
UNIVERSITY OF SOUTHAMPTON

Faculty of Engineering and Physical Science

School of Electronics and Computer Science

An Investigation into Weight Fixing

Networks

by

Christopher Subia-Waud

Doctor of Philosophy Thesis

May 2025

iii

Contents

List of Figures vii

List of Tables ix

Acknowledgements xi

1 Introduction 1

2 Background 5

2.1 Costs and Opportunities . 5

2.1.1 The Convolution Layer . 6

2.1.2 The Three Key Properties . 8

2.1.3 Layered Input-Output Neuronal Hierarchy 8

2.1.4 Weight Sparsity . 9

2.1.5 Re-use Opportunities . 10

2.2 Hardware for Deep Learning Inference 11

2.2.1 Temporal Architecture . 12

2.2.1.1 Optimisation Strategies within Temporal Architectures 14

2.2.2 Spatial Architectures: A New Paradigm for DNN Inference . . . 14

2.2.3 Compressed Representations . 17

2.3 Hardware Realisation of Weight Compression 18

2.3.0.1 Huffman Coding . 19

2.4 Algorithmic Approaches . 22

2.4.1 Pruning . 23

2.4.1.1 Lottery Ticket Hypothesis 25

2.4.2 Quantisation . 26

2.4.3 Architecture Improvements . 31

2.4.4 Architecture Search . 32

2.4.5 Student-teacher . 32

2.5 Algorithm:Hardware co-design . 33

3 Weight Fixing Networks 35

3.1 Single Codebook . 37

3.1.1 Unquantised Elements . 37

3.1.2 WFN Objectives . 39

3.1.3 Overview . 39

3.1.4 Small Relative Distance Change. 40

3.2 Method . 41

iv CONTENTS

3.2.1 Method Outline. 41

3.2.2 Clustering Stage. 43

3.2.3 Generating the Proposed Cluster Centres. 43

3.2.4 Reducing k with Additive Powers-of-two Approximations. 44

3.2.5 Minimalist Clustering. 44

3.2.6 Training Stage. 46

3.2.7 Cosying up to Clusters. 46

3.3 Experiment Details . 47

3.4 Results . 47

3.5 Additional Analysis . 50

3.5.1 Layerwise Breakdown . 50

3.5.2 A Full Metric Comparison . 50

3.5.3 Pruning Experiments . 52

3.6 Conclusion . 52

4 Probabilistic Weight Fixing 55

4.1 An Introduction of Ideas . 55

4.1.1 High-level BNN . 56

4.1.2 The Two Problems to Solve . 58

4.1.2.1 Problem One: Modelling 59

4.1.2.2 Problem Two: Utilising What We Learn 60

4.2 Background on Bayesian Neural Networks 60

4.2.1 Origins of Bayesian Neural Networks 61

4.2.2 Challenges and Conceptual Shifts 61

4.2.3 Advantages of Bayesian Approaches 61

4.2.4 Contemporary Research Trends . 62

4.2.5 Variational BNNs . 62

4.3 Probabilistic Weight Fixing Networks . 64

4.3.1 High Level Overview . 64

4.3.2 PWFN Training . 65

4.3.3 Large σ constraint for w. 66

4.3.4 Initialization using Relative Distance from Powers-of-two. 67

4.3.5 PWFN Clustering. 69

4.3.6 Putting it All Together. 71

4.3.7 WFN to PWFN . 72

4.3.7.1 The Proposal Set . 72

4.3.8 On the Measure of Distance . 73

4.3.9 To Prune or Not to Prune . 73

4.3.9.1 The Highlighted Changes 74

4.4 Experiments . 74

4.5 Results . 76

4.5.1 Entropy Values by Layer . 78

4.5.2 Distance Measures Compared . 79

4.6 Conclusion . 80

5 Towards On-The-Fly Clustering in Weight Fixing Networks 81

5.1 On-The-Fly Clustering Approach (COF-PWFN) 82

CONTENTS v

5.2 Method . 84

5.2.1 Defining Close Proximity . 85

5.2.2 Clustering Conditions . 85

5.2.3 Selecting Clusters . 86

5.3 Algorithm . 87

5.4 Experiments and Results . 89

5.4.1 Hyperparameter Exploration . 89

5.4.2 ImageNet Results . 90

6 Uncertainty Estimations of BWFN 95

6.0.1 The Landscape of Uncertainty Estimations 95

6.0.1.1 Uncertainty Estimation in Deep Learning 96

6.1 Evaluation Metrics . 98

6.1.0.1 Brier Score . 98

6.1.1 Reliability Diagrams . 99

6.1.2 Maximum Calibration Error (MCE) 101

6.1.3 Expected Calibration Error (ECE) 101

6.2 Experiments . 102

6.2.1 Experimental Setup . 103

6.3 Results . 103

6.3.1 Projections . 105

6.4 Compression Vs Calibration . 108

6.5 Out-of-distribution . 110

6.5.1 Understanding the Need for OOD Metrics 110

6.5.2 Studying OOD Metrics within PWFN 111

6.5.3 OOD Experimentation with PWFN 112

6.5.3.1 Entropy of Probabilities 112

6.5.3.2 Standard Deviation Thresholding 112

Visualisation and Interpretation 112

6.5.4 Experiment Results and Discussion 113

6.6 Conclusion . 115

7 Discussion and Further Analysis 117

7.1 The Thesis Contributions . 117

7.2 Implications and Future Directions . 118

7.2.1 Hardware Constraints and Data Movement Costs 118

7.2.2 Hardware Realisation of WFN . 118

7.2.2.1 Codebook-Based Architecture 119

7.2.2.2 Huffman Encoding for Weight Indices 119

7.2.2.3 Power-of-Two Optimisations 119

7.2.2.4 Whole-Network Shared Codebook 120

7.2.2.5 Memory-Efficient Implementation 120

7.2.3 Uncertainty Estimation in Safety-Critical Applications 120

7.2.4 Exploring Accuracy-Compression Trade-offs 121

7.2.5 Integration with Other Approaches 122

7.2.6 Adapting to Emerging Architectures 122

7.3 Conclusion . 123

vi CONTENTS

Bibliography 125

vii

List of Figures

2.1 Temporal vs. Spatial Architectures . 12

2.2 Tilling Matrix Multiplications . 13

2.3 A Schematic of Common Dataflow Mappings in Accelerators 15

2.4 Types of Quantisation . 28

2.5 Clip-and-scale quantisation . 29

3.1 How Many Parameters are Not Quantised By traditional Methods and
Why Relative Distance Matters. 38

3.2 WFN Noise Experiments . 40

3.3 The Weight Fixing Network Pipeline Overview 42

3.4 Accuracy vs Model Size Trade-off . 43

3.5 Approximating Clusters ck ∈ CS with Different Orders for b = 7 45

3.6 Exploring the WFN process for the ImageNet dataset 48

3.7 Unique Parameter Count WFN vs APoT 51

3.8 The Interaction of Pruning and WFN . 52

4.1 Bayesian Networks vs Traditional . 55

4.2 WFN Noise Experiments reexamine . 56

4.3 A set of possible weight distributions . 57

4.4 Weight distributions with different σ values 58

4.5 Regularising to stop values from collapsing to zero 67

4.6 µ vs σ - comparing initialisation to convergence 68

4.7 An overview of the PWFN process. 69

4.8 PWFN Clustering schedule . 74

4.9 QKV Entropies . 78

4.10 PWFN relative distance plots . 79

5.1 On-the-fly Clustering Overview . 83

5.2 Hyperparameter exploration using ResNet-18 trained on the CIFAR-10
dataset. 90

6.1 Reliability Diagrams . 100

6.2 PWFN Reliability Diagrams . 104

6.3 Penultimate Activation Layer Projections with PWFN 106

6.4 Logit Projections with PWFN . 107

6.5 Cluster Steps vs Accuracy . 108

6.6 Entropy Vs Calibration Metrics . 109

6.7 ID vs OOD Entropy Distributions . 113

6.8 ID vs OOD Accuracy . 115

ix

List of Tables

2.1 Energy costs of DNN computation elements 6

3.1 Hyper-parameters for WFN . 47

3.2 WFN Overview Comparison Results . 48

3.3 WFN vs APoT Results Table . 49

3.4 A Full Metric Comparison of WFN vs APoT 50

4.1 PWFN full comparison results . 76

4.2 Comparison of the number of additional training epochs required by
different fine-tuning quantisation methods. 77

5.1 COF-PFWN Results comparison . 91

5.2 Gradients of fixed vs not-fixed weights in COF-PWFN 92

5.3 Weights’ distribution comparison of fixed vs not-fixed in COF-PWFN . . 94

6.1 Uncertainty estimation results comparison 105

xi

Acknowledgements

Deepest thanks to all those who have supported me along the way, and to the pursuit of

interestingness, for keeping both life and research ever so slightly off-kilter and

delightfully unpredictable.

1

Chapter 1

Introduction

Deep learning models have a seemingly inexorable trajectory toward growth. Growth

in applicability, performance, investment, and optimism. Unfortunately, one area of

growth is lamentable - the ever-growing energy and storage costs required to train and

make predictions. A considerable factor contributing to these high energy costs is the

hardware they run on, which has historically been a function of the organisation of

computation and the types of computation required.

Just as the nature versus nurture debate oscillates between the relative influence of

innate abilities compared to environmental influences, the success of deep learning

equally hinges on the dynamic interplay between algorithmic development and

hardware advancements. Historically, this algorithm-hardware dance was skewed

towards adapting algorithms to pre-existing hardware, much like shaping behaviors

based on the environment in the nature-nurture analogy.

This environment of adapting algorithms to hardware has been punctuated by specific

periods of high research investment into dedicated hardware, notably during the early

’90s. The development of ANNA [Sackinger et al., 1992] and Intel’s ETANN [IEEE and

IEEE, 1992] are examples of these efforts, harmonising more with the aspect of ’nature’

or innate abilities. However, those models were non-flexible, supporting only fixed

architecture models, akin to fixed or inherited traits.

The Pivotal turn in deep learning was the innovative repurposing of Graphics

Processing Unit (GPU) hardware. Initially developed to empower the video game

industry, GPUs offered a flexible and powerful resource to advance and refine machine

learning algorithms.

It is crucial to make the distinction between algorithm-hardware co-design and

hardware re-purposing. The nascent success of deep learning systems was far more of a

2 Chapter 1. Introduction

function of the latter than the former. However, with the dominant view that further

scaling with increased performance [Kaplan et al., 2020] coupled with the ever-greater

reach of these models into the modern economy, there is a growing thrust toward

finding bespoke hardware accelerators to minimise the energy consumption of these

powerful models. However, the energy cost of these models is not just a function of the

computations performed, but also the data movement required to support those

computations. Data movement refers to the transfer of data between different levels of

the memory hierarchy, such as between main memory and cache, or between different

processing units, which can consume significant amounts of energy.

Whilst some algorithmic techniques have been useful in supporting this goal ± one

example being weight quantisation to INT8 which is supported out-the-box by TPUs

[Jouppi et al., 2017a] ± far too many have been concentrated on benchmarking metrics

such as compute floating-point operations (FLOPs) and its closely related multiply and

accumulate (MAC), without a clear cut direct translation into hardware not so clear-cut

[Sze et al., 2017]. As we will discuss, this is largely because the data movements carry

the dominant energy costs, which are not well captured with these popular metrics.

This was the starting point for this thesis Ð the assertion that the most

resource-expensive component of neural network inference is borne by data movement,

and how can we find algorithmic techniques which reduce this.

Centred around the consideration of the dominance of data-movement costs, the initial

work of this thesis focuses on finding a set of algorithmic methods to reduce the number

of unique weights along with the weight-space entropy of neural networks - which we

will later show are key to maximising opportunity for data-movement reductions. The

methods were developed to reduce the inference costs of models. They were tested on

image-type classification problems; although in principle there is no reason that they

can not be extended and applied to other problem domains (such as text prediction).

The path through to writing this thesis was not satisfactorily concluded upon

developing such a method. Instead, we noticed a link between the method developed

and Bayesian Neural Networks (BNNs) Ð a subfield in deep learning which looks to

reformulate neural networks to be stochastic in order to gain a measure of network

uncertainty.

With this link identified, we will later explore and use this link to provide further

improvements in determining models with very few unique weight and low

weight-space entropies. This link then further stimulated additional study into

uncertainty estimates with large-scale model-dataset BNNs which hitherto were

restricted to the toy-end of Machine Learning problems.

3

We ultimately hope with this thesis to explore, communicate and find the links between

five core statements:

• Reductions in data movement confer significant benefits for AI hardware energy

optimisation - Chapter 2.

• To minimise data movement, it is advantageous to reduce the number of unique

weights and decrease weight-space entropy - Chapters 2 and 3.

• The flexibility in determining which weights can correspond to which unique

values is magnified when we enhance the noise-tolerance of the network -

Chapters 3 and 4.

• A BNN that maximises noise-tolerance is a boon for compression, can be trained

on a wider set of model-dataset combinations - Chapters 4 and 5

• BNNs trained in this way are also well calibrated and can detect

out-of-distribution samples - Chapter 6.

The thesis is structured as follows:

Chapter 2 discusses the hardware costs and opportunities in deep learning inference,

highlighting the dominance of data movement costs.

Chapter 3 introduces Weight Fixing Networks (WFN), an algorithmic approach to

reduce unique weights and weight-space entropy to enable more efficient hardware

designs. The chapter concludes by identifying limitations in WFN’s assumption about

weight movement.

Chapter 4 proposes Probabilistic Weight Fixing Networks (PWFN), which reformulates

WFN using Bayesian Neural Networks to address the limitations of WFN. PWFN

achieves further reductions in weight-space entropy and unique parameters.

Chapter 5 builds upon PWFN and introduces Cluster-On-the-Fly PWFN (COF-PWFN),

which integrates the clustering process into the training phase for a more adaptive and

streamlined approach.

Chapter 6 explores the potential of PWFN and COF-PWFN for providing uncertainty

estimations, investigating their calibration capabilities and ability to detect

out-of-distribution samples.

Let us begin by looking where the energy-costs in hardware lie.

5

Chapter 2

Background

2.1 Costs and Opportunities

All operations in computation bear the cost of data movement and data manipulation,

such as arithmetic operations. Computational cost in deep learning inference is

measured by evaluating these two aspects. A single inference calculation involves

fetching all the elements needed like weights, partial sums, and inputs, and then

conducting several elementary operations ± multiplications and summations ± to map

inputs to outputs.

As shown in Table 2.1, data movement and arithmetic operations carry different energy

costs. Notably, the cost varies significantly between types of memory: Static Random

Access Memory (SRAM) - a high-speed memory used for cache, and Dynamic Random

Access Memory (DRAM) - typically used for data or program code needed by a

computer processor to function. Furthermore, arithmetic operations like addition (+)

and multiplication (×) performed on different data types from 8-bit integers to 32-bit

floating-point types, consume energy orders of magnitude cheaper than data movement

between SRAM and DRAM [Kestor et al., 2013, Boroumand et al., 2018, Keckler et al.,

2011, Pandiyan and Wu, 2014, Horowitz, 2014, Jouppi et al., 2021]. Transitioning data

fetching from DRAM to SRAM leads to more significant energy saving than moving

from 16-bit to 8-bit arithmetic operations.

The results presented in the table correspond to two manufacturing process

technologies represented by their transistor sizes: 45 nanometers (nm) and 7 nm - a

technological capability indicator where smaller size signifies advancement leading to

better performance and energy efficiency.

6 Chapter 2. Background

Operation
Picojoules per Operation

45nm[Horowitz, 2014] 7nm[Jouppi et al., 2021]

+

Int8 0.03 0.007
Int32 0.1 0.03

BFloat16 - 0.11
IEEE FP 16 0.4 0.16
IEEE FP 32 0.9 0.38

×

Int8 0.2 0.07
Int32 3.1 1.48

BFloat16 - 0.21
IEEE FP 16 1.1 0.34
IEEE FP 32 3.7 1.31

SRAM
8KB 10 7.5

32KB 20 8.5
1MB 100 14

DRAM
DDR3/4 1300 1300
HBM2 - 250− 450

GDDR6 - 350− 480

TABLE 2.1: Energy costs of elementary computation operations in picojoules. The
operations are performed across different data types and storage means (SRAM and
DRAM), with the table comparing results from two transistor sizes used in the produc-

tion of microprocessors: 45 nm and 7 nm.

Fortunately, there is something special about the types of computational requests we

make for deep learning systems that allow accelerator designs potential ways to reduce

these dominant costs. Namely, the fetched data used in inference calculations are

seldom used in the computation only once, giving us re-use opportunities that can

potentially ameliorate the total energy costs through a reduction in the number of

memory reads. This, coupled with matrix sparsity and hierarchical computation, offers

multiple avenues for a reduced energy overhead. The convolution network is an

excellent example of the opportunities available in reducing energy costs; let us briefly

dive into their history to see how such opportunities evolved.

The key take away here is that data reads are orders of magnitude more costly than

arithmetic operations. To reduce the energy costs, a focus must be on the re-use of data.

Read once, use many times.

2.1.1 The Convolution Layer

The groundbreaking work of Nobel laureates Hubel and Wiesel on understanding the

functional architecture of the visual cortex [Hubel and Wiesel, 1962] not only

revolutionised our understanding of biological vision but also laid the foundation for

the development of energy-efficient deep learning algorithms. Through their innovative

2.1. Costs and Opportunities 7

studies on the structure of neurones within a cat’s visual cortex, they discovered a

spatially hierarchical organisation of neuronal interactions.

Stimulation of the cortex was done by visually presenting simple patterns, such as

straight lines or edges, to the cat. It was observed that lateral movement of the electrode

across the cortex changed the type of feature detectors encounteredÐfrom vertical line

detectors to ’L’-shape detectors, for instance. This suggests that neurones in close

geographic proximity specialise in detecting different types of visual features (i.e., an

edge ’Ð’ vs an ’L’). On the other hand, vertical movement of the electrode along the

depth of the cortex fixed the type of detected feature but changed the receptive field, or

specific area of the visual field to which neurones responded.

Moreover, Hubel and Wiesel noted that nearby neurones had overlapping receptive

fields, meaning they responded to common portions of the visual field. This shared

spatial distribution, along with the hierarchical organisation of feature detection,

directly influenced the design of convolutional neural networks (CNNs) where the

weight-sharing and hierarchical structure of CNNs bear a close resemblance to the

overlapping receptive fields and hierarchical organisation observed in the visual cortex.

The seminal work of [Fukushima and Miyake, 1982] aimed to replicate aspects of this

hierarchical organisation in silicon with the Neocognitron. This early model

incorporated key architectural design choices that have carried through to modern deep

learning systems and are central to the pursuit of energy-efficient hardware: a layered

hierarchy and weight/output sparsity.

In CNNs, the layered hierarchy and filter re-use inherently reduce data movement by

enabling the sharing of weights across multiple spatial locations and inputs. This

weight-sharing, introduced in [Rumelhart et al., 1986, LeCun et al., 1989], enforces

translation equivariance properties. Translation equivariance means that if an input

image is shifted, the output of the network will be shifted in the same way, allowing the

network to recognize features regardless of their position in the image. This property is

a key area where research has focused on minimising energy costs. The energy

efficiency of these operations can be further improved by reducing the number of

unique weights and decreasing the weight-space entropy, which is a core objective of

this thesis.

In addition to weight-sharing, the sparsity of weights and outputs in CNNs, inspired by

the sparse activation patterns observed in the visual cortex, presents further

opportunities for energy optimisation. By exploiting this sparsity, we can minimise the

number of computations and data movements required, thus reducing overall energy

consumption.

8 Chapter 2. Background

In the following sections, we will explore algorithmic techniques that push further these

architectural features of CNNs±weight-sharing and sparsityÐto reduce inference costs,

but first let’s more formally define what exactly a deep neural network (DNN) is.

2.1.2 The Three Key Properties

There are three properties of modern deep learning architectures, two of which were

already present in the early work of [Fukushima and Miyake, 1982], that can be

leveraged by hardware to reduce computational expense.

• A Layered Input-output Neuronal Hierarchy: Deep learning architectures, such as

CNNs, are organised into a hierarchical structure of layers. Each layer processes

the output from the previous layer and passes its output to the next layer. This

hierarchical organisation allows for the extraction of increasingly complex

features as the input progresses through the network. By designing hardware that

efficiently handles this layered structure, computational expense can be reduced.

• Weight/Output Sparsity: In deep learning models, many of the learned weights

and activations (outputs) are often zero or near-zero. This sparsity can be

exploited by hardware accelerators to reduce computation and memory access. By

avoiding calculations and data movements involving zero values, the overall

computational expense can be minimised. Techniques such as pruning and sparse

matrix operations can be used to take advantage of this sparsity.

• Weight/Input Pixel Re-use: In CNNs, the same set of weights (filters) are applied

across different spatial locations of the input. This weight re-use, also known as

weight sharing, allows for a significant reduction in the number of unique weights

that need to be stored and accessed. Similarly, input pixels can be re-used across

multiple convolution operations. Hardware accelerators can leverage this re-use

by efficiently caching and reusing weights and input pixels, reducing memory

access and computational expense.

2.1.3 Layered Input-Output Neuronal Hierarchy

A DNN, at its most universal definition, is a stack of L layers, each of which acts on

inputs to layer l, denoted as hl−1, and applies a function Fl
wl at a particular layer l. The

function Fl
wl is parameterised by weights wl . The input to the network is denoted as

h0 = x, and the output of the network is hL = y.

2.1. Costs and Opportunities 9

In the typical case, the output of a layer l is fed into as input to the next layer in a

cascading fashion:

y = Fθ(x) = FL
wL ◦ FL−1

wL−1 ◦ · · · ◦ F1
w1 ◦ F0

w0(x)

where hl+1 = Fl
wl (h

l), h0 = x, hL+1 = yh is the output (or hidden state) of layer l, and

θ = (wL, wL−1, . . . , w0) is the collection of all weights in the network.

The types of inputs Fl
wl expects and how it acts on such inputs carries a great deal of

variety and freedom, but this layered structure has consequences for hardware use.

Each layer Fl
wl can be treated as a self-contained input-to-output function, meaning that

weights wl along with the inputs hl−1 are all required to be loaded from memory.

This independent computation allows for layer-by-layer compression techniques, such

as quantisation, to be applied more effectively than compressing the entire network at

once. By treating each layer as a separate entity, the compression algorithm can be

tailored to the specific characteristics and requirements of each layer, potentially leading

to better compression ratios and less loss of information. In contrast, when compressing

the entire network at once, the compression algorithm must find a one-size-fits-all

solution, which may not be optimal for all layers. Furthermore, layer-by-layer

compression enables the possibility of using different compression techniques or

parameters for each layer, which can further improve the overall compression efficiency.

2.1.4 Weight Sparsity

In modern deep neural networks, weight sparsity is often induced through techniques

such as pruning, weight-decay regularisation, and quantisation. Pruning involves

removing weights that are close to zero or have minimal impact on the network’s

performance, effectively setting them to zero. Weight-decay regularisation adds a

penalty term to the loss function, encouraging the network to learn smaller weights,

which can lead to increased sparsity. Quantisation, on the other hand, reduces the

precision of weights, which can result in more weights being exactly zero.

Another form of sparsity, activation sparsity, arises from the use of activation functions

such as the Rectified Linear Unit (ReLU). ReLU sets all negative input values to zero,

introducing sparsity in the activations.

The presence of sparse weights and activations has significant benefits for hardware

design. In computations involving addition, zero-valued weights and activations have

no effect on the result. Similarly, in multiplications, zero elements always map back to

10 Chapter 2. Background

zero. By exploiting these properties, hardware systems can avoid performing

unnecessary arithmetic operations, leading to energy savings. If the prevalence of zero

weights and activations can be increased through the aforementioned techniques, and

hardware systems are designed to identify and skip these operations, substantial

efficiency gains can be achieved.

2.1.5 Re-use Opportunities

Designing efficient deep learning accelerators requires focusing on data reuse and

locality to minimise data movement costs and improve computational efficiency. These

considerations are closely related to the layered structure of deep neural networks and

the independent computation within each layer, as discussed in the previous section on

weight sparsity.

Deep learning computations offer multiple opportunities to reuse parameters, directly

addressing the key considerations of data reuse and locality. By reading each parameter

once and applying it to every instance where it is needed, the overall computational

burden can be significantly reduced. Common operations and layers in deep learning

architectures, provide several opportunities for parameter reuse. Let’s take a look at the

convolution layer as one such example:

• Convolutional Filter Reuse: In convolutional layers, each filter is applied to

multiple spatial locations across the input feature map. This means the filter

parameters can be read once and reused for all the spatial positions, reducing the

need to repeatedly load the same filter from memory. Exploiting this reuse

opportunity can minimize data movement and improve computational efficiency.

• Input Reuse: Each spatial location within the input feature map contributes to

multiple output feature maps. In other words, a single input value is used in the

computation of several output values, as it is multiplied by different filter

parameters. Keeping the input in local memory or registers can avoid redundant

memory accesses and improve computational efficiency. This directly relates to

the importance of data locality in accelerator designs.

• Batch Reuse: When processing data in batches, the same filters are applied to

multiple input examples within the batch. This presents an opportunity to reuse

the filter parameters across the batch, further reducing memory access

requirements and enabling parallel processing of multiple examples. Batch reuse

is particularly relevant to the concept of parallelism in accelerator designs, as it

allows for efficient utilization of computational resources.

2.2. Hardware for Deep Learning Inference 11

Next, in following sections will look at how these reuse opportunities can be exploited

in the design of hardware architectures and algorithms for deep learning acceleration.

2.2 Hardware for Deep Learning Inference

Hardware used for DNN inference can be divided into two categories: general and

specialist. General hardware systems, whilst not explicitly designed for DNN inference

calculations, can perform these tasks due to the simplicity of the underlying operations,

such as memory reads and matrix multiplications. On the other hand, specialist DNN

inference machines, or accelerators, are engineered specifically to carry out the

operations required for inference and to reduce any overhead or bottlenecks. These

specialised accelerators have been introduced to address the inefficiencies present in

systems that support more general computation.

Some of these inefficiencies include the high area costs incurred in supporting large

numbers of operators, the high energy and latency costs due to highly connected,

multi-layered memory hierarchies typically implemented in general computing, and the

smaller on-chip RAM sizes often requiring multiple high-energy cost off-chip accesses.

These inefficiencies can be particularly pronounced when dealing with the large

number of weights and parameters present in modern deep neural networks.

Whilst significant progress in AI has been achieved using general hardware systems, the

slowing trend of Moore’s Law [Moore, 1998] and the inherent inefficiencies of a

one-size-fits-all approach highlight the potential of domain-specific hardware

components for further advancement [Hennessy, 2018, Hameed et al., 2010]. By

focusing on the specific requirements of DNN inference, specialist architectures can be

designed to optimise computational efficiency and minimise data movement, leading to

improved performance and energy efficiency.

One key aspect of this optimisation is the handling of weights and parameters in the

network. As discussed in previous sections, deep neural networks often have a large

number of weights, which can lead to increased memory requirements and data

movement costs. By exploring techniques such as weight sparsity, quantisation, and

efficient weight storage, specialist architectures can significantly reduce the memory

footprint and computational burden associated with these weights.

Furthermore, the reuse opportunities present in common DNN operations, such as

convolution, can be exploited by specialist architectures to minimise data movement

and improve computational efficiency. By carefully designing memory hierarchies and

dataflow patterns that take advantage of these reuse opportunities, specialist

12 Chapter 2. Background

Memory Hierarchy

Spatial Architecture Temporal Architecture

Register File

ALU

Control

FIGURE 2.1: Temporal architectures ± such as GPU’s ± have processing element ALUs
that carry out computation in parallel and interact directly with control and memory, but
not each other. These architectures use SIMD/SIMT to increase processing efficiency.
Spatial architectures ± DNN accelerators ± have processing element which have in
addition, programmable register files and can communicate with each other and use

dataflowprocessing schemes to reduce data movement.

architectures can achieve significant performance gains compared to general hardware

systems.

In the following sections, we will delve deeper into the architectural details that

distinguish specialist architectures from general systems and explore how these design

choices are motivated by the specific requirements of DNN inference. By understanding

these differences and their implications for weight handling and data reuse, we can gain

insights into the development of efficient deep learning accelerators and the potential

for further optimisation through techniques such as weight space entropy reduction.

2.2.1 Temporal Architecture

The two staples of modern computing, central processing units (CPUs) and graphics

processing units (GPUs), both follow a temporal architecture. In this type of

architecture, a single centralised control unit distributes work to multiple arithmetic

logic units (ALUs). These ALUs have access to a shared memory but do not typically

have their own programmable memory store, meaning they need to rely on access to

shared memory pools. This reliance on shared memory can cause bottlenecks due to the

growing gap between processor and memory performance, known as the memory wall

[McKee and Wisniewski, 2011].

2.2. Hardware for Deep Learning Inference 13

FIGURE 2.2: Tiling approaches allow the breaking of large matrix multiplications
prevalent in DNN inference into many reusable blocks which can be operated on in

parallel and reused ± saving large memory reads and writes.

To improve computation speed through parallelism, techniques such as Single

Instruction Multiple Data (SIMD) and Single Instruction Multiple Threads (SIMT) are

employed. SIMD, commonly used in CPUs, allows a single instruction to be applied

simultaneously to multiple data elements, enabling parallel processing of identical

operations on different data points. On the other hand, SIMT, often used in GPUs,

extends the SIMD concept by allowing multiple threads to execute the same instruction

simultaneously on different data elements, providing an additional level of parallelism.

However, the ALUs within temporal architectures are not able to communicate with

each other directly and must rely on the centralised memory pool to exchange data and

intermediate results. This communication bottleneck can limit the efficiency of parallel

processing, especially when dealing with large amounts of data or complex operations.

In contrast, spatial architectures, which will be discussed in more detail later, allow for

direct communication between processing elements, reducing the reliance on shared

memory and potentially alleviating the communication bottleneck. This direct

communication can be particularly beneficial for deep learning inference, where the

exchange of intermediate results between layers is a common operation.

The limitations of temporal architectures in terms of memory access and

communication between ALUs highlight the need for specialised hardware that can

address these bottlenecks. By designing architectures that are tailored to the specific

requirements of deep learning inference, such as efficient memory access patterns and

direct communication between processing elements, we can potentially achieve

significant improvements in performance and energy efficiency.

14 Chapter 2. Background

2.2.1.1 Optimisation Strategies within Temporal Architectures

Temporal architectures and optimisation libraries ± such as OpenBLAS, cuDNN etc ±

use strategies such as tiling to break up the matrix multiplications into reusable and

parallelisable subblocks. These subblocks can themselves be hierarchical to match the

memory hierarchy of the device as shown in Figure 2.2.

2.2.2 Spatial Architectures: A New Paradigm for DNN Inference

Spatial architectures offer a new approach to DNN inference, with two key features that

distinguish them from temporal architectures. Firstly, they enable direct communication

between processing elements (PEs), the individual units responsible for computation.

Secondly, they provide programmable memories within each PE, allowing for

fine-grained control over dataflow. These features provide access to close-to-compute

memory and the ability to move data in unconventional ways, making spatial

architectures well-suited for DNN inference, where reuse opportunities are abundant

and the order of computation can be adjusted to meet specific requirements.

The programmable memories within each PE enable dataflow optimisation, allowing

for the fine-tuning of data movement and computation order to suit the specific needs

of the DNN inference task. This flexibility in dataflow mapping is a significant

advantage, enabling the exploitation of reuse opportunities and minimisation of data

movement costs.

Selecting the appropriate dataflow mapping is a critical aspect of designing spatial

architectures for DNN inference. Three popular mappings ± weight stationary, output

stationary, and input stationary ± each offer unique advantages (Figure 2.3). By

investigating these mappings and understanding their implications for data movement

and computation, we can design efficient spatial architectures that improve DNN

inference performance.

The motivation behind spatial architectures and optimal dataflow mappings stems from

the need to address the limitations of general-purpose hardware and temporal

architectures in handling the large number of weights and complex dataflow patterns

found in modern DNNs. By developing specialised hardware tailored to the specific

requirements of DNN inference, significant improvements in computational efficiency,

memory footprint, and energy consumption can be achieved.

Let’s jump into a few definitions for some of the popular dataflow mappings with a

mind that later we will look to develop our algorithmic approach to fit within one or

more of these paradigms.

2.2. Hardware for Deep Learning Inference 15

p1..8p1..7p1 I9I8I2

w2 w8 w9

* =

Filter

Weight Stationary Dataflow

Input Channel Partial Sums Output Channel

w1

w6

w9w8

w5

w7

w4

w2 w3 I1

I1

I6

I9I8

I5

I7

I4

I2 I3

w1

....

Oi

I1 p1w1x =

I9 p9

p1..9

w9x =

.... Σ = =

Oi

I9I8I2

Output Stationary Dataflow

I1

p1..9

....

O1 O2 Oc-1
Oc

p1..9 p1..9 p1..9

w4w3w2w1

p1..8p1..2

W9W8W2

I2 I8
I9

Input Stationary Dataflow

W1

I1

....
Oip1

FIGURE 2.3: Dataflow mappings within accelerator designs prioritise the reuse of
varying components of DNN computation. Weight stationery: maintains the weight
values in PE memory and feeds in input activations and previous partial sums. Output
stationery: maintains the partial sum accumulation in PE memory with inputs and
weights fed in, meaning each PE outputs a single output activation channel ± saving on
the writing and re-reading of partial sums. Input stationery: keeps input activations
within PE registry files feeding in weights and accumulating partial sums spatially

between processing elements.

16 Chapter 2. Background

Weight Stationary Dataflow

Weight stationary dataflow optimises the local memory on PEs to hold the filter weights.

The idea is to read each weight value only once and pass all input activations that use

the weight in computation. This amounts to an off-chip memory-read saving of

approximately the number of input channels to a filter weight for convolution. An early

weight-stationary accelerator is DaDianNao [Chen et al., 2014] created a fully

distributed system where there is no main memory shared by all PEs. Instead, each PE

has access to a set of eDRAM banks and handles a subset of computation in a forward

pass that uses these weights. Tensor processing units, a popular accelerator, also use

weight stationary dataflow [Jouppi et al., 2017b] using a systolic array to orchestrate the

input activations and gather the partial-sums as outputs to be passed in as inputs to

other PEs, avoiding the other partial-sum read and writes. Other works that use

weight-stationary dataflow include [Cavigelli et al., 2015, NVIDIA, 2018].

Output Stationary Dataflow

Output stationary dataflow minimises the energy consumption of the partial sum

reading and writing for each output channel. Rather than having to write back to a

buffer the intermediate computation for an output channel, we maintain partial sums

on the PE registry file, and any weights and input activations involved in a single

output channel are piped into this PE. The result is that each PE will output a single

output channel result. This will approximately reduce the number of read-writes by the

filter size used to compute each output channel. We can make further energy savings if

we orchestrate the weights and/or inputs spatially such that neighbouring PEs use the

same weight/input values, as was achieved in [Moons and Verhelst, 2016b, Du et al.,

2015].

Input Stationary Dataflow

Following the same principle as the previous dataflows, input stationary dataflow

maintains input activations in the registry files of the PEs and distributes the weights to

the PEs that require each input. Partial sums are accumulated through communication

between PEs without the need for writing back to off-chip memory. Each input held on

a PE can therefore contribute to the computation of a volume of output activations

determined by the filter dimensions (width and height) and the number of output

channels. One architectural implementation that demonstrates this approach is SCNN

[Parashar et al., 2017]. In this design, each PE maintains a bank of four input activations

2.2. Hardware for Deep Learning Inference 17

and processes a portion of the output activation volume within a given cycle. The

partial sums are then accumulated spatially within the four-input block.

Hybrid Dataflows

While weight, output, and input stationary dataflows cover the main ideas present in

DNN accelerator designs, some researchers have explored the benefits of combining

multiple dataflows through hybrid approaches [Parashar et al., 2017, Kwon et al., 2018,

Chen et al., 2016, 2019]. One such example is the row stationary dataflow proposed by

[Chen et al., 2016], which aims to maximise the reuse of weights, inputs, and partial

sums for each filter row. In this approach, weights and inputs of a row are maintained

within the PEs. Subsets of the row required for computation, as the filter moves across

the row, can be accessed efficiently, and partial sums are collected for the row. Once a

row is complete, the partial sums are combined with other rows within a filter’s range

to produce the final output.

2.2.3 Compressed Representations

Optimising the distribution and computational reuse of weights, inputs, and outputs

across PEs is one way accelerators mitigate data movement costs; compression is

another. Data compression is an established field with many ideas to borrow from, such

as Shannon’s information theory [Shannon, 1948b], Huffman coding [Huffman, 1952],

and Lempel-Ziv-Welch (LZW) compression [Welch, 1984]. Rather than representing

data in its full bit-width, compression schemes look for repeated structures to represent

values or blocks with lower bit-width costs than the full precision values. In these

schemes, values are stored using encoded indexing instead of directly storing the values

themselves. These index schemes then point to the values’ addresses in physical storage.

For compression to be beneficial, the combined cost of indexing and value retrieval

must be less than the traditional weight storage and read methods. This is particularly

relevant to our work, as we aim to reduce the memory footprint and data movement

costs associated with the weights in deep neural networks.

However, we are restricted to methods that can decompose subsets of the encoded data

as needed for computation. If, as is the case for LZW, we can only decode the

compression scheme in its entirety, then we would lose any benefit of compression at

inference time.

Compressed representations that have been successfully used in accelerator designs

include run-length encoding (RLE) [Chen et al., 2016], where integer values encode

contiguously occurring zeros. For example, consider a row in a large sparse kernel with

18 Chapter 2. Background

values 0, 0, 9, 0, 0, 0, 0, 3; a simplified RLE representation might be z29z43, which is

smaller than the original representation. However, this naive approach introduces

ambiguity, as z29z43 could also represent 00043. In practice, RLE implementations for

neural networks typically use separate, unambiguous encodings for zero runs and

non-zero values, often with fixed-width formats or bit-level encodings. One problem

with RLE, common to most compression schemes, is that the representational overhead

may be more significant than the savings made. The effectiveness of RLE depends on

the amount of sparsity in the matrix. Each contiguous set of zeros requires an integer to

represent their number and an indicator that the zero blocks have started; if the matrix

is not very sparse, or sparse but with the zero values interleaved without contiguous

blocks, then the cost of RLE will be higher than the traditional dense representation.

Other sparsity-optimised compression schemes used in accelerators include

compressed sparse row and column formats [Sato and Tinney, 1963, Zhang et al., 2016].

While sparsity-leveraging compression schemes are popular, they seldom reach the

limits of compression determined by the entropy of the weight distribution, which we

would prefer. Ideally, the compression scheme used should be close to the underlying

entropy of the weight distribution we wish to represent. An encoding scheme that has

both properties, per-value decoding and close-to-entropy compression rates, is

Huffman coding. This is particularly relevant to our work, as we aim to exploit the

low-entropy weight distributions in deep neural networks to achieve high compression

ratios while maintaining efficient decoding capabilities.

2.3 Hardware Realisation of Weight Compression

Transforming low-entropy weight distributions and reduced unique parameter values

into efficient hardware requires specialised circuit designs that optimise both

computation and memory access. When networks contain few unique weights,

hardware accelerators can effectively exploit this property to minimise data movement

costs.

Weight compression techniques can be realised in hardware through codebook-based

architectures. Instead of storing full-precision weights, these systems maintain a small

lookup table (LUT) of unique weight values in high-speed SRAM close to processing

elements, while only indices to this table are stored in the main memory. This approach

significantly reduces memory bandwidth requirements and enables more efficient data

movement.

The UNPU accelerator [Lee et al., 2018] demonstrated this concept by supporting

variable weight bit precision from 1 to 16 bits through lookup table-based bit-serial

2.3. Hardware Realisation of Weight Compression 19

processing elements. This architecture achieved energy reductions of 23.1%, 27.2%, 41%,

and 53.6% for 16-, 8-, 4-, and 1-bit weight precision respectively, compared to

conventional fixed-point multiply-and-accumulate arrays.

For networks containing primarily power-of-two weights, multiplications can be

implemented as bit-shift operations, substantially reducing computational complexity.

Modern accelerator designs can detect these special cases and route calculations

through optimised datapaths.

Another approach to hardware acceleration is bit-level composability, as demonstrated

by BitFusion [Sharma et al., 2018]. Rather than using fixed bitwidth processing

elements, BitFusion employs an array of bit-level units that can dynamically fuse to

match the bitwidth requirements of individual DNN layers. This flexibility allows for

minimising computation and communication at the finest granularity possible without

accuracy loss, achieving substantial performance and energy improvements over

fixed-precision accelerators.

The EIE accelerator [Han et al., 2016a]. demonstrated specific hardware support for

compressed neural networks, including Huffman-coded weights. Their implementation

showed that the energy savings from reduced memory access substantially outweighed

the decompression overhead, achieving a 3× reduction in total energy compared to

conventional architectures when processing compressed networks.

These implementations underscore the critical importance of algorithm-hardware

co-designÐcompression schemes must be developed with an understanding of

hardware characteristics to maximise efficiency gains.

2.3.0.1 Huffman Coding

In this thesis, we dedicate two pieces of work (Chapters 3 and 4) to finding networks

that minimise the Huffman encoded representation of a network, and so an expanded

treatment of the subject is necessary.

In 1951, an MIT professor, Robert Fano (the joint inventor of Shannon-Fano coding), set

an eager graduate class a coding challenge that, should they successfully solve, would

exempt them from the upcoming final exam. A young David Huffman took up the

challenge and spent months wrestling with iterations of ideas, not knowing that the

problem was so tricky that Fano himself had no solution. Just days before the final

exam, Huffman gave up the chase and accepted defeat, throwing his latest attempt into

the bin and opening up his textbooks to prepare for the final exam. The following day,

Huffman awoke with the realisation of a solution, one with only a slight divergence

20 Chapter 2. Background

from the idea that lay at the bottom of his waste paper basket. This aha moment led to

the paper ºA method for the construction of minimum-redundancy codesº [Huffman,

1952], which revolutionised the field and became the compression algorithm of choice

for many applications. Huffman did not need to sit his final exam [Stix, 1991].

The algorithm that Huffman invented, like most good ideas, is a simple one. Starting

with the string S we wish to encode, we represent each of the N unique symbols in the

string as A(S) = s1, · · · , sn, where |S| = N and |A(S)| = n ≤ N. Each of these unique

symbols si ∈ A(S) are initialised as lea f nodes vi in a node-set V. Each leaf node vi

additionally contains a weighting #(si), which represents the number of times the

unique value is present in the string S. Let V = v1, · · · , vn represent the set of nodes,

where vi = (si, #(si)) is a tuple containing the unique symbol and its corresponding

frequency.

We next greedily select the two nodes vi, vj from V with the lowest weighting such that

i = arg mink #(sk) and j = arg minl #(sl), where k, l ∈ 1, · · · , n and k ̸= i, l ̸= j. We

remove these nodes from the set of possible nodes and attach in their place a combined

parent node v(i,j) = ([si, sj], #(s(i,j))), where the weighting of the parent node is the

summation of the weights of the two child nodes selected, i.e., #(s(i,j)) = #(si) + #(sj).

The new node set becomes:

V = (V \ {vi, vj}) ∪ {v(i,j)}

where V \ {vi, vj} represents the set V with nodes vi and vj removed. If we repeat the

process n− 1 times, we end with just one node that is parent to all other nodes v(1,··· ,n).

We measure the code word length for a particular symbol as the number of times the

symbol was involved in combinations, and its bit string can be formed by traversing the

tree created in the process, where each left or right path appends a 0 or 1 to the symbol

representation, respectively.

Let us run through a concrete example, which we borrow heavily from [Moffat, 2019].

Imagine we have a very simple 1-layer neural network (essentially a linear regression

setup) with the following 21 weights post-quantisation:

W = [0.3, 0, 0, 0.1, 0, 0, 0.5, 0, 0, 0.1, 0.1, 0, 0.1, 0.2, 0.2, 0.1, 0.4, 0, 0, 0, 0.1]

where A(W) = {0, 0.1, 0.2, 0.3, 0.4, 0.5} and

V = {(0, 10), (0.1, 6), (0.2, 2), (0.3, 1), (0.4, 1), (0.5, 1)}.

2.3. Hardware Realisation of Weight Compression 21

In each iteration, we select the two nodes with the smallest frequencies. We use

higher-numbered symbols as tie-breakers. Let’s denote combined nodes with square

brackets. The iterations proceed as follows:

Iteration 1:{(0, 10), (0.1, 6), (0.2, 2), (0.3, 1), ([0.4, 0.5], 2)}

Iteration 2:{(0, 10), (0.1, 6), ([0.2, 0.3], 3), ([0.4, 0.5], 2)}

Iteration 3:{(0, 10), (0.1, 6), ([[0.2, 0.3], [0.4, 0.5]], 5)}

Iteration 4:{(0, 10), ([0.1, [[0.2, 0.3], [0.4, 0.5]]], 11)}

Iteration 5:{([0, [0.1, [[0.2, 0.3], [0.4, 0.5]]]], 21)}

We can represent our result in a tree as shown in Figure ??, where a 0-1 traversal

indicates the decisions made and the bit appended to the code for each leaf symbol.

Huffman coding has several properties that make it interesting for compressing neural

networks. First, it is a minimal-redundancy code, meaning that the average number of

coding digits per message is minimised. More importantly, Huffman encoding gets us

very close to the underlying entropy. Defining entropy in the usual way,

H(W) = −∑w∈A(W) p(w) log2 p(w), we can define an encoding cost as the total number

of bits needed to encode our original weight set W asH′(C, W) = ∑w∈A(W) #(w) · L(w).

The ϵ-difference between our encoding scheme C and the underlying entropyH is the

quantity we would like to minimise: ϵ = H′(C, W)−H(W). If we define the most

frequent weight in W as wmax, we can use the bound presented in the work [Gallager,

1978], 0 ≤ ϵ < p(wmax) + 0.086, to gain an intuition of how close Huffman coding is to

the underlying entropy of a message. Here we can see that the bound is limited by the

probability of the most frequent weight in the code. For neural networks, this could

present a problem since it is often empirically observed that the distribution of weights

follows a Gaussian distribution or one similar but with longer tails [Yuhang Li, Xin

Dong, 2020] - the Laplace distribution, for example. The Laplace distribution, defined

by its probability density function f (x|µ, b) = 1
2b exp(− |x−µ|

b) where µ is the location

parameter and b is the scale parameter. The Gaussian has contributed to the

developments of informative priors for Bayesian Neural Networks [Blundell et al.,

2015] and has been utilised by pruning techniques to fix as much as 90% of the weights

to zero values [Lin et al., 2020b]. If the most frequent weight has a probability of 0.9,

then the worst-case scenario is that Huffman coding could add up to 0.986 bits per

weight of overhead. Fortunately, as we will discuss, this need not be the case, but it is

still a result worth keeping in mind as we go forward.

ϵ(C, S) = H′(C, S)−H(S) (2.1)

22 Chapter 2. Background

The bound on the ϵ-difference between Huffman coding and the underlying entropy is

given by:

ϵ(C, S) ≤





#(smax)
n + 0.086 when #(smax)

n <
1
2

#(smax)
n

when #(smax)
n ≥ 1

2

(2.2)

Let us wrap up our initial discussion of Huffman coding with a list of properties that

make them useful when thinking about an encoding scheme for Neural Networks:

• It is a prefix code, hence it can be decoded one symbol at a time. This is helpful for

DNN inference where individual weights used in computation are usually paired

with elements of the input signal. Hence, we could decode a single weight, use it,

and then move onto the next part of computation rather than having to decode

the network in its entirety.

• We have theoretic bounds on how close the encoding is to the underlying entropy

[Gallager, 1978], so we can look to adapt our distribution shaping methods with

this in mind.

• The decoding can be done on the fly using an additional buffer memory of size

Lmax bits [Moffat, 2019].

• Finally, Huffman encoding has been successfully implemented and used in

accelerator designs with an 8x energy saving achieved when using this form of

encoded weight-sharing [Mao and Dally, 2016a, Han et al., 2016a]. This successful

implementation is an indication of the potential benefits of low-entropy networks

for hardware efficiency and serves as an inspiration for our work in finding

improved weight distributions that can exploit low-entropy encodings. By

exploring techniques to shape the weight distribution and reduce the entropy of

the network, we aim to further enhance the effectiveness of Huffman coding and

other entropy-based compression schemes, ultimately leading to more efficient

deep learning accelerators.

2.4 Algorithmic Approaches

Let us now start to move towards the algorithmic side of DNN acceleration. This

section differs from the previous section in that these methods are typically developed

agnostically, with no particular hardware configuration in mind. Instead, the network is

altered or designed with the general principles of downstream energy efficiency. We

note, however, often a particular type of hardware system or module is required to

realise the energy savings of techniques employed using algorithmic approaches.

2.4. Algorithmic Approaches 23

We break down our dive into the algorithmic approaches to DNN inference energy

saving as pruning, quantisation, distillation and architectural choice and search. These

four categories benefit (at least for the most part) from being distinct so that a

practitioner can use a single technique for a project or combine two or more for further

gains.

Before we begin, let us prime ourselves with a reminder of the common principles

explored in the previous hardware section:

• Data Movement Domination: The cost of moving data from off-chip DRAM far

surpasses the costs involved in arithmetic operations.

• Reuse is Key: To save data movement costs, hardware systems can leverage the

reuse opportunities using dataflow mappings. Fortunately, DNN inference

provided multiple areas for potential reuse.

• Avoiding Computation Requires Orchestration: Even seemingly obvious savings

such as sparse inputs/weights require hardware design decisions that can

introduce overhead and bottlenecks.

2.4.1 Pruning

The human brain synaptic connectivity follows a somewhat counter-intuitive trajectory.

In the early embryonic stage, up to around two years of age, neuron connectivity

explodes ten-fold to approximately 15,000 synapses per neuron. At around two, this

growth stage ends, and the brain reverses course and begins synaptic pruning. The

pruning away of synapses is so aggressive that by age 10, children have around 50% of

the synapses they started with on their second birthday. Synaptic pruning continues,

albeit somewhat slower, until early adulthood [Huttenlocher et al., 1979, Tau and

Peterson, 2010].

This biological phenomenon is not yet fully understood, but the claimed parallels

between computational neural networks and brain neurons have motivated researchers

to explore the value of pruning neural networks as a form of learning and energy

conservation. Seminal works explored this connection through the pruning of weights

deemed unimportant [LeCun et al., 1990] and found performance can be maintained

with a large number of weights removed. The motivation for doing so is predominantly

in the avoidance of computation; a zero weight value need not be multiplied since the

outcome is guaranteed to be zero.

Subsequent works have further developed the approach and found that pruning neural

networks can be applied before [Lee et al., 2019, Lubana and Dick, 2020, Lee et al., 2019]

24 Chapter 2. Background

or during training [Lin et al., 2017], but is predominantly applied after training to

convergence [Blalock et al., 2020, Han et al., 2015b].

We can describe the generalised pruning procedure as identifying a binary mask

M ∈ {0, 1}d where d is the number of parameters in the network. Let θ ∈ R
d represent

the parameter weights of the neural network. After identifying M, the new network is

calculated taking the element-wise multiplication between parameter weights θ and M,

f (x|θ ◦M).

How we identify these binary masks is of particular research interest, with the

dominant approaches centring on pruning weights of low-magnitude [Han et al., 2015b]

Ð a fast proxy for weight-importance Ð or, more explicitly, those that produce the

smallest decrease in loss through examination of weight magnitudes scaled by the

gradient [Molchanov et al., 2019b, 2016]. Others have looked at the disconnect between

parameter reduction and energy reduction and opt to iteratively prune layer-wise but

focus on layers which are the most energy draining first [Yang et al., 2017a].

A problem arises in determining how best to leverage the algorithmically induced

sparsity. As we have been discussing, while the pursuit of fewer multiplications

reduces computational resources, it would be far more beneficial if we could avoid

these weights and their corresponding activations used in multiplication in the first

place. Although libraries commonly used for DL optimisation CPUs and GPUs do not

automatically identify and support sparsity there has been a move towards researching

support [Gale et al., 2020]. The most accessible for the general practitioner has been

using the PyTorch torch.sparse library, which leverages cuSPARSE [Naumov et al., 2010]

and sparse storage formats such as compressed sparse column (CSC) and compressed

sparse row (CSR), but this does require defining the architecture using such formats.

Again, bespoke accelerator designs have been leading the way using compression

formats such as RLE, CSR and CSC [Chen et al., 2017, Reagen et al., Dorrance et al.,

2014, Han et al., 2016a].

An alternative option to consider in network pruning is to focus on structured

components, such as entire filters, instead of individual weights. This way, there’s no

additional need for hardware optimisation, simplifying the process by just eliminating a

channel in a layer. Several strategies for this type of structural pruning have been

advanced, which leverage the Taylor series approximation to predict potential increases

in loss when pruning occurs [Molchanov et al., 2016, 2019a]. Another effective strategy

involves adjusting or ’regularising’ the batch-normalisation scaling factor, and

identifying filters with small norms for pruning [Liu et al., 2017].

An additional debate has surfaced into rethinking the value of pruning [Blalock et al.,

2020], wherein the number of parameters left after pruning is not always competitive

2.4. Algorithmic Approaches 25

with efficient architecture choices and benchmarking between pruning solutions not

well-compared. However, efficient specialised hardware implementations are more able

to make use of pruning induced sparsity [Reagen et al., Han et al., 2016a] as well as the

activation sparsity observed due to ReLU non-linearities between layers [Sze et al.,

2017] than the heterogeneous filter sizes used in architecture optimisations alone.

2.4.1.1 Lottery Ticket Hypothesis

The Lottery Ticket Hypothesis (LTH) [Frankle and Carbin, 2019] challenges the

conventional belief that pruned networks can only achieve strong performance when

coupled with optimised weights. Instead, the authors found that it’s possible to identify

a binary mask M, reinitialise the non-pruned weights to their original values, retrain the

network while fixing M, and still maintain performance.

Let θ0 ∈ R
d denote the initial parameter values of a full network before any training or

pruning. The LTH process can be described mathematically as follows:

1. Initial training: θ0
SGD
−−→ θt, where θt represents the trained weights after t steps of

stochastic gradient descent (SGD).

2. Pruning: Determine mask M ∈ {0, 1}d based on θt, often by magnitude pruning

where smaller weights are set to zero.

3. Apply mask: θp = θt ◦M, where ◦ denotes element-wise multiplication.

4. Reset to initial values: θr = θ0 ◦M, resetting non-pruned weights to their initial

values.

5. Retrain: θr
SGD
−−→ θ f , where θ f represents the final weights after retraining.

Throughout steps 4 and 5, M remains fixed, ensuring that pruned weights (where

Mi = 0) stay at zero. The LTH suggests that there exist sub-networks within the full

network, defined by M, such that when the non-pruned weights are reset to their values

in θ0 and retrained with M fixed, the sub-network can achieve comparable performance

to the original full network. Mathematically, this means: f (x|θ f) ≈ f (x|θt), where

f (x|θ) represents the network’s output given input x and parameters θ.

With this seemingly simple setup, the authors of LTH achieved up to 95% pruning

while maintaining the same performance as the pre-pruned network. The key aspect is

that the non-pruned weights are always reset to their original initialisation values in θ0

before retraining. This finding suggests that over-parametrisation of networks could be

useful in allowing a larger space of options from which a sub-network can be

26 Chapter 2. Background

discovered during the training process. It also opens up potential research directions in

identifying these pruned sub-networks early, which could significantly reduce the time

and computational resources required for training.

The LTH has excited the research community, leading to numerous follow-up

discoveries. These include the importance of using the largest magnitude or magnitude

change coupled with zero masking [Zhou et al., 2019], the need for rewinding to a later

iteration for more complex datasets [Frankle et al., 2019], the transferability of

sub-networks to other classification problems [Morcos et al., 2019], and the applicability

of lottery tickets beyond image classification problems [Yu et al., 2019, Girish et al., 2021,

Chen et al., 2021].

The most pressing challenges include identifying the sub-networks without going

through the arduous iterative train-prune-repeat cycle and understanding the

implications of these sub-networks within the optimisation process. For our research,

the pruning literature and LTH demonstrate the flexibility we have in inducing noise

and constricting the optimisation process. The iterative nature of LTH directly

influenced Weight Fixing Networks (Chapter 3), where we explore reforming the entire

network to a pool of weights.

2.4.2 Quantisation

In the previous section, we looked at mapping the weights in DNN models to zero

values to avoid memory reads and multiplications. While this approach can

significantly reduce the computational burden, it is also essential to consider the

efficiency of representing and processing the remaining non-zero weights. This is where

quantisation comes into play.

Quantisation is a technique that aims to reduce the memory footprint and

computational complexity of DNNs by representing weights with a reduced set of

discrete values. By quantising the weights, we can store them using fewer bits per

weight, leading to reduced memory usage and faster arithmetic operations. This is

particularly important for deploying DNNs on resource-constrained devices, such as

mobile phones or embedded systems, where memory and computational power are

limited.

Moreover, quantisation can also lead to faster inference times, as the reduced precision

of the weights allows for more efficient hardware implementations, such as using

fixed-point arithmetic instead of floating-point operations. This can result in significant

speedups, especially on specialised hardware.

2.4. Algorithmic Approaches 27

Definition. Consider a network N parameterised by N weights W = {w1, ..., wN}.

Quantising a network is the process of reformulating N ′ ← N where the new network

N ′ contains weights which all take values from a reduced pool of k cluster centres

C = {c1, ..., ck} where k≪ N. After quantisation, each of the connection weights in the

original network is replaced by one of the cluster centres wi ← cj,

W ′ = {w′i|w
′
i ∈ C, i = 1, · · · , N}, |W ′| = k, where W ′ is the set of weights of the new

network N ′, which has the same topology as the original N . Depending on the set-up,

only a subset of the k cluster centres may be used within a particular layer or kernel

channel. If performing layer-wise quantisation and the resulting k number of cluster

centres within a particular layer is, say k=256, then we say this layer has been quantised

to log2 k = 8-bits. Of course, this would only truly 8-bit if the values where symmetrical

around a center point enabling a scale-shift mapping - we’ll expand this discussion

shortly, but first let’s keep going with defining quantisation.

In the quantised network, each original weight wi is replaced by a quantised value w′i,

where w′i is chosen from the set of cluster centres C. The process of replacing the

original weights with their quantised counterparts introduces a quantisation error, which

measures the difference between the original and quantised weights. The quantisation

error can be defined as: Err(W, W ′) = ∑
N
i=1 |w

′
i − wi| · p(wi, w′i) where p(wi, w′i) is the

joint probability distribution of the original weight wi and its quantised value w′i.

This joint probability distribution captures the likelihood of a particular original weight

being assigned to a specific cluster centre during the quantisation process. The

quantisation error is the sum of the absolute differences between the original and

quantised weights, weighted by their joint probabilities. Minimising this quantisation

error is a key objective in designing effective quantisation schemes, as it helps to

preserve the accuracy of the model while reducing its memory footprint and

computational complexity.

In Figure 2.4, we show the distribution of a single pre-trained layer of a ResNet-18

model [He et al., 2016] trained on ImageNet. The simplest form of quantisation, shown

on the top row, is linear quantisation. Here we take uniform points covering the entire

range of weights and then assign these cluster values to the weights closest to each.

Since the distribution of weights in a neural network tends to resemble a Gaussian

distribution, using linear quantisation results in non-uniform cluster assignments and

larger expected quantisation errors. An approach that offers reduced quantisation error

is logarithmic quantisation, as shown in the bottom row of Figure 2.4. Here points are

sampled to be powers-of-two, the assignment distribution is much closer to uniform

over the relevant range, and the quantisation error is reduced. Using the L1-form for the

quantisation error, we can see that the logarithmic quantisation gives us around a 20%

error reduction following the weight distribution. Interestingly, this non-uniform

28 Chapter 2. Background

0.06 0.04 0.02 0.00 0.02 0.04 0.06 0.08
0

5

10

15

20

De
ns

ity

-0
.0

49
6

-0
.0

35
7

-0
.0

21
8

-0
.0

07
9

0.
00

6

0.
01

99

0.
03

38

0.
04

77

0.
06

16

0

50

100

150

200

250

300

err(W, W') = 0.0034
H(W') = 2.265

0.06 0.04 0.02 0.00 0.02 0.04 0.06 0.08
0

5

10

15

20

De
ns

ity

-0
.0

62
5

-0
.0

31
2

-0
.0

15
6

-0
.0

07
8

0.
0

0.
00

78

0.
01

56

0.
03

12

0.
06

25

0

25

50

75

100

125

150

175 err(W, W') = 0.0027
H(W') = 2.728

FIGURE 2.4: Comparing linear (top) and log (bottom) quantisation of the first layer of a
pre-trained ResNet-18 model. In the left column we show the original layer weights
with vertical lines indicating the cluster centres selected and on the right the distribution

of weights post-quantisation.

sampling approach bears resemblance to the histogram equalisation observed in the

fly’s visual system, as described in Laughlin’s work [Laughlin, 1981].

However, there is a small price for the lower error in the form of the weight-space

entropy H(W ′), which captures how much information is left on average in the network

weights. This trade-off is an active consideration in all forms of network compression;

the higher the fidelity of the compressed version to its original, the less compressed the

network is. Fortunately, the notion of fidelity has a strict meaning in the quantisation

error but does not automatically translate into the fidelity of task performance. In other

words, we can alter a DNN such that the transformed weights do not closely resemble

the original but still maintain task performance, meaning there is a many-to-one

mapping of weight sets to tasks. Quantisation could be thought of as translating one

weight-set with high task performance but high weight-space entropy to another with

the same or similar performance but with much lower weight-space entropy.

One common form of quantisation, referred to as clip-and-scale, maps the weight wi to a

cluster ck = quant(wi; s, z, b) as shown in Equation 2.4, where s, z, and b represent the

scale factor, zero-point, and desired bit-width, respectively - shown in Figure 2.5.

2.4. Algorithmic Approaches 29

a wi c
Weight Values

0.00

0.25

0.50

0.75

1.00

Qu
an

tis
ed

 W
ei

gh
t V

al
ue

s

Clip-and-Scale Quantisation (Single Cycle)
Original Weights
Quantised Weights

FIGURE 2.5: Clip-and-scale quantisation for a single cycle.

clamp(wi; a, c) =





a, if wi < a

wi, if a ⩽ wi ⩽ c

c, if wi > c

(2.3)

quant(wi; s, z, b) = s[clamp(⌊
wi

s
⌉+ z, 0, 2b − 1)− z] (2.4)

The main benefit of clip-and-scale quantisation is that it allows for the use of fixed-point

arithmetic instead of floating-point operations. Fixed-point arithmetic is more

energy-efficient and faster than floating-point arithmetic, as it requires fewer bits to

represent numbers and can be implemented using simpler hardware. This is

particularly important for edge devices and specialised hardware accelerators, where

energy efficiency and computational speed are critical.

The scaling factor s can be learnt channel-wise [Jacob et al., 2018, Zhang et al., 2018] or

layer-wise in separate formulations, resulting in different channels or layers having a

diverse pool of codebooks for network weights, activations, and gradients. This allows

for a more fine-grained quantisation approach, potentially leading to better

preservation of the network’s accuracy. While the bit-width b is traditionally fixed for

all layers and channels, some works have explored varying b between layers [Das et al.,

2018, Wang et al., 2019, Huang et al., 2021], and others have demonstrated that you can

train a model once and select the quantisation precision based on the downstream

device requirements [Jin et al., 2020]. This flexibility is beneficial for deploying models

30 Chapter 2. Background

on a variety of hardware platforms with different computational capabilities and energy

constraints.

However, clip-and-scale quantisation methods also have some weaknesses. The

clipping operation can lead to information loss, as values outside the clipping range are

truncated. This can result in a degradation of the network’s accuracy, especially if the

clipping range is not carefully chosen. Furthermore, the scaling factor and zero-point

need to be stored alongside the quantised weights, adding some overhead to the

model’s memory footprint. This is particularly true the more fine-grained you

quantised with more scaling factors for different groups of weights to attempt to

mitigate any accuracy drops.

This is where techniques like clustering-based quantisation [Stock et al., 2020,

Tartaglione et al., 2021, Wu et al., 2018]. attempt to do better, using shared codebooks

across the entire network. These approaches aim to reduce the overall memory

footprint and minimise the data reads required. These methods use clustering

techniques to cluster the weights and fix the weight values to their assigned group

cluster centroid. These weights are stored as codebook indices, allowing for compressed

representation methods such as Huffman encoding to further compress the network.

The work by [Wu et al., 2018] is of particular interest since both the motivation and

approach are related to our Weight Fixing Network method (Chapter 3). The authors

use a spectrally relaxed k-means regularisation term to encourage the network weights to

be more amenable to clustering. They focus on a filter-row codebook inspired by the

row-stationary dataflow used in some accelerator designs [Chen et al., 2017]. However,

their formulation is explored only for convolution, and they restrict clustering to groups

of weights (filter rows) rather than individual weights due to computational limitations,

as recalibrating the k-means regularisation term is expensive during training.

Taking quantisation to the extreme, binary neural networks [Courbariaux et al., 2015]

reduce the weight-value precision to a single mantissa, +1 or -1. This allows

multiplication in the MAC operations to be reduced to addition and subtraction.

Subsequent work [Hubara et al., 2016] quantises the activation output to binary values,

which turns the MAC operations into an XNOR operation. This reduction comes at the

cost of accuracy for all, but the simplest of problems and tweaks are required to make

these networks more viable Ð such as allowing full precision in the last layers [Hubara

et al., 2016].

An interesting observation is that the precedent set by binary neural networks of

allowing the first and last layers to have full precision is now a tweak prominent in

almost all general quantisation works reviewed. This practice seems to be an ad-hoc

way to mitigate the accuracy loss caused by the limited capacity of heavily quantised

models to memorise training examples. The long tail theory proposed by [Feldman and

2.4. Algorithmic Approaches 31

Zhang, 2020] provides a compelling explanation for the necessity of memorisation in

achieving high accuracy on long-tailed data distributions. The theory suggests that

memorisation is crucial for learning from rare and atypical examples in the ºlong tailº

of the data distribution, which can be statistically indistinguishable from useless

examples such as outliers and mislabelled data points. Empirical results on several

standard benchmarks provide quantitative and visually compelling evidence for the

long tail theory. The implications of this theory are significant, as techniques that limit

memorisation, such as quantisation, may have a disproportionate effect on

under-represented sub-populations. We will later quantify the impact of this

compression relaxation by comparing the number of unique parameters to the range of

values they can take. This will show that increasing the precision of the floating-point

operations can compensate for the reduction in unique parameters, thereby optimising

data-movement costs. The idea is that you can reduce the data-movement costs at the

expense of increasing the precision at which you need to apply floating-point

operations. Relaxations may be needed, but there are choices of where to make them

that favour downstream hardware fundamentals.

2.4.3 Architecture Improvements

All the algorithmic methods discussed so far assume the architecture itself is fixed and

energy-savings are made by altering the weight values themselves, another branch of

energy-saving approaches instead looks to make saving through adapting the

architecture itself.

Although the number of parameters required are usually fewer in CNN layers than that

of fully-connected layers, the convolution operator dominates the MAC operations.

These computational costs grow with the product of the number of channels and size of

filters. Decomposition of filters is therefore one route to a reduction, an NxN

convolution can be decomposed into two 1-D convolutions of size 1xN and Nx1 for

example as long as the 2-D filter is separable. 1x1 convolutional layers can also be used

to reduce the number of channels before the larger filters are applied Ð known as a

bottleneck.

Motivated by this, the separable convolution [Chollet, 2017a] decomposes the

convolution operation across a large filter-size and number of channels into a 1x1

pointwise convolution followed by the larger spatial convolution. The benefit of doing

so is that the pointwise convolution reduces the channels such that the spatial filter can

be applied with a smaller computational cost. GoogLeNet [Szegedy et al., 2014] uses

these layers in achieving what was state-of-the-art performance at the time, whilst

reducing the number of MAC operations from 854 million to 358 million.

32 Chapter 2. Background

These separable convolutions have since been further utilised in SqueezeNet [Iandola

et al., 2016] Ð which reduced pre-trained AlexNet [Krizhevsky et al., 2012] by 50x to a

0.5MB model using multiple 1x1 convolution followed by spatial filter fire modules.

MobileNet [Howard et al., 2017], which adds, additionally, a latency regulariser,

demonstrates good performance using networks small enough to run on a mobile

device. It should be noted that simply having fewer weights is not a proxy for

resource-constrained applications, SqueezeNet, for example, consumes more energy

than AlexNet despite having far fewer weights [Sze et al., 2017]. As we discussed

previously, it is DRAM reads which dominate the energy-costs and so heterogeneous

filter sizes and deeper networks (prompting lots of weight value fetching) are not easily

optimised for reuse avoiding re-reads from off-chip memory.

2.4.4 Architecture Search

The current workflow for DNN architecture design primarily requires heuristically

driven trial-and-error layer and loss combinations to be hand-coded and experimentally

driven decisions on good architectures. Neural architecture search (NAS) is a sub-field of

research concerned with identifying, in an automated way, optimal architectures [Zoph

and Le, 2016, Pham et al., 2018, Elsken et al., 2019, Tan and Le, 2019]. Successful

approaches have used these techniques with additional search constraints [Tan et al.,

2019, Lin et al., 2020a, Banbury et al., 2021], favouring resource-efficient solutions.

2.4.5 Student-teacher

Rather than alter weights to come from a pool of values or find resource-lite

architectures, student-teacher methods (also known in the literature as

knowledge-distillation) propose ways where a teacher neural network can help teach a

student neural network and, in doing so, can condense the knowledge required to

complete the task being learned such that the student network can be much smaller

than the teacher network [Gou et al., 2021].

This idea, pioneered by the work of [Hinton et al., 2015], carries out the transfer of

knowledge from a fully trained teacher network to the student network. These methods

typically do so by adjusting the loss function such that the student is trained to predict

the target and match its logits with the teacher, given the same datapoint, thereby

encouraging the student network towards valuable representations of the input data

but using a smaller model.

2.5. Algorithm:Hardware co-design 33

2.5 Algorithm:Hardware co-design

The discussed choice of techniques used to reduce deep learning models available to

practitioners is not an either-or decision. Deep compression [Mao and Dally, 2016b]

demonstrates the compounding nature of combining resource reductionist approaches.

The authors apply iterative pruning to a network during training, followed by

layer-wise quantisation. Next, they force further weight-sharing, iteratively applying

clustering techniques to reduce the number of distinct weights in the network allowing

for a code-book look-up of a smaller set of weights which can then be further

compressed using huffman encoding. They demonstrate the compounding nature of

these efficiency gains reducing the storage cost of VGG-16 by 49X.

This approach was later further optimised in custom hardware [Han et al., 2016a] which

utilise a row variant of compressed sparse column format [Yoshizawa and Takahashi,

2012] with an array of processing elements fitted with SRAM to utilise both the

weight-matrix and activation sparsity achieved in compression. This combination of

compression at the architecture level coupled with custom hardware resulted in a 2,700x

energy saving compared with a mobile GPU running a compressed AlexNet

[Krizhevsky et al., 2012] model.

This is one such example of the promise of the field. Whilst this thesis is predominantly

focussed on algorithmic approaches to energy saving, we hope to make these better

informed by starting with the hardware fundamentals and working our way up to

novel algorithmic approaches, co-designed with hardware.

35

Chapter 3

Weight Fixing Networks

Having identified the challenges faced by accelerator designs in arranging components

and producing efficient data mapping schemes to maximise parameter re-use, in this

chapter we look to develop an algorithmic procedure to enable more efficient

downstream hardware design options.

As we explored in the background section, the dominant energy cost in deep neural

network (DNN) inference comes from data movement, particularly from off-chip

DRAM to on-chip memory. We saw that arithmetic operations are orders of magnitude

less costly than these memory accesses. This fundamental insight motivates our

approach in this chapter.

We take the view that reducing the number of unique weights coupled with reducing

overall network weight-space entropy gives a measurable goal from an algorithmic

perspective that allows for downstream hardware flexibility in design for re-use

opportunities. In the best-case scenario, each unique weight would be read once and be

used for all the computations it is involved in. This is, of course, highly unlikely, since it

would require the storage of the entire network (all of the unique weights) close to

computation. However, as the number of unique weights is reduced, so is the cost to

store the network, paying tribute to its utility as an algorithmic objective.

The weight-space entropy,

H(W) = − ∑
wi∈W

p(wi) ln(p(wi)), (3.1)

refers to the average number of bits of information within each of the parameters in a

network and represents the theoretically fewest number of bits of information to

36 Chapter 3. Weight Fixing Networks

losslessly compress the weight-space Shannon [1948a]. Referring back to Figure 2.4,

p(wi) is the probability that weight value wi was picked at random from all unique

weights in the network.

Minimising this value has two benefits from a practical standpoint, and algorithmic

compression schemes have been focused on getting as close to this limit as possible. A

network with entropy H(W) can be stored using NH(W) bits (where N is the number

of weights in the network), and so minimising the weight-space entropy is a close proxy

for minimising the storage size requirements for the network. Secondly, in minimising

the entropy of the weight-space, we are focusing on just a few weights around high

probability regions with a large number of seldom seen outlier weights. The high

probability weights will be re-used often in a forward pass and are therefore prime

candidates for keeping close to computation to reduce data movement costs as

previously discussed.

Recall from our discussion on dataflow mappings that weight-stationary designs, such

as those used in Tensor Processing Units (TPUs), aim to keep weights in local memory

and stream in activations. By reducing the number of unique weights, we can

potentially enhance the effectiveness of such designs, allowing for more weights to be

stored locally and reducing the need for repeated DRAM accesses.

Furthermore, our exploration of quantisation techniques demonstrated the potential for

reducing the precision of weights without significant loss in accuracy. The Weight

Fixing Networks approach we’ll introduce in this chapter can be seen as an extreme

form of quantisation, where we aim to drastically reduce the number of unique weight

values across the entire network.

In this chapter, we take on the challenge of compressing the entire network using a

single codebook and demonstrate superior lossless compression using a few novel (and

some well-trodden) tricks: a view of compression as relative distance minimisation, a

novel regularisation term to encourage low-entropy network encodings, and a focus on

optimising a whole-network quantisation codebook, rather than per-layer. The pipeline,

which we call Weight Fixing Networks (WFN), achieves lossless compression using 50x

fewer unique weights, half the weight-space entropy, and at least a 14% improvement in

storage compressibility when compared with state-of-the-art (SOTA) quantisation and

weight clustering approaches with no reduction in classification accuracy.

The idea is that with a single codebook defining the entire network, we will maximise

the amount of re-use of the parameters and therefore enable hardware designs to focus

resources on storing the re-used parameters close to computation - reducing off-chip

memory re-use/cache misses.

3.1. Single Codebook 37

This approach builds on insights from hardware accelerator design, quantisation,

pruning, and information theory. Our goal is to develop an algorithmic method that can

produce networks with drastically reduced numbers of unique weights, lower

weight-space entropy, and maintained task performance ± all while keeping in mind the

potential for efficient hardware implementation.

3.1 Single Codebook

Seminal works quantising modern iterations of neural networks proposed that some

layers should be left at full precision whilst the rest of the network was quantised

[Hubara et al., 2016]. As we have previously discussed the original formulation was

mooted originally for binary networks (where the weights take on only one of two

values) and guided by necessity. Since binarised networks are restricted to only the

values: {−1, 1} task performance suffers an intolerable amount if one or more layers are

not left at full precision. The first layer tends to have a low parameter count (due to a

small channel input) and so were the first to be relaxed to full precision [Hubara et al.,

2016]. Shortly after, XNOR-Net [Rastegari et al., 2016] extended the non-quantised

layers to also include the final layer. Further developments in neural network design

have seen the batch-normalisation layer included in most SOTA convolution

architectures but the parameters involved in these calculations are not considered for

quantisation. These relaxations have become a universal trend not just for binarisation

approaches but for higher-bit-width quantisation in general [Yuhang Li, Xin Dong, 2020,

Jung et al., 2019a, Zhang et al., 2018, Zhou et al., 2016a, Yamamoto, 2021]. Our main

argument is that this relaxation contributes significant computational overhead and is

unnecessary outside of the highly restrictive binary neural network case.

3.1.1 Unquantised Elements

In Figure 3.1, we take a look at how much of the network remains unquantised with this

set-up for popular models. Taking ResNet-50 as an example, over 2 million weights are

left unquantised, accounting for 8% of all parameters in the network. This

uncompressed network component translates into a computational overhead in

hardware, increased floating-point operations (FLOPs), and, crucially, higher data

movement costs due to memory reads.

Another prevalent trend found in quantisation methods is to use different codebooks

for each layer. This is justified by the you-only-pay-once argument, where, since each

layer is only read once per inference calculation, the cost of reading the codebook for

38 Chapter 3. Weight Fixing Networks

ResNet-18 ResNet-34 ResNet-50 Inception GoogLenet
0

1

2

3

4

5

6

7

No
. o

f W
ei

gh
ts

 n
ot

 Q
ua

nt
ise

d
1e6

FIGURE 3.1: We count the number of parameters that are left unquantised by the
ºstatus-quoº approaches that leave the first, last, linear and batch-norm layers to be
8-bit or full precision. Each of these parameters incurs energy-hungry data movement

costs for accelerators.

each layer is small. This, however, increases the overall weight-space entropy, which in

turn results in sub-optimal compression and less parameter re-use.

Using multiple codebooks and allowing parts of the network to remain unquantised has

real implications for deep learning accelerator designs. Recalling our previous

discussion, data movement costs are a function of parameter re-use, the delay in re-use

and filter shape effects [Sze et al., 2017, 2020]. These costs are difficult to reduce in von

Neumann architectures [Li et al., 2015, Sebastian et al., 2020] and are a core

consideration of accelerator designs. Specialised hardware looks to distributing

computation across processing elements (PE’s) which typically contain both a

computational and a memory unit. The reading of data from the memory unit is small

[Chen et al., 2020, Sze et al., 2020] but the number of PE’s is limited (≪ 1000 is typical).

Here, we see why not having a whole network codebook and/or not quantising every

layer is costly; less re-use leads to increased data movement costs since each unique

value needs reading at least once. This single read per weight is still only the best-case

scenario since if the network has a larger number of unique parameters than PE’s, then

parameters that require re-use may need to be read and then re-read multiple times.

3.1. Single Codebook 39

3.1.2 WFN Objectives

Given these observations, we take the view that fewer unique weights across the entire

network to be a worthy objective. Fewer weights ± whilst fixing the network topology

and the total number of parameters ± means that more weights are re-used more often.

This additional re-use gives more opportunity to dataflows to maintain often-used

weights in PE’s, saving data movement costs. To save data movement costs further, all

network weights could be quantised into a shared codebook which would save

between-layer re-reading. To further the compression capability, we note that it would

be desirable if the distribution of the unique weights were concentrated around a

handful of values. The high probability density weights would then be used more often

and reliably stored inside PE’s, saving both the cost of overwriting these weight values

and re-fetching them when needed later. Finally, from a computational perspective, not

all multiplications are created equal. Integer powers-of-two, for example, can be

implemented as simple bit-shifts. Focussing the weights used most to these values

offers potential further energy reductions. Putting these three requirements together:

few unique weights; a low-entropy encoding with a distribution of weights highly

concentrated around a tiny subset of values; and a focus on powers-of-two values for

weights Ð all motivated to reduce the data movement costs Ð we present the outline of

WFN.

3.1.3 Overview

Our work’s overarching objective is to transform a network comprising many weights

of any value (limited only by value precision) to one with the same number of weights

but just a few unique values and concentrate the weights around an even smaller subset

of weights. Rather than selecting the unique weights a priori, we let the optimisation

guide the process in an iterative cluster-then-train approach. We cluster an

ever-increasing subset of weights to one of a few cluster centroids in each iteration. We

map the pre-trained network weights to these cluster centroids, which constitute a pool

of unique weights. The training stage follows standard gradient descent optimisation to

minimise performance loss with two key additions. Firstly, only an ever decreasing

subset of the weights are free to be updated. We also use a new regularisation term to

penalise weights with large relative distances to their nearest clusters. We iteratively

cluster subsets of weights to their nearest cluster centre, with the way we determine

which subset to move a core component of our contribution.

40 Chapter 3. Weight Fixing Networks

0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

A
c
c
u
ra

c
y

= 0.05

Noise Type

Relative

Absolute

0 2 4 6 8

= 0.1

0 2 4 6 8

= 0.2

0 2 4 6 8
Layer Index

0.0

0.2

0.4

0.6

0.8

1.0

A
c
c
u
ra

c
y

= 0.3

0 2 4 6 8
Layer Index

= 0.4

0 2 4 6 8
Layer Index

= 0.5

FIGURE 3.2: We explore adding relative vs absolute noise to each of the layers (x-axis).
The layer index indicates which layer was selected to have noise added. Each layer

index is a separate experiment with the 95% confidence intervals shaded.

3.1.4 Small Relative Distance Change.

Rather than selecting subsets with small Euclidean distances to cluster centres, or those

that have small magnitude [Zhou et al., 2017], we make the simple observation that the

relative ± as opposed to absolute ± weight change matters. We find that the tolerated

distance δwi we can move a weight wi when quantised depends on the relative distance

|(δwi/wi)|. When the new value wi + δwi = 0 Ð as is the case for pruning methods Ð

then the magnitude of the weight is the distance. However, this is not the case more

generally. We demonstrate the importance of quantising with small relative changes

using simple empirical observations. Using a pre-trained ResNet-18 model, we measure

changes to network accuracy when adding relative vs absolute noise to the layers’

weights and measure the accuracy change. For relative (multiplicative) noise we choose

a scale parameter β|wl
i | for each layer-l weight wl

i , and set wl
i ← wl

i + β|wl
i |ε,

ε ∼ N (0, 1). In contrast, additive noise perturbations, all weights wl
i are perturbed by

the mean absolute value of weights |wl | in layer l scaled by β: wl
i ← wl

i + β|wl |ε.

We run each layer-β combination experiment multiple times ± to account for fluctuation

in the injected noise ± and present the results in Figure 3.2. Even though the mean

magnitude variation of noise added is the same, noise relative to the original weight

value (multiplicative noise) is much better tolerated than absolute (additive noise).

Since moving weights to quantisation centres is analogous to adding noise, we translate

these results into our approach and prioritise clustering weights with small relative

distances first. We find that avoiding significant quantisation errors requires ensuring

that |δwi |
|wi |

is small for all weights. If this is not possible, then performance could suffer. In

this case, we create an additional cluster centroid in the vicinity of an existing cluster to

reduce this relative distance. Our work also challenges the almost universal trend in the

literature [Yuhang Li, Xin Dong, 2020, Jung et al., 2019a, Zhang et al., 2018, Zhou et al.,

3.2. Method 41

2016a, Yamamoto, 2021, Oh et al., 2021a] of leaving the first and last layers either at full

precision or 8-bit. Instead, we attempt a full network quantisation. The cost of not

quantising the first layer ± which typically requires the most re-use of weights due to

the larger resolution of input maps ± and the final linear layer ± which often contains

the largest number of unique weight values ± is too significant to ignore.

With multiple stages of training and clustering, we finish with an appreciably reduced

set of unique weights. We introduce a regularisation term that encourages non-uniform,

high probability regions in the weight distribution to induce a lower-entropy

weight-space. The initial choice of cluster centroids as powers-of-two helps us meet our

third objective ± energy-saving multiplication. Overall we find four distinct advantages

over the works reviewed:

• We assign a cluster value to all weights Ð including the first and last layers.

• We emphasise a low entropy encoding with a regularisation term, achieving

entropies smaller than those seen using 3-bit quantisation approaches ± over

which we report superior performance.

• We require no additional layer-wise scaling, sharing the unique weights across all

layers.

• WFN substantially reduces the number of unique parameters in a network when

compared to existing SOTA quantisation approaches.

3.2 Method

3.2.1 Method Outline.

WFN is comprised of T fixing iterations where each iteration t ∈ T has a training and a

clustering stage. The clustering stage is tasked with partitioning the weights into two

subsets W = Wt
fixed ∪ Wt

free. Wt
fixed is the set of weights set equal to one of the cluster

centre values ck ∈ C. These fixed weights wi ∈Wt
fixed are not updated by gradient decent

in this, nor any subsequent training stages. In contrast, the free-weights denoted by Wt
free

remain trainable during the next training stage. With each subsequent iteration t we

increase the proportion pt =
|Wt

fixed|
|W| of weights that take on fixed cluster centre values,

with p0 < p1 . . . < pT = 1. By iteration T, all weights will be fixed to one of the cluster

centres. The training stage combines gradient descent on a cross-entropy classification

loss, along with a regularisation term that encourages tight-clusters, in order to

maintain lossless performance (i.e no drop in performance compared to the baseline

trained network) as we fix more of the weights to cluster centres.

42 Chapter 3. Weight Fixing Networks

1 0

1 0

1

01

00

FIGURE 3.3: The WFN pipeline We start with a fully-trained converged model and
assign k initial cluster centroids based on relative distance changes between the original
weights and their closest cluster centres. We then retrain the network for a few epochs
with an additional regularisation term that encourages the weights towards their closest
cluster centroids. Weights that are subsequently close enough to their closest cluster,
without a distance threshold breach, can then be fixed to their closest cluster value. If
not enough weights can be fixed without the threshold being breached, k can increase,
adding a new cluster centre. The process is repeated until the network is reformulated
and uses just a few unique weights. By construction, the weight distribution will be

skewed for efficient low-entropy Huffman encoding.

Algorithm 1: Clustering Npt weights at the tth iteration.

1 while |Wt+1
fixed| ≤ Npt do

2 ω ← 0
3 fixednew ← []
4 while fixednew is empty do

5 Increase the order ω ← ω + 1

6 for each i = 1 . . . , |Wt+1
free |

7 cω
∗ (i)← minc∈C̃ω D+

rel(wi, c)

8 for each cluster centre cω
k ∈ C̃ω

9 nω
k ← ∑i I[cω

k = cω
∗ (i)]

10 k∗ ← arg maxk nω
k

11 Sort: [w′1, . . . , w′N]← [w1, . . . , wN], w′i = wπ(i), π permutation

12 where D+
rel(w

′
i, cω

k∗) < D+
rel(w

′
i+1, cω

k∗)

13 i← 1, mean← D+
rel(w

′
1, cω

k∗)
14 while mean ≤ δt do

15 fixednew ← w′i
16 mean← i

i+1 ∗mean + 1
i+1 D+

rel(w
′
i+1, cω

k∗)

17 i← i + 1

18 Assign all the weights in fixednew to cluster centre cω
∗ (i), moving them from

Wt+1
free to Wt+1

fixed

3.2. Method 43

2 3 4 5 6 7 8 9 10
Model Size (MB)

68

70

72

74

76

Ac
cu

ra
cy

ResNet-18

ResNet-34

GoogLeNet

ResNet-50

Baseline Sizes
ResNet-18: 47MB
ResNet-34: 87MB
ResNet-50: 98MB
GoogLeNet: 26MB

0.0075
0.01
0.015

FIGURE 3.4: The accuracy vs model size trade-off can be controlled by the δ parameter.
All experiments shown are using the ImageNet dataset, accuracy refers to top-1.

3.2.2 Clustering Stage.

In the clustering stage, we work backwards from our goal of minimising the relative

distance travelled for each of the weights to determine which values cluster centres

ci ∈ C should take. For a weight wi ∈W and cluster centre cj ∈ C we define a relative

distance measure Drel(wi, cj) =
|wi−cj|

|wi |
. To use this in determining the cluster centres, we

enforce a threshold δ on this relative distance, Drel(wi, cj) ≤ δ for small δ. We can then

define the cluster centres cj ∈ C which make this possible using a simple recurrence

relation. Assume we have a starting cluster centre value cj, we want the neighbouring

cluster value cj+1 to be such that if a network weight wi is between these clusters

wi ∈ [cj,
cj+1+cj

2] then Drel(wi, cj) ≤ δ. Plugging in
cj+1+cj

2 and cj into Drel and setting it

equal to δ we have:

|
cj+1+cj

2 − cj|
cj+1+cj

2

= δ, leading to cj+1 = cj(
1 + δ

1− δ
), 0 < δ < 1, (3.2)

a recurrence relation that provides the next cluster centre value given the previous one.

With this, we can generate all the cluster centres given some boundary condition

c0 = δ0. δ0 is the lower-bound cluster threshold, and all weights wi for |wi| < δ0 are set

to 0 (pruned). This lower bound serves two purposes: firstly, it reduces the number of

proposal cluster centres which would otherwise increase in density around zero with a

reciprocal spacing, and additionally, the zero-valued weights make the network more

sparse. This will allow sparsity-leveraging hardware to avoid operations that use these

weights, reducing the computational overhead. As an upper-bound, we stop the

recurrence once a cluster centre is larger than the maximum weight in the network,

maxj |cj| ≤ maxi |wi|, wi ∈W, cj ∈ C.

3.2.3 Generating the Proposed Cluster Centres.

Putting this together, we have i) a starting point c0 = δ0, ii) a recurrence relation to

produce cluster centres given c0 that maintains a relative distance change when weights

44 Chapter 3. Weight Fixing Networks

are moved to their nearest cluster centre, and iii) a centre generation stopping condition

cj ≤ maxi∈W |wi|, cj ∈ C. We use the δ0 value as our first proposed cluster centre c0 with

the recurrence relation generating a proposed cluster set of size s. Since all these values

will contain only positive values, we join this set with its negated version along with a

zero value to create a proposal cluster set CS = {a(1+δ
1−δ)

jδ0 | j = 0, 1 · · · s; a = +1, 0,−1}

of size 2s + 1.

To account for the zero threshold δ0 and for ease of notation as we advance, we make a

slight amendment to the definition of the relative distance function Drel(wi, cj):

D+
rel(wi, cj) =





|wi−cj|

|wi |
, if |wi| ≥ δ0

0 otherwise.
(3.3)

3.2.4 Reducing k with Additive Powers-of-two Approximations.

Although using all of the values in CS as centres to cluster the network weights would

meet the requirement for the relative movement of weights to their closest cluster to be

less than δ, it would also require a large number of k = |CS| clusters. In addition, the

values in CS are also of full 16-bit precision, and we would prefer many of the weights

to be powers-of-two for ease of multiplication in hardware. With the motivation of

reducing k and encouraging powers-of-two clusters whilst maintaining the relative

distance movement where possible, we look to a many-to-one mapping of the values of

CS to further cluster the cluster centres. Building on the work of others Zhou et al.

[2017], Yuhang Li, Xin Dong [2020], we map each of the values ci ∈ CS to their nearest

power-of-two, round(ci) = sgn(ci)2
⌊log2(|ci |)⌉ where ⌊·⌉ represents the rounding

operation (rounding up if the fractional part is greater than or equal to 0.5, rounding

down otherwise), and, for flexibility, we further allow for additive powers-of-two

rounding. With additive powers-of-two rounding, each cluster value can also come

from the sum of powers-of-two values (b-bit) up to order ω where the order represents

the number of powers-of-two that can contribute to the approximation. We map our

proposal set CS to a ω-order approximation where each of the clusters ck ∈ CS are

written as ck = ∑
ω
j=1 rj, rj ∈ {−

1
2b , . . . ,− 1

2j+1 ,− 1
2j , 0, 1

2j ,
1

2j+1 , . . . 1
2b }. The notation

represents rounding to the nearest integer value. We do so using Algorithm 2. Figure

3.5 demonstrates how the values of CS are rounded given different orders.

3.2.5 Minimalist Clustering.

We are now ready to present the clustering procedure for a particular iteration t, which

we give the pseudo-code for in Algorithm 1. We start the iteration with ω = 1 and a set

3.2. Method 45

Algorithm 2: Determining possible clusters

1 Input: The full precision proposal set: CS, allowable relative distance: δ, pow2

rounding function: round(x) = sgn(x)2⌊log2 (x)⌉

2 Output: An order ω precision cluster set: C̃ω

3 C̃ω ← []

4 for ck ∈ CS do

5 c′k = round(ck)
6 for i = 0→ ω do

7 δck
← ck − c′k

8 if |δck
| ≥ δck then

9 c′k ← c′k + round(δck
)

10 end

11 end

12 C̃ω ← C̃ω ∪ {c′k}
13 end

0.0 0.1 0.2 0.3 0.4 0.5

Potential Cluster Center Value

C
1

C

C

C

2

3

S

FIGURE 3.5: Approximating clusters ck ∈ CS with different orders for b = 7

of weights not yet fixed Wt
free. For the set of cluster centres C̃ω of order ω, let

cω
∗ (i) = minc∈C̃ω D+

rel(wi, c) be the one closest to weight wi. nω
k = ∑i I[cω

k = cω
∗ (i)]

counts the number of weights assigned to cluster centre cω
k ∈ C̃ω, where the indicator

function I[x] is 1 if x is true and 0 otherwise. Let k∗ = arg maxk nω
k so that cω

k∗ is the

modal cluster. For the cluster k∗ let permutation π of {1, . . . , N} that maps wi 7→ w′π(i),

be such that the sequence (w′1(k
∗), w′2(k

∗), . . . , w′N(k
∗)) is arranged in ascending order

of relative distance from the cluster cω
k∗ . In other words,

D+
rel(w

′
i(k
∗), cω

k∗) ≤ D+
rel(w

′
i+1(k

∗), cω
k∗), for i = 1, . . . , (N − 1). We choose n to be the

largest integer such that:

n

∑
i=1

D+
rel(w

′
i(k
∗), cω

k∗) ≤ nδ, and
n+1

∑
i=1

D+
rel(w

′
i(k
∗), cω

k∗) > (n + 1)δ, (3.4)

and define {w′1, w′2, . . . , w′n} to be the set of weights to be fixed at this stage of the

iteration. These are the weights that can be moved to the cluster centre cω
k∗ without

exceeding the average relative distance δ of the weights from the centre. The

46 Chapter 3. Weight Fixing Networks

corresponding weight indices from the original networkN are in {π−1(1), . . . , π−1(n)},

and called fixednewin the algorithm. If there are no such weights that can be found, i.e.,

for some cluster centre l∗, the minimum relative distance D+
rel(w

′
1(l
∗), cl∗) > δ, the

corresponding set fixednew is empty. In this case, there are no weights that can move to

this cluster centre without breaking the δ constraint and we increase order ω ← ω + 1

to compute a new cω
k∗ , repeating the process until |fixednew| > 0. Once fixednew is

non-empty, we fix the identified weights {w′1, w′2, . . . , w′n} to their corresponding cluster

centre value cω
k∗ and move them into Wt+1

fixed. We continue the process of identifying

cluster centres and fixing weights to these centres until |Wt+1
fixed| ≥ Npt, at which point

the iteration t is complete and the training stage of iteration t + 1 begins. Our

experiments found that a larger δ has less impact on task performance during early t

iterations and so we use a decaying δ value schedule to maximise compression:

δt = δ(T− t + 1), t ∈ T. We will show later that, with a small δ, over 75% of the weights

can be fixed with ω = 1 and over 95% of weights with ω ≤ 2.

3.2.6 Training Stage.

Despite the steps taken to minimise the impact of the clustering stage, without

retraining, performance would suffer. To negate this, we perform gradient descent to

adjust the remaining free weights Wt
free. This allows the weights to correct for any loss

increase incurred after clustering where training aims to select values Wt
free that

minimise the cross entropy loss Lcross-entropy whilst Wfixed remain unchanged.

3.2.7 Cosying up to Clusters.

Having the remaining Wt
free weights closer to the cluster centroids C post-training

makes clustering less damaging to performance. We coerce this situation by adding to

the retraining loss a regularisation term

Lreg =
N

∑
i∈Wfree

k

∑
j

D+
reg(wi, cj)p(cj|wi), (3.5)

where p(cj|wi) =
e
−D+

reg(wi ,cj)

∑
k
l e
−D+

reg(wi ,cl)
. The idea is to penalise the free-weights Wt

free in

proportion to their distance to the closest cluster. Clusters that are unlikely to be weight

wi’s nearest Ð and therefore final fixed value Ð do not contribute much to the

penalisation term. We update the gradients of the cross-entropy training loss with the

regularisation term:

w← w− η
(
∇wLcross−entropy + αγ∇wLreg

)
,

3.3. Experiment Details 47

Model Data Opt LR T Batch size γ α
ResNet-18 ImageNet Adam 2e-4 10 128 {0.05, 0.025, , 0.015, 0.01, 0.0075, 0.005} {0.2, 0.4}
ResNet-34 ImageNet Adam 2e-4 10 64 {0.05, 0.025, , 0.015, 0.01, 0.0075, 0.005} {0.4}
ResNet-50 ImageNet Adam 2e-4 10 64 {0.05, 0.025, , 0.015, 0.01, 0.0075, 0.005} {0.4}

GoogLeNet ImageNet Adam 2e-4 10 64 {0.01, 0.0075, 0.015} {0.4}
ResNet-18 CIFAR-10 Adam 3e-4 10 512 {0.01, 0.02, 0.03, 0.04, 0.05} {0.0, 0.1, 0.2, 0.4, 0.8}
MobileNet CIFAR-10 Adam 2e-4 10 512 {0.01, 0.02, 0.03, 0.04, 0.05} {0.0, 0.1, 0.2, 0.4, 0.8}

TABLE 3.1: Full set of hyper-parameters explored for each model-dataset combination.

with α a hyper-parameter, and η the learning rate schedule. In our implementation we

assign γ =
Lreg

Lcross-entropy
and detach γ from the computational graph and treat it as a

constant.

3.3 Experiment Details

We apply WFN to fully converged models trained on the CIFAR-10 and ImageNet

datasets. Our pre-trained models are all publicly available with strong baseline

accuracies1: Resnet-(18,34,50) [He et al., 2016] and, GoogLeNet [Chollet, 2017b]. We run

ten weight-fixing iterations for three epochs, increasing the percentage of weights fixed

until all weights are fixed to a cluster. In total, we train for 30 epochs per experiment

using the Adam optimiser [Kingma and Ba, 2015] with a learning rate 2× 10−5. We use

grid-search to explore hyper-parameter combinations using ResNet-18 models with the

CIFAR-10 dataset and find that the regularisation weighting α = 0.4 works well across

all experiments reducing the need to further hyper-parameter tuning as we advance.

The distance threshold δ gives the practitioner control over the

compression-performance trade-off (see Figure 3.4), and so we report a range of values.

We give a full breakdown of the parameters used across all experiments ran in Table 3.1.

3.4 Results

We begin by comparing WFN for a range of δ values against a diverse set of

quantisation approaches that have comparable compression ratios (CR) in Table 3.2. The

3-bit quantisation methods we compare include: LSQ [Esser et al., 2020], LQ-Net

[Zhang et al., 2018] and APoT [Yuhang Li, Xin Dong, 2020]. We additionally compare

with the clustering-quantisation methods using the GoogLeNet model: Deep-k-Means

[Wu et al., 2018] whose method is similar to ours, KQ [Yu et al., 2020], and GreBdec [Yu

et al., 2017]. Whilst the results demonstrate WFN’s lossless performance with SOTA CR,

this is not the main motivation for the method. Instead, we are interested in how WFN

can reduce the number of unique parameters in a network and corresponding

weight-space entropy as well as the network representational cost, as defined in [Wu

1CIFAR-10 models : https://github.com/kuangliu/pytorch-cifar, ImageNet models: torchvision

48 Chapter 3. Weight Fixing Networks

0 1 2 3 4 5 6 7 8 9

Fixing Iteration

0.0

0.2

0.4

0.6

0.8

1.0

%
 o

f
F
ix

e
d
 W

e
ig

h
ts

Order1

Order2

Order3

-0
.0

4
6
8
7
5

-0
.0

3
9
0
6
2
5

-0
.0

2
7
3
4
3
8

-0
.0

2
3
4
3
7
5

-0
.0

1
9
5
3
1
2

-0
.0

1
5
6
2
5

-0
.0

1
1
7
1
8
8

-0
.0

0
.0

1
5
6
2
5

0
.0

1
9
5
3
1
2

0
.0

2
3
4
3
7
5

0
.0

2
7
3
4
3
8

0
.0

3
1
2
5

0
.0

3
5
1
5
6
2

0
.0

3
9
0
6
2
5

Weight Values

0

1

2

3

4

5

C
o
u
n
t

1e6

Order>1

Order=1

0 1 2 3 4 5 6 7 8 9

Fixing Iteration

0

25

50

75

100

125

150

175

200

#
 o

f
C
lu

s
te

rs

= 0.0075

= 0.01

= 0.015

0 1 2 3 4 5 6 7 8 9

Fixing Iteration

0.0

0.2

0.4

0.6

0.8

1.0

%
 W

e
ig

h
ts

 F
ix

e
d

FIGURE 3.6: ImageNet experimental results: Far left: We increase the number of
weights in the network that are fixed to cluster centres with each fixing iteration.
Middle left: Decreasing the δ threshold increases the number of cluster centres, but
only towards the last few fixing iterations, which helps keep the weight-space entropy
down. Middle right: The majority of all weights are order 1 (powers-of-two), the
increase in order is only needed for outlier weights in the final few fixing iterations. Far
right: The weight distribution (top-15 most used show) is concentrated around just

four values.

TABLE 3.2: A comparison of WFN against other quantisation and weight clustering
approaches on the ImageNet dataset. The WFN pipeline is able to achieve higher
compression ratios than the works compared whilst matching or improving upon

baseline accuracies.

Accuracy (%) Accuracy (%)
Model Method Top-1 Top-5 CR Model Method Top-1 Top-5 CR

ResNet-18 Baseline 68.9 88.9 1.0 ResNet-34 Baseline 73.3 90.9 1.0
LQ-Net 68.2 87.9 7.7 LQ-Net 71.9 90.2 8.6
APoT 69.9 89.2 10.2 APoT 73.4 91.1 10.6
LSQ 70.2+ 89.4+ 9.0* LSQ 73.4+ 91.4+ 9.2*

WFN δ = 0.0075 70.3 89.1 10.2 WFN δ = 0.0075 73.0 91.2 10.3
WFN δ = 0.01 69.7 89.2 12.3 WFN δ = 0.01 72.6 91.0 11.1

WFN δ = 0.015 67.3 87.6 13.4 WFN δ = 0.015 72.2 90.9 12.6

ResNet-50 Baseline 76.1 92.8 1.0 GoogLeNet Baseline 69.7 89.6 1.0
LQ-Net 74.2 91.6 5.9 Deep k-Means 69.4 89.7 3.0
APoT 75.8 92.7 9.0 GreBdec 67.3 88.9 4.5
LSQ 75.8+ 92.7+ 8.1* KQ 69.2 - 5.8

WFN δ = 0.0075 76.0 92.7 9.5 WFN δ = 0.0075 70.9 90.2 8.4
WFN δ = 0.01 75.4 92.5 9.8 WFN δ = 0.01 70.5 90.0 8.4

WFN δ = 0.015 75.1 92.1 10.3 WFN δ = 0.015 70.5 89.9 9.0
* Estimated from the LSQ paper model size comparison graph, we over-estimate to be as fair as possible.
+ Open-source implementations have so far been unable to replicated the reported results:

https://github.com/hustzxd/LSQuantization.

et al., 2018]. This metric has been tested and verified to linearly correlate with energy

estimations deduced using the energy-estimation tool proposed in [Yang et al., 2017b]:

Rep(N ′) = |W|NwBw

Here, the representation cost is measured as the product of Nw, the number of

operations weight w is involved in, Bw its bit-width and |W|, the number of unique

weights in the network, respectively. This representation cost has a direct translation

into data-movement costs since every weight (|W|) in the network will need to have its

compressed representation (approx Bw if Huffman coding is used) moved from memory

to where it is needed for compute Nw times.

3.4. Results 49

TABLE 3.3: A full metric comparison of WFN Vs. APoT. Params refers to the
total number of unique parameter values in the network. No BN-FL refers to
the unique parameter count not including the first-last and batch-norm layers.
WFN outperforms APoT even when we discount the advantage gained of taking
on the challenge of quantising all layers. Model sizes are calculated using LZW

compression.

Model Method Top-1 Entropy Params No BN-FL RepMixed Model Size

ResNet-18 Baseline 68.9 23.3 10756029 10276369 1.000 46.8MB
APoT (3bit) 69.9 5.77 1430 274 0.283 4.56MB

WFN δ = 0.015 67.3 2.72 90 81 0.005 3.5MB
WFN δ = 0.01 69.7 3.01 164 153 0.007 3.8MB

WFN δ = 0.0075 70.3 4.15 193 176 0.018 4.6MB
ResNet-34 Baseline 73.3 24.1 19014310 18551634 1.000 87.4MB

APoT (3bit) 73.4 6.77 16748 389 0.296 8.23MB
WFN δ = 0.015 72.2 2.83 117 100 0.002 6.9MB
WFN δ = 0.01 72.6 3.48 164 130 0.002 7.9MB

WFN δ = 0.0075 73.0 3.87 233 187 0.004 8.5MB
ResNet-50* Baseline 76.1 24.2 19915744 18255490 1.000 97.5MB

WFN δ = 0.015 75.1 3.55 125 102 0.002 9.3MB
WFN δ = 0.01 75.4 4.00 199 163 0.002 10.0MB

WFN δ = 0.0075 76.0 4.11 261 217 0.003 10.2MB
* The APoT model weights for ResNet-50 were not released so we are unable to conduct a comparison for this

setting.

Due to the low weight-space entropy we achieve, we suggest Huffman encoding to

represent the network weights (as is used by various accelerator designs [Moons and

Verhelst, 2016a, Han et al., 2016a]). Given that the weight-representational bit-width will

vary for each weight, we amend the original formulation to account for this, introducing

RepMixed(N
′) = ∑

wi∈W

Nwi
Bwi

(3.6)

Here Nwi
is the number of times wi is used in an inference computation, and Bwi

its

Huffman-encoded representation bit-width of wi.

The authors of the APoT have released the quantised model weights and code. We use

the released model-saves2 of this SOTA model to compare the entropy, representational

cost, unique parameter count, model size and accuracy in Table 3.3. Our work

outperforms APoT in weight-space entropy, unique parameter count and weight

representational cost by a large margin. Taking the ResNet-18 experiments as an

example, the reduction to just 164 weights compared with APoT’s 9237 demonstrates

the effectiveness of WFN. This huge reduction is partly due to our full-network

quantisation (APoT, as aforementioned, does not quantise the first, last and batch-norm

parameters). However, this does not tell the full story; even when we discount these

advantages and look at weight subsets ignoring the first, last and batch-norm layers,

WFN uses many times fewer parameters and half the weight-space entropy Ð see

column ‘No BN-FL’ in Table 3.3. Finally, we examine how WFN achieves the reduced

weight-space entropy in Figure 3.6. Here we see that not only do WFN networks have

very few unique weights, but we also observe that the vast majority of all of the weights

2https://github.com/yhhhli/APoT Quantization

50 Chapter 3. Weight Fixing Networks

Full Network No BN No BN-FL

Model Method Top-1 Entropy Param Count Entropy Param Count Entropy Param Count

ResNet-18 Baseline 68.9 23.3 10756029 23.3 10748288 23.3 10276369
APoT (3bit) 69.9 5.77 9237 5.76 1430 5.47 274

WFN δ = 0.015) 67.3 2.72 90 2.71 81 2.5 81
WFN δ = 0.01) 69.7 3.01 164 3.00 153 2.75 142

WFN δ = 0.0075) 70.3 4.15 193 4.13 176 3.98 162
ResNet-34 Baseline 73.3 24.1 19014310 24.1 18999320 24.10 18551634

APoT (3bit) 73.4 6.77 16748 6.75 16474 6.62 389
WFN δ = 0.015) 72.2 2.83 117 2.81 100 2.68 100
WFN δ = 0.01) 72.6 3.48 164 3.47 132 3.35 130

WFN δ = 0.0075) 73.0 3.87 233 3.85 191 3.74 187
ResNet-50 Baseline 76.1 24.2 19915744 24.2 19872598 24.20 18255490

WFN δ = 0.015) 75.1 3.55 125 3.50 105 3.42 102
WFN δ = 0.01) 75.4 4.00 199 3.97 169 3.88 163

WFN δ = 0.0075) 76.0 4.11 261 4.09 223 4.00 217

TABLE 3.4: A full metric comparison of WFN Vs. APoT. We compare the unique
parameter count and entropy of all parameters in the full network, as well as the same
measures but not including the batch-norm layers (No BN) and the parameters not

including the batch-norm and first and last layers (No BN-FL).

are a small handful of powers-of-two values (order 1). The other unique weights

(outside the top 4) are low frequency and added only in the final fixing iterations.

3.5 Additional Analysis

3.5.1 Layerwise Breakdown

In Figure 3.7 we examine how the parameter count and layer-parameter entropy change

with each layer for both the WFN and APoT approaches. We find both gains over the

unquantised layers of APoT, but also that the entropy and parameter count in the

convolutional layers (those quantised by APoT) are similar.

3.5.2 A Full Metric Comparison

In Table 3.4 we give the full metric breakdown comparing WFN to the state-of-the-art

APoT work. We calculate the unique parameter count and entropy values for subsets of

the weights. No BN corresponds to all weights other than those in the batch-norm

layers, and No BN-FL is the set of weights not including the first-last and batch-norm

layers. It is clear here that WFN outperforms APoT even when we discount the

advantage gained of taking on the challenge of quantising all layers.

3.5. Additional Analysis 51

cw bw bb cw bw bb cw bw bb cw bw bb cw bw bb cw bw bb cw bw bb cw bw bb cw bw bb cw bw bb cw bw bb cw bw bb cw bw bb cw bw bb cw bw bb cw bw bb cw bw bb lw lb

0

200

400

600

800

1000

L
a
y
e
r

U
n
iq

u
e
 P

a
ra

m
 C

o
u
n
t

WFN_res18

APoT_res_18_3b

APoT_res_18_4b

APoT_res_18_5b

cw bw bb cw bw bb cw bw bb cw bw bb cw bw bb cw bw bb cw bw bb cw bw bb cw bw bb cw bw bb cw bw bb cw bw bb cw bw bb cw bw bb cw bw bb cw bw bb cw bw bb lw lb

2

3

4

5

6

7

8

9

10

L
a
y
e
r

E
n
tr

o
p
y

layer1 layer2 layer3 layer4 layer5 layer6 layer7 layer8 layer9 layer10 layer11 layer12 layer13 layer14 layer15 layer16 layer17 layer18

layer1 layer2 layer3 layer4 layer5 layer6 layer7 layer8 layer9 layer10 layer11 layer12 layer13 layer14 layer15 layer16 layer17 layer18

FIGURE 3.7: We compare WFN with a traditional quantisation set-up (APoT) with
varying bit-widths applied to a ResNet18 model trained on the ImageNet dataset. The
top chart shows the layerwise unique parameter count where WFN has consistently

fewer unique parameters per layer.

52 Chapter 3. Weight Fixing Networks

0.1 0.2 0.3 0.4 0.5 0.6 0.7
% Pruned at Initiation

0.0

0.2

0.4

0.6

0.8

1.0
To

p
1%

 A
cc

0.1 0.2 0.3 0.4 0.5 0.6 0.7
% Pruned at Initiation

0.14

0.15

0.16

0.17

0.18

0.19

0.20

En
tro

py

FIGURE 3.8: Here we show that unstructured pruning at initialisation up to 50% can be
coupled with the WFN process without degradation of performance and can further

reduce the weight-space entropy.

3.5.3 Pruning Experiments

To explore how WFN interacts with pruning we conduct a simple set of experiments.

Instead of starting the WFN process with all weights un-fixed we randomly select p% of

the weights to be pruned in each layer. We then run WFN as before starting with pt = p,

reducing the number of T iterations. The results, shown in Figure 3.8, are conducted

with a ResNet-18 and Cifar-10 combination, painting a mixed picture. On the one hand,

WFN and pruning at lower levels (< 50%) are well tolerated and provide two benefits, a

lower weight-space entropy and few weight-fixing iterations. On the other hand,

full-precision networks can tolerate much higher ranges of pruning so there it would

seem that a certain amount of synergy between the two approaches is present but this is

tempered compared to full precision networks.

It’s important to note that WFN already has a form of pruning built-in with the δ0 value

balancing the emphasis on pruning over quantisation.

3.6 Conclusion

In this chapter we have presented WFN, a pipeline that can successfully compress

whole neural networks. The WFN process produces hardware-friendly representations

of networks using just a few unique weights without performance degradation. Our

method couples a single network codebook with a focus on reducing the entropy of the

weight-space along with the total number of unique weights in the network. The

motivation is that this combination of outcomes will offer accelerator designers more

scope for weight re-use and the ability to keep most/all weights close to computation to

reduce the energy-hungry data movement costs. Additionally, we believe our findings

and method offer avenues of further research in understanding the interaction between

3.6. Conclusion 53

network compressibility and generalisation, particularly when viewing deep learning

through the minimal description length principle lens.

While the WFN presented in this chapter has shown promising results in compressing

neural networks, there is an underlying assumption that small weights should move

proportionately to their magnitudes. However, this assumption may not hold true for

all individual weights, as some small weights could potentially move larger distances

without significantly impacting accuracy. In the next chapter, we will explore an

alternative approach that aims to address this limitation and in doing so makes a

connection between compression, noise resilience and uncertainty estimations.

55

Chapter 4

Probabilistic Weight Fixing

4.1 An Introduction of Ideas

Our work in WFN demonstrated that it was possible to substantially reduce the number

of unique weights and weight-space entropy whilst maintaining task performance.

In this chapter, we look further to refine the choices made in WFN. One fundamental

assumption in WFN was that small weights should move proportionately to their

current value. That is, small weights can move much smaller distances than larger

weights. We found this empirically true when conducting the additive vs multiplicative

noise experiments, which we show again in Figure 4.2. Taking the population-level

perspective, we see that on average injecting noise relative to weight magnitude is better

tolerated. However, this was from the perspective of entire weight populations and

does not account for individual weight variability.

For example, say we have a network where weights wi and wj are both 0.23, and we

would like to apply the WFN algorithm. Both weights would be considered equally

viable to be moved to 0.25 at this stage since their relative magnitudes are the same.

FIGURE 4.1: The weight values for any given forward pass through a Bayesian network
are drawn from a learned distribution (right) rather than being point estimates (left).

56 Chapter 4. Probabilistic Weight Fixing

0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

A
c
c
u
ra

c
y

= 0.05

Noise Type

Relative

Absolute

0 2 4 6 8

= 0.1

0 2 4 6 8

= 0.2

0 2 4 6 8
Layer Index

0.0

0.2

0.4

0.6

0.8

1.0

A
c
c
u
ra

c
y

= 0.3

0 2 4 6 8
Layer Index

= 0.4

0 2 4 6 8
Layer Index

= 0.5

FIGURE 4.2: In WFN, we explored adding relative vs absolute noise to each of the
layers (x-axis). The layer index indicates which layer was selected to have noise added.
Each layer index is a separate experiment with the 95% confidence intervals shaded.

It’s clear here that the relative noise is much better tolerated at a population level.

However, this might not be the case; location might also matter here. Perhaps wi is

finely tuned to its neighbourhood values such that even a small perturbation would

result in a change to downstream activation values and even change the classification

class, but wj has much more flexibility and can be increased or decreased to a greater

extent. The core idea is that relative magnitude, although a good proxy for determining

how much a weight can be moved, ignores neighbourhood and positioning.

Could some weights with small values move large distances without having any

meaningful impact accuracy, and some larger weights be extremely sensitive to even

tiny perturbation shifts? This question motivates this Chapter and a new technique

which we call Probabilistic Weight Fixing Networks (PWFN). Rather than enforcing small

relative distance movements irrespective of weight position we look to training and

using Bayesian neural networks (BNN) [Neal, 2012, Mackay, 1992, Gal et al., 2016] and

using the uncertainty and resilience to noise perturbations found in the optimisation

process to determine which weights to move where. We will later define BNNs formally,

but for now, it serves us to give a simple overview.

4.1.1 High-level BNN

The fundamental concept of BNNs is that each weight in the network is derived from a

probability distribution, rather than being assigned a fixed value. This means that

during prediction, we randomly select a single value from the distribution of each

weight to use in the network. As a result, given the same input, different forward passes

through the network could lead to variations in the weights’ values, and potentially, in

the predicted output. Each weight in the network is characterised by a set of parameters

4.1. An Introduction of Ideas 57

1.0 0.5 0.0 0.5 1.0 1.5
Weight Value

0

1

2

3

4

5

6

7

8

Fr
eq

ue
nc

y

w1
w2
w3
w4

FIGURE 4.3: Here we show a set of four distributions Ð one for each of the four weights
Ð chosen randomly. In the forward pass, we will sample one sample per weight from

these distributions, according to the probability density function.

that define its distribution, which are sampled during the inference process. These

parameters, rather than the weights themselves, are what we learn during training.

In this chapter, we explore how to learn and utilise these distribution parameters to

assist in the process of clustering and quantisation of the weights. By having a distinct

set of distribution parameters for each weight, we can move beyond using a single,

population-based threshold for quantisation.

Before diving further into the details, let’s look at a simple example to motivate the idea.

Imagine that we have a linear model of the form:

y =
4

∑
i=1

wixi, (4.1)

where, in the usual way, wi corresponds to a weight, xi to an input, and y the output of

the model. Rather than attempting to learn wi’s directly, we assume that each wi comes

from a Gaussian distribution wi ∼ N (µi, σi) and the task of learning is one of finding

good parameters µ and σ for each of the weights to minimise performance loss. For

now, let’s assume we have such a learning process and let’s look at a learned possible

outcome post-training in Figure 4.4 (left). With each of the four weights’ distributions is

colour-coded we can ask ourselves what information we learn from these

parametrisations that might be useful for quantisation/clustering.

If we assume that we have learned these distributions of weights during the training

process whilst still maintaining task performance, then we have learned a lot about how

58 Chapter 4. Probabilistic Weight Fixing

3 2 1 0 1 2
Weight Value

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Fr
eq

ue
nc

y

w1
w2
w3
w4

FIGURE 4.4: If the previous assumption made in WFN, that large magnitude weights
can move larger distances than smaller weights; we would expect the weights’ dis-
tributions to learn larger σ values for larger magnitude weights which we show one

example of here on the right.

much we can move each weight value whilst still keeping the weight within the scope

of values that have been sampled during training. w2, for example, is very sensitive to

noise perturbations since, during training, it has learned to reduce the σ2 value to be

small. Having smaller σ values indicates that we shouldn’t move this weight too far

during clustering Ð its quantisation error should be kept small. Conversely, the

distribution learned for w3 has a much larger tail (σ3 ≫ σ2), indicating that w3 has been

sampled at a larger range of values in training without affecting performance and can

therefore be moved more liberally during clustering.

Recall in WFN, we worked assuming that large weights are better tolerated than smaller

weights to move more considerable distances. What would a realisation of this

hypothesis look like if we learned the Gaussian distributions? Figure 4.4 shows one

such example that we would expect to see if this were the case, where the sigma values

are proportional to the distribution means.

4.1.2 The Two Problems to Solve

Within this chapter, we have two problems to solve - how to model a neural network

with the weights stored as distributions so that the parameters both inform clustering

whilst maintaining performance. And, how best to use the information within the

resulting network to perform clustering to the maximal degree.

4.1. An Introduction of Ideas 59

4.1.2.1 Problem One: Modelling

The primary challenge in BNNs is effectively modelling and learning the distributions

for each weight in the network. To address this, we draw on established BNN literature,

introducing some modifications to the standard BNN training setup. These

modifications are designed to mitigate the intractability of the full Bayesian approach,

which involves solving for all possible configurations of the weights and then

weighting them by their likelihood. The full Bayesian approach becomes intractable due

to the high-dimensional integral required to compute the posterior distribution over the

weights, which grows exponentially with the number of weights in the network.

One popular approach is variational inference, which involves introducing a variational

distribution over the weights and optimising it to minimise the Kullback-Leibler (KL)

divergence between the variational distribution and the true posterior. The KL

divergence measures the difference between two probability distributions, and

minimising it ensures that the variational distribution closely approximates the true

posterior. By restricting the variational distribution to a simpler family of distributions,

such as Gaussian distributions, the optimisation problem becomes tractable and can be

solved using standard gradient-based methods.

A fundamental challenge with the Gaussian distribution variational approach is

determining the appropriate prior for the standard deviation (σ) [Gal et al., 2016,

Maddox et al., 2019]. If no prior is given and only a performance loss is used, the

optimisation process would be incentivised to collapse σ values to zero and only use the

µ values. This is because reducing the σ values to zero eliminates the uncertainty in the

weights and simplifies the optimisation problem. So a prior is needed to prevent this

collapse, but it is not intuitively obvious what such a prior should be.

Another interrelated issue is initialising the parameters of these distributions to ensure

convergence. This is crucial in BNNs, where the forward pass signal is derived from

multiple parameters, thereby diluting the signal in the backward pass. This weakened

signal necessitates more training iterations, making a robust initialisation scheme

critical to complete training within a reasonable timeframe. A robust initialisation

scheme should provide a good starting point for the optimisation process, helping the

model converge faster and avoid getting stuck in suboptimal solutions.

Due to these challenges, scaling BNNs to complex datasets like ImageNet, particularly

using variational inference, has been difficult. The most effective method to

approximate the posterior distribution of weights in such complex scenarios has been

through observing the Stochastic Gradient Descent (SGD) trajectory [Maddox et al.,

2019].

60 Chapter 4. Probabilistic Weight Fixing

In this chapter, we propose that a network’s resilience to noise is a key indicator of its

downstream performance. We argue that by incorporating noise resilience as a

regularisation term in the optimisation objective, we can effectively guide the learning

of the weight distributions in BNNs. This perspective allows us to regularise BNNs

effectively, encouraging the model to learn weight distributions that are robust to noise

perturbations. By promoting noise resilience, our approach facilitates the training of

BNNs with more complex dataset-model combinations using the variational Gaussian

distribution, enabling their application to a wider range of real-world problems.

4.1.2.2 Problem Two: Utilising What We Learn

Once we have addressed the challenges in modelling and training BNNs, resulting in a

trained network with each weight represented by a distribution, the next problem is to

determine how to effectively utilise this information in the context of clustering and

quantisation.

A key question arises: Can the uncertainty learned during the training of a BNN be

leveraged to inform the quantisation stage? In other words, can we use the information

encoded in the weight distributions to guide the process of clustering and quantising

the weights? This is a crucial consideration, as the uncertainty captured by the weight

distributions may provide valuable insights into the importance and sensitivity of

different weights in the network. In the second part of this chapter, we will explore

methods to integrate the learned BNNs into a clustering/quantisation algorithm. We

hypothesise that the uncertainty learned during training can serve as a valuable source

of information for clustering. By incorporating this uncertainty into the clustering

process, we aim to develop more efficient and effective quantisation techniques that are

tailored to the specific characteristics of the trained BNN.

Before delving into the details of our Probabilistic Weight Fixing Networks (PWFN)

algorithm, let’s take a moment to review the broader landscape of BNNs. We will

discuss the key motivations driving research in this field and highlight some of the open

challenges that our work aims to address. This background information will provide

context for our contributions and help situate our approach within the existing body of

knowledge.

4.2 Background on Bayesian Neural Networks

Bayesian Neural Networks (BNNs) introduce a fundamental change in weight

modelling compared to traditional neural networks. Instead of assigning fixed values to

4.2. Background on Bayesian Neural Networks 61

weights, BNNs consider a probability distribution over each weight (see Figure 4.1).

Ideally, Bayesian inference would involve computing the integral

P(y|x, D) =
∫

w
P(y|x, w)P(w|D) dw,

where predictions are averaged across all possible weights w. This concept, although

theoretically appealing, is computationally infeasible for complex networks, leading to

the exploration of alternative methods for approximating the Bayesian posterior.

4.2.1 Origins of Bayesian Neural Networks

One of the earliest and most influential works in this domain was by David MacKay in

the early 1990s, notably his 1992 paper, ºA Practical Bayesian Framework for Backprop

Networksº [Mackay, 1992]. This work laid the foundation for applying Bayesian

principles to neural network weights, thus addressing overfitting by incorporating prior

knowledge into the learning process.

Radford Neal’s 1995 doctoral thesis, ºBayesian Learning for Neural Networks,º [Neal,

2012] further advanced the field. Neal proposed viewing large neural networks as

Gaussian processes, a radical idea that reframed neural networks as probabilistic

models capable of quantifying uncertainty.

4.2.2 Challenges and Conceptual Shifts

Despite these initial advancements, the development of BNNs faced significant

obstacles. The primary challenge was computational; the Bayesian methods, especially

those involving probabilistic weight interpretation, demanded substantial

computational resources. This limitation hindered their application to larger networks

and datasets.

Additionally, the transition from perceiving weights as fixed entities to probabilistic

distributions necessitated a substantial shift in understanding and training neural

networks. This change presented both technical and theoretical challenges, requiring a

deep integration of Bayesian statistics and neural network architecture [Jordan and

Mitchell, 2015].

4.2.3 Advantages of Bayesian Approaches

The shift towards Bayesian methodologies in neural networks is motivated by several

key advantages of BNNs over traditional models.

62 Chapter 4. Probabilistic Weight Fixing

Firstly, BNNs inherently provide a measure of uncertainty in their predictions, which is

crucial in various applications such as medical diagnosis and financial forecasting. In

these domains, understanding the confidence level of predictions is as important as the

predictions themselves [Gal et al., 2016].

Secondly, BNNs naturally mitigate overfitting. Traditional neural networks often suffer

from overfitting, performing well on training data but poorly on new data. BNNs, by

integrating prior information and considering a range of weight distributions,

generalise better to unseen data [Welling and Teh, 2011].

Additionally, BNNs offer a more principled approach to model complexity. By allowing

the data itself, under probabilistic principles, to guide the determination of model

complexity, BNNs can lead to more optimally sized models that neither underfit nor

overfit the data [Graves, 2011].

4.2.4 Contemporary Research Trends

Recent innovations in BNNs include the development of subnetworks within the model

that are Bayesian in nature [Sharma et al., 2023, Daxberger et al., 2021], the application

of various approximation techniques [Kristiadi et al., 2021, Maddox et al., 2019], and the

use of Gaussian variational relaxations, as demonstrated by Blundell et al. [Blundell

et al., 2015]. Their ’Bayes-by-backprop’ (BBP) method, in particular, has expanded the

scope of BNNs to modern deep learning architectures using a re-parametrization trick,

enabling back-propagation optimisation and uncertainty quantification in large-scale

networks. Our proposed method, PWFN builds upon these advancements and is an

extension of the variational approach - which we’ll now look to explore more with.

4.2.5 Variational BNNs

Recall that Bayesian inference would involve computing the integral

P(y|x, D) =
∫

w
P(y|x, w)P(w|D) dw. The key term here that is difficult to compute is

the posterior distribution of the weights given our data P(w|D). A variational

approximation of this posterior looks to find parameters θ such that variational

distribution Q(w|θ) minimises the Kullback-Leibler (KL) divergence defined as

DKL(Q||P) =
∫

Q(x) log Q(x)
P(x)

dx which can be reformulated [?] as:

4.2. Background on Bayesian Neural Networks 63

DKL(Q||P) =
∫

Q(w|θ) log
Q(w|θ)

P(w|D)
dw Definition of KL divergence

=
∫

Q(w|θ) log
Q(w|θ)P(D)

P(w, D)
dw Bayes theorem

=
∫

Q(w|θ) log
Q(w|θ)

P(w, D)
dw +

∫
Q(w|θ) log P(D)dw log ab = log a + log b

=
∫

Q(w|θ) log
Q(w|θ)

P(w, D)
dw + log P(D)

∫
Q(w|θ)dw = 1

log P(D) = DKL(Q||P)−
∫

Q(w|θ) log
Q(w|θ)

P(w, D)
dw Switch sides and negate

log P(D) = DKL(Q||P) + L(Q) L(Q) = −
∫

Q(w|θ) log
Q(w|θ)

P(w, D)
dw.

We know that the probability of our data P(D) is fixed and since the KL term is always

positive, DKL(Q||P) ≥ 0, if we maximise L(Q) we will be simultaneously decreasing

the KL divergence term. This term, L(Q), is known both as the variational free energy

and also the evidence lower bound (ELBO).

Looking closely at L(Q):

L(Q) = −
∫

Q(w|θ) log
Q(w|θ)

P(w, D)
dw

= −
∫

Q(w|θ) log
Q(w|θ)

P(D|w)P(w)
dw

= −
∫

Q(w|θ) log Q(w|θ)dw +
∫

Q(w|θ) log P(D|w)P(w)dw

= H(Q(w|θ)) +
∫

Q(w|θ) log P(D|w)P(w)dw

= H(Q(w|θ)) +
∫

Q(w|θ) log P(D|w)dw +
∫

Q(w|θ) log P(w)dw,

we can check in with an explanation for each of the three components we would like to

maximise to minimise the KL divergence DKL(Q||P). The first, H(Q(w)), corresponds

to the entropy of the weights w coming out of the Q family distribution. To maximise

this term, we could look to distributions which maximise entropy and then encourage

solutions (parameter settings) in the optimisation process which also increase the

entropy. The second term
∫

Q(w|θ) log P(D|w) refers to the weighted expectation of

64 Chapter 4. Probabilistic Weight Fixing

true model likelihood over the variational Q. Finally, we have
∫

Q(w|θ) log P(w)

which is the cross-entropy of Q(w|θ) and P(w).

Even with the selection of a simple variational distribution Q(w|θ), the minimisation of

the variational free energy has no tractable closed-form solution for problems of

significant complexity. Instead, sampling approximation methods (such as

Metropolis-Hastings) or gradient-based methods, like Bayes By Backprop (BBP), can be

used. However, even with these relaxations, modelling full deep learning networks as a

set of Gaussian distributions and solving complex problems remains challenging. For

example, in the BBP paper [Blundell et al., 2015], experiments were limited to MNIST

classification and other toy problems. Despite these challenges, variational inference

provides a principled framework for approximating the intractable posterior

distribution in BNNs. By introducing a variational distribution and optimising the

ELBO, we can effectively learn the parameters of the variational distribution and obtain

an approximation to the true posterior. This enables us to perform efficient inference

and make predictions with uncertainty estimates. In the following sections, we will

explore how our proposed method, PWFN, builds upon the variational inference

framework and addresses some of the limitations of existing approaches.

4.3 Probabilistic Weight Fixing Networks

We are now ready to begin to introduce PWFNs. In doing so, our core idea is to integrate

three fields, stochastic/Bayesian neural networks, quantisation, and accelerator designs.

We will use the curious juxtaposition gained from quantisation results ± that networks

that can tolerate noise are better than those that can’t ± to train BNNs even for the more

complex model-dataset combinations. We will then use the information stored in the

parameters of the weights distributions to guide quantisation/clusterings towards

configurations that offer the opportunities to maximise weight reuse - a core

consideration and driver of accelerator designs in reducing the overall energy costs.

4.3.1 High Level Overview

In PWFN, we follow T fixing iterations each of which combines a training and a

clustering stage in order to reach an outcome of a highly compressed/quantised

network with a single whole-network codebook. In our approach, each weight wi in the

set w is modelled as a sample from a Gaussian distribution, represented as N (µi, σi).

These distributions are characterised by learnable parameters: means µ = (µ1, . . . , µN)

and standard deviations σ = (σ1, . . . , σN). During the training phase, we employ

Bayesian by Backpropagation (BBP) to optimise these parameters. The objective is

4.3. Probabilistic Weight Fixing Networks 65

twofold: firstly, to minimise the loss associated with task performance, and secondly, to

refine the weight distributions. This refinement aims to precisely quantify the extent of

noise that can be introduced to each weight wi without adversely impacting the model’s

performance. Both µ and σ are trained with an additional regularisation term that

encourages larger values of σ to counter the model reverting to the point estimates with

σi = 0 to minimise the classification loss. During the clustering stage, we look to use

this information to move the µi values to one of a handful of cluster centers. We favour

the cluster centers to be hardware multiplication-friendly powers-of-two, or

additive-powers-of-two. After T iterations of training and clustering, each of the

weights’ distributions in the networks will have their µ values centered on one of the k

clusters in the codebook c.

After the T fixing iterations there are two options depending on the downstream usage

of the network: either the network can be converted into point estimates and the

weights set to the exact µ values giving us a quantised network. Or, we can use the

extra information given to us by modelling each weight as a distribution as a way of

quantifying uncertainty of a particular prediction. If, after multiple samples of w, a

model changes its prediction for a fixed input, this tells us that there is uncertainty in

these predictions ± with this information being useful for practical settings.

Let us now dive into the training phase of PWFN.

4.3.2 PWFN Training

Consider a network parameterized by N weights w = {w1, ..., wN}. In PWFN, each

weight wi is not a single value but is instead drawn from a distribution wi ∼ N (µi, σi),

and instead of learning the wi directly, the learning process optimizes each µi and σi. In

a forward pass, during training, we sample weight values wi according to its

distribution:

wi = µi + σiϵ, ϵ ∼ N (0, 1). (4.2)

The forward pass is stochastic under fixed µ, σ. If trained correctly, the σi values give us

information about the amount of noise a particular weight wi can handle without

affecting performance. Said another way, if we can find a configuration w = (µ, σ)

which maintains task performance despite the randomness introduced by the σi

parameters, then we will know which of the corresponding weights can be moved and

to what degree. In PWFN, we train µ, σ following the BBP optimisation process

[Blundell et al., 2015] with some changes both in terms of initalisation and the priors on

µ and σ.

66 Chapter 4. Probabilistic Weight Fixing

4.3.3 Large σ constraint for w.

Given the usual cross-entropy or other performance loss, there is a clear direction of

travel during gradient descent towards having small σi values and less uncertainty in

the network parameters. If σi’s are kept small (close to zero) then the optimisation

process need only find a good placement for µi’s to minimise the loss. A prior on the

distribution of weights is therefore needed to prevent the σ = 0 point estimate solution

being found which would leave us with no weight movement information.

In the original BBP set-up, the authors aimed to prevent vanishing variance by

regularising the distribution of weights according to a prior distribution composed of a

mixture of zero-mean Gaussian densities with different variances. The parameters of

this prior were determined through an exhaustive search. The motivation for this

approach was twofold: firstly, the empirical Bayes method did not perform well

because the network tended to favour updating these parameters over the posterior

(since there are fewer parameters to update); secondly, there was a connection to the

successful spike-and-slab prior [?], where values are concentrated around 0 (the slab) or

another value known as the spike, thus favouring sparsity.

In contrast, we hypothesise that a good network can handle the most noise injection

whilst maintaining performance. Such networks are likely more compressible, as they

have been trained to tolerate changes to their weight values without performance

degradation during training.

We attempt this by making our σ values to be large. Networks with large σ have,

probabilistically, more noise added to the µ values during training and so have to learn

to have robust performance under such circumstances. We note that this acts as a

push-pull relationship with the performance loss, which favours low σ values. The

motivation is that, much like L1 norms enforcing sparsity, this formulation will train the

network to produce a large σi for noise-resilient parameter wi, whilst maintaining a

noise-sensitive weight wj to have a small σj despite the prior pull. The regularised loss

function for training the training phases of the algorithm is:

− log P(D|µ, σ) + αLREG(σ), (4.3)

where the regularisation term is:

LREG(σ) =
N

∑
i=1

L(σi) = −
N

∑
i=1

(σi − S)Θ(S− σi), (4.4)

with Θ(x) = 1 for x ≥ 0 and 0 otherwise. The Θ function prevents the optimization

from finding a network with a subset of σ with infinitely large values and dominating

the cross entropy term. S is thus a cutoff on how large the values in σ can be. α is a

4.3. Probabilistic Weight Fixing Networks 67

0.1 0.0 0.1 0.20.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

 = 0.0

0.1 0.0 0.1 0.20.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

 = 0.00781

0.1 0.0 0.1 0.20.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

 = 0.03125

FIGURE 4.5: The regularisation term acts to stop the σ uncertainty values from collaps-
ing to zero. This experiment is run using the CIFAR10 dataset with ResNet-18, stopping

after 30 epochs.

hyperparameter controlling the formation of a noise-resilient network where the

majority of the weights can receive noise injection without hurting performance, not just

a few. In Figure 4.5 we illustrate the effect on the distribution of σ under different α

values for a ResNet-18 trained on the CIFAR-10 dataset. As we increase α the σ values

no longer collapse to zero giving us information for downstream clustering.

4.3.4 Initialization using Relative Distance from Powers-of-two.

For each weight wi we need to specify its prior distribution so as to derive the posterior

using Bayesian updating. We assume that the posterior distribution is Gaussian with a

diagonal covariance matrix: P(wi; µi, σi) whose parameters µi, σi are trained using BBP.

To initialise the prior distributions for µi and σi we set:

P0(µ) = ∏
i

P0(µi) (4.5)

where

P0(µi) ∝ δµi ,wi
(4.6)

,

for the pre-trained weight value wi. For a Gaussian posterior we would typically

require an unknown σ to be drawn from a Gamma conjugate prior distribution. Instead,

we set σi to be a known function of the µi at initalisation. In our previous chapter with

WFN[Subia-Waud and Dasmahapatra, 2022] relative distances to the preferred powers

of two values for the weight was used to determine weight movement. To favour

anchoring weights at powers of two, we set the standard deviations to be smallest (2−30)

68 Chapter 4. Probabilistic Weight Fixing

FIGURE 4.6: Here we compare the µ vs σ values for all weights in a given layer at
initalisation (left) and after PWFN convergence and clustering (right).

at either edge of each interval between the nearest integer powers of two (remembering

that 2xi ≤ µi ≤ 2xi+1) for integer xi, and largest at the midpoint of the interval. We

introduce a parabolic function σi(µi) as a product of relative distances of each

pre-trained weight value (µi) to the nearest lower and upper powers of two:

σi(µi) = (0.05)2

(
|2xi − µi|

|2xi |

)(
|µi − 2xi+1|

|2xi+1|

)
(4.7)

We show a set of initialised µ verses σ values and the converged values post-training for

a ResNet-18 model trained for CIFAR10 classification in Figure 4.6.

4.3. Probabilistic Weight Fixing Networks 69

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
wi

0

1

2

3

4

5

p(
w

i)

1 2

1 2

Weights in the network are
 represented by distributions wi with

 mean i and standard deviation
 i. We would like to

 train the parameters i and
 i and use these parameters

 to determine if they are
 close enough to the quantisation

 cluster point c1.

w1
w2
c1

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
wi

0

1

2

3

4

5

p(
w

i)

1 2

1′1 2 ′
2

′1 ′2

During training both the
 and s of the two

 Gaussians are updated to ′

 and ′. We use a
 regularisation term which encourages the

 values to get larger
 and the model more amenable

 to compression.

w1
w2

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
wi

0

1

2

3

4

5

p(
w

i)

′
1

′
2

′
1

′
2

After some training the ′s
 of the two Gaussians are

 closer to the cluster center
 and the ′s are larger.

 Now the weights w1 and
 w2 are within one standard

 deviation of the cluster center
 and can be moved to

 the cluster center.

w1
w2
c1

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
wi

0

1

2

3

4

5

p(
w

i)

′
1 = ′

2 = std(′
1, ′

2)

Now the two weights can
 be fixed to the cluster

 center. Their means are set
 to c1 and their '

 values are set to the
 standard deviation of ' values

 of all the weights clustered
 to c1 Gaussians

′
1 = ′

2 = c1

w1&w2

FIGURE 4.7: An overview of the PWFN process.

4.3.5 PWFN Clustering.

In Figure 4.7 we show a schematic of the clustering stage in which we use the

information garnered from the weights’ distribution parameters to identify cluster

centers and their assignment. PWFN clustering is a two-step method running for

t = 1, . . . , T iterations. At each step we set a fraction pt of the weights to be fixed, so

that |Wt
fixed| = Npt. The remaining weights at iteration stage t are trainable and called

Wt
free. We follow the scheme first proposed in [Subia-Waud and Dasmahapatra, 2022] in

setting pt (Figure 4.8, left). All of the weights wi that are assigned to Wt
fixed will have

their µi values fixed to one of the set of cluster centers. At the last iteration, |WT
free| = 0

and pT = 1, as all weights have been fixed to their allocated cluster centroids.

We next introduce how a cluster center ck is defined and how the mapping µi 7→ ck ∈ c

is performed. Let

R = {−
1

2b
, . . . ,−

1

2j+1
,−

1

2j
, 0,

1

2j
,

1

2j+1
, . . .

1

2b
} (4.8)

be the set of all powers-of-two up to a precision b. For a weight to be a desired additive

power of two, a sum over at most ω elements of R is defined to be a cluster center of

order ω. Formally, for P(R) the power set of R,

cω = {∑
i∈r

i | r ∈ P(R) ∧ |r| ≤ ω}. (4.9)

70 Chapter 4. Probabilistic Weight Fixing

PWFN begins with order ω = 1, the powers-of-two up to precision b as the proposal

cluster set cω. Next, for each weight wi = (µi, σi) in the network, the value of σi is used

to determine how far away they are from each of the cluster centers using:

Dprob(wi, cj) =
|µi − cj|

σi
. (4.10)

Interpret this Mahalanobis distance as: ºhow many sigmas (standard deviations) away

is cluster cj ∈ cω from weight wiº. At iteration stage t, for each free weight we define

cω
∗ (i) = min

c∈cω
Dprob(wi, c) (4.11)

as the cluster center that is the fewest sigmas away from wi ∈Wt
free. We denote by nω

k

the number of weights with the smallest Dprob to cluster cω
k , i.e.,

nω
k = ∑

i

I[cω
k = cω

∗ (i)] (4.12)

.

We then take the index k∗ of the cluster with the most number of weights nearest to a

cluster:

k∗ = argmaxk nω
k (4.13)

Thus,

cω
k∗ ∈ cω = (cω

1 , . . . , cω
k) (4.14)

is the cluster with the most number of weights nearest to it.

We then order the weights in Wt
free by their distance to cω

k∗ . In detail, for

Wt
free = [w1, . . . , wi, . . . , wn], we reorder the weights by permuting the indices

w′i = wπ(i) (4.15)

where π : [1, . . . , n]→ [1, . . . , n] is a permutation, i 7→ π(i). The ordered list

[w′1, . . . , w′n] satisfies

Dprob(w
′
i, cω

k∗) ≤ Dprob(w
′
i+1, cω

k∗) (4.16)

4.3. Probabilistic Weight Fixing Networks 71

Next, we need to determine how many of these weights we should assign to cluster cω
k∗ .

To do so, we define a threshold δ and we take the first ℓ(δ) weights from [w′1, ..., w′n]

such that:

1

ℓ(δ)

ℓ(δ)

∑
i=1

Dprob(w
′
i, cω

k∗) ≤ δ. (4.17)

As long as this is possible with ℓ(δ) > 0, we have identified both a cluster cω
k∗ and set of

weights [w′1, ..., w′
ℓ(δ)] which can be moved from Wt

free to Wt+1
fixed. We map the weights in

[w′1, . . . , w′
ℓ(δ)] = [(µ′1, σ′1), . . . , (µ′

ℓ(δ), σ′
ℓ(δ))] to a single weight

wk∗ = (µk∗ , σk∗) (4.18)

corresponding to cluster cω
k∗ : µk∗ = cω

k∗ and

σk∗ = std([µ′1, . . . , µ′
ℓ(δ)]) (4.19)

where std computes the standard deviation of its argument. This process is then

repeated, finding the next most popular cluster until Npt weights are assigned a cluster.

If ℓ(δ) = 0, before enough weights are assigned in iteration t, then we have not been

able to find any cluster centers cj ∈ cω which are close enough to any weight, i.e.,

Dprob(wi, cj) > δ for all weights wi ∈Wt
free and cj = ck∗ . In this case, we set ω ← ω + 1

and δ← 2δ in the same step, giving us a higher-order additive powers-of-two set and

less restrictive δ value threshold. Since |cω+1| > |cω|, this increase in ω makes more

cluster centers available during the next clustering attempt.

4.3.6 Putting it All Together.

Putting the training and clustering stages together, we have a process for training a

neural network whose weights are from a Gaussian posterior distribution with diagonal

covariance matrix by backpropagation (BPP) that favours configurations with long

Gaussian tails, which the clustering stage can then use to identify which weights to

move and to what extent. This process is repeated for T iterations, with the cumulative

fraction pt of weights increasing with each t pt+1 > pt until all of the weights are moved

from Wfree to Wfixed at iteration T where pT = 1.

After T iterations of training and clustering, each of the weights’ distributions in the

networks will have their µ values centered on one of the k clusters in the codebook.

72 Chapter 4. Probabilistic Weight Fixing

Post the T fixing iterations there are two options depending on the downstream usage

of the network: either the network can be converted into point estimates and the

weights fixed to be the exact µ values giving us a quantised network. Or, we can use the

extra information given to us by modelling each weight as a distribution as a way of

quantifying uncertainty of a particular prediction. If, after multiple samples of w, a

model changes its prediction for a fixed input, this tells us that there is uncertainty in

these predictions ± with this information being useful for practical settings.

4.3.7 WFN to PWFN

The reader will have noticed some overlap between the formulation of WFN and

PWFN, so let us step back to note the major differences.

4.3.7.1 The Proposal Set

In WFN, we found a recurrence relation cj+1 = cj(
1+δ
1−δ), 0 < δ < 1 that defined clusters

which were guaranteed not to breach some distance threshold δ. We then took order ω

additive-powers-of-two approximations of this set as our potential cluster set C̃ω. This

was made possible since we had a fixed distance measure Drel given a weights’

magnitude.

This same formulation is not possible in PWFN since finding clusters centres

equidistant from weights’ would need to account for the variability in the distance

measure due to the σ component. Instead, we just looked at the entire order ω

additive-powers-of-two set as the pool of potential clusters Cω. This will have the effect

that |C̃ω| ≤ |Cω|. The proposal cluster set in WFN will be the same size or smaller than

the proposal set in PWFN since, in PWFN, we are not discounting clusters too far from

the current weight set to be clustered.

4.3. Probabilistic Weight Fixing Networks 73

4.3.8 On the Measure of Distance

Term Check

Euclidean Distance in the context of weights and clusters in a neural network,

particularly when considering one-dimensional values, is simply the absolute

difference between a weight wi and a cluster center cj. Mathematically, it is

defined as:

D(wi, cj) = |wi − cj|

This is the simplest and most used distance measure in quantisation works.

Relative Distance (Drel) is defined as the absolute value of the difference between

two points normalized by one of the points. For a weight wi and a cluster center

cj, it is:

Drel(wi, cj) =

∣∣∣∣
wi − cj

wi

∣∣∣∣

This is the distance measure used in WFN.

Mahalanobis Distance (Dprob) in this context is redefined as the normalized dif-

ference between a mean µi and a cluster center cj, scaled by the standard deviation

σi. It is given by: Dprob(wi, cj) =
∣∣∣ µi−cj

σi

∣∣∣ and used in the PWFN algorithm.

How we calculate distances from weights to clusters is the most salient change from

WFN to PWFN. WFN measured the distance between a weight and a cluster as the

weight magnitude normalised ± the Manhattan distance. In contrast, in PWFN, we

measure this as the Manhattan distances between the weight distribution mean and the

cluster centre divided by the weight distribution standard deviation ± Mahalanobis

distance:

Drel =
∣∣∣wi−cj

wi

∣∣∣ vs. Dprob =
∣∣∣ µi−cj

σi

∣∣∣ (4.20)

The effect of this is that the training process can find configurations which decouple the

weight magnitude and the distance that said weight could travel in the clustering stage.

4.3.9 To Prune or Not to Prune

One final area of variation from the original WFN lies with what to do about the

weights with very extremely small magnitudes. Previously, we set a precision cap

b = −7 for elements in Cs, and any value less than this was assigned to be closest to the

zero clusters (using δ0). In PWFN, we do not need to implement such a rule and can

74 Chapter 4. Probabilistic Weight Fixing

0 2 4 6 8
T

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

p t

pt schedule

0.5 0.0 0.5
Cluster Value

0

1

2

3

4

5

Nu
m

be
r A

ss
ig

ne
d

1e6
0.0

-0.0156

0.0156

-0.0312 0.0312
-0.0234 0.0234-0.0469

Number Assigned vs Cluster Value

0 2 4 6 8
Round

0

20

40

60

80

100

120

140

Nu
m

be
r o

f U
ni

qu
e

Va
lu

es A large percentage of the clusters are
 only assigned in the last round

 and could be considered outliers
 which keeps the entropy low

Number of Unique Values vs Percent

FIGURE 4.8: pt follows the same schedule as [Subia-Waud and Dasmahapatra, 2022]
(left). In the middle and right plots, we see that PWFN achieves very small entropy
values by majority of weights to only a very small (4 or 5) cluster values and the rest

are assigned as outliers, most of which are powers-of-two.

avoid having a fixed δ0 if we want (although we do experiment with using one) and

could allow weights |µi| < 2−7 to move away from zero depending on their σi value.

The problem with doing so lies in the possibility of a situation where σi is extremely

small, and no combination of elements in Cs up to a precision b could satisfy the δ

threshold distance. In other words, no cluster centre could satisfy the distance threshold

due to the precision restrictions.

The quandary has three solutions. We could allow an extremely large b-precision for the

cluster centres, which, given a large enough order (number of additive powers-of-two

components), could allow for clusters of ever greater precision, but this could enable far

greater precision than is needed for solid results (as demonstrated in WFN). Instead, a

simple solution is to increase the δ threshold multiplicatively by a hyper-parameter β as

we increase the order, meaning that the distance threshold is relaxed for outliers. A final

alternative is to maintain the functionality shown to work in WFN by using a δ0 for

which tiny values are clustered to zero. In our experiments, we will explore both of the

latter cases.

4.3.9.1 The Highlighted Changes

In Algorithm 3, we redefine the clustering algorithm for a given iteration t ∈ T with

changes made from WFN highlighted in red.

4.4 Experiments

We conduct our experimentation on the ImageNet dataset with a wide range of models:

ResNets-(18,34,50) [He et al., 2016], DenseNet-161 [Huang et al., 2017] and the

4.4. Experiments 75

Algorithm 3: Clustering Npt weights at the tth iteration in PWFN.

1 while |Wt+1
fixed| ≤ Npt do

2 fixednew ← []
3 while fixednew is empty do

4 Increase the order ω ← ω + 1
5 cω ← {∑i∈r i | r ∈ P(R) ∧ |r| ≤ ω}

6 for each i = 1 . . . , |Wt+1
free |

7 cω
∗ (i)← minc∈Cω Dprob(wi, c)

8 for each cluster centre cω
k ∈ Cω

9 nω
k ← ∑i I[cω

k = cω
∗ (i)]

10 k∗ ← arg maxk nω
k

11 Sort: [w′1, . . . , w′N]← [w1, . . . , wN], w′i = wπ(i), π permutation

12 where Dprob(w
′
i, cω

k∗) < Dprob(w
′
i+1, cω

k∗)

13 i← 1, mean← Dprob(w
′
1, cω

k∗)

14 while mean ≤ f (t, δt=0, δt=T) do

15 fixednew ← w′i
16 mean← i

i+1 ×mean + 1
i+1× Dprob(w

′
i+1, cω

k∗)

17 i← i + 1

18 δt=t ← β× δt=t

19 Assign all the weights in fixednew to cluster centre cω
∗ (i), moving them from

Wt+1
free to Wt+1

fixed

challenging DeiT (small and tiny) [Touvron et al., 2021]. For each model, we convert all

the parameters in the convolution and linear layers into Gaussian distributions where

the mean value is set to be the weight value of the pre-trained model found in the Timm

library. Thus, at test time with no further training, we retain the original accuracies. We

set the variance parameters according to the setting described in Eq (4.7). We then apply

nine rounds of the described weight fixing with three epochs of re-training each round,

totalling to 27 epochs of training. We train using SGD with momentum 0.9 with a

learning rate of 0.001. For all experiments, we fix δ = 1, α = 2−11 which we found using

grid-search on the CIFAR-10 dataset and works surprisingly well in all settings. For all

our experiments we train using 4x RTX8000 GPUs and a batch-size of 128. For the

ensemble results, we sample 20 times different weights using the learned weights’

distributions and report the mean accuracy.

We further explore two settings:

1. PWFN (no prior): In the first setting, we do not use the prior initialisation and

instead initialise the σ values with a random uniform distribution:

σi ∼ U (−0.0025, 0.0025) (4.21)

76 Chapter 4. Probabilistic Weight Fixing

TABLE 4.1: Full comparison results. (w/o FL-Bias) refers to calculating the metrics
without the first-last layers and bias terms included. ‘Params’ refers to the unique
parameter count in the quantised model, entropy is the full weight-space entropy. In-ch,
layer, attn refer to whether the method uses a separate codebook for each layer, filter

in-channel and attention head respectively.

Separate Codebook
Model Method Layer In-ch Attn Top-1 (Ensemble) Entropy Params

ResNet-18 Baseline - - - 68.9 23.3 10756029
LSQ ✗ - 68.2 - -

APoT ✗ - 69.9 5.7 1430
WFN ✗ ✗ - 69.7 3.0 164

PWFN (no prior) ✗ ✗ - 69.3 (69.6) 1.7 143
PWFN ✗ ✗ - 70.0 (70.1) 2.5 155

ResNet-34 Baseline - - - 73.3 24.1 19014310
LSQ ✗ - 71.9 - -

APoT ✗ - 73.4 6.8 16748
WFN ✗ ✗ - 73.0 3.8 233

PWFN (no prior) ✗ ✗ - 73.5 (74.4) 1.2 147
PWFN ✗ ✗ - 74.3 (74.6) 1.8 154

ResNet-50 Baseline - - - 76.1 24.2 19915744
LSQ ✗ - 75.8 - -
WFN ✗ ✗ - 76.0 4.1 261

PWFN (no prior) ✗ ✗ - 77.2 (78.1) 3.5 334
PWFN ✗ ✗ - 77.5 (78.3) 3.4 325

DeiT-Small Baseline - - - 79.9 16.7 19174713
LSQ+ ✗ 77.8 - -
Q-ViT 78.1 11.3 3066917

Q-ViT (w/o FL-Bias) 78.1 10.4 257149
PWFN (no prior) ✗ ✗ ✗ 78.0 (78.3) 2.7 352

PWFN ✗ ✗ ✗ 78.1 (78.5) 2.7 356

DeiT-Tiny Baseline - - - 72.9 15.5 5481081
LSQ+ ✗ 68.1 - -
Q-ViT 69.6 11.5 1117630

Q-ViT (w/o FL-Bias) 69.6 10.5 128793
PWFN (no prior) ✗ ✗ ✗ 71.4 (71.6) 2.8 300

PWFN ✗ ✗ ✗ 71.2 (71.5) 2.8 296

DenseNet161 Baseline - - - 77.8 17.1 26423159
PWFN ✗ ✗ ✗ 77.6 (78.0) 1.1 125

2. PWFN: In the second setting, we use the informed prior outlined in Equation 4.7,

setting the starting σ values as a weighted relative distance from their nearest

power-of-two.

4.5 Results

We compare PWFN against a range of quantisation approaches where the model

weights have been made available so that we can make accurate measurements of

entropy and unique parameter count. For the ResNet family, we compare against the

current state-of-the-art APoT [Yuhang Li, Xin Dong, 2020] 1 and WFN [Subia-Waud and

1https://github.com/yhhhli/APoT_quantisation

4.5. Results 77

TABLE 4.2: Comparison of the number of additional training epochs required by
different fine-tuning quantisation methods.

Method Num of additional epochs

ApoT 120
PWFN 27
WFN 27
LSQ 90
QviT 300

Dasmahapatra, 2022] 2. For the transformer models, there has only been one work

released, Q-Vit [Li et al., 2022] 3, which has both the model saves and code released. For

both APoT and Q-Vit, we compare the 3-bit models which are the closest in terms of

weight-space entropy to that achieved by PWFN.

As presented in Table 4.2, PWFN requires substantially fewer additional training epochs

than most methods, save for WFN, highlighting its training efficiency. We use a

straightforward regularisation term that encourages an increase in σ, and its

computational cost is comparable to that of L1 regularisation. While our approach does

lead to greater memory demands due to the additional σ parameters and their

associated gradient updates, the overall simplicity of the method is more efficient than

previous BNN training procedures, making it feasible to tackle more complex

model-dataset pairings. Additionally, we note that when using the quantised version

for inference, there are no extra costs. We take a sample (the µ values) from the BNN,

effectively treating it as a point estimate.

Remember that WFN uses a regulariser that calculates the relative distance between all

free weights and the existing cluster centers, and then penalises weights depending on

the distance to their closest center (in a soft way). This incurs computational costs in the

backpropagation calculation for every iteration. In the reformulated PWFN, we have a

much simpler regularisation term that penalises sigma to increase - with costs that

match that of l0 regularisation. We do have memory overhead in terms of the number of

parameters at training (σ and µ) and the random number generation to sample, but this

is only at training time. The simplicity of the regularisation term also means that we

experience a speed-up over the previous BNN training procedure outlined in the

original Bayes-by-backprop paper, making much more complex model-dataset pairings

tractable.

This is not to say there are no costs; we find that a single training epoch with ResNet-18

on the ImageNet dataset takes 1 hour 30mins on 4 consumer GPUs (GTX1080’s) for

PWFN, compared with 40 minutes for standard training and 1 hour 20mins for WFN

(but for WFN this increases as the number of clusters increases through training).

2https://github.com/subiawaud/Weight_Fix_Networks
3https://github.com/YanjingLi0202/Q-ViT

78 Chapter 4. Probabilistic Weight Fixing

2.2

2.4

2.6

2.8

3.0

3.2

En
tro

py

Q

En
tro

py

K

En
tro

py

V

1 2 3 4 5 6 7 8 9 10 11 12
Layer

10

20

30

40

50

60

Un
iq

ue
 C

ou
nt

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Un
iq

ue
 C

ou
nt

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Un
iq

ue
 C

ou
nt

FIGURE 4.9: For DeiT small, we show a box plot of the entropies and unique counts
per input channel for each Q,K,V by layer and with the mean of each layer (calculated

across all attention heads) shown in the black lines.

In Table 4.1 we can see the set of results. PWFN demonstrates superior entropy, unique

parameter count and top-1 accuracy across the board. In addition to the point-estimate

accuracy using the mean of each of the weights’ distributions (the cluster centers), we

can additionally sample the weights from the learned distributions to give us an

ensemble of models the mean prediction of which gives us further accuracy gains which

we show in brackets in the Table. The prior initalisation gives a slight but consistent

accuracy improvement over using a uniform prior (PWFN (no prior)). We note that for

both APoT and Q-Vit different codebooks are used for different layers. For Q-Vit,

different codebooks were additionally used for every attention head and input channel,

and the bias terms were left unquantised, pushing up the parameter count and

weight-space entropy substantially. As we have discussed in previous chapters, this is a

growing trend in the field, where relaxations such as leaving large parts of the network

unquantised, or using different codebooks for ever granular parts of the network, are

often used. Each relaxation comes at a cost in hardware, be that support for

unquantised elements ± such as the first and last layers ± or the use of different

codebooks for various parts of the architecture.

4.5.1 Entropy Values by Layer

Figure 4.9 illustrates the variation in entropy and the count of unique parameters across

different layers and attention components. A notable observation from our study is that

the weights associated with the ‘value’ component exhibit higher entropy in the final

layer. This observation aligns with the notion that employing a fixed quantisation

scheme for each layer necessitates a relaxation of the quantisation constraints

specifically for the last layer, as supported by prior studies [Yuhang Li, Xin Dong, 2020,

Jung et al., 2019b, Zhou et al., 2016b, Yamamoto, 2021, Oh et al., 2021b, Li et al., 2022].

4.5. Results 79

Value

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Re
la

tiv
e

Di
st

an
ce

WFN threshold

Max Relative Distance Assigned to Value

Number Assigned

Re
la

tiv
e

Di
st

an
ce

WFN threshold

Max Relative Distance Assigned to Number

Percentage Clustered

Re
la

tiv
e

Di
st

an
ce

WFN threshold

Max Relative Distance Assigned to Percentage

10 2 10 1 100
Value

0.0

0.1

0.2

0.3

0.4

Re
la

tiv
e

Di
st

an
ce

WFN threshold

Mean Relative Distance Assigned to Value

101 103 105 107
Number Assigned

Re
la

tiv
e

Di
st

an
ce

WFN threshold

Mean Relative Distance Assigned to Number

0.2 0.4 0.6 0.7 0.8 0.9 0.9
5

0.9
75 0.9

9 1.0

Percentage Clustered

Re
la

tiv
e

Di
st

an
ce

WFN threshold

Mean Relative Distance Assigned to Percentage

FIGURE 4.10: The maximum (top left) and mean (bottom left) relative distance a
weight moves to a cluster by cluster value. The maximum relative distance is not well
maintained with the number of weights assigned to that cluster (top middle), but the
mean relative distance is (bottom middle). The maximum (top) relative distance for
each cluster assignment and mean (bottom) relative distance by round are shown in

the right-hand column. In all plots, we show in blue the threshold used in WFN.

Moreover, this highlights an intriguing possibility that in the context of attention

networks, such relaxation might be essential only for the ’value’ weights, and not for

the ’keys’ and ’queries’.

4.5.2 Distance Measures Compared

In understanding how PWFN is able to compress a network’s representation to such a

degree compared to WFN we look to how often the previously proposed relative

distance threshold is maintained.

In Figure 4.10, it’s evident that while the relative distance threshold established in WFN

is, on average, maintained, there are edge-cases where it isn’t. This observation suggests

that having a context-specific noise tolerance benefits subsequent compression stages.

Furthermore, the data indicates that these values are typically small (as seen in the left

column), have a high frequency of occurrence (depicted in the middle), and are

predominantly assigned during the middle (0.6, 0.7) and final rounds.

Let us now conclude on our findings of this Chapter.

80 Chapter 4. Probabilistic Weight Fixing

4.6 Conclusion

PWFN offers something that WFN did not: position-specific signals for the clustering

stage. This probabilistic reformulation and training of BNNs with weights coming from

Gaussian distributions enabled us to use the weight uncertainty (σ) values in

determining where to move specific weights. In doing so, we have seen that we have

been able to further reduce the weight-space entropy and unique parameter count of a

range of networks ± including those with transformer networks containing attention

layers ± to a greater extent than current works. We have also understood why this is the

case; upon examining the relative distance threshold used in WFN and comparing it

with the distances acceptable for clustering/quantisation in PWFN, we observed a

slight, but noticeable discrepancy. Some weights in WFN could be moved further than

the relative distance allowed, which is only possible with position-specific weight

distance thresholds made available through the probabilistic reformulation.

In addition, we have demonstrated for the first time that BNNs can be trained for more

complex dataset-model pairings with a simple prior on the weight distributions, which

maximises the values and thus the noise resilience of the network. This has allowed

variational networks trained with backpropagation to match the performance of the

point-estimate models for the ImageNet dataset for the first time.

Finally, we have achieved something of a corollary to our main objective of learning

compressed network representations: we trained BNNs which have the inherent ability

to provide uncertainty estimates and potentially be better calibrated. We will explore in

a later chapter to what extent these uncertainty estimates provide utility over current

approaches in this space. But for now, we turn to another area of potential

improvement.

The current WFN and PWFN algorithms require separate training and clustering stages,

where the clustering is not directly informed by gradient descent. In the next chapter,

we look to reformulate the algorithm such that the gradient provides information on

when best to cluster/quantise a weight, negating the need for separation of the two

stages.

81

Chapter 5

Towards On-The-Fly Clustering in

Weight Fixing Networks

In the preceding chapters, we have explored two methods for efficient weight

quantisation in neural networks: Probabilistic Weight Fixing Networks (PWFN) and

Weight Fixing Networks (WFN). Both methods focus on network compression by

reducing the number of unique parameters in models, leading to more energy-efficient

inference. However, their multi-stage implementation, which involves alternating

between weight clustering and training to counteract errors introduced by earlier

clustering stages using a fixed schedule, can be complex and may limit adaptability.

Currently, the transition from the training stage to the clustering stage is determined

empirically after a predefined number of epochs. While this approach is practical, it

lacks a strong theoretical foundation and may not always identify the optimal moment

for clustering across various contexts. Furthermore, the choice regarding the number of

clustering stages and the proportion of weights to be clustered is left to the discretion of

the user, which can lead to variability in results.

In this chapter, we propose a more dynamic weight clustering method within the

framework of Probabilistic Weight Fixing Networks. We introduce ’Cluster-On-the-Fly

Probabilistic Weight Fixing Networks’ (COF-PWFN), an approach that eliminates the

need for predefined clustering stages. Instead, the optimisation process itself

determines when and how to perform clustering. By analysing gradient data and

distances to the nearest clusters, we aim to identify the appropriate time for a weight to

undergo clustering.

The core idea of COF-PWFN is to maintain the Bayesian learning approach of PWFN

while seamlessly integrating the clustering process into the training phase. This more

integrated approach aims to simplify the overall process and potentially offer a more

82 Chapter 5. Towards On-The-Fly Clustering in Weight Fixing Networks

consistent adjustment of weight values. By allowing the optimisation process to guide

the clustering decisions, COF-PWFN seeks to adapt to the specific characteristics of each

model and dataset, potentially motivated by more efficient and effective compression.

By introducing on-the-fly clustering, COF-PWFN aims to provide a more adaptive and

streamlined approach to weight quantisation in neural networks. This chapter

represents a step towards more dynamic and self-guided compression methods that can

automatically adapt to the specific characteristics of each model and dataset, potentially

leading to more efficient and effective deployment of deep learning models in

resource-constrained environments.

5.1 On-The-Fly Clustering Approach (COF-PWFN)

Let us now outline the steps of COF-PWFN before providing a more formal treatment.

We initiate the COF-PWFN process by transforming a pre-trained model into its

Bayesian Neural Network (BNN) counterpart, mirroring the PWFN approach. The

model is then subjected to further training via gradient descent, where the loss function

combines both cross-entropy loss and the large-σ promoting regularisation term. The

key difference between COF-PWFN and PWFN lies in the determination of when to

cluster weights and what percentage of weights to cluster. Both PWFN and WFN

employ fixed epochs for training prior to clustering a predetermined percentage of the

weights. Notably, these hyper-parameters are static and operate independently from the

ongoing optimisation process.

In contrast, COF-PWFN continuously evaluates the clustering readiness of each weight

after every training iteration based on two conditions. The first condition assesses a

weight’s contribution to the loss. If the gradient of the weight is sufficiently small, it

indicates that the weight is optimally positioned on its local loss surface and could be

clustered to a value within its positional vicinity. The second condition measures the

weight’s proximity to its designated cluster. For this, we utilise the sigma distance to the

nearest cluster, an approach that proved effective in PWFN.

When both conditions are met for a weight, its value is updated to match the nearest

cluster centre. This iterative cycle of gradient descent, weight evaluation, and clustering

continues until all weights are clustered.

If the process stalls due to no weights meeting either clustering criterion after a training

iteration, two potential interventions are considered: introducing additional cluster

centres to facilitate further adjustments, or revising the clustering thresholds. These

5.1. On-The-Fly Clustering Approach (COF-PWFN) 83

µ - value

Lo
ss

Tr
ai

n
in

g

Within these two regions

of the loss curve, the

gradient is small enough

to meet condition 2

Any overlap within one

standard deviation of

the cluster centroid will

meet condition 1

Cluster

Centroid

Within this zone, both

condition 1 and condition 2

are met and the weight µ

value can be �xed to the

cluster centroid

σ

σ

σ

σ

σ

FIGURE 5.1: The two conditions needed to be met in order for a weight to be moved to
a cluster are captured in this schematic. Condition 1 is met when the distribution of the
weight has a small enough Mahalanobis distance to a cluster center. The cluster center
is represented by an X in this diagram with the weight distribution moving through
training represented with the blue normal distributions. Condition 2 is met when the
weight-gradient is smaller than some threshold which we show in the diagram as the

green sections of the loss curve.

adjustments have the overarching goal of enhancing the flexibility of the weight

clustering mechanism.

Let us now turn to parsing out the details of the algorithm in more formal terms.

84 Chapter 5. Towards On-The-Fly Clustering in Weight Fixing Networks

5.2 Method

Consider a neural network parameterised by N weights w = w1, . . . , wN . Within the

COF-PWFN framework, each weight wi is represented not by a single value, but is

drawn from a distribution wi ∼ N (µi, σi). The goal is to optimise the parameters

µ = (µ1, . . . , µN) and σ = (σ1, . . . , σN) of these distributions. During a forward pass in

training, weight values wi are sampled from their respective distributions as:

wi = µi + σiϵ, ϵ ∼ N (0, 1). (5.1)

Given fixed µ and σ, the forward pass remains stochastic due to the sampling of weight

values from their respective distributions during each forward pass. Properly trained σi

values offer insights into the noise resilience of the corresponding weight wi. In essence,

if an optimal configuration w = (µ, σ) can be found that upholds task performance

amidst the variability introduced by σi, it provides knowledge about the flexibility of

associated weights. The COF-PWFN methodology employs the Bayes-by-Backprop

(BBP) optimisation technique, as described in [Blundell et al., 2015], with modifications

in the initialisation and priors on µ and σ. The BBP technique is used to determine the

parameters of the weight distributions by minimising a loss function that combines the

negative log-likelihood of the data and a regularisation term that encourages larger σ

values. The loss function used for training in COF-PWFN is given by:

− log P(D|µ, σ) + αLREG(σ), (5.2)

where the first term represents the negative log-likelihood of the data given the weight

distribution parameters, and the second term is a regularisation term that encourages

larger σ values. The regularisation term is defined as:

LREG(σ) =
N

∑
i=1

L(σi) = −
N

∑
i=1

(σi − S)Θ(S− σi), (5.3)

where Θ(x) is a step function that equals 1 for x ≥ 0 and 0 otherwise, S is a constant

that acts as a threshold for the σi values, and α is a hyperparameter that controls the

strength of the regularisation. The role of the Θ function is pivotal; it deters the

optimisation from producing a network with a subset of σ taking on disproportionately

large values, which would overshadow the cross-entropy term. The constant S ensures

σ stays within a reasonable range, while α guides the extent of pull towards larger σ’s.

Throughout the training iterations, each µ parameter is assigned a partial derivative,

denoted ∂L
∂µi

. This value, when scaled by an optimisation technique like Stochastic

Gradient Descent or ADAM and influenced by a learning rate, dictates the direction and

magnitude of change to reduce the loss. COF-PWFN uses this derivative to assess when

5.2. Method 85

a weight is primed for clustering. Specifically, when ∂L
∂µi

< σgrad, with σgrad being a

pre-set gradient threshold, we postulate that the weight’s position has minimal impact

on the loss. The choice of σgrad is based on the assumption that weights with small

gradients are close to their optimal values and can be clustered without significantly

affecting the model’s performance. Such a weight is then deemed suitable to be ºfixedº

to a nearby position.

5.2.1 Defining Close Proximity

Consistent with the PWFN approach, we employ the strategy of depicting each weight

as a Gaussian distribution and sampling during the forward pass based on its µ and σ

parameters. This allows the σ values to serve as an indicator of the extent to which a

weight might diverge from its established µ value.

With reference to the weight-space distance outlined in Equation 5.4, we introduce a

threshold, σdist, for this distance. A weight is deemed proximate to a cluster centre ck

(defined subsequently) if the inequality Dprob(wi, cj) < σdist holds true.

Dprob(wi, cj) =
|µi − cj|

σi
. (5.4)

The metric Dprob(wi, cj) ± introduced in PWFN ± quantifies the distance between a

weight’s mean µi and a cluster centre cj in terms of the weight’s standard deviation σi.

This probabilistic distance measure takes into account the uncertainty associated with

each weight, as captured by its σ value.

5.2.2 Clustering Conditions

Building upon the concept of close proximity, we introduce two conditions that must be

satisfied for a weight to be clustered. These conditions pertain to each µi and σi in the

network: condition one : Dprob(wi, cj) < σdist, and condition two : ∂L
∂µi

< σgrad. The first

condition, condition one, ensures that the weight is sufficiently close to a cluster centre,

as measured by the probabilistic distance metric Dprob(wi, cj). This condition takes into

account the uncertainty associated with the weight, as captured by its σi value, and

compares it to the distance threshold σdist.

The second condition, condition two, assesses the impact of the weight on the loss

function. By comparing the partial derivative ∂L
∂µi

to the gradient threshold σgrad, we can

determine whether the weight has converged to a stable position and is ready for

clustering.

86 Chapter 5. Towards On-The-Fly Clustering in Weight Fixing Networks

If a cluster cj in the cluster set c satisfies both conditions, the weight µi is fixed to cj.

This weight is fixed for all future iterations with the ultimate aim to converge all µi’s in

the network to a compact cluster set c.

5.2.3 Selecting Clusters

Having established the conditions for clustering weights, we now focus on determining

the cluster set c within the COF-PWFN framework. The goal is to create a compact set

of clusters that not only represents the distribution of µ accurately but also promotes

efficient multiplication by favouring powers-of-two values.

To ensure minimal size, it’s imperative that the cluster set spans and represents the

distribution of µ effectively. This facilitates shorter distances to each µi, a crucial aspect

for fulfilling the first clustering condition. We adopt a progressive strategy to introduce

cluster values ci into the weight cluster set c. We initiate with a solitary value, c = {0},

considering that the weight distribution in neural networks typically gravitates around

zero. As training iterations ensue, we attempt to fix as many µ values as possible that

meet the clustering conditions. If, during any iteration, no µ values meet the first

condition while still satisfying the second, the cluster set c requires augmentation. Let’s

define R as the set of all powers-of-two up to a specified precision b:

R = −
1

2b
, . . . ,−

1

2j+1
,−

1

2j
, 0,

1

2j
,

1

2j+1
, . . . ,

1

2b
. (5.5)

Consequently, the proposal cluster set cω can be delineated as:

cω = {∑
i∈r

i | r ∈ P(R) ∧ |r| ≤ ω} \ c. (5.6)

COF-PWFN starts with an order ω = 1, considering the powers-of-two up to precision

b as the initial proposal cluster set cω, excluding values already in c. For each weight

wi = (µi, σi), we evaluate its distance from each cluster centre using the metric in

Equation 5.4.

Given each free weight, we ascertain cω
i as the nearest cluster centre by distance

measure. We then compute nω
k , the number of weights closest to cluster cω

k . The cluster

with the most weights nearest to it, denoted as k, is incorporated into the cluster set c. If

the proposal set cω is exhausted, we increase the order ω by one. The resulting

mechanism prioritises the inclusion of all ω-additive powers-of-two before broadening

the cluster set. This approach ensures that the cluster set c grows in a principled

manner, adapting to the distribution of weights in the network while maintaining a

focus on efficient multiplication (i.e lower bit-widths).

5.3. Algorithm 87

By integrating the concepts of close proximity, clustering conditions, and a principled

cluster selection process, COF-PWFN provides a dynamic and adaptive framework for

weight clustering in neural networks. The iterative nature of the algorithm allows for

the gradual refinement of the cluster set c, taking into account the evolving distribution

of weights during the optimisation process. This approach aims to strike a balance

between model compression and predictive performance, enabling the deployment of

efficient neural networks in resource-constrained environments.

5.3 Algorithm

Let us finally put the constituent parts together with reference to Algorithms 4 and 5.

We initiate our BNN using pre-trained weights to set the mean values µ and, mirroring

the PWFN setting, the standard deviations σ. We have gradient and distance thresholds

defined as σgrad and σdist, respectively. Additionally, we introduce a counter denoted as

κ, initalised to zero, and a predefined parameter τ, which we refer to as the ºpatienceº

threshold. This additional term gives the algorithm some space for training to take

place without needing to cluster at least one weight each training iteration up to τ.

After applying an iteration of training, for every weight parameter µi in the network,

we evaluate its gradient with respect to the loss function and identify all weights not yet

fixed that satisfy the condition that they are less than the predefined distance threshold

σdist ± as seen in lines 6-10 of Algorithm 4. Next, for each of these weights, we calculate

their distances to each of the cluster centers in c; if there exists a cluster center whereby

a weight wi has a computed distance of less than σdist (line 13) then we will fix the µi of

said wi (lines 14, 15).

However, if neither of the conditions (C1 and C2 refer to conditions one and two,

respectively) is met for a weight, we increment the κ counter (lines 20-21). We continue

the training iterations, and if the counter κ reaches or surpasses our patience threshold

τ without any weights meeting the conditions, we take corrective actions: If the

gradient condition is not met, we adjust the gradient threshold σgrad (lines 27-28). If the

distance condition is not met, we invoke the process detailed in Algorithm 5 (line 29-30).

Once the corrective actions are taken, the κ counter is reset to zero.

The training concludes by updating the parameters µ and σ using an optimisation

method, continuing this iterative process until all weights have been fixed to one of the

values in the cluster set.

88 Chapter 5. Towards On-The-Fly Clustering in Weight Fixing Networks

Algorithm 4: COF-PWFN training algorithm. The algorithm iteratively updates the
weight distribution parameters µ and σ using gradient-based optimisation while
simultaneously clustering weights based on their gradients and proximity to cluster
centres. The gradient threshold σgrad and the distance threshold σdist are adaptively
adjusted to ensure effective clustering and convergence of the algorithm.

Input: Network parameters µ, σ, training data D, gradient threshold σgrad, distance
threshold σdist, weight-space distance Dprob(wi, cj), regularisation term
LREG(σ), learning rate α, threshold for allowable iterations τ

Output: Optimised parameters µ, σ and cluster set c
1 Initialize µ, σ, c = {0}, and κ = 0;
2 wfree = µ;
3 while not all parameters fixed do

4 Compute the loss function using Equation 5.2;

5 Compute the partial derivatives ∂L
∂µi

for µi ∈ wfree and ∂L
∂σi

for all σ;

6 Update µi for µi ∈ wfree and σi for all σ using optimizer;
7 C1 = 1 ; /* Condition 1 flag */

8 C2 = 1 ; /* Condition 1 flag */

9 foreach µi ∈ wfree do

10 if ∂L
∂µi

< σgrad then

11 C1 = 0 ; /* Condition 1 satisfied */

12 foreach cj in c do

13 if Dprob(wi, cj) < σdist then

14 Fix weight µi to cj;

15 Remove µi from wfree;
16 C2 = 0 ; /* Condition 2 satisfied */

17 end

18 end

19 end

20 end

21 if C1 = 1 or C2 = 1 then

22 κ = κ + 1 ; /* Increase count */

23 else

24 κ = 0;
25 end

/* Is the count greater than the allowable iterations without any

fixing */

26 if κ ≥ τ then

27 if C1 = 1 then

28 Multiply σgrad by 2;

29 else

30 Call Algorithm 5: COF-PWFN Adding a Cluster;
31 end

32 κ = 0;

33 end

34 end

5.4. Experiments and Results 89

Algorithm 5: COF-PWFN Adding a Cluster

Input: Free weights Wt
free, current cluster set c, maximum precision b, order ω

Output: Updated cluster set c, order omega
1 Let R = {− 1

2b , . . . ,− 1
2j−1 ,− 1

2j , 0, 1
2j ,

1
2j+1 , . . . , 1

2b };

2 Initialize c′ = {∑i∈r i | r ∈ P(R) ∧ |r| ≤ ω} \ c;
3 if |c′| = 0 then

4 Increase order: ω = ω + 1;
5 Update c′ = {∑i∈r i | r ∈ P(R) ∧ |r| ≤ ω} \ c;

6 end

7 foreach wi = (µi, σi) ∈Wt
free do

8 Compute Dprob(wi, c) for c ∈ c′;

9 Define cω
∗ (i) = minc∈c′ Dprob(wi, c);

10 end

11 Define nω
k = ∑i I[cω

k = cω
∗ (i)];

12 Find k∗ = argmaxk nω
k ;

13 Update c = c ∪ {cω
k∗};

14 Return c, ω;

5.4 Experiments and Results

In this section, we evaluate the performance of COF-PWFN on both the CIFAR-10 and

ImageNet datasets using the ResNet family of models. We first explore the

hyperparameter space for σgrad, σdist, and τ using a grid search with a ResNet-18 model

on the CIFAR-10 dataset. The results of this exploration are presented in Figure 5.2.

Following this, we apply COF-PWFN to larger-scale experiments on the ImageNet

dataset using various ResNet models and compare its performance with other

state-of-the-art quantisation methods.

5.4.1 Hyperparameter Exploration

The grid search over the hyperparameters σgrad, σdist, and τ reveals several notable

trends, as shown in Figure 5.2. The most intuitive observation is that increasing σgrad

(left column of Figure 5.2) leads to a decrease in accuracy, entropy, and the epoch at

which all parameters are fixed. This behaviour can be attributed to the fact that fixing

weights when they still have large gradients can result in a smaller pool of clusters, but

at the cost of declining network performance. Essentially, a higher σgrad value allows

weights to be clustered more aggressively, even if they have not fully converged, leading

to suboptimal clustering and reduced accuracy. The impact of the patience threshold τ

is somewhat less intuitive. An increase in τ can result in a decline in accuracy, entropy,

and convergence epoch, but in a less predictable manner with higher variability.

Interestingly, even with τ = 1, a drop in accuracy is observed, suggesting that this

90 Chapter 5. Towards On-The-Fly Clustering in Weight Fixing Networks

2^
-3

0

2^
-2

8

2^
-2

5

2^
-2

2

2^
-2

0

2^
-1

8
grad

0.910
0.913
0.916
0.919
0.922
0.925
0.928
0.931
0.934
0.937
0.940

to
p1

 a
cc

ur
ac

y

top1 accuracy vs grad

0 5 10

0.910
0.913
0.916
0.919
0.922
0.925
0.928
0.931
0.934
0.937
0.940

to
p1

 a
cc

ur
ac

y

top1 accuracy vs patience

0.
1

0.
5

1.
0

dist

0.910
0.913
0.916
0.919
0.922
0.925
0.928
0.931
0.934
0.937
0.940

to
p1

 a
cc

ur
ac

y

top1 accuracy vs dist

100 200 300 400 500
Convergence epoch

0.924

0.926

0.928

0.930

0.932

0.934

to
p1

 a
cc

ur
ac

y

top1 accuracy vs Convergence epoch

2^
-3

0

2^
-2

8

2^
-2

5

2^
-2

2

2^
-2

0

2^
-1

8

grad

0.70

0.75

0.80

0.85

0.90

0.95

H(
w)

H(w) vs grad

0 5 10

0.70

0.75

0.80

0.85

0.90

0.95
H(

w)
H(w) vs

0.
1

0.
5

1.
0

dist

0.70

0.75

0.80

0.85

0.90

0.95

H
(w

)

H(w) vs dist

100 200 300 400 500
Convergence epoch

0.70

0.75

0.80

0.85

0.90

0.95

H
(w

)

H(w) vs Convergence epoch

2^
-3

0

2^
-2

8

2^
-2

5

2^
-2

2

2^
-2

0

2^
-1

8

grad

100

200

300

400

500

Co
nv

er
ge

nc
e

ep
oc

h

Convergence epoch vs grad

0 5 10

100

200

300

400

500

Co
nv

er
ge

nc
e

ep
oc

h

Convergence epoch vs

0.
1

0.
5

1.
0

dist

100

200

300

400

500

Co
nv

er
ge

nc
e

ep
oc

h

Convergence epoch vs dist

0.005 0.01
Learning rate

0.910
0.913
0.916
0.919
0.922
0.925
0.928
0.931
0.934
0.937
0.940

to
p1

 a
cc

ur
ac

y

top1 accuracy vs learning rate

FIGURE 5.2: Hyperparameter exploration using ResNet-18 trained on the CIFAR-10
dataset.

additional layer of complexity may not be necessary. Consequently, we fix τ = 0 for the

larger-scale ImageNet experiments to simplify the algorithm and reduce computational

overhead. With τ = 0 at every training iteration at least one weight will be fixed.

5.4.2 ImageNet Results

We present the full results comparing COF-PWFN with WFN, PWFN, LSQ, and APoT

for the ImageNet dataset using fixed hyperparameters found to be optimal in the

CIFAR-10 experiments in Table 5.1.

The results show that while COF-PWFN outperforms all other techniques in terms of

accuracy, it does so with not as strong compression rates compared to both WFN and

PWFN. This suggests that there may be a trade-off between accuracy and compression

in the current hyperparameter settings. However, we hypothesise that there exists a

hyperparameter configuration that can achieve both high accuracy and strong

compression rates, potentially matching or even surpassing the performance of PWFN.

To find such optimal hyperparameter settings, several strategies can be employed. One

approach is to conduct a more extensive grid search over a wider range of

hyperparameter values. This would allow us to explore a larger portion of the

hyperparameter space and potentially identify configurations that strike a better

balance between accuracy and compression. Another strategy is to use more advanced

5.4. Experiments and Results 91

Model Method Top-1 (Ensemble) Entropy Params Converg

ResNet-18 Baseline 68.9 23.3 10756029 -
LSQ 68.2 - - 90
APoT 69.9 5.7 1430 120
WFN 69.7 3.0 164 27
PWFN (no prior) 69.3 (69.6) 1.7 143 27
PWFN 70.0 (70.1) 2.5 155 27
COF-PWFN 70.1 (71.8) 4.1 292 33

ResNet-34 Baseline 73.3 24.1 19014310 -
LSQ 71.9 - - 90
APoT 73.4 6.8 16748 120
WFN 73.0 3.8 233 27
PWFN (no prior) 73.5 (74.4) 1.2 147 27
PWFN 74.3 (74.6) 1.8 154 27
COF-PWFN 74.4 (76.7) 3.6 285 36

TABLE 5.1: A comparison set of quantisation results for the Imagenet dataset. Params
refers to the number of unique parameters in the network and Converg is number of

epochs used in the fine-tuning stage.

hyperparameter optimisation techniques, such as Bayesian optimisation or evolutionary

algorithms, which can efficiently search the hyperparameter space by leveraging

information from previous evaluations. Furthermore, analysing the relationship

between the hyperparameters and the performance metrics can provide valuable

insights into the behavior of COF-PWFN. By examining how accuracy and compression

rates vary with different hyperparameter settings, we can gain a deeper understanding

of the trade-offs involved and identify potential sweet spots in the hyperparameter

space. This analysis can also guide the development of more efficient search strategies

and help prioritise the most promising hyperparameter configurations.

92
C

h
ap

te
r

5.
T

o
w

ar
d

s
O

n
-T

h
e-

F
ly

C
lu

st
er

in
g

in
W

ei
g

h
t

F
ix

in
g

N
et

w
o

rk
s

0.0003064 0.0000000
fixed_gradients

0

250

500

750

1000

1250

1500

1750

De
ns

ity

Epoch: 0, Layer: 0

0.01533 0.00326
fixed_gradients

0

5000

10000

15000

20000

25000

30000

35000

De
ns

ity

Epoch: 0, Layer: 1

0.02794 0.00799
fixed_gradients

0

5000

10000

15000

20000

25000

30000

35000

De
ns

ity

Epoch: 0, Layer: 2

0.01097 0.01609
fixed_gradients

0

5000

10000

15000

20000

25000

30000

35000

De
ns

ity

Epoch: 0, Layer: 3

0.00853 0.00413
fixed_gradients

0

5000

10000

15000

20000

25000

30000

35000

De
ns

ity

Epoch: 0, Layer: 4

0.02072 0.02740
fixed_gradients

0

10000

20000

30000

40000

50000

60000

70000

De
ns

ity

Epoch: 0, Layer: 5

0.01714 0.01411
fixed_gradients

0

20000

40000

60000

80000

100000

120000

140000

De
ns

ity

Epoch: 0, Layer: 6

0.000594 0.000000
fixed_gradients

0

2000

4000

6000

8000

De
ns

ity

Epoch: 0, Layer: 7

0.03981 0.02123
fixed_gradients

0

20000

40000

60000

80000

100000

120000

140000

De
ns

ity

Epoch: 0, Layer: 8

0.06595 0.02509
fixed_gradients

0

20000

40000

60000

80000

100000

120000

140000

De
ns

ity

Epoch: 0, Layer: 9

0.02965 0.01983
fixed_gradients

0

50000

100000

150000

200000

250000

300000

De
ns

ity

Epoch: 0, Layer: 10

0.0331 0.0686
fixed_gradients

0

100000

200000

300000

400000

500000

600000

De
ns

ity

Epoch: 0, Layer: 11

0.00434 0.00981
fixed_gradients

0

5000

10000

15000

20000

25000

30000

De
ns

ity

Epoch: 0, Layer: 12

0.03469 0.03508
fixed_gradients

0

100000

200000

300000

400000

500000

600000

De
ns

ity

Epoch: 0, Layer: 13

0.01561 0.01321
fixed_gradients

0

100000

200000

300000

400000

500000

600000

De
ns

ity

Epoch: 0, Layer: 14

0.00784 0.01702
fixed_gradients

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity

1e6
Epoch: 0, Layer: 15

0.001972 0.002890
fixed_gradients

0.0

0.5

1.0

1.5

2.0

De
ns

ity

1e6
Epoch: 0, Layer: 16

0.001753 0.001911
fixed_gradients

0

20000

40000

60000

80000

100000

120000

De
ns

ity

Epoch: 0, Layer: 17

0.00575 0.00501
fixed_gradients

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75

De
ns

ity

1e6
Epoch: 0, Layer: 18

0.002067 0.001532
fixed_gradients

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

De
ns

ity

1e6
Epoch: 0, Layer: 19

00
fixed_gradients

0

1000

2000

3000

4000

5000

De
ns

ity

Epoch: 0, Layer: 20

0.1333 0.0638
fixed_gradients

0

250

500

750

1000

1250

1500

De
ns

ity

Epoch: 50, Layer: 0

0.03865 0.04318
fixed_gradients

0

5000

10000

15000

20000

25000

30000

35000

De
ns

ity

Epoch: 50, Layer: 1

0.0545 0.0649
fixed_gradients

0

5000

10000

15000

20000

25000

30000

35000

De
ns

ity

Epoch: 50, Layer: 2

0.03855 0.04488
fixed_gradients

0

5000

10000

15000

20000

25000

30000

35000

De
ns

ity

Epoch: 50, Layer: 3

0.1126 0.0886
fixed_gradients

0

5000

10000

15000

20000

25000

30000

35000

De
ns

ity

Epoch: 50, Layer: 4

0.0619 0.0812
fixed_gradients

0

10000

20000

30000

40000

50000

60000

70000

De
ns

ity

Epoch: 50, Layer: 5

0.1155 0.1551
fixed_gradients

0

20000

40000

60000

80000

100000

120000

140000

De
ns

ity

Epoch: 50, Layer: 6

0.0707 0.0812
fixed_gradients

0

2000

4000

6000

8000

De
ns

ity

Epoch: 50, Layer: 7

0.1045 0.1676
fixed_gradients

0

20000

40000

60000

80000

100000

120000

140000

De
ns

ity

Epoch: 50, Layer: 8

0.0857 0.1466
fixed_gradients

0

20000

40000

60000

80000

100000

120000

140000

De
ns

ity

Epoch: 50, Layer: 9

0.0702 0.1025
fixed_gradients

0

50000

100000

150000

200000

250000

De
ns

ity

Epoch: 50, Layer: 10

0.116 0.107
fixed_gradients

0

100000

200000

300000

400000

500000

De
ns

ity

Epoch: 50, Layer: 11

0.0507 0.0672
fixed_gradients

0

5000

10000

15000

20000

25000

30000

De
ns

ity

Epoch: 50, Layer: 12

0.0960 0.0652
fixed_gradients

0

100000

200000

300000

400000

500000

De
ns

ity

Epoch: 50, Layer: 13

0.02238 0.01471
fixed_gradients

0

100000

200000

300000

400000

500000

De
ns

ity

Epoch: 50, Layer: 14

0.00950 0.00787
fixed_gradients

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity

1e6
Epoch: 50, Layer: 15

0.003677 0.001607
fixed_gradients

0.0

0.5

1.0

1.5

2.0

De
ns

ity

1e6
Epoch: 50, Layer: 16

0.002684 0.002204
fixed_gradients

0

20000

40000

60000

80000

100000

120000

De
ns

ity

Epoch: 50, Layer: 17

0.00657 0.00351
fixed_gradients

0.0

0.5

1.0

1.5

2.0

De
ns

ity

1e6
Epoch: 50, Layer: 18

0.002208 0.001647
fixed_gradients

0.0

0.5

1.0

1.5

2.0

De
ns

ity

1e6
Epoch: 50, Layer: 19

0.00081 0.00122
fixed_gradients

0

1000

2000

3000

4000

5000

De
ns

ity

Epoch: 50, Layer: 20

0.091 0.129
fixed_gradients

0
200
400
600
800

1000
1200
1400

De
ns

ity

Epoch: 100, Layer: 0

0.02167 0.01773
fixed_gradients

0

5000

10000

15000

20000

25000

30000

De
ns

ity

Epoch: 100, Layer: 1

0.02513 0.02716
fixed_gradients

0

5000

10000

15000

20000

25000

30000

De
ns

ity

Epoch: 100, Layer: 2

0.04745 0.02003
fixed_gradients

0

5000

10000

15000

20000

25000

30000

De
ns

ity

Epoch: 100, Layer: 3

0.04440 0.01817
fixed_gradients

0

5000

10000

15000

20000

25000

30000

De
ns

ity

Epoch: 100, Layer: 4

0.02655 0.02710
fixed_gradients

0

10000

20000

30000

40000

50000

60000

De
ns

ity

Epoch: 100, Layer: 5

0.03071 0.03580
fixed_gradients

0

20000

40000

60000

80000

100000

120000

De
ns

ity

Epoch: 100, Layer: 6

0.03326 0.04746
fixed_gradients

0

1000

2000

3000

4000

5000

6000

7000

De
ns

ity

Epoch: 100, Layer: 7

0.05088 0.03371
fixed_gradients

0

20000

40000

60000

80000

100000

120000

De
ns

ity

Epoch: 100, Layer: 8

0.03529 0.01788
fixed_gradients

0

20000

40000

60000

80000

100000

120000

De
ns

ity

Epoch: 100, Layer: 9

0.02784 0.03391
fixed_gradients

0

50000

100000

150000

200000

250000

De
ns

ity

Epoch: 100, Layer: 10

0.02897 0.04298
fixed_gradients

0

100000

200000

300000

400000

500000

De
ns

ity

Epoch: 100, Layer: 11

0.02006 0.04946
fixed_gradients

0

5000

10000

15000

20000

25000

30000

De
ns

ity

Epoch: 100, Layer: 12

0.02060 0.03132
fixed_gradients

0

100000

200000

300000

400000

500000

De
ns

ity

Epoch: 100, Layer: 13

0.01699 0.00757
fixed_gradients

0

100000

200000

300000

400000

500000

De
ns

ity

Epoch: 100, Layer: 14

0.003677 0.004631
fixed_gradients

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity

1e6
Epoch: 100, Layer: 15

0.00065 0.00105
fixed_gradients

0.0

0.5

1.0

1.5

2.0

De
ns

ity

1e6
Epoch: 100, Layer: 16

0.001006 0.001139
fixed_gradients

0

20000

40000

60000

80000

100000

120000

De
ns

ity

Epoch: 100, Layer: 17

0.001911 0.001743
fixed_gradients

0.0

0.5

1.0

1.5

2.0

De
ns

ity

1e6
Epoch: 100, Layer: 18

0.000999 0.000591
fixed_gradients

0.0

0.5

1.0

1.5

2.0

De
ns

ity

1e6
Epoch: 100, Layer: 19

0.000781 0.000862
fixed_gradients

0

1000

2000

3000

4000

5000

De
ns

ity

Epoch: 100, Layer: 20

0.3706 0.1675
fixed_gradients

0

200

400

600

800

1000

1200

1400

De
ns

ity

Epoch: 150, Layer: 0

0.1369 0.0891
fixed_gradients

0

5000

10000

15000

20000

25000

30000

De
ns

ity

Epoch: 150, Layer: 1

0.0978 0.0848
fixed_gradients

0

5000

10000

15000

20000

25000

30000

De
ns

ity

Epoch: 150, Layer: 2

0.0723 0.0599
fixed_gradients

0

5000

10000

15000

20000

25000

30000

De
ns

ity

Epoch: 150, Layer: 3

0.1736 0.1466
fixed_gradients

0

5000

10000

15000

20000

25000

30000

De
ns

ity

Epoch: 150, Layer: 4

0.0952 0.0726
fixed_gradients

0

10000

20000

30000

40000

50000

60000

De
ns

ity

Epoch: 150, Layer: 5

0.2182 0.2681
fixed_gradients

0

20000

40000

60000

80000

100000

120000

De
ns

ity

Epoch: 150, Layer: 6

0.1030 0.1435
fixed_gradients

0

1000

2000

3000

4000

5000

6000

De
ns

ity

Epoch: 150, Layer: 7

0.1999 0.3485
fixed_gradients

0

20000

40000

60000

80000

100000

120000

De
ns

ity

Epoch: 150, Layer: 8

0.1477 0.3408
fixed_gradients

0

20000

40000

60000

80000

100000

120000

De
ns

ity

Epoch: 150, Layer: 9

0.0746 0.1070
fixed_gradients

0

50000

100000

150000

200000

De
ns

ity

Epoch: 150, Layer: 10

0.0883 0.1050
fixed_gradients

0

100000

200000

300000

400000

500000

De
ns

ity

Epoch: 150, Layer: 11

0.0718 0.0704
fixed_gradients

0

5000

10000

15000

20000

25000

De
ns

ity

Epoch: 150, Layer: 12

0.0697 0.0695
fixed_gradients

0

100000

200000

300000

400000

De
ns

ity

Epoch: 150, Layer: 13

0.03622 0.04011
fixed_gradients

0

100000

200000

300000

400000

500000

De
ns

ity

Epoch: 150, Layer: 14

0.01470 0.00987
fixed_gradients

0

200000

400000

600000

800000

De
ns

ity

Epoch: 150, Layer: 15

0.004483 0.003424
fixed_gradients

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

De
ns

ity

1e6
Epoch: 150, Layer: 16

0.00705 0.00414
fixed_gradients

0

20000

40000

60000

80000

100000

De
ns

ity

Epoch: 150, Layer: 17

0.00499 0.00645
fixed_gradients

0.0

0.5

1.0

1.5

2.0

De
ns

ity

1e6
Epoch: 150, Layer: 18

0.002042 0.001978
fixed_gradients

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

De
ns

ity

1e6
Epoch: 150, Layer: 19

0.003236 0.004045
fixed_gradients

0

1000

2000

3000

4000

De
ns

ity

Epoch: 150, Layer: 20

0.1718 0.1572
fixed_gradients

0

200

400

600

800

1000

1200

De
ns

ity

Epoch: 200, Layer: 0

0.0545 0.0577
fixed_gradients

0

5000

10000

15000

20000

25000

De
ns

ity

Epoch: 200, Layer: 1

0.0682 0.0555
fixed_gradients

0

5000

10000

15000

20000

25000

De
ns

ity

Epoch: 200, Layer: 2

0.0733 0.0535
fixed_gradients

0

5000

10000

15000

20000

25000
De

ns
ity

Epoch: 200, Layer: 3

0.0634 0.0483
fixed_gradients

0

5000

10000

15000

20000

De
ns

ity

Epoch: 200, Layer: 4

0.04600 0.04263
fixed_gradients

0

10000

20000

30000

40000

De
ns

ity

Epoch: 200, Layer: 5

0.0990 0.1067
fixed_gradients

0

20000

40000

60000

80000

De
ns

ity

Epoch: 200, Layer: 6

0.0629 0.1053
fixed_gradients

0

1000

2000

3000

4000

5000

De
ns

ity

Epoch: 200, Layer: 7

0.1416 0.1470
fixed_gradients

0

20000

40000

60000

80000

100000

De
ns

ity

Epoch: 200, Layer: 8

0.0982 0.0897
fixed_gradients

0

20000

40000

60000

80000

De
ns

ity

Epoch: 200, Layer: 9

0.0637 0.0619
fixed_gradients

0

25000

50000

75000

100000

125000

150000

175000

De
ns

ity

Epoch: 200, Layer: 10

0.0770 0.1071
fixed_gradients

0

100000

200000

300000

400000

De
ns

ity

Epoch: 200, Layer: 11

0.0493 0.1158
fixed_gradients

0

5000

10000

15000

20000

De
ns

ity

Epoch: 200, Layer: 12

0.0508 0.0588
fixed_gradients

0

100000

200000

300000

400000

De
ns

ity

Epoch: 200, Layer: 13

0.0178 0.0235
fixed_gradients

0

50000

100000

150000

200000

250000

300000

De
ns

ity

Epoch: 200, Layer: 14

0.01876 0.01721
fixed_gradients

0

200000

400000

600000

800000

De
ns

ity

Epoch: 200, Layer: 15

0.00783 0.00454
fixed_gradients

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

De
ns

ity

1e6
Epoch: 200, Layer: 16

0.00669 0.00362
fixed_gradients

0
10000
20000
30000
40000
50000
60000
70000

De
ns

ity

Epoch: 200, Layer: 17

0.01122 0.00815
fixed_gradients

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

De
ns

ity

1e6
Epoch: 200, Layer: 18

0.002341 0.002691
fixed_gradients

0.0

0.5

1.0

1.5

2.0

De
ns

ity

1e6
Epoch: 200, Layer: 19

0.00730 0.00567
fixed_gradients

0

500

1000

1500

2000

2500

3000

3500

De
ns

ity

Epoch: 200, Layer: 20

0.1390 0.1774
fixed_gradients

0

200

400

600

800

1000

De
ns

ity

Epoch: 250, Layer: 0

0.0533 0.0483
fixed_gradients

0

5000

10000

15000

20000

De
ns

ity

Epoch: 250, Layer: 1

0.03843 0.04997
fixed_gradients

0

2500

5000

7500

10000

12500

15000

17500

De
ns

ity

Epoch: 250, Layer: 2

0.0683 0.0575
fixed_gradients

0

2500

5000

7500

10000

12500

15000

17500

De
ns

ity

Epoch: 250, Layer: 3

0.0530 0.0645
fixed_gradients

0

2500

5000

7500

10000

12500

15000

De
ns

ity

Epoch: 250, Layer: 4

0.0640 0.0757
fixed_gradients

0

5000

10000

15000

20000

25000

30000

35000

De
ns

ity

Epoch: 250, Layer: 5

0.0916 0.0966
fixed_gradients

0

10000

20000

30000

40000

50000

60000

De
ns

ity

Epoch: 250, Layer: 6

0.0677 0.0912
fixed_gradients

0

1000

2000

3000

4000

De
ns

ity

Epoch: 250, Layer: 7

0.1242 0.1632
fixed_gradients

0

10000

20000

30000

40000

50000

60000

70000

De
ns

ity

Epoch: 250, Layer: 8

0.1202 0.1082
fixed_gradients

0

10000

20000

30000

40000

50000

60000

70000

De
ns

ity

Epoch: 250, Layer: 9

0.073 0.066
fixed_gradients

0

20000

40000

60000

80000

100000

120000

De
ns

ity

Epoch: 250, Layer: 10

0.0863 0.0905
fixed_gradients

0

100000

200000

300000

400000

De
ns

ity

Epoch: 250, Layer: 11

0.0585 0.0684
fixed_gradients

0

2500

5000

7500

10000

12500

15000

De
ns

ity

Epoch: 250, Layer: 12

0.0641 0.0629
fixed_gradients

0

100000

200000

300000

400000

De
ns

ity

Epoch: 250, Layer: 13

0.03829 0.01430
fixed_gradients

0

50000

100000

150000

200000

250000

300000

350000

De
ns

ity

Epoch: 250, Layer: 14

0.01051 0.01212
fixed_gradients

0

200000

400000

600000

800000

De
ns

ity

Epoch: 250, Layer: 15

0.00663 0.00379
fixed_gradients

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75

De
ns

ity

1e6
Epoch: 250, Layer: 16

0.004232 0.003213
fixed_gradients

0

10000

20000

30000

40000

50000

60000

De
ns

ity

Epoch: 250, Layer: 17

0.00874 0.00985
fixed_gradients

0.0

0.2

0.4

0.6

0.8

1.0

1.2

De
ns

ity

1e6
Epoch: 250, Layer: 18

0.001949 0.002282
fixed_gradients

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

De
ns

ity

1e6
Epoch: 250, Layer: 19

0.005376 0.004589
fixed_gradients

0

500

1000

1500

2000

De
ns

ity

Epoch: 250, Layer: 20

Weights distribution of each layer

(a) Fixed Gradients Distribution

0.1659 0.1335
not_fixed_gradients

0

50

100

150

200

De
ns

ity

Epoch: 0, Layer: 0

0.057 0.063
not_fixed_gradients

0

1000

2000

3000

4000

5000

De
ns

ity

Epoch: 0, Layer: 1

0.0735 0.0950
not_fixed_gradients

0

500

1000

1500

2000

2500

3000

De
ns

ity

Epoch: 0, Layer: 2

0.0523 0.0545
not_fixed_gradients

0

500

1000

1500

2000

De
ns

ity

Epoch: 0, Layer: 3

0.0470 0.0531
not_fixed_gradients

0

500

1000

1500

2000

2500

De
ns

ity

Epoch: 0, Layer: 4

0.0603 0.0561
not_fixed_gradients

0

1000

2000

3000

4000

De
ns

ity

Epoch: 0, Layer: 5

0.0887 0.0941
not_fixed_gradients

0

2500

5000

7500

10000

12500

15000

17500

De
ns

ity

Epoch: 0, Layer: 6

0.0745 0.1676
not_fixed_gradients

0

200

400

600

800

De
ns

ity

Epoch: 0, Layer: 7

0.1628 0.0915
not_fixed_gradients

0

5000

10000

15000

20000

25000

De
ns

ity

Epoch: 0, Layer: 8

0.1188 0.0998
not_fixed_gradients

0

5000

10000

15000

20000

25000

De
ns

ity

Epoch: 0, Layer: 9

0.1110 0.0904
not_fixed_gradients

0

10000

20000

30000

40000

50000

60000

De
ns

ity

Epoch: 0, Layer: 10

0.1425 0.1064
not_fixed_gradients

0

50000

100000

150000

200000

De
ns

ity

Epoch: 0, Layer: 11

0.0841 0.0786
not_fixed_gradients

0

2000

4000

6000

8000

De
ns

ity

Epoch: 0, Layer: 12

0.1204 0.0895
not_fixed_gradients

0

50000

100000

150000

200000

250000

300000

De
ns

ity

Epoch: 0, Layer: 13

0.04268 0.02315
not_fixed_gradients

0

50000

100000

150000

200000

De
ns

ity

Epoch: 0, Layer: 14

0.02353 0.03451
not_fixed_gradients

0

200000

400000

600000

800000

De
ns

ity

Epoch: 0, Layer: 15

0.003637 0.003684
not_fixed_gradients

0.0

0.2

0.4

0.6

0.8

1.0

1.2

De
ns

ity

1e6
Epoch: 0, Layer: 16

0.00792 0.00958
not_fixed_gradients

0

10000

20000

30000

40000

De
ns

ity

Epoch: 0, Layer: 17

0.01098 0.00995
not_fixed_gradients

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

De
ns

ity

1e6
Epoch: 0, Layer: 18

0.004173 0.002061
not_fixed_gradients

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

De
ns

ity

1e6
Epoch: 0, Layer: 19

0.0114 0.0112
not_fixed_gradients

0

200

400

600

800

De
ns

ity

Epoch: 0, Layer: 20

0.2014 0.1919
not_fixed_gradients

0

50

100

150

200

250

300

350

De
ns

ity

Epoch: 50, Layer: 0

0.0497 0.0743
not_fixed_gradients

0

1000

2000

3000

4000

5000

6000

7000

De
ns

ity

Epoch: 50, Layer: 1

0.0683 0.0853
not_fixed_gradients

0

1000

2000

3000

4000

De
ns

ity

Epoch: 50, Layer: 2

0.0698 0.0812
not_fixed_gradients

0

1000

2000

3000

4000

5000

De
ns

ity

Epoch: 50, Layer: 3

0.1540 0.1216
not_fixed_gradients

0

2000

4000

6000

8000

De
ns

ity

Epoch: 50, Layer: 4

0.0722 0.1003
not_fixed_gradients

0

2000

4000

6000

8000

10000

De
ns

ity

Epoch: 50, Layer: 5

0.193 0.178
not_fixed_gradients

0

10000

20000

30000

40000

De
ns

ity

Epoch: 50, Layer: 6

0.0986 0.1419
not_fixed_gradients

0

200

400

600

800

1000

1200

1400

De
ns

ity

Epoch: 50, Layer: 7

0.1660 0.2047
not_fixed_gradients

0

10000

20000

30000

40000

50000

De
ns

ity
Epoch: 50, Layer: 8

0.158 0.304
not_fixed_gradients

0

10000

20000

30000

40000

50000

60000

70000

De
ns

ity

Epoch: 50, Layer: 9

0.0905 0.1071
not_fixed_gradients

0

20000

40000

60000

80000

100000

De
ns

ity

Epoch: 50, Layer: 10

0.1081 0.1310
not_fixed_gradients

0

50000

100000

150000

200000

250000

300000

350000

De
ns

ity

Epoch: 50, Layer: 11

0.0732 0.0867
not_fixed_gradients

0

2000

4000

6000

8000

10000

12000

14000

De
ns

ity

Epoch: 50, Layer: 12

0.1037 0.0793
not_fixed_gradients

0

100000

200000

300000

400000

De
ns

ity

Epoch: 50, Layer: 13

0.03205 0.02860
not_fixed_gradients

0

50000

100000

150000

200000

250000

300000

De
ns

ity

Epoch: 50, Layer: 14

0.01416 0.00927
not_fixed_gradients

0

200000

400000

600000

800000

De
ns

ity

Epoch: 50, Layer: 15

0.004329 0.002351
not_fixed_gradients

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

De
ns

ity

1e6
Epoch: 50, Layer: 16

0.004903 0.003932
not_fixed_gradients

0

10000

20000

30000

40000

50000

60000

70000

De
ns

ity

Epoch: 50, Layer: 17

0.0102 0.0055
not_fixed_gradients

0.0

0.5

1.0

1.5

2.0

De
ns

ity

1e6
Epoch: 50, Layer: 18

0.001659 0.001392
not_fixed_gradients

0.0

0.5

1.0

1.5

2.0

De
ns

ity

1e6
Epoch: 50, Layer: 19

0.00600 0.00434
not_fixed_gradients

0

250

500

750

1000

1250

1500

1750

De
ns

ity

Epoch: 50, Layer: 20

0.1005 0.1417
not_fixed_gradients

0

100

200

300

400

500

De
ns

ity

Epoch: 100, Layer: 0

0.02198 0.02170
not_fixed_gradients

0

2000

4000

6000

8000

De
ns

ity

Epoch: 100, Layer: 1

0.02986 0.02615
not_fixed_gradients

0

1000

2000

3000

4000

5000

6000

7000

De
ns

ity

Epoch: 100, Layer: 2

0.04831 0.02814
not_fixed_gradients

0

2000

4000

6000

8000

De
ns

ity

Epoch: 100, Layer: 3

0.03835 0.04078
not_fixed_gradients

0

2000

4000

6000

8000

10000

De
ns

ity

Epoch: 100, Layer: 4

0.03395 0.02649
not_fixed_gradients

0

2500

5000

7500

10000

12500

15000

De
ns

ity

Epoch: 100, Layer: 5

0.04931 0.04075
not_fixed_gradients

0

10000

20000

30000

40000

50000

De
ns

ity

Epoch: 100, Layer: 6

0.0334 0.0348
not_fixed_gradients

0

250

500

750

1000

1250

1500

1750

De
ns

ity

Epoch: 100, Layer: 7

0.05231 0.04288
not_fixed_gradients

0

10000

20000

30000

40000

50000

De
ns

ity

Epoch: 100, Layer: 8

0.03565 0.03689
not_fixed_gradients

0

10000

20000

30000

40000

50000

De
ns

ity

Epoch: 100, Layer: 9

0.04035 0.03553
not_fixed_gradients

0

20000

40000

60000

80000

100000

120000

140000

De
ns

ity

Epoch: 100, Layer: 10

0.03397 0.05430
not_fixed_gradients

0

100000

200000

300000

400000

De
ns

ity

Epoch: 100, Layer: 11

0.03184 0.03739
not_fixed_gradients

0

2500

5000

7500

10000

12500

15000

De
ns

ity

Epoch: 100, Layer: 12

0.02048 0.02437
not_fixed_gradients

0

100000

200000

300000

400000

De
ns

ity

Epoch: 100, Layer: 13

0.01706 0.01141
not_fixed_gradients

0

50000

100000

150000

200000

250000

300000

350000

De
ns

ity

Epoch: 100, Layer: 14

0.00430 0.00594
not_fixed_gradients

0

100000

200000

300000

400000

500000

600000

700000

De
ns

ity

Epoch: 100, Layer: 15

0.001390 0.001464
not_fixed_gradients

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75

De
ns

ity

1e6
Epoch: 100, Layer: 16

0.001668 0.001045
not_fixed_gradients

0

10000

20000

30000

40000

50000

60000

De
ns

ity

Epoch: 100, Layer: 17

0.002685 0.002784
not_fixed_gradients

0.0

0.5

1.0

1.5

2.0

De
ns

ity

1e6
Epoch: 100, Layer: 18

0.000709 0.000603
not_fixed_gradients

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75

De
ns

ity

1e6
Epoch: 100, Layer: 19

0.002824 0.002157
not_fixed_gradients

0

250

500

750

1000

1250

1500

1750

De
ns

ity

Epoch: 100, Layer: 20

0.3679 0.1844
not_fixed_gradients

0

100

200

300

400

500

600

De
ns

ity

Epoch: 150, Layer: 0

0.1266 0.0924
not_fixed_gradients

0

2000

4000

6000

8000

10000

12000

14000

De
ns

ity

Epoch: 150, Layer: 1

0.1095 0.0846
not_fixed_gradients

0

2000

4000

6000

8000

10000

De
ns

ity

Epoch: 150, Layer: 2

0.1018 0.0833
not_fixed_gradients

0

2000

4000

6000

8000

10000

De
ns

ity

Epoch: 150, Layer: 3

0.1870 0.1385
not_fixed_gradients

0

2000

4000

6000

8000

10000

12000

14000

De
ns

ity

Epoch: 150, Layer: 4

0.1053 0.0970
not_fixed_gradients

0

5000

10000

15000

20000

De
ns

ity

Epoch: 150, Layer: 5

0.2772 0.2416
not_fixed_gradients

0

20000

40000

60000

80000

De
ns

ity

Epoch: 150, Layer: 6

0.1637 0.1220
not_fixed_gradients

0

500

1000

1500

2000

2500

De
ns

ity

Epoch: 150, Layer: 7

0.2521 0.3320
not_fixed_gradients

0

20000

40000

60000

80000

De
ns

ity

Epoch: 150, Layer: 8

0.1543 0.2087
not_fixed_gradients

0

20000

40000

60000

80000

De
ns

ity

Epoch: 150, Layer: 9

0.0851 0.0906
not_fixed_gradients

0
20000
40000
60000
80000

100000
120000
140000

De
ns

ity

Epoch: 150, Layer: 10

0.1043 0.1045
not_fixed_gradients

0
50000

100000
150000
200000
250000
300000
350000

De
ns

ity

Epoch: 150, Layer: 11

0.0516 0.0866
not_fixed_gradients

0
2500
5000
7500

10000
12500
15000
17500

De
ns

ity

Epoch: 150, Layer: 12

0.0686 0.0686
not_fixed_gradients

0

50000

100000

150000

200000

250000

300000

350000

De
ns

ity

Epoch: 150, Layer: 13

0.0434 0.0574
not_fixed_gradients

0

100000

200000

300000

400000

De
ns

ity

Epoch: 150, Layer: 14

0.01853 0.01166
not_fixed_gradients

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity

1e6
Epoch: 150, Layer: 15

0.005430 0.002964
not_fixed_gradients

0.0

0.5

1.0

1.5

2.0

De
ns

ity

1e6
Epoch: 150, Layer: 16

0.006114 0.003799
not_fixed_gradients

0

20000

40000

60000

80000

De
ns

ity

Epoch: 150, Layer: 17

0.00828 0.00861
not_fixed_gradients

0.0

0.5

1.0

1.5

2.0

De
ns

ity

1e6
Epoch: 150, Layer: 18

0.001321 0.002073
not_fixed_gradients

0.0

0.5

1.0

1.5

2.0

De
ns

ity

1e6
Epoch: 150, Layer: 19

0.00808 0.00478
not_fixed_gradients

0

250

500

750

1000

1250

1500

1750

De
ns

ity

Epoch: 150, Layer: 20

0.1620 0.1952
not_fixed_gradients

0

100

200

300

400

500

600

700

De
ns

ity

Epoch: 200, Layer: 0

0.0579 0.0567
not_fixed_gradients

0

2500

5000

7500

10000

12500

15000

17500

De
ns

ity

Epoch: 200, Layer: 1

0.0688 0.0603
not_fixed_gradients

0

2000

4000

6000

8000

10000

12000

14000

De
ns

ity

Epoch: 200, Layer: 2

0.0687 0.0557
not_fixed_gradients

0

2500

5000

7500

10000

12500

15000

De
ns

ity

Epoch: 200, Layer: 3

0.0657 0.0477
not_fixed_gradients

0

2500

5000

7500

10000

12500

15000

De
ns

ity

Epoch: 200, Layer: 4

0.04798 0.04307
not_fixed_gradients

0

5000

10000

15000

20000

25000

30000

De
ns

ity

Epoch: 200, Layer: 5

0.1157 0.1214
not_fixed_gradients

0

20000

40000

60000

80000

De
ns

ity

Epoch: 200, Layer: 6

0.0570 0.0774
not_fixed_gradients

0

500

1000

1500

2000

2500

3000

3500

De
ns

ity

Epoch: 200, Layer: 7

0.1371 0.1185
not_fixed_gradients

0

20000

40000

60000

80000

De
ns

ity

Epoch: 200, Layer: 8

0.0937 0.0884
not_fixed_gradients

0

20000

40000

60000

80000

De
ns

ity

Epoch: 200, Layer: 9

0.0553 0.0573
not_fixed_gradients

0

25000

50000

75000

100000

125000

150000

175000

De
ns

ity

Epoch: 200, Layer: 10

0.0623 0.1085
not_fixed_gradients

0

100000

200000

300000

400000

500000

De
ns

ity

Epoch: 200, Layer: 11

0.0482 0.0629
not_fixed_gradients

0

5000

10000

15000

20000

De
ns

ity

Epoch: 200, Layer: 12

0.0499 0.0524
not_fixed_gradients

0

100000

200000

300000

400000

500000

De
ns

ity

Epoch: 200, Layer: 13

0.02617 0.02184
not_fixed_gradients

0

100000

200000

300000

400000

500000

De
ns

ity

Epoch: 200, Layer: 14

0.02388 0.01658
not_fixed_gradients

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity

1e6
Epoch: 200, Layer: 15

0.00699 0.00510
not_fixed_gradients

0.0

0.5

1.0

1.5

2.0

De
ns

ity

1e6
Epoch: 200, Layer: 16

0.006424 0.003259
not_fixed_gradients

0

20000

40000

60000

80000

100000

De
ns

ity

Epoch: 200, Layer: 17

0.01350 0.00845
not_fixed_gradients

0.0

0.5

1.0

1.5

2.0

De
ns

ity

1e6
Epoch: 200, Layer: 18

0.001666 0.001178
not_fixed_gradients

0.0

0.5

1.0

1.5

2.0

De
ns

ity

1e6
Epoch: 200, Layer: 19

0.01069 0.00434
not_fixed_gradients

0

1000

2000

3000

4000

De
ns

ity

Epoch: 200, Layer: 20

0.1256 0.1740
not_fixed_gradients

0

200

400

600

800

De
ns

ity

Epoch: 250, Layer: 0

0.0552 0.0466
not_fixed_gradients

0

5000

10000

15000

20000

De
ns

ity

Epoch: 250, Layer: 1

0.04392 0.04381
not_fixed_gradients

0

5000

10000

15000

20000

De
ns

ity

Epoch: 250, Layer: 2

0.0760 0.0586
not_fixed_gradients

0

5000

10000

15000

20000

De
ns

ity

Epoch: 250, Layer: 3

0.0549 0.0629
not_fixed_gradients

0

5000

10000

15000

20000

De
ns

ity

Epoch: 250, Layer: 4

0.0627 0.0830
not_fixed_gradients

0

10000

20000

30000

40000

De
ns

ity

Epoch: 250, Layer: 5

0.0743 0.1394
not_fixed_gradients

0

20000

40000

60000

80000

100000

De
ns

ity

Epoch: 250, Layer: 6

0.0804 0.0736
not_fixed_gradients

0

1000

2000

3000

4000

5000

De
ns

ity

Epoch: 250, Layer: 7

0.1095 0.1150
not_fixed_gradients

0

20000

40000

60000

80000

100000

De
ns

ity

Epoch: 250, Layer: 8

0.0777 0.1482
not_fixed_gradients

0

20000

40000

60000

80000

100000

120000

De
ns

ity

Epoch: 250, Layer: 9

0.0610 0.0473
not_fixed_gradients

0

50000

100000

150000

200000

250000

De
ns

ity

Epoch: 250, Layer: 10

0.0642 0.0707
not_fixed_gradients

0

100000

200000

300000

400000

500000

De
ns

ity

Epoch: 250, Layer: 11

0.0769 0.0701
not_fixed_gradients

0

5000

10000

15000

20000

25000

30000

De
ns

ity

Epoch: 250, Layer: 12

0.05626 0.04169
not_fixed_gradients

0

100000

200000

300000

400000

500000

De
ns

ity

Epoch: 250, Layer: 13

0.03691 0.01666
not_fixed_gradients

0

100000

200000

300000

400000

500000

De
ns

ity

Epoch: 250, Layer: 14

0.00966 0.00879
not_fixed_gradients

0.0

0.2

0.4

0.6

0.8

1.0

1.2

De
ns

ity

1e6
Epoch: 250, Layer: 15

0.004480 0.003233
not_fixed_gradients

0.0

0.5

1.0

1.5

2.0

De
ns

ity

1e6
Epoch: 250, Layer: 16

0.003491 0.002792
not_fixed_gradients

0

20000

40000

60000

80000

100000

120000

De
ns

ity

Epoch: 250, Layer: 17

0.00604 0.01005
not_fixed_gradients

0.0

0.5

1.0

1.5

2.0

De
ns

ity

1e6
Epoch: 250, Layer: 18

0.001085 0.002269
not_fixed_gradients

0.0

0.5

1.0

1.5

2.0

De
ns

ity

1e6
Epoch: 250, Layer: 19

0.006343 0.002128
not_fixed_gradients

0

1000

2000

3000

4000

De
ns

ity

Epoch: 250, Layer: 20

Weights distribution of each layer

(b) Not Fixed Gradients Distribution

TABLE 5.2: Comparison of fixed and not fixed distributions of gradients as they change over time with each epoch for each of the different layers.

5.4. Experiments and Results 93

To gain further insights into the behaviour of COF-PWFN during training, we analyse

the distributions of gradients and weights for both fixed and not-fixed parameters

across different layers and epochs. Figure 5.2 presents a comparison of the fixed and

not-fixed distributions of gradients, whilst Figure 5.3 illustrates the corresponding

distributions for weights. These visualisations reveal several interesting patterns.

Firstly, the gradients of fixed parameters build up, first with just a zero cluster and then

adding powers-of-two before the outliers. We can see additionally that the last and first

layers follow a very different pattern to clustering to the others, demonstrating why

prior works have opted to leave these two layers unquantised. What works in

quantising middle layers requires a different set-up for the first and last layers.

We can obtain gradient information for fixed weights because during inference, gradient

calculations are performed for all weights, both fixed and not fixed. Subsequently, we

mask the gradients of fixed weights to zero. Examining the gradient dynamics in Figure

5.2, we observe that once fixed, the gradient pressure on these weights remains small.

This suggests that the clustered weights are in ’good positions’ and do not require

adjustment to reduce the loss. However, as we progress through epochs, some outliers

emerge in the fixed weight gradients. These outliers indicate some pressure and might

point to a potential improvement: allowing certain weights to depart from their cluster

centres if sufficient gradient pressure accumulates.

While computational constraints limit our ability to run extensive experiments in this

study (ResNet-50 was just out of reach due to memory limitations), the results

presented here demonstrate is it indeed possible to compress to ± prior to WFN and

PWFN ± SOTA levels without any drop in performance without the iterative rounds

outlined in PWFN and WFN. Next, we turn to the question of the utility, if any, of the σ

parameters learned in PWFN and COF-PWFN in determining the confidence and

calibration of predictions with this family of models.

94
C

h
ap

te
r

5.
T

o
w

ar
d

s
O

n
-T

h
e-

F
ly

C
lu

st
er

in
g

in
W

ei
g

h
t

F
ix

in
g

N
et

w
o

rk
s

00
fixed_weights

0

250

500

750

1000

1250

1500

1750

De
ns

ity

Epoch: 0, Layer: 0

00
fixed_weights

0

5000

10000

15000

20000

25000

30000

35000

De
ns

ity

Epoch: 0, Layer: 1

00
fixed_weights

0

5000

10000

15000

20000

25000

30000

35000

De
ns

ity

Epoch: 0, Layer: 2

00
fixed_weights

0

5000

10000

15000

20000

25000

30000

35000

De
ns

ity

Epoch: 0, Layer: 3

00
fixed_weights

0

5000

10000

15000

20000

25000

30000

35000

De
ns

ity

Epoch: 0, Layer: 4

00
fixed_weights

0

10000

20000

30000

40000

50000

60000

70000

De
ns

ity

Epoch: 0, Layer: 5

00
fixed_weights

0

20000

40000

60000

80000

100000

120000

140000

De
ns

ity

Epoch: 0, Layer: 6

00
fixed_weights

0

2000

4000

6000

8000

De
ns

ity

Epoch: 0, Layer: 7

00
fixed_weights

0

20000

40000

60000

80000

100000

120000

140000

De
ns

ity

Epoch: 0, Layer: 8

00
fixed_weights

0

20000

40000

60000

80000

100000

120000

140000

De
ns

ity

Epoch: 0, Layer: 9

00
fixed_weights

0

50000

100000

150000

200000

250000

300000

De
ns

ity

Epoch: 0, Layer: 10

00
fixed_weights

0

100000

200000

300000

400000

500000

600000

De
ns

ity

Epoch: 0, Layer: 11

00
fixed_weights

0

5000

10000

15000

20000

25000

30000

De
ns

ity

Epoch: 0, Layer: 12

00
fixed_weights

0

100000

200000

300000

400000

500000

600000

De
ns

ity

Epoch: 0, Layer: 13

00
fixed_weights

0

100000

200000

300000

400000

500000

600000

De
ns

ity

Epoch: 0, Layer: 14

00
fixed_weights

0.0

0.2

0.4

0.6

0.8

1.0

1.2

De
ns

ity

1e6
Epoch: 0, Layer: 15

00
fixed_weights

0.0

0.5

1.0

1.5

2.0

De
ns

ity

1e6
Epoch: 0, Layer: 16

00
fixed_weights

0

20000

40000

60000

80000

100000

120000

De
ns

ity

Epoch: 0, Layer: 17

00
fixed_weights

0.0

0.5

1.0

1.5

2.0

De
ns

ity

1e6
Epoch: 0, Layer: 18

00
fixed_weights

0.0

0.5

1.0

1.5

2.0

De
ns

ity

1e6
Epoch: 0, Layer: 19

00
fixed_weights

0

1000

2000

3000

4000

5000

De
ns

ity

Epoch: 0, Layer: 20

0.003906 0.003906
fixed_weights

0

250

500

750

1000

1250

1500

1750

De
ns

ity

Epoch: 50, Layer: 0

0.003906 0.003906
fixed_weights

0

5000

10000

15000

20000

25000

30000

35000

De
ns

ity

Epoch: 50, Layer: 1

0.003906 0.003906
fixed_weights

0

5000

10000

15000

20000

25000

30000

35000

De
ns

ity

Epoch: 50, Layer: 2

0.003906 0.003906
fixed_weights

0

5000

10000

15000

20000

25000

30000

35000

De
ns

ity

Epoch: 50, Layer: 3

0.003906 0.003906
fixed_weights

0

5000

10000

15000

20000

25000

30000

35000

De
ns

ity

Epoch: 50, Layer: 4

0.003906 0.003906
fixed_weights

0

10000

20000

30000

40000

50000

60000

70000

De
ns

ity

Epoch: 50, Layer: 5

0.003906 0.003906
fixed_weights

0

20000

40000

60000

80000

100000

120000

140000

De
ns

ity

Epoch: 50, Layer: 6

0.003906 0.003906
fixed_weights

0

2000

4000

6000

8000

De
ns

ity

Epoch: 50, Layer: 7

0.003906 0.003906
fixed_weights

0

20000

40000

60000

80000

100000

120000

140000

De
ns

ity

Epoch: 50, Layer: 8

0.003906 0.003906
fixed_weights

0

20000

40000

60000

80000

100000

120000

140000

De
ns

ity

Epoch: 50, Layer: 9

0.003906 0.003906
fixed_weights

0

50000

100000

150000

200000

250000

300000

De
ns

ity

Epoch: 50, Layer: 10

0.003906 0.003906
fixed_weights

0

100000

200000

300000

400000

500000

600000

De
ns

ity

Epoch: 50, Layer: 11

0.003906 0.003906
fixed_weights

0

5000

10000

15000

20000

25000

30000

De
ns

ity

Epoch: 50, Layer: 12

0.003906 0.003906
fixed_weights

0

100000

200000

300000

400000

500000

600000

De
ns

ity

Epoch: 50, Layer: 13

0.003906 0.003906
fixed_weights

0

100000

200000

300000

400000

500000

600000

De
ns

ity

Epoch: 50, Layer: 14

0.003906 0.003906
fixed_weights

0.0

0.2

0.4

0.6

0.8

1.0

1.2

De
ns

ity

1e6
Epoch: 50, Layer: 15

0.000000 0.003906
fixed_weights

0.0

0.5

1.0

1.5

2.0

De
ns

ity

1e6
Epoch: 50, Layer: 16

0.003906 0.003906
fixed_weights

0

20000

40000

60000

80000

100000

120000

De
ns

ity

Epoch: 50, Layer: 17

0.000000 0.003906
fixed_weights

0.0

0.5

1.0

1.5

2.0

De
ns

ity

1e6
Epoch: 50, Layer: 18

0.000000 0.003906
fixed_weights

0.0

0.5

1.0

1.5

2.0

De
ns

ity

1e6
Epoch: 50, Layer: 19

00
fixed_weights

0

1000

2000

3000

4000

5000

De
ns

ity

Epoch: 50, Layer: 20

0.06250 0.03125
fixed_weights

0

250

500

750

1000

1250

1500

De
ns

ity

Epoch: 100, Layer: 0

0.06250 0.03125
fixed_weights

0

5000

10000

15000

20000

25000

30000

35000

De
ns

ity

Epoch: 100, Layer: 1

0.01562 0.03125
fixed_weights

0

5000

10000

15000

20000

25000

30000

35000

De
ns

ity

Epoch: 100, Layer: 2

0.03125 0.03125
fixed_weights

0

5000

10000

15000

20000

25000

30000

35000

De
ns

ity

Epoch: 100, Layer: 3

0.01562 0.01562
fixed_weights

0

5000

10000

15000

20000

25000

30000

35000

De
ns

ity

Epoch: 100, Layer: 4

0.03125 0.03125
fixed_weights

0

10000

20000

30000

40000

50000

60000

70000

De
ns

ity

Epoch: 100, Layer: 5

0.01562 0.01562
fixed_weights

0

20000

40000

60000

80000

100000

120000

140000

De
ns

ity

Epoch: 100, Layer: 6

0.03125 0.03125
fixed_weights

0
1000
2000
3000
4000
5000
6000
7000

De
ns

ity

Epoch: 100, Layer: 7

0.01562 0.03125
fixed_weights

0

20000

40000

60000

80000

100000

120000

140000

De
ns

ity

Epoch: 100, Layer: 8

0.01562 0.03125
fixed_weights

0

20000

40000

60000

80000

100000

120000

140000

De
ns

ity

Epoch: 100, Layer: 9

0.01562 0.01562
fixed_weights

0

50000

100000

150000

200000

250000

De
ns

ity

Epoch: 100, Layer: 10

0.00781 0.01562
fixed_weights

0

100000

200000

300000

400000

500000

De
ns

ity

Epoch: 100, Layer: 11

0.01562 0.01562
fixed_weights

0

5000

10000

15000

20000

25000

30000

De
ns

ity

Epoch: 100, Layer: 12

0.01562 0.01562
fixed_weights

0

100000

200000

300000

400000

500000

600000

De
ns

ity

Epoch: 100, Layer: 13

0.00781 0.00781
fixed_weights

0

100000

200000

300000

400000

500000

600000

De
ns

ity

Epoch: 100, Layer: 14

0.003906 0.003906
fixed_weights

0.0

0.2

0.4

0.6

0.8

1.0

1.2

De
ns

ity

1e6
Epoch: 100, Layer: 15

0.000000 0.007812
fixed_weights

0.0

0.5

1.0

1.5

2.0

De
ns

ity

1e6
Epoch: 100, Layer: 16

0.00781 0.01562
fixed_weights

0

20000

40000

60000

80000

100000

120000

De
ns

ity

Epoch: 100, Layer: 17

0.000000 0.003906
fixed_weights

0.0

0.5

1.0

1.5

2.0

De
ns

ity

1e6
Epoch: 100, Layer: 18

0.000000 0.007812
fixed_weights

0.0

0.5

1.0

1.5

2.0

De
ns

ity

1e6
Epoch: 100, Layer: 19

0.03125 0.03125
fixed_weights

0

1000

2000

3000

4000

5000

De
ns

ity

Epoch: 100, Layer: 20

0.0625 0.1250
fixed_weights

0

200

400

600

800

1000

1200

1400

De
ns

ity

Epoch: 150, Layer: 0

0.06250 0.03125
fixed_weights

0

5000

10000

15000

20000

25000

30000

De
ns

ity

Epoch: 150, Layer: 1

0.03125 0.03125
fixed_weights

0

5000

10000

15000

20000

25000

30000

De
ns

ity

Epoch: 150, Layer: 2

0.03125 0.06250
fixed_weights

0

5000

10000

15000

20000

25000

30000

De
ns

ity

Epoch: 150, Layer: 3

0.01562 0.03125
fixed_weights

0

5000

10000

15000

20000

25000

30000

De
ns

ity

Epoch: 150, Layer: 4

0.03125 0.03125
fixed_weights

0

10000

20000

30000

40000

50000

60000

De
ns

ity

Epoch: 150, Layer: 5

0.01562 0.03125
fixed_weights

0

20000

40000

60000

80000

100000

120000

De
ns

ity

Epoch: 150, Layer: 6

0.03125 0.03125
fixed_weights

0

1000

2000

3000

4000

5000

6000

7000

De
ns

ity

Epoch: 150, Layer: 7

0.01562 0.06250
fixed_weights

0

20000

40000

60000

80000

100000

120000

De
ns

ity

Epoch: 150, Layer: 8

0.01562 0.03125
fixed_weights

0

20000

40000

60000

80000

100000

120000

De
ns

ity

Epoch: 150, Layer: 9

0.01562 0.01562
fixed_weights

0

50000

100000

150000

200000

250000

De
ns

ity

Epoch: 150, Layer: 10

0.01562 0.01562
fixed_weights

0

100000

200000

300000

400000

500000

De
ns

ity

Epoch: 150, Layer: 11

0.01562 0.01562
fixed_weights

0

5000

10000

15000

20000

25000

De
ns

ity

Epoch: 150, Layer: 12

0.01562 0.01562
fixed_weights

0

100000

200000

300000

400000

500000

De
ns

ity

Epoch: 150, Layer: 13

0.01172 0.01562
fixed_weights

0

100000

200000

300000

400000

500000

600000

De
ns

ity

Epoch: 150, Layer: 14

0.00781 0.00781
fixed_weights

0.0

0.2

0.4

0.6

0.8

1.0

1.2

De
ns

ity

1e6
Epoch: 150, Layer: 15

0.00391 0.01172
fixed_weights

0.0

0.5

1.0

1.5

2.0

De
ns

ity

1e6
Epoch: 150, Layer: 16

0.00781 0.01562
fixed_weights

0

20000

40000

60000

80000

100000

De
ns

ity

Epoch: 150, Layer: 17

0.000000 0.003906
fixed_weights

0.0

0.5

1.0

1.5

2.0

De
ns

ity

1e6
Epoch: 150, Layer: 18

0.00000 0.01172
fixed_weights

0.0

0.5

1.0

1.5

2.0

De
ns

ity

1e6
Epoch: 150, Layer: 19

0.0312 0.2500
fixed_weights

0

1000

2000

3000

4000

De
ns

ity

Epoch: 150, Layer: 20

0.0781 0.1250
fixed_weights

0

200

400

600

800

1000

1200

De
ns

ity

Epoch: 200, Layer: 0

0.0625 0.0391
fixed_weights

0

5000

10000

15000

20000

25000

De
ns

ity

Epoch: 200, Layer: 1

0.03125 0.03125
fixed_weights

0

5000

10000

15000

20000

25000

De
ns

ity

Epoch: 200, Layer: 2

0.0391 0.0625
fixed_weights

0

5000

10000

15000

20000

25000

De
ns

ity
Epoch: 200, Layer: 3

0.02734 0.03125
fixed_weights

0

5000

10000

15000

20000

25000

De
ns

ity

Epoch: 200, Layer: 4

0.03125 0.03516
fixed_weights

0

10000

20000

30000

40000

50000

De
ns

ity

Epoch: 200, Layer: 5

0.03516 0.04688
fixed_weights

0

20000

40000

60000

80000

100000

De
ns

ity

Epoch: 200, Layer: 6

0.03906 0.03516
fixed_weights

0

1000

2000

3000

4000

5000

6000

De
ns

ity

Epoch: 200, Layer: 7

0.02344 0.06250
fixed_weights

0

20000

40000

60000

80000

100000

De
ns

ity

Epoch: 200, Layer: 8

0.02734 0.03906
fixed_weights

0

20000

40000

60000

80000

100000

De
ns

ity

Epoch: 200, Layer: 9

0.02344 0.02344
fixed_weights

0

50000

100000

150000

200000

De
ns

ity

Epoch: 200, Layer: 10

0.01562 0.02344
fixed_weights

0

100000

200000

300000

400000

De
ns

ity

Epoch: 200, Layer: 11

0.01953 0.01953
fixed_weights

0

5000

10000

15000

20000

De
ns

ity

Epoch: 200, Layer: 12

0.01562 0.01562
fixed_weights

0

100000

200000

300000

400000

500000

De
ns

ity

Epoch: 200, Layer: 13

0.01562 0.01562
fixed_weights

0

100000

200000

300000

400000

500000

De
ns

ity

Epoch: 200, Layer: 14

0.00781 0.00781
fixed_weights

0.0

0.2

0.4

0.6

0.8

1.0

1.2

De
ns

ity

1e6
Epoch: 200, Layer: 15

0.00391 0.01172
fixed_weights

0.0

0.5

1.0

1.5

2.0

De
ns

ity

1e6
Epoch: 200, Layer: 16

0.01172 0.01953
fixed_weights

0

20000

40000

60000

80000

De
ns

ity

Epoch: 200, Layer: 17

0.000000 0.003906
fixed_weights

0.0

0.5

1.0

1.5

2.0

De
ns

ity

1e6
Epoch: 200, Layer: 18

0.00391 0.01562
fixed_weights

0.0

0.5

1.0

1.5

2.0

De
ns

ity

1e6
Epoch: 200, Layer: 19

0.0469 0.2812
fixed_weights

0

250

500

750

1000

1250

1500

De
ns

ity

Epoch: 200, Layer: 20

0.0781 0.1250
fixed_weights

0

200

400

600

800

1000

1200

De
ns

ity

Epoch: 250, Layer: 0

0.0625 0.0469
fixed_weights

0

5000

10000

15000

20000

De
ns

ity

Epoch: 250, Layer: 1

0.05469 0.03516
fixed_weights

0

5000

10000

15000

20000

De
ns

ity

Epoch: 250, Layer: 2

0.0391 0.0625
fixed_weights

0

5000

10000

15000

20000

De
ns

ity

Epoch: 250, Layer: 3

0.03125 0.03516
fixed_weights

0

5000

10000

15000

20000

De
ns

ity

Epoch: 250, Layer: 4

0.03125 0.03516
fixed_weights

0

10000

20000

30000

40000

De
ns

ity

Epoch: 250, Layer: 5

0.03516 0.04688
fixed_weights

0

20000

40000

60000

80000

De
ns

ity

Epoch: 250, Layer: 6

0.0391 0.0625
fixed_weights

0

1000

2000

3000

4000

De
ns

ity

Epoch: 250, Layer: 7

0.03125 0.06250
fixed_weights

0
10000
20000
30000
40000
50000
60000
70000

De
ns

ity

Epoch: 250, Layer: 8

0.02734 0.04688
fixed_weights

0
10000
20000
30000
40000
50000
60000
70000

De
ns

ity

Epoch: 250, Layer: 9

0.02344 0.02734
fixed_weights

0
20000
40000
60000
80000

100000
120000
140000

De
ns

ity

Epoch: 250, Layer: 10

0.01953 0.02734
fixed_weights

0

50000

100000

150000

200000

250000

300000

350000

De
ns

ity

Epoch: 250, Layer: 11

0.01953 0.02344
fixed_weights

0

2500

5000

7500

10000

12500

15000

De
ns

ity

Epoch: 250, Layer: 12

0.01562 0.01562
fixed_weights

0

100000

200000

300000

400000

De
ns

ity

Epoch: 250, Layer: 13

0.01562 0.01562
fixed_weights

0

100000

200000

300000

400000

500000

De
ns

ity

Epoch: 250, Layer: 14

0.00781 0.00781
fixed_weights

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity

1e6
Epoch: 250, Layer: 15

0.00391 0.01562
fixed_weights

0.0

0.5

1.0

1.5

2.0

De
ns

ity

1e6
Epoch: 250, Layer: 16

0.01172 0.02344
fixed_weights

0

20000

40000

60000

80000

De
ns

ity

Epoch: 250, Layer: 17

0.00391 0.00781
fixed_weights

0.0

0.5

1.0

1.5

2.0

De
ns

ity

1e6
Epoch: 250, Layer: 18

0.00391 0.01562
fixed_weights

0.0

0.5

1.0

1.5

2.0

De
ns

ity

1e6
Epoch: 250, Layer: 19

0.0469 0.2812
fixed_weights

0

200

400

600

800

1000

De
ns

ity

Epoch: 250, Layer: 20

Weights distribution of each layer

(a) Fixed Weights Distribution

0.1473 0.1378
not_fixed_weights

0

20

40

60

80

100

120

140

De
ns

ity

Epoch: 0, Layer: 0

0.0654 0.0464
not_fixed_weights

0

1000

2000

3000

4000

5000

De
ns

ity

Epoch: 0, Layer: 1

0.04925 0.04045
not_fixed_weights

0

500

1000

1500

2000

De
ns

ity

Epoch: 0, Layer: 2

0.04925 0.05074
not_fixed_weights

0

500

1000

1500

2000

2500

De
ns

ity

Epoch: 0, Layer: 3

0.02963 0.03111
not_fixed_weights

0

250

500

750

1000

1250

1500

1750

De
ns

ity

Epoch: 0, Layer: 4

0.0294 0.0340
not_fixed_weights

0

500

1000

1500

2000

2500

3000

De
ns

ity

Epoch: 0, Layer: 5

0.03359 0.04540
not_fixed_weights

0

2000

4000

6000

8000

De
ns

ity

Epoch: 0, Layer: 6

0.0450 0.0577
not_fixed_weights

0

50

100

150

200

250

300

350

De
ns

ity

Epoch: 0, Layer: 7

0.02475 0.05028
not_fixed_weights

0

2000

4000

6000

8000

De
ns

ity

Epoch: 0, Layer: 8

0.02252 0.03870
not_fixed_weights

0

2000

4000

6000

8000

De
ns

ity

Epoch: 0, Layer: 9

0.01797 0.02790
not_fixed_weights

0

2500

5000

7500

10000

12500

15000

De
ns

ity

Epoch: 0, Layer: 10

0.01513 0.02409
not_fixed_weights

0

10000

20000

30000

40000

De
ns

ity

Epoch: 0, Layer: 11

0.02263 0.02329
not_fixed_weights

0

250

500

750

1000

1250

1500

1750

De
ns

ity

Epoch: 0, Layer: 12

0.01483 0.01751
not_fixed_weights

0

10000

20000

30000

40000

50000

De
ns

ity

Epoch: 0, Layer: 13

0.01393 0.01306
not_fixed_weights

0

20000

40000

60000

80000

De
ns

ity

Epoch: 0, Layer: 14

0.00561 0.00521
not_fixed_weights

0
25000
50000
75000

100000
125000
150000
175000

De
ns

ity

Epoch: 0, Layer: 15

0.00284 0.00895
not_fixed_weights

0
100000
200000
300000
400000
500000
600000
700000

De
ns

ity

Epoch: 0, Layer: 16

0.00751 0.01616
not_fixed_weights

0

1000

2000

3000

4000

5000

6000

De
ns

ity

Epoch: 0, Layer: 17

0.001223 0.003831
not_fixed_weights

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity

1e6
Epoch: 0, Layer: 18

0.00261 0.00955
not_fixed_weights

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity

1e6
Epoch: 0, Layer: 19

0.0394 0.2658
not_fixed_weights

0

200

400

600

800

1000

De
ns

ity

Epoch: 0, Layer: 20

0.1472 0.1370
not_fixed_weights

0

50

100

150

200

250

De
ns

ity

Epoch: 50, Layer: 0

0.0671 0.0470
not_fixed_weights

0

1000

2000

3000

4000

5000

6000

De
ns

ity

Epoch: 50, Layer: 1

0.05066 0.04237
not_fixed_weights

0

500

1000

1500

2000

2500

3000

De
ns

ity

Epoch: 50, Layer: 2

0.0506 0.0518
not_fixed_weights

0
500

1000
1500
2000
2500
3000
3500

De
ns

ity

Epoch: 50, Layer: 3

0.03090 0.03212
not_fixed_weights

0

500

1000

1500

2000

2500

3000

De
ns

ity

Epoch: 50, Layer: 4

0.03073 0.03403
not_fixed_weights

0

1000

2000

3000

4000

5000

De
ns

ity

Epoch: 50, Layer: 5

0.03424 0.04774
not_fixed_weights

0

2000

4000

6000

8000

10000

12000

14000

De
ns

ity

Epoch: 50, Layer: 6

0.0478 0.0560
not_fixed_weights

0

100

200

300

400

500

600

700

De
ns

ity

Epoch: 50, Layer: 7

0.02567 0.05100
not_fixed_weights

0
2000
4000
6000
8000

10000
12000
14000

De
ns

ity
Epoch: 50, Layer: 8

0.02336 0.03826
not_fixed_weights

0

2500

5000

7500

10000

12500

15000

De
ns

ity

Epoch: 50, Layer: 9

0.02065 0.02818
not_fixed_weights

0

5000

10000

15000

20000

25000

30000

De
ns

ity

Epoch: 50, Layer: 10

0.01567 0.02456
not_fixed_weights

0

20000

40000

60000

80000

De
ns

ity

Epoch: 50, Layer: 11

0.02333 0.02258
not_fixed_weights

0

500

1000

1500

2000

2500

3000

3500

De
ns

ity

Epoch: 50, Layer: 12

0.01742 0.01764
not_fixed_weights

0

20000

40000

60000

80000

De
ns

ity

Epoch: 50, Layer: 13

0.01880 0.01575
not_fixed_weights

0

20000

40000

60000

80000

100000

120000

De
ns

ity

Epoch: 50, Layer: 14

0.00684 0.00644
not_fixed_weights

0
50000

100000
150000
200000
250000
300000
350000

De
ns

ity

Epoch: 50, Layer: 15

0.00321 0.01102
not_fixed_weights

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity

1e6
Epoch: 50, Layer: 16

0.00897 0.01929
not_fixed_weights

0

2000

4000

6000

8000

10000

12000

De
ns

ity

Epoch: 50, Layer: 17

0.001625 0.004422
not_fixed_weights

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

De
ns

ity

1e6
Epoch: 50, Layer: 18

0.00288 0.01235
not_fixed_weights

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

De
ns

ity

1e6
Epoch: 50, Layer: 19

0.0423 0.3090
not_fixed_weights

0

200

400

600

800

1000

De
ns

ity

Epoch: 50, Layer: 20

0.1500 0.1455
not_fixed_weights

0

100

200

300

400

De
ns

ity

Epoch: 100, Layer: 0

0.0684 0.0467
not_fixed_weights

0

2000

4000

6000

8000

De
ns

ity

Epoch: 100, Layer: 1

0.05287 0.03962
not_fixed_weights

0

1000

2000

3000

4000

5000

6000

De
ns

ity

Epoch: 100, Layer: 2

0.0520 0.0535
not_fixed_weights

0

1000

2000

3000

4000

5000

6000

De
ns

ity

Epoch: 100, Layer: 3

0.0304 0.0342
not_fixed_weights

0

1000

2000

3000

4000

5000

6000

De
ns

ity

Epoch: 100, Layer: 4

0.02726 0.03781
not_fixed_weights

0

2000

4000

6000

8000

10000

De
ns

ity

Epoch: 100, Layer: 5

0.03426 0.04874
not_fixed_weights

0

5000

10000

15000

20000

25000

De
ns

ity

Epoch: 100, Layer: 6

0.0472 0.0575
not_fixed_weights

0

200

400

600

800

1000

1200

1400

De
ns

ity

Epoch: 100, Layer: 7

0.02767 0.05095
not_fixed_weights

0

5000

10000

15000

20000

25000

30000

De
ns

ity

Epoch: 100, Layer: 8

0.02528 0.03947
not_fixed_weights

0

5000

10000

15000

20000

25000

30000

De
ns

ity

Epoch: 100, Layer: 9

0.02082 0.02844
not_fixed_weights

0

10000

20000

30000

40000

50000

60000

De
ns

ity

Epoch: 100, Layer: 10

0.01582 0.02544
not_fixed_weights

0

20000

40000

60000

80000

100000

120000

140000

De
ns

ity

Epoch: 100, Layer: 11

0.02316 0.02283
not_fixed_weights

0

1000

2000

3000

4000

5000

6000

7000

De
ns

ity

Epoch: 100, Layer: 12

0.01905 0.01697
not_fixed_weights

0

20000

40000

60000

80000

100000

120000

De
ns

ity

Epoch: 100, Layer: 13

0.02083 0.01668
not_fixed_weights

0

20000

40000

60000

80000

100000

120000

140000

De
ns

ity

Epoch: 100, Layer: 14

0.00755 0.00718
not_fixed_weights

0

100000

200000

300000

400000

De
ns

ity

Epoch: 100, Layer: 15

0.00344 0.01188
not_fixed_weights

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity

1e6
Epoch: 100, Layer: 16

0.00958 0.02055
not_fixed_weights

0
2500
5000
7500

10000
12500
15000
17500

De
ns

ity

Epoch: 100, Layer: 17

0.001789 0.004642
not_fixed_weights

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

De
ns

ity

1e6
Epoch: 100, Layer: 18

0.00296 0.01341
not_fixed_weights

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

De
ns

ity

1e6
Epoch: 100, Layer: 19

0.0435 0.3269
not_fixed_weights

0

200

400

600

800

1000

De
ns

ity

Epoch: 100, Layer: 20

0.1541 0.1526
not_fixed_weights

0

100

200

300

400

500

De
ns

ity

Epoch: 150, Layer: 0

0.0700 0.0478
not_fixed_weights

0

2000

4000

6000

8000

10000

12000

De
ns

ity

Epoch: 150, Layer: 1

0.05328 0.03936
not_fixed_weights

0

2000

4000

6000

8000

De
ns

ity

Epoch: 150, Layer: 2

0.0543 0.0496
not_fixed_weights

0

2000

4000

6000

8000

10000

De
ns

ity

Epoch: 150, Layer: 3

0.03200 0.03438
not_fixed_weights

0

2000

4000

6000

8000

10000

De
ns

ity

Epoch: 150, Layer: 4

0.02824 0.03915
not_fixed_weights

0
2500
5000
7500

10000
12500
15000
17500

De
ns

ity

Epoch: 150, Layer: 5

0.03499 0.05034
not_fixed_weights

0

10000

20000

30000

40000

De
ns

ity

Epoch: 150, Layer: 6

0.0485 0.0574
not_fixed_weights

0

500

1000

1500

2000

De
ns

ity

Epoch: 150, Layer: 7

0.02940 0.04152
not_fixed_weights

0

10000

20000

30000

40000

50000

De
ns

ity

Epoch: 150, Layer: 8

0.0255 0.0422
not_fixed_weights

0

10000

20000

30000

40000

50000

De
ns

ity

Epoch: 150, Layer: 9

0.02253 0.02981
not_fixed_weights

0

20000

40000

60000

80000

100000

De
ns

ity

Epoch: 150, Layer: 10

0.01715 0.02628
not_fixed_weights

0

50000

100000

150000

200000
De

ns
ity

Epoch: 150, Layer: 11

0.02371 0.02378
not_fixed_weights

0

2000

4000

6000

8000

10000

12000

De
ns

ity

Epoch: 150, Layer: 12

0.02086 0.01735
not_fixed_weights

0

50000

100000

150000

200000

De
ns

ity

Epoch: 150, Layer: 13

0.02285 0.01741
not_fixed_weights

0

50000

100000

150000

200000

250000

De
ns

ity

Epoch: 150, Layer: 14

0.00772 0.00708
not_fixed_weights

0

200000

400000

600000

800000

De
ns

ity

Epoch: 150, Layer: 15

0.00332 0.01270
not_fixed_weights

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75

De
ns

ity

1e6
Epoch: 150, Layer: 16

0.01007 0.02133
not_fixed_weights

0

10000

20000

30000

40000

De
ns

ity

Epoch: 150, Layer: 17

0.001919 0.005102
not_fixed_weights

0.0

0.5

1.0

1.5

2.0

De
ns

ity

1e6
Epoch: 150, Layer: 18

0.00303 0.01431
not_fixed_weights

0.0

0.5

1.0

1.5

2.0

De
ns

ity

1e6
Epoch: 150, Layer: 19

0.0444 0.3399
not_fixed_weights

0

200

400

600

800

1000

De
ns

ity

Epoch: 150, Layer: 20

0.1581 0.1581
not_fixed_weights

0

100

200

300

400

500

600

700

De
ns

ity

Epoch: 200, Layer: 0

0.0720 0.0463
not_fixed_weights

0

2500

5000

7500

10000

12500

15000

De
ns

ity

Epoch: 200, Layer: 1

0.05372 0.04232
not_fixed_weights

0

2000

4000

6000

8000

10000

12000

14000

De
ns

ity

Epoch: 200, Layer: 2

0.0549 0.0532
not_fixed_weights

0
2000
4000
6000
8000

10000
12000
14000

De
ns

ity

Epoch: 200, Layer: 3

0.03162 0.03575
not_fixed_weights

0
2000
4000
6000
8000

10000
12000
14000

De
ns

ity

Epoch: 200, Layer: 4

0.02899 0.03992
not_fixed_weights

0

5000

10000

15000

20000

25000

30000

De
ns

ity

Epoch: 200, Layer: 5

0.02856 0.05273
not_fixed_weights

0

10000

20000

30000

40000

50000

60000

70000

De
ns

ity

Epoch: 200, Layer: 6

0.0479 0.0577
not_fixed_weights

0

500

1000

1500

2000

2500

3000

3500

De
ns

ity

Epoch: 200, Layer: 7

0.03061 0.04111
not_fixed_weights

0

10000

20000

30000

40000

50000

60000

70000

De
ns

ity

Epoch: 200, Layer: 8

0.02428 0.04412
not_fixed_weights

0

10000

20000

30000

40000

50000

60000

70000

De
ns

ity

Epoch: 200, Layer: 9

0.02228 0.03138
not_fixed_weights

0

25000

50000

75000

100000

125000

150000

De
ns

ity

Epoch: 200, Layer: 10

0.01767 0.02775
not_fixed_weights

0

50000

100000

150000

200000

250000

300000

350000

De
ns

ity

Epoch: 200, Layer: 11

0.02440 0.02437
not_fixed_weights

0

5000

10000

15000

20000

De
ns

ity

Epoch: 200, Layer: 12

0.02390 0.01518
not_fixed_weights

0

100000

200000

300000

400000

De
ns

ity

Epoch: 200, Layer: 13

0.02427 0.01876
not_fixed_weights

0

100000

200000

300000

400000

De
ns

ity

Epoch: 200, Layer: 14

0.00801 0.00741
not_fixed_weights

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity

1e6
Epoch: 200, Layer: 15

0.00328 0.01381
not_fixed_weights

0.0

0.5

1.0

1.5

2.0

De
ns

ity

1e6
Epoch: 200, Layer: 16

0.0106 0.0220
not_fixed_weights

0

20000

40000

60000

80000

De
ns

ity

Epoch: 200, Layer: 17

0.002060 0.006012
not_fixed_weights

0.0

0.5

1.0

1.5

2.0

De
ns

ity

1e6
Epoch: 200, Layer: 18

0.00251 0.01416
not_fixed_weights

0.0

0.5

1.0

1.5

2.0

De
ns

ity

1e6
Epoch: 200, Layer: 19

0.0447 0.3508
not_fixed_weights

0

500

1000

1500

2000

2500

3000

3500

De
ns

ity

Epoch: 200, Layer: 20

0.1630 0.1613
not_fixed_weights

0

200

400

600

800

De
ns

ity

Epoch: 250, Layer: 0

0.0733 0.0484
not_fixed_weights

0

5000

10000

15000

20000

De
ns

ity

Epoch: 250, Layer: 1

0.05206 0.04241
not_fixed_weights

0

5000

10000

15000

20000

De
ns

ity

Epoch: 250, Layer: 2

0.0556 0.0543
not_fixed_weights

0

5000

10000

15000

20000

De
ns

ity

Epoch: 250, Layer: 3

0.03364 0.03683
not_fixed_weights

0

5000

10000

15000

20000

De
ns

ity

Epoch: 250, Layer: 4

0.02924 0.04274
not_fixed_weights

0

10000

20000

30000

40000

De
ns

ity

Epoch: 250, Layer: 5

0.03040 0.04043
not_fixed_weights

0

20000

40000

60000

80000

100000

De
ns

ity

Epoch: 250, Layer: 6

0.0481 0.0580
not_fixed_weights

0

1000

2000

3000

4000

De
ns

ity

Epoch: 250, Layer: 7

0.02655 0.04085
not_fixed_weights

0

20000

40000

60000

80000

100000

De
ns

ity

Epoch: 250, Layer: 8

0.02379 0.03476
not_fixed_weights

0

20000

40000

60000

80000

100000

De
ns

ity

Epoch: 250, Layer: 9

0.01630 0.03327
not_fixed_weights

0

50000

100000

150000

200000

De
ns

ity

Epoch: 250, Layer: 10

0.01888 0.02899
not_fixed_weights

0

100000

200000

300000

400000

500000

De
ns

ity

Epoch: 250, Layer: 11

0.02555 0.02300
not_fixed_weights

0

5000

10000

15000

20000

25000

De
ns

ity

Epoch: 250, Layer: 12

0.02791 0.01597
not_fixed_weights

0

100000

200000

300000

400000

500000

De
ns

ity

Epoch: 250, Layer: 13

0.02663 0.02045
not_fixed_weights

0

100000

200000

300000

400000

500000

De
ns

ity

Epoch: 250, Layer: 14

0.00658 0.00751
not_fixed_weights

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity

1e6
Epoch: 250, Layer: 15

0.002871 0.006822
not_fixed_weights

0.0

0.5

1.0

1.5

2.0

De
ns

ity

1e6
Epoch: 250, Layer: 16

0.01007 0.01794
not_fixed_weights

0

20000

40000

60000

80000

100000

De
ns

ity

Epoch: 250, Layer: 17

0.002416 0.002903
not_fixed_weights

0.0

0.5

1.0

1.5

2.0

De
ns

ity

1e6
Epoch: 250, Layer: 18

0.00248 0.01460
not_fixed_weights

0.0

0.5

1.0

1.5

2.0

De
ns

ity

1e6
Epoch: 250, Layer: 19

0.0378 0.3615
not_fixed_weights

0

1000

2000

3000

4000

De
ns

ity

Epoch: 250, Layer: 20

Weights distribution of each layer

(b) Not Fixed Weights Distribution

TABLE 5.3: Comparison of fixed and not fixed distributions of weights as they change over time with each epoch for each of the different layers.

95

Chapter 6

Uncertainty Estimations of BWFN

Thus far in this thesis, we have proposed three novel techniques for neural network

compression, two of which utilised a stochastic reformulation of pre-trained networks

into Bayesian Neural Networks (BNNs). The weight distributions of the BNNs were

able to be used as signal for the downstream compression algorithm, and was shown to

be a boon for increasing the accuracy through ensemble sampling. A yet unexplored

avenue pertains to the potential of the PWFN and COF-PWFN reformulations for

uncertainty estimations.

In this chapter, we turn to this question as we investigate the capability of the

uncertainty distributions learned by these models to serve as reliable estimations of

uncertainty in neural networks. Before we begin our jaunt into some experiments to test

the utility of the learned BNNs, let’s motivate our study and look at why uncertainty

estimations are so useful and where current research directions have been focussed.

6.0.1 The Landscape of Uncertainty Estimations

The essence of uncertainty estimation in neural networks can be distilled into several

critical considerations:

• Safety Critical: Neural networks are often used in tasks where decision-making is

critical, such as autonomous driving or medical diagnosis [McAllister et al., 2017,

Begoli et al., 2019, Muhammad et al., 2020, Jungo et al., 2018]. Uncertainty

estimation provides valuable information about the confidence or reliability of the

model’s predictions [Gal and Ghahramani, 2016]. This information can be used to

make more informed decisions or trigger appropriate actions when uncertainty is

high [Guo et al., 2017]. Moreover, in scenarios where neural networks collaborate

96 Chapter 6. Uncertainty Estimations of BWFN

with humans, expressing uncertainty can improve trust and transparency [Ribeiro

et al., 2016].

• Distribution detection: Neural networks are typically trained on a specific

distribution of data. However, during deployment, they may encounter inputs

that differ significantly from the training data [Hendrycks and Gimpel, 2016].

Uncertainty estimation can help identify such out-of-distribution samples by

detecting high uncertainty levels [Lakshminarayanan et al., 2017]. This is crucial

for avoiding erroneous predictions or flagging inputs that fall outside the model’s

intended use case [Guo et al., 2017].

• Model prediction trust: The trustworthiness of a neural network relies heavily on

its ability to provide accurate confidence estimates that align with its true

accuracy [Guo et al., 2017]. Model calibration is crucial because it ensures that the

predicted probabilities or confidence scores genuinely reflect the true likelihood of

correctness [Niculescu-Mizil and Caruana, 2005]. In many real-world scenarios,

especially where decisions have significant consequences, relying on

miscalibrated predictions can lead to suboptimal or even harmful decisions [Platt

et al., 1999]. Therefore, proper calibration is essential for ensuring reliable and

interpretable results.

• Active learning and data acquisition: Uncertainty estimation is fundamental in

guiding the active learning process, helping in the selection of informative or

challenging samples for labeling [Settles, 2011]. By recognising instances with

high uncertainty, neural networks can prioritize acquiring labels for those samples

that are expected to provide the most significant improvement to model

performance [Gal et al., 2017]. This approach ensures not only an efficient labeling

process but also an optimized use of resources and an enhancement in overall

model accuracy with potentially fewer labeled instances [Roy and McCallum,

2001].

6.0.1.1 Uncertainty Estimation in Deep Learning

The field of DNNs has witnessed significant advancements in uncertainty

estimation. These developments span a range of methodologies, each addressing

the complexities of uncertainty in unique ways.

Bayesian Framework: The Bayesian framework remains foundational in this

realm. As we have seen, BNNs treat network weights as probability distributions,

offering a comprehensive framework for uncertainty estimation [Blundell et al.,

2015]. Complementing this, Bayesian Dropout, as articulated by Gal and

Ghahramani, interprets dropout layers in a Bayesian context, providing an

efficient means of uncertainty approximation [Gal and Ghahramani, 2016, Kendall

and Gal, 2017] without the need to train full-Bayesian models. The reason this this

97

approach can be a potential boon for uncertainty estimation is the idea that

different parameter settings (from sampling) gives us an output distribution on a

particular input sample. This output distribution can tell us something about the

uncertainty in our predictive ability for the given sample.

Ensemble Methods: Deep Ensembles, proposed by Lakshminarayanan et al.,

train multiple neural networks independently, capturing diverse outcomes and

uncertainties effectively [Lakshminarayanan et al., 2017, Tagasovska and

Lopez-Paz, 2019]. Stochastic Weight Averaging (SWA) and its Gaussian variant

(SWAG) average model weights over training or approximate the weight

distribution, enhancing the robustness of uncertainty estimates without needing

to train separate networks from scratch for the ensemble [Izmailov et al., 2018,

Maddox et al., 2019].

Post-Training Metrics: Recent studies have focused on post-training metrics for

uncertainty estimation. Notable work in medical image segmentation examined

calibration methods like Platt scaling and fine-tuning applied after training to

recalibrate uncertainty estimates [Rousseau et al., 2021]. Training-free methods,

such as infer-transformation and infer-noise, offer flexible, efficient approaches

without retraining the model [Mi et al., 2019].

Reinforcement Learning and Uncertainty: The exploration of uncertainty in

reinforcement learning has led to innovative methodologies like the bootstrapped

DQN, offering deeper insights into the dynamics of uncertainty within these

frameworks [Osband et al., 2016].

Adversarial Contexts: Work has looked at the interplay between adversarial

contexts and uncertainty and found this key in understanding the robustness of

deep learning models [Smith and Gal, 2018].

Distribution-Agnostic Methods: Efforts have been made towards devising

distribution-agnostic techniques for uncertainty prediction, aiming to predict

uncertainty without being tethered to a specific distribution [Pearce et al., 2018].

Despite these advancements, challenges persist, particularly in terms of

computational efficiency and integration into existing workflows. For a full

discussion of the merits, rationale and current state-of-the-art we point the reader

[Gawlikowski et al., 2021].

Let’s now shift our focus to defining popular metrics used to characterise how

well calibrated models are from samples to predictive uncertainty. These metrics

broadly aim to gauge the alignment of a method with the ground-truth

uncertainty estimation outputs.

98 Chapter 6. Uncertainty Estimations of BWFN

6.1 Evaluation Metrics

There has been a number of evaluation metrics that look to capture uncertainty

estimation capabilities of models [Vaicenavicius et al., 2019]. Let us take a brief

dive into a selection and their definitions:

6.1.0.1 Brier Score

The Brier Score [Brier, 1950] is a proper score function that measures the accuracy

of probabilistic predictions. It is applicable to both binary and multi-class

prediction problems.

To calculate the Brier score for a binary classification problem, given:

± yi: The actual outcome. It is 1 if the outcome is positive and 0 if it’s negative.

± ŷi: The predicted probability of the outcome being positive.

The Brier score (BS) for binary classification problems can be defined as:

BS =
1

N

N

∑
i=1

(yi − ŷi)
2 (6.1)

Where:

± N is the total number of predictions.

± The summation ∑
N
i=1 runs over all predictions.

± (yi − ŷi)
2 is the squared difference between the actual outcome and the

predicted probability for each prediction.

For multi-class classification problems, assuming C is the number of classes, and

ŷi,c and yi,c are the predicted probability and actual outcome (1 if it is true, 0

otherwise) of class c for observation i, the Brier score is:

BS =
1

N

N

∑
i=1

C

∑
c=1

(yi,c − ŷi,c)
2, (6.2)

where:

± The inner summation ∑
C
c=1 calculates the squared differences for each class.

± The outer summation ∑
N
i=1 averages these values over all observations.

Interpretation of Brier Score:

The Brier Score essentially computes the mean squared difference between

predicted probabilities and the actual outcomes. Its value ranges from 0 to 1, with

the following implications:

6.1. Evaluation Metrics 99

± BS = 0: Represents perfect predictions, meaning all probabilistic forecasts

match the actual outcomes perfectly.

± BS = 1: Represents the worst-case scenario, where all predictions are

completely opposite to the actual outcomes.

± 0 < BS < 0.25: Typically indicates high accuracy in the probabilistic

forecasts.

± 0.25 ≤ BS ≤ 0.5: Suggests moderate accuracy.

± BS > 0.5: Indicates low accuracy and potential issues with the model or the

predictions.

In essence, the Brier Score quantifies the reliability of probabilistic predictions. A

lower Brier Score indicates better predictive accuracy, while a higher score

suggests potential calibration issues. It provides a comprehensive view of a

model’s performance, capturing both calibration and refinement in a single metric.

6.1.1 Reliability Diagrams

Reliability diagrams serve as invaluable tools for visually assessing the calibration

of predictive models [Niculescu-Mizil and Caruana, 2005, Platt et al., 1999, Guo

et al., 2017, Naeini et al., 2015]. The primary objective is to juxtapose the expected

accuracy against the confidence of predictions.

Given:

± Bm: The set of indices corresponding to samples categorized into bin m.

± pi: The predicted probability associated with sample i.

± yi: The actual outcome for sample i, where a value of 1 denotes a positive

outcome and 0 indicates a negative one.

For each designated bin m, the calculations proceed as:

± The average predicted probability, denoted as conf(Bm) =
1
|Bm|

∑i∈Bm
pi.

± The accuracy of predictions within the bin, represented as

acc(Bm) =
1
|Bm|

∑i∈Bm
yi.

Subsequently, a plot is constructed with conf(Bm) on the x-axis against acc(Bm) on

the y-axis, spanning all bins m.

Interpretation of Reliability Diagrams:

Reliability diagrams (as shown in Figure 6.1 provide a vivid representation of a

model’s calibration performance, facilitating the following interpretations:

100 Chapter 6. Uncertainty Estimations of BWFN

FIGURE 6.1: This schematic of a reliability diagram visually illustrates the calibration
of probabilistic predictions in binary classification. The X-axis represents the predicted
probabilities by the model, while the Y-axis shows the actual fraction of positive out-
comes. The dashed line indicates perfect reliability, where predictions perfectly match
observed outcomes. Points above the diagonal (red) signify underconfidence, indicat-
ing that the actual fraction of positives is higher than predicted. Conversely, points
below the diagonal (blue) denote overconfidence, where predicted probabilities surpass

the actual fraction of positives.

± A perfectly calibrated model is depicted by a diagonal line from the

bottom-left to the top-right corner. This signifies that for every predicted

probability, the fraction of positive outcomes matches the predicted

probability.

± Deviations from the diagonal represent discrepancies between the predicted

probabilities and the observed frequencies. Such deviations signal

miscalibration. For instance, if for a predicted probability of 0.7, the observed

frequency is 0.5, it suggests that the model’s predictions are overconfident.

± Bins that lie above the diagonal indicate that the model is underconfident in

its predictions for that bin. Conversely, bins below the diagonal suggest

overconfidence.

± The granularity of the bins can also offer insights. For instance, if a model

only makes predictions with extreme confidences close to 0 or 1, this could

6.1. Evaluation Metrics 101

be represented by sparse bins in the center of the diagram, indicating

potential overfitting or a lack of nuance in the model’s predictions.

± The width of the bins and the number of samples in each bin can affect the

reliability diagram’s appearance. Fewer, broader bins can mask

miscalibrations that might be evident with more, narrower bins.

In summary, reliability diagrams serve as a potent tool for discerning the

calibration quality of models. They offer a visual means to detect regions of

overconfidence or underconfidence, facilitating informed adjustments to enhance

the model’s predictive quality.

6.1.2 Maximum Calibration Error (MCE)

The Maximum Calibration Error (MCE) [Niculescu-Mizil and Caruana, 2005]

provides a scalar measure to quantify the calibration quality of probabilistic

classification models. It specifically addresses the largest discrepancy between

predicted probabilities and observed outcomes across all bins in a reliability

diagram.

Given a set of bins B1, B2, . . . , BM in a reliability diagram, where:

± conf(Bm) is the average predicted probability for bin m.

± acc(Bm) is the accuracy of bin m.

The MCE is formally defined as:

MCE = max
m=1,...,M

|conf(Bm)− acc(Bm)| (6.3)

Interpretation of MCE:

The MCE captures the worst-case error between the model’s confidence and its

actual performance in any of the bins. A lower MCE indicates better calibration,

implying that the model’s predicted probabilities align more closely with the

actual outcomes. On the other hand, a higher MCE signifies that there exists at

least one bin where the model’s predicted probabilities significantly deviate from

the actual outcomes, suggesting potential miscalibration. This metric can be

particularly useful when the use-case is high-risk and no miscalibration can be

tolerated.

6.1.3 Expected Calibration Error (ECE)

The Expected Calibration Error (ECE) [Guo et al., 2017] serves as a metric to gauge

the calibration quality of probabilistic predictions in classification tasks. Rather

than focusing on the worst-case scenario, as with the Maximum Calibration Error

102 Chapter 6. Uncertainty Estimations of BWFN

(MCE), ECE provides a weighted average of the calibration errors across all bins

in a reliability diagram.

Let’s formalize our notation:

± B1, B2, . . . , BM: The set of bins used in the reliability diagram.

± nm: The number of samples in bin m.

± N: The total number of samples, i.e., N = ∑
M
m=1 nm.

± conf(Bm): The average predicted probability for bin m.

± acc(Bm): The accuracy of bin m.

The ECE is defined as:

ECE =
M

∑
m=1

nm

N
|conf(Bm)− acc(Bm)| (6.4)

Interpretation of ECE:

The ECE evaluates the average calibration error across all bins, weighted by the

number of samples in each bin. This weighting ensures that bins with a higher

number of samples contribute more significantly to the final score, highlighting

the importance of regions with denser predictions.

An ECE value close to 0 indicates that, on average, the predicted probabilities of

the model are well-calibrated with the observed outcomes. On the other hand, a

higher ECE signifies that there’s a notable discrepancy between the model’s

predicted probabilities and the observed frequencies. Hence, models with lower

ECE values are generally deemed to be better calibrated.

However, while interpreting ECE, it’s crucial to consider the binning strategy

employed. The granularity and selection of bin thresholds can influence the

computed ECE value, potentially leading to different interpretations of model

calibration.

6.2 Experiments

We would like to build some experimental results to establish how well PWFN

and the variations we have explored fare when comparing their uncertainty

metrics of other methods.

One element of the method that we believe becomes more important here is the σ

reassignment strategy which says, what do we do with the values for weights

which have been clustered at the same time to the same mean value.

Recall that our best results with PWFN had the σ reassignment strategy where we

used the mean standard deviation of the weights moved to the cluster center as

the new σ value for all weights assigned to this cluster center value.

6.3. Results 103

There is an open question as to whether this strategy is useful for uncertainty

estimation or whether there is an alternative. It seems that there is a possibility

that the ’set to mean std of weights’ is not optimal. An interesting observation

some weights may have had large σ values before clustering but if it is the case

that they are clustered with a group that is tightly packed around the cluster

center assigned, then they would be assigned a small σ value. That is σ’s that

we’re used in Equation 4.10 to apply clustering learned during backpropagation

are shifted to mean be the standard deviation of the weights that have been

assigned to the same cluster value - which might have been a large travel.This

works well from the perspective of clustering, but it is still optimal for the

networks used as a BNN?

To test if this is indeed a problem, we further experiment with uncertainty

estimations with an alternative PWFN-sigma where, rather than fixing σ values to

the mean of the values that are assigned to the same cluster, we simply allow it to

adjust itself using gradient descent.

6.2.1 Experimental Setup

We partition the ImageNet dataset into training, validation, and test sets in

accordance with standard splits. We explore the uncertainty estimations for the

ResNet family of models (18/34/50). For comparison, we juxtapose the

performance of the PWFN, PWFN-sigma and COF-PWFN against three

established uncertainty estimation methods: Stochastic Weight Averaging (SWA)

[Maddox et al., 2019], Stochastic Weight Averaging with Gaussians (SWAG)

[Maddox et al., 2019], and the uncertainty captured with an ensemble of five

separately trained models (SGD). Each of these methods has been recognised for

its proficiency in uncertainty estimation within neural networks.

6.3 Results

We report the Brier scores, expected confidence errors, and reliability diagrams for

all the compared methods.

In Table 6.1 we present the results each method on the evaluated metrics. We see

that PWFN performs well across all metrics with slightly better calibrated

networks. There is clearly a benefit to setting the σ values for each of the weights

distributions to be the mean of the values recently assigned to the cluster since the

PWFN-sigma re-training does not grant the same calibration levels ± despite

having the similar accuracies.

104 Chapter 6. Uncertainty Estimations of BWFN

FIGURE 6.2: Here we show the reliability diagrams for the ResNet family of models
tested on the ImageNet dataset. We can see that PWFN models hug the calibration line

slightly closer than other methods compared demonstrating better calibration.

6.3. Results 105

Model Method Top-1 ECE MCE Brier

Resnet18

SGD 70.7 0.033319 0.114677 0.126787

SWAG 70.4 0.021873 0.050568 0.136844
SWA 70.3 0.030727 0.072408 0.137099
PWFN 70.0 0.013016 0.034938 0.142100
PWFN-sigma 68.6 0.110355 0.199330 0.176671
COF-PWFN 70.1 0.016080 0.038804 0.137921

Resnet34

SGD 74.9 0.043889 0.117737 0.139141
SWAG 75.5 0.032063 0.106406 0.126824

SWA 74.9 0.040546 0.143571 0.130269
PWFN 74.3 0.032669 0.089867 0.133631
PWFN-sigma 72.3 0.056751 0.127290 0.148675
COF-PWFN 74.4 0.017065 0.063247 0.126940

Resnet50

SWA 79.7 0.031194 0.250969 0.118928
SWAG 79.8 0.030103 0.196764 0.113415

PWFN-sigma 77.1 0.037034 0.116522 0.134897
PWFN 77.5 0.032892 0.151584 0.118640

TABLE 6.1: The uncertainty estimation results

6.3.1 Projections

Given that PWFN is able to produce good uncertainty estimations, we next would

like to answer the question as to how each network sample differs in embedding

space at the final layer.

One problem with using Gaussians to sample from randomly is that we are

restricting the space of weight values to follow an elliptic pattern, such that none

of the samples within the ellipse should change the class prediction.

The question is whether the Gaussian sampling has the same effect in embedding

space. To explore this, we employ a series of projections - Principal Component

Analysis (PCA) [Wold et al., 1987], Uniform Manifold Approximation and

Projection (UMAP) [McInnes et al., 2018], and t-Distributed Stochastic Neighbor

Embedding (t-SNE) [Van der Maaten and Hinton, 2008] - to visualise the logit

(Figure 6.4) and penultimate activation layers (Figure 6.3). In these projections, we

color-code various image samples, using consistent colors within a subplot to

represent the outputs for different weight samples for the each input image.

Squares and circles respectively mark incorrect and correct predictions, offering

an immediate visual cue of the model’s performance.

Upon examination, several patterns emerge. First, we observe that t-SNE and

UMAP projections yield similar distributions of weight samples, suggesting a

relatively uniform transformation through these techniques. However, a more

106 Chapter 6. Uncertainty Estimations of BWFN

FIGURE 6.3: Penultimate Activation Layer Projection in ResNet-18 with PWFN (PCA,
UMAP, t-SNE): This projection shows the penultimate activation layer of a ResNet-18
model using the PWFN method. Similar to Figure 1, each colour signifies a single image
input, with five samples for each, and the projections are arranged from left to right:
PCA, UMAP, and t-SNE. This arrangement allows for direct comparison of how each
dimensional reduction technique affects the visualisation of weight sample variability

and the corresponding predictions.

4

2

0

2

4

6

Class 679 activation in PCA space

10

5

0

5

10

15
Class 679 activation in UMAP space

75

50

25

0

25

50

75

100

Class 679 activation in TSNE space

4

2

0

2

4

6

Class 284 activation in PCA space

10

5

0

5

10

15
Class 284 activation in UMAP space

75

50

25

0

25

50

75

100

Class 284 activation in TSNE space

4

2

0

2

4

6

Class 707 activation in PCA space

10

5

0

5

10

15
Class 707 activation in UMAP space

75

50

25

0

25

50

75

100

Class 707 activation in TSNE space

4

2

0

2

4

6

Class 303 activation in PCA space

10

5

0

5

10

15
Class 303 activation in UMAP space

75

50

25

0

25

50

75

100

Class 303 activation in TSNE space

7.5 5.0 2.5 0.0 2.5

4

2

0

2

4

6

Class 243 activation in PCA space

10 0 10
10

5

0

5

10

15
Class 243 activation in UMAP space

100 50 0 50
75

50

25

0

25

50

75

100

Class 243 activation in TSNE space

6.3. Results 107

FIGURE 6.4: Comparative Analysis of Logit Projection via PCA, UMAP, and t-SNE in
ResNet-18 with PWFN: This figure displays logit projections for a ResNet-18 model
trained with PWFN, using PCA (left), UMAP (middle), and t-SNE (right). Each colour
represents a unique image input, with five instances per colour, denoting the five
weight samples per input. Crosses and circles indicate incorrect and correct predictions,
respectively, illustrating the impact of weight sample variability on the predictive

accuracy.

40

30

20

10

0

10

20

Class 387 logits in PCA space

10

5

0

5

10

15

20
Class 387 logits in UMAP space

100

75

50

25

0

25

50

75

Class 387 logits in TSNE space

40

30

20

10

0

10

20

Class 143 logits in PCA space

10

5

0

5

10

15

20
Class 143 logits in UMAP space

100

75

50

25

0

25

50

75

Class 143 logits in TSNE space

40

30

20

10

0

10

20

Class 722 logits in PCA space

10

5

0

5

10

15

20
Class 722 logits in UMAP space

100

75

50

25

0

25

50

75

Class 722 logits in TSNE space

40

30

20

10

0

10

20

Class 440 logits in PCA space

10

5

0

5

10

15

20
Class 440 logits in UMAP space

100

75

50

25

0

25

50

75

Class 440 logits in TSNE space

40 20 0 20 40
40

30

20

10

0

10

20

Class 705 logits in PCA space

5 0 5 10 15
10

5

0

5

10

15

20
Class 705 logits in UMAP space

50 0 50 100

100

75

50

25

0

25

50

75

Class 705 logits in TSNE space

108 Chapter 6. Uncertainty Estimations of BWFN

1 2 3 6 7 8 9 10
cluster steps

0.5

0.6

0.7

0.8

0.9

1.0

ac
cu

ra
cy

Accuracy vs cluster steps

FIGURE 6.5: We can see here that with each cluster step (where we increase the number
of weights that are clustered according to 4.8 (left)) that the model accuracy is main-

tained.

pronounced variation is discernible in the PCA projection, particularly within the

two principal components examined.

Interestingly, despite sampling across all layers, the overall variation between

weight samples in both projected logits and activations remains moderate. There

are much larger distances between different image inputs of the same class and

different samples of the same image, suggesting that in loss-space, we are finding

distinct valleys and exploring to the edge of where the loss would begin to

increase. One interesting example is in Figure 6.3 class 284 (second row, far left),

where we can see the yellow and green different image samples are projected close

to each other and have overlapping outputs given random network sampling. It is

difficult with just two dimensions to be sure, and further investigation is needed,

but it implies that it is possible to learn a weights’ distribution where sampling of

different images would project into the same loss valley.

Bringing together these results and the uncertainty estimation results implies that

excessive variability in weight samples could potentially lead to erratic class

predictions as they traverse the logit space and that when projected down onto

just two dimensions, the weight sampling has only a small effect in changing the

activation/logit locations. The relatively stable projection patterns we observe

suggest a form of inherent equilibrium in the network, where the compounded

effects of weight variation either neutralize each other in the deeper layers or do

not significantly sway the overall prediction outcomes.

6.4 Compression Vs Calibration

6.4. Compression Vs Calibration 109

2 4 6 8 10 12
entropy

0.010

0.011

0.012

0.013

0.014

0.015

ec
e

R-squared = 0.47

Entropy vs ECE

2 4 6 8 10 12
entropy

0.020

0.025

0.030

0.035

0.040

0.045

0.050

m
ce

R-squared = 0.31

Entropy vs MCE

2 4 6 8 10 12
entropy

0.138

0.139

0.140

0.141

0.142

0.143

0.144

0.145

br
ie

r

R-squared = 0.38

Entropy vs Brier

Cluster Steps
1
2
3
6
7
8
9
10

FIGURE 6.6: Relationship between entropy and calibration metrics (ECE, MCE, and
Brier) for different numbers of clustering steps. The scatter plots show the correlation
between entropy and each calibration metric, with the line of best fit indicating the
overall trend. The R-squared value is provided for each plot, quantifying the strength of
the linear relationship. Higher entropy values tend to correspond to better calibration
(lower ECE, MCE, and Brier scores), suggesting that models with higher entropy are

better calibrated.

Next we look to answer the question does compression help with calibration. That

is, are networks that undergo the PWFN quantisation steps better calibrated than

those that don’t.

This question is one which is answerable under the PWFN training setting. This is

because we have a set-up with maintains accuracy whilst varying compression

(see Figure 6.5). In order to test the hypothesis that compression results in better

calibration we look at the ECE, MCE and Brier scores with each clustering stage of

PWFN.

In Figure 6.6, we present these results. We observe a clear pattern as we increase

the clustering steps: the entropy decreases, and both the ECE and MCE reduce,

suggesting better calibration. Interestingly, the Brier score exhibits the opposite

behavior, increasing with more clustering steps. This suggests that while the

model’s calibration improves, as evidenced by the decreasing ECE and MCE, the

refinement aspect may be compromised.

Refinement, in this context, refers to the model’s ability to assign high

probabilities to correct classes and low probabilities to incorrect classes. A

well-refined model should be confident in its predictions for the correct classes

and uncertain about the incorrect ones. The increasing Brier score indicates that

although the predicted probabilities align better with the observed accuracies (i.e.,

improved calibration), the model might be assigning lower probabilities to the

correct classes or higher probabilities to the incorrect classes.

This trade-off between calibration and refinement highlights the importance of

considering multiple evaluation metrics when assessing a model’s performance.

110 Chapter 6. Uncertainty Estimations of BWFN

While the clustering steps in PWFN improve calibration, it is crucial to strike a

balance between compression and maintaining the model’s ability to make

accurate and confident predictions. Further analysis of the model’s confidence

scores and their relationship to the correctness of predictions can provide insights

into the impact of clustering on the model’s refinement and overall predictive

accuracy.

The Brier score’s sensitivity to class imbalance and equal emphasis on refinement

may not fully align with the primary objective of investigating the impact of

clustering on calibration in this particular setting. Therefore, the Expected

Calibration Error and Maximum Calibration Error serve as more direct and

interpretable metrics for assessing the calibration performance of PWFN, while

the Brier score provides a complementary perspective on the model’s overall

performance.

Let us now move to explore a related topic of how well the uncertainy estimations

in PWFN can help us identify out-of-distribution (OOD) datapoints.

6.5 Out-of-distribution

In this section, we conduct a preliminary investigation to evaluate the

performance of PWFN in identifying samples that deviate from the training

distribution. While we use the term ºout-of-distributionº (OOD) in our

experiments and figures, what we’re examining is more precisely characterised as

outlier recognition within a controlled experimental setting. This investigation

aims to elucidate the model’s ability to detect data points that fall outside the

scope of its training dataset classes, a capability critical for real-world deployment.

Before we proceed to the experiments, let’s briefly explore the rationale behind

studying this detection capability.

6.5.1 Understanding the Need for OOD Metrics

In real-world machine learning systems, it is often the case that data fed in to a

model to be classified lies outside the given set of classification classes that a

model has been trained on. This datapoint - referred to as OOD will need to be

handled gracefully by the system [Berend et al., 2020, Yang et al., 2021].

The robustness and reliability of a model in practical applications are significantly

determined by its ability to handle this OOD data. This ability is for several

reasons:

6.5. Out-of-distribution 111

± Adapting Behaviour: When encountering OOD data, we might want to

change the model’s behaviour to ensure safety, reliability, and user

satisfaction, such as falling back to conservative actions or alerting human

operators in critical scenarios [Amodei et al., 2016, Hendrycks et al., 2021].

± Detecting Anomalies and Potential Threats: OOD data may indicate

anomalies, malicious attacks, or unexpected situations. Detecting such

instances is crucial for maintaining the system’s integrity and security [Ruff

et al., 2021, Carlini and Wagner, 2017].

± Model Calibration and Uncertainty Estimation: OOD metrics provide

insights into the model’s calibration and can help estimate its uncertainty in

predictions, preventing blind reliance on potentially inappropriate outputs

[Guo et al., 2017, Ovadia et al., 2019].

± Identifying Limitations and Guiding Data Collection: Analysing

encountered OOD data helps identify the model’s limitations and guides

future data collection efforts to improve coverage and robustness [Bulusu

et al., 2020, Pimentel et al., 2014].

± Distinguishing Error Types for Debugging and Improvement: Secondary

to the classification task, differentiating between in-distribution and OOD

errors provides valuable information for debugging and model

improvement, pointing to issues with the model itself or limitations in

training data coverage [Hecker et al., 2018, Kendall and Gal, 2017].

± Enhancing Robustness through Targeted Retraining: Identifying OOD

errors allows for the selection of the most relevant and effective data points

for robustness enhancement through targeted retraining, improving the

model’s performance in real-world scenarios [Hendrycks et al., 2019, Zheng

et al., 2020].

6.5.2 Studying OOD Metrics within PWFN

Aside from the general motivations for studying the OOD setting, we believe that

treating PWFN as a Bayesian approach makes it potentially more fruitful in

detecting OOD samples without any additional tricks. One would hope that the

sampling procedure will give more variation of outputs for input classes which

are unseen in the training set.

Additionally, understanding the performance of compressed models (a notable

advantage of PWFN) on OOD data is essential for ensuring that efficiency gains

do not compromise robustness.

With these considerations, let us next move on to describing the experimentation

undertaken to evaluate OOD on PWFN.

112 Chapter 6. Uncertainty Estimations of BWFN

6.5.3 OOD Experimentation with PWFN

For the OOD experiments, we look to the CIFAR-10 dataset for simplicity,

segregating it into in-distribution (ID) and OOD sets. Five classes are designated

for ID training, and the remaining five classes are reserved for evaluating the

model’s OOD detection capabilities.

We next apply PWFN for training on the ID data where we expect to reach high

accuracies and low uncertainty of predictions and then evaluate how this changes

when we test on OOD datapoints.

6.5.3.1 Entropy of Probabilities

To better understand the distinction between ID and OOD samples, we calculate

the entropy of class probabilities for a range of sample numbers (1, 5, 10, and 20)

during the testing phase on both OOD and ID data. In this experiment we take n

samples (n=1,5,10,20) of the weights and calculate the entropy of the probabilities

for each data input. The idea is to explore different sample sizes allowing us to

investigate the impact of the number of samples on the model’s ability to

distinguish between ID and OOD data points. This metric provides valuable

insights into the model’s performance, with a higher difference between OOD and

ID data points indicating more effective OOD detection. The core idea behind this

approach is that it is a simple metric to compute, and we expect to observe a

significant variation between ID and OOD test samples, especially as the number

of samples increases.

6.5.3.2 Standard Deviation Thresholding

In addition to the entropy analysis, we explore the viability of an approach to

automate the process of determining when a sample is OOD. To achieve this, we

threshold the entropy values at various levels based on standard deviations above

the mean entropy of all test samples. This analysis helps us understand the

model’s sensitivity and response to OOD data under varied conditions and

demonstrates how these metrics could be applied in practice.

Visualisation and Interpretation To supplement our analysis, we present visual

representations of the results:

± Accuracy Plot: Figure 6.8 illustrates the model’s accuracy in identifying ID

and OOD classes across different entropy thresholds.

± Entropy Distribution Plots: Figure 6.7 visually depicts the distribution of

entropy values for ID and OOD classes, highlighting the differences between

the baseline model and the PWFN models with varying numbers of samples.

6.5. Out-of-distribution 113

0 1 2
Entropy

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
D

en
si

ty

Baseline

0 1 2
Entropy

Samples: 1

0 1 2
Entropy

Samples: 5

0 1 2
Entropy

Samples: 10

0 1 2
Entropy

Samples: 20

ID vs ODD Entropy Distribution

ID
OOD

ID
OOD

ID
OOD

ID
OOD

ID
OOD

FIGURE 6.7: Here we show how the distribution of soft-max entropy values changes
between ID and OOD samples in the reduced-CIFAR-10 experiments. We can see that
the baseline model (left) doesn’t have much difference between the two whereas the
PWFN models at varying number of samples has a much more differentiation between

the two.

6.5.4 Experiment Results and Discussion

Let’s start by examining how the distributions of ID and OOD samples differ,

keeping in mind that a good model would exhibit higher softmax entropies for

OOD samples and much lower entropies for ID samples. In Figure 6.7, we explore

the distribution difference between entropies for a baseline (standard single SGD

run) and PWFN models taking 1, 5, 10, and 20 samples. It’s crucial to note that

each of these models has comparable accuracy for the ID classes, yet we observe a

substantial difference when comparing the softmax entropies of ID and OOD

samples. Even with a single sample, the ability to distinguish between ID and

OOD is much clearer than with the baseline model. As we increase the number of

samples, the ID distribution becomes even more concentrated towards lower

entropy values, making the OOD samples even more distinguishable.

Let’s examine this concept further. Suppose we wanted a simple measure to

determine whether a sample is ID or OOD. One approach could be to sample the

weights n times and calculate the entropy of the model’s softmax output for a

given input.

For n = 1, we calculate the entropy H(x) directly from the softmax output

probabilities. For n > 1, we take n samples from the weights, calculate the mean

softmax probabilities for the input, and then compute the entropy from the

averaged probabilities.

Given the entropy Hn(x) calculated for n samples, we can compare it to the mean

entropy µH over all data samples or from a training calibration set (which are all

ID). The z-score zx, representing how many standard deviations Hn(x) is from µH ,

is defined as:

114 Chapter 6. Uncertainty Estimations of BWFN

zx =
Hn(x)− µH

σH

where σH is the standard deviation of the entropy across the same set of samples.

Using this z-score, we can set a threshold τ, such that if zx > τ, we classify the

sample as OOD:

Classify as OOD if zx > τ

We explore a range of τ values corresponding to 0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75,

and 2 standard deviations, and analyse the percentage of ID and OOD samples

that exceed this threshold. Based on our findings from examining the entropy

distributions, we expect the PWFN models to have a higher percentage of OOD

samples and a lower percentage of ID samples above the threshold compared to

the baseline model.

This formulation helps formalise the distinction between ID and OOD samples

using the average entropy over multiple weight samples and the deviation from

the mean entropy.

Figure 6.8 illustrates the percentage of OOD and ID samples that fall above a

certain number of standard deviations from the mean entropy. The number next to

ID/OOD indicates the number of samples used in the PWFN model. We can see

that PWFN, with any number of samples n ≥ 1, results in the highest percentage

of OOD samples exceeding the threshold. For instance, at 0 standard deviations

above the mean (i.e., the mean itself), 25% of OOD samples are correctly identified,

compared to less than 5% of ID samples, making it a far more effective classifier

than the non-Bayesian baseline, which only detects 15% of OOD samples.

These findings underscore the effectiveness of the PWFN approach in

distinguishing between ID and OOD samples, even with a small number of

weight samples. The greater separation between the entropy distributions of ID

and OOD samples, alongside the higher percentage of OOD samples above the

entropy threshold, highlights the potential of this method for reliable OOD

detection in real-world applications. Using the PWFN approach, practitioners can

build more robust and trustworthy systems capable of effectively managing OOD

data, reducing the likelihood of unexpected failures or erroneous predictions.

Although this metric is not perfectÐcapturing only 25% of OOD examples and

misclassifying approximately 5% of ID samples as OODÐit still demonstrates the

potential of using the additional variance signal from PWFN for OOD detection.

Further refinement is required, but these results are promising.

6.6. Conclusion 115

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Number of Standard Deviations Above the Mean

0%

5%

10%

15%

20%

25%

30%

35%

40%

P
er

ce
nt

ag
e

of
 S

am
pl

es
 A

bo
ve

 T
hr

es
ho

ld

In­Distribution vs. Out­of­Distribution Above Threshold

ID Base

OOD Baseline
ID ­ 1
OOD ­ 1
ID ­ 5

OOD ­ 5
ID ­ 10

OOD ­ 10
ID ­ 20

OOD ­ 20

FIGURE 6.8: Here we show what percentage of OOD and ID samples are above x
number of standard deviations above the mean. The number next to ID/OOD signifies
how many samples were used in the PWFN case. We can see that using WFN with any
number ≥ 1 samples gives us the highest percentage of detected OOD samples. Taking
0 std above the mean (i.e., the mean itself) for example, we can see that 25% of OOD
samples versus less than 5% ID samples exceed the threshold, making it a much better
classifier than if we were to use the non-Bayesian baseline, where only 15% of OOD

samples would be detected.

6.6 Conclusion

We conclude by noting that both the OOD and uncertainty estimation experiments

demonstrate PWFN is a step towards the goal of having well calibrated models.

We have seen that the interaction between compression and calibration is one of

benefit. That compressed models tend to give better calibration. The set of

experiments and ablation studies conducted in this chapter provide a glimpse into

the relationship of three hitherto separate fields of inquiry, PWFN gives us better

calibration, generalisation (to the test set) and compression. We are now in a good

place to look back at this thesis and to start to link the threads together.

117

Chapter 7

Discussion and Further Analysis

7.1 The Thesis Contributions

In this thesis, we presented a sequence of algorithmic techniques for neural

network compression, each building upon the insights and findings of its

predecessor. Our primary objective was to reduce data-movement costs and

enable efficient inference on specialised hardware. We identified that

data-movement costs dominate energy expenditure in deep learning inference

(Chapter 2), motivating the exploration of techniques that reduce the number of

unique parameters and weight-space entropies.

We began with Weight Fixing Networks (WFN) in Chapter 3, introducing an

iterative cluster-train algorithm that employed techniques such as iterative

quantisation, a whole-network codebook, a focus on powers-of-two clusters, and

a relative distance movement threshold. WFN effectively reduced the number of

unique weights and weight-space entropy but relied on a fixed schedule for

clustering and did not leverage weight-specific information for quantisation

decisions.

In Chapter 4, we introduced Probabilistic Weight Fixing Networks (PWFN),

building on the lessons learned from WFN. PWFN incorporated a probabilistic

framework based on Bayesian neural networks and variational relaxation,

leveraging learned weight uncertainties to make context-aware quantisation

decisions. PWFN achieved state-of-the-art results on ImageNet with ResNet and

transformer models, demonstrating the power of learning noise-resilient, highly

compressible weight configurations. However, PWFN still relied on a predefined

schedule for clustering stages.

To address the limitations of the fixed clustering schedule in PWFN, Chapter 5

introduced Cluster-On-the-Fly PWFN (COF-PWFN). COF-PWFN integrated the

clustering process into the training phase itself, making it more dynamic and

adaptive. While COF-PWFN showed promising results in terms of accuracy, it

118 Chapter 7. Discussion and Further Analysis

also highlighted a potential trade-off between accuracy and compression that

warrants further exploration.

Additionally, we explored the potential benefits gained from the probabilistic

viewpoint for uncertainty estimation in Chapter 6. By leveraging the probabilistic

nature of PWFN and COF-PWFN, we demonstrated their capabilities in providing

reliable uncertainty estimates and out-of-distribution detection.

7.2 Implications and Future Directions

The techniques and insights presented in this thesis have implications for the

development of efficient and scalable deep learning systems. The proposed

algorithmic approachesÐWFN, PWFN, and COF-PWFNÐdemonstrated the

potential for reducing the number of unique weights and weight-space entropy in

neural networks while maintaining performance.

7.2.1 Hardware Constraints and Data Movement Costs

One implication of this work is the importance of considering hardware

constraints and data movement costs when designing algorithmic approaches for

neural network compression. We highlighted the need for collaboration between

algorithm developers and hardware designers to leverage the benefits of these

compression techniques on specialised hardware platforms. This collaboration

can lead to the development of bespoke hardware implementations tailored to the

specific characteristics of the compressed models, potentially unlocking further

efficiency gains. As new algorithmic architectures are developed, there is often a

shift in hardware to support it. Hardware that works well for inference of

generative adversarial networks is not as suited to running diffusion models, but

the principle of minimising data-movement is universal as a result of the

fundamentals of the physics of computational chips. One could argue that the

work presented in this thesis is not algorithm-hardware co-design but is instead

adapting current algorithms such that they are better suited to hardware strengths

and limitations. We accept the premise that more work is needed to bring

algorithmic development even closer to the hardware and point to research teams

out of FireworksAI [Fireworks AI, 2024], Groq [Abts et al., 2022], and of course

Nvidia [Liu et al., 2023], which are doing just that.

7.2.2 Hardware Realisation of WFN

Our WFN approach is well-suited for efficient hardware implementation due to

its emphasis on minimising unique weight values and weight-space entropy

across the entire network.

7.2. Implications and Future Directions 119

7.2.2.1 Codebook-Based Architecture

A hardware architecture implementing our methods would use a compact, shared

codebook stored in fast SRAM accessible to processing elements. For networks

compressed with our approach, where millions of parameters are represented by

as few as 100-200 unique values, this architecture reduces memory traffic between

off-chip storage and on-chip compute units.

Similar codebook-based architectures exist in hardware accelerators such as the

UNPU [Lee et al., 2018], which demonstrated energy reductions of 23.1% to 53.6%

for different weight precision levels compared to conventional fixed-point arrays.

The EIE accelerator [Han et al., 2016a] also showed that index-based

representations with a small codebook achieve substantial energy savings.

7.2.2.2 Huffman Encoding for Weight Indices

To further optimise memory usage, Huffman encoding for the weight indices

would be highly effective. Given the highly skewed weight distribution produced

by WFN (as shown in our results), Huffman coding works particularly well:

1. Efficient Huffman Decoder: Research by Tian et al. [Tian et al., 2021]

demonstrated that modern GPU-based Huffman decoders can achieve

throughput rates exceeding 300 GB/s on NVIDIA V100 GPUs. For inference

acceleration, Hashemian [Hashemian, 1994] showed memory-efficient

hardware implementation of Huffman decoding that reduced memory

requirements by nearly 67× (from 8192 words to 122 words) for codebooks

with codewords up to 13 bits.

2. Compression Benefits: The EIE accelerator [Han et al., 2016a] demonstrated

that Huffman coding provided an additional 2.4× reduction in memory

requirements with minimal decompression overhead, making it well-suited

for our WFN approach which generates highly skewed weight distributions.

7.2.2.3 Power-of-Two Optimisations

The skewed distribution of weights in our WFN modelsÐwhere over 75% are

power-of-two valuesÐenables specific hardware optimisations. Multiplication

operations for power-of-two weights can be replaced with simpler bit-shift

operations, reducing computational complexity and energy consumption. This

can be implemented using specialised datapaths that detect power-of-two values

and route the computation through bit-shifters instead of multipliers.

120 Chapter 7. Discussion and Further Analysis

7.2.2.4 Whole-Network Shared Codebook

Our whole-network shared codebook approach differs from typical layer-wise

codebooks used in many quantisation method since the unified codebook can be

loaded once at the beginning of inference and cached throughout the entire

forward pass, as demonstrated in Eyeriss v2 [Chen et al., 2019], which showed

that optimising data reuse across the entire network can reduce energy

consumption by up to 2.5×.

7.2.2.5 Memory-Efficient Implementation

Drawing from Hashemian’s work [Hashemian, 1994], our design could

implement a memory-efficient Huffman decoding structure based on code-bit

clustering. This approach would allow the decoder to recognise variable-length

codes embedded in a continuous stream of bits. By using a lookup table (LUT)

with our small codebook (100-200 entries), we can achieve significant memory

savings compared to traditional implementations requiring 2k memory locations

(where k is the maximum codeword length).

The design would consist of three main components:

1. A buffer to hold incoming weight indices

2. A LUT address generator that extracts variable-length Huffman codes

3. A source code generator that outputs the actual weight values

In conclusion, our WFN approach could be efficiently implemented in hardware

using a combination of codebook-based architecture, Huffman encoding, and

power-of-two optimisations.

7.2.3 Uncertainty Estimation in Safety-Critical Applications

In this work we also introduced the uncertainty estimation capabilities

demonstrated by PWFN and COF-PWFN have implications for the development

of reliable and interpretable deep learning systems. The idea is that these

techniques can be applied to safety-critical applications, such as autonomous

driving and medical diagnosis, where the reliability and calibration of model

predictions are crucial. The ability to quantify and communicate the uncertainty

associated with model predictions can enhance trust in deep learning systems and

facilitate their integration into decision-making processes. We have seen that

using PWFN in particular, we were able to use probabilistic uncertainty

estimations to calibrate models such that low probability predictions do indeed

match up with low probability of correctness. As far as we know, this is the first

work to achieve large-scale training of probabilistic uncertainty in deep learning

7.2. Implications and Future Directions 121

through the variational network route. The simplicity of the approach

(maximising noise resilience) means this type of approach is no longer limited to

toy problems.

7.2.4 Exploring Accuracy-Compression Trade-offs

This thesis also opens up several avenues for future research. One direction is to

further investigate the accuracy-compression trade-offs in COF-PWFN and

develop techniques to optimise this balance.

Our work supports the ideas proposed in the minimal description length, that

ºcompression is comprehensionº. We found that PWFN networks were better

calibrated as they were further compressed (up to a limit) suggesting that the

accuracies achieved in training can be coupled with a compression stage to further

refine the model. This is well supported across the results found in quantisation

works which have shown time and again, that an additional quantisation step ±

particularly when guided by optimisation ± can increase downstream task

generalisability [Yuhang Li, Xin Dong, 2020, Subia-Waud and Dasmahapatra,

2022, Fan et al., 2021, Lee et al., 2021, Jin et al., 2020]. So far, this finding has not

translated into large language models, where the move from 8-bit down to 4-bit is

coupled with a slight drop in performance [Lin et al., 2024, Frantar et al., 2022]. It

is an open question as to whether this is due to the sheer size of the training set ±

Llama-3 was trained with over 1 trillion tokens whereas vision models are trained

with orders of magnitude fewer ± or whether some important component is

missing in attempts to quantise, training with gradient descent. Post-training

quantisation approaches for vision models are similarly coupled with small drops

in performance. A challenge in exploring the accuracy-compression trade-off for

these larger models lies in the training costs which currently restrict large-scale

training to a select few organisations. There is a risk-reward consideration which

may limit the extent to which compression within training is researched but we

pose from the results in this work and others, that it could be a fruitful avenue of

exploration.

7.2.5 Integration with Other Approaches

In this work, we have attempted to isolate the effect of compression through

quantisation/weight-sharing alone. Other works, most notably Deep

Compression [Han et al., 2016b], have shown that other compression techniques

such as pruning can be used in tandem with quantisation in a multi-stage process.

Although pruning is somewhat already present (0 was always the modal cluster in

PWFN and WFN) [Han et al., 2015a], other techniques such as neural architecture

search [Zoph and Le, 2016], low-rank approximation [Denton et al., 2014], and

122 Chapter 7. Discussion and Further Analysis

entire channel pruning [Li et al., 2016] are potentially complementary techniques

which may be combined with PWFN/WFN in order to further compress

networks. This integration could lead to the development of comprehensive

frameworks for neural network compression that can automatically adapt to the

specific requirements of different tasks and hardware platforms [He et al., 2018].

7.2.6 Adapting to Emerging Architectures

Finally, applying the proposed techniques to the realm of large language models

(LLMs) in the evolving landscape of artificial intelligence is an important area for

future exploration. As the scale and complexity of these models continue to grow,

the need for efficient compression and inference techniques becomes increasingly

pressing.

LLMs are already typically on the scale of billions of parameters. A recent

open-source release of Llama-3.1 [Meta AI, 2024] for example, has over 400 billion

parameters, far more than is viable to run on any consumer hardware.

Quantisation has already become a core component of enabling access to local

inference of LLMs. New techniques such as activation aware quantisation [Lin

et al., 2024] and GPTQ [Frantar et al., 2022], both post-training quantisation

techniques, are already very popular. Llama-3 4-bit by unsloth [UnslothAI, 2024]

is, as of writing this, the 4th most downloaded model on Huggingface.

As was the case with vision models, these post-quantisation methods for LLMs

result in accuracy drops - depending on how far the bit-width is pushed [Chavan

et al., 2024]. New approaches have begun to emerge with a focus on quantisation

aware training [Ma et al., 2024]. As with vision, these approaches trade off

compression and accuracy against granularity with separate codebooks.

The K,V re-use seen in transformers (each next token prediction re-uses the same

weights and activations of the previous token prediction) fits well within the ideas

outlined in this thesis. Our hope is that the insights we have gained will be

applied to LLMs in the future. There are additional computation costs (the extra σ

values to be trained) which would make it out-of-reach for current consumer

devices to utilise but should this hurdle be overcome, cutting down the number of

unique values across a network and keeping the weights close to the

computational units would be a huge boon to faster inference speeds of LLMs.

Indeed, companies like Groq has focused on this principle to incredible effect.

They have developed language processing units (LPUs) [Groq, 2024] which

compile a network down onto an accelerator where all of the weights are right

next to a processing element and the data feed through with tokens per second

speeds far greater than any of the competition.

7.3. Conclusion 123

It is our hope that the insights and principles introduced in this thesis could aid in

the development of specialised compression techniques that can handle the

unique challenges posed by these large-scale models.

7.3 Conclusion

This thesis has presented a comprehensive investigation into neural network

compression techniques, driven by the imperative to minimise data-movement

costs in deep learning inference. Our research has yielded a series of algorithmic

approachesÐWeight Fixing Networks (WFN), Probabilistic Weight Fixing

Networks (PWFN), and Cluster-On-the-Fly PWFN (COF-PWFN)Ðeach

advancing the state of the art in efficient inference.

Our work was motivated by the observation that data-movement costs dominate

energy expenditure in deep learning inference, as established in Chapter 2. This

insight guided our efforts towards reducing the number of unique parameters

and weight-space entropies, a strategy that has proven effective in enhancing

inference efficiency.

The progression of our research, from WFN through to COF-PWFN, demonstrates

a systematic approach to addressing the challenges of neural network

compression. WFN introduced an iterative cluster-train algorithm, while PWFN

leveraged Bayesian neural networks and variational relaxation for context-aware

quantisation decisions. COF-PWFN further refined this approach by dynamically

integrating the clustering process into the training phase.

A significant outcome of our work, particularly with PWFN and COF-PWFN, is

the improvement in model calibration and uncertainty estimation. These

capabilities extend the potential applications of our compressed models to

domains where reliable uncertainty quantification is crucial.

Our research has highlighted several key areas for future investigation:

± Hardware-Algorithm Integration: The findings underscore the importance

of aligning algorithmic approaches with hardware constraints. Future

research should focus on closer collaboration between algorithm developers

and hardware designers to fully exploit the benefits of these compression

techniques.

± Accuracy-Compression Trade-offs: The relationship between compression

and model calibration, particularly in PWFN, merits further study.

Investigating the potential for an optimal balance between compression,

computational efficiency, and model performance could yield valuable

insights.

124 Chapter 7. Discussion and Further Analysis

± Synergy with Other Compression Techniques: While this thesis focused

primarily on quantisation and weight-sharing, integrating our methods with

techniques such as pruning, neural architecture search, and low-rank

approximation could lead to more comprehensive compression frameworks.

± Application to Large Language Models: Adapting these techniques to the

scale of Large Language Models presents both significant challenges and

opportunities. This area of research could potentially address the growing

computational demands of these massive models.

± Practical Implementation of Uncertainty Estimation: Translating the

uncertainty estimation capabilities of our probabilistic approaches into

practical applications, particularly in safety-critical domains, remains an

important area for future work.

In conclusion, this thesis has contributed to the ongoing research in efficient and

reliable deep learning systems. By grounding our approach in the fundamental

principles of computational efficiency and data movement minimisation, we have

developed techniques that not only compress neural networks but also enhance

their interpretability and reliability.

The challenges that lie aheadÐfrom scaling these techniques to massive language

models to integrating them with specialised hardwareÐpresent significant

opportunities for future research. As the scale and complexity of deep learning

models continue to grow, the need for efficient, reliable, and interpretable systems

becomes increasingly critical. The principles and techniques introduced in this

thesis provide a foundation for addressing these challenges, potentially leading to

more scalable and efficient deep learning systems in the future.

125

Bibliography

D. Abts, J. Kim, G. Kimmell, M. Boyd, K. Kang, S. Parmar, A. Ling, A. Bitar,

I. Ahmed, and J. Ross. The groq software-defined scale-out tensor streaming

multiprocessor: From chips-to-systems architectural overview. In 2022 IEEE Hot

Chips 34 Symposium (HCS), pages 1±69. IEEE Computer Society, 2022.

D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman, and D. ManÂe.

Concrete problems in ai safety. arXiv preprint arXiv:1606.06565, 2016.

C. Banbury, C. Zhou, I. Fedorov, R. Matas, U. Thakker, D. Gope, V. Janapa Reddi,

M. Mattina, and P. Whatmough. Micronets: Neural network architectures for

deploying tinyml applications on commodity microcontrollers. Proceedings of

Machine Learning and Systems, 3:517±532, 2021.

E. Begoli, T. Bhattacharya, and D. Kusnezov. The need for uncertainty

quantification in machine-assisted medical decision making. Nature Machine

Intelligence, 1(1):20±23, 2019.

D. Berend, X. Xie, L. Ma, L. Zhou, Y. Liu, C. Xu, and J. Zhao. Cats are not fish:

Deep learning testing calls for out-of-distribution awareness. In Proceedings of

the 35th IEEE/ACM international conference on automated software engineering,

pages 1041±1052, 2020.

D. Blalock, J. J. G. Ortiz, J. Frankle, and J. Guttag. What is the State of Neural

Network Pruning? mar 2020. URL http://arxiv.org/abs/2003.03033.

C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra. Weight uncertainty in

neural networks. In 32nd Int. Conf. Mach. Learn. ICML 2015, volume 2, pages

1613±1622, 2015. ISBN 9781510810587.

A. Boroumand, S. Ghose, Y. Kim, R. Ausavarungnirun, E. Shiu, R. Thakur, D. Kim,

A. Kuusela, A. Knies, P. Ranganathan, et al. Google workloads for consumer

devices: Mitigating data movement bottlenecks. In Proceedings of the

Twenty-Third International Conference on Architectural Support for Programming

Languages and Operating Systems, pages 316±331, 2018.

G. W. Brier. Verification of forecasts expressed in terms of probability. Monthly

weather review, 78(1):1±3, 1950.

126 BIBLIOGRAPHY

S. Bulusu, B. Kailkhura, B. Li, P. K. Varshney, and D. Song. Anomalous example

detection in deep learning: A survey. IEEE Access, 8:132330±132347, 2020.

N. Carlini and D. Wagner. Towards evaluating the robustness of neural networks.

In 2017 IEEE Symposium on Security and Privacy (SP), pages 39±57. IEEE, 2017.

L. Cavigelli, D. Gschwend, C. Mayer, S. Willi, B. Muheim, and L. Benini. Origami:

A convolutional network accelerator. In Proceedings of the 25th edition on Great

Lakes Symposium on VLSI, pages 199±204, 2015.

A. Chavan, R. Magazine, S. Kushwaha, M. Debbah, and D. Gupta. Faster and

lighter llms: A survey on current challenges and way forward. arXiv preprint

arXiv:2402.01799, 2024.

T. Chen, Y. Sui, X. Chen, A. Zhang, and Z. Wang. A unified lottery ticket

hypothesis for graph neural networks. In International Conference on Machine

Learning, pages 1695±1706. PMLR, 2021.

Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu, N. Sun, et al.

Dadiannao: A machine-learning supercomputer. In 2014 47th Annual IEEE/ACM

International Symposium on Microarchitecture, pages 609±622. IEEE, 2014.

Y. Chen, Y. Xie, L. Song, F. Chen, and T. Tang. A Survey of Accelerator

Architectures for Deep Neural Networks. Engineering, 6(3):264±274, 2020. ISSN

20958099. . URL https://doi.org/10.1016/j.eng.2020.01.007.

Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze. Eyeriss: An energy-efficient

reconfigurable accelerator for deep convolutional neural networks. IEEE journal

of solid-state circuits, 52(1):127±138, 2016.

Y. H. Chen, T. Krishna, J. S. Emer, and V. Sze. Eyeriss: An Energy-Efficient

Reconfigurable Accelerator for Deep Convolutional Neural Networks. IEEE J.

Solid-State Circuits, 52(1):127±138, jan 2017. ISSN 00189200. .

Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze. Eyeriss v2: A flexible accelerator for

emerging deep neural networks on mobile devices. IEEE Journal on Emerging

and Selected Topics in Circuits and Systems, 9(2):292±308, 2019.

F. Chollet. Xception: Deep learning with depthwise separable convolutions. In

Proc. - 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017, 2017a. ISBN

9781538604571. .

F. Chollet. Xception: Deep learning with depthwise separable convolutions. In

Proc. - 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017, 2017b. ISBN

9781538604571. .

BIBLIOGRAPHY 127

M. Courbariaux, Y. Bengio, and J. P. David. Binaryconnect: Training deep neural

networks with binary weights during propagations. In Adv. Neural Inf. Process.

Syst., 2015.

D. Das, N. Mellempudi, D. Mudigere, D. Kalamkar, S. Avancha, K. Banerjee,

S. Sridharan, K. Vaidyanathan, B. Kaul, E. Georganas, et al. Mixed precision

training of convolutional neural networks using integer operations. arXiv

preprint arXiv:1802.00930, 2018.

E. Daxberger, E. Nalisnick, J. U. Allingham, J. AntorÂan, and J. M.

HernÂandez-Lobato. Bayesian deep learning via subnetwork inference. In

International Conference on Machine Learning, pages 2510±2521. PMLR, 2021.

E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus. Exploiting linear

structure within convolutional networks for efficient evaluation. In Advances in

neural information processing systems, pages 1269±1277, 2014.

R. Dorrance, F. Ren, and D. MarkoviÂc. A scalable sparse matrix-vector

multiplication kernel for energy-efficient sparse-blas on FPGAs. In ACM/SIGDA

Int. Symp. F. Program. Gate Arrays - FPGA, pages 161±169. Association for

Computing Machinery, 2014. ISBN 9781450326711. .

Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen, and

O. Temam. Shidiannao: Shifting vision processing closer to the sensor. In

Proceedings of the 42nd Annual International Symposium on Computer Architecture,

pages 92±104, 2015.

T. Elsken, J. H. Metzen, and F. Hutter. Neural architecture search: A survey. J.

Mach. Learn. Res., 2019. ISSN 15337928.

S. K. Esser, J. L. McKinstry, D. Bablani, R. Appuswamy, and D. S. Modha. Learned

Step Size Quantization. 8th Int. Conf. Learn. Represent. ICLR 2020, 2020. URL

http://arxiv.org/abs/1902.08153.

A. Fan, P. Stock, B. Graham, E. Grave, R. Gribonval, H. Jegou, and A. Joulin.

Training with Quantization Noise for Extreme Model Compression. 9th Int.

Conf. Learn. Represent. ICLR 2021 - Conf. Track Proc., apr 2021. URL

http://arxiv.org/abs/2004.07320.

V. Feldman and C. Zhang. What neural networks memorize and why:

Discovering the long tail via influence estimation. Advances in Neural

Information Processing Systems, 33:2881±2891, 2020.

Fireworks AI. Fireworks ai: Build and deploy large ai models, 2024. URL

https://fireworks.ai/.

128 BIBLIOGRAPHY

J. Frankle and M. Carbin. The lottery ticket hypothesis: Finding sparse, trainable

neural networks. In 7th Int. Conf. Learn. Represent. ICLR 2019, 2019.

J. Frankle, G. K. Dziugaite, D. M. Roy, and M. Carbin. Stabilizing the Lottery

Ticket Hypothesis. 2019. URL http://arxiv.org/abs/1903.01611.

E. Frantar, S. Ashkboos, T. Hoefler, and D. Alistarh. Gptq: Accurate post-training

quantization for generative pre-trained transformers. arXiv preprint

arXiv:2210.17323, 2022.

K. Fukushima and S. Miyake. Neocognitron: A Self-Organizing Neural Network

Model for a Mechanism of Visual Pattern Recognition. pages 267±285. Springer,

Berlin, Heidelberg, 1982. . URL

https://link.springer.com/chapter/10.1007/978-3-642-46466-9{_}18.

Y. Gal and Z. Ghahramani. Dropout as a bayesian approximation: Representing

model uncertainty in deep learning. In international conference on machine

learning, pages 1050±1059. PMLR, 2016.

Y. Gal, R. Islam, and Z. Ghahramani. Deep bayesian active learning with image

data. In International conference on machine learning, pages 1183±1192. PMLR,

2017.

Y. Gal et al. Uncertainty in deep learning. 2016.

T. Gale, M. Zaharia, C. Young, and E. Elsen. Sparse gpu kernels for deep learning.

In SC20: International Conference for High Performance Computing, Networking,

Storage and Analysis, pages 1±14. IEEE, 2020.

R. Gallager. Variations on a theme by huffman. IEEE Transactions on Information

Theory, 24(6):668±674, 1978.

J. Gawlikowski, C. R. N. Tassi, M. Ali, J. Lee, M. Humt, J. Feng, A. Kruspe,

R. Triebel, P. Jung, R. Roscher, et al. A survey of uncertainty in deep neural

networks. arXiv preprint arXiv:2107.03342, 2021.

S. Girish, S. R. Maiya, K. Gupta, H. Chen, L. S. Davis, and A. Shrivastava. The

lottery ticket hypothesis for object recognition. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pages 762±771, 2021.

J. Gou, B. Yu, S. J. Maybank, and D. Tao. Knowledge distillation: A survey.

International Journal of Computer Vision, 129(6):1789±1819, 2021.

A. Graves. Practical variational inference for neural networks. Advances in neural

information processing systems, 24, 2011.

Groq. What is an lpu? Whitepaper, Groq, 7 2024. URL https://wow.groq.com/

wp-content/uploads/2024/07/GroqThoughts_WhatIsALPU-vF.pdf.

BIBLIOGRAPHY 129

C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger. On calibration of modern neural

networks. In International Conference on Machine Learning, pages 1321±1330.

PMLR, 2017.

R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B. C. Lee,

S. Richardson, C. Kozyrakis, and M. Horowitz. Understanding sources of

inefficiency in general-purpose chips. In Proceedings of the 37th annual

international symposium on Computer architecture, pages 37±47, 2010.

S. Han, J. Pool, J. Tran, and W. Dally. Learning both weights and connections for

efficient neural network. In Advances in neural information processing systems,

pages 1135±1143, 2015a.

S. Han, J. Pool, J. Tran, and W. J. Dally. Learning both weights and connections for

efficient neural networks. In Adv. Neural Inf. Process. Syst., 2015b.

S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally. EIE:

Efficient Inference Engine on Compressed Deep Neural Network. feb 2016a.

URL http://arxiv.org/abs/1602.01528.

S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing deep neural

networks with pruning, trained quantization and huffman coding. arXiv

preprint arXiv:1510.00149, 2016b.

R. Hashemian. Design and hardware implementation of a memory efficient

huffman decoding. IEEE Transactions on Consumer Electronics, 40(3):345±352,

1994.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.

In Proceedings of the IEEE conference on computer vision and pattern recognition,

pages 770±778, 2016.

Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han. Amc: Automl for model

compression and acceleration on mobile devices. In Proceedings of the European

Conference on Computer Vision (ECCV), pages 784±800, 2018.

S. Hecker, D. Dai, and L. Van Gool. Failure prediction for autonomous driving. In

2018 IEEE Intelligent Vehicles Symposium (IV), pages 1792±1799. IEEE, 2018.

D. Hendrycks and K. Gimpel. A baseline for detecting misclassified and

out-of-distribution examples in neural networks. arXiv preprint

arXiv:1610.02136, 2016.

D. Hendrycks, K. Lee, and M. Mazeika. Using pre-training can improve model

robustness and uncertainty. In International Conference on Machine Learning,

pages 2712±2721. PMLR, 2019.

130 BIBLIOGRAPHY

D. Hendrycks, S. Basart, M. Mazeika, M. Mostajabi, J. Steinhardt, and D. Song.

Scaling out-of-distribution detection for real-world settings. arXiv preprint

arXiv:2104.14947, 2021.

P. Hennessy. A new golden age for computer architecture: Domain-specific

hardware/software co-design, enhanced security, open instruction sets, and

agile chip development. In 2018 ACM/IEEE 45th Annual International Symposium

on Computer Architecture (ISCA), pages 27±29, 2018. .

G. Hinton, O. Vinyals, and J. Dean. Distilling the Knowledge in a Neural Network.

pages 1±9, 2015. URL http://arxiv.org/abs/1503.02531.

M. Horowitz. 1.1 Computing’s energy problem (and what we can do about it). In

Dig. Tech. Pap. - IEEE Int. Solid-State Circuits Conf., 2014. ISBN 9781479909186. .

A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,

M. Andreetto, and H. Adam. MobileNet V1. arXiv Prepr. arXiv1704.04861, 2017.

ISSN 0004-6361. .

C. Huang, P. Liu, and L. Fang. Mxqn: Mixed quantization for reducing bit-width

of weights and activations in deep convolutional neural networks. Applied

Intelligence, 51(7):4561±4574, 2021.

G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. Densely connected

convolutional networks. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 4700±4708, 2017.

I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio. Binarized

neural networks. In Adv. Neural Inf. Process. Syst., 2016.

D. H. Hubel and T. N. Wiesel. Receptive fields, binocular interaction and

functional architecture in the cat’s visual cortex. J. Physiol., 160(1):106±154, jan

1962. ISSN 14697793. .

D. A. Huffman. A method for the construction of minimum-redundancy codes.

Proceedings of the IRE, 40(9):1098±1101, 1952.

P. R. Huttenlocher et al. Synaptic density in human frontal cortex-developmental

changes and effects of aging. Brain Res, 163(2):195±205, 1979.

F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally, and K. Keutzer.

SqueezeNet. arXiv, 2016.

N. N. C. S. IEEE and S. S. IEEE. IEEE-INNS International Joint Conference on

Neural Networks, Baltimore, 1992. page 4012, 1992.

BIBLIOGRAPHY 131

P. Izmailov, D. Podoprikhin, T. Garipov, D. Vetrov, and A. G. Wilson. Averaging

weights leads to wider optima and better generalization. Uncertainty in Artificial

Intelligence, pages 876±885, 2018.

B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam, and

D. Kalenichenko. Quantization and Training of Neural Networks for Efficient

Integer-Arithmetic-Only Inference. In Proc. IEEE Comput. Soc. Conf. Comput. Vis.

Pattern Recognit., pages 2704±2713, 2018. ISBN 9781538664209. .

Q. Jin, L. Yang, and Z. Liao. Adabits: Neural network quantization with adaptive

bit-widths. In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pages 2146±2156, 2020.

M. I. Jordan and T. M. Mitchell. Machine learning: Trends, perspectives, and

prospects. Science, 349(6245):255±260, 2015.

N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,

S. Bhatia, N. Boden, A. Borchers, R. Boyle, P. L. Cantin, C. Chao, C. Clark,

J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V. Ghaemmaghami, R. Gottipati,

W. Gulland, R. Hagmann, C. Richard Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt,

J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan, H. Khaitan, D. Killebrew, A. Koch,

N. Kumar, S. Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke,

A. Lundin, G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Nagarajan,

R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick, N. Penukonda,

A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani, C. Severn, G. Sizikov,

M. Snelham, J. Souter, D. Steinberg, A. Swing, M. Tan, G. Thorson, B. Tian,

H. Toma, E. Tuttle, V. Vasudevan, R. Walter, W. Wang, E. Wilcox, and D. H. Yoon.

In-datacenter performance analysis of a tensor processing unit. In Proc. - Int.

Symp. Comput. Archit., 2017a. ISBN 9781450348928. .

N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,

S. Bhatia, N. Boden, A. Borchers, et al. In-datacenter performance analysis of a

tensor processing unit. In Proceedings of the 44th annual international symposium

on computer architecture, pages 1±12, 2017b.

N. P. Jouppi, D. Hyun Yoon, M. Ashcraft, M. Gottscho, T. B. Jablin, G. Kurian,

J. Laudon, S. Li, P. Ma, X. Ma, T. Norrie, N. Patil, S. Prasad, C. Young, Z. Zhou,

and D. Patterson. Ten Lessons From Three Generations Shaped Google’s

TPUv4i : Industrial Product. 2021 ACM/IEEE 48th Annu. Int. Symp. Comput.

Archit., pages 1±14, jun 2021. . URL

https://ieeexplore.ieee.org/document/9499913/.

S. Jung, C. Son, S. Lee, J. Son, J. J. Han, Y. Kwak, S. J. Hwang, and C. Choi.

Learning to quantize deep networks by optimizing quantization intervals with

132 BIBLIOGRAPHY

task loss. In Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., 2019a.

ISBN 9781728132938. .

S. Jung, C. Son, S. Lee, J. Son, J.-J. Han, Y. Kwak, S. J. Hwang, and C. Choi.

Learning to quantize deep networks by optimizing quantization intervals with

task loss. In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pages 4350±4359, 2019b.

A. Jungo, R. Meier, E. Ermis, E. Herrmann, and M. Reyes. Uncertainty-driven

sanity check: application to postoperative brain tumor cavity segmentation.

arXiv preprint arXiv:1806.03106, 2018.

J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray,

A. Radford, J. Wu, and D. Amodei. Scaling laws for neural language models.

arXiv preprint arXiv:2001.08361, 2020.

S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco. Gpus and the

future of parallel computing. IEEE micro, 31(5):7±17, 2011.

A. Kendall and Y. Gal. What uncertainties do we need in bayesian deep learning

for computer vision? Advances in Neural Information Processing Systems, 30, 2017.

G. Kestor, R. Gioiosa, D. J. Kerbyson, and A. Hoisie. Quantifying the energy cost

of data movement in scientific applications. In 2013 IEEE international

symposium on workload characterization (IISWC), pages 56±65. IEEE, 2013.

D. P. Kingma and J. L. Ba. Adam: A method for stochastic optimization. In 3rd Int.

Conf. Learn. Represent. ICLR 2015 - Conf. Track Proc., 2015.

A. Kristiadi, M. Hein, and P. Hennig. Learnable uncertainty under laplace

approximations. In Uncertainty in Artificial Intelligence, pages 344±353. PMLR,

2021.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. 2012 AlexNet. Adv. Neural Inf.

Process. Syst., 2012. ISSN 10495258. .

H. Kwon, A. Samajdar, and T. Krishna. Maeri: Enabling flexible dataflow

mapping over dnn accelerators via reconfigurable interconnects. ACM

SIGPLAN Notices, 53(2):461±475, 2018.

B. Lakshminarayanan, A. Pritzel, and C. Blundell. Simple and scalable predictive

uncertainty estimation using deep ensembles. Advances in neural information

processing systems, 30, 2017.

S. Laughlin. A simple coding procedure enhances a neuron’s information capacity.

Zeitschrift f Èur Naturforschung c, 36(9-10):910±912, 1981.

BIBLIOGRAPHY 133

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and

L. D. Jackel. Backpropagation applied to handwritten zip code recognition.

Neural computation, 1(4):541±551, 1989.

Y. LeCun, J. S. Denker, and S. A. Solla. Optimal brain damage. In Adv. Neural Inf.

Process. Syst., pages 598±605, 1990.

J. Lee, C. Kim, S. Kang, D. Shin, S. Kim, and H.-J. Yoo. Unpu: An energy-efficient

deep neural network accelerator with fully variable weight bit precision. IEEE

Journal of Solid-State Circuits, 54(1):173±185, 2018.

J. Lee, D. Kim, and B. Ham. Network Quantization with Element-wise Gradient

Scaling. 2021. URL http://arxiv.org/abs/2104.00903.

N. Lee, T. Ajanthan, and P. H. Torr. SnIP: Single-shot network pruning based on

connection sensitivity. In 7th Int. Conf. Learn. Represent. ICLR 2019, 2019.

H. Li, B. Gao, Z. Chen, Y. Zhao, P. Huang, H. Ye, L. Liu, X. Liu, and J. Kang. A

learnable parallel processing architecture towards unity of memory and

computing. Sci. Rep., 2015. ISSN 20452322. .

H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf. Pruning filters for

efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

Y. Li, S. Xu, B. Zhang, X. Cao, P. Gao, and G. Guo. Q-vit: Accurate and fully

quantized low-bit vision transformer. Advances in Neural Information Processing

Systems, 35:34451±34463, 2022.

J. Lin, Y. Rao, J. Lu, and J. Zhou. Runtime neural pruning. In Adv. Neural Inf.

Process. Syst., 2017.

J. Lin, W.-M. Chen, Y. Lin, C. Gan, S. Han, et al. Mcunet: Tiny deep learning on iot

devices. Advances in Neural Information Processing Systems, 33:11711±11722,

2020a.

J. Lin, J. Tang, H. Tang, S. Yang, W.-M. Chen, W.-C. Wang, G. Xiao, X. Dang,

C. Gan, and S. Han. Awq: Activation-aware weight quantization for on-device

llm compression and acceleration. Proceedings of Machine Learning and Systems, 6:

87±100, 2024.

T. Lin, L. Barba, and M. Jaggi. Dynamic Model Pruning with Fre. ICLR, 2020b.

M. Liu, T.-D. Ene, R. Kirby, C. Cheng, N. Pinckney, R. Liang, J. Alben, H. Anand,

S. Banerjee, I. Bayraktaroglu, et al. Chipnemo: Domain-adapted llms for chip

design. arXiv preprint arXiv:2311.00176, 2023.

134 BIBLIOGRAPHY

Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang. Learning Efficient

Convolutional Networks through Network Slimming. In Proc. IEEE Int. Conf.

Comput. Vis., 2017. ISBN 9781538610329. .

E. S. Lubana and R. P. Dick. A Gradient Flow Framework For Analyzing Network

Pruning. pages 1±18, 2020. URL http://arxiv.org/abs/2009.11839.

S. Ma, H. Wang, L. Ma, L. Wang, W. Wang, S. Huang, L. Dong, R. Wang, J. Xue,

and F. Wei. The era of 1-bit llms: All large language models are in 1.58 bits.

arXiv preprint arXiv:2402.17764, 2024.

D. J. C. Mackay. Bayesian methods for adaptive models. California Institute of

Technology, 1992.

W. J. Maddox, P. Izmailov, T. Garipov, D. P. Vetrov, and A. G. Wilson. A simple

baseline for bayesian uncertainty in deep learning. Advances in neural

information processing systems, 32, 2019.

H. Mao and W. J. Dally. Deep Compression: Compressing Deep Neural. 4th Int.

Conf. Learn. Represent. ICLR, 2016a.

H. Mao and W. J. Dally. Deep Compression: Compressing Deep Neural. Iclr 2016,

pages 1±14, 2016b. URL https://arxiv.org/abs/1510.00149.

R. McAllister, Y. Gal, A. Kendall, M. Van Der Wilk, A. Shah, R. Cipolla, and

A. Weller. Concrete problems for autonomous vehicle safety: Advantages of

bayesian deep learning. In Proceedings of the Twenty-Sixth International Joint

Conference on Artificial Intelligence. International Joint Conferences on Artificial

Intelligence Organization, 2017.

L. McInnes, J. Healy, and J. Melville. Umap: Uniform manifold approximation

and projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

S. A. McKee and R. W. Wisniewski. Memory Wall, pages 1110±1116. Springer US,

Boston, MA, 2011. ISBN 978-0-387-09766-4. . URL

https://doi.org/10.1007/978-0-387-09766-4_234.

Meta AI. Llama 3.1: Open foundation and fine-tuned chat models, 2024. URL

https://ai.meta.com/blog/meta-llama-3-1/.

L. Mi, H. Wang, Y. Tian, and N. Shavit. Training-free uncertainty estimation for

neural networks. 2019.

A. Moffat. Huffman coding. ACM Computing Surveys (CSUR), 52(4):1±35, 2019.

P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz. Pruning Convolutional

Neural Networks for Resource Efficient Inference. nov 2016. URL

http://arxiv.org/abs/1611.06440.

BIBLIOGRAPHY 135

P. Molchanov, A. Mallya, S. Tyree, I. Frosio, and J. Kautz. Importance Estimation

for Neural Network Pruning. jun 2019a. URL

http://arxiv.org/abs/1906.10771.

P. Molchanov, A. Mallya, S. Tyree, I. Frosio, and J. Kautz. Importance estimation

for neural network pruning. In Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,

pages 11264±11272, 2019b.

B. Moons and M. Verhelst. A 0.3-2.6 TOPS/W precision-scalable processor for

real-time large-scale ConvNets. IEEE Symp. VLSI Circuits, Dig. Tech. Pap.,

2016-Septe:1±2, 2016a. .

B. Moons and M. Verhelst. A 0.3±2.6 tops/w precision-scalable processor for

real-time large-scale convnets. In 2016 IEEE Symposium on VLSI Circuits

(VLSI-Circuits), pages 1±2. IEEE, 2016b.

G. E. Moore. Cramming more components onto integrated circuits. Proceedings of

the IEEE, 86(1):82±85, 1998.

A. S. Morcos, H. Yu, M. Paganini, and Y. Tian. One ticket to win them all:

generalizing lottery ticket initializations across datasets and optimizers.

(NeurIPS), 2019. URL http://arxiv.org/abs/1906.02773.

K. Muhammad, A. Ullah, J. Lloret, J. Del Ser, and V. H. C. de Albuquerque. Deep

learning for safe autonomous driving: Current challenges and future directions.

IEEE Transactions on Intelligent Transportation Systems, 22(7):4316±4336, 2020.

M. P. Naeini, G. Cooper, and M. Hauskrecht. Obtaining well calibrated

probabilities using bayesian binning. In Proceedings of the AAAI conference on

artificial intelligence, volume 29, 2015.

M. Naumov, L. Chien, P. Vandermersch, and U. Kapasi. Cusparse library. In GPU

Technology Conference, 2010.

R. M. Neal. Bayesian learning for neural networks, volume 118. Springer Science &

Business Media, 2012.

A. Niculescu-Mizil and R. Caruana. Predicting good probabilities with supervised

learning. In Proceedings of the 22nd international conference on Machine learning,

pages 625±632, 2005.

NVIDIA. NVDLA Primer Ð NVDLA Documentation, 2018. URL

http://nvdla.org/primer.htmlhttp://nvdla.org/primer.html{%}0Ahttp:

//nvdla.org/hw/v1/ias/unit{_}description.html.

S. Oh, H. Sim, S. Lee, and J. Lee. Automated Log-Scale Quantization for Low-Cost

Deep Neural Networks. Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,

2021a.

136 BIBLIOGRAPHY

S. Oh, H. Sim, S. Lee, and J. Lee. Automated log-scale quantization for low-cost

deep neural networks. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 742±751, 2021b.

I. Osband, C. Blundell, A. Pritzel, and B. Van Roy. Deep exploration via

bootstrapped dqn. Advances in neural information processing systems, 29, 2016.

Y. Ovadia, E. Fertig, J. Ren, Z. Nado, D. Sculley, S. Nowozin, J. Dillon,

B. Lakshminarayanan, and J. Snoek. Can you trust your model’s uncertainty?

evaluating predictive uncertainty under dataset shift. Advances in Neural

Information Processing Systems, 32, 2019.

D. Pandiyan and C.-J. Wu. Quantifying the energy cost of data movement for

emerging smart phone workloads on mobile platforms. In 2014 IEEE

International Symposium on Workload Characterization (IISWC), pages 171±180.

IEEE, 2014.

A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan, B. Khailany, J. Emer,

S. W. Keckler, and W. J. Dally. Scnn: An accelerator for compressed-sparse

convolutional neural networks. ACM SIGARCH computer architecture news, 45

(2):27±40, 2017.

T. Pearce, A. Brintrup, M. Zaki, and A. Neely. High-quality prediction intervals

for deep learning: A distribution-free, ensembled approach. In International

conference on machine learning, pages 4075±4084. PMLR, 2018.

H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean. Efficient neural architecture

search via parameters sharing. In International conference on machine learning,

pages 4095±4104. PMLR, 2018.

M. A. Pimentel, D. A. Clifton, L. Clifton, and L. Tarassenko. A review of novelty

detection. Signal Processing, 99:215±249, 2014.

J. Platt et al. Probabilistic outputs for support vector machines and comparisons to

regularized likelihood methods. Advances in large margin classifiers, 10(3):61±74,

1999.

M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. XNOR-net: Imagenet

classification using binary convolutional neural networks. Lect. Notes Comput.

Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), 9908

LNCS:525±542, 2016. ISSN 16113349. .

B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee, J. Miguel

HernÂandez-Lobato, G.-Y. Wei, and D. Brooks. Minerva: Enabling Low-Power,

Highly-Accurate Deep Neural Network Accelerators. Technical report.

BIBLIOGRAPHY 137

M. T. Ribeiro, S. Singh, and C. Guestrin. º why should i trust you?º explaining the

predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD

international conference on knowledge discovery and data mining, pages 1135±1144,

2016.

A.-J. Rousseau, T. Becker, J. Bertels, M. B. Blaschko, and D. Valkenborg. Post

training uncertainty calibration of deep networks for medical image

segmentation. In 2021 IEEE 18th International Symposium on Biomedical Imaging

(ISBI), pages 1052±1056. IEEE, 2021.

N. Roy and A. McCallum. Toward optimal active learning through monte carlo

estimation of error reduction. ICML, Williamstown, 2:441±448, 2001.

L. Ruff, J. R. Kauffmann, R. A. Vandermeulen, G. Montavon, W. Samek, M. Kloft,

T. G. Dietterich, and K.-R. M Èuller. Unifying review of deep and shallow

anomaly detection. Proceedings of the IEEE, 109(5):756±795, 2021.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by

back-propagating errors. nature, 323(6088):533±536, 1986.

E. Sackinger, B. E. Boser, J. Bromley, Y. LeCun, and L. D. Jackel. Application of the

ANNA Neural Network Chip to High-Speed Character Recognition, 1992. ISSN

19410093.

N. Sato and W. Tinney. Techniques for exploiting the sparsity or the network

admittance matrix. IEEE Transactions on Power Apparatus and Systems, 82(69):

944±950, 1963.

A. Sebastian, M. Le Gallo, R. Khaddam-Aljameh, and E. Eleftheriou. Memory

devices and applications for in-memory computing, 2020. ISSN 17483395.

B. Settles. From theories to queries: Active learning in practice. In Active learning

and experimental design workshop in conjunction with AISTATS 2010, pages 1±18.

JMLR Workshop and Conference Proceedings, 2011.

C. E. Shannon. A Mathematical Theory of Communication. Bell Syst. Tech. J., 27(3):

379±423, 1948a. ISSN 15387305. .

C. E. Shannon. A mathematical theory of communication. The Bell system technical

journal, 27(3):379±423, 1948b.

H. Sharma, J. Park, N. Suda, L. Lai, B. Chau, J. K. Kim, V. Chandra, and

H. Esmaeilzadeh. Bit fusion: Bit-level dynamically composable architecture for

accelerating deep neural network. In 2018 ACM/IEEE 45th Annual International

Symposium on Computer Architecture (ISCA), pages 764±775. IEEE, 2018.

138 BIBLIOGRAPHY

M. Sharma, S. Farquhar, E. Nalisnick, and T. Rainforth. Do bayesian neural

networks need to be fully stochastic? In International Conference on Artificial

Intelligence and Statistics, pages 7694±7722. PMLR, 2023.

L. Smith and Y. Gal. Understanding measures of uncertainty for adversarial

example detection. arXiv preprint arXiv:1803.08533, 2018.

G. Stix. Encoding theneatness’ of ones and zeroes. Scientific American, 265(3):

54±55, 1991.

P. Stock, A. Joulin, R. Gribonval, B. Graham, and H. JÂegou. And the bit goes down:

Revisiting the quantization of neural networks, 2020. ISSN 23318422.

C. Subia-Waud and S. Dasmahapatra. Weight fixing networks. In European

Conference on Computer Vision, pages 415±431. Springer, 2022.

V. Sze, Y.-H. Chen, T.-J. Yang, and J. Emer. Efficient Processing of Deep Neural

Networks: A Tutorial and Survey. mar 2017. URL

http://arxiv.org/abs/1703.09039.

V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer. Efficient Processing of Deep Neural

Networks. Synth. Lect. Comput. Archit., 2020. ISSN 1935-3235. .

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,

V. Vanhoucke, and A. Rabinovich. GoogLeNet. Proc. IEEE Comput. Soc. Conf.

Comput. Vis. Pattern Recognit., 2014. ISSN 10636919. .

N. Tagasovska and D. Lopez-Paz. Single-model uncertainties for deep learning.

Advances in Neural Information Processing Systems, 32, 2019.

M. Tan and Q. V. Le. EfficientNet: Rethinking Model Scaling for Convolutional

Neural Networks. may 2019. URL http://arxiv.org/abs/1905.11946.

M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard, and Q. V. Le.

Mnasnet: Platform-aware neural architecture search for mobile. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages

2820±2828, 2019.

E. Tartaglione, S. Lathuilière, A. Fiandrotti, M. Cagnazzo, and M. Grangetto.

HEMP: High-order Entropy Minimization for neural network comPression.

2021. . URL http://arxiv.org/abs/2107.05298{%}0Ahttp:

//dx.doi.org/10.1016/j.neucom.2021.07.022.

G. Z. Tau and B. S. Peterson. Normal development of brain circuits.

Neuropsychopharmacology, 35(1):147±168, 2010.

BIBLIOGRAPHY 139

J. Tian, C. Rivera, S. Di, J. Chen, X. Liang, D. Tao, and F. Cappello. Revisiting

huffman coding: Toward extreme performance on modern gpu architectures.

IEEE International Parallel and Distributed Processing Symposium (IPDPS), pages

1±11, 2021.

H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and H. JÂegou. Training

data-efficient image transformers & distillation through attention. In

International conference on machine learning, pages 10347±10357. PMLR, 2021.

UnslothAI. Unsloth: A pytorch library for implementing various machine

learning models and algorithms. https://github.com/unslothai/unsloth,

2024. Accessed: 2024-10-05.

J. Vaicenavicius, D. Widmann, C. Andersson, F. Lindsten, J. Roll, and T. SchÈon.

Evaluating model calibration in classification. In The 22nd International

Conference on Artificial Intelligence and Statistics, pages 3459±3467. PMLR, 2019.

L. Van der Maaten and G. Hinton. Visualizing data using t-sne. Journal of machine

learning research, 9(11), 2008.

K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han. Haq: Hardware-aware automated

quantization with mixed precision. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 8612±8620, 2019.

T. A. Welch. A technique for high-performance data compression. Computer, 17

(06):8±19, 1984.

M. Welling and Y. W. Teh. Bayesian learning via stochastic gradient langevin

dynamics. In Proceedings of the 28th international conference on machine learning

(ICML-11), pages 681±688, 2011.

S. Wold, K. Esbensen, and P. Geladi. Principal component analysis. Chemometrics

and intelligent laboratory systems, 2(1-3):37±52, 1987.

J. Wu, Y. Wang, Z. Wu, Z. Wang, A. Veeraraghavan, and Y. Lin. Deep κ-means:

Re-training and parameter sharing with harder cluster assignments for

compressing deep convolutions. 35th Int. Conf. Mach. Learn. ICML 2018, 12:

8523±8532, 2018.

K. Yamamoto. Learnable Companding Quantization for Accurate Low-bit Neural

Networks. pages 5029±5038, 2021. URL http://arxiv.org/abs/2103.07156.

J. Yang, K. Zhou, Y. Li, and Z. Liu. Generalized out-of-distribution detection: A

survey. arXiv preprint arXiv:2110.11334, 2021.

T. J. Yang, Y. H. Chen, and V. Sze. Designing energy-efficient convolutional neural

networks using energy-aware pruning. In Proc. - 30th IEEE Conf. Comput. Vis.

Pattern Recognition, CVPR 2017, 2017a. ISBN 9781538604571. .

140 BIBLIOGRAPHY

T.-J. Yang, Y.-H. Chen, and V. Sze. Designing energy-efficient convolutional neural

networks using energy-aware pruning. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 5687±5695, 2017b.

H. Yoshizawa and D. Takahashi. Automatic tuning of sparse matrix-vector

multiplication for CRS format on GPUs. In Proc. - 15th IEEE Int. Conf. Comput.

Sci. Eng. CSE 2012 10th IEEE/IFIP Int. Conf. Embed. Ubiquitous Comput. EUC 2012,

2012. ISBN 9780769549149. .

H. Yu, S. Edunov, Y. Tian, and A. S. Morcos. Playing the lottery with rewards and

multiple languages: lottery tickets in RL and NLP. 2019. URL

http://arxiv.org/abs/1906.02768.

X. Yu, T. Liu, X. Wang, and D. Tao. On compressing deep models by low rank and

sparse decomposition. Proc. - 30th IEEE Conf. Comput. Vis. Pattern Recognition,

CVPR 2017, 2017-Janua:67±76, 2017. .

Z. Yu, Y. Shi, T. Huang, and Y. Yu. Kernel Quantization for Efficient Network

Compression. 2020. URL http://arxiv.org/abs/2003.05148.

W. W. Yuhang Li, Xin Dong. Additive Powers-of-Two Quantization: an Efficient

Non-Uniform Discretization for Neural Networks. Iclr, (2014):2016±2019, 2020.

URL https://openreview.net/pdf?id=BkgXT24tDS.

D. Zhang, J. Yang, D. Ye, and G. Hua. LQ-Nets: Learned quantization for highly

accurate and compact deep neural networks. In Lect. Notes Comput. Sci.

(including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), volume 11212

LNCS, pages 373±390, 2018. ISBN 9783030012366. . URL

https://github.com/Microsoft/LQ-Nets.

S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen, and Y. Chen.

Cambricon-x: An accelerator for sparse neural networks. In 2016 49th Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 1±12.

IEEE, 2016.

S. Zheng, Y. Shen, C. Zhu, J. Wen, Q. Yu, and X. Liu. Out-of-distribution detection

for reliable reinforcement learning. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 2020.

A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen. Incremental network quantization:

Towards lossless cnns with low-precision weights, 2017.

H. Zhou, J. Lan, R. Liu, and J. Yosinski. Deconstructing Lottery Tickets: Zeros,

Signs, and the Supermask. (NeurIPS), 2019. URL

http://arxiv.org/abs/1905.01067.

BIBLIOGRAPHY 141

S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou. DoReFa-Net: Training Low

Bitwidth Convolutional Neural Networks with Low Bitwidth Gradients. jun

2016a. URL http://arxiv.org/abs/1606.06160.

S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou. Dorefa-net: Training low

bitwidth convolutional neural networks with low bitwidth gradients. arXiv

preprint arXiv:1606.06160, 2016b.

B. Zoph and Q. V. Le. Neural architecture search with reinforcement learning.

arXiv preprint arXiv:1611.01578, 2016.

	List of Figures
	List of Tables
	Acknowledgements
	1 Introduction
	2 Background
	2.1 Costs and Opportunities
	2.1.1 The Convolution Layer
	2.1.2 The Three Key Properties
	2.1.3 Layered Input-Output Neuronal Hierarchy
	2.1.4 Weight Sparsity
	2.1.5 Re-use Opportunities

	2.2 Hardware for Deep Learning Inference
	2.2.1 Temporal Architecture
	2.2.1.1 Optimisation Strategies within Temporal Architectures

	2.2.2 Spatial Architectures: A New Paradigm for DNN Inference
	2.2.3 Compressed Representations

	2.3 Hardware Realisation of Weight Compression
	2.3.0.1 Huffman Coding

	2.4 Algorithmic Approaches
	2.4.1 Pruning
	2.4.1.1 Lottery Ticket Hypothesis

	2.4.2 Quantisation
	2.4.3 Architecture Improvements
	2.4.4 Architecture Search
	2.4.5 Student-teacher

	2.5 Algorithm:Hardware co-design

	3 Weight Fixing Networks
	3.1 Single Codebook
	3.1.1 Unquantised Elements
	3.1.2 WFN Objectives
	3.1.3 Overview
	3.1.4 Small Relative Distance Change.

	3.2 Method
	3.2.1 Method Outline.
	3.2.2 Clustering Stage.
	3.2.3 Generating the Proposed Cluster Centres.
	3.2.4 Reducing k with Additive Powers-of-two Approximations.
	3.2.5 Minimalist Clustering.
	3.2.6 Training Stage.
	3.2.7 Cosying up to Clusters.

	3.3 Experiment Details
	3.4 Results
	3.5 Additional Analysis
	3.5.1 Layerwise Breakdown
	3.5.2 A Full Metric Comparison
	3.5.3 Pruning Experiments

	3.6 Conclusion

	4 Probabilistic Weight Fixing
	4.1 An Introduction of Ideas
	4.1.1 High-level BNN
	4.1.2 The Two Problems to Solve
	4.1.2.1 Problem One: Modelling
	4.1.2.2 Problem Two: Utilising What We Learn

	4.2 Background on Bayesian Neural Networks
	4.2.1 Origins of Bayesian Neural Networks
	4.2.2 Challenges and Conceptual Shifts
	4.2.3 Advantages of Bayesian Approaches
	4.2.4 Contemporary Research Trends
	4.2.5 Variational BNNs

	4.3 Probabilistic Weight Fixing Networks
	4.3.1 High Level Overview
	4.3.2 PWFN Training
	4.3.3 Large bold0mu mumu false constraint for bold0mu mumu wwfalsewwww .
	4.3.4 Initialization using Relative Distance from Powers-of-two.
	4.3.5 PWFN Clustering.
	4.3.6 Putting it All Together.
	4.3.7 WFN to PWFN
	4.3.7.1 The Proposal Set

	4.3.8 On the Measure of Distance
	4.3.9 To Prune or Not to Prune
	4.3.9.1 The Highlighted Changes

	4.4 Experiments
	4.5 Results
	4.5.1 Entropy Values by Layer
	4.5.2 Distance Measures Compared

	4.6 Conclusion

	5 Towards On-The-Fly Clustering in Weight Fixing Networks
	5.1 On-The-Fly Clustering Approach (COF-PWFN)
	5.2 Method
	5.2.1 Defining Close Proximity
	5.2.2 Clustering Conditions
	5.2.3 Selecting Clusters

	5.3 Algorithm
	5.4 Experiments and Results
	5.4.1 Hyperparameter Exploration
	5.4.2 ImageNet Results

	6 Uncertainty Estimations of BWFN
	6.0.1 The Landscape of Uncertainty Estimations
	6.0.1.1 Uncertainty Estimation in Deep Learning

	6.1 Evaluation Metrics
	6.1.0.1 Brier Score
	6.1.1 Reliability Diagrams
	6.1.2 Maximum Calibration Error (MCE)
	6.1.3 Expected Calibration Error (ECE)

	6.2 Experiments
	6.2.1 Experimental Setup

	6.3 Results
	6.3.1 Projections

	6.4 Compression Vs Calibration
	6.5 Out-of-distribution
	6.5.1 Understanding the Need for OOD Metrics
	6.5.2 Studying OOD Metrics within PWFN
	6.5.3 OOD Experimentation with PWFN
	6.5.3.1 Entropy of Probabilities
	6.5.3.2 Standard Deviation Thresholding
	Visualisation and Interpretation

	6.5.4 Experiment Results and Discussion

	6.6 Conclusion

	7 Discussion and Further Analysis
	7.1 The Thesis Contributions
	7.2 Implications and Future Directions
	7.2.1 Hardware Constraints and Data Movement Costs
	7.2.2 Hardware Realisation of WFN
	7.2.2.1 Codebook-Based Architecture
	7.2.2.2 Huffman Encoding for Weight Indices
	7.2.2.3 Power-of-Two Optimisations
	7.2.2.4 Whole-Network Shared Codebook
	7.2.2.5 Memory-Efficient Implementation

	7.2.3 Uncertainty Estimation in Safety-Critical Applications
	7.2.4 Exploring Accuracy-Compression Trade-offs
	7.2.5 Integration with Other Approaches
	7.2.6 Adapting to Emerging Architectures

	7.3 Conclusion

	Bibliography

