optimisation. This shows the immense potential of the developed approach. 
Due to the high efficiency of the adjoint method, the framework can be extended to thousands 
of design variables which would allow to include the optimisation of hydrofoil sections and 
structural aspects.   
 
 
11. Conclusions 
 
Hydrofoils are the biggest performance differentiators in the “yacht” system and significantly 
affect the state and trim of the yacht. This requires the modelling of the entire system in an 
optimisation, which was achieved through the use of a stationary physics model of the entire 
yacht. It also requires detailed optimisation to fully extract the immense potential, which is 
prohibitively expensive with conventional optimisation strategies. This can only be achieved 
with a gradient-based optimisation algorithm paired with the adjoint method to compute the 
gradients. The adjoint version of the physics model was derived using the algorithmic 
differentiation tool ADOL-C for the bottleneck of the routine. The remainder of the physics 
model was differentiated with finite differences to reduce development time. The resulting 
routine computes the gradient of 68 input variables 36 times faster than the conventional full 
finite difference method and is the key to detailed system-based optimisation. To the authors 
knowledge, this makes the developed approach the first adjoint velocity prediction program for 
yachts and ships in general. The approach is not limited to hydrofoils on racing yachts but is 
beneficial whenever a component of a system has a huge influence on the system itself, 
provided that the model of the system is differentiable. The routine was first used to optimise 
the five variables of the parametric study, the results of which show excellent agreement to the 
findings of the optimisation. In a second step, a twist-distribution optimisation using 15 twist 
variables was conducted. The resulting twist-distribution led to the desired elliptical lift-
distribution. Finally, a detailed optimisation of the entire foil with 68 design variables was 
performed. The results show that the method is capable of optimising the foil to great detail. 
The optimisation included the full spine- and planform as well as the twist distribution over 19 
stations. The resulting foil has a minimum extension and minimum chord everywhere, paired 
with a maximum span and a twist-distribution that exhibits the elliptical lift-distribution. The 
detailed optimisation has increased the 𝑉MG by 1.58 kts compared to the baseline foil. This is 
a very significant performance gain in the America´s Cup world. The optimisation run solved 
in 1.5h on a standard desktop PC. Due to this high computational efficiency, the framework 
can be extended to optimise thousands of design variables and would allow the inclusion of 
structural and section design. Further work is commenced to include additional true wind 
angles and true wind speeds to optimise the foil for a broader set of conditions. 
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Abstract. Hydrofoils in yacht racing are operated across a wide range of conditions. Between 
these conditions the state and the trim of the yacht changes significantly. This must be reflected 
in the optimisation of the hydrofoils. Previously, we have performed hydrofoil optimisations for 
a single condition. These were conducted using an adjoint velocity prediction program (VPP) 
in a gradient-based optimisation routine. The method allows accurate optimisation with 
hundreds of design variables at a small computational cost. This framework is now extended 
to optimise foils for multiple conditions. Therefore, the VPP is solved for different conditions 
and returns the respective velocities made good (𝑉MG) and gradients. The different 𝑉MG and 
the according gradients are averaged to enable the multi-condition optimisation within a single 
objective. The framework is used to optimise the hydrofoil of an America´s Cup yacht for six 
conditions derived from historical weather data. The optimal foil is perfectly smooth and 
exhibits the expected features. It is 7.2% faster than the initial foil in terms of average 𝑉MG. 
This amounts to an 81.9 second timesaving over a whole race. The multi-condition optimisation 
can be performed at no additional cost and demonstrates the immense capabilities of adjoint 
VPP-based hydrofoil optimisation.  
 
Keywords: Multi-Condition; Hydrofoil; Optimisation; Adjoint Method; Algorithmic 
Differentiation. 
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1. Introduction 
 
Hydrofoils have a high lift/drag-ratio and are an efficient means to support a boat´s weight at 
semi-displacement or planing speeds. Therefore, they have been introduced to the America´s 
Cup, the Formula 1 of sailing, in 2013. They are also increasingly used to reduce the energy 
consumption of motor yachts and commercial small craft. The hydrofoils have a huge influence 
on the performance, the state and the trim of the vehicle they are applied to. Hence, it is 
important to optimise them accurately and thoroughly. Previous research by the authors 
performed a hydrofoil optimisation for an AC75 America´s Cup class yacht (Tannenberg et al., 
2025). The optimisation was based on a stationary, six-degree-of-freedom physics model of 
the entire yacht developed in the velocity prediction program (VPP) FS-Equilibrium 
(Tannenberg et al. 2023). Modeling the full physics accurately captures the influence of a 
hydrofoil design on the yacht´s performance. The physics model was integrated into a gradient-
based optimisation routine, where the gradient is computed using the efficient adjoint method. 
The adjoint method allows one to obtain the gradient of a function at a small computational 
cost, independent of the number of design variables and is the key to detailed design. This has 
resulted in the capability to optimise 68 design variables describing the spine- and planform, 
as well as the twist-distribution of the AC75 foil, in detail. Due to the enormous efficiency of the 
adjoint method, the number of design variables can be further increased to include the 
optimisation of the section shapes and the intricate structure. However, the previous 
optimisations were carried out for a single condition where the yacht is sailing upwind in 11 kts 
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true wind speed (𝑉TW). This is not reflecting that the yacht will be operated across a wide range 
of conditions during an America´s Cup including up- and downwind courses in different true 
wind speeds.  
 
In this work, the existing framework is extended to optimise the hydrofoil for multiple conditions. 
The most-likely conditions the yacht will encounter are determined from historical weather data 
of the venue and the time of the America´s Cup match, resulting in the three wind speeds 8, 
11 and 14 kts 𝑉TW. As the America´s Cup is a windward-leeward race, an upwind and a 
downwind course are considered for every wind speed. At every step of the optimisation, the 
VPP computes the 𝑉MG achieved in each condition and the corresponding gradients. The 𝑉MGs 
and the gradients are then averaged to obtain a single objective. Weights can be applied to 
account for the probability of the different conditions. The average 𝑉MG and gradient is provided 
to the gradient-based Interior-Point Optimiser (IPOPT) (Wächter and Biegler, 2006). The 
optimiser computes a new set of design variables, that results in a higher average 𝑉MG. This 
process is repeated until it converges to the optimal design.  
 
 

 

Figure 5.1: AC75 with foil box from the AC75 rule 

 
The approach is used to optimise the hydrofoil of an AC75 class racing yacht as currently 
sailed in the America´s Cup. The yacht is shown in Figure 5.1 with its leeward foil operating in 
the water to generate hydrodynamic lift and side force. The windward foil is canted out of the 
water to provide righting moment. The design of the foil arm is mostly fixed by the rule and not 
included in the optimisation, while the foil wing can be developed within the `Foil box´ shown 
in Figure 5.1. The wing must be symmetric around the `Foil wing symmetry plane´ and have a 
weight of 921 kg. One or two flaps can be used to control the forces from the hydrofoil. In the 
last America´s Cup, Luna Rossa Prada Pirelli (LRPP) and INEOS Team UK opted for wings 
with a large chord that accommodated all the required weight. Emirates Team New Zealand 
(ETNZ) and American Magic designed wings with a smaller chord where the remaining weight 
was stored in a bulb.  ETNZ used a single flap on a T-Foil (no anhedral angle), while the other 
teams chose Y-Foils with two flaps. The AC75 rule was initially written for the 36th America´s 
Cup in Auckland in 2021 but was slightly adapted for the next edition to be held in Barcelona 
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in October 2024. This paper is based on the 2021 rule to enable comparison with existing 
designs and performances.  
 
The framework is first used to optimise the hydrofoil for the six conditions individually. In a 
second step, the multi-condition optimisation is conducted optimising the foil for the six 
conditions combined. The individual optimal foils are compared against the combined optimal 
foil. 
 
 
2. Conditions 
 
Since the optimal design of a hydrofoil is sensitive to the conditions in which it is operated, it is 
vital to identify the most likely conditions and then optimise for those. These are derived from 
historical weather data and for the purposes of this study for Auckland, New Zealand, where 
the last America´s Cup was held in 2021. The racing took place between the 10th and the 17th 
of March 2021. A wind limit was set allowing sailing if the true wind speed was between 6.5 
and 21 kts (America´s Cup, 2021).  
 
Table 5.1: Average daily wind speeds in Auckland from March 10th to March 17th in the 

years 2010 to 2020 in kts (Weather Underground, 2024) 

Date 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 
10th  7.65 5.04 5.91 7.13 3.48 7.39 7.65 12.95 5.39 9.65 12.77 
11th  14.60 6.00 9.04 5.13 5.21 4.69 10.95 12.43 7.73 4.69 8.69 
12th  19.47 3.82 16.16 5.21 4.87 6.78 5.13 11.82 12.08 3.82 5.82 
13th  13.90 3.91 11.82 5.82 4.52 5.65 4.17 11.99 18.16 6.34 5.65 
14th  12.51 5.13 5.74 5.74 7.56 5.47 4.17 9.82 12.17 4.43 5.56 
15th  13.73 3.74 5.91 6.43 19.12 11.04 6.00 8.52 4.17 6.78 6.60 
16th  9.99 5.04 4.78 9.38 14.86 13.90 6.17 4.26 5.91 3.65 5.91 
17th  11.82 3.74 9.21 12.51 7.91 11.38 6.00 3.74 6.43 5.65 13.73 

 
Table 5.1 shows the daily average wind speed recorded in Auckland from the 10th to the 17th 
of March in the years 2010 to 2020. This amounts to 88 days in total of which 42 were within 
the wind limit. The average wind speed of those was 11.3 kts with a standard deviation of 3.3 
kts. Therefore, the wind speeds 8, 11 and 14 kts best represent the most-likely conditions and 
are chosen as the base for the optimisation. The America´s Cup in its current state is a pure 
up- and downwind race, so an upwind and a downwind condition are considered per wind 
speed. This results in the six conditions shown in Table 5.2. Equal weights (𝑤i) are used for 
the conditions, these can however be changed if the influence of particular conditions should 
be increased or decreased.  
 

Table 5.2: Conditions for the optimisation 

Condition 𝑉TW [kts] Course Weight 𝑤i 

1 8 Upwind 1 

2 8 Downwind 1 

3 11 Upwind 1 

4 11 Downwind 1 

5 14 Upwind 1 

6 14 Downwind 1 
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3. Parametric model 
 
The parametric model generates the shape of the hydrofoil based on the current set of design 
variables. It describes the foil´s planform, spine-form and twist-distribution through ruled 
surfaces and is directly connected to the lifting line method computing the hydrofoil forces. The 
model is shown in Figure 5.2. Four stations are used to define the extension of the foil arm 
with an x-coordinate of the leading-edge point and a chord-value each. The stations are 
automatically, equally spaced in z-direction between the end of the foil arm and the root of the 
foil wing. Due to the symmetry requirement, no parameters for the y-position or the twist are 
considered. This results in 8 variables for the extension. The foil wing is defined through the 
port side half wing with 15 stations and is mirrored to obtain the starboard side wing, which 
ensures symmetry. Each station is described with an x- and a z-value of the leading edge and 
a chord and a twist variable. Station 1 describes the root of the wing and is fixed in the middle 
of the box for symmetry purposes. Station 15 defines the tip of the wing with an additional y-
variable setting the span of the foil but is fixed at the bottom of the foil box in terms of z-position. 
The intermediate stations are automatically spaced equally in between in the y-direction 
resulting in 60 parameters for the foil wing. The full 68 variables are combined in the design 
variable vector  
 

𝒅𝒗 =  (FAE𝑥1 ,  FAE𝑐1 ,  FAE𝑥2, … , FWP𝑡15)
𝑇. (1) 

 
 
FAE corresponds to foil arm extension and FWP is the port side foil wing. 𝑥, 𝑦, 𝑧 are the 
coordinates of the leading-edge point of a station, 𝑐 its chord length and 𝑡 its twist. The index 
denominates the station number. The cross-sectional properties are defined through the lift 
curve slopes, the zero lift angles and the profile drag coefficients at every station and are not 
part of the optimisation. For more details see Tannenberg et al. (2025). The model is based 
on the C++ library TinyNURBS (Jayaraman, 2022) and uses the python library NURBS-python 
(Bingol, 2022) for visualisations. 
 

 
 

Figure 5.2: Detailed parametric model with 68 variables; FAE = Foil arm extension; 
FWP = Foil wing port; as = automatically spaced 
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4. Velocity prediction model 
 
The physics model of the yacht is developed in FS-Equilibrium, a velocity prediction tool that 
can solve for stationary and dynamic sailing states in six degrees of freedom. The program 
has been successfully applied to foiling yachts in the past. Examples are the C-Class 
Catamaran Groupama (Paulin et al., 2015), the International Moth (Eggert, 2018), the AC50 
(Hansen et al., 2019) and the QFX Lake Racer (Melis et al., 2022). The AC75 model is briefly 
introduced in this section, for a more thorough description see Tannenberg et al. (2023). For 
more information on the VPP in general see Hochkirch (2018). The VPP model is shown in 
Figure 5.3. 
 

 
Figure 5.3: Graphical user interface of FS-Equilibrium showing the AC75 model 

 
For the performance prediction of the AC75, the stationary mode of FS-Equilibrium is employed 
with a tailored solver set-up. The program solves for sailing states where all forces and 
moments 

𝒇𝒎 = (𝑓𝑥 , 𝑓𝑦, 𝑓𝑧, 𝑚𝑥 , 𝑚𝑦 , 𝑚𝑧)
𝑇

(2) 

equate to zero. This is achieved using a Newton-Raphson method that alters specified state 
and trim variables until force equilibrium is found and returns the resulting velocity made good,  
 

𝑉MG(𝒇𝒎). (3) 

The state and trim variables used are shown in Table 5.3 and best represent the sailing style 
of an AC75 yacht.  

Table 5.3: Solver set-up of the AC75 physics model 

Degree of freedom Balancing variable 
𝑓𝑥 boat speed 𝑉𝑆 (state) 
𝑓𝑦 leeway angle λ (state) 
𝑓𝑧 rake angle 𝛿ra (trim) 
𝑚𝑥 sail-power (flat) τ (trim) 
𝑚𝑦 elevator rake 𝛿𝑒 (trim) 
𝑚𝑧 rudder angle 𝛿𝑟 (trim) 

 
“Force Modules” are employed to compute the forces from the components of the yacht such 
as the hydrofoils and the sails. The full list of modules is given in Table 5.4. The forces and 
moments generated by the hydrofoils are modelled using an advanced lifting line method (LLT) 
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(Phillips and Snyder, 2000). The foil arm extension is discretised with 10 stations, 30 stations 
are used per half wing. This discretisation has delivered the most robust optimisation results, 
for more information see Tannenberg et al. (2025). Additionally, the model computes the forces 
and moments from the weight of the foil based on an integration of the sectional areas along 
the span and an average density of 8305 kg m-3 (75% high density steel, 20% lead and 5% 
hydraulic oil to represent the control systems). The bulb is sized automatically to fulfil the 
weight requirement. The method is directly coupled to the parametric model and returns the 
hydrofoil forces as a function of the design variables, 
 

𝒇𝒎(𝒅𝒗). (4) 

This results in the velocity made good being a function of the design variables considering the 
behaviour of the entire yacht 

𝑉MG(𝒅𝒗). (5) 

The force module of the hydrofoil and the entire yacht model have been validated, for details 
see Tannenberg et al. (2025). It currently predicts boat speeds that are slightly too high which 
might be a consequence of the tuned aero model. A more accurate model of the full sail plan 
based on a Boundary Element Method is currently under development (Melis et al., 2024) and 
will be implemented in the future. 
 

Table 5.4: AC75 force modules 

Component Model Comments 
Platform gravity Gravity model Weight and CoG from AC75 rule 

Crew gravity Gravity model Weight from rule, CoG estimated 
Hull aero Coefficient-based Coefficients from Hoerner (1965) 
Sails aero Tuned IMS2003 Factor of 1.3 on driving force 

Rudder hydro Lifting Line Based on Phillips and Snyder (2000) 
Main foil hydro Lifting Line (adjoint) Same as for Rudder, but adjoint 

 
 
 
5. Multi-condition gradient-based optimisation strategy 
 
The velocity prediction model of the AC75 is integrated into an automated optimisation routine. 
A gradient-based strategy is chosen over a derivative-free approach as these are much more 
computationally expensive and prohibit detailed optimisation with high numbers of design 
variables.  
 
The developed methodology starts with an initial set of design variables. Based on this set, the 
parametric model generates the hydrofoil shape and passes it to the hydrofoil force model. 
The VPP is now run solving for the equilibrium sailing state of the AC75 in the first condition 
with the initial hydrofoil. This is an iterative process where the hydrofoil forces are calculated 
numerous times by the lifting line method for changing states and trims (VPP loop). Once a 
valid equilibrium sailing state is found, the VPP returns the achieved 𝑉MG. In a second step, 
the gradient for this condition is computed. This is explained in detail later. The gradient is 
stored, and the process is repeated for the next condition. Once, all six conditions have been 
evaluated, the gradients are averaged and passed to the optimisation algorithm IPOPT. IPOPT 
identifies a better performing set of design variables which is sent to the parametric model 
again. A new averaged gradient is computed and passed to IPOPT again (optimisation loop). 
The process is repeated until the design has converged to the optimum. This is shown below 
in Figure 5.4. 
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Figure 5.4: Multi-condition optimisation approach using the adjoint VPP 
 
The most expensive part of gradient-based optimisation is the computation of the gradients. 
These are usually approximated using the finite difference method where a single design 
variable is perturbated, the whole function is evaluated, and the influence of the design variable 
is computed from the change in the output and the step size of the perturbation. This process 
must be repeated for every other design variable to obtain a single full gradient. Therefore, for 
a function with 68 input variables (hydrofoil design variables 𝒅𝒗) and 1 output (𝑉MG), the 
approximation of the full gradient requires 69 function evaluations (VPP runs). This is 
prohibitively expensive as the gradient must be computed hundreds of times during an 
optimisation run.  
 
The only feasible approach to compute the gradient of a function with a very high number of 
input/design variables and a low number of outputs is the adjoint method which corresponds 
to a reverse application of the chain rule to a function. By reversely applying the chain rule, the 
gradient can be computed with a single partial derivative per output variable, independent of 
the number of input variables. This is opposed to forward differentiation and finite difference 
which require the computation/approximation of one partial derivative per input variable. 
Therefore, the adjoint approach allows for very high numbers of design variables to be 
optimised at a small computational cost which is the key to detailed optimisation.  
 
However, the reverse differentiation of a complex function is a challenging task. Algorithmic 
differentiation tools can speed up the process and reduce errors but still require extensive 
preparation of the code for differentiation. The finite difference method on the other hand is 
simple to implement. Therefore, a hybrid approach was developed that uses the adjoint 
method for the bottleneck of the function and finite difference for the remainder of the program.  
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Hydrofoil forces and moments fm

FS-Equilibrium

Newton-Raphson iteratively alters state and trim until equilibrium sailing state is found, returns VMG



Chapter 5 

107 

The two gradient parts are then combined using the chain rule. This makes the run time 
independent of the number of input variables, while it significantly reduces development time. 
The resulting gradient is computed at a small multiple of a single normal evaluation of the VPP 
model, for any number of design variables. 
 
The parametric model of the foil and the lifting line method are the bottleneck of the routine. 
Here, the gradients of the 6 forces and moments 𝒇𝒎 with respect to the 68 input variables 𝒅𝒗 
have to be computed. The six gradients are combined in the Jacobian matrix  
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         (6) 

 
 
 
where the rows of 𝐽𝒇𝒎(𝒅𝒗) are the transposed gradients of every force/moment with respect 
to 𝒅𝒗. 𝐽𝒇𝒎(𝒅𝒗) has 68 columns for the 68 design variables. Using the adjoint method, the 
Jacobian matrix can be calculated by evaluating six partial derivatives only (as opposed to 68 
with the conventional methods). This holds true for any number of design variables. The 
reversely differentiated version of the parametric model and the lifting line method is thereby 
obtained using the algorithmic differentiation tool ADOL-C for differentiation of C/C++ code. 
For more information on ADOL-C see Walther and Griewank (2012) and on algorithmic 
differentiation in general see Griewank and Walther (2008). 
 
The remainder of the VPP computes the 𝑉MG influenced by the hydrofoil forces and moments. 
This requires the computation of the gradient of 𝑉MG with respect to 𝒇𝒎. With 6 inputs and 1 
output, the number of input variables is higher than the number of output variables. This does 
again favor the adjoint method, but since the absolute number of inputs is small, the efficiency 
gain is negligible. Hence, the finite difference method is used here which significantly reduces 
development time. The gradient is given by  
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(7) 

 
 
and is calculated using a forward finite differencing scheme. Employing the chain rule 
[𝑓(𝑔(𝑥))]′ = 𝑓′(𝑔(𝑥)) ∗ 𝑔′(𝑥), the two gradient parts can be linked together, where 𝑔′(𝑥) 
corresponds to  𝐽𝒇𝒎(𝒅𝒗) and 𝑓′(𝑔(𝑥)) to ∇𝑉MG

𝑇(𝒇𝒎). The resulting gradient is 
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and represents the influence of the hydrofoil design variables on the 𝑉MG of the yacht. The 
gradient has 68 rows. As shown in Figure 5.4, this process must be performed for every 
condition. The six resulting gradients are then combined in a weighted average,  
 

 ∇𝑉MG−Av
𝑇(𝒅𝒗)   =  

∑ 𝑤𝑖  ∇𝑉MG−i
𝑇(𝒅𝒗)6

𝑖=1

∑ 𝑤𝑖
6
𝑖=1

, (9) 

 
  
resulting in a single gradient for single-objective optimisation where 𝑖 denominates the 
condition and 𝑤𝑖 are the weights. This multi-condition, but single-objective approach allows 
much faster optimisation than a multi-objective optimisation and is the preferred option as the 
desired weighting of the conditions should be based on the expected likelihood of the 
conditions. Averaging the gradients is the same as differentiating the averaging of the different 
𝑉MG but can be conducted in parallel and is hence faster.  
 
The Jacobians and the full gradients have been validated with finite difference-based gradients 
and showed excellent agreement. For more details on the gradient computation and the 
application of ADOL-C to the parametric model and the lifting line method see Tannenberg et 
al. (2025). This also discusses the exploitation of the iterative nature of the Newton-Raphson 
method for even faster gradient computation. To further reduce computational time, the six 
conditions and their gradients can also be computed in parallel as opposed to the serial 
computation shown in Figure 5.4. This means the multi-condition optimisation would then have 
a run-time similar to that of a single-condition optimisation (around 1.5 h).  
 
 
6. Individual optimisations 
 
Individual optimisations for the six conditions have been performed for comparison with the 
multi-condition optimisation. Figure 5.5 shows the resulting hydrofoil shapes and Table 5.5 
gives relevant metrics of the optimum designs and their performance. The individual 
optimisations are all started from the same initial geometry that was also used in Tannenberg 
et al. (2025). This geometry represents the middle of the design space with respect to the 
bounds on extension length, span, chord- and twist-distribution, as well as the x-position of the 
leading-edge points. The bounds are set to ensure that the foil candidates will stay within the 
limits of the foils box and that no part of the foil wing will be above the waterline. The semi 
span of the foil is limited to 1.88 m, so the pocket in the box for a potential winglet is not 
considered, but an optimisation including a winglet will be commenced in the future. In the x-
direction every leading-edge point can be manipulated by +- 0.2 m. The twist at every station 
can be changed within +- 3°. Minimum and maximum chord-values are set for every wing 
station. The values are chosen such that the foils will not become too thin structurally or too 
large so that the foil will be above the 921 kg. The chord of the extension stations can be 
changed by +- 0.2 m from the initial design. In condition 1, the slowest of all, the boat is pitched 
by 0°, while a bow-down pitch of 1.5° is used for the higher speed conditions.  
 
The convergence criteria is set to 1x10-4 in conjunction with an acceptable level criterium 
stopping a run if the changes are below 1x10-3 for five consecutive iterations. The maximum 
number of iterations is limited to 150.  
 
The six runs showed good convergence with the planform and the spine-form optimised early 
in the optimisation where their gradients are strongest while the twist-distribution with smaller 
influence, and therefore weaker gradients, was optimised at higher iteration numbers. All runs 
were terminated through the maximum iteration criterion. A single run took around 1.5 h to 
solve on a standard desktop PC. Also in some runs, the best performing foil wasn´t the last 
candidate, which is a consequence of imperfect convergence. It is believed to be a 
consequence of the iterative nature of the solver in conjunction with the use of finite difference 
for computing the VPP gradient. The solution, if not converged absolutely perfectly, reduces 
the accuracy of the gradient which is amplified by the use of the finite difference. At later stages 
of the optimisation, where the last little details with small influence are optimised, these 
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inaccuracies can hinder the convergence process. Nevertheless, the convergence is still good 
and delivered expected and high performing designs.  
 
 
Table 5.5: Design details and performance of the six individually optimised hydrofoils 

Condition/ 

Foil 

Extension 

length [m] 

Semi 

span [m] 

Lift-

distribution 

𝑉MG 

[kts] 

Gains 

𝑉MG [kts] 

Gains 

𝑉MG [%] 

Gains 

[s/1.5nm] 

1 0.6 1.88 trapezoidal 18.32 1.47 8.74 25.76 

2 0.6 1.88 elliptical 23.96 1.94 8.79 19.81 

3 0.6 1.88 elliptical 25.48 1.58 6.6 13.99 

4 0.6 1.779 trapezoidal 33.7 2.36 7.52 12.04 

5 0.6 1.88 elliptical 29.14 1.65 6.01 11.13 

6 0.6 1.75 elliptical 39.87 2.67 7.17 9.71 

 
 
In all six conditions the extension length is minimised, i.e. the anhedral angle is maximised. 
This minimises the wetted surface area and hence the profile drag for the given immersed 
volume. This was also found in a parametric study (Tannenberg et al, 2023). However, it 
contrasts with what was seen in the last America´s Cup, ETNZ with a T-foil (no anhedral angle) 
had the fastest boat. The T-foil was performing better as it allowed the use of a single flap and 
control system, which reduced the volume required inside the foil and hence the associated 
wetted surface area. The possibility of reducing the required volume through the single-flap 
approach was not considered in this optimisation. So, for a foil of constant density with two 
flaps, the maximum anhedral foil is still superior. It has the lowest wetted surface area and is 
therefore correctly identified as the optimal foil. The single-flap approach could be explored in 
a separate run where a higher foil density is assumed and the extension length of the foil is 
fixed to the maximum of 1.3 m, which corresponds to a T-foil. Another benefit of the T-foil is 
that it can be operated as a surface piercing foil at high speeds. This allows the reduction of 
wetted surface area when not needed which is not possible for Y-foils that pierce the surface 
at a smaller angle as it promotes ventilation. However, ventilation cannot be modelled, and the 
foil wing is assumed fully immersed at all times. The lack of ventilation is not influencing the 
optimisation towards a lower anhedral and the maximum anhedral foil remains the optimal 
design for the physics modelled. While all six foils have the same extension lengths, they do 
not share the same spine-form. Foils 1, 2 and 3 have straight half wings, where only the tip is 
curved down slightly. The higher-speed foils 4 and 6 have half wings that are entirely curved 
downwards. Candidate 5 has a spine that is first curved upwards and then curved downwards, 
which might be caused by convergence problems. 
 
The span of the foil is at the maximum for the slow and medium boat speed conditions (1, 2, 
3, and 5), but is reduced for the higher speed conditions (4 and 6). Increasing the span reduces 
the induced drag which is dominant at lower speeds. At higher speeds, the profile drag is 
dominant, which can be reduced by reducing the area of the foil. It outweighs the higher 
induced drag caused by the shorter span.  
 
The chords across the 15 wing stations and the four extension stations is minimised to the 
lower bounds in every condition. Consequently, more of the weight is stored in the bulb which 
has a lower ratio of wetted surface area to volume. Therefore, profile drag is reduced, while 
induced drag, which depends on the span only, is not affected. Hence, the reduction of the 
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chord has a huge influence on the performance and is relevant in all assessed conditions. 
However, if the chord becomes too small, structural problems are to be expected and the take-
off speed is increased. This is not modelled in the optimisation and is the reason for the use of 
the lower bounds.  
 
A notable feature is the aft sweep of the foils and the even further aft raked wingtips. The 
slower foils 1, 2 and 3 have significant sweep with convex leading edges, while the higher 
speed foils 4, 5 and 6 have more moderate sweep and straight or slightly concave leading 
edges. All foils feature an even more aft raked wingtip. No amount of sweep or wingtip rake 
was expected, so further investigations are commenced to identify the reason for the sweep. 
In a first step it is investigated why the higher speed foils do not exhibit significant sweep while 
this seems to be beneficial for the lower speed foils. The higher speed foils generally require 
more righting moment, which is achieved by shifting the centre of effort of the foil aft. This 
results in the elevator having to produce lower lift or even down force to maintain pitch 
equilibrium. As a consequence, more vertical lift has to be produced by the main foil to support 
the weight of the yacht. The main foil is further outboards than the elevator and hence creates 
more righting moment. Therefore, it is expected that the entire foil is pulled back when 
optimised for higher speed conditions. This can be observed for the root of the foils which is 
significantly further aft in the higher speed designs. The tips however remain in roughly the 
same position as before reducing the sweep. However, the position of the tips is already very 
close to the lower bounds potentially limiting the sweep. For this reason, a separate 
optimisation for condition 6 is started with additional freedom. In this run, the bounds of +-0.2 
m on the x-values of the leading edge are extended to +-0.4 m. While the root remains in the 
same position, the tip is now shifted aft much further. This leads to a similarly significant sweep 
as for the low-speed foils and shows that the sweep is not driven by the conditions but must 
result in generally higher efficiency. In a second step, the root of this unexpected efficiency 
gain is investigated. Therefore, an optimisation run for condition 3 is commenced that has 
exactly the same freedom as previous runs, but without the ability to sweep. The run identifies 
the same spine form and chord distribution as for the swept foil, with a slightly different twist-
distribution to achieve the elliptical lift-distribution for the non-swept version. The non-swept 
foil is 0.13 % slower in terms of 𝑉MG compared to the swept foil and has a slightly lower lift-to-
drag- and side-force-to-drag-ratio. Analysing the different drag components, it is found that 
profile drag, and the bulb drag are nearly identical while the induced drag is 4.6% lower on the 
swept wing. A plot of the induced drag components per station shows that every station 
generates induced drag on the non-swept wing. The swept wing however, produces a small 
“induced thrust” on the two most outward stations of the tips. The next few stations going 
further inboards produce induced drag but much smaller than on the non-swept wing. This 
causes the overall reduced drag of the swept wing. This feature is believed to be similar to the 
raked wingtips on aircrafts such as the Boeing 787 Dreamliner (Boeing, 2024) and should be 
investigated further. See for example Norton (1921) or Gold and Visser (2012). It might be a 
feature not yet known and exploited in hydrofoil design and could lead to efficiency gains of 
many other hydrofoils. However, winglets are still believed to result in a higher efficiency for 
this limited-span problem, but they have been prohibited by the bounds of this study. A 
separate optimisation should be performed including the freedom for winglets. 
 
An elliptical lift-distribution is known to exhibit minimum induced drag. The lift-distribution is 
mainly influenced by the planform, the chord-distribution and the twist-distribution. However, it 
was observed in many runs that the spine-form, the planform and the chord-distribution are 
first optimised to achieve minimum profile drag. The twist-distribution is then optimised at later 
iterations to achieve the elliptical lift-distribution and hence minimum induced drag. Four of the 
six runs found a twist-distribution that results in the desired elliptical lift-distribution. These were 
runs 2, 3, 5 and 6. The optimal foils for condition 1 and 4 did not achieve an elliptical lift-
distribution. This was not expected, especially for condition 1 with the lowest boat speed, where 
induced drag has the highest influence. This appears to be caused by convergence problems 
that hinder IPOPT from optimising the finer details.  
 
In general, the optimisations have achieved very significant gains in performance, even if not 
fully converged at all times. The 𝑉MG of the six optimal foils is given in Table 5.5 along with the 
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gains over the initial foil in kts, % and the deltas in s/1.5nm. 1.5 nm is the length of a typical 
leg in an America´s Cup race. A single race usually consists of six such legs resulting in 9 nm 
total. The results show that the optimisations have on average increased the 𝑉MG by 7.47%. 
Foil 1 achieved an 8.74% gain which amounts to a time saving of 25.76 seconds over a 1.5 
nm upwind leg. Foil 2 achieved a 19.81 s time saving on a single 1.5 nm downwind leg. This 
shows the immense potential of hydrofoil design and the enormous capability of the developed 
approach to extract this potential.  
 
 

 

Figure 5.5: Plan- and spine-forms of the six individually optimised hydrofoils 
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7. Multi-condition optimisation 
 
The multi-condition run is started from the same initial foil as runs 1 – 6 and shares the same 
convergence criteria. The same bounds apply on spine- and planform design. The bounds on 
the twist variables have been reduced from +-3° on the initial value to +-2°. This yields better 
convergence for this optimisation and should not affect the design as the changes in twist are 
usually well below +-2°. Initially, a maximum of 150 iterations was used. In previous single-
condition runs, extending the number of maximum iterations has not led to better designs. In 
the multi-condition optimisation however, better performing candidates have been found after 
iteration 150, so the limit is extended to 200 iterations. Figure 5.6 shows the convergence of 
the multi-condition run. The optimisation converges well with ever evolving performances with 
the exception of a little dent around iteration 60. The best design is found at iteration 163. After 
that no better designs are found, hence they are not shown in the convergence history. The 
run terminates with reaching the maximum number of iterations. The run has solved in around 
9 h on a standard desktop PC, but parallelising the gradient computation would mean that it 
could also be performed in around 1.5 h.  
 

 
Figure 5.6: Convergence history of the multi-condition optimisation run 

 
The optimum multi-condition foil is shown in Figure 5.7. It has an extension length of 0.6 m 
and minimum chord at each station, so like the individually optimised foils. The semi span of 
the foil is at the maximum with 1.88 m. The spine of the half wing is mostly straight and similar 
to foil 2, whose speed is in the middle of the range. The leading edge of the foil is convex, like 
the lower speed foils 1, 2 and 3, but has a more moderate sweep. The twist-distribution is 
tailored to achieve an elliptical lift-distribution in all conditions. The final twist-distribution is 
shown in Figure 5.8. Station 1 is the junction and Station 15 the tip of the foil.  
 
 

 
 

Figure 5.7: Plan- and spine-form of the optimal multi-condition foil 
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Figure 5.8: Optimum twist-distribution of the multi-condition foil 

 
The optimal foil reaches an average 𝑉MG of 28.37 kts compared to foil 0 which achieved 26.47 
kts and results in a 1.9 kts or 7.2% gain. This is very significant with a time saving of 13.65 
seconds per 1.5 nm leg or 81.9 seconds per 9 nm race. It once again demonstrates the high 
importance of hydrofoil optimisation and the enormous power of the developed approach. 
Several more starting points have been tested and resulted in either the same optimum design 
or quickly developed very unrealistic geometries for which no equilibrium could be found 
anymore.  
 
 
8. Comparison of the optimal foils 
 
Three comparisons are performed to verify the correct functioning of the optimisation routines 
and to acquire an understanding of the differences in the optimal foil designs. First, the 
individually optimised foils are compared to each other in all six individual conditions. This is 
shown in Table 5.6 and demonstrates how much the optimal foils differ for the different 
conditions. The performance is given in seconds per leg of the race, where one leg is typically 
around 1.5 nm.  
 

Table 5.6: Foil performance of the individually optimised foils in the six individual 
conditions in seconds per leg (1 leg = 1.5 nm) 

Cond. / Foils 1 2 3 4 5 6 
1 294.79 294.90 294.91 296.35 296.67 297.79 
2 227.49 225.35 227.31 227.74 227.74 227.81 
3 212.40 212.01 211.96 212.34 212.03 212.48 
4 160.75 160.44 160.47 160.22 160.54 160.11 
5 185.88 185.51 185.49 185.28 185.34 185.18 
6 136.41 136.18 136.21 135.77 136.10 135.44 

 
The results reflect that a foil specifically optimised for one condition should perform best in this 
condition, while the foils optimised for other conditions should perform less well. Foil 1 for 
example is specifically optimised for condition 1 and hence performs best in this condition. 
Foils 2 to 6 are optimised for ever faster conditions and therefore perform less well in condition 
1 with descending order. In condition 1, Foil 1 is 3 s faster on a leg of 1.5 nm than foil 6, the 
slowest foil in this condition. This amounts to a lead of 1.22 boat lengths at the end of the leg.  
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This is a significant advantage in an America´s Cup race in terms of direct performance, but 
even more so as it opens strategic opportunities that can lead to additional performance gains. 
This trend is continued in conditions 2, 3 and 6. In all of those, the foil that is specifically 
optimised for the respective condition performs best, whereas the foils optimised for 
slower/faster conditions perform less well. This proves that the routine is sensitive and capable 
enough to identify optimal foils for their respective conditions. Only in condition 4 and 5, this is 
not the case. Here, foil 6 is faster than foils 4 and 5, respectively. This is believed to be a 
consequence of the imperfect convergence, that lead to the non-elliptical lift distribution of foil 
4 and the unexpected spine form of foil 5. However, Foil 6 is only 0.11s faster than foil 4 in 
condition 4 and 0.16s faster than foil 5 in condition 5, so the differences are marginal. 
 

Table 5.7: Optimal single-condition foils vs optimal multi-condition foil in the 
individual conditions 

  Single-best Multi-best Delta  Delta  

Condition  VMG [kts] VMG [kts] [s/1.5nm] [boat lengths/1.5nm] 

1 18.32 18.30 0.27 0.11 

2 23.96 23.96 0.00 0.00 

3 25.48 25.48 0.01 0.00 

4 33.70 33.67 0.17 0.13 

5 29.14 29.12 0.08 0.05 

6 39.87 39.67 0.67 0.60 
 

 
In the second test, the optimal multi-condition foil is now analysed for every single condition. 
Its performance is compared to the performances of the respective optimal single-condition 
foils. The individual foils should perform better as they are optimised for their respective 
individual condition only as opposed to the multi-condition foil which is optimised for the range 
of conditions. The results are shown in Table 5.7. In five of the six conditions the optimal single-
condition foil performs better than the optimal multi-condition foil generally verifying the correct 
functioning of the routines. In condition 2 however, the multi-condition foil achieves the same 
speed. The reason for this is that the average boat speed encountered in the multi-condition 
is very close to the boat speed of condition 2. This means the foils are optimised for nearly the 
same condition. Still, foil 2 should be slightly faster in condition 2, but run 2 has potentially not 
converged as well as the multi-condition run and the resulting design is hence similar in speed. 
Nevertheless, the other single-condition foils do perform better than the multi-condition foil, 
with increasing deltas towards the slowest and fastest conditions.  
 
 

Table 5.8: Optimal single-condition foils vs optimal multi-condition foil in the multi-
condition 

Foil Average VMG [kts] [Delta s/ 9nm] Delta [boat lengths/9nm] 

Multi 28.37 0.00 0.00 

1 28.29 3.32 2.11 

2 28.36 0.27 0.17 

3 28.33 1.70 1.09 

4 28.33 1.47 0.94 

5 28.30 2.53 1.61 

6 28.33 1.31 0.83 
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However, hydrofoils are used across a range of conditions rather than a single condition, so 
the third test compares the different optimal foils on how they perform across the six conditions 
combined. This includes the optimal multi-condition foil, as well as the optimal single condition 
foils. Here, the multi-condition foil should perform best, as it is optimised exactly for this trade-
off of conditions. The foils are compared in terms of average 𝑉MG and delta to the multi-
condition foil. A typical race in the 36th America´s Cup consisted of six legs with 1.5 nm each, 
which amounts to 9 nm per race. As the multi-condition rather represents a whole race than a 
single leg, the deltas are now given in boat lengths per 9nm. The results are shown in Table 
5.8. As expected, the optimal multi-condition foil performs best, as it was specifically optimised 
for this trade-off of conditions. Foils 1-6 which perform best in their respective niches, do 
perform less well across the board of conditions. This again confirms the correct functioning of 
the single-condition and the multi-condition optimisations and demonstrates their sensitivity 
and capability. The multi-condition foil is between 0.27 s and 3.32 s faster than the individual 
foils. This amounts to a lead at the end of the race of 0.17 and 2.11 boat lengths, respectively.   
 
In general, this study has shown four things:  
 

• Hydrofoil optimisation is immensely important and the developed adjoint VPP in 
combination with IPOPT is a powerful approach. The method allows the optimisation 
of 68 design variables with a full physics model of the AC75, where traditional methods 
could only optimise a handful of parameters. This powerful approach has achieved an 
average gain in 𝑉MG of 7.47% in the single-condition optimisations. In condition 1 it 
resulted in a 25.76 s time saving on a single upwind leg, which is race-dominating.  
 

• The sensitivity of optimal hydrofoil design to the conditions in which the foil is operated 
was shown. Foil 6 for example, which was optimised for condition 6 (downwind in 14 
kts TWS), was 3 s slower on a single leg in condition 1 (upwind in 8 kts TWS), which 
was specifically optimised for this condition. The delta is smaller when compared to the 
delta of initial to optimised foils but is still very relevant as it would amount to a double-
digit delta over a whole race.  
 

• The optimal foils of the higher speed conditions exhibit a planform that shifts the centre 
of lift further aft as compared to the lower speed foils. This causes more righting 
moment, but also additional induced drag on the rudder and the main foil. Making the 
right trade-off for every condition is only possible with the full physics model and 
underlines the importance of system-based optimisation as it was shown that the 
rudder and sail forces influence the optimal foil design.  

 
• It was shown how a hydrofoil can be optimised for a variety of conditions including up- 

and downwind legs in different wind speeds. The conditions were derived from 
historical weather data and form the best base for a reliably high performing foil design. 
The multi-condition optimisation gained 7.2% in average 𝑉MG which amounts to 81.9 
seconds over a whole race, which is again absolutely race-dominating. Comparing the 
optimal multi-condition foil to the optimal single foils, the deltas are smaller, but still 
significant, as every meter counts. The multi-condition foil was for example 3.3 s faster 
than foil 1 over a whole race with the range of conditions. This is results in a 2.11 boat 
length advantage at the finish.  
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9. Conclusions 
 
Hydrofoils are operated across a wide range of conditions and their optimal design is sensitive 
to these conditions. This has to be accounted for in the optimisation. Therefore, a multi-
condition hydrofoil optimisation strategy was developed. The strategy is based on a stationary 
model of the entire yacht integrated into a gradient-based optimisation routine. The gradients 
are computed using a combination of the efficient adjoint method and finite differences. This 
allows the optimisation of any number of design variables and is the key to detailed design. 
The existing method was previously only capable of optimising for a single condition but was 
extended to multi-condition optimisation in this paper. This was achieved by computing the 
𝑉MG and the gradient of multiple conditions and then averaging them at every iteration to obtain 
a single objective. The developed routine was applied to an AC75 type America´s Cup yacht 
in six different conditions. The six conditions were identified as the most-likely ones at the time 
and venue of the last America´s Cup and were derived from historical weather data. The 
resulting optimal multi-condition foil is 7.2 % faster than the initial foil, which amounts to 81.9 
s time saving over a 9 nm race. In addition, the optimal multi-condition foil was compared to 
foils optimised for each condition individually. Here, it was shown that the multi-condition foil 
performs best across the range of conditions, while the optimal individual foils perform best in 
their respective niche. This proves the sensitivity of the physics model to changing conditions 
and the correct working of the optimisation routine. The multi-condition foil was 0.26 s to 3.3 s 
faster than the individually optimised foils over a 9 nm race in the range of conditions. The 
strategy can be extended to optimise for more conditions and with more design variables. It 
can be used to optimise the hydrofoils of any hydrofoiling craft and is not only relevant to sailing 
yachts but also to the increasing number of commercial and recreational hydrofoiling motor 
vessels.  
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Chapter 6 Verification and validation 

Every part of the optimisation routine has been verified/validated. This is reported in chapters 3 - 

5. An overview of the verification and validation tests is presented in Table 6.1 with references to 

the relevant sections in the papers. Additional tests, which have been too comprehensive to 

address within the papers, are discussed in the following.  

 

Table 6.1: Verification and validation studies 

Method Verification/Validation Outcome Reference 
Yacht model -  

VMG 
Comparison with recorded data from the 

yachts collected during the last America´s 
Cup, filtered for representative situations 

Good 
agreement  

Paper 1 

Lifting line method - 
L/D-ratio 

Comparison with semi-empirical method 
by Whicker & Fehlner (1958)  

Good 
agreement 

Paper 1 

Lifting line method - 
Lift-distribution 

Comparison with Athena Vortex Lattice 
and RANS CFD predictions 

Good 
agreement 

Paper 2 

Foil weight 
computation 

Comparison with commercial CAD-tool Good 
agreement 

below 

Foil CoG 
computation 

Comparison with commercial CAD-tool Good 
agreement 

below 

Lifting line method - 
Gradients 

Comparison with finite difference-based 
gradients 

Excellent 
agreement 

below 

Yacht model -
Gradients 

Comparison with finite difference-based 
gradients 

Good 
agreement 

below 

IPOPT Used on optimisation test functions Excellent 
agreement 

below 

IPOPT + ADOL-C Used on optimisation test functions Excellent 
agreement 

below 

General design 
optimisation 

Comparison with parametric study and 
finite difference-based optimisation 

Excellent 
agreement 

Paper 2 / 
below 

 

6.1 Foil weight and centre of gravity 

The weight of the foil and its centre of gravity are important aspects for the performance of the 

hydrofoils. They must be computed based on the current hydrofoil design to be correctly 

considered in the optimisation.  

The weight of the hydrofoil is computed using a 2.5D approach. Therefore, every foil part is 

discretised into several stations. At these stations, the local chord of the current design is 

evaluated. The local chord and the sectional area coefficient of the foil cross-section are then 

used to compute the sectional area at every station. These sectional areas are integrated using 

Simpson´s rule to obtain an approximation of the volume of the foil part. An initial study for a 
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simple geometry has shown that 101 stations per foil part deliver accurate results, while still 

being computationally cheap. The volume of the foil part and the average density of the hydrofoil 

are used to compute the part´s weight. The weights of the parts are summed to obtain the overall 

foil weight. A bulb is then automatically sized to meet the weight requirement of 921 kg per foil. 

The bulb is located at the junction of the extension and the foil wing. The intersection of the 

junction and the bulb is thereby not considered. This introduces slight inaccuracies. To 

understand the extent of these inaccuracies, two foils from the parametric study are analysed. 

Candidate 1 has very low chord, high anhedral and a large bulb, Candidate 70 has no anhedral 

and no bulb (Figure 6.1). Their weight is computed with the 2.5D approach and a 3D approach 

integrated in a commercial CAD-program.  

 

Figure 6.1: Foil candidates used for weight and centre of effort validation 

The results of this comparison are presented in Table 6.2 and show an excellent agreement for 

the foil without bulb (1%) and good agreement for the foil with bulb (4.5%). This is deemed 

sufficient. Further tests have shown that curvature in the foils is another source of inaccuracy 

when computing the foil weight with the 2.5D approach. These curvature-related inaccuracies 

have amounted to differences of 3.2% for extreme cases. It was tested whether the curvature of 

the optimal foils in the large optimisations stems from the optimiser exploiting these 

inaccuracies.  It has been found that the curvature is introduced for fluid-dynamic reasons and is 

not related to the weight computation. 

 

Table 6.2: Weight computation comparison 

Candidate 2.5D internal method [kg] 3D CAD program [kg] Difference [%] 
1 921 881.2 4.5 

70 995.6 985.9 0.98 
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The centre of gravity of the foils is computed by taking moments around the sectional areas for 

every foil part. The lever arms of the parts are then combined for an estimate of the assembly’s 

centre of gravity in a weighted average. The results have been compared to measurements with a 

commercial CAD program. The results are presented in Table 6.3. They show an excellent 

agreement with a maximum difference of 0.6%. A similar comparison has been performed for the 

foil in the canted case (25°). The comparison yielded even better agreement when compared to 

the non-canted case. Foils with curvature have also been tested, and in extreme cases, this has 

led to an error of 4%. However, such geometries have not been experienced during the 

optimisations. It has also been verified that the centre of gravity computation approach is not the 

reason for the moderate curvature developed in some of the optimisations. 

 

Table 6.3: Centre of gravity computation comparison measured from transom (x), the centre line 

of the boat (y) and the waterline when floating (z) 

Candidate 2.5D internal method [m] 3D CAD program [m] Difference [%] 
1 - x 10.5 10.512 0.1 
      y 4.76 4.76 0.0 
      z 2.284 2.285 0.0 

            70 – x 10.5 10.558 0.6 
       y 4.76 4.76 0.0 
       z 2.751 2.746 0.2 

 

6.2 Gradients of the lifting line method 

This section presents two examples of gradients computed using the adjoint lifting line method. 

The first gradient is computed for an upwind sailing condition, the second one for a downwind 

condition, both in 11 kts of 𝑉TW and for the same design variables. The gradients are computed 

for the vertical lift to drag ratio of the hydrofoil with respect to its design variables. The foil shape 

is defined with six points, each with a x-, y- and z-value. A further three variables are used to define 

the position of the foil with respect to the transom of the AC75. For more detail see Section A.2. 

This makes a total of 21 input variables and one output variable. The design variables are shown 

in Table 6.4.  
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Table 6.4: Design variables 

Point x [m] y [m] z [m] 

Extension leading edge 0.62 2.36 -3.14 

Extension trailing edge 0.02 2.36 -3.15 

Port wing leading edge 0.36 4.36 -3.56 

Port wing trailing edge 0.0 4.36 -3.57 

Starboard wing leading edge 0.36 0.36 -3.56 

Starboard wing trailing edge 0.0 0.36 -3.57 

Foil reference point 10.0  2.4 0.55 

 

The gradients computed with the adjoint lifting line method are validated with finite difference-

based gradients. A central finite difference scheme is used modifying each input variable by + and 

- 0.001 m. Table 6.5 and Table 6.6 show the resulting gradients in comparison with the adjoint 

gradients. The comparisons show excellent agreement. The highest deviation of any of the 

gradient components is 0.005%, the differences of the other components are even lower. This 

confirms the correct functioning of the adjoint lifting line method. The reason these very small 

differences exist is that the finite difference-based gradients are an approximation, while the 

gradients from ADOL-C are correct to machine precision. Only the differences of the reference 

point components are significant, but the absolute values of these components are virtually zero 

and therefore provide the correct answer. The values in Table 6.5 and Table 6.6 are presented to 

ten significant figures to provide a level of accuracy where the differences can be observed.  

A normal evaluation of the lifting line method solved in 15 milliseconds whereas the computation 

of the gradient required around 105 milliseconds, so seven times as long. These values were 

measured for a model where the whole appendage is discretised with 60 vortices. Hence, the 

adjoint lifting line method is faster than finite differences from seven design variables upwards. A 

small model with twelve vortices resulted in a factor of only 1.5, while a large model with 120 

vortices achieved a factor of nine. The VPP was compiled in debugging mode which is generally 

slower. The according release version is roughly twice as fast. This is true for the normal 

evaluation of the method as well as the gradient computation.  
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Table 6.5: Gradients for condition 1 

Point Automatic 
differentiation [1/m] 

Finite difference  
[1/m] 

Deviation [%] 

Extension leading edge    

x 2.231239784 2.231261912 -0.000992 

y 34.17436714 34.17435221 0.000044 

z 393.2305945 393.2304572 0.000035 

Extension trailing edge    

x -5.96523216 -5.96525455 0.000375 

y -34.59042482 -34.59042428 0.000002 

z -393.0703051 -393.0701701 0.000034 

Port wing leading edge    

x 6.891639251 6.891650822 -0.000168 

y 43.17735333 43.17735466 -0.000003 

z 178.0717702 178.0716981 0.00004 

Port wing trailing edge    

x -4.321591689 -4.321603096 -0.000264 

y -35.07578983 -35.07579095 -0.000003 

z -176.2732882 -176.273223 0.000037 

Starboard wing leading 
edge 

   

x -0.7129217119 -0.7129217045 0.000001 

y -30.54552446 -30.5455252 -0.000002 

z 123.5480926 123.5480769 0.000013 

Starboard wing trailing 
edge 

   

x 2.778370154 2.778370131 0.000001 

y 23.84655041 23.84655092 -0.000002 

z -123.3571807 -123.3571705 0.000008 

Foil reference point    

x -6.435962874e-13 2.29327668e-08 3563322,357 

y 6.328004787e-11 1.136619687e-06 -1796073,874 

z 6.725286994e-12 -2.847500014e-08 423502,0075 
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Table 6.6: Gradients for condition 2 

Point Automatic 
differentiation [1/m] 

Finite difference 
[1/m] 

Deviation [%] 

Extension leading edge    

x 0.366701691 0.3667195498 -0.00487 

y 38.77812773 38.77810991 0.000046 

z 474.1977527 474.1973038 0.000095 

Extension trailing edge    

x -2.732626028 -2.732644032 -0.000659 

y -39.33238823 -39.33238268 0.000014 

z -474.3387957 -474.3383504 0.000094 

Port wing leading edge    

x 4.284403992 4.284413299 -0.000217 

y 51.54082568 51.54082635 -0.000001 

z 225.6250534 225.6248576 0.000087 

Port wing trailing edge    

x -2.493376352 -2.493367148 0.000369 

y -45.39957722 -45.39957694 0.000001 

z -223.9677934 -223.9679829 -0.000085 

Starboard wing leading 
edge 

   

x -1.334661691 -1.3346617 -0.000001 

y -37.98324233 -37.98324268 -0.000001 

z 166.0199622 166.0198443 0.000071 

Starboard wing trailing 
edge 

   

x 2.624366407 2.624366406 0 

y 33.10281958 33.10281967 0 

z -165.8789381 -165.8788261 0.000068 

Foil reference point    

x 3.317346398e-13 1.887379142e-08 -5689324.364 

y 4.191691438e-11 8.25153279e-07 -1968444,897 

z 3.919087277e-12 -1.856292897e-08 473754,3909 
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6.3 Gradients of the yacht model 

The gradient of the yacht model represents the influence of the design variables (in meters or 

degrees) on the 𝑉MG of the yacht (in kts). It is computed with the adjoint method for the bottleneck 

of the routine (lifting line and parametric model) and finite differences for the remainder of the 

program. The gradient parts are then combined using the chain rule. To validate these combined 

gradients, they are compared to gradients computed using the finite difference method for the 

entire yacht model. Since the accuracy of the finite difference method is depending on the step 

size, a step size study is performed first. This is shown in Table 6.7, where the gradients of the 

general design variables are presented for different step sizes.  It can be observed that the 

changes in gradients are significant if the step sizes are large (step sizes 1x10-1 to 5x10-4). This is 

due to high truncation errors.  Below this, the changes become smaller (1x10-4 to 1x10-6). 

Thereafter, the changes are higher again due to errors introduced through subtractive 

cancellation. Consequently, the step-size of 1x10-6 is believed to produce the most accurate 

approximation of the gradient and is used for the validation of the combined gradient.  

 

Table 6.7: Full finite difference-based yacht model gradient for different step sizes 

Step size: Extension [kts/m] Span [kts/m] Chord [kts/m] Taper [kts/m] Rake [kts/°] 

1.00E-01 -2.44615 -0.0752 -4.6075 -1.07129 -0.00394 

1.00E-02 -2.48574 0.022768 -4.82463 -1.14867 -0.00394 

5.00E-03 -2.54029 -0.07769 -4.66158 -1.24947 -0.00394 

1.50E-03 -2.33944 -0.07771 -5.13124 -1.71891 -0.00394 

1.00E-03 -3.3454 -0.07771 -5.46673 -2.05428 -0.00394 

5.00E-04 -4.35096 -0.07771 -6.4732 -1.04803 -0.00394 

1.00E-04 -2.33869 -0.07771 -4.45959 -1.04803 -0.00394 

1.00E-05 -2.33871 -0.07771 -4.45959 -1.04803 -0.00395 

1.00E-06 -2.33871 -0.07771 -4.45959 -1.04803 -0.00401 

1.00E-07 -2.33873 -0.07776 -4.45959 -1.04802 -0.00468 

1.00E-08 -2.33765 -0.07745 -4.45966 -1.048 -0.01326 

 

The combined gradient consists of an adjoint part, which is correct to machine precision, and a 

finite difference part, whose accuracy again depends on the step size used. Therefore, a second 

study is performed, where different step sizes are tested for the combined gradient. The results 

are shown in Table 6.8. 
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Table 6.8: Combined adjoint and finite difference-based gradient for different step sizes 

Step size: Extension [kts/m] Span [kts/m] Chord [kts/m] Taper [kts/m] Rake [kts/°] 

1.00E+02 -2.33586 0.442568 -2.57788 -0.41653 0.23192 

1.00E+01 -2.33905 -0.07793 -4.45874 -1.04782 -0.00387 

1.00E+00 -2.33914 -0.07808 -4.4607 -1.04838 -0.00393 

1.00E-01 -2.33915 -0.07809 -4.46087 -1.04843 -0.00394 

1.00E-02 -2.33915 -0.07809 -4.46088 -1.04843 -0.00394 

1.00E-03 -2.33915 -0.07809 -4.4609 -1.04844 -0.00394 

1.00E-05 -2.3394 -0.0772 -4.45763 -1.04733 -0.00353 

1.00E-07 -2.34075 -0.06159 -4.4108 -1.03098 0.003451 

1.00E-10 -41.2304 42.65019 157.8579 55.95726 19.85466 

 

It is shown that the optimal step size is 1x10-3, as the truncation error is minimal, and the 

subtractive cancellation is not yet affecting the gradient. Therefore, this step size is used 

subsequently. To validate the resulting combined gradient, it is compared to the full finite 

difference-based gradient computed earlier. The comparison is shown in Table 6.9. The results 

show excellent agreement for most variables (0.02% – 0.09% of deviation) and good agreement 

for some (0.36% – 1.61%). The same comparison has been performed for the yacht model 

gradient with the full 68 design variables. The large gradient showed excellent agreement with the 

large finite difference-based gradient with all deviations below 0.08%, most of them significantly 

lower. Just two variables showed a higher deviation with 3.5% and 3.9%. This further confirms the 

correct functioning of the combined yacht model gradient computation. 

 

Table 6.9: Combined gradient vs full finite difference-based gradient 

Method Extension [kts/m] Span [kts/m] Chord [kts/m] Taper [kts/m] Rake [kts/°] 

Full FD -2.33871 -0.07771 -4.45959 -1.04803 -0.00401 

AD + FD -2.33915 -0.07809 -4.4609 -1.04844 -0.00394 

Deviation [%] 0.02 0.49 0.03 0.04 -1.61 
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6.4 IPOPT with ADOL-C 

To verify the correct functioning of IPOPT and the correct functioning of IPOPT in combination with 

ADOL-C, both methods are used to minimise simple functions with known minima. This process 

is demonstrated at the example of the “Booth”-function, a common optimisation test function. 

The Booth-function is shown below. It is two-dimensional and typically evaluated within the given 

bounds. The minimum of the booth function is 𝑓(1,3) = 0. 

𝑓(𝑥, 𝑦) = (𝑥 + 2𝑦 − 7)2 + (2𝑥 +  𝑦 − 5)2    𝑓𝑜𝑟   − 10 ≤ 𝑥, 𝑦 ≤ 10   

Equation 3: Booth-function 

The Booth function is optimised with IPOPT and gradients computed using the finite difference 

method and with IPOPT and gradients computed by ADOL-C. The convergence criterium is set to 

be 1x10-8. The maximum iteration limit is 50. The first two runs are started from a random initial 

point 𝑓(−9.17, −0.91) selected by IPOPT. The convergence history of both is shown in Figure 6.2.  

 

 

Figure 6.2: Convergence history of Booth-function optimisation with finite-difference-based 

gradients (FD) and adjoints (AD) 

It can be observed that IPOPT identifies the correct optimum within 10 iterations for both 

methods. This verifies the correct functioning of the optimiser as well as the gradient computation 

methods. The run which used the adjoint method for gradient computation yields better 

convergence due to more accurate gradients. 

To further verify the optimisation strategy, different starting points are tested. This is shown in 

Figure 6.3. Again, both methods reach convergence for all starting points, but the higher accuracy 

of the adjoint method results in better convergence and partly in less required iterations.   



Chapter 6 

127 

This verifies the correct functioning of IPOPT and IPOPT in combination with ADOL-C. This 

process has been applied to several other test functions with similar outcome. 

 

 

Figure 6.3: Booth-function optimisation with different starting points 

 

6.5 General design optimisation 

To verify the correct functioning of the entire system-based hydrofoil optimisation routine, the 

optimisation of the general design variables is benchmarked against a parametric study. This is 

reported in Paper 2 and shows that the optimiser is able to identify the correct optimum within a 

few iterations. In addition, the optimisation carried out with IPOPT and the hybrid gradient 

computation approach is compared to an approach where IPOPT uses full finite difference-based 

gradients. Both should deliver very similar results as observed in the previous section. The 

optimisation runs are started from the initial design reported in Paper 2. The convergence 

criterium is 1x10-4. The limit for the maximum number of iterations is 50. The optimisation is 

performed for a downwind leg (𝛽𝑡 = 140° and 𝑉TW = 11 kts) with the aim of maximising downwind 

𝑉S. The resulting convergence histories are presented in Figure 6.4. Both methods identify the 

correct optimum and converge equally well. This further confirms the correct functioning of the 

general design optimisation with the hybrid gradient computation.  
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Figure 6.4: Convergence history of the general design optimisation with finite differences (FD) 

and the hybrid gradient computation (AD+FD) 

A further run has been performed without the free-surface image to understand its influence on 

the optimal design. The run found the exact same optimum as the other runs, but reported slightly 

higher boat speeds as it did not include the efficiency loss introduced by the proximity of the free 

surface.  

6.6 Summary 

The developed optimisation framework consists of multiple independent methods. The methods 

computing the hydrofoil performance and the entire yacht performance have been validated with 

empirical, semi-empirical and numerical methods and showed good agreement. The routines 

computing the lifting line- and the yacht model gradient have been validated with finite difference-

based gradients and showed excellent and good agreement, respectively. IPOPT and IPOPT in 

combination with ADOL-C have been tested on common optimisation test functions and showed 

excellent performance, especially for the combination of IPOPT and ADOL-C. The general design 

optimisation has been benchmarked against the parametric study in Paper 2 and against a 

general design optimisation with finite difference-based gradients. All three found the same 

result. This is the base for trustworthy optimisation results.  
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Chapter 7 Conclusions 

Many optimisation problems concern the optimisation of a component which is part of a wider 

system. If the actual aim is maximising system performance and the influence of the component 

on the system is high, an isolated optimisation is not advisable. It causes inaccuracies, falsifies 

the optimal solution and leaves potential performance gains unexploitable. Modelling the whole 

system mitigates these problems but is computationally expensive. A component with a high 

influence on the system also promises high potential performance gains. This calls for detailed 

optimisation with a high number of design variables. The computational time required for an 

optimisation scales with the number of design variables and makes detailed design prohibitively 

expensive with conventional methods. This is especially the case if the whole system is modelled. 

The optimal design of a component might also be sensitive to external conditions affecting the 

state of the system. If a component is to be operated across varying external conditions, this must 

be accounted for and adds another layer of complexity. 

Hydrofoils are the biggest performance differentiators (components) on modern racing yachts 

(system). Highly optimising them is paramount to staying competitive. The ultimate aim is thereby 

to maximise the performance of the yacht on the racecourse. The design of the hydrofoils 

significantly affects the state and the trim of the yacht system. Their optimum design is sensitive 

to the external conditions such as wind speed and direction. The literature shows, hydrofoil 

optimisations today are performed in isolation of the yacht system and usually only employ a 

hand full of design parameters. Furthermore, they are mostly performed for a single condition 

only, ignoring that the foils are operated across a wide range of conditions in reality. This results 

in inaccurate optimal designs and leaves potential unexploited.  

The aim of this research was to develop a hydrofoil optimisation routine capable of employing a 

full physics model of the entire yacht in a detailed optimisation routine accounting for the varying 

conditions. This requires the development of an innovative optimisation strategy that drastically 

reduces computational time.  

The aim was achieved with the development of a stationary physics model of an entire yacht and 

a detailed parametric model of a hydrofoil integrated into a gradient-based optimisation routine, 

where the gradient is computed with a combination of the adjoint method and finite differences. 

The adjoint method is only applied to the bottleneck of the routine where the number of design 

variables would otherwise influence the run time of the gradient computation. Because of the 

immense implementation complexity of the adjoint method, it is not used for the remainder of the 

model, which is instead differentiated using the much simpler finite difference method. This 

allows the computation of the gradient at small cost and independent of the number of input 
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variables, while reducing development time. The gradient-parts are combined using the chain 

rule and are provided to the gradient-based optimisation algorithm IPOPT. This framework 

enables the optimisation of thousands of design variables in a short time and on a standard PC, 

hitherto not remotely possible. The framework was benchmarked against a parametric study and 

known optimum results for a lift distribution and found the expected optimal solutions. Following 

successful validation, a detailed optimisation with 68 design variables was performed for an 

upwind condition. An initial discretisation used 40 stations per part and a cosine spacing as 

recommended by Philips and Snyder (2000) but has led to the development of unrealistic 

geometries at the junction of the foil. A discretisation with less stations and a linear spacing has 

solved this problem and was used subsequently. The according run optimised the spineform, the 

planform and the twist distribution in detail. Bounds were used to ensure the design is within the 

rule of the yacht class. The run was started from a reasonable design and has shown a trustworthy 

convergence history. The final foil is perfectly smooth and features the highest anhedral and 

widest span allowed, with the minimum chord at every station. The routine has designed the twist 

distribution such that the desired elliptical lift distribution is achieved. This was only possible due 

to the adjoint method enabling the use of many twist-variables. The final foil has a convex leading 

edge and is swept aft with the wingtip raked aft even further. This produces induced thrust at the 

tip of the foil and increases the overall wing efficiency. Identifying this effect has again only been 

possible through defining the leading edge with a high number of design variables. The final design 

has led to an increase of 1.58 kts or 6.6 % 𝑉MG. This amounts to a 14 s timesaving on a single 1.5 

nm upwind leg and is a race-dominating difference. The run solved in roughly 1.5 h on a standard 

desktop PC. The computation of a gradient was thereby 36 times faster than with a purely finite 

difference-based method for the 68 design variables. In contrast to any other optimisation 

approach, increasing the number of design variables would not increase computational cost 

further. This demonstrates the significant efficiency improvement and enhanced capability of the 

developed approach.  

The framework was extended to multi-condition optimisation to account for the varying wind 

speeds and courses. The most-likely wind speeds for a specific race venue and time of the year 

have been determined from historical weather data. This has resulted in three different wind 

speeds, with a respective up- and downwind course, so six conditions in total. The 𝑉MG achieved 

in every condition and the according gradient are computed in serial and then averaged at every 

iteration. This allows the optimisation of the foil for multiple conditions while maintaining a single 

objective. A multi-condition optimisation was performed starting from the same initial foil as the 

previous single-condition run. The final foil is perfectly smooth and exhibits the same features as 

the single-optimisation foil, but with a planform that shifts the centre of lift further aft. This is 

favorable for the included high-speed cases as it produces more righting moment. The finding has 
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only been enabled through the use of the full physics model. The multi-condition foil is 

benchmarked against foils optimised for the six conditions individually. The individual foils 

perform best in their respective niches whereas the multi-condition foil performs best across the 

range of conditions. The final multi-condition foil is 1.9 kts or 7.2 % 𝑉MG faster than the initial foil. 

This amounts to an 81.9 s timesaving over a typical 9 nm race and is again a race-dominating 

difference. The run solved in roughly 9 h on a standard desktop PC, but computing the gradients 

in parallel means that this detailed, system-based, multi-condition optimisation can also be 

performed in about 1.5 h. This in stark contrast to existing strategies that can require several 

hours for a single iteration on a supercomputer, while only modelling the hydrofoil itself and 

optimising a small number of design variables. This further proves the enormous efficiency and 

capability of the developed method. 

7.1 Novelty 

This research has produced several novel contributions to the field of hydrofoil design and 

optimisation.  The first, openly available, systematic investigation into how the design of the 

America’s Cup foils influences the performance of the yacht is presented with the parametric 

study. It has developed general understanding and serves as a benchmark for current and future 

optimisations. It has demonstrated the immense potential of hydrofoil design.  

For the first time, a physics model of an entire yacht has been differentiated using the adjoint 

method and finite differences and has been integrated into a gradient-based optimisation 

routine. This has resulted in a dramatic reduction of computational time allowing a level of 

optimisation accuracy and design detail hitherto not remotely possible. The hybrid nature of the 

gradient computation has also resulted in a significant reduction of the development time 

compared to a full adjoint strategy.  

The extension of the framework to multi-condition optimisation marks a further novel 

contribution. No system-based hydrofoil optimisation has been conducted for multiple 

conditions. This approach best reflects the reality of an America’s Cup race series. The multi-

condition optimisation can be performed at no additional cost.  

For the first time, the optimal foils for six individual conditions and the optimal foil for six 

conditions combined have been presented. They showcase the specific optimal solutions and 

increase understanding of hydrofoil design in general. Furthermore, the optimisation results have 

shown for the first time that hydrofoils with raked wingtips and aft sweep can produce induced 

thrust. This increases the overall efficiency of the wing and can be applied to many other 

hydrofoils. This finding has been made possible by the power of the adjoint method.  
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7.2 Limitations  

Several limitations to the developed approach exist. Many of them can be overcome with further 

work and are presented in the next section. Others are more fundamental and are discussed 

herein.  

Viscosity – Including a model of the entire yacht in the optimisation means that the yacht state 

must be computed numerous times during the optimisation. Solving for a yacht state requires 

many evaluations of the hydrofoil model itself. Hence, the computational time required to 

compute the hydrofoil forces cannot be of the order of hours. This rules viscous methods such as 

RANS CFD out and means that friction drag, flow separation and stall are not directly modelled. 

The friction drag is accounted for by including viscous drag coefficients, but flow separation and 

stall are not included. Stall could be modelled to some extend by introducing a non-linear lift-

curve-slope to the lifting line method. Nevertheless, viscous methods provide a more accurate 

prediction of the hydrofoil forces themselves, but they prohibit the use of the whole yacht model 

and consequently neglect the changes in yacht state during the optimisation. The literature has 

shown how much the conditions between foil designs can vary. Therefore, using a viscous 

method, but for a potentially, significantly wrong condition, is expected to cause higher errors, 

than those introduced by neglecting viscosity. This is especially the case, as no hydrofoils have 

been observed in the optimisations that are operated close to stall angles.  

Cavitation – Cavitation is a serious threat for sailing teams in high-speed situations. It can cause 

a dramatic reduction in lift, accompanied by an increase in drag often resulting in a touch-down 

of the boat. Modelling cavitation is a challenging task and mostly performed in combination with 

viscous methods. Cavitation models have occasionally also been linked to potential flow 

methods, but no such readily available model exists for hydrofoils. This means cavitation cannot 

be modelled properly, but constraint functions could be used to prohibit designs that cavitate. 

However, it is unclear to what extend this would influence the design. Furthermore, cavitation is 

more likely to occur in dynamic scenarios, which are not reflected in the current routine.   

Free-surface effects – Hydrofoils in the America’s Cup are operated close to the free-surface. 

This causes wave-making with a resulting reduction in lift and an increase in drag. It also causes 

spray drag and potentially ventilation. The reduction in efficiency due to the presence of the free 

surface is modelled with the biplane image, the increase in drag due wave making is not 

modelled. Similarly, the spray drag is not modelled. Empirical models exist that can account for 

wave making drag and spray drag to some extent but are not yet included. Ventilation is a more 

serious concern. The current America’s Cup has shown several instances of how the ventilation 

of main foils, rudders and elevators can cause a significant loss of performance. However, 
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modelling ventilation for sophisticated foil geometries is very complex and exclusively performed 

in combination with viscous methods. This means ventilation cannot be accounted for directly. 

Furthermore, it mostly occurs in dynamic scenarios, such as bear-away manoeuvres, that are not 

captured by the current stationary approach. However, optimal foils could be checked for critical 

modes of operation with viscous flow methods and these insights could then potentially be used 

to impose constraints that prohibit designs that ventilate.  

Dynamics – Sailing a yacht in the America’s Cup includes manoeuvres, changes in wind pressure 

and direction, waves, crew errors and crew latency resulting in a dynamic operation of the yacht. 

The approach developed in this study uses a stationary model, so it does not capture these 

dynamic scenarios. However, the boats are operated in a relatively stable and stationary state for 

most of the time and the differentiation of a dynamic model is, if at all possible, incredibly 

complex. An associated optimisation would also be significantly more computationally 

expensive.  Nevertheless, the stationary model is not a perfect representation of the yacht sailing 

in a race. To still consider dynamic effects, an optimal foil can be run in a dynamic VPP to assess 

its performance in manoeuvres. Should the foil for example not be able to support a full flying tack 

in low wind speeds, a constraint on the minimum area can be imposed in a following 

optimisation.  

Implementation complexity – Modelling the full physics of a sailing yacht is a very complex task, 

differentiating all of them using the adjoint method is even more so. While the computational 

efficiency of the adjoint method is the reason many of the physics can be included in the 

optimisation in the first place, it at the same time hinders and slows down their inclusion. The 

reason is the associated implementation complexity. Every part of the code that is differentiated 

using the adjoint method requires to be differentiable, in the form of accessible source code in 

the right language and must be templated. This means that potentially whole parts of a code must 

be replaced due to their non-differentiability or due to being part of pre-compiled libraries. Also, 

templating new models requires significant time and the interfacing with the remainder of the 

code can necessitate special functions and wrappers. See Appendix A for details. This generally 

makes the optimisation with the adjoint method much more complex and time-consuming in 

development than other methods where the physics model can often be treated as a black box. 

Nevertheless, the adjoint method is the only method that allows truly detailed optimisation.  
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7.3 Further work 

The efficiency of the developed approach opens the door for further improvements and additions 

to the method. This includes the modelling of additional effects to enhance simulation accuracy 

such as the structural behaviour and the optimisation of further areas such as the trim and the 

state of the yacht. In the following, the resulting items of further work are presented.  

Hydrofoil immersion and cant optimisation – The immersion of a hydrofoil has a large influence 

on the forces it produces and must be accounted for. In the current study, the heel angle, the ride 

height and the cant angle were fixed. This has resulted in a fixed intersection location of the foil 

arm and the free surface. The intersection location was determined using a 3D-CAD model. The 

parametric model was then set-up to just model the underwater part of the foil and arm up to the 

intersection which does not change. This is valid but prohibits optimising the ride height, heel 

angle or cant angle during the optimisation. In such a case, the intersection must be computed 

at every evaluation of the lifting line method. FS-Equilibrium already has an immersion-modelling  

feature but the underlaying search algorithm cannot be differentiated. This requires finding, 

implementing and validating an alternative and differentiable method. The cant angle, which is a 

major variable in hydrofoil operation, can then be included in the optimisation as a hydrofoil 

design variable with no additional cost. In case of the multi-condition optimisation, six cant 

variables, one for each course, can be included.  

State variable optimisation – In the current implementation, the state variables heel angle, pitch 

angle and ride height are fixed to certain target values. During force balancing, the trim variables 

are used to achieve these targets. Hence, the optimisation returns the optimal foil geometry for 

this fixed state. However, another target state could still perform better, for example a state with 

a lower ride height, which would then also affect the optimal foil design. This can be exploited by 

including the state variables in the optimisation. The state variables can be directly optimised by 

the Newton-Raphson method, but that means the state is optimised at every function evaluation. 

This is likely to be computationally expensive. The preferred option is to use finite differences to 

compute the influence of each state variable on the 𝑉MG (like for the forces and moments) and 

then perform the optimisation of state variables alongside the optimisation of the foil. However, 

both do require the foil immersion feature to be included first, as the state variables change the 

immersion of the foil. It also requires the sail forces to be provided as a function of the ride height 

since it affects the end-plating of the main sail. Like the state variables also the course/true wind 

angle can be optimised to achieve the highest 𝑉MG.  

  



Chapter 7 

135 

Sectional properties – Currently, a fixed value for the zero-lift-angle and the drag coefficient is 

assumed for every section. For force control, these sections are then raked by modifying the angle 

of attack. In reality however, flaps are used, and the zero-lift-angles and the drag coefficients are 

not constant. A flap model has been developed as part of this study based on response surfaces. 

These provide the zero-lift-angle as a function of the flap angle and the span and the drag 

coefficient as a function of the flap angle, the Reynolds number, the lift coefficient and the span. 

The underlying data is provided in look up tables. ADOL-C cannot differentiate through look up 

tables, so the differentiation must be executed externally. The external gradients can then be 

linked into the ADOL-C gradient computation. The external differentiation can be performed by 

hand for simple response functions or finite differences and is not a problem, linking the external 

gradients into the chain is however more complex. Functions have been developed that return 

the primal values and the derivatives of the response surfaces, but their interfacing with ADOL-C 

requires further work.  

Separate flap control – The foils with anhedral angle have two flaps that can be operated 

independently. However, in the current implementation they are assumed to move 

simultaneously to produce the required vertical lift. This means the benefit of having two 

individual flaps is not accounted for. This benefit can be included by using only the more 

horizontal outboard flap to balance the heave forces. The inboard flap angle can then be treated 

as a hydrofoil design variable and be optimised for maximum 𝑉MG. The multi-condition 

optimisation can be performed with six individual inboard cant angle variables. Including this 

does not result in additional computational cost and increases the accuracy of the method. It can 

be implemented with little effort but should be tested carefully.  

Sail forces – The forces and moments produced by the sails have a significant effect on the state 

and trim of the system yacht, in turn affecting the optimal hydrofoil design. The current America’s 

Cup yachts have a sail plan consisting of a conventional jib and a double skin mainsail with 

internal control mechanisms. These allow deep camber and high lift-coefficients along with a 

generally higher efficiency when compared to conventional rigs. As no readily available force 

model for these advanced rigs exists, the sail forces have been modelled with the conventional 

IMS-module. This does not account for the high possible lift coefficients and the high efficiency. 

As a result, the performance of the yacht was underpredicted, especially in cases where high lift-

coefficients are beneficial. Therefore, the development of a suitable sails model was initiated in 

the form of a master thesis with the Technische Universität Hamburg-Harbug. In the project a 

parametric model of the sail plan and a boundary element method were used to predict the sail 

forces and moments for numerous conditions. The study has also included the influence of the 

hull on the sail forces. A response surface inside FS-Equilibrium has been fitted to the generated 

datapoints and returns the six forces and moments produced by the sail set in certain conditions. 



Chapter 7 

136 

The IMS-model can directly be replaced with this new response model, as the sails model is 

inside the finite difference part of the physics model and does not require the preparation for 

ADOL-C. It should still be tested carefully and might require improvements/changes.  

The following two items of further work are very important aspects to improve modelling accuracy 

and optimisation capability as well but do require more significant implementation efforts. They 

both concern the hydrofoil directly, so they must be differentiated with ADOL-C which adds to the 

complexity. The third item does improve optimisation capabilities and is expected to require 

serious development work.  

Bulb model – The bulb is currently modelled with a form factor approach. This does capture the 

bulb drag to a reasonable level, but it does not capture the influence of the bulb on the lift 

produced by the hydrofoils. For the lifting line method, the bulb is currently “invisible”. This 

introduces inaccuracies and finding, implementing and validating a suitable, potential-flow 

based bulb/fuselage model would be beneficial. The model must then be differentiated with 

ADOL-C. Since the bulb does not affect the wing geometry in the current implementation, the foil 

weight can be computed independently of the bulb. The bulb is then automatically sized to meet 

the weight requirement. However, with a sophisticated model, the wing parts should start at the 

perimeter of the bulb and not at the junction. Hence, the geometry of the foil is influenced by the 

bulb size but must also influence the bulb size so that the weight requirement is met. To solve 

this, the bulb dimensions must be defined as additional design parameters and a constraint 

function must be introduced that ensures the wing and the bulb meet the weight requirement 

together.  

Structural model - Hydrofoils deflect under fluid loading, which changes their shape and hence 

the forces and moments they produce. This requires a structural model, that coupled to the lifting 

line method, accounts for the deformation of the foil. A first structural model has been developed 

as part of this project in the form of a master thesis. The method is based on an Euler-beam model 

and can compute the bend and twist of the foil as a result of the fluid loading provided by the 

lifting line method. However, the method required significant tuning with an FEA code. One of the 

reasons might be that the Euler-beam theory generally neglects shear-deformation. This causes 

modelling errors for short beams. The discretisation of the foil means that the sections are in fact 

relatively short. A discretised Timoshenko-beam model does account for this and is the preferred 

option but is more complex in terms of implementation. Further work is required to develop such 

a model in C++ and to connect it to the lifting line method. An iterative process is required that 

computes the foil forces and the resulting changes in shape and feeds the new shape back to the 

lifting line method to update the forces. This process can be performed until the deformation has 

converged to a certain extend or a fixed number of iterations is reached. The model must be 
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written such that it can be differentiated with ADOL-C. The differentiation must only be carried 

out for the last step of the iteration, as only this step influences the gradient. This saves 

computational time.    

Section optimisation – Section design and optimisation is an important part of hydrofoil design. 

Conventionally, the section optimisation and the 3D-wing optimisation are performed separately. 

The adjoint method would allow the combination of the two, but this is expected to require 

significant research and development. It needs a 2D section model to be directly coupled to the 

lifting line method and differentiated with the adjoint method. It also requires a parametric model 

of the foil that models the section shape at every station of the foil. The 2D section model must 

be interfaced with the parametric model and must be able to “read” the section shapes. The 2D 

section data for this study has been obtained through XFoil. XFoil is the state-of-the-art section 

analysis tool and its direct integration into FS-Equilibrium and the adjoint optimisation routine 

would be a significant step forward. However, integrating it in FS-Equilibrium is already complex 

and differentiating it reversely even more so. Especially, as XFoil is written in Fortran and cannot 

be differentiated with ADOL-C. In this case, a different tool has to be used that can differentiate 

Fortran code, for example Tapenade (Hascoet and Pascual, 2013). The gradients can then be 

linked into the ADOL-C gradient computation using its external functions feature. Alternatively, a 

C++-based section analysis tool can be found or developed and integrated.  

The previous items of further work have concerned the further development of the method. 

However, the existing method can already be used to investigate and optimise further concepts. 

Two examples are: 

T-foils – The current work has assumed a hydrofoil with two flaps and two control systems 

(although they move simultaneously) and a fixed density reflecting this configuration. In this case, 

the foil with the highest anhedral angle has performed best, as it has the lowest wetted surface 

area for the required weight. However, in a T-foil, a single flap can be used with a single control 

system. This increases the density of the foil and hence also reduces wetted surface area. This 

effect has first been used by a single team in the last America’s Cup, but now seems to be the 

preferred option of all teams. Nonetheless, this option to reduce wetted surface area is not 

currently reflected in the optimisation assuming constant density regardless of the anhedral 

angle. However, it can be addressed in a separate optimisation run with no further development 

required. In this separate run, a higher density must be assumed, and the spine form must be 

fixed to a T-Foil. The optimum T-Foil can then be compared to the optimum Y-Foil. 
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Winglets - The current class rule in the current America’s Cup defines a box the foil is not allowed 

to exceed. The box is rectangular with additional “pockets” for winglets. In the current set-up of 

the optimisation these pockets are not considered, and the tip of the foil is fixed at the bottom of 

the box prohibiting the forming of potential winglets. This has enabled comparison with the 

parametric study and has simplified the validation of the optimal designs. However, exploring the 

effect of winglets and optimising their design is of great interest. For this reason, the method 

should be extended to optimise foils with winglets. This requires either a change to the parametric 

model and the introduction of new bounds or the use of the existing parametric model and 

constraint functions that represent the more complex shape of the foil box.  

The optimal foils identified in this study have opened another area of potential research: 

Investigating sweep and wingtip rake – The optimal foils identified in this study have exhibited 

aft sweep with an even further aft rake of the wingtip. This feature has resulted in induced thrust 

at the wingtips and increases the overall efficiency of the wing when compared to a straight foil. 

This effect could be used to increase the efficiency of many hydrofoils and should be further 

investigated and understood. This can be achieved with specific analysis and optimisation using 

the lifting line method and validation with higher fidelity methods.  

7.4 Other applications  

The optimisations in this thesis have been performed for an America’s Cup yacht, but the 

developed approach can also be used to optimise the foils of other sailing yachts such as 

International Moths, IMOCAS or Ultims. This only requires the adaption of the force models to the 

new yacht and the modification of the parametric model to represent the according foil type.  

Similarly, the method can be used to optimise the hydrofoils of the increasing number of foil-

assisted power boats to enhance their efficiency and contribute to decarbonisation.  

In addition, the developed methodology is not limited to hydrofoil optimisation but can also be 

directly used for other maritime applications. Wind-assisted ships for example are conventional 

motor ships with the addition of sails or wings supporting the engines with the aim to reduce fuel 

consumption. Several such wings can be placed on the deck of a ship. Every wing has numerous 

trim parameters that allow to manipulate its shape for maximum performance. Hence, optimising 

the trim of a ship with multiple wings requires a large number of design variables and modelling 

the whole ship system is important. The developed framework can directly be used for this trim 

optimisation. The lifting line method can predict the wing forces and only requires a modification 

of the parametric model to represent the wings instead of the foil. Suitable force models for the 

other components of the ship, such as the hull, must be included.  
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The general methodology can also be applied to other problems of similar class outside of the 

maritime field. This class of problems is defined by having a component within a system in an 

equilibrium state. The component must have a high influence on the system, otherwise isolated 

optimisation is to be preferred. The component model must be computationally cheap, as it is 

evaluated many times for computing the system state in every iteration. An obvious example are 

the wings of an airplane.  
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Appendix A Algorithmic differentiation of the lifting 

line method and the parametric model 

The key to the immense efficiency of the developed approach is the adjoint method. The adjoint 

method is the reverse differentiation of a function. This reverse differentiation can be performed 

by hand or with the help of algorithmic/automatic differentiation tools. However, 

algorithmic/automatic differentiation is by no means purely automatic and requires significant 

implementation efforts. These are discussed in this appendix which is meant for the reader who 

wishes to acquire a deeper understanding of the implementation process. The adjoint method is 

applied to the lifting line method and the parametric model, so their original implementation is 

presented first. Thereafter, the required changes for differentiation are discussed.  

A.1 Lifting line implementation  

In this study, FS-Equilibrium’s lifting line method is used to compute the forces and moments 

produced by the hydrofoil. Its implementation is based on the advanced lifting line approach 

developed by Phillips and Snyder (2000). It can be set up in the graphical user interface (GUI) of 

FS-Equilibrium as shown in Figure 7.1. The tab allows to specify the type of fluid, the solver, the 

number of individual parts the appendage system shall have and others. For the purposes of this 

study, three foil parts are defined, the port wing, the starboard wing, and the extension of the foil 

arm. The properties of these individual foil parts can be assigned in further tabs that are available 

on the left in Figure 7.1 (Foil0, Foil1 and Foil2). The free-surface effects can be modelled using the 

biplane- and the inverted foil analogy. This can be specified in the “Mirror” tab.  

The geometry of a foil part is provided as an IGES file and must be a “ruled surface” representing 

the planform and the spineform of the part. The surfaces are assigned to the foil parts in the foil-

tabs shown in Figure 7.2 at the top. In these tabs the user can also assign the number of vortices 

used to discretise the foil part (NumSections), the sectional properties along the span of the foil 

part and other relevant metrics.  
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Figure 7.1: Lifting line module tab in FS-Equilibrium’s GUI 

 
Figure 7.2: Individual foil part tab in FS-Equilibrium’s lifting line method 

For the differentiation of the lifting line method, the underlaying implementation is important. The 

general set-up is presented in Figure 7.3, where any red font colour can be ignored for now. The 

whole implementation is executed within a class called FLLAppendage. Inside FLLAppendage 

two structures exist, TAppendage and TGrid. TAppendage stores information specific to the foil 

parts. This includes the number of stations used and the sectional properties. TGrid stores the 

geometric information of the whole appendage system, e.g., the chord at every station and the 
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location of the vortices (variables chord and vtxPts). Upon initialisation three instances of 

TAppendage are created for the three foil parts and stored in mAppendage. A single instance of 

TGrid is generated and saved as mpGrid. Inside the structures the member variables and 

methods are shown, for example getChord() in TAppendage, computing the chord at a given span 

location. FLLAppendage also includes its own methods for example solve() which solves the 

lifting line for a given condition. solve() is called by the VPP solver at every step of the force-

balancing routine via the function computeForcesA(). 

 

Figure 7.3: Architecture of the FLLAppendage module showing the incorporated structures, 

functions and variables  

The workflow of the lifting line method is presented in Figure 7.4. The VPP solver (Newton-

Raphson) calls computeForcesA() for the current condition, which calls solve() and starts the 

solving process of the lifting line method. First, the foil surfaces are loaded and transformed 

according to the current cant angle (Steps 1 -3). Thereafter, the grid is generated for the current 

condition (Step 4) by calling the function createGrid(). createGrid() obtains the information about 

the foil parts from the TAppendage objects and executes steps 4.1 to 4.5 to compute the grid and 

the lifting line. For example, this includes the coordinates of the vortices and the chord at every 
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station. This information is stored on mpGrid. In steps 5 to 6, the influence matrix is set up based 

on mpGrid. It is solved for the vortex strength distribution using a Gaussian Elimination approach. 

Subsequently, in step 10, the force per station is computed based on the density, the local 

velocity and the local chord. Finally, the force distribution is integrated to obtain the overall forces 

and moments (Step 11). The forces and moments are transformed into the global coordinate 

system (Step 12) and returned to the Newton-Raphson. 

 

Figure 7.4: Flow of the lifting line’s solve function and its calls to the structures of 
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A.2 Parametric model implementation 

The parametric model of the hydrofoil serves to generate the shape of a hydrofoil from a set of 

design variables. FS-Equilibrium’s lifting line module requires ruled surfaces to be provided in the 

form of NURBS surfaces. From these surfaces the method can derive the geometrical data such 

as the span, the chord along the span, the twist along the span, the sweep, and the anhedral angle 

of the foils. NURBS surfaces (Figure 7.5) are defined by control points (𝑃𝑛,𝑚) and the degrees of 

the surface that is fit between the points in the u- and v-direction. A knot vector defines if the 

surface is clamped at its endpoints and weights can be applied to the control points to increase 

or decrease their influence on the curve. For further reference see Piegl and Tiller (1997). 

 

Figure 7.5: NURBS surface set up by control points (𝑷i,j) derived from Piegl and Tiller (1997). The 

surface can be evaluated at the point u, v to return the coordinates of this point on 

the surface 

The parametric model of the AC75 hydrofoil is developed based on NURBS surfaces. It is used to 

define the three foil parts which are the foil arm extension and the port- and starboard wing. The 

first version of the simple parametric model is shown in Figure 7.6. The surface of the foil arm is 

fixed by the AC75 rule and not submerged at any time, so it is only included for visualisation 

purposes. Just the two points that it shares with the extension are required. The extension of the 

foil arm is defined with two additional points at the leading and the trailing edge where the 

extension and the wings meet (mExtensionLead(x,y,z) and mExtensionTrail(x,y,z)). Two further 

points are used to define the wings representing the leading- and trailing edge points at the tip of 

the foil (mPortWingLead(x,y,z), mPortWingTrail(x,y,z) and mStbWingLead(x,y,z), 

mStbWingTrail(x,y,z)). The root is already defined by the location of the extension. This results in 

six design points. A seventh point (mDelta) is used as a reference point that determines the 

position of the foil with respect to the transom of the AC75 at the waterline. All other points are 
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measured from this reference point. These seven points each have three components which 

result in a total of 21 design variables. 

 

Figure 7.6: Simple parametric model of the AC75 hydrofoil showing the control points employed 

to define the hydrofoil geometry; visualised with the NURBS-Python visualisation 

feature (Bingol and Krishnamurthy, 2019) 

The implementation of the model is based on the C++ NURBS library TinyNURBS (Jayaraman). The 

library is open source and header-only, which allows access to the full source code. The library is 

incorporated in a new structure called MySurface as shown in Figure 7.7. The structure stores 

information for a single surface and means to evaluate this surface. As stated before, a NUBRS 

surface is defined with the degrees, the knot vectors, the control points and the weights. 

However, the modelling capabilities of the model are deemed sufficient without including the 

weighting feature, so the weights were not considered. This is equal to setting the value of every 

weight to one and essentially reduces the NURBS surface to a B-Spline surface. The degrees, knot 

vectors and control points are stored in MySurface using the according variables. Based on this 

information the surface can be evaluated using the function isurfacePoint() which returns the 

coordinates of the surface at the location u, v. isurfacePoint() requires ibsplineBasis() and 

ifindSpan()  to compute the coordinates. 
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Figure 7.7: MySurface structure for a single NURBS surface, storing all required information to 

define the surface and functions to evaluate it 

 

The parametric model consists of three MySurface objects which are called extension, portWing 

and stbWing. A surface can be evaluated for example with extension.iSurfacePoint(u, v) at the 

location on the surface u, v. The three surfaces are integrated into a single method called 

getMyPoint() that represents the whole parametric model. The function is a method of 

TAppendage and is shown in Figure 7.8.  

 

 

Figure 7.8: getMyPoint() function that incorporates the parametric model  
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The arguments of the method include the design points presented in Figure 7.6 (TConfiguration 

points) and the location on the surface to be evaluated (u, v). The function translates and rotates 

the points to their correct position (based on mDelta and the cant angle) and initialises the three 

surfaces. A switch-statement is used so the foil surface currently of interest is evaluated. The 

method returns the coordinates of the evaluated point in 3D space.  

A.3 Differentiation with ADOL-C 

The differentiation of a function with ADOL-C requires several general steps. These ensure that 

ADOL-C recognises the input and output variables and that it obtains all relevant information 

about the function to compute its gradient. To obtain the function information, ADOL-C uses a 

specific datatype called adouble (active double). This datatype allows to store the value of a 

variable, and the information required to compute the derivatives. It is used to “tape” the function 

while it is evaluated. This “tape” is an internal representation of the function and is differentiated 

later. Hence, every variable that influences the gradient must be an adouble. The datatype is 

defined in the ADOL-C header along with the ADOL-C functions and the overloaded operators. 

The full set of steps required is presented below. 

1. Include the ADOL-C header 

2. Specify the number of input and output variables 

3. Define the input and output variables in the normal double datatype 

4. Also define the input and output variables separately in the adouble datatype 

5. Define all intermediate variables that influence the gradient as adoubles 

 

6. Start the gradient computation with the function trace_on() 

7. Initialise the input variables (double to adouble, <<= operator) 

8. Evaluate the function to differentiate 

9. Deinitialise the output variables (adouble to double, >>= operator) 

10. Stop the gradient computation with trace_off() 

 

11. Declare containers that store the gradient or jacobian 

12. Compute the gradient with gradient() or the jacobian with jacobian() 

 

An example of how these steps are applied to a simple function is given in Figure 7.9. For a more 

in-depth introduction see Walther and Griewank (2012).  
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Figure 7.9: Steps 1 – 12 applied to a simple function for gradient computation 
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A.4 Differentiation of the lifting line method and the parametric 

model 

Figure 7.9 has shown the steps required to differentiate a function with ADOL-C. What is straight 

forward for a simple function is much more complex for sophisticated programs and requires 

additional development. The lifting line method is integrated into FS-Equilibrium and must 

communicate with other parts of the program and the GUI. Furthermore, it draws on numerous 

libraries. This must be accounted for. Additionally, the existing method includes sections of the 

code that cannot be differentiated. These need to be replaced or excluded.  

A.4.1 Replacing non-differentiable features  

The existing lifting line method includes two parts or features that cannot be differentiated for 

different reasons. This must be resolved in a first step. The features must be either replaced, 

differentiated externally, if possible, or excluded entirely.  

The first instance is the feature that computes the intersection of the free-surface and the 

hydrofoil. This is used to model hydrofoil immersion. The intersection is computed with Brent’s 

method which is non-differentiable by nature. Therefore, the feature cannot be used and is 

excluded. However, differentiable approaches may exist that could be used in the future.  

The sectional properties of the hydrofoil are provided by response surfaces that are created 

based on look-up tables upon initialisation. Since the sectional properties influence the hydrofoil 

performance and are depending on the hydrofoil design, they affect the gradient and must be 

included in the differentiation. However, ADOL-C cannot differentiate look-up tables, so the 

response surfaces have been replaced with constant values for the lift-curve-slope, the zero-lift-

angle and the profile drag coefficient. As discussed before, an external differentiation of the 

response surfaces would allow their inclusion, but this requires further work. 

A.4.2 Replacing pre-compiled libraries 

For a computer code to be differentiated with ADOL-C, it must be in the form of source code. 

Compiled code cannot be differentiated. Hence, pre-compiled parts or libraries must be replaced 

or excluded. The lifting line method uses NURBS-Surfaces to represent the geometry of the 

hydrofoil. These and the means to evaluate them are defined in a pre-compiled library. Since the 

geometry definition and evaluation is vital, the original library must be replaced. Therefore, the 

developed parametric model is directly and internally coupled to the lifting line method, replacing 

the original library. This has been an integral and substantial part of the differentiation work.  
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The pre-compiled library provides the function getPoint(u,v) returning the coordinates of the 

resulting point. This function is used to extract any relevant information from the surfaces, for 

example the position of the quarter chord at the root of the foil (Figure 7.10). This function is 

replaced with the function getMyPoint(u,v) which represents the parametric model (Figure 7.8). It 

is used in the same manner as the original function, see for example Figure 7.11. 

 

Figure 7.10: Original definition of the function getRootQC() 

 

Figure 7.11: Updated definition of the function getRootQC() 

getMyPoint() is used in several other simple functions computing for example the chord at a given 

station (getChord()), but is also required in more complex functions. One example is a function 

computing the direction of the span (getSpanAxis()). This has again used a pre-compiled function 

differentiating the surface using finite differences (dV()). This is shown in Figure 7.12 and required 

a new implementation of the surface differentiation feature (Figure 7.13). Numerous such 

changes had to be made. 

 

Figure 7.12: Original definition of getSpanAxis() 
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Figure 7.13: Updated definition of getSpanAxis() 

In the original implementation, the surfaces were defined in IGES-files containing the points 

spanning them. In the new implementation the points must be stored elsewhere. This is done in 

an instance of a new structure called TConfiguration points. A new tab was created that allows 

the manipulation of the points in the GUI.  

A.4.3 Different options for turning doubles into adoubles 

With all non-differentiable parts of the code replaced or excluded, the differentiation process can 

be started. This requires the “taping” of the whole function. This “tape” is an internal 

representation of the function which is then differentiated in a second step. The taping process 

requires any variable that influences the gradient to be recorded. This is achieved with the 

adouble datatype. Hence, all variables that influence the gradient must be declared as adoubles. 

These are the input variables (design variables) and output variables (forces and moments), but 

also most intermediate variables, functions and classes. This includes base classes performing 

for example point, vector and matrix operations and the main method.  

Three options exist for turning doubles into adoubles. The simplest one is to replace any double 

with an adouble by hand or with the command #define double adouble. This is shown in Figure 

7.14 for a function in the vector library computing the dot product. The command automatically 

redefines every double type to an adouble in a given file. This approach is simple and fast but 

means the lifting line method can only be run in adoubles from there on. However, the lifting line 
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method must still run in doubles for normal VPP solving. Therefore, an approach must be taken 

that allows the lifting line method to be run with different data types. This can either be achieved 

by overloading or by templating functions.  

 

Figure 7.14: Redefining to adoubles for the dot product function in FS-Equilibrium’s vector class 

Overloading allows to define a single function several times with different datatypes. The function 

must therefore be declared and defined twice as shown in Figure 7.15. While functions can be 

overloaded, this is not the case for variables, structures and classes. The lifting line method 

contains several member variables of classes and structures that must be defined in doubles and 

adoubles. As neither the variables itself can be overloaded, nor the overlying structures or 

classes, overloading cannot be used for the given problem. A further downside of overloading is 

that the whole program must be developed and maintained twice which promotes bugs and 

increases development time. Templating instead can be applied to structures and classes as well 

and does not require the implementation of multiple definitions. 

 

Figure 7.15: Overloading the dot product function for use with doubles and adoubles 

Templating allows the creation of generic structures, classes and functions that can store and 

solve in different data types. A function is turned into a templated function by adding 

template<typename T> to it. The variables inside the function that must be generic are then 

defined with the data type T instead of int, double or adouble. This can also be applied to the 
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return type and the arguments of functions and variables inside structures and classes. With 

templating being the only possible option, it is applied to the whole method. This is explained in 

detail in the next sections. Nevertheless, templating requires significant implementation time. 

Every relevant function or class must be altered to accommodate the generic data type T and 

whenever an object of a templated class is generated or a member function is called, the datatype 

must be specified. Figure 7.16 shows the templated version of dotProduct and how it is run in 

doubles.  

 

Figure 7.16: Templating and solving of the dot product function 

A.4.4 Templating the base classes 

The first step in templating the lifting line method is templating the base classes used by the 

method. FS-Equilibrium has several such classes that are employed everywhere in the program. 

The classes relevant for the lifting line method are FVector3, FPoint3, FMatrix4 and FMotor. 

FVector3 is the class for vectors with a size of three. It includes functions to compute the dot 

product (Figure 7.14), the cross product, the length of the vector and others. FPoint3 is used to 

store coordinates or points with their x, y, and z-components. It is a child-class of FVector3 and 

shares all the features, while additionally providing functions to compute the distance between 

two points or the distance of a point to the origin. FMatrix4 is the class for 4x4 matrices containing 

means to compute for example transformation matrices, projection matrices and the inverse of 

a matrix. FMotor is used to store the three force components 𝑓𝑥, 𝑓𝑦, 𝑓𝑧 and the three moment 

components 𝑚𝑥, 𝑚𝑦, 𝑚𝑧. Additionally, all classes have getter-, setter-, constructor-, and 

destructor functions and numerous operators. 

In a first step, the classes are copied and renamed to TFVector3, TFPoint3, TFMatrix4 and TFMotor 

to separate them from the original base classes. Although the original classes could be run in 

doubles after templating, the templating of these original classes would mean that the data type 

double would have to be specified everywhere in the whole VPP. By copying and renaming the 

classes, and only using those new classes in the lifting line method, this is not necessary. 
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However, it means that wrappers must be used whenever the lifting line method is 

communicating with other parts of the VPP. This is explained in more detail in the next section. 

Figure 7.17 shows an example of a templated function from the TFMatrix4 class that includes 

TFVector3s and functions like crossProduct(). This process has been applied to hundreds of 

functions in the base classes. Additionally, all base classes had to be turned into header-only 

libraries.  

 

Figure 7.17: Templated getTransformationMatrixByXY() function from TFMatrix4 class 

A.4.5 Implementing wrappers 

The lifting line method must communicate with other parts of the program in several situations. 

It uses the templated base classes, whereas the remainder of the program uses the original 

classes. These are not compatible. Hence, wherever these interfaces occur, the information 

must be converted from an object of the original base classes to an object of the templated base 

classes or vice versa. These conversions can be executed by wrapper functions that pass the 

individual components to the other class. Several wrapper functions had to be developed. One 

example is computeForcesA(). The function is the called by the Newton-Raphson and must return 

an FMotor. However, computeForcesA() runs solve() that returns TFMotor<double>. The function 

passes the individual components of TFMotor<double> that are both of type double and are 

therefore compatible. Similar situations appear in the communication between the GUI and the 

lifting line method and the condition and the lifting line method. An example of the latter is given 

in Figure 7.18, where the components of a FVector3 are passed to a TFVector3<double>. 

 

Figure 7.18: Function to compute the local velocity based on the condition, vel is a 

TFVector3<T>, con.v an FVector3 



Appendix A 

155 

A.4.6 Templating the FLLAppendage module 

After completing the templating of the base classes and their integration using wrappers, the next 

step is the preparation of the lifting line method itself. Every variable and every function of the 

method that influences the gradient must be templated to be available in doubles and adoubles. 

Functions can be templated directly, variables not. Variables can only be templated by 

templating their parent class or structure. If a structure or class is templated this also directly 

templates its function declarations. The function definitions still must be templated separately. 

This process must be applied to the whole lifting line module. Parts of classes that do not affect 

the gradient, can be separated and can remain of the double type. 

Figure 7.3 has shown the set-up of the lifting line module. The variables and functions marked in 

red are those that influence the gradient and require templating. The ones in black can remain of 

type double as they do not influence the gradient. Since both structures, TAppendage and TGrid, 

contain active variables and functions, both structures must be templated. However, 

TAppendage also contains variables that are not influencing the gradient as for example the 

number of sections used (mNumSections). These can be separated into a different class that 

uses doubles. This class is named TAppendageParameter and stores all passive variables and 

functions that concern a foil part. This is shown in Figure 7.19, which displays the architecture of 

the modified lifting line module. 

Figure 7.3 has also shown that the overlaying FLLAppendage class contains active variables and 

functions. These are the functions createGrid(), hsVortex() and solve() and the variables 

mAppendage and mpGrid. Since variables cannot be templated, this requires the templating of 

the entire FLLAppendage class. However, the FLLAppendage class is a child of the 

LiftForceModule class that is used throughout the VPP. The templating of FLLAppendage would 

require significant modifications to the LiftForceModule class and other parts of the VPP. 

Therefore, a new template class called AppendageData is introduced as part of the 

FLLAppendage class instead. This class is used to store all active parts such as TAppendage, 

TGrid, mAppendage, mpGrid and the function declarations and automatically templates them. 

Consequently, FLLAppendage can remain a normal class and the remainder of the VPP doesn’t 

have to be changed. AppendageData also contains the two newly introduced structures 

TConfiguration, which stores the design points, and MySurface, which defines the surfaces for 

the parametric model. This is shown in Figure 7.19, where parts marked with green colour are 

templates. FLLAppendage is renamed to FLLAppendage_int2 representing the lifting line module 

with the internal parametric model in its second version. 
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Figure 7.19: Architecture of FLLAppendage module in differentiable form called 

FLLAppendage_int2 
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With all variables and function declarations templated, the next step is to template the function 

definitions. An example of this is given in Figure 7.20. It shows the function getChord() as a 

member function of TAppendage. TAppendage is a member of the template class 

AppendageData. The type of AppendageData defines the datatype of the arguments of the 

function, of the employed TFPoint3s and of the variable inside the function as well as the return 

type of the function. This approach is applied to all functions inside AppendageData, including 

createGrid(), hsVortex() and solve().  

 

Figure 7.20: Templated getChord() function 

In a last step, two objects of type TConfiguration are created in FLLAppendage_int2, one in 

doubles (AppendageData<double>::TConfiguration mDoubleConfiguration) and one in adoubles 

(AppendageData<adouble>::TConfiguration mAdoubleConfiguration). These store the design 

points in the respective types. Furthermore, two objects of AppendageData exist, 

AppendageData<double> mDoubleData and AppendageData<adouble> mAdoubleData. These 

store all active information in doubles and adoubles. This is shown at the bottom of Figure 7.19. 

To solve the lifting line method in normal mode, the double type is used 

(mDoubleData.solve(mDoubleConfiguration, condition)). The function is called by the VPP solver 

through the function computeForcesA(). The gradient on the other hand is computed with a 

function called solveLLT(). solveLLT() calls mAdoubleData.solve(mAdoubleConfiguration, 

mLastCondition) for solving with adoubles. This is discussed in detail in the next section. 

A.4.7 Computing the gradient 

With all templating completed the differentiation with ADOL-C is set up in the function solveLLT() 

as shown in Figure 7.21. First, the number of independent and dependent variables is declared. 

The independent variables are the design variables and the dependent variable is here defined as 

the lift to drag ratio of the hydrofoil. After declaring the output variable liftToDragOut, 

convertGuiData() is called. convertGuiData() is a wrapper converting the design variables set in 

the GUI in FVector3s to the TConfiguration mDoubleConfiguration based on 

TFVector3<doubles>. Next, the tape is started and the function doubleToAdouble() is called. 
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doubleToAdouble() initialises the mDoubleConfiguration to the mAdoubleConfiguration using the 

<<= operator. This sets the design variables as the input variables. Subsequently, the lifting line 

method is run in adoubles for the current design. The design is assessed for the condition that 

was solved last in the double mode. After computing the lift to drag ratio and deinitialising it (with 

the >>= operator), the tape is stopped, and the gradient is evaluated.  

 

Figure 7.21: Implementation of solveLLT() for solving lifting line method in adoubles 

 

For an exemplary gradient computation using this set-up see Section 6.2. This includes the 

validation of the gradients with gradients computed using the finite difference method.   
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A.5 Summary 

This chapter has presented the implementations of the lifting line method and the parametric 

model, introduced the general steps required to differentiate a function with ADOL-C and 

discussed the preparation of the models for differentiation. The preparation included replacing 

parts of the code that are non-differentiable or were contained within pre-compiled libraries. With 

the whole code visible and differentiable, every variable and function that affects the gradient 

then had to be redefined to be of the datatype adouble. Different options for redefining the 

existing variables from doubles to adoubles were presented. Since the code must run in both 

types, double for VPP solving and adouble for gradient computation, templating is the only option. 

Therefore, a new template class (AppendageData) was introduced as part of the LLAppendage 

module. All active variables, functions, structures and classes have been made part of this 

template class. Additionally, all function definitions inside the lifting line module and all relevant 

base classes defined in external libraries have been templated amounting to around 8000 lines 

of code. The base classes included for example point-, vector- and matrix libraries. Wrappers 

have been implemented to enable communication between the VPP, which uses standard base 

classes, and the adjoint lifting line module, which uses the templated base classes. Two 

instances of the template class AppendageData have been created, one in doubles and one in 

adoubles. The VPP solver uses the double-based instance, the function computing the gradient 

the adouble-based. This function has been set-up to compute the gradient of the lift to drag ratio 

with respect to 21 design variables.  
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