UNIVERSITY OF SOUTHAMPTON

Faculty of Engineering and Physical Science
School of Electronics and Computer Science

An Investigation into Weight Fixing
Networks

by
Christopher Subia-Waud

Doctor of Philosophy Thesis

May 2025






Contents

List of Figures

List of Tables
Acknowledgements
1 Introduction

2 Background

21 Costsand Opportunities . . . . ... ... ... .. ... ... ...,
211 The ConvolutionLayer . ... ....................
2.1.2 The Three Key Properties . . .. .. .. ... .. ... .......
2.1.3 Layered Input-Output Neuronal Hierarchy . . . . ... ... ...
214 WeightSparsity . . . .. ... ... ... ... . o o L
2.1.5 Re-use Opportunities. . . . .. ... ... . .............
2.2 Hardware for Deep Learning Inference . . . .. .. ... .........
221 Temporal Architecture . . . . . ... ... ... . o L
22.1.1 Optimisation Strategies within Temporal Architectures
2.2.2  Spatial Architectures: A New Paradigm for DNN Inference
223 Compressed Representations . . . .. ... .............
2.3 Hardware Realisation of Weight Compression . . .. ... ... .. ...
2301 HuffmanCoding. .. ... ... ... ... ..... ...
2.4 Algorithmic Approaches . . . . .. ...... ... .. .. .......
241 Pruning . ... ... ..
2411 Lottery Ticket Hypothesis . . . ... ... ........
242 Quantisation . . . ... ... e
2.4.3 Architecture Improvements . . . . ... ... L L
244 ArchitectureSearch . . . .. ... ... .. o o0 oL
245 Student-teacher . . . .. .. ... ... L oL
2.5 Algorithm:Hardware co-design . . . . . .. ... ... .. ... ......

Weight Fixing Networks

3.1 SingleCodebook . ... ............ ... ... ... .. ...
3.1.1 Unquantised Elements . . . ... ...................
312 WENObjectives . . . . ... ... ... ... .. ... ...
313 Overview . . . . . ... e e e
3.14 Small Relative Distance Change. . . . . . ... ... ... .....

32 Method . . . . . . . . .. e

O 0 00 O U1 Ul

10
11
12
14
14
17
18
19
22
23
25
26
31
32
32
33



iv CONTENTS

321 Method Outline. . . ... ... ...... .. ............ 41

322 ClusteringStage. . . .. .. ... ... .. ... .. ... ... 43

3.2.3 Generating the Proposed Cluster Centres. . . . . .. ... ..... 43

3.24 Reducing k with Additive Powers-of-two Approximations.. . . . 44

3.25 Minimalist Clustering. . . . . ... ... ... ............ 44

3.2.6 TrainingStage. . ... .. .. ... .. ... ... .. ... . 46

327 CosyinguptoClusters. . ... ...... ... ............ 46

3.3 ExperimentDetails . . ... .. ... ... ... ... ... .. ... ... 47
34 Results . . ... ... 47
3.5 Additional Analysis . . . . ... ... . oo 50
3.5.1 Layerwise Breakdown . . ... ... .. ... .. .. ... .. ... 50

3.5.2 AFull MetricComparison . . . . .. ................. 50

3.5.3 Pruning Experiments. . . . ... ... ................ 52

36 Conclusion . . . .. ... ... .. 52
4 Probabilistic Weight Fixing 55
4.1 AnlIntroductionofldeas . . . ... ... ... ... ... . ... ... 55
411 High-level BNN. .. ... ... ... ... ... .. .. ...... 56

412 TheTwoProblemstoSolve . . ... ... ... .. ......... 58
4121 Problem One: Modelling . .. ............... 59

4122 Problem Two: Utilising What We Learn . . . . . . .. .. 60

42 Background on Bayesian Neural Networks . . .. ... ... ....... 60
42.1 Origins of Bayesian Neural Networks . . . . ... ... ... ... 61

42.2 Challenges and Conceptual Shifts . . . .. ... ... ....... 61

42.3 Advantages of Bayesian Approaches . . . . . . ... ... ... .. 61

424 Contemporary ResearchTrends . . . . . ... ............ 62

425 Variational BNNs . . . . ... ... .. ... ... .. .. 62

4.3 Probabilistic Weight Fixing Networks . . . ... ... ... ... ..... 64
431 HighLevelOverview . .. ... ................... 64

432 PWFNTraining . . . ... ... ... ... .. ... ........ 65

433 Largeo constraintforw. . ................. .. ... 66

434 Initialization using Relative Distance from Powers-of-two. . . . . 67

435 PWENClustering. . . ... ... ... .. ... .. ....... 69

43.6 Puttingit All Together. . . . . . ... ... ... ... ...... 71

437 WENtoPWEN ... ... ... . .. .. .. .. . 72
4371 TheProposalSet . ... ................... 72

43.8 Onthe Measure of Distance . . . .. ... .............. 73

439 ToPruneorNottoPrune . ...................... 73
439.1 The Highlighted Changes . . . . . ... .......... 74

44 Experiments . . .. ... ... o e 74
45 Results . . ... ... 76
451 Entropy ValuesbyLayer. . ... .. ... .............. 78

452 Distance Measures Compared . . ... ............... 79

46 Conclusion . . . ... ... ... 80
5 Towards On-The-Fly Clustering in Weight Fixing Networks 81

51 On-The-Fly Clustering Approach (COF-PWEN) . .. ... ... ... .. 82



CONTENTS v
52 Method . . . . . . . 84
52.1 Defining Close Proximity . . . . . ... ... ... ... ....... 85

522 Clustering Conditions . . . ... .. .. ... ............ 85

523 SelectingClusters . . . . .. ........ .. ... . ... ..., 86

53 Algorithm . . ... ... ... ... . 87
54 ExperimentsandResults . . . . . ....... ... ... .. ... . ... 89
5.4.1 Hyperparameter Exploration . . . ... ... ... ......... 89

542 ImageNetResults. ... .. ... .. ... .. ... ... .... 90

6 Uncertainty Estimations of BWFN 95
6.0.1 The Landscape of Uncertainty Estimations . . ... ... ... .. 95
6.0.1.1 Uncertainty Estimation in Deep Learning . . . ... .. 96

6.1 Evaluation Metrics . . . . . . . . . ... .. 98
6.1.0.1 BrierScore . . . ... ... ... 98

6.1.1 Reliability Diagrams . . . . .. ... .. ... .. .......... 99

6.1.2 Maximum Calibration Error  MCE) . . .. ... ... ... ... .. 101

6.1.3 Expected Calibration Error (ECE) . . . . . ... ... ... ... .. 101

6.2 Experiments . . ... ... ... ... ... ... 102
6.2.1 ExperimentalSetup. . ... ... ... .. ... ... ... 103

6.3 Results . .. ... ... . . .. 103
6.3.1 Projections . . .. ... ... .. ... ... 105

6.4 Compression Vs Calibration . . . . ... ... ... ... ....... 108
6.5 Out-of-distribution . . . . ... ... ... ... 110
6.5.1 Understanding the Need for OOD Metrics . . . ... ... .... 110

6.5.2 Studying OOD Metrics within PWEN . . . .. ... ... ..... 111

6.5.3 OOD Experimentation withPWFN . . . ... ... ........ 112
6.5.3.1 Entropy of Probabilities . . . . . .. ... ... ...... 112

6.5.3.2 Standard Deviation Thresholding . . . . .. ... .. .. 112
Visualisation and Interpretation . . ... ... . ... ... 112

6.5.4 Experiment Results and Discussion . . . ... ... ... ..... 113

6.6 Conclusion . . . . ... ... .. .. 115
7 Discussion and Further Analysis 117
7.1 The Thesis Contributions . . . . . . .. ... ... ... ... ........ 117
7.2 Implications and Future Directions . . . . . ... ... ... ........ 118
7.2.1 Hardware Constraints and Data Movement Costs . . . . ... .. 118

7.2.2 Hardware Realisationof WFN . . . . ... ... ... ....... 118
7221 Codebook-Based Architecture . . . ... ... ...... 119

7.2.2.2  Huffman Encoding for Weight Indices . . . ... .. .. 119

7223 Power-of-Two Optimisations . . . . . .. ... ... ... 119

7224 Whole-Network Shared Codebook . . . ... ... ... 120

7225 Memory-Efficient Implementation. . . . .. . ... ... 120

7.2.3  Uncertainty Estimation in Safety-Critical Applications . . . . .. 120

7.24 Exploring Accuracy-Compression Trade-offs . . . . . ... .. .. 121

7.2.5 Integration with Other Approaches . . .. ... ... ... ... .. 122

7.2.6  Adapting to Emerging Architectures . . . . . . ... ... ... .. 122

73 Conclusion . . . . ... . ... 123



vi

CONTENTS

Bibliography

125



Vii

List of Figures

2.1
2.2
23
24
25

3.1

3.2
3.3
34
3.5
3.6
3.7
3.8

41
4.2
4.3
44
4.5
4.6
4.7
4.8
49
4.10

5.1
52

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

Temporal vs. Spatial Architectures . . . .. ... ... .... ... .... 12
Tilling Matrix Multiplications . . . . . .. .. ... ... ... ....... 13
A Schematic of Common Dataflow Mappings in Accelerators . . . . .. 15
Types of Quantisation. . . . ... ...... ... ... . ... .. ... 28
Clip-and-scale quantisation . . .. .. ... ... ... ... ....... 29
How Many Parameters are Not Quantised By traditional Methods and

Why Relative Distance Matters. . . . . ... ................. 38
WEN Noise Experiments . . . . ... ..................... 40
The Weight Fixing Network Pipeline Overview . . . . ... ... ... .. 42
Accuracy vs Model Size Trade-off . . . . . .. ........... .. ... 43
Approximating Clusters ¢, € C° with Different Orders forb =7 . . . . . 45
Exploring the WEN process for the ImageNet dataset . . . ... ... .. 48
Unique Parameter Count WEN vs APoT . . . . .. ... .......... 51
The Interaction of Pruningand WEN . . . . ... ... ... .. ..... 52
Bayesian Networks vs Traditional . . . . . ... ... ... .. ....... 55
WEN Noise Experiments reexamine . . . ... ... ... ......... 56
A set of possible weight distributions . . . . ... ... .. 0 000 57
Weight distributions with differentcvalues . . . . . ... ... ... ... 58
Regularising to stop values from collapsingtozero . . .. ... ... .. 67
i vs 0 - comparing initialisation to convergence . . ... ... ... ... 68
An overview of the PWFN process. . . . . ... ... ............ 69
PWEN Clustering schedule . . . ... .................... 74
QKV Entropies . . . .. ... .. .. ... 78
PWEN relative distance plots . . . ... ................... 79
On-the-fly Clustering Overview . . . . . . ... ... ... ........ 83
Hyperparameter exploration using ResNet-18 trained on the CIFAR-10

dataset. . . . . . ... .. 90
Reliability Diagrams . . . . .. .. .. ... ... ... ........... 100
PWEN Reliability Diagrams . . . . .. ... ... .............. 104
Penultimate Activation Layer Projections with PWFN . . . . .. ... .. 106
Logit Projections withPWEN . . . ... ... ................ 107
Cluster Steps vs Accuracy . . . . . . ... ... i 108
Entropy Vs Calibration Metrics . . . . .. ... ............... 109
ID vs OOD Entropy Distributions . . . . .. .. ............... 113

IDvsOOD Accuracy . . . . . ... . . it 115






ix

List of Tables

2.1

3.1
3.2
3.3
34

4.1
4.2

5.1
52
53

6.1

Energy costs of DNN computation elements . . . ... .......... 6
Hyper-parameters for WEN . . . . ... ... ... ... ....... 47
WEN Overview ComparisonResults . . . ... ............ ... 48
WEN vs APoT Results Table . . . . ... ................... 49
A Full Metric Comparison of WENvs APoT . . . . ... ... ... .... 50
PWEN full comparisonresults. . . .. ... .. ............... 76
Comparison of the number of additional training epochs required by

different fine-tuning quantisation methods. . . . . . ... ... ... ... 77
COF-PFWN Results comparison . . . .. .................. 91
Gradients of fixed vs not-fixed weights in COF-PWEN . . . . . . ... .. 92
Weights’ distribution comparison of fixed vs not-fixed in COF-PWFN . . 94
Uncertainty estimation results comparison . . . ... ........... 105






xi

Acknowledgements

Deepest thanks to all those who have supported me along the way, and to the pursuit of
interestingness, for keeping both life and research ever so slightly off-kilter and
delightfully unpredictable.






Chapter 1

Introduction

Deep learning models have a seemingly inexorable trajectory toward growth. Growth
in applicability, performance, investment, and optimism. Unfortunately, one area of
growth is lamentable - the ever-growing energy and storage costs required to train and
make predictions. A considerable factor contributing to these high energy costs is the
hardware they run on, which has historically been a function of the organisation of

computation and the types of computation required.

Just as the nature versus nurture debate oscillates between the relative influence of
innate abilities compared to environmental influences, the success of deep learning
equally hinges on the dynamic interplay between algorithmic development and
hardware advancements. Historically, this algorithm-hardware dance was skewed
towards adapting algorithms to pre-existing hardware, much like shaping behaviors

based on the environment in the nature-nurture analogy.

This environment of adapting algorithms to hardware has been punctuated by specific
periods of high research investment into dedicated hardware, notably during the early
'90s. The development of ANNA [Sackinger et al., 1992] and Intel’s ETANN [IEEE and
IEEE, 1992] are examples of these efforts, harmonising more with the aspect of ‘nature’
or innate abilities. However, those models were non-flexible, supporting only fixed

architecture models, akin to fixed or inherited traits.

The Pivotal turn in deep learning was the innovative repurposing of Graphics
Processing Unit (GPU) hardware. Initially developed to empower the video game
industry, GPUs offered a flexible and powerful resource to advance and refine machine

learning algorithms.

It is crucial to make the distinction between algorithm-hardware co-design and

hardware re-purposing. The nascent success of deep learning systems was far more of a



2 Chapter 1. Introduction

function of the latter than the former. However, with the dominant view that further
scaling with increased performance [Kaplan et al., 2020] coupled with the ever-greater
reach of these models into the modern economy, there is a growing thrust toward
finding bespoke hardware accelerators to minimise the energy consumption of these
powerful models. However, the energy cost of these models is not just a function of the
computations performed, but also the data movement required to support those
computations. Data movement refers to the transfer of data between different levels of
the memory hierarchy, such as between main memory and cache, or between different

processing units, which can consume significant amounts of energy.

Whilst some algorithmic techniques have been useful in supporting this goal — one
example being weight quantisation to INT8 which is supported out-the-box by TPUs
[Jouppi et al., 2017a] — far too many have been concentrated on benchmarking metrics
such as compute floating-point operations (FLOPs) and its closely related multiply and
accumulate (MAC), without a clear cut direct translation into hardware not so clear-cut
[Sze et al., 2017]. As we will discuss, this is largely because the data movements carry
the dominant energy costs, which are not well captured with these popular metrics.

This was the starting point for this thesis — the assertion that the most
resource-expensive component of neural network inference is borne by data movement,

and how can we find algorithmic techniques which reduce this.

Centred around the consideration of the dominance of data-movement costs, the initial
work of this thesis focuses on finding a set of algorithmic methods to reduce the number
of unique weights along with the weight-space entropy of neural networks - which we
will later show are key to maximising opportunity for data-movement reductions. The
methods were developed to reduce the inference costs of models. They were tested on
image-type classification problems; although in principle there is no reason that they

can not be extended and applied to other problem domains (such as text prediction).

The path through to writing this thesis was not satisfactorily concluded upon
developing such a method. Instead, we noticed a link between the method developed
and Bayesian Neural Networks (BNNs) — a subfield in deep learning which looks to
reformulate neural networks to be stochastic in order to gain a measure of network

uncertainty.

With this link identified, we will later explore and use this link to provide further
improvements in determining models with very few unique weight and low
weight-space entropies. This link then further stimulated additional study into
uncertainty estimates with large-scale model-dataset BNNs which hitherto were

restricted to the toy-end of Machine Learning problems.



We ultimately hope with this thesis to explore, communicate and find the links between

five core statements:

¢ Reductions in data movement confer significant benefits for Al hardware energy
optimisation - Chapter 2.

¢ To minimise data movement, it is advantageous to reduce the number of unique

weights and decrease weight-space entropy - Chapters 2 and 3.

¢ The flexibility in determining which weights can correspond to which unique
values is magnified when we enhance the noise-tolerance of the network -
Chapters 3 and 4.

¢ A BNN that maximises noise-tolerance is a boon for compression, can be trained

on a wider set of model-dataset combinations - Chapters 4 and 5

* BNNs trained in this way are also well calibrated and can detect
out-of-distribution samples - Chapter 6.

The thesis is structured as follows:

Chapter 2 discusses the hardware costs and opportunities in deep learning inference,
highlighting the dominance of data movement costs.

Chapter 3 introduces Weight Fixing Networks (WEN), an algorithmic approach to
reduce unique weights and weight-space entropy to enable more efficient hardware
designs. The chapter concludes by identifying limitations in WFN’s assumption about
weight movement.

Chapter 4 proposes Probabilistic Weight Fixing Networks (PWEN), which reformulates
WEN using Bayesian Neural Networks to address the limitations of WEN. PWFN

achieves further reductions in weight-space entropy and unique parameters.

Chapter 5 builds upon PWEN and introduces Cluster-On-the-Fly PWEFN (COEF-PWEN),
which integrates the clustering process into the training phase for a more adaptive and
streamlined approach.

Chapter 6 explores the potential of PWFN and COF-PWEN for providing uncertainty
estimations, investigating their calibration capabilities and ability to detect
out-of-distribution samples.

Let us begin by looking where the energy-costs in hardware lie.






Chapter 2

Background

2.1 Costs and Opportunities

All operations in computation bear the cost of data movement and data manipulation,
such as arithmetic operations. Computational cost in deep learning inference is
measured by evaluating these two aspects. A single inference calculation involves
fetching all the elements needed like weights, partial sums, and inputs, and then
conducting several elementary operations — multiplications and summations — to map

inputs to outputs.

As shown in Table 2.1, data movement and arithmetic operations carry different energy
costs. Notably, the cost varies significantly between types of memory: Static Random
Access Memory (SRAM) - a high-speed memory used for cache, and Dynamic Random
Access Memory (DRAM) - typically used for data or program code needed by a
computer processor to function. Furthermore, arithmetic operations like addition (+)
and multiplication (x) performed on different data types from 8-bit integers to 32-bit
floating-point types, consume energy orders of magnitude cheaper than data movement
between SRAM and DRAM [Kestor et al., 2013, Boroumand et al., 2018, Keckler et al.,
2011, Pandiyan and Wu, 2014, Horowitz, 2014, Jouppi et al., 2021]. Transitioning data
fetching from DRAM to SRAM leads to more significant energy saving than moving
from 16-bit to 8-bit arithmetic operations.

The results presented in the table correspond to two manufacturing process
technologies represented by their transistor sizes: 45 nanometers (nm) and 7 nm - a
technological capability indicator where smaller size signifies advancement leading to

better performance and energy efficiency.



6 Chapter 2. Background

Picojoules per Operation

Operation 45nm[Horowitz, 2014]  7nm[Jouppi et al., 2021]
Ints 0.03 0.007
Int32 0.1 0.03
+  BFloatl6 - 0.11
IEEE FP 16 0.4 0.16
IEEE FP 32 0.9 0.38
nts 0.2 0.07
Int32 3.1 1.48
% BFloat16 - 0.21
IEEE FP 16 1.1 0.34
IEEE FP 32 3.7 1.31
8KB 10 7:5
SRAM  32KB 20 85
1MB 100 14
DDR3/4 1300 1300
DRAM  HBM2 - 250 — 450
GDDR6 - 350 — 480

TABLE 2.1: Energy costs of elementary computation operations in picojoules. The

operations are performed across different data types and storage means (SRAM and

DRAM), with the table comparing results from two transistor sizes used in the produc-
tion of microprocessors: 45 nm and 7 nm.

Fortunately, there is something special about the types of computational requests we
make for deep learning systems that allow accelerator designs potential ways to reduce
these dominant costs. Namely, the fetched data used in inference calculations are
seldom used in the computation only once, giving us re-use opportunities that can
potentially ameliorate the total energy costs through a reduction in the number of
memory reads. This, coupled with matrix sparsity and hierarchical computation, offers
multiple avenues for a reduced energy overhead. The convolution network is an
excellent example of the opportunities available in reducing energy costs; let us briefly
dive into their history to see how such opportunities evolved.

The key take away here is that data reads are orders of magnitude more costly than
arithmetic operations. To reduce the energy costs, a focus must be on the re-use of data.

Read once, use many times.

211 The Convolution Layer

The groundbreaking work of Nobel laureates Hubel and Wiesel on understanding the
functional architecture of the visual cortex [Hubel and Wiesel, 1962] not only
revolutionised our understanding of biological vision but also laid the foundation for

the development of energy-efficient deep learning algorithms. Through their innovative



2.1. Costs and Opportunities 7

studies on the structure of neurones within a cat’s visual cortex, they discovered a

spatially hierarchical organisation of neuronal interactions.

Stimulation of the cortex was done by visually presenting simple patterns, such as
straight lines or edges, to the cat. It was observed that lateral movement of the electrode
across the cortex changed the type of feature detectors encountered—from vertical line
detectors to 'L’-shape detectors, for instance. This suggests that neurones in close
geographic proximity specialise in detecting different types of visual features (i.e., an
edge '—’ vs an 'L’). On the other hand, vertical movement of the electrode along the
depth of the cortex fixed the type of detected feature but changed the receptive field, or
specific area of the visual field to which neurones responded.

Moreover, Hubel and Wiesel noted that nearby neurones had overlapping receptive
fields, meaning they responded to common portions of the visual field. This shared
spatial distribution, along with the hierarchical organisation of feature detection,
directly influenced the design of convolutional neural networks (CNNs) where the
weight-sharing and hierarchical structure of CNNs bear a close resemblance to the
overlapping receptive fields and hierarchical organisation observed in the visual cortex.

The seminal work of [Fukushima and Miyake, 1982] aimed to replicate aspects of this
hierarchical organisation in silicon with the Neocognitron. This early model
incorporated key architectural design choices that have carried through to modern deep
learning systems and are central to the pursuit of energy-efficient hardware: a layered
hierarchy and weight/output sparsity.

In CNN s, the layered hierarchy and filter re-use inherently reduce data movement by
enabling the sharing of weights across multiple spatial locations and inputs. This
weight-sharing, introduced in [Rumelhart et al., 1986, LeCun et al., 1989], enforces
translation equivariance properties. Translation equivariance means that if an input
image is shifted, the output of the network will be shifted in the same way, allowing the
network to recognize features regardless of their position in the image. This property is
a key area where research has focused on minimising energy costs. The energy
efficiency of these operations can be further improved by reducing the number of
unique weights and decreasing the weight-space entropy, which is a core objective of
this thesis.

In addition to weight-sharing, the sparsity of weights and outputs in CNNs, inspired by
the sparse activation patterns observed in the visual cortex, presents further
opportunities for energy optimisation. By exploiting this sparsity, we can minimise the
number of computations and data movements required, thus reducing overall energy

consumption.



8 Chapter 2. Background

In the following sections, we will explore algorithmic techniques that push further these
architectural features of CNNs-weight-sharing and sparsity—to reduce inference costs,
but first let’s more formally define what exactly a deep neural network (DNN) is.

2.1.2 The Three Key Properties

There are three properties of modern deep learning architectures, two of which were
already present in the early work of [Fukushima and Miyake, 1982], that can be

leveraged by hardware to reduce computational expense.

¢ A Layered Input-output Neuronal Hierarchy: Deep learning architectures, such as
CNNs, are organised into a hierarchical structure of layers. Each layer processes
the output from the previous layer and passes its output to the next layer. This
hierarchical organisation allows for the extraction of increasingly complex
features as the input progresses through the network. By designing hardware that
efficiently handles this layered structure, computational expense can be reduced.

* Weight/Output Sparsity: In deep learning models, many of the learned weights
and activations (outputs) are often zero or near-zero. This sparsity can be
exploited by hardware accelerators to reduce computation and memory access. By
avoiding calculations and data movements involving zero values, the overall
computational expense can be minimised. Techniques such as pruning and sparse

matrix operations can be used to take advantage of this sparsity.

¢ Weight/Input Pixel Re-use: In CNNs, the same set of weights (filters) are applied
across different spatial locations of the input. This weight re-use, also known as
weight sharing, allows for a significant reduction in the number of unique weights
that need to be stored and accessed. Similarly, input pixels can be re-used across
multiple convolution operations. Hardware accelerators can leverage this re-use
by efficiently caching and reusing weights and input pixels, reducing memory

access and computational expense.

2.1.3 Layered Input-Output Neuronal Hierarchy

A DNN, at its most universal definition, is a stack of L layers, each of which acts on
inputs to layer I, denoted as h'~!, and applies a function leu’ at a particular layer [. The
function F zlv, is parameterised by weights w'. The input to the network is denoted as
h® = x, and the output of the network is h! = y.



2.1. Costs and Opportunities 9

In the typical case, the output of a layer [ is fed into as input to the next layer in a
cascading fashion:

y = Fy(x) = Fz%L oFL1o... oFijl oFgJO(x)

wk-1

where h'*1 = F ZZU ,(h!), h = x, h'*! = yh is the output (or hidden state) of layer /, and
L-1

0 = (wt,wt=1,...,w) is the collection of all weights in the network.

The types of inputs F Z’U , expects and how it acts on such inputs carries a great deal of
variety and freedom, but this layered structure has consequences for hardware use.
Each layer F ZIU , can be treated as a self-contained input-to-output function, meaning that

weights w! along with the inputs h!~1 are all required to be loaded from memory.

This independent computation allows for layer-by-layer compression techniques, such
as quantisation, to be applied more effectively than compressing the entire network at
once. By treating each layer as a separate entity, the compression algorithm can be
tailored to the specific characteristics and requirements of each layer, potentially leading
to better compression ratios and less loss of information. In contrast, when compressing
the entire network at once, the compression algorithm must find a one-size-fits-all
solution, which may not be optimal for all layers. Furthermore, layer-by-layer
compression enables the possibility of using different compression techniques or

parameters for each layer, which can further improve the overall compression efficiency.

2.1.4 Weight Sparsity

In modern deep neural networks, weight sparsity is often induced through techniques
such as pruning, weight-decay regularisation, and quantisation. Pruning involves
removing weights that are close to zero or have minimal impact on the network’s
performance, effectively setting them to zero. Weight-decay regularisation adds a
penalty term to the loss function, encouraging the network to learn smaller weights,
which can lead to increased sparsity. Quantisation, on the other hand, reduces the

precision of weights, which can result in more weights being exactly zero.

Another form of sparsity, activation sparsity, arises from the use of activation functions
such as the Rectified Linear Unit (ReLU). ReLU sets all negative input values to zero,

introducing sparsity in the activations.

The presence of sparse weights and activations has significant benefits for hardware
design. In computations involving addition, zero-valued weights and activations have

no effect on the result. Similarly, in multiplications, zero elements always map back to



10 Chapter 2. Background

zero. By exploiting these properties, hardware systems can avoid performing
unnecessary arithmetic operations, leading to energy savings. If the prevalence of zero
weights and activations can be increased through the aforementioned techniques, and
hardware systems are designed to identify and skip these operations, substantial
efficiency gains can be achieved.

2.1.5 Re-use Opportunities

Designing efficient deep learning accelerators requires focusing on data reuse and
locality to minimise data movement costs and improve computational efficiency. These
considerations are closely related to the layered structure of deep neural networks and
the independent computation within each layer, as discussed in the previous section on
weight sparsity.

Deep learning computations offer multiple opportunities to reuse parameters, directly
addressing the key considerations of data reuse and locality. By reading each parameter
once and applying it to every instance where it is needed, the overall computational
burden can be significantly reduced. Common operations and layers in deep learning
architectures, provide several opportunities for parameter reuse. Let’s take a look at the

convolution layer as one such example:

¢ Convolutional Filter Reuse: In convolutional layers, each filter is applied to
multiple spatial locations across the input feature map. This means the filter
parameters can be read once and reused for all the spatial positions, reducing the
need to repeatedly load the same filter from memory. Exploiting this reuse

opportunity can minimize data movement and improve computational efficiency.

¢ Input Reuse: Each spatial location within the input feature map contributes to
multiple output feature maps. In other words, a single input value is used in the
computation of several output values, as it is multiplied by different filter
parameters. Keeping the input in local memory or registers can avoid redundant
memory accesses and improve computational efficiency. This directly relates to
the importance of data locality in accelerator designs.

¢ Batch Reuse: When processing data in batches, the same filters are applied to
multiple input examples within the batch. This presents an opportunity to reuse
the filter parameters across the batch, further reducing memory access
requirements and enabling parallel processing of multiple examples. Batch reuse
is particularly relevant to the concept of parallelism in accelerator designs, as it
allows for efficient utilization of computational resources.



2.2. Hardware for Deep Learning Inference 11

Next, in following sections will look at how these reuse opportunities can be exploited
in the design of hardware architectures and algorithms for deep learning acceleration.

2.2 Hardware for Deep Learning Inference

Hardware used for DNN inference can be divided into two categories: general and
specialist. General hardware systems, whilst not explicitly designed for DNN inference
calculations, can perform these tasks due to the simplicity of the underlying operations,
such as memory reads and matrix multiplications. On the other hand, specialist DNN
inference machines, or accelerators, are engineered specifically to carry out the
operations required for inference and to reduce any overhead or bottlenecks. These
specialised accelerators have been introduced to address the inefficiencies present in
systems that support more general computation.

Some of these inefficiencies include the high area costs incurred in supporting large
numbers of operators, the high energy and latency costs due to highly connected,
multi-layered memory hierarchies typically implemented in general computing, and the
smaller on-chip RAM sizes often requiring multiple high-energy cost off-chip accesses.
These inefficiencies can be particularly pronounced when dealing with the large
number of weights and parameters present in modern deep neural networks.

Whilst significant progress in Al has been achieved using general hardware systems, the
slowing trend of Moore’s Law [Moore, 1998] and the inherent inefficiencies of a
one-size-fits-all approach highlight the potential of domain-specific hardware
components for further advancement [Hennessy, 2018, Hameed et al., 2010]. By
focusing on the specific requirements of DNN inference, specialist architectures can be
designed to optimise computational efficiency and minimise data movement, leading to

improved performance and energy efficiency.

One key aspect of this optimisation is the handling of weights and parameters in the
network. As discussed in previous sections, deep neural networks often have a large
number of weights, which can lead to increased memory requirements and data

movement costs. By exploring techniques such as weight sparsity, quantisation, and
efficient weight storage, specialist architectures can significantly reduce the memory

footprint and computational burden associated with these weights.

Furthermore, the reuse opportunities present in common DNN operations, such as
convolution, can be exploited by specialist architectures to minimise data movement
and improve computational efficiency. By carefully designing memory hierarchies and
dataflow patterns that take advantage of these reuse opportunities, specialist



12 Chapter 2. Background

Temporal Architecture Spatial Architecture

Memory Hierarchy
] [ ] I Register File
- | -~ ALU
Control

FIGURE 2.1: Temporal architectures — such as GPU’s — have processing element ALUs
that carry out computation in parallel and interact directly with control and memory, but
not each other. These architectures use SIMD/SIMT to increase processing efficiency.
Spatial architectures — DNN accelerators — have processing element which have in
addition, programmable register files and can communicate with each other and use
dataflowprocessing schemes to reduce data movement.

architectures can achieve significant performance gains compared to general hardware

systems.

In the following sections, we will delve deeper into the architectural details that
distinguish specialist architectures from general systems and explore how these design
choices are motivated by the specific requirements of DNN inference. By understanding
these differences and their implications for weight handling and data reuse, we can gain
insights into the development of efficient deep learning accelerators and the potential

for further optimisation through techniques such as weight space entropy reduction.

2.2.1 Temporal Architecture

The two staples of modern computing, central processing units (CPUs) and graphics
processing units (GPUs), both follow a temporal architecture. In this type of
architecture, a single centralised control unit distributes work to multiple arithmetic
logic units (ALUs). These ALUs have access to a shared memory but do not typically
have their own programmable memory store, meaning they need to rely on access to
shared memory pools. This reliance on shared memory can cause bottlenecks due to the
growing gap between processor and memory performance, known as the memory wall
[McKee and Wisniewski, 2011].



2.2. Hardware for Deep Learning Inference 13

i

nnlll H'

N [ [ _ _J

Blocked GEMM Thread Block Tile Warp Tile Thread Tile

Global Memaory Shared Memary Register File SM CUDA Cores

FIGURE 2.2: Tiling approaches allow the breaking of large matrix multiplications
prevalent in DNN inference into many reusable blocks which can be operated on in
parallel and reused — saving large memory reads and writes.

To improve computation speed through parallelism, techniques such as Single
Instruction Multiple Data (SIMD) and Single Instruction Multiple Threads (SIMT) are
employed. SIMD, commonly used in CPUs, allows a single instruction to be applied
simultaneously to multiple data elements, enabling parallel processing of identical
operations on different data points. On the other hand, SIMT, often used in GPUs,
extends the SIMD concept by allowing multiple threads to execute the same instruction

simultaneously on different data elements, providing an additional level of parallelism.

However, the ALUs within temporal architectures are not able to communicate with
each other directly and must rely on the centralised memory pool to exchange data and
intermediate results. This communication bottleneck can limit the efficiency of parallel

processing, especially when dealing with large amounts of data or complex operations.

In contrast, spatial architectures, which will be discussed in more detail later, allow for
direct communication between processing elements, reducing the reliance on shared
memory and potentially alleviating the communication bottleneck. This direct
communication can be particularly beneficial for deep learning inference, where the
exchange of intermediate results between layers is a common operation.

The limitations of temporal architectures in terms of memory access and
communication between ALUs highlight the need for specialised hardware that can
address these bottlenecks. By designing architectures that are tailored to the specific
requirements of deep learning inference, such as efficient memory access patterns and
direct communication between processing elements, we can potentially achieve

significant improvements in performance and energy efficiency.



14 Chapter 2. Background

2.21.1 Optimisation Strategies within Temporal Architectures

Temporal architectures and optimisation libraries — such as OpenBLAS, cuDNN etc —
use strategies such as tiling to break up the matrix multiplications into reusable and
parallelisable subblocks. These subblocks can themselves be hierarchical to match the
memory hierarchy of the device as shown in Figure 2.2.

2.2.2 Spatial Architectures: A New Paradigm for DNN Inference

Spatial architectures offer a new approach to DNN inference, with two key features that
distinguish them from temporal architectures. Firstly, they enable direct communication
between processing elements (PEs), the individual units responsible for computation.
Secondly, they provide programmable memories within each PE, allowing for
fine-grained control over dataflow. These features provide access to close-to-compute
memory and the ability to move data in unconventional ways, making spatial
architectures well-suited for DNN inference, where reuse opportunities are abundant
and the order of computation can be adjusted to meet specific requirements.

The programmable memories within each PE enable dataflow optimisation, allowing
for the fine-tuning of data movement and computation order to suit the specific needs
of the DNN inference task. This flexibility in dataflow mapping is a significant
advantage, enabling the exploitation of reuse opportunities and minimisation of data

movement costs.

Selecting the appropriate dataflow mapping is a critical aspect of designing spatial
architectures for DNN inference. Three popular mappings — weight stationary, output
stationary, and input stationary — each offer unique advantages (Figure 2.3). By
investigating these mappings and understanding their implications for data movement
and computation, we can design efficient spatial architectures that improve DNN

inference performance.

The motivation behind spatial architectures and optimal dataflow mappings stems from
the need to address the limitations of general-purpose hardware and temporal
architectures in handling the large number of weights and complex dataflow patterns
found in modern DNNSs. By developing specialised hardware tailored to the specific
requirements of DNN inference, significant improvements in computational efficiency,

memory footprint, and energy consumption can be achieved.

Let’s jump into a few definitions for some of the popular dataflow mappings with a
mind that later we will look to develop our algorithmic approach to fit within one or

more of these paradigms.



2.2. Hardware for Deep Learning Inference 15

Filter Input Channel Partial Sums Output Channel

TELIREE G s
| |- oz -
EEE (EEE g

Weight Stationary Dataflow

] [x[e]
v v

. !

Output Stationary Dataflow

-
B B
|

¢
]
[v

|
]
P
¢
o]

I

oo
o [e

Input Stationary Dataflow

v v
. . .
EeEE | E - B

=

FIGURE 2.3: Dataflow mappings within accelerator designs prioritise the reuse of
varying components of DNN computation. Weight stationery: maintains the weight
values in PE memory and feeds in input activations and previous partial sums. Output
stationery: maintains the partial sum accumulation in PE memory with inputs and
weights fed in, meaning each PE outputs a single output activation channel - saving on
the writing and re-reading of partial sums. Input stationery: keeps input activations
within PE registry files feeding in weights and accumulating partial sums spatially
between processing elements.



16 Chapter 2. Background

Weight Stationary Dataflow

Weight stationary dataflow optimises the local memory on PEs to hold the filter weights.
The idea is to read each weight value only once and pass all input activations that use
the weight in computation. This amounts to an off-chip memory-read saving of
approximately the number of input channels to a filter weight for convolution. An early
weight-stationary accelerator is DaDianNao [Chen et al., 2014] created a fully
distributed system where there is no main memory shared by all PEs. Instead, each PE
has access to a set of eEDRAM banks and handles a subset of computation in a forward
pass that uses these weights. Tensor processing units, a popular accelerator, also use
weight stationary dataflow [Jouppi et al., 2017b] using a systolic array to orchestrate the
input activations and gather the partial-sums as outputs to be passed in as inputs to
other PEs, avoiding the other partial-sum read and writes. Other works that use
weight-stationary dataflow include [Cavigelli et al., 2015, NVIDIA, 2018].

Output Stationary Dataflow

Output stationary dataflow minimises the energy consumption of the partial sum
reading and writing for each output channel. Rather than having to write back to a
buffer the intermediate computation for an output channel, we maintain partial sums
on the PE registry file, and any weights and input activations involved in a single
output channel are piped into this PE. The result is that each PE will output a single
output channel result. This will approximately reduce the number of read-writes by the
filter size used to compute each output channel. We can make further energy savings if
we orchestrate the weights and/or inputs spatially such that neighbouring PEs use the
same weight/input values, as was achieved in [Moons and Verhelst, 2016b, Du et al.,
2015].

Input Stationary Dataflow

Following the same principle as the previous dataflows, input stationary dataflow
maintains input activations in the registry files of the PEs and distributes the weights to
the PEs that require each input. Partial sums are accumulated through communication
between PEs without the need for writing back to off-chip memory. Each input held on
a PE can therefore contribute to the computation of a volume of output activations
determined by the filter dimensions (width and height) and the number of output
channels. One architectural implementation that demonstrates this approach is SCNN

[Parashar et al., 2017]. In this design, each PE maintains a bank of four input activations



2.2. Hardware for Deep Learning Inference 17

and processes a portion of the output activation volume within a given cycle. The

partial sums are then accumulated spatially within the four-input block.

Hybrid Dataflows

While weight, output, and input stationary dataflows cover the main ideas present in
DNN accelerator designs, some researchers have explored the benefits of combining
multiple dataflows through hybrid approaches [Parashar et al., 2017, Kwon et al., 2018,
Chen et al., 2016, 2019]. One such example is the row stationary dataflow proposed by
[Chen et al., 2016], which aims to maximise the reuse of weights, inputs, and partial
sums for each filter row. In this approach, weights and inputs of a row are maintained
within the PEs. Subsets of the row required for computation, as the filter moves across
the row, can be accessed efficiently, and partial sums are collected for the row. Once a
row is complete, the partial sums are combined with other rows within a filter’s range

to produce the final output.

2.2.3 Compressed Representations

Optimising the distribution and computational reuse of weights, inputs, and outputs
across PEs is one way accelerators mitigate data movement costs; compression is
another. Data compression is an established field with many ideas to borrow from, such
as Shannon’s information theory [Shannon, 1948b], Huffman coding [Huffman, 1952],
and Lempel-Ziv-Welch (LZW) compression [Welch, 1984]. Rather than representing
data in its full bit-width, compression schemes look for repeated structures to represent
values or blocks with lower bit-width costs than the full precision values. In these
schemes, values are stored using encoded indexing instead of directly storing the values
themselves. These index schemes then point to the values” addresses in physical storage.
For compression to be beneficial, the combined cost of indexing and value retrieval
must be less than the traditional weight storage and read methods. This is particularly
relevant to our work, as we aim to reduce the memory footprint and data movement

costs associated with the weights in deep neural networks.

However, we are restricted to methods that can decompose subsets of the encoded data
as needed for computation. If, as is the case for LZW, we can only decode the
compression scheme in its entirety, then we would lose any benefit of compression at

inference time.

Compressed representations that have been successfully used in accelerator designs
include run-length encoding (RLE) [Chen et al., 2016], where integer values encode

contiguously occurring zeros. For example, consider a row in a large sparse kernel with



18 Chapter 2. Background

values 0,0, 9,0, 0, 0, 0, 3; a simplified RLE representation might be 229243, which is
smaller than the original representation. However, this naive approach introduces
ambiguity, as z29z43 could also represent 00043. In practice, RLE implementations for
neural networks typically use separate, unambiguous encodings for zero runs and
non-zero values, often with fixed-width formats or bit-level encodings. One problem
with RLE, common to most compression schemes, is that the representational overhead
may be more significant than the savings made. The effectiveness of RLE depends on
the amount of sparsity in the matrix. Each contiguous set of zeros requires an integer to
represent their number and an indicator that the zero blocks have started; if the matrix
is not very sparse, or sparse but with the zero values interleaved without contiguous
blocks, then the cost of RLE will be higher than the traditional dense representation.
Other sparsity-optimised compression schemes used in accelerators include

compressed sparse row and column formats [Sato and Tinney, 1963, Zhang et al., 2016].

While sparsity-leveraging compression schemes are popular, they seldom reach the
limits of compression determined by the entropy of the weight distribution, which we
would prefer. Ideally, the compression scheme used should be close to the underlying
entropy of the weight distribution we wish to represent. An encoding scheme that has
both properties, per-value decoding and close-to-entropy compression rates, is
Huffman coding. This is particularly relevant to our work, as we aim to exploit the
low-entropy weight distributions in deep neural networks to achieve high compression

ratios while maintaining efficient decoding capabilities.

2.3 Hardware Realisation of Weight Compression

Transforming low-entropy weight distributions and reduced unique parameter values
into efficient hardware requires specialised circuit designs that optimise both
computation and memory access. When networks contain few unique weights,
hardware accelerators can effectively exploit this property to minimise data movement

costs.

Weight compression techniques can be realised in hardware through codebook-based
architectures. Instead of storing full-precision weights, these systems maintain a small
lookup table (LUT) of unique weight values in high-speed SRAM close to processing
elements, while only indices to this table are stored in the main memory. This approach
significantly reduces memory bandwidth requirements and enables more efficient data

movement.

The UNPU accelerator [Lee et al., 2018] demonstrated this concept by supporting
variable weight bit precision from 1 to 16 bits through lookup table-based bit-serial



2.3. Hardware Realisation of Weight Compression 19

processing elements. This architecture achieved energy reductions of 23.1%, 27.2%, 41%,
and 53.6% for 16-, 8-, 4-, and 1-bit weight precision respectively, compared to

conventional fixed-point multiply-and-accumulate arrays.

For networks containing primarily power-of-two weights, multiplications can be
implemented as bit-shift operations, substantially reducing computational complexity.
Modern accelerator designs can detect these special cases and route calculations
through optimised datapaths.

Another approach to hardware acceleration is bit-level composability, as demonstrated
by BitFusion [Sharma et al., 2018]. Rather than using fixed bitwidth processing
elements, BitFusion employs an array of bit-level units that can dynamically fuse to
match the bitwidth requirements of individual DNN layers. This flexibility allows for
minimising computation and communication at the finest granularity possible without
accuracy loss, achieving substantial performance and energy improvements over

fixed-precision accelerators.

The EIE accelerator [Han et al., 2016a]. demonstrated specific hardware support for
compressed neural networks, including Huffman-coded weights. Their implementation
showed that the energy savings from reduced memory access substantially outweighed
the decompression overhead, achieving a 3x reduction in total energy compared to

conventional architectures when processing compressed networks.

These implementations underscore the critical importance of algorithm-hardware
co-design—compression schemes must be developed with an understanding of

hardware characteristics to maximise efficiency gains.

2.3.0.1 Huffman Coding

In this thesis, we dedicate two pieces of work (Chapters 3 and 4) to finding networks
that minimise the Huffman encoded representation of a network, and so an expanded
treatment of the subject is necessary.

In 1951, an MIT professor, Robert Fano (the joint inventor of Shannon-Fano coding), set
an eager graduate class a coding challenge that, should they successfully solve, would
exempt them from the upcoming final exam. A young David Huffman took up the
challenge and spent months wrestling with iterations of ideas, not knowing that the
problem was so tricky that Fano himself had no solution. Just days before the final
exam, Huffman gave up the chase and accepted defeat, throwing his latest attempt into
the bin and opening up his textbooks to prepare for the final exam. The following day,
Huffman awoke with the realisation of a solution, one with only a slight divergence



20 Chapter 2. Background

from the idea that lay at the bottom of his waste paper basket. This aha moment led to
the paper ”A method for the construction of minimum-redundancy codes” [Huffman,
1952], which revolutionised the field and became the compression algorithm of choice
for many applications. Huffman did not need to sit his final exam [Stix, 1991].

The algorithm that Huffman invented, like most good ideas, is a simple one. Starting
with the string S we wish to encode, we represent each of the N unique symbols in the
string as A(S) = sy, -+, sy, where |S| = N and |A(S)| = n < N. Each of these unique
symbols s; € A(S) are initialised as leaf nodes v; in a node-set V. Each leaf node v;
additionally contains a weighting #(s;), which represents the number of times the
unique value is present in the string S. Let V = vy, - - - , v,, represent the set of nodes,
where v; = (s;,#(s;)) is a tuple containing the unique symbol and its corresponding

frequency.

We next greedily select the two nodes v;, v; from V with the lowest weighting such that
i = argmin, #(s;) and j = argmin, #(s;), wherek,l € 1,--- ,nand k # i,] # j. We
remove these nodes from the set of possible nodes and attach in their place a combined
parent node v(; ;) = ([s;, 8;], #(s(; j)) ), where the weighting of the parent node is the
summation of the weights of the two child nodes selected, i.e., #(s(; ;) = #(s;) + #(s;)-
The new node set becomes:

V= (V\{o,0}) U{vuj}

where V'\ {v;,v;} represents the set V with nodes v; and v; removed. If we repeat the
process nn — 1 times, we end with just one node that is parent to all other nodes v(,... ,,).
We measure the code word length for a particular symbol as the number of times the

symbol was involved in combinations, and its bit string can be formed by traversing the
tree created in the process, where each left or right path appends a 0 or 1 to the symbol

representation, respectively.

Let us run through a concrete example, which we borrow heavily from [Moffat, 2019].
Imagine we have a very simple 1-layer neural network (essentially a linear regression

setup) with the following 21 weights post-quantisation:

w =10.3,0,0,0.1,0,0,0.5,0,0,0.1,0.1,0,0.1,0.2,0.2,0.1,0.4,0,0,0,0.1]

where A(W) = {0,0.1,0.2,0.3,0.4,0.5} and
V = {(0,10), (0.1,6), (0.2,2), (0.3,1), (0.4, 1), (0.5,1)}.



2.3. Hardware Realisation of Weight Compression 21

In each iteration, we select the two nodes with the smallest frequencies. We use
higher-numbered symbols as tie-breakers. Let’s denote combined nodes with square
brackets. The iterations proceed as follows:

Iteration 1:{(0,10), (0.1,6), (0.2,2), (0.3,1), ([0.4,0.5],2)}
Iteration 2:{(0, 10), (0.1,6), ([0.2,0.3],3), ([0.4,0.5],2)}
Iteration 3:{(0, 10), (0.1,6), ([[0.2,0.3],]0.4,0.5]],5) }
Iteration 4:{(0, 10), ([0.1, [[0.2,0.3],[0.4,0.5]]],11) }

(

Iteration 5:{ ([0, [0.1,[[0.2,0.3],[0.4,0.5]]]],21)}

We can represent our result in a tree as shown in Figure ??, where a 0-1 traversal
indicates the decisions made and the bit appended to the code for each leaf symbol.

Huffman coding has several properties that make it interesting for compressing neural
networks. First, it is a minimal-redundancy code, meaning that the average number of
coding digits per message is minimised. More importantly, Huffman encoding gets us
very close to the underlying entropy. Defining entropy in the usual way,

H(W) = — Lweaw) p(w) log, p(w), we can define an encoding cost as the total number
of bits needed to encode our original weight set W as H'(C, W) = Yy,c aw) #(w) - L(w).
The e-difference between our encoding scheme C and the underlying entropy H is the
quantity we would like to minimise: € = H'(C, W) — H(W). If we define the most
frequent weight in W as wmayx, we can use the bound presented in the work [Gallager,
1978], 0 < € < p(wmax) + 0.086, to gain an intuition of how close Huffman coding is to
the underlying entropy of a message. Here we can see that the bound is limited by the
probability of the most frequent weight in the code. For neural networks, this could
present a problem since it is often empirically observed that the distribution of weights
follows a Gaussian distribution or one similar but with longer tails [Yuhang Li, Xin
Dong, 2020] - the Laplace distribution, for example The Laplace distribution, defined
by its probability density function f(x|u,b) = 5; Lexp(— > A | ) where y is the location
parameter and b is the scale parameter. The Gaussian has Contributed to the
developments of informative priors for Bayesian Neural Networks [Blundell et al.,
2015] and has been utilised by pruning techniques to fix as much as 90% of the weights
to zero values [Lin et al., 2020b]. If the most frequent weight has a probability of 0.9,
then the worst-case scenario is that Huffman coding could add up to 0.986 bits per
weight of overhead. Fortunately, as we will discuss, this need not be the case, but it is
still a result worth keeping in mind as we go forward.

e(C,S) = H'(C,S) — H(S) (2.1)



22 Chapter 2. Background

The bound on the e-difference between Huffman coding and the underlying entropy is
given by:

# max # max # max
Hms) 40086 when Hem) o 1 Hom) 02
#(Smax) ’

1
when —e >3

e(C,S) <

Let us wrap up our initial discussion of Huffman coding with a list of properties that
make them useful when thinking about an encoding scheme for Neural Networks:

e Itis a prefix code, hence it can be decoded one symbol at a time. This is helpful for
DNN inference where individual weights used in computation are usually paired
with elements of the input signal. Hence, we could decode a single weight, use it,
and then move onto the next part of computation rather than having to decode
the network in its entirety.

* We have theoretic bounds on how close the encoding is to the underlying entropy
[Gallager, 1978], so we can look to adapt our distribution shaping methods with
this in mind.

® The decoding can be done on the fly using an additional buffer memory of size
Lax bits [Moffat, 2019].

¢ Finally, Huffman encoding has been successfully implemented and used in
accelerator designs with an 8x energy saving achieved when using this form of
encoded weight-sharing [Mao and Dally, 2016a, Han et al., 2016a]. This successful
implementation is an indication of the potential benefits of low-entropy networks
for hardware efficiency and serves as an inspiration for our work in finding
improved weight distributions that can exploit low-entropy encodings. By
exploring techniques to shape the weight distribution and reduce the entropy of
the network, we aim to further enhance the effectiveness of Huffman coding and
other entropy-based compression schemes, ultimately leading to more efficient

deep learning accelerators.

2.4 Algorithmic Approaches

Let us now start to move towards the algorithmic side of DNN acceleration. This
section differs from the previous section in that these methods are typically developed
agnostically, with no particular hardware configuration in mind. Instead, the network is
altered or designed with the general principles of downstream energy efficiency. We
note, however, often a particular type of hardware system or module is required to

realise the energy savings of techniques employed using algorithmic approaches.



2.4. Algorithmic Approaches 23

We break down our dive into the algorithmic approaches to DNN inference energy
saving as pruning, quantisation, distillation and architectural choice and search. These
four categories benefit (at least for the most part) from being distinct so that a
practitioner can use a single technique for a project or combine two or more for further
gains.

Before we begin, let us prime ourselves with a reminder of the common principles

explored in the previous hardware section:

¢ Data Movement Domination: The cost of moving data from off-chip DRAM far
surpasses the costs involved in arithmetic operations.

* Reuse is Key: To save data movement costs, hardware systems can leverage the
reuse opportunities using dataflow mappings. Fortunately, DNN inference

provided multiple areas for potential reuse.

¢ Avoiding Computation Requires Orchestration: Even seemingly obvious savings
such as sparse inputs/weights require hardware design decisions that can
introduce overhead and bottlenecks.

24.1 Pruning

The human brain synaptic connectivity follows a somewhat counter-intuitive trajectory.
In the early embryonic stage, up to around two years of age, neuron connectivity
explodes ten-fold to approximately 15,000 synapses per neuron. At around two, this
growth stage ends, and the brain reverses course and begins synaptic pruning. The
pruning away of synapses is so aggressive that by age 10, children have around 50% of
the synapses they started with on their second birthday. Synaptic pruning continues,
albeit somewhat slower, until early adulthood [Huttenlocher et al., 1979, Tau and
Peterson, 2010].

This biological phenomenon is not yet fully understood, but the claimed parallels
between computational neural networks and brain neurons have motivated researchers
to explore the value of pruning neural networks as a form of learning and energy
conservation. Seminal works explored this connection through the pruning of weights
deemed unimportant [LeCun et al., 1990] and found performance can be maintained
with a large number of weights removed. The motivation for doing so is predominantly
in the avoidance of computation; a zero weight value need not be multiplied since the

outcome is guaranteed to be zero.

Subsequent works have further developed the approach and found that pruning neural
networks can be applied before [Lee et al., 2019, Lubana and Dick, 2020, Lee et al., 2019]



24 Chapter 2. Background

or during training [Lin et al., 2017], but is predominantly applied after training to
convergence [Blalock et al., 2020, Han et al., 2015b].

We can describe the generalised pruning procedure as identifying a binary mask

M € {0,1}4 where d is the number of parameters in the network. Let § € R? represent
the parameter weights of the neural network. After identifying M, the new network is
calculated taking the element-wise multiplication between parameter weights 6 and M,
f(x]|6oM).

How we identify these binary masks is of particular research interest, with the
dominant approaches centring on pruning weights of low-magnitude [Han et al., 2015b]
— a fast proxy for weight-importance — or, more explicitly, those that produce the
smallest decrease in loss through examination of weight magnitudes scaled by the
gradient [Molchanov et al., 2019b, 2016]. Others have looked at the disconnect between
parameter reduction and energy reduction and opt to iteratively prune layer-wise but

focus on layers which are the most energy draining first [Yang et al., 2017a].

A problem arises in determining how best to leverage the algorithmically induced
sparsity. As we have been discussing, while the pursuit of fewer multiplications
reduces computational resources, it would be far more beneficial if we could avoid
these weights and their corresponding activations used in multiplication in the first
place. Although libraries commonly used for DL optimisation CPUs and GPUs do not
automatically identify and support sparsity there has been a move towards researching
support [Gale et al., 2020]. The most accessible for the general practitioner has been
using the PyTorch torch.sparse library, which leverages cuSPARSE [Naumov et al., 2010]
and sparse storage formats such as compressed sparse column (CSC) and compressed
sparse row (CSR), but this does require defining the architecture using such formats.
Again, bespoke accelerator designs have been leading the way using compression
formats such as RLE, CSR and CSC [Chen et al., 2017, Reagen et al., Dorrance et al.,
2014, Han et al., 2016a].

An alternative option to consider in network pruning is to focus on structured
components, such as entire filters, instead of individual weights. This way, there’s no
additional need for hardware optimisation, simplifying the process by just eliminating a
channel in a layer. Several strategies for this type of structural pruning have been
advanced, which leverage the Taylor series approximation to predict potential increases
in loss when pruning occurs [Molchanov et al., 2016, 2019a]. Another effective strategy
involves adjusting or 'regularising’ the batch-normalisation scaling factor, and
identifying filters with small norms for pruning [Liu et al., 2017].

An additional debate has surfaced into rethinking the value of pruning [Blalock et al.,

2020], wherein the number of parameters left after pruning is not always competitive



2.4. Algorithmic Approaches 25

with efficient architecture choices and benchmarking between pruning solutions not
well-compared. However, efficient specialised hardware implementations are more able
to make use of pruning induced sparsity [Reagen et al., Han et al., 2016a] as well as the
activation sparsity observed due to ReLU non-linearities between layers [Sze et al.,
2017] than the heterogeneous filter sizes used in architecture optimisations alone.

2.4.1.1 Lottery Ticket Hypothesis

The Lottery Ticket Hypothesis (LTH) [Frankle and Carbin, 2019] challenges the
conventional belief that pruned networks can only achieve strong performance when
coupled with optimised weights. Instead, the authors found that it’s possible to identify
a binary mask M, reinitialise the non-pruned weights to their original values, retrain the

network while fixing M, and still maintain performance.

Let 6y € R? denote the initial parameter values of a full network before any training or
pruning. The LTH process can be described mathematically as follows:

1. Initial training: 6 2B, g, where 6, represents the trained weights after t steps of
stochastic gradient descent (SGD).

2. Pruning: Determine mask M € {0,1}“ based on 6;, often by magnitude pruning

where smaller weights are set to zero.
3. Apply mask: 0, = 6; o M, where o denotes element-wise multiplication.

4. Reset to initial values: 8, = 6y o M, resetting non-pruned weights to their initial

values.

5. Retrain: 6, SG—D> O, where 6 ¢ represents the final weights after retraining.

Throughout steps 4 and 5, M remains fixed, ensuring that pruned weights (where

M; = 0) stay at zero. The LTH suggests that there exist sub-networks within the full
network, defined by M, such that when the non-pruned weights are reset to their values
in Oy and retrained with M fixed, the sub-network can achieve comparable performance
to the original full network. Mathematically, this means: f(x|0) ~ f(x|0;), where

f(x|0) represents the network’s output given input x and parameters 6.

With this seemingly simple setup, the authors of LTH achieved up to 95% pruning

while maintaining the same performance as the pre-pruned network. The key aspect is
that the non-pruned weights are always reset to their original initialisation values in 6
before retraining. This finding suggests that over-parametrisation of networks could be

useful in allowing a larger space of options from which a sub-network can be



26 Chapter 2. Background

discovered during the training process. It also opens up potential research directions in
identifying these pruned sub-networks early, which could significantly reduce the time

and computational resources required for training.

The LTH has excited the research community, leading to numerous follow-up
discoveries. These include the importance of using the largest magnitude or magnitude
change coupled with zero masking [Zhou et al., 2019], the need for rewinding to a later
iteration for more complex datasets [Frankle et al., 2019], the transferability of
sub-networks to other classification problems [Morcos et al., 2019], and the applicability
of lottery tickets beyond image classification problems [Yu et al., 2019, Girish et al., 2021,
Chen et al., 2021].

The most pressing challenges include identifying the sub-networks without going
through the arduous iterative train-prune-repeat cycle and understanding the
implications of these sub-networks within the optimisation process. For our research,
the pruning literature and LTH demonstrate the flexibility we have in inducing noise
and constricting the optimisation process. The iterative nature of LTH directly
influenced Weight Fixing Networks (Chapter 3), where we explore reforming the entire
network to a pool of weights.

2.4.2 Quantisation

In the previous section, we looked at mapping the weights in DNN models to zero
values to avoid memory reads and multiplications. While this approach can
significantly reduce the computational burden, it is also essential to consider the
efficiency of representing and processing the remaining non-zero weights. This is where

quantisation comes into play.

Quantisation is a technique that aims to reduce the memory footprint and
computational complexity of DNNs by representing weights with a reduced set of
discrete values. By quantising the weights, we can store them using fewer bits per
weight, leading to reduced memory usage and faster arithmetic operations. This is
particularly important for deploying DNNSs on resource-constrained devices, such as
mobile phones or embedded systems, where memory and computational power are
limited.

Moreover, quantisation can also lead to faster inference times, as the reduced precision
of the weights allows for more efficient hardware implementations, such as using
fixed-point arithmetic instead of floating-point operations. This can result in significant
speedups, especially on specialised hardware.



2.4. Algorithmic Approaches 27

Definition. Consider a network A parameterised by N weights W = {wy, ..., wn }.
Quantising a network is the process of reformulating N/ +— N where the new network
N’ contains weights which all take values from a reduced pool of k cluster centres

C = {c1,...,cx} where k < N. After quantisation, each of the connection weights in the
original network is replaced by one of the cluster centres w; < ¢;,

W' ={wl|w; € C,i=1,---,N}, [W'| =k, where W’ is the set of weights of the new
network N/, which has the same topology as the original /. Depending on the set-up,
only a subset of the k cluster centres may be used within a particular layer or kernel
channel. If performing layer-wise quantisation and the resulting k number of cluster
centres within a particular layer is, say k=256, then we say this layer has been quantised
to log, k = 8-bits. Of course, this would only truly 8-bit if the values where symmetrical
around a center point enabling a scale-shift mapping - we’ll expand this discussion
shortly, but first let’s keep going with defining quantisation.

In the quantised network, each original weight w; is replaced by a quantised value w!,
where w/ is chosen from the set of cluster centres C. The process of replacing the
original weights with their quantised counterparts introduces a quantisation error, which
measures the difference between the original and quantised weights. The quantisation
error can be defined as: Err(W, W') = YN |w] — w;| - p(w;, w}) where p(w;, w}) is the

joint probability distribution of the original weight w; and its quantised value w/.

This joint probability distribution captures the likelihood of a particular original weight
being assigned to a specific cluster centre during the quantisation process. The
quantisation error is the sum of the absolute differences between the original and
quantised weights, weighted by their joint probabilities. Minimising this quantisation
error is a key objective in designing effective quantisation schemes, as it helps to
preserve the accuracy of the model while reducing its memory footprint and
computational complexity.

In Figure 2.4, we show the distribution of a single pre-trained layer of a ResNet-18
model [He et al., 2016] trained on ImageNet. The simplest form of quantisation, shown
on the top row, is linear quantisation. Here we take uniform points covering the entire
range of weights and then assign these cluster values to the weights closest to each.
Since the distribution of weights in a neural network tends to resemble a Gaussian
distribution, using linear quantisation results in non-uniform cluster assignments and
larger expected quantisation errors. An approach that offers reduced quantisation error
is logarithmic quantisation, as shown in the bottom row of Figure 2.4. Here points are
sampled to be powers-of-two, the assignment distribution is much closer to uniform
over the relevant range, and the quantisation error is reduced. Using the L1-form for the
quantisation error, we can see that the logarithmic quantisation gives us around a 20%

error reduction following the weight distribution. Interestingly, this non-uniform



28 Chapter 2. Background

300 -
204 2504
200 err(W, W') = 0.0034
154 H(W') = 2.265
2z
2 1504
o
a
104
100 -
504
54
0 T T T
© ~ ) o © o © ~ ©
=) 1 — ~ o o 9] ~ —
3 ) o o S = ™ < ©
0 T T T T T T T T o o o S S o o o o
—0.06 —0.04 —0.02 0.00 0.02 0.04 0.06 0.08 < Q < Q =] © o o
175 err(W, W') = 0.0027
H(W') = 2.728
204 150 4
1254
154
2z 100+
)
c
o
a 754
10
501
5 25
0 T T T
1 ~ © © o © © ~ n
o I I ~ o ~ 1 — ~
© ™ = ) ) — ) ©
T T T T T T T T S o ) S S o o S
—0.06 —0.04 —0.02 0.00 0.02 0.04 0.06 0.08 Q Q S Q © © C] ©

FIGURE 2.4: Comparing linear (top) and log (bottom) quantisation of the first layer of a

pre-trained ResNet-18 model. In the left column we show the original layer weights

with vertical lines indicating the cluster centres selected and on the right the distribution
of weights post-quantisation.

sampling approach bears resemblance to the histogram equalisation observed in the

fly’s visual system, as described in Laughlin’s work [Laughlin, 1981].

However, there is a small price for the lower error in the form of the weight-space
entropy H(W'), which captures how much information is left on average in the network
weights. This trade-off is an active consideration in all forms of network compression;
the higher the fidelity of the compressed version to its original, the less compressed the
network is. Fortunately, the notion of fidelity has a strict meaning in the quantisation
error but does not automatically translate into the fidelity of task performance. In other
words, we can alter a DNN such that the transformed weights do not closely resemble
the original but still maintain task performance, meaning there is a many-to-one
mapping of weight sets to tasks. Quantisation could be thought of as translating one
weight-set with high task performance but high weight-space entropy to another with
the same or similar performance but with much lower weight-space entropy.

One common form of quantisation, referred to as clip-and-scale, maps the weight w; to a
cluster ¢y = quant(w;;s,z,b) as shown in Equation 2.4, where s, z, and b represent the

scale factor, zero-point, and desired bit-width, respectively - shown in Figure 2.5.



2.4. Algorithmic Approaches 29

Clip-and-Scale Quantisation (Single Cycle)

1.00 4 — Original Weights
Quantised Weights

0.75 A

0.50 1

Quantised Weight Values

0.25 A

0.00 A

a wi C
Weight Values

FIGURE 2.5: Clip-and-scale quantisation for a single cycle.

a, ifw;<a
clamp(wi;a,¢) = S w;, ifa<w; <c (2.3)

¢, ifw;>c

quant(w;;s,z,b) = s[clamp({%} +2,0,2" —1) —Z] (24)

The main benefit of clip-and-scale quantisation is that it allows for the use of fixed-point
arithmetic instead of floating-point operations. Fixed-point arithmetic is more
energy-efficient and faster than floating-point arithmetic, as it requires fewer bits to
represent numbers and can be implemented using simpler hardware. This is
particularly important for edge devices and specialised hardware accelerators, where

energy efficiency and computational speed are critical.

The scaling factor s can be learnt channel-wise [Jacob et al., 2018, Zhang et al., 2018] or
layer-wise in separate formulations, resulting in different channels or layers having a
diverse pool of codebooks for network weights, activations, and gradients. This allows
for a more fine-grained quantisation approach, potentially leading to better
preservation of the network’s accuracy. While the bit-width b is traditionally fixed for
all layers and channels, some works have explored varying b between layers [Das et al.,
2018, Wang et al., 2019, Huang et al., 2021], and others have demonstrated that you can
train a model once and select the quantisation precision based on the downstream
device requirements [Jin et al., 2020]. This flexibility is beneficial for deploying models



30 Chapter 2. Background

on a variety of hardware platforms with different computational capabilities and energy

constraints.

However, clip-and-scale quantisation methods also have some weaknesses. The
clipping operation can lead to information loss, as values outside the clipping range are
truncated. This can result in a degradation of the network’s accuracy, especially if the
clipping range is not carefully chosen. Furthermore, the scaling factor and zero-point
need to be stored alongside the quantised weights, adding some overhead to the
model’s memory footprint. This is particularly true the more fine-grained you
quantised with more scaling factors for different groups of weights to attempt to

mitigate any accuracy drops.

This is where techniques like clustering-based quantisation [Stock et al., 2020,
Tartaglione et al., 2021, Wu et al., 2018]. attempt to do better, using shared codebooks
across the entire network. These approaches aim to reduce the overall memory
footprint and minimise the data reads required. These methods use clustering
techniques to cluster the weights and fix the weight values to their assigned group
cluster centroid. These weights are stored as codebook indices, allowing for compressed
representation methods such as Huffman encoding to further compress the network.

The work by [Wu et al., 2018] is of particular interest since both the motivation and
approach are related to our Weight Fixing Network method (Chapter 3). The authors
use a spectrally relaxed k-means regularisation term to encourage the network weights to
be more amenable to clustering. They focus on a filter-row codebook inspired by the
row-stationary dataflow used in some accelerator designs [Chen et al., 2017]. However,
their formulation is explored only for convolution, and they restrict clustering to groups
of weights (filter rows) rather than individual weights due to computational limitations,

as recalibrating the k-means regularisation term is expensive during training.

Taking quantisation to the extreme, binary neural networks [Courbariaux et al., 2015]
reduce the weight-value precision to a single mantissa, +1 or -1. This allows
multiplication in the MAC operations to be reduced to addition and subtraction.
Subsequent work [Hubara et al., 2016] quantises the activation output to binary values,
which turns the MAC operations into an XNOR operation. This reduction comes at the
cost of accuracy for all, but the simplest of problems and tweaks are required to make
these networks more viable — such as allowing full precision in the last layers [Hubara
etal., 2016].

An interesting observation is that the precedent set by binary neural networks of
allowing the first and last layers to have full precision is now a tweak prominent in
almost all general quantisation works reviewed. This practice seems to be an ad-hoc
way to mitigate the accuracy loss caused by the limited capacity of heavily quantised
models to memorise training examples. The long tail theory proposed by [Feldman and



2.4. Algorithmic Approaches 31

Zhang, 2020] provides a compelling explanation for the necessity of memorisation in
achieving high accuracy on long-tailed data distributions. The theory suggests that
memorisation is crucial for learning from rare and atypical examples in the “long tail”
of the data distribution, which can be statistically indistinguishable from useless
examples such as outliers and mislabelled data points. Empirical results on several
standard benchmarks provide quantitative and visually compelling evidence for the
long tail theory. The implications of this theory are significant, as techniques that limit
memorisation, such as quantisation, may have a disproportionate effect on
under-represented sub-populations. We will later quantify the impact of this
compression relaxation by comparing the number of unique parameters to the range of
values they can take. This will show that increasing the precision of the floating-point
operations can compensate for the reduction in unique parameters, thereby optimising
data-movement costs. The idea is that you can reduce the data-movement costs at the
expense of increasing the precision at which you need to apply floating-point
operations. Relaxations may be needed, but there are choices of where to make them

that favour downstream hardware fundamentals.

2.4.3 Architecture Improvements

All the algorithmic methods discussed so far assume the architecture itself is fixed and
energy-savings are made by altering the weight values themselves, another branch of
energy-saving approaches instead looks to make saving through adapting the
architecture itself.

Although the number of parameters required are usually fewer in CNN layers than that
of fully-connected layers, the convolution operator dominates the MAC operations.
These computational costs grow with the product of the number of channels and size of
filters. Decomposition of filters is therefore one route to a reduction, an NxN
convolution can be decomposed into two 1-D convolutions of size 1xN and Nx1 for
example as long as the 2-D filter is separable. 1x1 convolutional layers can also be used
to reduce the number of channels before the larger filters are applied — known as a
bottleneck.

Motivated by this, the separable convolution [Chollet, 2017a] decomposes the
convolution operation across a large filter-size and number of channels into a 1x1
pointwise convolution followed by the larger spatial convolution. The benefit of doing
so is that the pointwise convolution reduces the channels such that the spatial filter can
be applied with a smaller computational cost. GoogLeNet [Szegedy et al., 2014] uses
these layers in achieving what was state-of-the-art performance at the time, whilst

reducing the number of MAC operations from 854 million to 358 million.



32 Chapter 2. Background

These separable convolutions have since been further utilised in SqueezeNet [landola
et al., 2016] — which reduced pre-trained AlexNet [Krizhevsky et al., 2012] by 50x to a
0.5MB model using multiple 1x1 convolution followed by spatial filter fire modules.
MobileNet [Howard et al., 2017], which adds, additionally, a latency regulariser,
demonstrates good performance using networks small enough to run on a mobile
device. It should be noted that simply having fewer weights is not a proxy for
resource-constrained applications, SqueezeNet, for example, consumes more energy
than AlexNet despite having far fewer weights [Sze et al., 2017]. As we discussed
previously, it is DRAM reads which dominate the energy-costs and so heterogeneous
filter sizes and deeper networks (prompting lots of weight value fetching) are not easily
optimised for reuse avoiding re-reads from off-chip memory.

2.4.4 Architecture Search

The current workflow for DNN architecture design primarily requires heuristically
driven trial-and-error layer and loss combinations to be hand-coded and experimentally
driven decisions on good architectures. Neural architecture search (NAS) is a sub-field of
research concerned with identifying, in an automated way, optimal architectures [Zoph
and Le, 2016, Pham et al., 2018, Elsken et al., 2019, Tan and Le, 2019]. Successful
approaches have used these techniques with additional search constraints [Tan et al.,

2019, Lin et al., 2020a, Banbury et al., 2021], favouring resource-efficient solutions.

2.4.5 Student-teacher

Rather than alter weights to come from a pool of values or find resource-lite
architectures, student-teacher methods (also known in the literature as
knowledge-distillation) propose ways where a teacher neural network can help teach a
student neural network and, in doing so, can condense the knowledge required to
complete the task being learned such that the student network can be much smaller
than the teacher network [Gou et al., 2021].

This idea, pioneered by the work of [Hinton et al., 2015], carries out the transfer of
knowledge from a fully trained teacher network to the student network. These methods
typically do so by adjusting the loss function such that the student is trained to predict
the target and match its logits with the teacher, given the same datapoint, thereby
encouraging the student network towards valuable representations of the input data
but using a smaller model.



2.5.  Algorithm:Hardware co-design 33

2.5 Algorithm:Hardware co-design

The discussed choice of techniques used to reduce deep learning models available to
practitioners is not an either-or decision. Deep compression [Mao and Dally, 2016b]
demonstrates the compounding nature of combining resource reductionist approaches.
The authors apply iterative pruning to a network during training, followed by
layer-wise quantisation. Next, they force further weight-sharing, iteratively applying
clustering techniques to reduce the number of distinct weights in the network allowing
for a code-book look-up of a smaller set of weights which can then be further
compressed using huffman encoding. They demonstrate the compounding nature of
these efficiency gains reducing the storage cost of VGG-16 by 49X.

This approach was later further optimised in custom hardware [Han et al., 2016a] which
utilise a row variant of compressed sparse column format [Yoshizawa and Takahashi,
2012] with an array of processing elements fitted with SRAM to utilise both the
weight-matrix and activation sparsity achieved in compression. This combination of
compression at the architecture level coupled with custom hardware resulted in a 2,700x
energy saving compared with a mobile GPU running a compressed AlexNet
[Krizhevsky et al., 2012] model.

This is one such example of the promise of the field. Whilst this thesis is predominantly
focussed on algorithmic approaches to energy saving, we hope to make these better
informed by starting with the hardware fundamentals and working our way up to
novel algorithmic approaches, co-designed with hardware.






35

Chapter 3

Weight Fixing Networks

Having identified the challenges faced by accelerator designs in arranging components
and producing efficient data mapping schemes to maximise parameter re-use, in this
chapter we look to develop an algorithmic procedure to enable more efficient

downstream hardware design options.

As we explored in the background section, the dominant energy cost in deep neural
network (DNN) inference comes from data movement, particularly from off-chip
DRAM to on-chip memory. We saw that arithmetic operations are orders of magnitude
less costly than these memory accesses. This fundamental insight motivates our

approach in this chapter.

We take the view that reducing the number of unique weights coupled with reducing
overall network weight-space entropy gives a measurable goal from an algorithmic
perspective that allows for downstream hardware flexibility in design for re-use
opportunities. In the best-case scenario, each unique weight would be read once and be
used for all the computations it is involved in. This is, of course, highly unlikely, since it
would require the storage of the entire network (all of the unique weights) close to
computation. However, as the number of unique weights is reduced, so is the cost to

store the network, paying tribute to its utility as an algorithmic objective.

The weight-space entropy,

HW) = — Y p(w)In(p(w;)), (3.1)

w;, €W

refers to the average number of bits of information within each of the parameters in a

network and represents the theoretically fewest number of bits of information to



36 Chapter 3. Weight Fixing Networks

losslessly compress the weight-space Shannon [1948a]. Referring back to Figure 2.4,
p(w;) is the probability that weight value w; was picked at random from all unique
weights in the network.

Minimising this value has two benefits from a practical standpoint, and algorithmic
compression schemes have been focused on getting as close to this limit as possible. A
network with entropy H(W) can be stored using NH (W) bits (where N is the number
of weights in the network), and so minimising the weight-space entropy is a close proxy
for minimising the storage size requirements for the network. Secondly, in minimising
the entropy of the weight-space, we are focusing on just a few weights around high
probability regions with a large number of seldom seen outlier weights. The high
probability weights will be re-used often in a forward pass and are therefore prime
candidates for keeping close to computation to reduce data movement costs as

previously discussed.

Recall from our discussion on dataflow mappings that weight-stationary designs, such
as those used in Tensor Processing Units (TPUs), aim to keep weights in local memory
and stream in activations. By reducing the number of unique weights, we can
potentially enhance the effectiveness of such designs, allowing for more weights to be
stored locally and reducing the need for repeated DRAM accesses.

Furthermore, our exploration of quantisation techniques demonstrated the potential for
reducing the precision of weights without significant loss in accuracy. The Weight
Fixing Networks approach we’ll introduce in this chapter can be seen as an extreme
form of quantisation, where we aim to drastically reduce the number of unique weight

values across the entire network.

In this chapter, we take on the challenge of compressing the entire network using a
single codebook and demonstrate superior lossless compression using a few novel (and
some well-trodden) tricks: a view of compression as relative distance minimisation, a
novel regularisation term to encourage low-entropy network encodings, and a focus on
optimising a whole-network quantisation codebook, rather than per-layer. The pipeline,
which we call Weight Fixing Networks (WFN), achieves lossless compression using 50x
fewer unique weights, half the weight-space entropy, and at least a 14% improvement in
storage compressibility when compared with state-of-the-art (SOTA) quantisation and

weight clustering approaches with no reduction in classification accuracy.

The idea is that with a single codebook defining the entire network, we will maximise
the amount of re-use of the parameters and therefore enable hardware designs to focus
resources on storing the re-used parameters close to computation - reducing off-chip

memory re-use/cache misses.



3.1. Single Codebook 37

This approach builds on insights from hardware accelerator design, quantisation,
pruning, and information theory. Our goal is to develop an algorithmic method that can
produce networks with drastically reduced numbers of unique weights, lower
weight-space entropy, and maintained task performance — all while keeping in mind the
potential for efficient hardware implementation.

3.1 Single Codebook

Seminal works quantising modern iterations of neural networks proposed that some
layers should be left at full precision whilst the rest of the network was quantised
[Hubara et al., 2016]. As we have previously discussed the original formulation was
mooted originally for binary networks (where the weights take on only one of two
values) and guided by necessity. Since binarised networks are restricted to only the
values: {—1,1} task performance suffers an intolerable amount if one or more layers are
not left at full precision. The first layer tends to have a low parameter count (due to a
small channel input) and so were the first to be relaxed to full precision [Hubara et al.,
2016]. Shortly after, XNOR-Net [Rastegari et al., 2016] extended the non-quantised
layers to also include the final layer. Further developments in neural network design
have seen the batch-normalisation layer included in most SOTA convolution
architectures but the parameters involved in these calculations are not considered for
quantisation. These relaxations have become a universal trend not just for binarisation
approaches but for higher-bit-width quantisation in general [Yuhang Li, Xin Dong, 2020,
Jung et al., 2019a, Zhang et al., 2018, Zhou et al., 2016a, Yamamoto, 2021]. Our main
argument is that this relaxation contributes significant computational overhead and is
unnecessary outside of the highly restrictive binary neural network case.

3.1.1 Unquantised Elements

In Figure 3.1, we take a look at how much of the network remains unquantised with this
set-up for popular models. Taking ResNet-50 as an example, over 2 million weights are
left unquantised, accounting for 8% of all parameters in the network. This
uncompressed network component translates into a computational overhead in
hardware, increased floating-point operations (FLOPs), and, crucially, higher data
movement costs due to memory reads.

Another prevalent trend found in quantisation methods is to use different codebooks
for each layer. This is justified by the you-only-pay-once argument, where, since each
layer is only read once per inference calculation, the cost of reading the codebook for



38 Chapter 3. Weight Fixing Networks

1le6

No. of Weights not Quantised

ResNet-18 ResNet-34 ResNet-50 Inception GooglLenet

FIGURE 3.1: We count the number of parameters that are left unquantised by the

”status-quo” approaches that leave the first, last, linear and batch-norm layers to be

8-bit or full precision. Each of these parameters incurs energy-hungry data movement
costs for accelerators.

each layer is small. This, however, increases the overall weight-space entropy, which in
turn results in sub-optimal compression and less parameter re-use.

Using multiple codebooks and allowing parts of the network to remain unquantised has
real implications for deep learning accelerator designs. Recalling our previous
discussion, data movement costs are a function of parameter re-use, the delay in re-use
and filter shape effects [Sze et al., 2017, 2020]. These costs are difficult to reduce in von
Neumann architectures [Li et al., 2015, Sebastian et al., 2020] and are a core
consideration of accelerator designs. Specialised hardware looks to distributing
computation across processing elements (PE’s) which typically contain both a
computational and a memory unit. The reading of data from the memory unit is small
[Chen et al., 2020, Sze et al., 2020] but the number of PE’s is limited (< 1000 is typical).
Here, we see why not having a whole network codebook and/or not quantising every
layer is costly; less re-use leads to increased data movement costs since each unique
value needs reading at least once. This single read per weight is still only the best-case
scenario since if the network has a larger number of unique parameters than PE’s, then
parameters that require re-use may need to be read and then re-read multiple times.



3.1. Single Codebook 39

3.1.2 WEN Objectives

Given these observations, we take the view that fewer unique weights across the entire
network to be a worthy objective. Fewer weights — whilst fixing the network topology
and the total number of parameters — means that more weights are re-used more often.
This additional re-use gives more opportunity to dataflows to maintain often-used
weights in PE’s, saving data movement costs. To save data movement costs further, all
network weights could be quantised into a shared codebook which would save
between-layer re-reading. To further the compression capability, we note that it would
be desirable if the distribution of the unique weights were concentrated around a
handful of values. The high probability density weights would then be used more often
and reliably stored inside PE’s, saving both the cost of overwriting these weight values
and re-fetching them when needed later. Finally, from a computational perspective, not
all multiplications are created equal. Integer powers-of-two, for example, can be
implemented as simple bit-shifts. Focussing the weights used most to these values
offers potential further energy reductions. Putting these three requirements together:
few unique weights; a low-entropy encoding with a distribution of weights highly
concentrated around a tiny subset of values; and a focus on powers-of-two values for
weights — all motivated to reduce the data movement costs — we present the outline of
WEN.

3.1.3 Overview

Our work’s overarching objective is to transform a network comprising many weights
of any value (limited only by value precision) to one with the same number of weights
but just a few unique values and concentrate the weights around an even smaller subset
of weights. Rather than selecting the unique weights a priori, we let the optimisation
guide the process in an iterative cluster-then-train approach. We cluster an
ever-increasing subset of weights to one of a few cluster centroids in each iteration. We
map the pre-trained network weights to these cluster centroids, which constitute a pool
of unique weights. The training stage follows standard gradient descent optimisation to
minimise performance loss with two key additions. Firstly, only an ever decreasing
subset of the weights are free to be updated. We also use a new regularisation term to
penalise weights with large relative distances to their nearest clusters. We iteratively
cluster subsets of weights to their nearest cluster centre, with the way we determine

which subset to move a core component of our contribution.



40 Chapter 3. Weight Fixing Networks

10 B = 0.05 B=0.1 B=02
0.8
oy
806
=1
goa
0.2
0.0 Noise Type
0 2 4 6 2 4 6 0 2 4 6 i
B=0.3 B=04 B=05 mmm Relative
1.0 Absolute
0.8
oy
806
=1
goa
0.2
0'00 2 4 6 0 2 4 6 0 2 4 6

Layer Index Layer Index Layer Index

FIGURE 3.2: We explore adding relative vs absolute noise to each of the layers (x-axis).
The layer index indicates which layer was selected to have noise added. Each layer
index is a separate experiment with the 95% confidence intervals shaded.

3.1.4 Small Relative Distance Change.

Rather than selecting subsets with small Euclidean distances to cluster centres, or those
that have small magnitude [Zhou et al., 2017], we make the simple observation that the
relative — as opposed to absolute — weight change matters. We find that the tolerated
distance dw; we can move a weight w; when quantised depends on the relative distance
|(0w;/w;)|. When the new value w; + éw; = 0 — as is the case for pruning methods —
then the magnitude of the weight is the distance. However, this is not the case more
generally. We demonstrate the importance of quantising with small relative changes
using simple empirical observations. Using a pre-trained ResNet-18 model, we measure
changes to network accuracy when adding relative vs absolute noise to the layers’
weights and measure the accuracy change. For relative (multiplicative) noise we choose
a scale parameter B|w!| for each layer-I weight w!, and set w! < w! + Blwl|e,

¢ ~ N(0,1). In contrast, additive noise perturbations, all weights w! are perturbed by

the mean absolute value of weights |w!] in layer I scaled by B: w! + w! + Blw!|e.

We run each layer- combination experiment multiple times — to account for fluctuation
in the injected noise — and present the results in Figure 3.2. Even though the mean
magnitude variation of noise added is the same, noise relative to the original weight
value (multiplicative noise) is much better tolerated than absolute (additive noise).
Since moving weights to quantisation centres is analogous to adding noise, we translate
these results into our approach and prioritise clustering weights with small relative
distances first. We find that avoiding significant quantisation errors requires ensuring
that % is small for all weights. If this is not possible, then performance could suffer. In
this case, we create an additional cluster centroid in the vicinity of an existing cluster to
reduce this relative distance. Our work also challenges the almost universal trend in the

literature [Yuhang Li, Xin Dong, 2020, Jung et al., 2019a, Zhang et al., 2018, Zhou et al.,



3.2. Method 41

2016a, Yamamoto, 2021, Oh et al., 2021a] of leaving the first and last layers either at full
precision or 8-bit. Instead, we attempt a full network quantisation. The cost of not
quantising the first layer — which typically requires the most re-use of weights due to
the larger resolution of input maps — and the final linear layer — which often contains
the largest number of unique weight values — is too significant to ignore.

With multiple stages of training and clustering, we finish with an appreciably reduced
set of unique weights. We introduce a regularisation term that encourages non-uniform,
high probability regions in the weight distribution to induce a lower-entropy
weight-space. The initial choice of cluster centroids as powers-of-two helps us meet our
third objective — energy-saving multiplication. Overall we find four distinct advantages
over the works reviewed:

* We assign a cluster value to all weights — including the first and last layers.

¢ We emphasise a low entropy encoding with a regularisation term, achieving
entropies smaller than those seen using 3-bit quantisation approaches — over

which we report superior performance.

* We require no additional layer-wise scaling, sharing the unique weights across all
layers.

¢ WEN substantially reduces the number of unique parameters in a network when
compared to existing SOTA quantisation approaches.

3.2 Method

3.2.1 Method Outline.

WEN is comprised of T fixing iterations where each iteration t € T has a training and a
clustering stage. The clustering stage is tasked with partitioning the weights into two
subsets W = WL, U Wl . WL _, is the set of weights set equal to one of the cluster

i free*

centre values ¢, € C. These fixed weights w; € W, ., are not updated by gradient decent

in this, nor any subsequent training stages. In contrast, the free-weights denoted by W{

remain trainable during the next training stage. With each subsequent iteration t we

. . Wk
increase the proportion p; = %

with pg < p1... < pr = 1. By iteration T, all weights will be fixed to one of the cluster

of weights that take on fixed cluster centre values,

centres. The training stage combines gradient descent on a cross-entropy classification
loss, along with a regularisation term that encourages tight-clusters, in order to
maintain lossless performance (i.e no drop in performance compared to the baseline

trained network) as we fix more of the weights to cluster centres.



O ® NS U R LW N =

11
12
13
14
15
16
17

18

42

Chapter 3. Weight Fixing Networks

N

\)
N k

Lreg =7 Z ZU;q(wz.cﬂp((‘]\wz]

1€Wree J
—

FIGURE 3.3: The WEN pipeline We start with a fully-trained converged model and
assign k initial cluster centroids based on relative distance changes between the original
weights and their closest cluster centres. We then retrain the network for a few epochs
with an additional regularisation term that encourages the weights towards their closest
cluster centroids. Weights that are subsequently close enough to their closest cluster,
without a distance threshold breach, can then be fixed to their closest cluster value. If
not enough weights can be fixed without the threshold being breached, k can increase,
adding a new cluster centre. The process is repeated until the network is reformulated
and uses just a few unique weights. By construction, the weight distribution will be
skewed for efficient low-entropy Huffman encoding.

Algorithm 1: Clustering Np; weights at the

t jteration.

while WL | < Np; do

w <+ 0

fixednew « [ ]

while fixednew is empty do
Increase the order w < w +1

foreachi=1...,|W.t!
(i) - min__g, D7, (w;, )

for each cluster centre ¢j’ € C¢

ny < Yl = (7))
k* < arg max ny
Sort: [w,..., wy] < [wy,..., wN]|, W} = Wr(j), 7T permutation

+ ey + / w

where Drel(wi,c,r) < D (w4, )
. / w
A 1, mean < D_ (w, )
while mean < ¢ do

fixedpew «— W}

1 p+

_r / w
mean < 7 *mean + 77D (w4, c})

1+i+1

Assign all the weights in fixedpew to cluster centre ¢¥ (i), moving them from
Wt+1 to Wt+1

free fixed




3.2. Method 43

76 5 *___y" ResNet-50
¢ 00075
741 ¥ 0.01
0 * 0.015 v 4 ResNet-34
g 72 *
GoogleNet
8 *—' 9 ResNet-18 Baseline Sizes
<70 ResNet-18: 47MB
ResNet-34: 87MB
ResNet-50: 98MB
68 GoogleNet: 26MB
2 3 4 5 : ‘ 8 9 10

6 7
Model Size (MB)

FIGURE 3.4: The accuracy vs model size trade-off can be controlled by the J parameter.
All experiments shown are using the ImageNet dataset, accuracy refers to top-1.

3.2.2 Clustering Stage.

In the clustering stage, we work backwards from our goal of minimising the relative
distance travelled for each of the weights to determine which values cluster centres
¢i € C should take. For a weight w; € W and cluster centre ¢; € C we define a relative

. w;—cC; .. .« .
distance measure Dy (w;, ¢;) = | "w‘|] | . To use this in determining the cluster centres, we
1

enforce a threshold ¢ on this relative distance, D, (w;, cj) < ¢ for small 6. We can then
define the cluster centres ¢; € C which make this possible using a simple recurrence
relation. Assume we have a starting cluster centre value c;, we want the neighbouring

cluster value ¢j to be such that if a network weight w; is between these clusters

w; € [cj, 5179 then Dyt (wj, ¢j) < 4. Plugging in 9179 and ¢j into Dy and setting it
equal to 6 we have:

g . 145

ﬁ = (5, ].eadlng to Cj+1 = C](m), 0< ) < 1, (3.2)

a recurrence relation that provides the next cluster centre value given the previous one.
With this, we can generate all the cluster centres given some boundary condition

co = 0p. Oy is the lower-bound cluster threshold, and all weights w; for |w;| < &y are set
to 0 (pruned). This lower bound serves two purposes: firstly, it reduces the number of
proposal cluster centres which would otherwise increase in density around zero with a
reciprocal spacing, and additionally, the zero-valued weights make the network more
sparse. This will allow sparsity-leveraging hardware to avoid operations that use these
weights, reducing the computational overhead. As an upper-bound, we stop the
recurrence once a cluster centre is larger than the maximum weight in the network,

max; |c;| < max; |w;|, w; € W,¢; € C.

3.2.3 Generating the Proposed Cluster Centres.

Putting this together, we have i) a starting point cy = &y, ii) a recurrence relation to

produce cluster centres given ¢ that maintains a relative distance change when weights



44 Chapter 3. Weight Fixing Networks

are moved to their nearest cluster centre, and iii) a centre generation stopping condition
¢j < max;ew |, ¢j € C. We use the dy value as our first proposed cluster centre ¢y with
the recurrence relation generating a proposed cluster set of size s. Since all these values
will contain only positive values, we join this set with its negated version along with a
zero value to create a proposal cluster set C° = {a(1£2)/gy | j=0,1---5; a = +1,0,—1}
of size 25 + 1.

To account for the zero threshold dy and for ease of notation as we advance, we make a
slight amendment to the definition of the relative distance function D, (w;, cj):

|w;—cj|

T T (3.3)
¢ 0 otherwise.

3.2.4 Reducing k with Additive Powers-of-two Approximations.

Although using all of the values in C® as centres to cluster the network weights would
meet the requirement for the relative movement of weights to their closest cluster to be
less than ¢, it would also require a large number of k = |CS| clusters. In addition, the
values in C° are also of full 16-bit precision, and we would prefer many of the weights
to be powers-of-two for ease of multiplication in hardware. With the motivation of
reducing k and encouraging powers-of-two clusters whilst maintaining the relative
distance movement where possible, we look to a many-to-one mapping of the values of
CS to further cluster the cluster centres. Building on the work of others Zhou et al.
[2017], Yuhang Li, Xin Dong [2020], we map each of the values c; € C® to their nearest
power-of-two, round(c;) = sgn(c;)2l°8(I5D1 where | -] represents the rounding
operation (rounding up if the fractional part is greater than or equal to 0.5, rounding
down otherwise), and, for flexibility, we further allow for additive powers-of-two
rounding. With additive powers-of-two rounding, each cluster value can also come
from the sum of powers-of-two values (b-bit) up to order w where the order represents
the number of powers-of-two that can contribute to the approximation. We map our
proposal set C° to a w-order approximation where each of the clusters ¢, € C° are

1 1ol 1

: _yw 1
writtenas ¢y = )2 1), 1j € {=5 =551, =50, 57, 51

represents rounding to the nearest integer value. We do so using Algorithm 2. Figure

. %} The notation

3.5 demonstrates how the values of C5 are rounded given different orders.

3.2.5 Minimalist Clustering.

We are now ready to present the clustering procedure for a particular iteration ¢, which
we give the pseudo-code for in Algorithm 1. We start the iteration with w = 1 and a set



1

2
3

4
5

6
7
8
9
10
11

12
13

3.2. Method 45

Algorithm 2: Determining possible clusters

Input: The full precision proposal set: C°, allowable relative distance: 6, pow2
rounding function: round(x) = sgn(x)2.1°8 ()1

Output: An order w precision cluster set: C¢

v ]

for ¢, € C° do

¢, = round(c)
fori=0— wdo
Oe,  Ck— ¢
if |0, | > dcy then
| ¢ ¢} + round(é.,)
end
end
CY <+ CYU{c}
end
CS GEEND 000 000 © ¢ ¢ ©° [ ] o [ [ [} [ ] [ ] [
C3 GNP 000 000 © 0 o o [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
CZ
c ame o o ° ° °
0.0 0.1 0.2 0.3 0.4 0.5

Potential Cluster Center Value

FIGURE 3.5: Approximating clusters ¢, € C° with different orders for b = 7

of weights not yet fixed W,__. For the set of cluster centres C¥ of order w, let

free*

w

¢ (i) = min__x, D}, (wj, c) be the one closest to weight w;. nf’ = ¥, I[cy’ = ¢ (i)]

counts the number of weights assigned to cluster centre ¢}’ € C%, where the indicator
function I[x] is 1 if x is true and 0 otherwise. Let k* = arg max; n so that c{. is the
modal cluster. For the cluster k* let permutation 7v of {1, ..., N} that maps w; — w;r( i)
be such that the sequence (w/ (k*), w)(k*),..., w)(k*)) is arranged in ascending order
of relative distance from the cluster ¢{’.. In other words,

D (w)(k*), ) < Dy (w4 (k*),c.), fori=1,...,(N —1). We choose n to be the
largest integer such that:

n+1

D (wi(k*),cf) < nd, and Y Df (wi(k*),ci) > (n+1)4, (3.4)
i=1

rel rel

n
i=1

and define {w}, w), ..., w),} to be the set of weights to be fixed at this stage of the
iteration. These are the weights that can be moved to the cluster centre ¢}, without
exceeding the average relative distance J of the weights from the centre. The



46 Chapter 3. Weight Fixing Networks

corresponding weight indices from the original network A are in {m~1(1),..., 7 1(n)},
and called fixedpewin the algorithm. If there are no such weights that can be found, i.e.,
for some cluster centre [*, the minimum relative distance D7, (w{ (I*), ¢;+) > 6, the
corresponding set fixednew is empty. In this case, there are no weights that can move to
this cluster centre without breaking the é constraint and we increase order w <+ w +1
to compute a new c}, repeating the process until |fixedpew| > 0. Once fixedpew is
non-empty, we fix the identified weights {w}, w5, ..., w)} to their corresponding cluster
centre value ¢, and move them into W/,},. We continue the process of identifying
cluster centres and fixing weights to these centres until |Wftiield| > Np;, at which point
the iteration f is complete and the training stage of iteration f + 1 begins. Our
experiments found that a larger ¢ has less impact on task performance during early ¢
iterations and so we use a decaying J value schedule to maximise compression:

0t =6(T—t+1),t € T. We will show later that, with a small J, over 75% of the weights
can be fixed with w = 1 and over 95% of weights with w < 2.

3.2.6 Training Stage.

Despite the steps taken to minimise the impact of the clustering stage, without
retraining, performance would suffer. To negate this, we perform gradient descent to
adjust the remaining free weights W[ .. This allows the weights to correct for any loss
increase incurred after clustering where training aims to select values W} that

minimise the cross entropy 10ss Lcross-entropy Whilst Wgiieq remain unchanged.

3.2.7 Cosying up to Clusters.

Having the remaining W}, weights closer to the cluster centroids C post-training
makes clustering less damaging to performance. We coerce this situation by adding to

the retraining loss a regularisation term

N k
Lieg = E ZD;gg(wi/Cj)p(Cﬂwi)/ (3.5)

i€ Wfree ]

e—D;gg(wi,c]-)
Z;( €7D$g(ztri,c1)

proportion to their distance to the closest cluster. Clusters that are unlikely to be weight

. The idea is to penalise the free-weights W/ in

where p(c;|w;) = free

w;’s nearest — and therefore final fixed value — do not contribute much to the
penalisation term. We update the gradients of the cross-entropy training loss with the

regularisation term:

W W7 (vwﬁcross—entropy + Dé’}’vwﬁreg) ,



3.3. Experiment Details 47

Model Data Opt LR T  Batchsize Y «
ResNet-18  ImageNet Adam 2e-4 10 128 {0.05, 0.025, , 0.015, 0.01, 0.0075, 0.005 } {0.2,0.4}
ResNet-34  ImageNet Adam 2e4 10 64 {0.05, 0.025, , 0.015, 0.01, 0.0075, 0.005} {0.4}
ResNet-50  ImageNet Adam 2e-4 10 64 {0.05, 0.025, , 0.015, 0.01, 0.0075, 0.005} {0.4}

GoogLeNet ImageNet Adam 2e-4 10 64 {0.01, 0.0075, 0.015} {04}
ResNet-18  CIFAR-10 Adam 3e-4 10 512 {0.01, 0.02, 0.03, 0.04, 0.05} {0.0,0.1,0.2,0.4, 0.8}
MobileNet ~ CIFAR-10 Adam 2e-4 10 512 {0.01, 0.02, 0.03, 0.04, 0.05} {0.0,0.1,0.2,0.4, 0.8}

TABLE 3.1: Full set of hyper-parameters explored for each model-dataset combination.

with a a hyper-parameter, and 7 the learning rate schedule. In our implementation we

reg

assign vy and detach 7 from the computational graph and treat it as a

l:cross-entropy

constant.

3.3 Experiment Details

We apply WEN to fully converged models trained on the CIFAR-10 and ImageNet
datasets. Our pre-trained models are all publicly available with strong baseline
accuracies!: Resnet-(18,34,50) [He et al., 2016] and, GoogLeNet [Chollet, 2017b]. We run
ten weight-fixing iterations for three epochs, increasing the percentage of weights fixed
until all weights are fixed to a cluster. In total, we train for 30 epochs per experiment
using the Adam optimiser [Kingma and Ba, 2015] with a learning rate 2 x 10~°. We use
grid-search to explore hyper-parameter combinations using ResNet-18 models with the
CIFAR-10 dataset and find that the regularisation weighting & = 0.4 works well across
all experiments reducing the need to further hyper-parameter tuning as we advance.
The distance threshold ¢ gives the practitioner control over the
compression-performance trade-off (see Figure 3.4), and so we report a range of values.
We give a full breakdown of the parameters used across all experiments ran in Table 3.1.

3.4 Results

We begin by comparing WEN for a range of § values against a diverse set of
quantisation approaches that have comparable compression ratios (CR) in Table 3.2. The
3-bit quantisation methods we compare include: LSQ [Esser et al., 2020], LQ-Net
[Zhang et al., 2018] and APoT [Yuhang Li, Xin Dong, 2020]. We additionally compare
with the clustering-quantisation methods using the GoogLeNet model: Deep-k-Means
[Wu et al., 2018] whose method is similar to ours, KQ [Yu et al., 2020], and GreBdec [Yu
et al., 2017]. Whilst the results demonstrate WFN's lossless performance with SOTA CR,
this is not the main motivation for the method. Instead, we are interested in how WFN
can reduce the number of unique parameters in a network and corresponding

weight-space entropy as well as the network representational cost, as defined in [Wu

1CIFAR-10 models : https:/ / github.com/kuangliu/pytorch-cifar, ImageNet models: torchvision



48 Chapter 3. Weight Fixing Networks
10 2091 — o-00075 1.0 Order>1
175 o0 2 — order-1
08 i 150 5,0.8
§ 0.6 % 12 206
_Jg E 100 | 8
% 0.4 : :Z /J l‘L>L_j 0.4
02 25 30-2 - -
OS2 34567 8 9 001234567390.00123456789 géddé‘?g ° 333 %
Fixing Tteration Fixing Iteration Fixing Iteration Weight Values
FIGURE 3.6: ImageNet experimental results: Far left: We increase the number of
weights in the network that are fixed to cluster centres with each fixing iteration.
Middle left: Decreasing the J threshold increases the number of cluster centres, but
only towards the last few fixing iterations, which helps keep the weight-space entropy
down. Middle right: The majority of all weights are order 1 (powers-of-two), the
increase in order is only needed for outlier weights in the final few fixing iterations. Far
right: The weight distribution (top-15 most used show) is concentrated around just
four values.
TABLE 3.2: A comparison of WEN against other quantisation and weight clustering
approaches on the ImageNet dataset. The WEN pipeline is able to achieve higher
compression ratios than the works compared whilst matching or improving upon
baseline accuracies.
Accuracy (%) Accuracy (%)
Model Method Top-1 Top-5 CR Model Method Top-1 Top-5 CR
ResNet-18 Baseline 68.9 88.9 1.0 ResNet-34 Baseline 73.3 90.9 1.0
LQ-Net 68.2 87.9 7.7 LQ-Net 71.9 90.2 8.6
APoT 69.9 89.2 10.2 APoT 73.4 91.1 10.6
LSQ 702 89.4% 9.0 LSQ 734 914% 92
WEN 6 = 0.0075  70.3 89.1 10.2 WEN 6 = 0.0075  73.0 91.2 103
WEN § = 0.01 69.7 89.2 12.3 WEN § = 0.01 72.6 91.0 111
WEN § = 0.015 67.3 87.6 13.4 WEN § = 0.015 72.2 909 126
ResNet-50 Baseline 76.1 92.8 1.0 | GoogLeNet Baseline 69.7 89.6 1.0
LQ-Net 74.2 91.6 59 Deep k-Means 69.4 89.7 3.0
APoT 75.8 92.7 9.0 GreBdec 67.3 88.9 45
LSQ 758t 927t 8.1 KQ 69.2 - 5.8
WEN § =0.0075  76.0 92.7 9.5 WEN § =0.0075  70.9 90.2 8.4
WEN J = 0.01 754 92.5 9.8 WEN J = 0.01 70.5 90.0 8.4
WEN § = 0.015 75.1 92.1 10.3 WEN 4 = 0.015 70.5 89.9 9.0
" Estimated from the LSQ paper model size comparison graph, we over-estimate to be as fair as possible.
*Open-source implementations have so far been unable to replicated the reported results:

https:/ / github.com/hustzxd /LSQuantization.

et al., 2018]. This metric has been tested and verified to linearly correlate with energy

estimations deduced using the energy-estimation tool proposed in [Yang et al., 2017b]:
Rep(N') = [W|NeyBuy

Here, the representation cost is measured as the product of N, the number of

operations weight w is involved in, By, its bit-width and |W|, the number of unique

weights in the network, respectively. This representation cost has a direct translation

into data-movement costs since every weight (|W|) in the network will need to have its

compressed representation (approx By, if Huffman coding is used) moved from memory

to where it is needed for compute N, times.



3.4. Results 49

TABLE 3.3: A full metric comparison of WEN Vs. APoT. Params refers to the
total number of unique parameter values in the network. No BN-FL refers to
the unique parameter count not including the first-last and batch-norm layers.
WEN outperforms APoT even when we discount the advantage gained of taking
on the challenge of quantising all layers. Model sizes are calculated using LZW

compression.
Model Method Top-1 Entropy Params No BN-FL  Repp.q Model Size

ResNet-18 Baseline 68.9 23.3 10756029 10276369 1.000 46.8MB
APoT (3bit) 69.9 5.77 1430 274 0.283 4.56MB
WEN 6 = 0.015 67.3 2.72 90 81 0.005 3.5MB
WEN ¢ = 0.01 69.7 3.01 164 153 0.007 3.8MB
WEN 6 = 0.0075  70.3 4.15 193 176 0.018 4.6MB
ResNet-34 Baseline 73.3 24.1 19014310 18551634 1.000 87.4MB
APoT (3bit) 73.4 6.77 16748 389 0.296 8.23MB
WEN 6 = 0.015 722 2.83 117 100 0.002 6.9MB
WEN 6 = 0.01 72.6 3.48 164 130 0.002 7.9MB
WFN§ = 0.0075  73.0 3.87 233 187 0.004 8.5MB
ResNet-50* Baseline 76.1 24.2 19915744 18255490 1.000 97.5MB
WEN § = 0.015 75.1 3.55 125 102 0.002 9.3MB
WEN § = 0.01 754 4.00 199 163 0.002 10.0MB
WEN 6 = 0.0075  76.0 4.11 261 217 0.003 10.2MB

* The APoT model weights for ResNet-50 were not released so we are unable to conduct a comparison for this

setting.

Due to the low weight-space entropy we achieve, we suggest Huffman encoding to
represent the network weights (as is used by various accelerator designs [Moons and
Verhelst, 2016a, Han et al., 2016a]). Given that the weight-representational bit-width will
vary for each weight, we amend the original formulation to account for this, introducing

Repygivea(NV') = Y NuBy, (3.6)
w;eW

Here Ny, is the number of times w; is used in an inference computation, and By, its

Huffman-encoded representation bit-width of w;.

The authors of the APoT have released the quantised model weights and code. We use
the released model-saves? of this SOTA model to compare the entropy, representational
cost, unique parameter count, model size and accuracy in Table 3.3. Our work
outperforms APoT in weight-space entropy, unique parameter count and weight
representational cost by a large margin. Taking the ResNet-18 experiments as an
example, the reduction to just 164 weights compared with APoT’s 9237 demonstrates
the effectiveness of WEN. This huge reduction is partly due to our full-network
quantisation (APoT, as aforementioned, does not quantise the first, last and batch-norm
parameters). However, this does not tell the full story; even when we discount these
advantages and look at weight subsets ignoring the first, last and batch-norm layers,
WEN uses many times fewer parameters and half the weight-space entropy — see
column ‘No BN-FL’ in Table 3.3. Finally, we examine how WFN achieves the reduced
weight-space entropy in Figure 3.6. Here we see that not only do WFN networks have

very few unique weights, but we also observe that the vast majority of all of the weights

Zhttps:/ / github.com/yhhhli/ APoT_Quantization



50 Chapter 3. Weight Fixing Networks

Full Network No BN No BN-FL
Model Method Top-1 Entropy Param Count Entropy Param Count Entropy Param Count
ResNet-18 Baseline 68.9 233 10756029 23.3 10748288 23.3 10276369
APoT (3bit) 69.9 5.77 9237 5.76 1430 5.47 274
WEN ¢ = 0.015) 67.3 2.72 90 2.71 81 2.5 81
WEN 6 = 0.01) 69.7 3.01 164 3.00 153 2.75 142
WEN 6 =0.0075)  70.3 4.15 193 413 176 3.98 162
ResNet-34 Baseline 733 24.1 19014310 24.1 18999320 24.10 18551634
APoT (3bit) 73.4 6.77 16748 6.75 16474 6.62 389
WEN ¢ = 0.015) 722 2.83 117 2.81 100 2.68 100
WEN ¢ = 0.01) 72.6 348 164 3.47 132 3.35 130
WEN 6 = 0.0075)  73.0 3.87 233 3.85 191 3.74 187
ResNet-50 Baseline 76.1 24.2 19915744 24.2 19872598 24.20 18255490
WEN ¢ = 0.015) 75.1 3.55 125 3.50 105 3.42 102
WEN 6 = 0.01) 75.4 4.00 199 3.97 169 3.88 163
WEN 6 = 0.0075)  76.0 4.11 261 4.09 223 4.00 217

TABLE 3.4: A full metric comparison of WEN Vs. APoT. We compare the unique

parameter count and entropy of all parameters in the full network, as well as the same

measures but not including the batch-norm layers (No BN) and the parameters not
including the batch-norm and first and last layers (No BN-FL).

are a small handful of powers-of-two values (order 1). The other unique weights

(outside the top 4) are low frequency and added only in the final fixing iterations.

3.5 Additional Analysis

3.5.1 Layerwise Breakdown

In Figure 3.7 we examine how the parameter count and layer-parameter entropy change
with each layer for both the WFN and APoT approaches. We find both gains over the
unquantised layers of APoT, but also that the entropy and parameter count in the

convolutional layers (those quantised by APoT) are similar.

3.5.2 A Full Metric Comparison

In Table 3.4 we give the full metric breakdown comparing WEN to the state-of-the-art
APoT work. We calculate the unique parameter count and entropy values for subsets of
the weights. No BN corresponds to all weights other than those in the batch-norm
layers, and No BN-FL is the set of weights not including the first-last and batch-norm
layers. It is clear here that WFN outperforms APoT even when we discount the

advantage gained of taking on the challenge of quantising all layers.



3.5. Additional Analysis 51

ws \WFN_res18

1000 9 e APOT_res_18_3b
=== APOT_res_18_4b
s APOT_res_18_Sb

800

600 -

400

Layer Unique Param Count
1
1
1

200

0
s e e e e L e e e L s e e e e e e L e e e e e e e AL
cw bw bb cw bw bb cw bw bb cw bw bb cw bw bb cw bw bb cw bw bb cw bw bb cw bw bb cw bw bb cw bw bb cw bw bb cw bw bb cw bw bb cw bw bb cw bw bl cw bw bb Iw_Ib
layer1 layer2 layer3 layer4 layer5 layer6 layer7 layer8 layer9 layer10 layerll layer12 layer13 layeri4 layerl5 layerl6 layerl7 layer18

10 A

Layer Entropy

T

LIRS S B S S B L L L L A N N B S N N SN N N A N N N A N N N N S N N N N N
cw bw bb cw bw bb cw bw bb cw bw bb cw bw bb cw bw bb cw bw bb cw bw bb cw bw bb cw bw bb cw bw bb cw bw bb cw bw bb cw bw bb cw bw bb cw bw bb cw bw bb Iw_Ib

layer1 layer2 layer3 layer4 layer5 layer6 layer7 layer8 layer9 layerl0 layerll layer12 layerl3 layerl4 layerl5 layerl6 layerl7 layer18

FIGURE 3.7: We compare WEN with a traditional quantisation set-up (APoT) with

varying bit-widths applied to a ResNet18 model trained on the ImageNet dataset. The

top chart shows the layerwise unique parameter count where WEN has consistently
fewer unique parameters per layer.



52 Chapter 3. Weight Fixing Networks

0.20{ ®
®© © 0 0 0000 0 0 o
0.8 N 0.19 °
o 0.18
< 0.6 o a . ® o
°\.—|° % 0.174 L
2 0.4 o h
Q 0.16
®
o o °
0.2 0.151 ¢ e,
[ ]
0.0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ 0.14 ‘ ‘ ‘ ‘ ‘ ‘ ®
' 01 02 03 04 05 06 07 01 02 03 04 05 06 07
% Pruned at Initiation % Pruned at Initiation

FIGURE 3.8: Here we show that unstructured pruning at initialisation up to 50% can be
coupled with the WEN process without degradation of performance and can further
reduce the weight-space entropy.

3.5.3 Pruning Experiments

To explore how WEN interacts with pruning we conduct a simple set of experiments.
Instead of starting the WFN process with all weights un-fixed we randomly select p% of
the weights to be pruned in each layer. We then run WEN as before starting with p; = p,
reducing the number of T iterations. The results, shown in Figure 3.8, are conducted
with a ResNet-18 and Cifar-10 combination, painting a mixed picture. On the one hand,
WEN and pruning at lower levels (< 50%) are well tolerated and provide two benefits, a
lower weight-space entropy and few weight-fixing iterations. On the other hand,
full-precision networks can tolerate much higher ranges of pruning so there it would
seem that a certain amount of synergy between the two approaches is present but this is
tempered compared to full precision networks.

It’s important to note that WEN already has a form of pruning built-in with the §y value

balancing the emphasis on pruning over quantisation.

3.6 Conclusion

In this chapter we have presented WFN, a pipeline that can successfully compress
whole neural networks. The WEN process produces hardware-friendly representations
of networks using just a few unique weights without performance degradation. Our
method couples a single network codebook with a focus on reducing the entropy of the
weight-space along with the total number of unique weights in the network. The
motivation is that this combination of outcomes will offer accelerator designers more
scope for weight re-use and the ability to keep most/all weights close to computation to
reduce the energy-hungry data movement costs. Additionally, we believe our findings
and method offer avenues of further research in understanding the interaction between



3.6. Conclusion 53

network compressibility and generalisation, particularly when viewing deep learning

through the minimal description length principle lens.

While the WEN presented in this chapter has shown promising results in compressing
neural networks, there is an underlying assumption that small weights should move
proportionately to their magnitudes. However, this assumption may not hold true for
all individual weights, as some small weights could potentially move larger distances
without significantly impacting accuracy. In the next chapter, we will explore an
alternative approach that aims to address this limitation and in doing so makes a

connection between compression, noise resilience and uncertainty estimations.






55

Chapter 4

Probabilistic Weight Fixing

4.1 An Introduction of Ideas

Our work in WEN demonstrated that it was possible to substantially reduce the number

of unique weights and weight-space entropy whilst maintaining task performance.

In this chapter, we look further to refine the choices made in WFN. One fundamental
assumption in WFN was that small weights should move proportionately to their
current value. That is, small weights can move much smaller distances than larger
weights. We found this empirically true when conducting the additive vs multiplicative
noise experiments, which we show again in Figure 4.2. Taking the population-level
perspective, we see that on average injecting noise relative to weight magnitude is better
tolerated. However, this was from the perspective of entire weight populations and

does not account for individual weight variability.

For example, say we have a network where weights w; and w; are both 0.23, and we
would like to apply the WEN algorithm. Both weights would be considered equally
viable to be moved to 0.25 at this stage since their relative magnitudes are the same.

O 0
FIGURE 4.1: The weight values for any given forward pass through a Bayesian network
are drawn from a learned distribution (right) rather than being point estimates (left).



56 Chapter 4. Probabilistic Weight Fixing

10 B = 0.05 B=0.1 B=02
0.8
oy
806
=1
goa
0.2
0.0 Noise Type
0 2 4 6 2 4 6 0 2 4 6 i
B =03 B=04 B=05 === Relative
1.0 Absolute
0.8
oy
806
=1
goa
0.2
0'00 2 4 6 0 2 4 6 0 2 4 6

Layer Index Layer Index Layer Index

FIGURE 4.2: In WFN, we explored adding relative vs absolute noise to each of the

layers (x-axis). The layer index indicates which layer was selected to have noise added.

Each layer index is a separate experiment with the 95% confidence intervals shaded.
It’s clear here that the relative noise is much better tolerated at a population level.

However, this might not be the case; location might also matter here. Perhaps w; is
finely tuned to its neighbourhood values such that even a small perturbation would
result in a change to downstream activation values and even change the classification
class, but w; has much more flexibility and can be increased or decreased to a greater
extent. The core idea is that relative magnitude, although a good proxy for determining

how much a weight can be moved, ignores neighbourhood and positioning.

Could some weights with small values move large distances without having any
meaningful impact accuracy, and some larger weights be extremely sensitive to even
tiny perturbation shifts? This question motivates this Chapter and a new technique
which we call Probabilistic Weight Fixing Networks (PWEN). Rather than enforcing small
relative distance movements irrespective of weight position we look to training and
using Bayesian neural networks (BNN) [Neal, 2012, Mackay, 1992, Gal et al., 2016] and
using the uncertainty and resilience to noise perturbations found in the optimisation
process to determine which weights to move where. We will later define BNNs formally,

but for now, it serves us to give a simple overview.

4.1.1 High-level BNN

The fundamental concept of BNNSs is that each weight in the network is derived from a
probability distribution, rather than being assigned a fixed value. This means that
during prediction, we randomly select a single value from the distribution of each
weight to use in the network. As a result, given the same input, different forward passes
through the network could lead to variations in the weights’ values, and potentially, in

the predicted output. Each weight in the network is characterised by a set of parameters



4.1. An Introduction of Ideas 57

8 1 _— W
—_— W
7 A
6 W
&5
c
()
Z 4
]
i
3 -
2 -
1 -
0 T T T T T T
-1.0 -0.5 0.0 0.5 1.0 1.5
Weight Value

FIGURE 4.3: Here we show a set of four distributions — one for each of the four weights
— chosen randomly. In the forward pass, we will sample one sample per weight from
these distributions, according to the probability density function.

that define its distribution, which are sampled during the inference process. These
parameters, rather than the weights themselves, are what we learn during training.

In this chapter, we explore how to learn and utilise these distribution parameters to
assist in the process of clustering and quantisation of the weights. By having a distinct
set of distribution parameters for each weight, we can move beyond using a single,

population-based threshold for quantisation.

Before diving further into the details, let’s look at a simple example to motivate the idea.
Imagine that we have a linear model of the form:

4
Y= Z w;X;, (4.1)
i=1

where, in the usual way, w; corresponds to a weight, x; to an input, and y the output of
the model. Rather than attempting to learn w;’s directly, we assume that each w; comes
from a Gaussian distribution w; ~ N (y;,0;) and the task of learning is one of finding
good parameters u and ¢ for each of the weights to minimise performance loss. For
now, let’s assume we have such a learning process and let’s look at a learned possible
outcome post-training in Figure 4.4 (left). With each of the four weights’ distributions is
colour-coded we can ask ourselves what information we learn from these

parametrisations that might be useful for quantisation/clustering.

If we assume that we have learned these distributions of weights during the training
process whilst still maintaining task performance, then we have learned a lot about how



58 Chapter 4. Probabilistic Weight Fixing

4.0 A —_—m
—_ W
3.5 A W2
—_— W3
3.0 A — Wy
3 2.5
c
g
o 2.0 1
]
e
1.5+
1.0 4
0.5 A
0.0 T T T T T T
-3 -2 -1 0 1 2

Weight Value

FIGURE 4.4: If the previous assumption made in WFN, that large magnitude weights

can move larger distances than smaller weights; we would expect the weights’ dis-

tributions to learn larger o values for larger magnitude weights which we show one
example of here on the right.

much we can move each weight value whilst still keeping the weight within the scope
of values that have been sampled during training. w», for example, is very sensitive to
noise perturbations since, during training, it has learned to reduce the o> value to be
small. Having smaller ¢ values indicates that we shouldn’t move this weight too far
during clustering — its quantisation error should be kept small. Conversely, the
distribution learned for w3 has a much larger tail (03 > 07), indicating that w3 has been
sampled at a larger range of values in training without affecting performance and can

therefore be moved more liberally during clustering.

Recall in WEN, we worked assuming that large weights are better tolerated than smaller
weights to move more considerable distances. What would a realisation of this
hypothesis look like if we learned the Gaussian distributions? Figure 4.4 shows one
such example that we would expect to see if this were the case, where the sigma values
are proportional to the distribution means.

4.1.2 The Two Problems to Solve

Within this chapter, we have two problems to solve - how to model a neural network
with the weights stored as distributions so that the parameters both inform clustering
whilst maintaining performance. And, how best to use the information within the
resulting network to perform clustering to the maximal degree.



4.1. An Introduction of Ideas 59

4.1.2.1 Problem One: Modelling

The primary challenge in BNNSs is effectively modelling and learning the distributions
for each weight in the network. To address this, we draw on established BNN literature,
introducing some modifications to the standard BNN training setup. These
modifications are designed to mitigate the intractability of the full Bayesian approach,
which involves solving for all possible configurations of the weights and then
weighting them by their likelihood. The full Bayesian approach becomes intractable due
to the high-dimensional integral required to compute the posterior distribution over the
weights, which grows exponentially with the number of weights in the network.

One popular approach is variational inference, which involves introducing a variational
distribution over the weights and optimising it to minimise the Kullback-Leibler (KL)
divergence between the variational distribution and the true posterior. The KL
divergence measures the difference between two probability distributions, and
minimising it ensures that the variational distribution closely approximates the true
posterior. By restricting the variational distribution to a simpler family of distributions,
such as Gaussian distributions, the optimisation problem becomes tractable and can be
solved using standard gradient-based methods.

A fundamental challenge with the Gaussian distribution variational approach is
determining the appropriate prior for the standard deviation () [Gal et al., 2016,
Maddox et al., 2019]. If no prior is given and only a performance loss is used, the
optimisation process would be incentivised to collapse ¢ values to zero and only use the
u values. This is because reducing the ¢ values to zero eliminates the uncertainty in the
weights and simplifies the optimisation problem. So a prior is needed to prevent this
collapse, but it is not intuitively obvious what such a prior should be.

Another interrelated issue is initialising the parameters of these distributions to ensure
convergence. This is crucial in BNNs, where the forward pass signal is derived from
multiple parameters, thereby diluting the signal in the backward pass. This weakened
signal necessitates more training iterations, making a robust initialisation scheme
critical to complete training within a reasonable timeframe. A robust initialisation
scheme should provide a good starting point for the optimisation process, helping the

model converge faster and avoid getting stuck in suboptimal solutions.

Due to these challenges, scaling BNNSs to complex datasets like ImageNet, particularly
using variational inference, has been difficult. The most effective method to
approximate the posterior distribution of weights in such complex scenarios has been
through observing the Stochastic Gradient Descent (SGD) trajectory [Maddox et al.,
2019].



60 Chapter 4. Probabilistic Weight Fixing

In this chapter, we propose that a network’s resilience to noise is a key indicator of its
downstream performance. We argue that by incorporating noise resilience as a
regularisation term in the optimisation objective, we can effectively guide the learning
of the weight distributions in BNNs. This perspective allows us to regularise BNNs
effectively, encouraging the model to learn weight distributions that are robust to noise
perturbations. By promoting noise resilience, our approach facilitates the training of
BNNs with more complex dataset-model combinations using the variational Gaussian

distribution, enabling their application to a wider range of real-world problems.

4.1.2.2 Problem Two: Utilising What We Learn

Once we have addressed the challenges in modelling and training BNNSs, resulting in a
trained network with each weight represented by a distribution, the next problem is to
determine how to effectively utilise this information in the context of clustering and

quantisation.

A key question arises: Can the uncertainty learned during the training of a BNN be
leveraged to inform the quantisation stage? In other words, can we use the information
encoded in the weight distributions to guide the process of clustering and quantising
the weights? This is a crucial consideration, as the uncertainty captured by the weight
distributions may provide valuable insights into the importance and sensitivity of
different weights in the network. In the second part of this chapter, we will explore
methods to integrate the learned BNNs into a clustering/quantisation algorithm. We
hypothesise that the uncertainty learned during training can serve as a valuable source
of information for clustering. By incorporating this uncertainty into the clustering
process, we aim to develop more efficient and effective quantisation techniques that are

tailored to the specific characteristics of the trained BNN.

Before delving into the details of our Probabilistic Weight Fixing Networks (PWFN)
algorithm, let’s take a moment to review the broader landscape of BNNs. We will
discuss the key motivations driving research in this field and highlight some of the open
challenges that our work aims to address. This background information will provide
context for our contributions and help situate our approach within the existing body of
knowledge.

4.2 Background on Bayesian Neural Networks

Bayesian Neural Networks (BNNs) introduce a fundamental change in weight

modelling compared to traditional neural networks. Instead of assigning fixed values to



4.2. Background on Bayesian Neural Networks 61

weights, BNNs consider a probability distribution over each weight (see Figure 4.1).
Ideally, Bayesian inference would involve computing the integral

P(ylx,D) = [ P(ylx,w)P(w|D)du,

where predictions are averaged across all possible weights w. This concept, although
theoretically appealing, is computationally infeasible for complex networks, leading to
the exploration of alternative methods for approximating the Bayesian posterior.

4.2.1 Origins of Bayesian Neural Networks

One of the earliest and most influential works in this domain was by David MacKay in
the early 1990s, notably his 1992 paper, ”A Practical Bayesian Framework for Backprop
Networks” [Mackay, 1992]. This work laid the foundation for applying Bayesian
principles to neural network weights, thus addressing overfitting by incorporating prior
knowledge into the learning process.

Radford Neal’s 1995 doctoral thesis, “Bayesian Learning for Neural Networks,” [Neal,
2012] further advanced the field. Neal proposed viewing large neural networks as
Gaussian processes, a radical idea that reframed neural networks as probabilistic
models capable of quantifying uncertainty.

4.2.2 Challenges and Conceptual Shifts

Despite these initial advancements, the development of BNNs faced significant
obstacles. The primary challenge was computational; the Bayesian methods, especially
those involving probabilistic weight interpretation, demanded substantial
computational resources. This limitation hindered their application to larger networks

and datasets.

Additionally, the transition from perceiving weights as fixed entities to probabilistic
distributions necessitated a substantial shift in understanding and training neural
networks. This change presented both technical and theoretical challenges, requiring a
deep integration of Bayesian statistics and neural network architecture [Jordan and
Mitchell, 2015].

4.2.3 Advantages of Bayesian Approaches

The shift towards Bayesian methodologies in neural networks is motivated by several

key advantages of BNNs over traditional models.



62 Chapter 4. Probabilistic Weight Fixing

Firstly, BNNs inherently provide a measure of uncertainty in their predictions, which is
crucial in various applications such as medical diagnosis and financial forecasting. In
these domains, understanding the confidence level of predictions is as important as the
predictions themselves [Gal et al., 2016].

Secondly, BNNs naturally mitigate overfitting. Traditional neural networks often suffer
from overfitting, performing well on training data but poorly on new data. BNNs, by
integrating prior information and considering a range of weight distributions,
generalise better to unseen data [Welling and Teh, 2011].

Additionally, BNNSs offer a more principled approach to model complexity. By allowing
the data itself, under probabilistic principles, to guide the determination of model
complexity, BNNs can lead to more optimally sized models that neither underfit nor
overfit the data [Graves, 2011].

4.2.4 Contemporary Research Trends

Recent innovations in BNNs include the development of subnetworks within the model
that are Bayesian in nature [Sharma et al., 2023, Daxberger et al., 2021], the application
of various approximation techniques [Kristiadi et al., 2021, Maddox et al., 2019], and the
use of Gaussian variational relaxations, as demonstrated by Blundell et al. [Blundell

et al., 2015]. Their "Bayes-by-backprop” (BBP) method, in particular, has expanded the
scope of BNNs to modern deep learning architectures using a re-parametrization trick,
enabling back-propagation optimisation and uncertainty quantification in large-scale
networks. Our proposed method, PWEN builds upon these advancements and is an

extension of the variational approach - which we’ll now look to explore more with.

4.2.5 Variational BNNs

Recall that Bayesian inference would involve computing the integral

P(y|x,D) = [ P(y|x,w)P(w|D) dw. The key term here that is difficult to compute is
the posterior distribution of the weights given our data P(w|D). A variational
approximation of this posterior looks to find parameters 0 such that variational
distribution Q(w|0) minimises the Kullback-Leibler (KL) divergence defined as

DKL QHP IQ log P [7] as:




4.2. Background on Bayesian Neural Networks 63

D (Q||P) = / Q(w]6) log 19((;”;)) dw Definition of KL divergence
— /Q(w|9)log Q(HEW)P()D)dw Bayes theorem
—/Q w|8) o gl‘f(< w|6) by +/Q w|8) log P(D)dw logab = loga +log b
— [ Qwlo)tog free ) o+ log P(D) [ Qi) =
log P(D) = Dy (Q||P) — / Q(wlo) log 3 ((;(j[e))) dw Switch sides and negate
log P(D) = Di. (QIP) + £(Q) £(0) = - [ Quwle)tog P

We know that the probability of our data P(D) is fixed and since the KL term is always
positive, Dgr(Q||P) > 0, if we maximise £(Q) we will be simultaneously decreasing
the KL divergence term. This term, £(Q), is known both as the variational free energy
and also the evidence lower bound (ELBO).

Looking closely at £(Q):

—/Q(w|0) log Q(w|9))dw

Q(w|)
= Qo8 1™

—/Q w|6) log Q(w|6) dw+/Q(w\e)logp(pyw)p(w)dw
— H(Q(w]6)) + [ Q(w]6) log P(Dxw)P(w)dw

~ H(Q(w]6)) + [ Q(w]6) log P(DJw)dw + [ Q(aw]o) log P(ew)dw,

we can check in with an explanation for each of the three components we would like to
maximise to minimise the KL divergence Dy (Q||P). The first, H(Q(w)), corresponds
to the entropy of the weights w coming out of the Q family distribution. To maximise
this term, we could look to distributions which maximise entropy and then encourage
solutions (parameter settings) in the optimisation process which also increase the
entropy. The second term | Q(w|6) log P(D|w) refers to the weighted expectation of



64 Chapter 4. Probabilistic Weight Fixing

true model likelihood over the variational Q. Finally, we have [ Q(w|0) log P(w)
which is the cross-entropy of Q(w|6) and P(w).

Even with the selection of a simple variational distribution Q(w|#), the minimisation of
the variational free energy has no tractable closed-form solution for problems of
significant complexity. Instead, sampling approximation methods (such as
Metropolis-Hastings) or gradient-based methods, like Bayes By Backprop (BBP), can be
used. However, even with these relaxations, modelling full deep learning networks as a
set of Gaussian distributions and solving complex problems remains challenging. For
example, in the BBP paper [Blundell et al., 2015], experiments were limited to MNIST
classification and other toy problems. Despite these challenges, variational inference
provides a principled framework for approximating the intractable posterior
distribution in BNNs. By introducing a variational distribution and optimising the
ELBO, we can effectively learn the parameters of the variational distribution and obtain
an approximation to the true posterior. This enables us to perform efficient inference
and make predictions with uncertainty estimates. In the following sections, we will
explore how our proposed method, PWEN, builds upon the variational inference
framework and addresses some of the limitations of existing approaches.

4.3 Probabilistic Weight Fixing Networks

We are now ready to begin to introduce PWENSs. In doing so, our core idea is to integrate
three fields, stochastic/Bayesian neural networks, quantisation, and accelerator designs.
We will use the curious juxtaposition gained from quantisation results — that networks
that can tolerate noise are better than those that can’t — to train BNNs even for the more
complex model-dataset combinations. We will then use the information stored in the
parameters of the weights distributions to guide quantisation/clusterings towards
configurations that offer the opportunities to maximise weight reuse - a core

consideration and driver of accelerator designs in reducing the overall energy costs.

4.3.1 High Level Overview

In PWEN, we follow T fixing iterations each of which combines a training and a
clustering stage in order to reach an outcome of a highly compressed/quantised
network with a single whole-network codebook. In our approach, each weight w; in the
set w is modelled as a sample from a Gaussian distribution, represented as N (y;, o).
These distributions are characterised by learnable parameters: means g = (y1,..., in)
and standard deviations ¢ = (¢, ...,0y). During the training phase, we employ
Bayesian by Backpropagation (BBP) to optimise these parameters. The objective is



4.3. Probabilistic Weight Fixing Networks 65

twofold: firstly, to minimise the loss associated with task performance, and secondly, to
refine the weight distributions. This refinement aims to precisely quantify the extent of
noise that can be introduced to each weight w; without adversely impacting the model’s
performance. Both p and ¢ are trained with an additional regularisation term that
encourages larger values of ¢ to counter the model reverting to the point estimates with
0; = 0 to minimise the classification loss. During the clustering stage, we look to use
this information to move the y; values to one of a handful of cluster centers. We favour
the cluster centers to be hardware multiplication-friendly powers-of-two, or
additive-powers-of-two. After T iterations of training and clustering, each of the
weights” distributions in the networks will have their  values centered on one of the k
clusters in the codebook c.

After the T fixing iterations there are two options depending on the downstream usage
of the network: either the network can be converted into point estimates and the
weights set to the exact y values giving us a quantised network. Or, we can use the
extra information given to us by modelling each weight as a distribution as a way of
quantifying uncertainty of a particular prediction. If, after multiple samples of w, a
model changes its prediction for a fixed input, this tells us that there is uncertainty in

these predictions — with this information being useful for practical settings.

Let us now dive into the training phase of PWFN.

4.3.2 PWEN Training

Consider a network parameterized by N weights w = {wy, ..., wy }. In PWEN, each
weight w; is not a single value but is instead drawn from a distribution w; ~ N (u;, 07),
and instead of learning the w; directly, the learning process optimizes each y; and o;. In
a forward pass, during training, we sample weight values w; according to its
distribution:

w; = u; + o€, € ~ N(0,1). (4.2)

The forward pass is stochastic under fixed p, o. If trained correctly, the o; values give us
information about the amount of noise a particular weight w; can handle without
affecting performance. Said another way, if we can find a configuration w = (p, o)
which maintains task performance despite the randomness introduced by the o;
parameters, then we will know which of the corresponding weights can be moved and
to what degree. In PWFN, we train p, o following the BBP optimisation process
[Blundell et al., 2015] with some changes both in terms of initalisation and the priors on
pand o.



66 Chapter 4. Probabilistic Weight Fixing

4.3.3 Large o constraint for w.

Given the usual cross-entropy or other performance loss, there is a clear direction of
travel during gradient descent towards having small ¢; values and less uncertainty in
the network parameters. If 0;’s are kept small (close to zero) then the optimisation
process need only find a good placement for y;’s to minimise the loss. A prior on the
distribution of weights is therefore needed to prevent the o = 0 point estimate solution

being found which would leave us with no weight movement information.

In the original BBP set-up, the authors aimed to prevent vanishing variance by
regularising the distribution of weights according to a prior distribution composed of a
mixture of zero-mean Gaussian densities with different variances. The parameters of
this prior were determined through an exhaustive search. The motivation for this
approach was twofold: firstly, the empirical Bayes method did not perform well
because the network tended to favour updating these parameters over the posterior
(since there are fewer parameters to update); secondly, there was a connection to the
successful spike-and-slab prior [?], where values are concentrated around 0 (the slab) or

another value known as the spike, thus favouring sparsity.

In contrast, we hypothesise that a good network can handle the most noise injection
whilst maintaining performance. Such networks are likely more compressible, as they
have been trained to tolerate changes to their weight values without performance

degradation during training.

We attempt this by making our ¢ values to be large. Networks with large ¢ have,
probabilistically, more noise added to the u values during training and so have to learn
to have robust performance under such circumstances. We note that this acts as a
push-pull relationship with the performance loss, which favours low ¢ values. The
motivation is that, much like L; norms enforcing sparsity, this formulation will train the
network to produce a large o; for noise-resilient parameter w;, whilst maintaining a
noise-sensitive weight w; to have a small ; despite the prior pull. The regularised loss

function for training the training phases of the algorithm is:
—log P(D|p, o) + aLre(0), (4.3)

where the regularisation term is:

Lrec(o) =

o

Il
=

N
E(U’i) = — Z(O’i — S)@(S — 0'1'), (4.4)
i i=1
with ©(x) = 1 for x > 0 and 0 otherwise. The ® function prevents the optimization
from finding a network with a subset of o with infinitely large values and dominating

the cross entropy term. S is thus a cutoff on how large the values in ¢ can be. a is a



4.3. Probabilistic Weight Fixing Networks 67

a=0.0 a = 0.00781 a = 0.03125
0.0030 II‘H_’-H—J_\ O 0.0030 H—\—Jﬂ_l‘\—ﬁ m 0.0030 m" H H H L
0.0025 0.0025 0.0025
P

0.0020 0.0020 0.0020
© 0.0015 © 0.0015 % © 0.0015

0.0010 0.0010 0.0010

0.0005 0.0005 i 0.0005

- . .
0.0000 -0.1 0.0 0.1 0.2 0.0000 -0.1 0.0 0.1 0.2 0.0000 -0.1 0.0 0.1 0.

NJ T gUrTT o

u u u

FIGURE 4.5: The regularisation term acts to stop the ¢ uncertainty values from collaps-
ing to zero. This experiment is run using the CIFAR10 dataset with ResNet-18, stopping
after 30 epochs.

hyperparameter controlling the formation of a noise-resilient network where the
majority of the weights can receive noise injection without hurting performance, not just
a few. In Figure 4.5 we illustrate the effect on the distribution of ¢ under different «
values for a ResNet-18 trained on the CIFAR-10 dataset. As we increase « the ¢ values

no longer collapse to zero giving us information for downstream clustering.

4.3.4 Initialization using Relative Distance from Powers-of-two.

For each weight w; we need to specify its prior distribution so as to derive the posterior
using Bayesian updating. We assume that the posterior distribution is Gaussian with a
diagonal covariance matrix: P(w;; y;, 0;) whose parameters y;, 0; are trained using BBP.

To initialise the prior distributions for y; and o; we set:

PO(p) = [ TP° (i) (4.5)

where

PO (i) o< (46)

for the pre-trained weight value w;. For a Gaussian posterior we would typically
require an unknown ¢ to be drawn from a Gamma conjugate prior distribution. Instead,
we set 0; to be a known function of the y; at initalisation. In our previous chapter with
WEN][Subia-Waud and Dasmahapatra, 2022] relative distances to the preferred powers
of two values for the weight was used to determine weight movement. To favour

anchoring weights at powers of two, we set the standard deviations to be smallest (2~)



68

Chapter 4. Probabilistic Weight Fixing

model.layer1.0.convl

model.layer1.0.convl

s
model.layer1.0.conv2

model Iayerl 1. convl

=
model.layerl.1.convl

mode\ \ayerl 1. ccnvZ

u
model.layerl.1.conv2

model \ayerz 0. convl

.
model.layer2.0.convl

mouel.\ayerzo.convz

N ﬂ, A/WN\ N
el 1 |
- i |

modeliayer2.0.downsample.0

W
model layer2.0.conv2

u
model.layer2.0.downsample.0

W
model.layer2.1.convl

 model \ayerz 1. convz

model. \ayera 0.convl

. N
y/\/\W\
e |
|

FIGURE 4.6:

R

u
model.layer2.1.conv2

AU
model.layer3.0.convl

model layer3.0. convZ
model.layer3. o downsample.0
model. Iayer3 1.convl

 model Iayer3 1.conv2

model. Iayer4 0.convi

model. Iayer4 0.conv2

model. Iayer4 o dawnsample 0

model. Iayem 1.convl

: /WHW\ E

,; j WW E

el WW

model. Iayer4 1. :onvz

model fc

model.layer3.0.conv2

W
model.layer3.0.downsample.0

u
model.layer3.1.convl

s
model.layer3.1.conv2

W
model.layerd.0.convl

S
model.layerd.0.conv2

"
model.layerd.0.downsample.0

W
model.layerd.1.convl

model.layera.1.conv2

I
model.fc

Here we compare the y vs o values for all weights in a given layer at

initalisation (left) and after PWFN convergence and clustering (right).

at either edge of each interval between the nearest integer powers of two (remembering

that 2% < p; < 2"1'“) for integer x;, and largest at the midpoint of the interval. We

introduce a parabolic function o;(y;) as a product of relative distances of each

pre-trained weight value (y;) to the nearest lower and upper powers of two:
_ 0052 (12—l (i =25
atw) = 0057 (Et!) (M

We show a set of initialised y verses ¢ values and the converged values post-training for
a ResNet-18 model trained for CIFARI10 classification in Figure 4.6.

(4.7)



4.3. Probabilistic Weight Fixing Networks 69

5 5
- we
Weights in the network are Xa During training both the 4
represented by distributions w; with and os of the two
4 mean y; and standard deviation 4 Gaussians are updated to 1’
0. We would like to and o'. We use a
train the parameters i, and regularisation term which encourages the
0;and use these parameters 0 values to get larger
to determine if they are and the model more amenable
3 close enough to the quantisation 3 L to compression.
cluster point ¢;.
= =
=Y =Y
2 2
1 a o 1 010, o a4
0 7 N . b oy
-0.75 -0.50 —0.25 0.00 0.25 0.50 0.75 1.00 -0.75  -0.50  -0.25 0.00 0.25 0.50 0.75 1.00
w; w;
5 5
— — s
After some training the (s Xa Now the two weights can
of the two Gaussians are be fixed to the cluster
4 closer to the cluster center 4 center. Their means are set
and the o's are larger. to ¢; and their 0"
Now the weights w, and values are set to the
w; are within one standard standard deviation of 4" values
deviation of the cluster center of all the weights clustered
3 and can be moved to 3 L to ¢, Gaussians
the cluster center.
B )
Q Q
2 2
o a
I A L 1
04 = 03 = stalu, p5)
0 w N A5 o M= =
-0.75 —0.50 -0.25 0.00 0.25 0.50 0.75 1.00 -0.75 —0.50 -0.25 0.00 0.25 0.50 0.75 1.00
wi wi

FIGURE 4.7: An overview of the PWEN process.

4.3.5 PWEN Clustering.

In Figure 4.7 we show a schematic of the clustering stage in which we use the
information garnered from the weights’ distribution parameters to identify cluster
centers and their assignment. PWFN clustering is a two-step method running for

t =1,...,T iterations. At each step we set a fraction p; of the weights to be fixed, so
that [W} 4| = Np:. The remaining weights at iteration stage t are trainable and called
W/ ... We follow the scheme first proposed in [Subia-Waud and Dasmahapatra, 2022] in
setting p; (Figure 4.8, left). All of the weights w; that are assigned to WY, ., will have
their y1; values fixed to one of the set of cluster centers. At the last iteration, [W[ .| = 0
and pr = 1, as all weights have been fixed to their allocated cluster centroids.

We next introduce how a cluster center ¢ is defined and how the mapping u; — ¢, € ¢
is performed. Let

1 1 1 1 1

1
R_{_?/.../_F,_E,OIE/F/”.?}

(4.8)

be the set of all powers-of-two up to a precision b. For a weight to be a desired additive
power of two, a sum over at most w elements of R is defined to be a cluster center of
order w. Formally, for P(R) the power set of R,

¢ ={)i|re P(R)A|r| < w}. (4.9)

ier



70 Chapter 4. Probabilistic Weight Fixing

PWEFEN begins with order w = 1, the powers-of-two up to precision b as the proposal
cluster set ¢’. Next, for each weight w; = (p;,0;) in the network, the value of ¢; is used

to determine how far away they are from each of the cluster centers using;:

i — ¢l

= (4.10)

Dprob(wir Cj) =

Interpret this Mahalanobis distance as: “"how many sigmas (standard deviations) away
is cluster ¢; € ¢ from weight w;”. At iteration stage ¢, for each free weight we define

Ci}(l) = min Dprob(wizc) (411)
cec?
as the cluster center that is the fewest sigmas away from w; € W} .. We denote by n{’
the number of weights with the smallest Dprob to cluster ¢/, i.e.,
n =) I = c'(i)] (4.12)

We then take the index k* of the cluster with the most number of weights nearest to a

cluster:

k* = argmax, ny’ (4.13)

Thus,

e =(ct,...,cY) (4.14)

is the cluster with the most number of weights nearest to it.

We then order the weights in Wf ., by their distance to c.. In detail, for
Wt

fee = W1, - -, Wj, ..., wy], we reorder the weights by permuting the indices

wf = wn(i) (415)
where 7t : [1,...,n] — [1,...,n] is a permutation, i — 71(i). The ordered list

[w], ..., w;,] satisfies

Dprob(w;l C(I;i) < Dprob<w;+1zc;;i) (416)



4.3. Probabilistic Weight Fixing Networks 71

Next, we need to determine how many of these weights we should assign to cluster c{..

To do so, we define a threshold ¢ and we take the first £(J) weights from [w], ..., w;,]

such that:

1 o)
T Dprob wl, Ck* S 5. (417)
1

Z:

As long as this is possible with £(J) > 0, we have identified both a cluster c{’. and set of

weights [w), ..., W) oo )] which can be moved from W, to Wil We map the weights in

free fixed"
[wﬁ,...,wz((;)] = [(py,07), -, (yw), 4(5))] to a single weight
Wi = (Hr, Ok+) (4.18)

corresponding to cluster ¢{.: = = ¢} and

O+ = Std([‘ull, ey ]12(5)]) (4.19)

where std computes the standard deviation of its argument. This process is then
repeated, finding the next most popular cluster until Np; weights are assigned a cluster.
If £(6) = 0, before enough weights are assigned in iteration ¢, then we have not been
able to find any cluster centers ¢; € ¢ which are close enough to any weight, i.e.,
Dprob(wi, ¢j) > 6 for all weights w; € Wi

' ee aNd ¢j = ¢+ In this case, we set w +— w +1

and J < 26 in the same step, giving us a higher-order additive powers-of-two set and
less restrictive § value threshold. Since |[c“!| > |¢¥/|, this increase in w makes more

cluster centers available during the next clustering attempt.

4.3.6 Putting it All Together.

Putting the training and clustering stages together, we have a process for training a
neural network whose weights are from a Gaussian posterior distribution with diagonal
covariance matrix by backpropagation (BPP) that favours configurations with long
Gaussian tails, which the clustering stage can then use to identify which weights to
move and to what extent. This process is repeated for T iterations, with the cumulative
fraction p; of weights increasing with each t p;; > p; until all of the weights are moved

from Wrpee to Wiixeq at iteration T where pr = 1.

After T iterations of training and clustering, each of the weights’ distributions in the

networks will have their i values centered on one of the k clusters in the codebook.



72 Chapter 4. Probabilistic Weight Fixing

Post the T fixing iterations there are two options depending on the downstream usage
of the network: either the network can be converted into point estimates and the
weights fixed to be the exact y values giving us a quantised network. Or, we can use the
extra information given to us by modelling each weight as a distribution as a way of
quantifying uncertainty of a particular prediction. If, after multiple samples of w, a
model changes its prediction for a fixed input, this tells us that there is uncertainty in

these predictions — with this information being useful for practical settings.

4.3.7 WEN to PWEFN

The reader will have noticed some overlap between the formulation of WFN and
PWEN, so let us step back to note the major differences.

4.3.71 The Proposal Set

In WEN, we found a recurrence relation ¢j 1 = cj(%), 0 < 6 < 1 that defined clusters
which were guaranteed not to breach some distance threshold . We then took order w
additive-powers-of-two approximations of this set as our potential cluster set C*. This
was made possible since we had a fixed distance measure D, given a weights’

magnitude.

This same formulation is not possible in PWEN since finding clusters centres
equidistant from weights” would need to account for the variability in the distance
measure due to the o component. Instead, we just looked at the entire order w
additive-powers-of-two set as the pool of potential clusters C*. This will have the effect
that |C¥| < |C¥/|. The proposal cluster set in WEN will be the same size or smaller than
the proposal set in PWEN since, in PWEN, we are not discounting clusters too far from

the current weight set to be clustered.



4.3. Probabilistic Weight Fixing Networks 73

4.3.8 On the Measure of Distance

Term Check

Euclidean Distance in the context of weights and clusters in a neural network,
particularly when considering one-dimensional values, is simply the absolute
difference between a weight w; and a cluster center €5 Mathematically, it is
defined as:

D(wi, C]) = |wi — C]’

This is the simplest and most used distance measure in quantisation works.
Relative Distance (D,)) is defined as the absolute value of the difference between
two points normalized by one of the points. For a weight w; and a cluster center
c jr it is:

w; — C]'

Drel(wilcj) - '

w;
This is the distance measure used in WFN.
Mahalanobis Distance (Dp,op) in this context is redefined as the normalized dif-
ference between a mean y/; and a cluster center c;, scaled by the standard deviation
B4 1 and used in the PWEN algorithm.

gi

0;. It is given by: Dprop(wj, ¢j) =

How we calculate distances from weights to clusters is the most salient change from
WEFN to PWFN. WEN measured the distance between a weight and a cluster as the
weight magnitude normalised — the Manhattan distance. In contrast, in PWEN, we
measure this as the Manhattan distances between the weight distribution mean and the
cluster centre divided by the weight distribution standard deviation — Mahalanobis
distance:

ZU,'*C]'
wj

Hi—Cj
Ji

Do = (4.20)

VS. Dprob = ‘

The effect of this is that the training process can find configurations which decouple the
weight magnitude and the distance that said weight could travel in the clustering stage.

4.3.9 To Prune or Not to Prune

One final area of variation from the original WEN lies with what to do about the
weights with very extremely small magnitudes. Previously, we set a precision cap
b = —7 for elements in C°, and any value less than this was assigned to be closest to the

zero clusters (using ép). In PWEN, we do not need to implement such a rule and can



74 Chapter 4. Probabilistic Weight Fixing

Number Assigned vs Cluster Value

p: schedule 166 Number of Unique Values vs Percent
00
1.0 5 140
0.9 o A large percentage of the clusters are|
2 g 120 only assigned in the last round
0.8 kel o and could be considered outliers
[ > which keeps the entropy low
c 100
0.7 23 1
] -0.0156 ——_ g 80
506 < : <
o —0.0156 u
0.5 -g 2 o g 60
0.4 2 £ 40
1
0.3 003125, —o0312 2 20
70'023?0%- 00234
0.2 0q = b - 0
0 2 4 6 8 -0.5 0.0 0.5 0 2 4 6 8
T Cluster Value Round

FIGURE 4.8: p; follows the same schedule as [Subia-Waud and Dasmahapatra, 2022]

(left). In the middle and right plots, we see that PWFN achieves very small entropy

values by majority of weights to only a very small (4 or 5) cluster values and the rest
are assigned as outliers, most of which are powers-of-two.

avoid having a fixed Jy if we want (although we do experiment with using one) and
could allow weights |p;| < 277 to move away from zero depending on their o; value.
The problem with doing so lies in the possibility of a situation where ¢; is extremely
small, and no combination of elements in C® up to a precision b could satisfy the §
threshold distance. In other words, no cluster centre could satisfy the distance threshold

due to the precision restrictions.

The quandary has three solutions. We could allow an extremely large b-precision for the
cluster centres, which, given a large enough order (number of additive powers-of-two
components), could allow for clusters of ever greater precision, but this could enable far
greater precision than is needed for solid results (as demonstrated in WEN). Instead, a
simple solution is to increase the ¢ threshold multiplicatively by a hyper-parameter p as
we increase the order, meaning that the distance threshold is relaxed for outliers. A final
alternative is to maintain the functionality shown to work in WEN by using a Jy for

which tiny values are clustered to zero. In our experiments, we will explore both of the

latter cases.

4.3.9.1 The Highlighted Changes

In Algorithm 3, we redefine the clustering algorithm for a given iteration t € T with
changes made from WEN highlighted in red.

4.4 Experiments

We conduct our experimentation on the ImageNet dataset with a wide range of models:
ResNets-(18,34,50) [He et al., 2016], DenseNet-161 [Huang et al., 2017] and the



© ® NN Ul R W N =

11
12
13
14
15

16
17

18

19

4.4. Experiments 75

Algorithm 3: Clustering Np; weights at the " iteration in PWFN.
while Wi | < Np; do
fixednew « [ ]
while fixednew is empty do
Increase the order w + w + 1
< {Yic i|re P(R)A|r| < w}
foreachi=1...,|W.t!
¢’ (i) «= mingecw Dprop (W), )
for each cluster centre ¢}’ € C¥
ny < Yile = ()]
k* < arg maxy n}’
Sort: [w), ..., wy] « [wi,..., wN|, W = W), 7T permutation
where Dpop (W], ¢, ) < Dprob (W], 1, C},)
i <1, mean < Dy (W, cif))
while mean < f(¢,0;—0,d;—7) do

H /
fixedpew < w;

i 1 / w
mean < 7 X mean + ;5 X Dprop (W], 4, cff,)
i<—i+1

B (5t:f — ﬁ X (st:t

Assign all the weights in fixedpew to cluster centre ¢¥ (i), moving them from
WL o Wit!

free fixed

challenging DeiT (small and tiny) [Touvron et al., 2021]. For each model, we convert all
the parameters in the convolution and linear layers into Gaussian distributions where
the mean value is set to be the weight value of the pre-trained model found in the Timm
library. Thus, at test time with no further training, we retain the original accuracies. We
set the variance parameters according to the setting described in Eq (4.7). We then apply
nine rounds of the described weight fixing with three epochs of re-training each round,
totalling to 27 epochs of training. We train using SGD with momentum 0.9 with a
learning rate of 0.001. For all experiments, we fix 6 = 1, « = 27! which we found using
grid-search on the CIFAR-10 dataset and works surprisingly well in all settings. For all
our experiments we train using 4x RTX8000 GPUs and a batch-size of 128. For the
ensemble results, we sample 20 times different weights using the learned weights’
distributions and report the mean accuracy.

We further explore two settings:

1. PWEN (no prior): In the first setting, we do not use the prior initialisation and

instead initialise the ¢ values with a random uniform distribution:

o7 ~ U(—0.0025,0.0025) 4.21)



76 Chapter 4. Probabilistic Weight Fixing

TABLE 4.1: Full comparison results. (w/o FL-Bias) refers to calculating the metrics

without the first-last layers and bias terms included. ‘Params’ refers to the unique

parameter count in the quantised model, entropy is the full weight-space entropy. In-ch,

layer, attn refer to whether the method uses a separate codebook for each layer, filter
in-channel and attention head respectively.

Separate Codebook

Model Method Layer In-ch Attn Top-1(Ensemble) Entropy Params
ResNet-18 Baseline - - - 68.9 23.3 10756029
LSQ X - 68.2 - -
APoT X - 69.9 5.7 1430
WEN X X - 69.7 3.0 164
PWEN (no prior) X X - 69.3 (69.6) 1.7 143
PWEN X X - 70.0 (70.1) 25 155
ResNet-34 Baseline - - - 73.3 241 19014310
LSQ X - 719 - -
APoT X - 734 6.8 16748
WEN X X - 73.0 3.8 233
PWEN (no prior) X X - 73.5 (74.4) 1.2 147
PWEN X X - 74.3 (74.6) 1.8 154
ResNet-50 Baseline - - - 76.1 24.2 19915744
LSQ X - 75.8 - -
WEN X X - 76.0 4.1 261
PWEN (no prior) X X - 77.2(78.1) 35 334
PWEN X X - 77.5 (78.3) 3.4 325
DeiT-Small Baseline - - - 79.9 16.7 19174713
LSQ+ X 77.8 - -
Q-ViT 78.1 11.3 3066917
Q-ViT (w/o FL-Bias) 78.1 104 257149
PWEN (no prior) X X X 78.0 (78.3) 2.7 352
PWEN X X X 78.1 (78.5) 2.7 356
DeiT-Tiny Baseline - - - 72.9 15.5 5481081
LSQ+ X 68.1 - -
Q-ViT 69.6 11.5 1117630
Q-ViT (w/o FL-Bias) 69.6 10.5 128793
PWEN (no prior) X X X 71.4 (71.6) 2.8 300
PWEN X X X 71.2 (71.5) 2.8 296
DenseNet161 Baseline - - - 77.8 17.1 26423159
PWEN X X X 77.6 (78.0) 1.1 125

2. PWFN: In the second setting, we use the informed prior outlined in Equation 4.7,
setting the starting o values as a weighted relative distance from their nearest

power-of-two.

4.5 Results

We compare PWEN against a range of quantisation approaches where the model
weights have been made available so that we can make accurate measurements of
entropy and unique parameter count. For the ResNet family, we compare against the
current state-of-the-art APoT [Yuhang Li, Xin Dong, 2020] ! and WEN [Subia-Waud and

Ihttps://github.com/yhhhli/APoT_quantisation



4.5. Results 77

TABLE 4.2: Comparison of the number of additional training epochs required by
different fine-tuning quantisation methods.

Method | Num of additional epochs
ApoT 120
PWEN 27
WEN 27
LSQ 90
QviT 300

Dasmahapatra, 2022] 2. For the transformer models, there has only been one work
released, Q-Vit [Li et al., 2022] 3, which has both the model saves and code released. For
both APoT and Q-Vit, we compare the 3-bit models which are the closest in terms of
weight-space entropy to that achieved by PWFN.

As presented in Table 4.2, PWEN requires substantially fewer additional training epochs
than most methods, save for WEN, highlighting its training efficiency. We use a
straightforward regularisation term that encourages an increase in ¢, and its
computational cost is comparable to that of L; regularisation. While our approach does
lead to greater memory demands due to the additional ¢ parameters and their
associated gradient updates, the overall simplicity of the method is more efficient than
previous BNN training procedures, making it feasible to tackle more complex
model-dataset pairings. Additionally, we note that when using the quantised version
for inference, there are no extra costs. We take a sample (the y values) from the BNN,

effectively treating it as a point estimate.

Remember that WEN uses a regulariser that calculates the relative distance between all
free weights and the existing cluster centers, and then penalises weights depending on
the distance to their closest center (in a soft way). This incurs computational costs in the
backpropagation calculation for every iteration. In the reformulated PWEN, we have a
much simpler regularisation term that penalises sigma to increase - with costs that
match that of p regularisation. We do have memory overhead in terms of the number of
parameters at training (¢ and ) and the random number generation to sample, but this
is only at training time. The simplicity of the regularisation term also means that we
experience a speed-up over the previous BNN training procedure outlined in the
original Bayes-by-backprop paper, making much more complex model-dataset pairings
tractable.

This is not to say there are no costs; we find that a single training epoch with ResNet-18
on the ImageNet dataset takes 1 hour 30mins on 4 consumer GPUs (GTX1080’s) for
PWEFN, compared with 40 minutes for standard training and 1 hour 20mins for WFN

(but for WEN this increases as the number of clusters increases through training).

thtps ://github. com/subiawaud/Weight_Fix_Networks
3https://github.com/Yanjingli0202/Q-ViT



78 Chapter 4. Probabilistic Weight Fixing

w w
o
—_

o EnNtrop)L
—
—
—
[~
——
—
—
I
i
i
-
[l i
Entropy
I
— 1
1
Ll
—
—
T
I
i
—1
[
—{—
Entropy
I
~—E
—
—
——
—
(]
i
=]
HH
HH

Unique Count
&
Unique Count
Unique Count

*»11 [ ]

T T T T T L

o =T s S N S T HB L L L I T P S R s s = &L L == F

mllTTLTTT%T%{- TLTTTT%%TT;; TETETET?FETT O

10123455789101112 i 2 3 4 5 6 7 8 9 10 11 12 i1 2 3 4 5 6 7 8 9 10 11 12
Layer Layer Layer

FIGURE 4.9: For DeiT small, we show a box plot of the entropies and unique counts
per input channel for each Q,K,V by layer and with the mean of each layer (calculated
across all attention heads) shown in the black lines.

In Table 4.1 we can see the set of results. PWFN demonstrates superior entropy, unique
parameter count and top-1 accuracy across the board. In addition to the point-estimate
accuracy using the mean of each of the weights” distributions (the cluster centers), we
can additionally sample the weights from the learned distributions to give us an
ensemble of models the mean prediction of which gives us further accuracy gains which
we show in brackets in the Table. The prior initalisation gives a slight but consistent
accuracy improvement over using a uniform prior (PWEN (no prior)). We note that for
both APoT and Q-Vit different codebooks are used for different layers. For Q-Vit,
different codebooks were additionally used for every attention head and input channel,
and the bias terms were left unquantised, pushing up the parameter count and
weight-space entropy substantially. As we have discussed in previous chapters, this is a
growing trend in the field, where relaxations such as leaving large parts of the network
unquantised, or using different codebooks for ever granular parts of the network, are
often used. Each relaxation comes at a cost in hardware, be that support for
unquantised elements — such as the first and last layers — or the use of different
codebooks for various parts of the architecture.

4.5.1 Entropy Values by Layer

Figure 4.9 illustrates the variation in entropy and the count of unique parameters across
different layers and attention components. A notable observation from our study is that
the weights associated with the ‘value” component exhibit higher entropy in the final
layer. This observation aligns with the notion that employing a fixed quantisation
scheme for each layer necessitates a relaxation of the quantisation constraints
specifically for the last layer, as supported by prior studies [Yuhang Li, Xin Dong, 2020,
Jung et al., 2019b, Zhou et al., 2016b, Yamamoto, 2021, Oh et al., 2021b, Li et al., 2022].



4.5. Results 79

Max Relative Distance Assigned to Value Max Relative Distance Assigned to Number Max Relative Distance Assigned to Percentage
¢
0.74 1 1
+ ¢
0.6 1 E E ¢
E 4 - 4 ‘.
g 059 . . P
g g g '
2 £ 2
5 0.4 1 5 ] o ] i
o o o
) ) )
H S -
50.34 % £
& & &
0.24 H 1 1
0.14 I 4 |
0.0 " WFN hreshold h WEN EhreShold s h " WFNthreshold
T Ty T T T T T T T T T T T T
Value Number Assigned Percentage Clustered
Mean Relative Distance Assigned to Value Mean Relative Distance Assigned to Number Mean Relative Distance Assigned to Percentage
¢
044 - 1 E !
¢
4 0.3 . . ¢ !
3 S <] ]
I e £ ‘
g £ £ H
] ] ]
a a B ¢
£0.2 ER 2 $
i i i
E 3 E !
0.14 1 1

i thieshold © "

WEN threshold
T T

T T T T T T T — —
1072 107! 100 10! 10° 10 107 RS A D 0 6 D> O
Value Number Assigned o7 o7 o7 o o7 o O Q‘?;\ N

Percentage Clustered

FIGURE 4.10: The maximum (top left) and mean (bottom left) relative distance a
weight moves to a cluster by cluster value. The maximum relative distance is not well
maintained with the number of weights assigned to that cluster (top middle), but the
mean relative distance is (bottom middle). The maximum (top) relative distance for
each cluster assignment and mean (bottom) relative distance by round are shown in
the right-hand column. In all plots, we show in blue the threshold used in WFN.

Moreover, this highlights an intriguing possibility that in the context of attention
networks, such relaxation might be essential only for the 'value” weights, and not for

the 'keys” and "queries’.

4.5.2 Distance Measures Compared

In understanding how PWEN is able to compress a network’s representation to such a
degree compared to WFN we look to how often the previously proposed relative

distance threshold is maintained.

In Figure 4.10, it’s evident that while the relative distance threshold established in WFN
is, on average, maintained, there are edge-cases where it isn’t. This observation suggests
that having a context-specific noise tolerance benefits subsequent compression stages.
Furthermore, the data indicates that these values are typically small (as seen in the left
column), have a high frequency of occurrence (depicted in the middle), and are
predominantly assigned during the middle (0.6, 0.7) and final rounds.

Let us now conclude on our findings of this Chapter.



80 Chapter 4. Probabilistic Weight Fixing

4.6 Conclusion

PWEN offers something that WFN did not: position-specific signals for the clustering
stage. This probabilistic reformulation and training of BNNs with weights coming from
Gaussian distributions enabled us to use the weight uncertainty (¢) values in
determining where to move specific weights. In doing so, we have seen that we have
been able to further reduce the weight-space entropy and unique parameter count of a
range of networks — including those with transformer networks containing attention
layers — to a greater extent than current works. We have also understood why this is the
case; upon examining the relative distance threshold used in WEN and comparing it
with the distances acceptable for clustering/quantisation in PWFN, we observed a
slight, but noticeable discrepancy. Some weights in WEN could be moved further than
the relative distance allowed, which is only possible with position-specific weight
distance thresholds made available through the probabilistic reformulation.

In addition, we have demonstrated for the first time that BNNs can be trained for more
complex dataset-model pairings with a simple prior on the weight distributions, which
maximises the values and thus the noise resilience of the network. This has allowed
variational networks trained with backpropagation to match the performance of the
point-estimate models for the ImageNet dataset for the first time.

Finally, we have achieved something of a corollary to our main objective of learning
compressed network representations: we trained BNNs which have the inherent ability
to provide uncertainty estimates and potentially be better calibrated. We will explore in
a later chapter to what extent these uncertainty estimates provide utility over current
approaches in this space. But for now, we turn to another area of potential

improvement.

The current WEN and PWEN algorithms require separate training and clustering stages,
where the clustering is not directly informed by gradient descent. In the next chapter,
we look to reformulate the algorithm such that the gradient provides information on
when best to cluster /quantise a weight, negating the need for separation of the two

stages.



81

Chapter 5

Towards On-The-Fly Clustering in
Weight Fixing Networks

In the preceding chapters, we have explored two methods for efficient weight
quantisation in neural networks: Probabilistic Weight Fixing Networks (PWFN) and
Weight Fixing Networks (WFN). Both methods focus on network compression by
reducing the number of unique parameters in models, leading to more energy-efficient
inference. However, their multi-stage implementation, which involves alternating
between weight clustering and training to counteract errors introduced by earlier
clustering stages using a fixed schedule, can be complex and may limit adaptability.

Currently, the transition from the training stage to the clustering stage is determined
empirically after a predefined number of epochs. While this approach is practical, it
lacks a strong theoretical foundation and may not always identify the optimal moment
for clustering across various contexts. Furthermore, the choice regarding the number of
clustering stages and the proportion of weights to be clustered is left to the discretion of

the user, which can lead to variability in results.

In this chapter, we propose a more dynamic weight clustering method within the
framework of Probabilistic Weight Fixing Networks. We introduce "Cluster-On-the-Fly
Probabilistic Weight Fixing Networks” (COF-PWFN), an approach that eliminates the
need for predefined clustering stages. Instead, the optimisation process itself
determines when and how to perform clustering. By analysing gradient data and
distances to the nearest clusters, we aim to identify the appropriate time for a weight to
undergo clustering.

The core idea of COF-PWEN is to maintain the Bayesian learning approach of PWFN
while seamlessly integrating the clustering process into the training phase. This more
integrated approach aims to simplify the overall process and potentially offer a more



82 Chapter 5. Towards On-The-Fly Clustering in Weight Fixing Networks

consistent adjustment of weight values. By allowing the optimisation process to guide
the clustering decisions, COF-PWEN seeks to adapt to the specific characteristics of each
model and dataset, potentially motivated by more efficient and effective compression.

By introducing on-the-fly clustering, COF-PWEFN aims to provide a more adaptive and
streamlined approach to weight quantisation in neural networks. This chapter
represents a step towards more dynamic and self-guided compression methods that can
automatically adapt to the specific characteristics of each model and dataset, potentially
leading to more efficient and effective deployment of deep learning models in

resource-constrained environments.

51 On-The-Fly Clustering Approach (COF-PWEFN)

Let us now outline the steps of COF-PWEN before providing a more formal treatment.

We initiate the COF-PWEFN process by transforming a pre-trained model into its
Bayesian Neural Network (BNN) counterpart, mirroring the PWFN approach. The
model is then subjected to further training via gradient descent, where the loss function
combines both cross-entropy loss and the large-c promoting regularisation term. The
key difference between COF-PWFN and PWEN lies in the determination of when to
cluster weights and what percentage of weights to cluster. Both PWFN and WEN
employ fixed epochs for training prior to clustering a predetermined percentage of the
weights. Notably, these hyper-parameters are static and operate independently from the

ongoing optimisation process.

In contrast, COF-PWEFN continuously evaluates the clustering readiness of each weight
after every training iteration based on two conditions. The first condition assesses a
weight’s contribution to the loss. If the gradient of the weight is sufficiently small, it
indicates that the weight is optimally positioned on its local loss surface and could be
clustered to a value within its positional vicinity. The second condition measures the
weight’s proximity to its designated cluster. For this, we utilise the sigma distance to the

nearest cluster, an approach that proved effective in PWFN.

When both conditions are met for a weight, its value is updated to match the nearest
cluster centre. This iterative cycle of gradient descent, weight evaluation, and clustering

continues until all weights are clustered.

If the process stalls due to no weights meeting either clustering criterion after a training
iteration, two potential interventions are considered: introducing additional cluster
centres to facilitate further adjustments, or revising the clustering thresholds. These



5.1. On-The-Fly Clustering Approach (COF-PWFN)

83

Within these two regions
of the loss curve, the
gradient is small enough
to meet condition 2

\

Loss

Cluster
Cent;oid
X M - value
T 5 \
Any overlap within one Within this zone, both
standard deviation of condition 1 and condition 2
the cluster centroid will are met and the weight u
meet condition 1 value can be fixed to the

cluster centroid

FIGURE 5.1: The two conditions needed to be met in order for a weight to be moved to

a cluster are captured in this schematic. Condition 1 is met when the distribution of the

weight has a small enough Mahalanobis distance to a cluster center. The cluster center

is represented by an X in this diagram with the weight distribution moving through

training represented with the blue normal distributions. Condition 2 is met when the

weight-gradient is smaller than some threshold which we show in the diagram as the
green sections of the loss curve.

adjustments have the overarching goal of enhancing the flexibility of the weight

clustering mechanism.

Let us now turn to parsing out the details of the algorithm in more formal terms.



84 Chapter 5. Towards On-The-Fly Clustering in Weight Fixing Networks

5.2 Method

Consider a neural network parameterised by N weights w = wy, ..., wy. Within the
COF-PWEN framework, each weight w; is represented not by a single value, but is
drawn from a distribution w; ~ N (y;,0;). The goal is to optimise the parameters
p=(p1,...,un)and o = (03, ...,0n) of these distributions. During a forward pass in

training, weight values w; are sampled from their respective distributions as:
w; = i + o€, € ~ N(0,1). (5.1)

Given fixed p and o, the forward pass remains stochastic due to the sampling of weight
values from their respective distributions during each forward pass. Properly trained o;
values offer insights into the noise resilience of the corresponding weight w;. In essence,
if an optimal configuration w = (p, o) can be found that upholds task performance
amidst the variability introduced by 03, it provides knowledge about the flexibility of
associated weights. The COF-PWFN methodology employs the Bayes-by-Backprop
(BBP) optimisation technique, as described in [Blundell et al., 2015], with modifications
in the initialisation and priors on y and ¢. The BBP technique is used to determine the
parameters of the weight distributions by minimising a loss function that combines the
negative log-likelihood of the data and a regularisation term that encourages larger o
values. The loss function used for training in COF-PWEN is given by:

—log P(D|p, o) + aLrec(0), (5.2)

where the first term represents the negative log-likelihood of the data given the weight
distribution parameters, and the second term is a regularisation term that encourages

larger o values. The regularisation term is defined as:

LREG(‘T) = iﬁ(U’i) = — i(m — S)@(S — 0'1'), (5.3)

where ©(x) is a step function that equals 1 for x > 0 and 0 otherwise, S is a constant
that acts as a threshold for the ¢; values, and « is a hyperparameter that controls the
strength of the regularisation. The role of the ® function is pivotal; it deters the
optimisation from producing a network with a subset of ¢ taking on disproportionately
large values, which would overshadow the cross-entropy term. The constant S ensures
o stays within a reasonable range, while a guides the extent of pull towards larger ¢’s.
Throughout the training iterations, each u parameter is assigned a partial derivative,
denoted 8%' This value, when scaled by an optimisation technique like Stochastic
Gradient Descent or ADAM and influenced by a learning rate, dictates the direction and
magnitude of change to reduce the loss. COF-PWEFEN uses this derivative to assess when



5.2. Method 85

a weight is primed for clustering. Specifically, when aani < Ograd, With 0gaq being a
pre-set gradient threshold, we postulate that the weight’s position has minimal impact
on the loss. The choice of gaq is based on the assumption that weights with small
gradients are close to their optimal values and can be clustered without significantly
affecting the model’s performance. Such a weight is then deemed suitable to be “fixed”
to a nearby position.

5.2.1 Defining Close Proximity

Consistent with the PWFN approach, we employ the strategy of depicting each weight
as a Gaussian distribution and sampling during the forward pass based on its y and ¢
parameters. This allows the ¢ values to serve as an indicator of the extent to which a

weight might diverge from its established p value.

With reference to the weight-space distance outlined in Equation 5.4, we introduce a
threshold, oy, for this distance. A weight is deemed proximate to a cluster centre cj
(defined subsequently) if the inequality Dprop (W, ¢j) < 0gist holds true.

= (5.4)

Dprob(wiz C]) =

The metric Dprob(wz-, cj) — introduced in PWFN - quantifies the distance between a
weight’s mean y; and a cluster centre ¢; in terms of the weight’s standard deviation ¢;.
This probabilistic distance measure takes into account the uncertainty associated with

each weight, as captured by its o value.

5.2.2 Clustering Conditions

Building upon the concept of close proximity, we introduce two conditions that must be
satisfied for a weight to be clustered. These conditions pertain to each y; and ¢; in the
network: condition one : Dprob(wz-, c]-) < 0gist, and condition two : g—’f’_ < Ograd- The first
condition, condition one, ensures that the weight is sufficiently close to a cluster centre,
as measured by the probabilistic distance metric Dprob(wz-, c]-). This condition takes into
account the uncertainty associated with the weight, as captured by its ; value, and

compares it to the distance threshold oyjst.

The second condition, condition two, assesses the impact of the weight on the loss
function. By comparing the partial derivative g—]fi to the gradient threshold 0.4, we can
determine whether the weight has converged to a stable position and is ready for

clustering.



86 Chapter 5. Towards On-The-Fly Clustering in Weight Fixing Networks

If a cluster Cj in the cluster set c satisfies both conditions, the weight y; is fixed to Cj-
This weight is fixed for all future iterations with the ultimate aim to converge all ;s in
the network to a compact cluster set c.

5.2.3 Selecting Clusters

Having established the conditions for clustering weights, we now focus on determining
the cluster set ¢ within the COF-PWEN framework. The goal is to create a compact set
of clusters that not only represents the distribution of u accurately but also promotes

efficient multiplication by favouring powers-of-two values.

To ensure minimal size, it’s imperative that the cluster set spans and represents the
distribution of u effectively. This facilitates shorter distances to each y;, a crucial aspect
for fulfilling the first clustering condition. We adopt a progressive strategy to introduce
cluster values ¢; into the weight cluster set c. We initiate with a solitary value, ¢ = {0},
considering that the weight distribution in neural networks typically gravitates around
zero. As training iterations ensue, we attempt to fix as many u values as possible that
meet the clustering conditions. If, during any iteration, no u values meet the first
condition while still satisfying the second, the cluster set c requires augmentation. Let’s

define R as the set of all powers-of-two up to a specified precision b:

1 1 1 1 1 1
R:_?,'”,_Zj?’ E,O,E,ﬁ,...,?. (55)
Consequently, the proposal cluster set ¢’ can be delineated as:
¢ ={)i|lre PR)A|r| <w}\ec. (5.6)

ier

COF-PWEN starts with an order w = 1, considering the powers-of-two up to precision
b as the initial proposal cluster set ¢, excluding values already in c. For each weight
w; = (u;,07), we evaluate its distance from each cluster centre using the metric in

Equation 5.4.

Given each free weight, we ascertain c{’ as the nearest cluster centre by distance
measure. We then compute n{’, the number of weights closest to cluster c;’. The cluster
with the most weights nearest to it, denoted as k, is incorporated into the cluster set c. If
the proposal set ¢ is exhausted, we increase the order w by one. The resulting
mechanism prioritises the inclusion of all w-additive powers-of-two before broadening
the cluster set. This approach ensures that the cluster set ¢ grows in a principled
manner, adapting to the distribution of weights in the network while maintaining a

focus on efficient multiplication (i.e lower bit-widths).



5.3. Algorithm 87

By integrating the concepts of close proximity, clustering conditions, and a principled
cluster selection process, COF-PWEFN provides a dynamic and adaptive framework for
weight clustering in neural networks. The iterative nature of the algorithm allows for
the gradual refinement of the cluster set ¢, taking into account the evolving distribution
of weights during the optimisation process. This approach aims to strike a balance
between model compression and predictive performance, enabling the deployment of

efficient neural networks in resource-constrained environments.

5.3 Algorithm

Let us finally put the constituent parts together with reference to Algorithms 4 and 5.

We initiate our BNN using pre-trained weights to set the mean values y and, mirroring
the PWEN setting, the standard deviations o. We have gradient and distance thresholds
defined as 0gaq and oyist, respectively. Additionally, we introduce a counter denoted as
k, initalised to zero, and a predefined parameter 7, which we refer to as the “patience”
threshold. This additional term gives the algorithm some space for training to take
place without needing to cluster at least one weight each training iteration up to 7.

After applying an iteration of training, for every weight parameter y; in the network,
we evaluate its gradient with respect to the loss function and identify all weights not yet
fixed that satisfy the condition that they are less than the predefined distance threshold
ogist — as seen in lines 6-10 of Algorithm 4. Next, for each of these weights, we calculate
their distances to each of the cluster centers in ¢; if there exists a cluster center whereby
a weight w; has a computed distance of less than oy;g (line 13) then we will fix the y; of
said w; (lines 14, 15).

However, if neither of the conditions (C; and C; refer to conditions one and two,
respectively) is met for a weight, we increment the x counter (lines 20-21). We continue
the training iterations, and if the counter « reaches or surpasses our patience threshold
T without any weights meeting the conditions, we take corrective actions: If the
gradient condition is not met, we adjust the gradient threshold 0.4 (lines 27-28). If the
distance condition is not met, we invoke the process detailed in Algorithm 5 (line 29-30).
Once the corrective actions are taken, the k¥ counter is reset to zero.

The training concludes by updating the parameters p and ¢ using an optimisation
method, continuing this iterative process until all weights have been fixed to one of the

values in the cluster set.



1
2
3
4

NeEe TN e NN |

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26
27
28
29
30
31
32
33
34

88 Chapter 5. Towards On-The-Fly Clustering in Weight Fixing Networks

Algorithm 4: COF-PWEN training algorithm. The algorithm iteratively updates the
weight distribution parameters y and ¢ using gradient-based optimisation while
simultaneously clustering weights based on their gradients and proximity to cluster
centres. The gradient threshold 0yaq and the distance threshold oy;s; are adaptively
adjusted to ensure effective clustering and convergence of the algorithm.

Input: Network parameters y, o, training data D, gradient threshold Ugrads distance
threshold oy, weight-space distance Dprob(wz-, ¢;), regularisation term
Lrec(0), learning rate a, threshold for allowable iterations T

Output: Optimised parameters y, o and cluster set ¢

Initialize p, 0, ¢ = {0}, and x = 0;

Wiree = U;

while not all parameters fixed do

Compute the loss function using Equation 5.2;

Compute the partial derivatives gTi for i € Weee and g—é for all o;

Update y; for p; € weee and o; for all o using optimizer;

Ci=1; /* Condition 1 flag */

C=1; /* Condition 1 flag */

foreach y; € wp,, do

if ngLi < Ograq then

Ci=0; /* Condition 1 satisfied */

foreach c; in c do

if meb(wi, C]) < 0gjst then

Fix weight y; to ¢;;

Remove p; from weee;

C,=0; /* Condition 2 satisfied */
end

end

end
end
if Cy =1 0rCy =1 then
‘ Kk=x-+1; /* Increase count */
else
‘ x=0;
end
/* Is the count greater than the allowable iterations without any
fixing x/
if x > 7 then
if Cy = 1 then
‘ Multiply 0gr.q by 2;
else
| Call Algorithm 5: COF-PWFN Adding a Cluster;
end
k=0
end
end




O o N S Ul ok W N

N e e
= W N = O

5.4. Experiments and Results 89

Algorithm 5: COF-PWFN Adding a Cluster

Input: Free weights Wftr eer Current cluster set ¢, maximum precision b, order w
Output: Updated cluster set ¢, order omega
LetR={—3%,....,—51,—3:0 g 551/ - s 5 1

Initialize ¢’ = {Y,c,i|r € P(R)A|r| <w}\ ¢

if |c'| = 0 then

Increase order: w = w +1;

Update ¢ = {Yic,i|r € P(R)A|r| <w}\¢;

end

oreach w; = (y;,0;) € W/, do

——

Compute Do (wj, ¢) for ¢ € ¢;
Define ¢/ (i) = mincey Dprob (Wi, €);
end

Define nf = Y, I[cy = ¢ (i)];

Find k* = argmax; n}’;

Updatec = cU {c}’ };

Return ¢, w;

5.4 Experiments and Results

In this section, we evaluate the performance of COF-PWEN on both the CIFAR-10 and
ImageNet datasets using the ResNet family of models. We first explore the
hyperparameter space for 0gra4, 04ist, and T using a grid search with a ResNet-18 model
on the CIFAR-10 dataset. The results of this exploration are presented in Figure 5.2.
Following this, we apply COF-PWEN to larger-scale experiments on the ImageNet
dataset using various ResNet models and compare its performance with other

state-of-the-art quantisation methods.

5.4.1 Hyperparameter Exploration

The grid search over the hyperparameters 0gaq, 04ist, and T reveals several notable
trends, as shown in Figure 5.2. The most intuitive observation is that increasing g;aq
(left column of Figure 5.2) leads to a decrease in accuracy, entropy, and the epoch at
which all parameters are fixed. This behaviour can be attributed to the fact that fixing
weights when they still have large gradients can result in a smaller pool of clusters, but
at the cost of declining network performance. Essentially, a higher 0,4 value allows
weights to be clustered more aggressively, even if they have not fully converged, leading
to suboptimal clustering and reduced accuracy. The impact of the patience threshold T
is somewhat less intuitive. An increase in T can result in a decline in accuracy, entropy,
and convergence epoch, but in a less predictable manner with higher variability.

Interestingly, even with T = 1, a drop in accuracy is observed, suggesting that this



90 Chapter 5. Towards On-The-Fly Clustering in Weight Fixing Networks

topl accuracy Vs Ograg topl accuracy vs patience topl accuracy Vs Ogist topl accuracy vs Convergence epoch
0.940 0.940 0.940
0,937 0937 0937 0934+
0.934 0.934 0.934
0.932
20.931 {8 __E“fé__“%_%__ _| o931l .%---.%_ 2 0.931 e >
i g 8 == i iy B
§ 0.928 . § 0.928 5 0928 ] ! S 0,930
g 0.925 g 0.925 $ Iy g 0925 ‘ g
= 0922 0922 20922 20928
20919 20919 20919 8
0.916 0.916 0.916 0.926
0.913 0.913 0.913
0.910 0.910 0.910 09241
8 % & § 8 3 ° n S 2 2 2 100 200 300 400 500
< < < < < < T Ot Convergence epoch
N N N N NN st
Ograd
H(W) VS Ograq H(w) vs T H(w) Vs Ogist H(w) vs Convergence epoch
—_ 4 4 .
0.95 0.95 0.95 0.95 4
3 K
0.90 0.90 0.90 0.90 4 a° o °
0.85 0.85 0.85 0.85 ot %°
= = = = 1 .
Z. 2 EN s o 2o
T 0.80 T 0.80 T 0.80 T 0.804 e ve
0.75 0.75 0.75 0754 ¢
0.70 0.70 0.70 0701 4,
. 1 $ 1
8 2 & § 8 3 ° n S 2 a 2 100 200 300 400 500
< < < < < < o Convergence epoch
NN~ st
Ograd
Convergence epoch Vs Ograg Convergence epoch vs T Convergence epoch vs dgst topl accuracy vs learning rate
0.940
500 500 500 0.937 4
H 5 5 09344 _—T—
] S ] —
2 400 4 2 400 ¢’ 2 400 509314 L 1__[
5 5 b5y
g N g 3 £ 0.928
g 300 ’ g 300 § 300 S 0.925 ¢
§ . § s 2 0.922
£ 200 £ 200 £ 200 £0.919
[§] S S 0.916
100 100 100 0913
0.910
2 8 B § 8 9 ° n ] 2 2 2 0.005 0.01
< < < < < < Learning rate
N N N N NN Taist

FIGURE 5.2: Hyperparameter exploration using ResNet-18 trained on the CIFAR-10
dataset.

additional layer of complexity may not be necessary. Consequently, we fix T = 0 for the
larger-scale ImageNet experiments to simplify the algorithm and reduce computational
overhead. With T = 0 at every training iteration at least one weight will be fixed.

5.4.2 ImageNet Results

We present the full results comparing COF-PWEN with WEN, PWEN, LSQ, and APoT
for the ImageNet dataset using fixed hyperparameters found to be optimal in the
CIFAR-10 experiments in Table 5.1.

The results show that while COF-PWEFN outperforms all other techniques in terms of
accuracy, it does so with not as strong compression rates compared to both WEN and
PWEN. This suggests that there may be a trade-off between accuracy and compression
in the current hyperparameter settings. However, we hypothesise that there exists a
hyperparameter configuration that can achieve both high accuracy and strong
compression rates, potentially matching or even surpassing the performance of PWFN.
To find such optimal hyperparameter settings, several strategies can be employed. One
approach is to conduct a more extensive grid search over a wider range of
hyperparameter values. This would allow us to explore a larger portion of the
hyperparameter space and potentially identify configurations that strike a better

balance between accuracy and compression. Another strategy is to use more advanced



5.4. Experiments and Results 91

Model Method Top-1 (Ensemble) | Entropy | Params | Converg

ResNet-18 | Baseline 68.9 23.3 10756029 -
LSQ 68.2 - - 90
APoT 69.9 5.7 1430 120
WEN 69.7 3.0 164 27
PWEN (no prior) 69.3 (69.6) 1.7 143 27
PWEN 70.0 (70.1) 25 155 27
COF-PWEN 70.1 (71.8) 41 292 33

ResNet-34 | Baseline 73.3 24.1 19014310 -
LSQ 71.9 - - 90
APoT 73.4 6.8 16748 120
WEN 73.0 3.8 233 27
PWEN (no prior) 73.5(74.4) 1.2 147 27
PWEN 74.3 (74.6) 1.8 154 27
COF-PWEN 74.4 (76.7) 3.6 285 36

TABLE 5.1: A comparison set of quantisation results for the Imagenet dataset. Params
refers to the number of unique parameters in the network and Converg is number of
epochs used in the fine-tuning stage.

hyperparameter optimisation techniques, such as Bayesian optimisation or evolutionary
algorithms, which can efficiently search the hyperparameter space by leveraging
information from previous evaluations. Furthermore, analysing the relationship
between the hyperparameters and the performance metrics can provide valuable
insights into the behavior of COF-PWFN. By examining how accuracy and compression
rates vary with different hyperparameter settings, we can gain a deeper understanding
of the trade-offs involved and identify potential sweet spots in the hyperparameter
space. This analysis can also guide the development of more efficient search strategies

and help prioritise the most promising hyperparameter configurations.



Towards On-The-Fly Clustering in Weight Fixing Networks

Chapter 5.

92

Weights distribution of each layer Epoch: 0, Layer: 15 Epoch: 0, Layer: 16 Epoch: 0, Layer: 18 Epoch: 0, Layer: 19
Epoch 0. Layer: 0 Epoch: 0. tayer: 1 — Epoch o, Layer: 3 Eooch 0, Layer & Fpoch 0. Layer 5 Epoch 0. Layer 6 - - Epoch: 0 Layer oneh o, Loyer 10 Epoch O.oyer 11 Epock O, Loyer 12 Epoehe0Layer 13 Epech 0. ayer: 16 poch: o, Lo ooch: o, Laye Epoch: 0, Layer 17 ok 0. Loy poch: 0. Layr Epoch: 0, Loyer: 20
i oo jom 3o i i i 1 oo i .
oo = R e Ak wbe  dwm e Wi ot Sa e SEm b e e
fonsn o0 ensolani  Eocholyer2  fpholmen  Ewchsolyerd  EonShiwenS  Gwholyers GoniSlyen?  Gwholvens  Eocholyerd G0 lyenid  Eecholperil  EonSniyenz  Gwholmenid  Gosoiyeas  PUIOUITIS BRSNS g, SIS RN
o 00 Gl Goonlbiae?  Goonlblaesd G l0Dlaerd  GuI0hloers IO lyero G I00layer?  Gouch 100 Lyerd  Epuch 100 o9 Epaeh 100 Laver 10 Epech 100 owr 1l Epoch 100 Loy iz Epoch 100 Leyr ) Epoch 100 Laer 16 ch: 100, Loyer o 00 o Epoch 100, Loyer 17 EPOC; 100 Lo o 001 Epoch: 100, Loyer: 20
i & vsono 5 15000 15000 § soono Fon § e § wooon 5o o H o - i ko H B
Epoch: 150, Layer: 0 Epoch: 150, Layer: 1 Epoch: 10, Layer 2 Epech: 150, Layer:3 Epoch: . Epoch: 1 Epoch: 150, Layer: 6 Epoch: 150, Layer: 7 Epoch: 150, Layer: 8 Epoch: 150, Layer: 9 Epoch: 150, Layer: 10 Epoch: 150, Layer: 11 Epoch: Epoch 1 1 Epoch 150, Layer 16 Epocni 150, Layer 15 oy P00 gpoon1so Layenay TPOQ OIS BRSO LN 166 Layer 20
o oo o oo 5 oo S § § won - % oo H Baouen £ n Jaowo e P o e
. 200 Layr 16 o 200, Laer 18 Epuc: 20, ayr 19
' g 200 Lye 3 B [ — - B 0 n 2 oo 200,y s cponzon. Ly 15 o 200, Lay Epocn 200, Loyer 1y EPOS; 200 Lo Eo 20 Lo [—
P 3 e . |- | - K uon Eoe & o | - 3o § o HE He H oo b
Eooh 250,y Emcn 20 loverd  Eoo 250, Loen2 Epacn280.aven3 e « ok 50 Loyer s omh 250, Lyer7  Ech2S0layers ook 250, Loend  Epuch280.lyen 10 Epoti 250 Loyr 1 Epach oo B eenrn i Gnasoiments TNV i sy PO SN0 g e
i g [ o e Fowowo § B oo B Jor o e
Weights distribution of each layer ‘Epoch: 0, Layer: 16 Epoch: 0, Layer: 18 Epoch: 0, Layer: 19
Epoch: 0, Layer; 0 Epoch: 0, Layer; 1 Epoch: 0, Layer 2 Epoch: 0, Layer; 3 Epoch: 0, Layer: Epoch: 0, Layer; 5. Epoch: 0, Layer; 6 Epoch: 0, Layer; 7 Epoch: 0, Layer; 8 Epoch: 0, Layer: 9 Epoch: 0, Layer: 10 ‘Epoch: 0, Layer: 11 Epoch: 0, Layer: 12 Epoch: 0, Layer: 13 Epoch: O, Layer: 14 Epoch:O, Layer: 15 gy " ofP0Ch 0 Layer: 17 ,,D"‘ e ey e Epoch: 0, Layer; 20
i i B | . Haow e i 3 e oo Tooomo o Jusowo i i HE H i i
Epoch: 50, Layer: 0 Epoch: 50, Layer: 1 Epoch: 50, Layer: 2 Epoch: 50, Layer: 3 Epoch: 50, Layer: 4 Epoch: 50, Layer: 5 Epoch: S0, Layer:6 | Epoch: 50, Layer: 7 Epoch: 50, Layer: 8 Epoch: 50, Layer: 9 Epoch: 50, Layer: 10 Epoch: 50, Layer: 11 Epoch: 50, Layer 12 Epoch: 50, Layer: 13 Epoch: 50, Layer: 14 Epoch: 50, Layer: 15 Foechy 20-Laver 16 Epoch: 50, Layer: 17 Foechy 20 Layer 18 Foechy 20 Layer 19 Epoch: 50, Layer: 20
i b Fauo i Fao e . [ e  Jowes bow Froon oot F oo - fom fuo fuo i
Eroh 100, Laer 16 o 100, Loy 18 Epoc: 10, oy 19
Bao. o amo & o & oo & LI L. £ s § o000 § o H & 1500 HE Eo & o
Epoch: 150, Layer: 0 Epoch: 150, Layer: 1 Epoch: 150, Layer: 2 Epoch: 150, Layer: 3 Epoch: 150, Layer: 4 Epoch: 150, Layer: 5. Epoch: 150, Layer: 6 Epoch: 150, Layer: 7 Epoch: 150, Layer- & Epoch: 150, Layer: 9 Epochi150,Layer: 10 Epochi 150, Layeri 11 Epoch: 150, Layeri 12 Epochi 150, Layeri 13 Epochi 150, Layen 14 Vg 00 (VOIS EROCHISONGTI0 g g agen gy EPOIAN OIS B0 IS0 VRS o 160, Layen 20
200 Layr 15 o 200, Layer 18
' s © Emenaniers  Ecnzm e Epue20, e o n B ot | gt P [ [o—
& 0. & o & 0. Heod & 1500 & 0. & aooto. £ 1000, & s00000. § 10000 & 00000 & 200000. H 10 10
o 250 Loy 15 Epoc: 250, Ly 16 oo 250 Loy 18 Epoc 250, Loy 19
o000 perd iy Gpn0lnerd  Gnenhlyrd  Gwnlyers  Genmolnens Guonsniyel G olyers | e molmd Geninei  Gonmolerll Gendn el Gl oot P o oo 250 yer s [r—
e Ko S Saom . Baron H 2o 5o : £ g g g g i § oo i, i, .

(b) Not Fixed Gradients Distribution

TABLE 5.2: Comparison of fixed and not fixed distributions of gradients as they change over time with each epoch for each of the different layers.



5.4. Experiments and Results 93

To gain further insights into the behaviour of COF-PWFN during training, we analyse
the distributions of gradients and weights for both fixed and not-fixed parameters
across different layers and epochs. Figure 5.2 presents a comparison of the fixed and
not-fixed distributions of gradients, whilst Figure 5.3 illustrates the corresponding
distributions for weights. These visualisations reveal several interesting patterns.
Firstly, the gradients of fixed parameters build up, first with just a zero cluster and then
adding powers-of-two before the outliers. We can see additionally that the last and first
layers follow a very different pattern to clustering to the others, demonstrating why
prior works have opted to leave these two layers unquantised. What works in

quantising middle layers requires a different set-up for the first and last layers.

We can obtain gradient information for fixed weights because during inference, gradient
calculations are performed for all weights, both fixed and not fixed. Subsequently, we
mask the gradients of fixed weights to zero. Examining the gradient dynamics in Figure
5.2, we observe that once fixed, the gradient pressure on these weights remains small.
This suggests that the clustered weights are in “good positions” and do not require
adjustment to reduce the loss. However, as we progress through epochs, some outliers
emerge in the fixed weight gradients. These outliers indicate some pressure and might
point to a potential improvement: allowing certain weights to depart from their cluster

centres if sufficient gradient pressure accumulates.

While computational constraints limit our ability to run extensive experiments in this
study (ResNet-50 was just out of reach due to memory limitations), the results
presented here demonstrate is it indeed possible to compress to — prior to WEN and
PWEN - SOTA levels without any drop in performance without the iterative rounds
outlined in PWFN and WEN. Next, we turn to the question of the utility, if any, of the ¢
parameters learned in PWFN and COF-PWFN in determining the confidence and

calibration of predictions with this family of models.



Towards On-The-Fly Clustering in Weight Fixing Networks

Chapter 5.

94

Erocno.tayerts  tpocn 0. ayer 19

Weights distribution of each layer om0 ts s Lo 6
& o & o & & & o | Joos Jomo oo [ i G & H H e & o dio dio LI
fonchSolmend  Gonolmerd  Goonsolmen:  ohSolmend  Gochsolyend  EecuSolyens  GochsOlyens  EocnSolyen  Epocnso.Lavers cnsolayerd | Eponolmerio fpocnsolwenil  EmnSblmenl fochsolyenld  Gmchsolyents  PGR SOOI BRESDNGIO o, BOROWels Bl e
S FIs Fs Fume 5 I E o e o S o o gee S S H
G0 0 O e | G 00 o2 oo 00 L3 oo 100 Lo 4 Eooh 1005 g0k 00 Aoer 6 5o 1007 G100y Guh 00 yr9 o 00 g 10 G 100 Ly 11 Epch 10 Ly 12 Fpoch 100 Loye 13 fpoch o014 P 1004 oo 100, Loy Eroch 100, a7 PO 100120 roc 100 Loy et 00, aer 20
i j j j f f 3 won. i 3 o § o i i jrom H 1 & oo 1 1 Bon
oo 150, L) o 0Asyer ] EopchIShLer? o lSOyerd G lShlyerd  GoonIS0enS Gonon OlyerS  Gpoonishier] G lS0lnens EpeonBOlyerd oo IShiyerld o lS0lyerll  EechlShlyerl2 oo IS0 lenld o isolsenis  UORUNIII WOIONIE gy BOINALIIIS GREIONEI e on lyer
| s e S oo S Sowon § e S o § o £ s H H o i goe Lo Eo i i o
Epoch. 200, e 15 Eoch: 200, Layr 36 Epch. 200,y 8 Eoch. 200, ayr 39
— s i B w0 u w 5 e oo 200 Loy ot o0, et PO voc, 200 Lo et 200, aer 20
e H e . i LI % on i % o 5 om0 oo &uomo £ s s H & & oo o ko g
Gpoch 250, Layer0 G aS0.laerl  Ech2so.Layen2 s s . p Conch 250 Layer6  Epocmsh.Lyven?  Gpocn 250 Lnend  Eochiaslmend  Goch2s0Lyeni  Eomeh2S0lmenll  Gocn2S0lnenl  Gpecn2snlmenid  Echiasolmends  DORIUIORIS  BRIOAMIS oy ey, BREEIOLIS G000 oo e
Weights distribution of each layer oo s Epeen o tyen s
i, . o o P oo oo b g oo | Rt o B . i ool o i i o
Erocn s0,Loyer 18 Epoxh 0, Layer 19
Gpocnso Laerd  Gpocnsomerd  Emchsnlaenz  Gochsolwend  Eecusolmend  GochsolyenS  EpcuSblmens  EpochsoLayent Solmers  GonmSolmens  GecnSolyerid  Gocnolweril  EomchSDlmenil  Eochs0lyenld  EpachSolyenid oS0 Loy is o 50 Laye 17 ) o e 5, ayer 20
H oo e e H o o & o Eosen 2 om | o i § e [
Eoch 100, Loyr 36 Epoch 100, Layer 18 Epoch: 100, Lyer 19
g 100 Loer.0 Epoch: 100, Layer: 1 Epoch: 100, Layer: 2 Epoch 100, Layer; 3 Epoch 100, Layer: 4 Epoch: 100, Loyer: 5 Epoch: 100, Layer: 6 Epoch 100, Layers 7 Epoch 100, Layer: 8 Epoch 100, Loyer's  Epochi 100, Layer: 10 Epoch 100, Layer: 11 Epoch 100, Layer: 12 Epoch 100, Layer: 13 Epoch 100, Layer: 14 Epoch: 100, Layer: 15 poch, 100.Lays Epoch: 100, Layer: 17 100, Ly o, 100 Layer Epoch 100, Layer: 20
H o Jom e e o Fom § o oo 3 o j L i i
Eoch: 150, ar 16 L —
oo 150, Laer0 Epucn 10 Lyer s Gpoch 10 Lyer2  Goocn IS0 Uy 3 o IS0 Lyerd  GpniS0lmens  Gocnlslmns  GocnlShlmen] | GoonlShlaer® | Gon1soleerd oo 1s0lyenl0 G150 Lyerll G 10Lperid G 10 imerdd Gl imenlt  Gonisniments Ul pac: 150, Layers 7 i o150, Laye: 20
R . ., R N N . T T =t A S I
&0 00 & aano £ oo & a00 & 30000 1500 £ oo § oo & oo H H & 200000 i, &0 £ 1 Y B
Eonch 250, Layer 15 Eonch 250, Layer 19
Conch 250.Lajer0  Epoch 20, Loyen 1 GpochiZS0loin2  Goch2S0Lyend  EchaS0lmend  Goch20lnens ExhasOlmens Gocn2Shinen?  Gncha.lyend  Goch2S0lyerd  Gomsh.menld  Eooch 250 lyenll  Echs0.lweni2  Epach2SDlmenld  Gocnsolyenis U pac: 250 Layers 7 o o250, Layer: 20

(b) Not Fixed Weights Distribution

TABLE 5.3: Comparison of fixed and not fixed distributions of weights as they change over time with each epoch for each of the different layers.



95

Chapter 6

Uncertainty Estimations of BWFN

Thus far in this thesis, we have proposed three novel techniques for neural network
compression, two of which utilised a stochastic reformulation of pre-trained networks
into Bayesian Neural Networks (BNNs). The weight distributions of the BNNs were
able to be used as signal for the downstream compression algorithm, and was shown to
be a boon for increasing the accuracy through ensemble sampling. A yet unexplored
avenue pertains to the potential of the PWFN and COF-PWEN reformulations for

uncertainty estimations.

In this chapter, we turn to this question as we investigate the capability of the
uncertainty distributions learned by these models to serve as reliable estimations of
uncertainty in neural networks. Before we begin our jaunt into some experiments to test
the utility of the learned BNNSs, let’s motivate our study and look at why uncertainty
estimations are so useful and where current research directions have been focussed.

6.0.1 The Landscape of Uncertainty Estimations

The essence of uncertainty estimation in neural networks can be distilled into several

critical considerations:

¢ Safety Critical: Neural networks are often used in tasks where decision-making is
critical, such as autonomous driving or medical diagnosis [McAllister et al., 2017,
Begoli et al., 2019, Muhammad et al., 2020, Jungo et al., 2018]. Uncertainty
estimation provides valuable information about the confidence or reliability of the
model’s predictions [Gal and Ghahramani, 2016]. This information can be used to
make more informed decisions or trigger appropriate actions when uncertainty is
high [Guo et al., 2017]. Moreover, in scenarios where neural networks collaborate



96

Chapter 6. Uncertainty Estimations of BWFN

with humans, expressing uncertainty can improve trust and transparency [Ribeiro
et al., 2016].

Distribution detection: Neural networks are typically trained on a specific
distribution of data. However, during deployment, they may encounter inputs
that differ significantly from the training data [Hendrycks and Gimpel, 2016].
Uncertainty estimation can help identify such out-of-distribution samples by
detecting high uncertainty levels [Lakshminarayanan et al., 2017]. This is crucial
for avoiding erroneous predictions or flagging inputs that fall outside the model’s
intended use case [Guo et al., 2017].

Model prediction trust: The trustworthiness of a neural network relies heavily on
its ability to provide accurate confidence estimates that align with its true
accuracy [Guo et al., 2017]. Model calibration is crucial because it ensures that the
predicted probabilities or confidence scores genuinely reflect the true likelihood of
correctness [Niculescu-Mizil and Caruana, 2005]. In many real-world scenarios,
especially where decisions have significant consequences, relying on
miscalibrated predictions can lead to suboptimal or even harmful decisions [Platt
et al., 1999]. Therefore, proper calibration is essential for ensuring reliable and

interpretable results.

Active learning and data acquisition: Uncertainty estimation is fundamental in
guiding the active learning process, helping in the selection of informative or
challenging samples for labeling [Settles, 2011]. By recognising instances with
high uncertainty, neural networks can prioritize acquiring labels for those samples
that are expected to provide the most significant improvement to model
performance [Gal et al., 2017]. This approach ensures not only an efficient labeling
process but also an optimized use of resources and an enhancement in overall
model accuracy with potentially fewer labeled instances [Roy and McCallum,
2001].

6.0.1.1 Uncertainty Estimation in Deep Learning

The field of DNNs has witnessed significant advancements in uncertainty
estimation. These developments span a range of methodologies, each addressing

the complexities of uncertainty in unique ways.

Bayesian Framework: The Bayesian framework remains foundational in this
realm. As we have seen, BNNs treat network weights as probability distributions,
offering a comprehensive framework for uncertainty estimation [Blundell et al.,
2015]. Complementing this, Bayesian Dropout, as articulated by Gal and
Ghahramani, interprets dropout layers in a Bayesian context, providing an
efficient means of uncertainty approximation [Gal and Ghahramani, 2016, Kendall
and Gal, 2017] without the need to train full-Bayesian models. The reason this this



97

approach can be a potential boon for uncertainty estimation is the idea that
different parameter settings (from sampling) gives us an output distribution on a
particular input sample. This output distribution can tell us something about the

uncertainty in our predictive ability for the given sample.

Ensemble Methods: Deep Ensembles, proposed by Lakshminarayanan et al.,
train multiple neural networks independently, capturing diverse outcomes and
uncertainties effectively [Lakshminarayanan et al., 2017, Tagasovska and
Lopez-Paz, 2019]. Stochastic Weight Averaging (SWA) and its Gaussian variant
(SWAG) average model weights over training or approximate the weight
distribution, enhancing the robustness of uncertainty estimates without needing
to train separate networks from scratch for the ensemble [I[zmailov et al., 2018,
Maddox et al., 2019].

Post-Training Metrics: Recent studies have focused on post-training metrics for
uncertainty estimation. Notable work in medical image segmentation examined
calibration methods like Platt scaling and fine-tuning applied after training to
recalibrate uncertainty estimates [Rousseau et al., 2021]. Training-free methods,
such as infer-transformation and infer-noise, offer flexible, efficient approaches
without retraining the model [Mi et al., 2019].

Reinforcement Learning and Uncertainty: The exploration of uncertainty in
reinforcement learning has led to innovative methodologies like the bootstrapped
DQN, offering deeper insights into the dynamics of uncertainty within these
frameworks [Osband et al., 2016].

Adversarial Contexts: Work has looked at the interplay between adversarial
contexts and uncertainty and found this key in understanding the robustness of
deep learning models [Smith and Gal, 2018].

Distribution-Agnostic Methods: Efforts have been made towards devising
distribution-agnostic techniques for uncertainty prediction, aiming to predict

uncertainty without being tethered to a specific distribution [Pearce et al., 2018].

Despite these advancements, challenges persist, particularly in terms of
computational efficiency and integration into existing workflows. For a full
discussion of the merits, rationale and current state-of-the-art we point the reader
[Gawlikowski et al., 2021].

Let’s now shift our focus to defining popular metrics used to characterise how
well calibrated models are from samples to predictive uncertainty. These metrics
broadly aim to gauge the alignment of a method with the ground-truth

uncertainty estimation outputs.



98

Chapter 6. Uncertainty Estimations of BWFN

6.1 Evaluation Metrics

There has been a number of evaluation metrics that look to capture uncertainty
estimation capabilities of models [Vaicenavicius et al., 2019]. Let us take a brief

dive into a selection and their definitions:

6.1.0.1 Brier Score

The Brier Score [Brier, 1950] is a proper score function that measures the accuracy
of probabilistic predictions. It is applicable to both binary and multi-class

prediction problems.

To calculate the Brier score for a binary classification problem, given:

- yi: The actual outcome. It is 1 if the outcome is positive and 0 if it's negative.

- it The predicted probability of the outcome being positive.

The Brier score (BS) for binary classification problems can be defined as:

1 .
BS =& Y (vi—9:)° (6.1)
Where:

— N is the total number of predictions.
— The summation YV | runs over all predictions.

- (y; — 1;)? is the squared difference between the actual outcome and the
predicted probability for each prediction.

For multi-class classification problems, assuming C is the number of classes, and
Jic and y; . are the predicted probability and actual outcome (1 if it is true, 0
otherwise) of class c for observation i, the Brier score is:

1 N C
BS = N Z E(yi,c - yAi,c)2/ (6.2)
i=1

where:

— The inner summation Y°<_; calculates the squared differences for each class.

— The outer summation Y~ ; averages these values over all observations.

Interpretation of Brier Score:

The Brier Score essentially computes the mean squared difference between
predicted probabilities and the actual outcomes. Its value ranges from 0 to 1, with

the following implications:



6.1. Evaluation Metrics 99

— BS = 0: Represents perfect predictions, meaning all probabilistic forecasts
match the actual outcomes perfectly.

- BS = 1: Represents the worst-case scenario, where all predictions are
completely opposite to the actual outcomes.

- 0 < BS < 0.25: Typically indicates high accuracy in the probabilistic
forecasts.

- 0.25 < BS < 0.5: Suggests moderate accuracy.
— BS > 0.5: Indicates low accuracy and potential issues with the model or the

predictions.

In essence, the Brier Score quantifies the reliability of probabilistic predictions. A
lower Brier Score indicates better predictive accuracy, while a higher score
suggests potential calibration issues. It provides a comprehensive view of a

model’s performance, capturing both calibration and refinement in a single metric.

6.1.1 Reliability Diagrams

Reliability diagrams serve as invaluable tools for visually assessing the calibration
of predictive models [Niculescu-Mizil and Caruana, 2005, Platt et al., 1999, Guo
etal., 2017, Naeini et al., 2015]. The primary objective is to juxtapose the expected
accuracy against the confidence of predictions.

Given:

— Bt The set of indices corresponding to samples categorized into bin m.
— pi: The predicted probability associated with sample i.

- yi: The actual outcome for sample i, where a value of 1 denotes a positive

outcome and 0 indicates a negative one.
For each designated bin m, the calculations proceed as:

— The average predicted probability, denoted as conf(B,,) = ﬁ LieB, Pi-
— The accuracy of predictions within the bin, represented as
acc(Bu) = 51 Lies,, Vi-
Subsequently, a plot is constructed with conf(B,,) on the x-axis against acc(B,,) on
the y-axis, spanning all bins m.
Interpretation of Reliability Diagrams:

Reliability diagrams (as shown in Figure 6.1 provide a vivid representation of a
model’s calibration performance, facilitating the following interpretations:



100 Chapter 6. Uncertainty Estimations of BWFN

Schematic of Reliability Diagrams

=== Perfect Reliability
—e— Above Diagonal (Underconfident)
1.0 —e— Below Diagonal (Overconfident)

0.8t

1]
_g Below Diagonal:
= 0.6} Model Overconfident
S (Predicted > Actual)
‘s
= 04l Above Diagonal:
B Model Underconfident
© (Actual > Predicted)
L

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability

FIGURE 6.1: This schematic of a reliability diagram visually illustrates the calibration
of probabilistic predictions in binary classification. The X-axis represents the predicted
probabilities by the model, while the Y-axis shows the actual fraction of positive out-
comes. The dashed line indicates perfect reliability, where predictions perfectly match
observed outcomes. Points above the diagonal (red) signify underconfidence, indicat-
ing that the actual fraction of positives is higher than predicted. Conversely, points
below the diagonal (blue) denote overconfidence, where predicted probabilities surpass
the actual fraction of positives.

— A perfectly calibrated model is depicted by a diagonal line from the
bottom-left to the top-right corner. This signifies that for every predicted
probability, the fraction of positive outcomes matches the predicted
probability.

- Deviations from the diagonal represent discrepancies between the predicted
probabilities and the observed frequencies. Such deviations signal
miscalibration. For instance, if for a predicted probability of 0.7, the observed
frequency is 0.5, it suggests that the model’s predictions are overconfident.

- Bins that lie above the diagonal indicate that the model is underconfident in
its predictions for that bin. Conversely, bins below the diagonal suggest
overconfidence.

— The granularity of the bins can also offer insights. For instance, if a model

only makes predictions with extreme confidences close to 0 or 1, this could



6.1. Evaluation Metrics 101

be represented by sparse bins in the center of the diagram, indicating
potential overfitting or a lack of nuance in the model’s predictions.

— The width of the bins and the number of samples in each bin can affect the
reliability diagram’s appearance. Fewer, broader bins can mask

miscalibrations that might be evident with more, narrower bins.

In summary, reliability diagrams serve as a potent tool for discerning the
calibration quality of models. They offer a visual means to detect regions of
overconfidence or underconfidence, facilitating informed adjustments to enhance
the model’s predictive quality.

6.1.2 Maximum Calibration Error (MCE)

The Maximum Calibration Error (MCE) [Niculescu-Mizil and Caruana, 2005]
provides a scalar measure to quantify the calibration quality of probabilistic
classification models. It specifically addresses the largest discrepancy between
predicted probabilities and observed outcomes across all bins in a reliability

diagram.

Given a set of bins By, By, ..., By in a reliability diagram, where:

- conf(By,) is the average predicted probability for bin m.

— acc(By,) is the accuracy of bin m.

The MCE is formally defined as:

MCE = max |conf(B,,) —acc(By)| (6.3)

m=1,....M

Interpretation of MCE:

The MCE captures the worst-case error between the model’s confidence and its
actual performance in any of the bins. A lower MCE indicates better calibration,
implying that the model’s predicted probabilities align more closely with the
actual outcomes. On the other hand, a higher MCE signifies that there exists at
least one bin where the model’s predicted probabilities significantly deviate from
the actual outcomes, suggesting potential miscalibration. This metric can be
particularly useful when the use-case is high-risk and no miscalibration can be

tolerated.

6.1.3 Expected Calibration Error (ECE)

The Expected Calibration Error (ECE) [Guo et al., 2017] serves as a metric to gauge
the calibration quality of probabilistic predictions in classification tasks. Rather

than focusing on the worst-case scenario, as with the Maximum Calibration Error



102

Chapter 6. Uncertainty Estimations of BWFN

(MCE), ECE provides a weighted average of the calibration errors across all bins
in a reliability diagram.

Let’s formalize our notation:

- By, By, ..., By The set of bins used in the reliability diagram.

1y, The number of samples in bin m.

N: The total number of samples, i.e, N = Y™ 1,

conf(B,,): The average predicted probability for bin .

acc(By,): The accuracy of bin m.

The ECE is defined as:
ECE = ﬁ el |conf(B,,) — acc(By)| (6.4)
—= N m m .
Interpretation of ECE:

The ECE evaluates the average calibration error across all bins, weighted by the
number of samples in each bin. This weighting ensures that bins with a higher
number of samples contribute more significantly to the final score, highlighting
the importance of regions with denser predictions.

An ECE value close to 0 indicates that, on average, the predicted probabilities of
the model are well-calibrated with the observed outcomes. On the other hand, a
higher ECE signifies that there’s a notable discrepancy between the model’s

predicted probabilities and the observed frequencies. Hence, models with lower

ECE values are generally deemed to be better calibrated.

However, while interpreting ECE, it’s crucial to consider the binning strategy
employed. The granularity and selection of bin thresholds can influence the
computed ECE value, potentially leading to different interpretations of model
calibration.

6.2 Experiments

We would like to build some experimental results to establish how well PWFN
and the variations we have explored fare when comparing their uncertainty
metrics of other methods.

One element of the method that we believe becomes more important here is the o
reassignment strategy which says, what do we do with the values for weights
which have been clustered at the same time to the same mean value.

Recall that our best results with PWFN had the ¢ reassignment strategy where we
used the mean standard deviation of the weights moved to the cluster center as

the new ¢ value for all weights assigned to this cluster center value.



6.3.

Results 103

There is an open question as to whether this strategy is useful for uncertainty
estimation or whether there is an alternative. It seems that there is a possibility
that the "set to mean std of weights’ is not optimal. An interesting observation
some weights may have had large ¢ values before clustering but if it is the case
that they are clustered with a group that is tightly packed around the cluster
center assigned, then they would be assigned a small ¢ value. That is ¢’s that
we’re used in Equation 4.10 to apply clustering learned during backpropagation
are shifted to mean be the standard deviation of the weights that have been
assigned to the same cluster value - which might have been a large travel. This
works well from the perspective of clustering, but it is still optimal for the
networks used as a BNN?

To test if this is indeed a problem, we further experiment with uncertainty
estimations with an alternative PWFN-sigma where, rather than fixing o values to
the mean of the values that are assigned to the same cluster, we simply allow it to
adjust itself using gradient descent.

6.2.1 Experimental Setup

We partition the ImageNet dataset into training, validation, and test sets in
accordance with standard splits. We explore the uncertainty estimations for the
ResNet family of models (18/34/50). For comparison, we juxtapose the
performance of the PWFN, PWEN-sigma and COF-PWEN against three
established uncertainty estimation methods: Stochastic Weight Averaging (SWA)
[Maddox et al., 2019], Stochastic Weight Averaging with Gaussians (SWAG)
[Maddox et al., 2019], and the uncertainty captured with an ensemble of five
separately trained models (SGD). Each of these methods has been recognised for

its proficiency in uncertainty estimation within neural networks.

6.3 Results

We report the Brier scores, expected confidence errors, and reliability diagrams for
all the compared methods.

In Table 6.1 we present the results each method on the evaluated metrics. We see
that PWFN performs well across all metrics with slightly better calibrated
networks. There is clearly a benefit to setting the ¢ values for each of the weights
distributions to be the mean of the values recently assigned to the cluster since the
PWEN-sigma re-training does not grant the same calibration levels — despite

having the similar accuracies.



104 Chapter 6. Uncertainty Estimations of BWFN
Reliability Diagram for ResNet18 Models Reliability Diagram for ResNet34 Models
1.0 4 1.0 —@— pwfn 2]
—e— swag
—&— swa
0.8 - 0.8 - pwfn-sigma-retraining
> 0.6 - > 0.6
o o
g g
< 0.41 < al
,/
0.2 1 , pwfn-sigma-retraining 0.2 4 A4
7 —o— swag //
e —— swa R4
0.0 - s —o— pwfn 0.0 1 s
00 02 04 06 08 1.0 00 02 04 06 08 10
Confidence Confidence
Reliability Diagram for ResNet50 Models
1.0 1 —@&— pwfn 2
—— swa
—8— swag 4
0.8 - pwfn-sigma-retraining
5. 0.6
1)
o
=}
g
< 0.4-
4
/
,/
0.2 A 7
/
/
/
/
/
4
/
0.04 7
0.0 0.2 0.4 0.6 0.8 1.0
Confidence

FIGURE 6.2: Here we show the reliability diagrams for the ResNet family of models
tested on the ImageNet dataset. We can see that PWFN models hug the calibration line
slightly closer than other methods compared demonstrating better calibration.



6.3. Results 105

Model Method Top-1 ECE MCE Brier
SGD 70.7 0.033319 0.114677 0.126787
Resnetl8 SWAG 70.4 0.021873 0.050568 0.136844
SWA 70.3 0.030727 0.072408 0.137099
PWEN 70.0 0.013016 0.034938 0.142100

PWEN-sigma 68.6 0.110355 0.199330 0.176671
COF-PWFN 70.1 0.016080 0.038804 0.137921

SGD 74.9 0.043889 0.117737 0.139141
Resnet3d SWAG 75.5 0.032063 0.106406 0.126824
SWA 74.9 0.040546 0.143571 0.130269
PWEN 74.3 0.032669 0.089867 0.133631
PWEN-sigma ~ 72.3 0.056751 0.127290 0.148675
COF-PWFN 744 0.017065 0.063247 0.126940
SWA 79.7 0.031194 0.250969 0.118928
Resnet50 SWAG ' 79.8 0.030103 0.196764 0.113415
PWFN-sigma  77.1 0.037034 0.116522 0.134897
PWEN 77.5 0.032892 0.151584 0.118640

TABLE 6.1: The uncertainty estimation results

6.3.1 Projections

Given that PWEN is able to produce good uncertainty estimations, we next would
like to answer the question as to how each network sample differs in embedding

space at the final layer.

One problem with using Gaussians to sample from randomly is that we are
restricting the space of weight values to follow an elliptic pattern, such that none
of the samples within the ellipse should change the class prediction.

The question is whether the Gaussian sampling has the same effect in embedding
space. To explore this, we employ a series of projections - Principal Component
Analysis (PCA) [Wold et al., 1987], Uniform Manifold Approximation and
Projection (UMAP) [McInnes et al., 2018], and t-Distributed Stochastic Neighbor
Embedding (t-SNE) [Van der Maaten and Hinton, 2008] - to visualise the logit
(Figure 6.4) and penultimate activation layers (Figure 6.3). In these projections, we
color-code various image samples, using consistent colors within a subplot to
represent the outputs for different weight samples for the each input image.
Squares and circles respectively mark incorrect and correct predictions, offering

an immediate visual cue of the model’s performance.

Upon examination, several patterns emerge. First, we observe that t-SNE and
UMAP projections yield similar distributions of weight samples, suggesting a
relatively uniform transformation through these techniques. However, a more



106

Chapter 6. Uncertainty Estimations of BWFN

FIGURE 6.3: Penultimate Activation Layer Projection in ResNet-18 with PWFN (PCA,

UMAP, t-SNE): This projection shows the penultimate activation layer of a ResNet-18

model using the PWFN method. Similar to Figure 1, each colour signifies a single image

input, with five samples for each, and the projections are arranged from left to right:

PCA, UMAP, and t-SNE. This arrangement allows for direct comparison of how each

dimensional reduction technique affects the visualisation of weight sample variability
and the corresponding predictions.

Class 679 activation in PCA space Class 679 activation in UMAP space Class 679 activation in TSNE space

® 1514
e 100 4
64
e © 10 75
44 . ?
@ 50 O
5<
24 ° 254
04 04 ° 04
_251
—-24 —54
° =50 -
—44 [ ]
4 104 -751

T T T T T T T T T T T T

Class 284 activation in PCA space Class 284 activation in UMAP space Class 284 activation in TSNE space

15 ]
100
6<
101 754
44 °
50 4
5
24 . 254
0 e © N 0 0
® ® °
251 N
° ®
-2 _54
_504
I -10 ~75 1

T T T T T T T T T T T T

Class 707 activation in PCA space Class 707 activation in UMAP space Class 707 activation in TSNE space

151
100 1
61 ° ]
101 754
4
° 50
54
24 ° 254
® L4
0 L 04 04
—254
—24 _5 ®
© -50 1
2] e
® —104 =751

T T T T T T T T T T T T

Class 303 activation in PCA space Class 303 activation in UMAP space Class 303 activation in TSNE space

- 15 =
¢ 100 1
61 - oo
10 75
41 50
L] 5 4 u [}
21 ]
" 25
ol 0 0
_251
_2< _S<
° _50
-4 °
4 _10] -75

T T T T T T T T T T T T

Class 243 activation in PCA space Class 243 activation in UMAP space Class 243 activation in TSNE space

151
100 A
61 °
10 754
44
50 4
H] 51 (] °
21 25
_ °
0 ® 9 01 0
—254
24 —5
. ° -50 4 ©
—101 —751 u

-75 =50 -25 0.0 2.5 -10 0 10 —100 =50 0 50



6.3. Results

107

FIGURE 6.4: Comparative Analysis of Logit Projection via PCA, UMAP, and t-SNE in
ResNet-18 with PWEN: This figure displays logit projections for a ResNet-18 model
trained with PWEN, using PCA (left), UMAP (middle), and t-SNE (right). Each colour
represents a unique image input, with five instances per colour, denoting the five
weight samples per input. Crosses and circles indicate incorrect and correct predictions,
respectively, illustrating the impact of weight sample variability on the predictive

accuracy.
Class 387 logits in PCA space Class 387 logits in UMAP space Class 387 logits in TSNE space
20 A 75
20 4
15 A 50
10 ©
@ 10 25 4
01 ® o o 0
© 5 °
-10 ~ —25
@
—20 01 -50 L
301 =51 —75
—40 4 —10 - —1001
Class 143 logits in PCA space Class 143 logits in UMAP space Class 143 logits in TSNE space
20 A 75
20 4
15 4 504
10 4 4 o,
101 u 251 *
04
® . 5 0
—-101 4 [ —254
-20 & 01 -50
-30 =51 —-751 [ |
—40 —-10 —1001
Class 722 logits in PCA space Class 722 logits in UMAP space Class 722 logits in TSNE space
201 754
20 4
154 = 50
10 9 25
10 T
01 e ¢ 0
5
~104 ° ] e @
10 i -25
-20 o1 ° -50
—30 A =51 75
_404 ~104 ° —-100
Class 440 logits in PCA space Class 440 logits in UMAP space Class 440 logits in TSNE space
) 201 751°
20 4 []
]
u ® 15 4 50
10 4
10 251
04 5 04
1l - 1 ]
101 @ - —251
0
—20 A ° —50
[]
—~301 =51 ~75
_a0] —104 e -100 A
Class 705 logits in PCA space Class 705 logits in UMAP space Class 705 logits in TSNE space
20 A n 754
20 4
15 4 504
10 4 °
101 - 251
04 04
5
—10 A _254
-20 o1 ° -50
—54 —754
-30 '-;. B 75
101 e _104 ~1004 l=

—-40 =20 0 20 40 -5 0 5 10 15 =50 0 50 100



108 Chapter 6. Uncertainty Estimations of BWFN

Accuracy vs cluster steps

0.9 4

accuracy
o
©

!

o
g
[ ]
L
L]
[ ]
[ ]
°

0.6

0.51— T - T r - - -
1 2 3 6 7 8 9 10
cluster steps

FIGURE 6.5: We can see here that with each cluster step (where we increase the number
of weights that are clustered according to 4.8 (left)) that the model accuracy is main-
tained.

pronounced variation is discernible in the PCA projection, particularly within the

two principal components examined.

Interestingly, despite sampling across all layers, the overall variation between
weight samples in both projected logits and activations remains moderate. There
are much larger distances between different image inputs of the same class and
different samples of the same image, suggesting that in loss-space, we are finding
distinct valleys and exploring to the edge of where the loss would begin to
increase. One interesting example is in Figure 6.3 class 284 (second row, far left),
where we can see the yellow and green different image samples are projected close
to each other and have overlapping outputs given random network sampling. It is
difficult with just two dimensions to be sure, and further investigation is needed,
but it implies that it is possible to learn a weights” distribution where sampling of

different images would project into the same loss valley.

Bringing together these results and the uncertainty estimation results implies that
excessive variability in weight samples could potentially lead to erratic class
predictions as they traverse the logit space and that when projected down onto
just two dimensions, the weight sampling has only a small effect in changing the
activation/logit locations. The relatively stable projection patterns we observe
suggest a form of inherent equilibrium in the network, where the compounded
effects of weight variation either neutralize each other in the deeper layers or do

not significantly sway the overall prediction outcomes.

6.4 Compression Vs Calibration



6.4.

Compression Vs Calibration 109

Entropy vs ECE Entropy vs MCE Entropy vs Brier

R-squared = 0.47 ’ R-squared = 0.31 g 0.145{ R-sqfared =0.38
0.050

0.144
0.045
0.143 Cluster Steps
o 1

0.040
0.142

mce
°
brier

0.035 0.141

0.140

0.030

O 0.139
0.0254 @ °
0.138

0.020

entropy entropy entropy

FIGURE 6.6: Relationship between entropy and calibration metrics (ECE, MCE, and

Brier) for different numbers of clustering steps. The scatter plots show the correlation

between entropy and each calibration metric, with the line of best fit indicating the

overall trend. The R-squared value is provided for each plot, quantifying the strength of

the linear relationship. Higher entropy values tend to correspond to better calibration

(lower ECE, MCE, and Brier scores), suggesting that models with higher entropy are
better calibrated.

Next we look to answer the question does compression help with calibration. That
is, are networks that undergo the PWFN quantisation steps better calibrated than
those that don't.

This question is one which is answerable under the PWEN training setting. This is
because we have a set-up with maintains accuracy whilst varying compression
(see Figure 6.5). In order to test the hypothesis that compression results in better
calibration we look at the ECE, MCE and Brier scores with each clustering stage of
PWEN.

In Figure 6.6, we present these results. We observe a clear pattern as we increase
the clustering steps: the entropy decreases, and both the ECE and MCE reduce,
suggesting better calibration. Interestingly, the Brier score exhibits the opposite
behavior, increasing with more clustering steps. This suggests that while the
model’s calibration improves, as evidenced by the decreasing ECE and MCE, the
refinement aspect may be compromised.

Refinement, in this context, refers to the model’s ability to assign high
probabilities to correct classes and low probabilities to incorrect classes. A
well-refined model should be confident in its predictions for the correct classes
and uncertain about the incorrect ones. The increasing Brier score indicates that
although the predicted probabilities align better with the observed accuracies (i.e.,
improved calibration), the model might be assigning lower probabilities to the
correct classes or higher probabilities to the incorrect classes.

This trade-off between calibration and refinement highlights the importance of
considering multiple evaluation metrics when assessing a model’s performance.



110

Chapter 6. Uncertainty Estimations of BWFN

While the clustering steps in PWFN improve calibration, it is crucial to strike a
balance between compression and maintaining the model’s ability to make
accurate and confident predictions. Further analysis of the model’s confidence
scores and their relationship to the correctness of predictions can provide insights
into the impact of clustering on the model’s refinement and overall predictive

accuracy.

The Brier score’s sensitivity to class imbalance and equal emphasis on refinement
may not fully align with the primary objective of investigating the impact of
clustering on calibration in this particular setting. Therefore, the Expected
Calibration Error and Maximum Calibration Error serve as more direct and
interpretable metrics for assessing the calibration performance of PWFN, while
the Brier score provides a complementary perspective on the model’s overall

performance.

Let us now move to explore a related topic of how well the uncertainy estimations
in PWEN can help us identify out-of-distribution (OOD) datapoints.

6.5 Out-of-distribution

In this section, we conduct a preliminary investigation to evaluate the
performance of PWFN in identifying samples that deviate from the training
distribution. While we use the term ”out-of-distribution” (OOD) in our
experiments and figures, what we’re examining is more precisely characterised as
outlier recognition within a controlled experimental setting. This investigation
aims to elucidate the model’s ability to detect data points that fall outside the
scope of its training dataset classes, a capability critical for real-world deployment.

Before we proceed to the experiments, let’s briefly explore the rationale behind

studying this detection capability.

6.5.1 Understanding the Need for OOD Metrics

In real-world machine learning systemes, it is often the case that data fed in to a
model to be classified lies outside the given set of classification classes that a
model has been trained on. This datapoint - referred to as OOD will need to be
handled gracefully by the system [Berend et al., 2020, Yang et al., 2021].

The robustness and reliability of a model in practical applications are significantly
determined by its ability to handle this OOD data. This ability is for several

reasons:



6.5. Out-of-distribution 111

- Adapting Behaviour: When encountering OOD data, we might want to
change the model’s behaviour to ensure safety, reliability, and user
satisfaction, such as falling back to conservative actions or alerting human

operators in critical scenarios [Amodei et al., 2016, Hendrycks et al., 2021].

— Detecting Anomalies and Potential Threats: OOD data may indicate
anomalies, malicious attacks, or unexpected situations. Detecting such
instances is crucial for maintaining the system’s integrity and security [Ruff
et al., 2021, Carlini and Wagner, 2017].

— Model Calibration and Uncertainty Estimation: OOD metrics provide
insights into the model’s calibration and can help estimate its uncertainty in
predictions, preventing blind reliance on potentially inappropriate outputs
[Guo et al., 2017, Ovadia et al., 2019].

— Identifying Limitations and Guiding Data Collection: Analysing
encountered OOD data helps identify the model’s limitations and guides
future data collection efforts to improve coverage and robustness [Bulusu
et al., 2020, Pimentel et al., 2014].

- Distinguishing Error Types for Debugging and Improvement: Secondary
to the classification task, differentiating between in-distribution and OOD
errors provides valuable information for debugging and model
improvement, pointing to issues with the model itself or limitations in
training data coverage [Hecker et al., 2018, Kendall and Gal, 2017].

- Enhancing Robustness through Targeted Retraining: Identifying OOD
errors allows for the selection of the most relevant and effective data points
for robustness enhancement through targeted retraining, improving the
model’s performance in real-world scenarios [Hendrycks et al., 2019, Zheng
et al., 2020].

6.5.2 Studying OOD Metrics within PWFN

Aside from the general motivations for studying the OOD setting, we believe that
treating PWFN as a Bayesian approach makes it potentially more fruitful in
detecting OOD samples without any additional tricks. One would hope that the
sampling procedure will give more variation of outputs for input classes which

are unseen in the training set.

Additionally, understanding the performance of compressed models (a notable
advantage of PWFN) on OOD data is essential for ensuring that efficiency gains

do not compromise robustness.

With these considerations, let us next move on to describing the experimentation
undertaken to evaluate OOD on PWFN.



112

Chapter 6. Uncertainty Estimations of BWFN

6.5.3 OOD Experimentation with PWFN

For the OOD experiments, we look to the CIFAR-10 dataset for simplicity,
segregating it into in-distribution (ID) and OOD sets. Five classes are designated
for ID training, and the remaining five classes are reserved for evaluating the

model’s OOD detection capabilities.

We next apply PWEN for training on the ID data where we expect to reach high
accuracies and low uncertainty of predictions and then evaluate how this changes
when we test on OOD datapoints.

6.5.3.1 Entropy of Probabilities

To better understand the distinction between ID and OOD samples, we calculate
the entropy of class probabilities for a range of sample numbers (1, 5, 10, and 20)
during the testing phase on both OOD and ID data. In this experiment we take n
samples (n=1,5,10,20) of the weights and calculate the entropy of the probabilities
for each data input. The idea is to explore different sample sizes allowing us to
investigate the impact of the number of samples on the model’s ability to
distinguish between ID and OOD data points. This metric provides valuable
insights into the model’s performance, with a higher difference between OOD and
ID data points indicating more effective OOD detection. The core idea behind this
approach is that it is a simple metric to compute, and we expect to observe a
significant variation between ID and OOD test samples, especially as the number

of samples increases.

6.5.3.2 Standard Deviation Thresholding

In addition to the entropy analysis, we explore the viability of an approach to
automate the process of determining when a sample is OOD. To achieve this, we
threshold the entropy values at various levels based on standard deviations above
the mean entropy of all test samples. This analysis helps us understand the
model’s sensitivity and response to OOD data under varied conditions and

demonstrates how these metrics could be applied in practice.

Visualisation and Interpretation To supplement our analysis, we present visual

representations of the results:

— Accuracy Plot: Figure 6.8 illustrates the model’s accuracy in identifying ID
and OOD classes across different entropy thresholds.

— Entropy Distribution Plots: Figure 6.7 visually depicts the distribution of
entropy values for ID and OOD classes, highlighting the differences between

the baseline model and the PWFN models with varying numbers of samples.



6.5.

Out-of-distribution 113

ID vs ODD Entropy Distribution

Baseline Samples: 1 Samples: 5 Samples: 10 Samples: 20

ID ID ID ID ID
00D 00D 00D 00D 00D

0 1 2 0 1 2 0 1 2 0 1 2

Entropy Entropy Entropy Entropy Entropy

FIGURE 6.7: Here we show how the distribution of soft-max entropy values changes

between ID and OOD samples in the reduced-CIFAR-10 experiments. We can see that

the baseline model (left) doesn’t have much difference between the two whereas the

PWEN models at varying number of samples has a much more differentiation between
the two.

6.5.4 Experiment Results and Discussion

Let’s start by examining how the distributions of ID and OOD samples differ,
keeping in mind that a good model would exhibit higher softmax entropies for
OOD samples and much lower entropies for ID samples. In Figure 6.7, we explore
the distribution difference between entropies for a baseline (standard single SGD
run) and PWEN models taking 1, 5, 10, and 20 samples. It’s crucial to note that
each of these models has comparable accuracy for the ID classes, yet we observe a
substantial difference when comparing the softmax entropies of ID and OOD
samples. Even with a single sample, the ability to distinguish between ID and
OOD is much clearer than with the baseline model. As we increase the number of
samples, the ID distribution becomes even more concentrated towards lower

entropy values, making the OOD samples even more distinguishable.

Let’s examine this concept further. Suppose we wanted a simple measure to
determine whether a sample is ID or OOD. One approach could be to sample the
weights n times and calculate the entropy of the model’s softmax output for a
given input.

For n = 1, we calculate the entropy H(x) directly from the softmax output
probabilities. For n > 1, we take n samples from the weights, calculate the mean
softmax probabilities for the input, and then compute the entropy from the

averaged probabilities.

Given the entropy H,(x) calculated for n samples, we can compare it to the mean
entropy yuy over all data samples or from a training calibration set (which are all
ID). The z-score zy, representing how many standard deviations H, (x) is from yp,
is defined as:



114

Chapter 6. Uncertainty Estimations of BWFN

Hy(x) — pn
UH

Zy =

where oy is the standard deviation of the entropy across the same set of samples.
Using this z-score, we can set a threshold 7, such that if z, > 7, we classify the
sample as OOD:

Classify as OODif zy > T

We explore a range of T values corresponding to 0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75,
and 2 standard deviations, and analyse the percentage of ID and OOD samples
that exceed this threshold. Based on our findings from examining the entropy
distributions, we expect the PWFN models to have a higher percentage of OOD
samples and a lower percentage of ID samples above the threshold compared to
the baseline model.

This formulation helps formalise the distinction between ID and OOD samples
using the average entropy over multiple weight samples and the deviation from

the mean entropy.

Figure 6.8 illustrates the percentage of OOD and ID samples that fall above a
certain number of standard deviations from the mean entropy. The number next to
ID/OOD indicates the number of samples used in the PWFN model. We can see
that PWFN, with any number of samples n > 1, results in the highest percentage
of OOD samples exceeding the threshold. For instance, at 0 standard deviations
above the mean (i.e., the mean itself), 25% of OOD samples are correctly identified,
compared to less than 5% of ID samples, making it a far more effective classifier
than the non-Bayesian baseline, which only detects 15% of OOD samples.

These findings underscore the effectiveness of the PWFN approach in
distinguishing between ID and OOD samples, even with a small number of
weight samples. The greater separation between the entropy distributions of ID
and OOD samples, alongside the higher percentage of OOD samples above the
entropy threshold, highlights the potential of this method for reliable OOD
detection in real-world applications. Using the PWEN approach, practitioners can
build more robust and trustworthy systems capable of effectively managing OOD
data, reducing the likelihood of unexpected failures or erroneous predictions.

Although this metric is not perfect—capturing only 25% of OOD examples and
misclassifying approximately 5% of ID samples as OOD—it still demonstrates the
potential of using the additional variance signal from PWFN for OOD detection.

Further refinement is required, but these results are promising.



6.6. Conclusion 115

0% In-Distribution vs. Out-of-Distribution Above Threshold
0

—— ID Base
---00D Baseline
—ID-1

--- 00D-1
——1ID-5

--- 00D-5
— ID-10

35%

30%

25%

==~ 00D-10
~—ID-20
LNy 77 oop-20
=

20%

15%

10%

Percentage of Samples Above Threshold

5%

9
0% 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Number of Standard Deviations Above the Mean

FIGURE 6.8: Here we show what percentage of OOD and ID samples are above x
number of standard deviations above the mean. The number next to ID/OOD signifies
how many samples were used in the PWEN case. We can see that using WFN with any
number > 1 samples gives us the highest percentage of detected OOD samples. Taking
0 std above the mean (i.e., the mean itself) for example, we can see that 25% of OOD
samples versus less than 5% ID samples exceed the threshold, making it a much better
classifier than if we were to use the non-Bayesian baseline, where only 15% of OOD
samples would be detected.

6.6 Conclusion

We conclude by noting that both the OOD and uncertainty estimation experiments
demonstrate PWEN is a step towards the goal of having well calibrated models.
We have seen that the interaction between compression and calibration is one of
benefit. That compressed models tend to give better calibration. The set of
experiments and ablation studies conducted in this chapter provide a glimpse into
the relationship of three hitherto separate fields of inquiry, PWEN gives us better
calibration, generalisation (to the test set) and compression. We are now in a good
place to look back at this thesis and to start to link the threads together.






117

Chapter 7

Discussion and Further Analysis

7.1 The Thesis Contributions

In this thesis, we presented a sequence of algorithmic techniques for neural
network compression, each building upon the insights and findings of its
predecessor. Our primary objective was to reduce data-movement costs and
enable efficient inference on specialised hardware. We identified that
data-movement costs dominate energy expenditure in deep learning inference
(Chapter 2), motivating the exploration of techniques that reduce the number of

unique parameters and weight-space entropies.

We began with Weight Fixing Networks (WEN) in Chapter 3, introducing an
iterative cluster-train algorithm that employed techniques such as iterative
quantisation, a whole-network codebook, a focus on powers-of-two clusters, and
a relative distance movement threshold. WFN effectively reduced the number of
unique weights and weight-space entropy but relied on a fixed schedule for
clustering and did not leverage weight-specific information for quantisation

decisions.

In Chapter 4, we introduced Probabilistic Weight Fixing Networks (PWEN),
building on the lessons learned from WFN. PWEN incorporated a probabilistic
framework based on Bayesian neural networks and variational relaxation,
leveraging learned weight uncertainties to make context-aware quantisation
decisions. PWEN achieved state-of-the-art results on ImageNet with ResNet and
transformer models, demonstrating the power of learning noise-resilient, highly
compressible weight configurations. However, PWEN still relied on a predefined

schedule for clustering stages.

To address the limitations of the fixed clustering schedule in PWEN, Chapter 5
introduced Cluster-On-the-Fly PWEN (COF-PWEN). COF-PWEN integrated the
clustering process into the training phase itself, making it more dynamic and
adaptive. While COF-PWFN showed promising results in terms of accuracy, it



118

Chapter 7. Discussion and Further Analysis

also highlighted a potential trade-off between accuracy and compression that

warrants further exploration.

Additionally, we explored the potential benefits gained from the probabilistic
viewpoint for uncertainty estimation in Chapter 6. By leveraging the probabilistic
nature of PWFN and COF-PWFN, we demonstrated their capabilities in providing

reliable uncertainty estimates and out-of-distribution detection.

7.2 Implications and Future Directions

The techniques and insights presented in this thesis have implications for the
development of efficient and scalable deep learning systems. The proposed
algorithmic approaches—WEFN, PWEN, and COF-PWFN—demonstrated the
potential for reducing the number of unique weights and weight-space entropy in

neural networks while maintaining performance.

7.2.1 Hardware Constraints and Data Movement Costs

One implication of this work is the importance of considering hardware
constraints and data movement costs when designing algorithmic approaches for
neural network compression. We highlighted the need for collaboration between
algorithm developers and hardware designers to leverage the benefits of these
compression techniques on specialised hardware platforms. This collaboration
can lead to the development of bespoke hardware implementations tailored to the
specific characteristics of the compressed models, potentially unlocking further
efficiency gains. As new algorithmic architectures are developed, there is often a
shift in hardware to support it. Hardware that works well for inference of
generative adversarial networks is not as suited to running diffusion models, but
the principle of minimising data-movement is universal as a result of the
fundamentals of the physics of computational chips. One could argue that the
work presented in this thesis is not algorithm-hardware co-design but is instead
adapting current algorithms such that they are better suited to hardware strengths
and limitations. We accept the premise that more work is needed to bring
algorithmic development even closer to the hardware and point to research teams
out of FireworksAlI [Fireworks Al, 2024], Groq [Abts et al., 2022], and of course
Nvidia [Liu et al., 2023], which are doing just that.

7.2.2 Hardware Realisation of WFN

Our WEN approach is well-suited for efficient hardware implementation due to
its emphasis on minimising unique weight values and weight-space entropy
across the entire network.



7.2.

Implications and Future Directions 119

7.2.2.1 Codebook-Based Architecture

A hardware architecture implementing our methods would use a compact, shared
codebook stored in fast SRAM accessible to processing elements. For networks

compressed with our approach, where millions of parameters are represented by
as few as 100-200 unique values, this architecture reduces memory traffic between

off-chip storage and on-chip compute units.

Similar codebook-based architectures exist in hardware accelerators such as the
UNPU [Lee et al., 2018], which demonstrated energy reductions of 23.1% to 53.6%
for different weight precision levels compared to conventional fixed-point arrays.
The EIE accelerator [Han et al., 2016a] also showed that index-based
representations with a small codebook achieve substantial energy savings.

7.2.2.2 Huffman Encoding for Weight Indices

To further optimise memory usage, Huffman encoding for the weight indices
would be highly effective. Given the highly skewed weight distribution produced
by WEN (as shown in our results), Huffman coding works particularly well:

1. Efficient Huffman Decoder: Research by Tian et al. [Tian et al., 2021]
demonstrated that modern GPU-based Huffman decoders can achieve
throughput rates exceeding 300 GB/s on NVIDIA V100 GPUs. For inference
acceleration, Hashemian [Hashemian, 1994] showed memory-efficient
hardware implementation of Huffman decoding that reduced memory
requirements by nearly 67x (from 8192 words to 122 words) for codebooks

with codewords up to 13 bits.

2. Compression Benefits: The EIE accelerator [Han et al., 2016a] demonstrated
that Huffman coding provided an additional 2.4x reduction in memory
requirements with minimal decompression overhead, making it well-suited
for our WEN approach which generates highly skewed weight distributions.

7.2.2.3 Power-of-Two Optimisations

The skewed distribution of weights in our WEN models—where over 75% are
power-of-two values—enables specific hardware optimisations. Multiplication
operations for power-of-two weights can be replaced with simpler bit-shift
operations, reducing computational complexity and energy consumption. This
can be implemented using specialised datapaths that detect power-of-two values

and route the computation through bit-shifters instead of multipliers.



120

Chapter 7. Discussion and Further Analysis

7.2.2.4 Whole-Network Shared Codebook

Our whole-network shared codebook approach differs from typical layer-wise
codebooks used in many quantisation method since the unified codebook can be
loaded once at the beginning of inference and cached throughout the entire
forward pass, as demonstrated in Eyeriss v2 [Chen et al., 2019], which showed
that optimising data reuse across the entire network can reduce energy

consumption by up to 2.5x.

7.2.2.5 Memory-Efficient Implementation

Drawing from Hashemian’s work [Hashemian, 1994], our design could
implement a memory-efficient Huffman decoding structure based on code-bit
clustering. This approach would allow the decoder to recognise variable-length
codes embedded in a continuous stream of bits. By using a lookup table (LUT)
with our small codebook (100-200 entries), we can achieve significant memory
savings compared to traditional implementations requiring 2¥ memory locations
(where k is the maximum codeword length).

The design would consist of three main components:

1. A buffer to hold incoming weight indices
2. A LUT address generator that extracts variable-length Huffman codes

3. A source code generator that outputs the actual weight values

In conclusion, our WFEN approach could be efficiently implemented in hardware
using a combination of codebook-based architecture, Huffman encoding, and

power-of-two optimisations.

7.2.3 Uncertainty Estimation in Safety-Critical Applications

In this work we also introduced the uncertainty estimation capabilities
demonstrated by PWFN and COF-PWEN have implications for the development
of reliable and interpretable deep learning systems. The idea is that these
techniques can be applied to safety-critical applications, such as autonomous
driving and medical diagnosis, where the reliability and calibration of model
predictions are crucial. The ability to quantify and communicate the uncertainty
associated with model predictions can enhance trust in deep learning systems and
facilitate their integration into decision-making processes. We have seen that
using PWEN in particular, we were able to use probabilistic uncertainty
estimations to calibrate models such that low probability predictions do indeed
match up with low probability of correctness. As far as we know, this is the first

work to achieve large-scale training of probabilistic uncertainty in deep learning



7.2. Implications and Future Directions 121

through the variational network route. The simplicity of the approach
(maximising noise resilience) means this type of approach is no longer limited to
toy problems.

7.24 Exploring Accuracy-Compression Trade-offs

This thesis also opens up several avenues for future research. One direction is to
further investigate the accuracy-compression trade-offs in COF-PWFN and
develop techniques to optimise this balance.

Our work supports the ideas proposed in the minimal description length, that
”compression is comprehension”. We found that PWFN networks were better
calibrated as they were further compressed (up to a limit) suggesting that the
accuracies achieved in training can be coupled with a compression stage to further
refine the model. This is well supported across the results found in quantisation
works which have shown time and again, that an additional quantisation step —
particularly when guided by optimisation — can increase downstream task
generalisability [Yuhang Li, Xin Dong, 2020, Subia-Waud and Dasmahapatra,
2022, Fan et al., 2021, Lee et al., 2021, Jin et al., 2020]. So far, this finding has not
translated into large language models, where the move from 8-bit down to 4-bit is
coupled with a slight drop in performance [Lin et al., 2024, Frantar et al., 2022]. It
is an open question as to whether this is due to the sheer size of the training set —
Llama-3 was trained with over 1 trillion tokens whereas vision models are trained
with orders of magnitude fewer — or whether some important component is
missing in attempts to quantise, training with gradient descent. Post-training
quantisation approaches for vision models are similarly coupled with small drops
in performance. A challenge in exploring the accuracy-compression trade-off for
these larger models lies in the training costs which currently restrict large-scale
training to a select few organisations. There is a risk-reward consideration which
may limit the extent to which compression within training is researched but we
pose from the results in this work and others, that it could be a fruitful avenue of

exploration.

7.2.5 Integration with Other Approaches

In this work, we have attempted to isolate the effect of compression through
quantisation/weight-sharing alone. Other works, most notably Deep
Compression [Han et al., 2016b], have shown that other compression techniques
such as pruning can be used in tandem with quantisation in a multi-stage process.
Although pruning is somewhat already present (0 was always the modal cluster in
PWEN and WEN) [Han et al., 2015a], other techniques such as neural architecture
search [Zoph and Le, 2016], low-rank approximation [Denton et al., 2014], and



122

Chapter 7. Discussion and Further Analysis

entire channel pruning [Li et al., 2016] are potentially complementary techniques
which may be combined with PWFN/WEN in order to further compress
networks. This integration could lead to the development of comprehensive
frameworks for neural network compression that can automatically adapt to the
specific requirements of different tasks and hardware platforms [He et al., 2018].

7.2.6 Adapting to Emerging Architectures

Finally, applying the proposed techniques to the realm of large language models
(LLMs) in the evolving landscape of artificial intelligence is an important area for
future exploration. As the scale and complexity of these models continue to grow,
the need for efficient compression and inference techniques becomes increasingly
pressing.

LLMs are already typically on the scale of billions of parameters. A recent
open-source release of Llama-3.1 [Meta Al, 2024] for example, has over 400 billion
parameters, far more than is viable to run on any consumer hardware.
Quantisation has already become a core component of enabling access to local
inference of LLMs. New techniques such as activation aware quantisation [Lin
et al., 2024] and GPTQ [Frantar et al., 2022], both post-training quantisation
techniques, are already very popular. Llama-3 4-bit by unsloth [UnslothAlI, 2024]
is, as of writing this, the 4th most downloaded model on Huggingface.

As was the case with vision models, these post-quantisation methods for LLMs
result in accuracy drops - depending on how far the bit-width is pushed [Chavan
et al., 2024]. New approaches have begun to emerge with a focus on quantisation
aware training [Ma et al., 2024]. As with vision, these approaches trade off

compression and accuracy against granularity with separate codebooks.

The K,V re-use seen in transformers (each next token prediction re-uses the same
weights and activations of the previous token prediction) fits well within the ideas
outlined in this thesis. Our hope is that the insights we have gained will be
applied to LLMs in the future. There are additional computation costs (the extra o
values to be trained) which would make it out-of-reach for current consumer
devices to utilise but should this hurdle be overcome, cutting down the number of
unique values across a network and keeping the weights close to the
computational units would be a huge boon to faster inference speeds of LLMs.

Indeed, companies like Groq has focused on this principle to incredible effect.
They have developed language processing units (LPUs) [Groq, 2024] which
compile a network down onto an accelerator where all of the weights are right
next to a processing element and the data feed through with tokens per second
speeds far greater than any of the competition.



7.3.

Conclusion 123

It is our hope that the insights and principles introduced in this thesis could aid in
the development of specialised compression techniques that can handle the
unique challenges posed by these large-scale models.

7.3 Conclusion

This thesis has presented a comprehensive investigation into neural network
compression techniques, driven by the imperative to minimise data-movement
costs in deep learning inference. Our research has yielded a series of algorithmic
approaches—Weight Fixing Networks (WFN), Probabilistic Weight Fixing
Networks (PWEN), and Cluster-On-the-Fly PWFN (COF-PWFN)—each
advancing the state of the art in efficient inference.

Our work was motivated by the observation that data-movement costs dominate
energy expenditure in deep learning inference, as established in Chapter 2. This
insight guided our efforts towards reducing the number of unique parameters
and weight-space entropies, a strategy that has proven effective in enhancing

inference efficiency.

The progression of our research, from WFN through to COF-PWEN, demonstrates
a systematic approach to addressing the challenges of neural network
compression. WEN introduced an iterative cluster-train algorithm, while PWFN
leveraged Bayesian neural networks and variational relaxation for context-aware
quantisation decisions. COF-PWEN further refined this approach by dynamically
integrating the clustering process into the training phase.

A significant outcome of our work, particularly with PWFN and COF-PWEN, is
the improvement in model calibration and uncertainty estimation. These
capabilities extend the potential applications of our compressed models to

domains where reliable uncertainty quantification is crucial.

Our research has highlighted several key areas for future investigation:

- Hardware-Algorithm Integration: The findings underscore the importance
of aligning algorithmic approaches with hardware constraints. Future
research should focus on closer collaboration between algorithm developers
and hardware designers to fully exploit the benefits of these compression
techniques.

— Accuracy-Compression Trade-offs: The relationship between compression
and model calibration, particularly in PWEN, merits further study.
Investigating the potential for an optimal balance between compression,
computational efficiency, and model performance could yield valuable
insights.



124

Chapter 7. Discussion and Further Analysis

— Synergy with Other Compression Techniques: While this thesis focused
primarily on quantisation and weight-sharing, integrating our methods with
techniques such as pruning, neural architecture search, and low-rank

approximation could lead to more comprehensive compression frameworks.

— Application to Large Language Models: Adapting these techniques to the
scale of Large Language Models presents both significant challenges and
opportunities. This area of research could potentially address the growing

computational demands of these massive models.

— Practical Implementation of Uncertainty Estimation: Translating the
uncertainty estimation capabilities of our probabilistic approaches into
practical applications, particularly in safety-critical domains, remains an

important area for future work.

In conclusion, this thesis has contributed to the ongoing research in efficient and
reliable deep learning systems. By grounding our approach in the fundamental
principles of computational efficiency and data movement minimisation, we have
developed techniques that not only compress neural networks but also enhance

their interpretability and reliability.

The challenges that lie ahead—from scaling these techniques to massive language
models to integrating them with specialised hardware—present significant
opportunities for future research. As the scale and complexity of deep learning
models continue to grow, the need for efficient, reliable, and interpretable systems
becomes increasingly critical. The principles and techniques introduced in this
thesis provide a foundation for addressing these challenges, potentially leading to

more scalable and efficient deep learning systems in the future.



125

Bibliography

D. Abts, J. Kim, G. Kimmell, M. Boyd, K. Kang, S. Parmar, A. Ling, A. Bitar,
I. Ahmed, and J. Ross. The groq software-defined scale-out tensor streaming
multiprocessor: From chips-to-systems architectural overview. In 2022 IEEE Hot
Chips 34 Symposium (HCS), pages 1-69. IEEE Computer Society, 2022.

D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman, and D. Mané.
Concrete problems in ai safety. arXiv preprint arXiv:1606.06565, 2016.

C. Banbury, C. Zhou, I. Fedorov, R. Matas, U. Thakker, D. Gope, V. Janapa Reddi,
M. Mattina, and P. Whatmough. Micronets: Neural network architectures for
deploying tinyml applications on commodity microcontrollers. Proceedings of
Machine Learning and Systems, 3:517-532, 2021.

E. Begoli, T. Bhattacharya, and D. Kusnezov. The need for uncertainty
quantification in machine-assisted medical decision making. Nature Machine
Intelligence, 1(1):20-23, 2019.

D. Berend, X. Xie, L. Ma, L. Zhou, Y. Liu, C. Xu, and J. Zhao. Cats are not fish:
Deep learning testing calls for out-of-distribution awareness. In Proceedings of
the 35th IEEE/ACM international conference on automated software engineering,
pages 1041-1052, 2020.

D. Blalock, J. J. G. Ortiz, ]. Frankle, and J. Guttag. What is the State of Neural
Network Pruning? mar 2020. URL http://arxiv.org/abs/2003.03033.

C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra. Weight uncertainty in
neural networks. In 32nd Int. Conf. Mach. Learn. ICML 2015, volume 2, pages
1613-1622, 2015. ISBN 9781510810587

A. Boroumand, S. Ghose, Y. Kim, R. Ausavarungnirun, E. Shiu, R. Thakur, D. Kim,
A. Kuusela, A. Knies, P. Ranganathan, et al. Google workloads for consumer
devices: Mitigating data movement bottlenecks. In Proceedings of the
Twenty-Third International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 316-331, 2018.

G. W. Brier. Verification of forecasts expressed in terms of probability. Monthly
weather review, 78(1):1-3, 1950.



126

BIBLIOGRAPHY

S. Bulusu, B. Kailkhura, B. Li, P. K. Varshney, and D. Song. Anomalous example
detection in deep learning: A survey. IEEE Access, 8:132330-132347, 2020.

N. Carlini and D. Wagner. Towards evaluating the robustness of neural networks.
In 2017 IEEE Symposium on Security and Privacy (SP), pages 39-57. IEEE, 2017.

L. Cavigelli, D. Gschwend, C. Mayer, S. Willi, B. Muheim, and L. Benini. Origami:
A convolutional network accelerator. In Proceedings of the 25th edition on Great
Lakes Symposium on VLSI, pages 199-204, 2015.

A. Chavan, R. Magazine, S. Kushwaha, M. Debbah, and D. Gupta. Faster and
lighter llms: A survey on current challenges and way forward. arXiv preprint
arXiv:2402.01799, 2024.

T. Chen, Y. Sui, X. Chen, A. Zhang, and Z. Wang. A unified lottery ticket
hypothesis for graph neural networks. In International Conference on Machine
Learning, pages 1695-1706. PMLR, 2021.

Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, ]. Wang, L. Li, T. Chen, Z. Xu, N. Sun, et al.
Dadiannao: A machine-learning supercomputer. In 2014 47th Annual IEEE/ACM
International Symposium on Microarchitecture, pages 609-622. IEEE, 2014.

Y. Chen, Y. Xie, L. Song, F. Chen, and T. Tang. A Survey of Accelerator
Architectures for Deep Neural Networks. Engineering, 6(3):264-274, 2020. ISSN
20958099. . URL https://doi.org/10.1016/j.eng.2020.01.007.

Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze. Eyeriss: An energy-efficient
reconfigurable accelerator for deep convolutional neural networks. IEEE journal
of solid-state circuits, 52(1):127-138, 2016.

Y. H. Chen, T. Krishna, J. S. Emer, and V. Sze. Eyeriss: An Energy-Efficient
Reconfigurable Accelerator for Deep Convolutional Neural Networks. IEEE ].
Solid-State Circuits, 52(1):127-138, jan 2017. ISSN 00189200. .

Y.-H. Chen, T.-J. Yang, ]. Emer, and V. Sze. Eyeriss v2: A flexible accelerator for
emerging deep neural networks on mobile devices. IEEE Journal on Emerging
and Selected Topics in Circuits and Systems, 9(2):292-308, 2019.

E. Chollet. Xception: Deep learning with depthwise separable convolutions. In
Proc. - 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017,2017a. ISBN
9781538604571. .

F. Chollet. Xception: Deep learning with depthwise separable convolutions. In
Proc. - 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017, 2017b. ISBN
9781538604571. .



BIBLIOGRAPHY 127

M. Courbariaux, Y. Bengio, and J. P. David. Binaryconnect: Training deep neural
networks with binary weights during propagations. In Adv. Neural Inf. Process.
Syst., 2015.

D. Das, N. Mellempudi, D. Mudigere, D. Kalamkar, S. Avancha, K. Banerjee,
S. Sridharan, K. Vaidyanathan, B. Kaul, E. Georganas, et al. Mixed precision
training of convolutional neural networks using integer operations. arXiv
preprint arXiv:1802.00930, 2018.

E. Daxberger, E. Nalisnick, J. U. Allingham, ]J. Antordn, and J. M.
Hernédndez-Lobato. Bayesian deep learning via subnetwork inference. In
International Conference on Machine Learning, pages 2510-2521. PMLR, 2021.

E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus. Exploiting linear
structure within convolutional networks for efficient evaluation. In Advances in

neural information processing systems, pages 1269-1277, 2014.

R. Dorrance, F. Ren, and D. Markovié. A scalable sparse matrix-vector
multiplication kernel for energy-efficient sparse-blas on FPGAs. In ACM/SIGDA
Int. Symp. F. Program. Gate Arrays - FPGA, pages 161-169. Association for
Computing Machinery, 2014. ISBN 9781450326711. .

Z.Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen, and
O. Temam. Shidiannao: Shifting vision processing closer to the sensor. In
Proceedings of the 42nd Annual International Symposium on Computer Architecture,
pages 92-104, 2015.

T. Elsken, ]. H. Metzen, and F. Hutter. Neural architecture search: A survey. J.
Mach. Learn. Res., 2019. ISSN 15337928.

S. K. Esser, J. L. McKinstry, D. Bablani, R. Appuswamy, and D. S. Modha. Learned
Step Size Quantization. 8th Int. Conf. Learn. Represent. ICLR 2020, 2020. URL
http://arxiv.org/abs/1902.08153.

A. Fan, P. Stock, B. Graham, E. Grave, R. Gribonval, H. Jegou, and A. Joulin.
Training with Quantization Noise for Extreme Model Compression. 9th Int.
Conf. Learn. Represent. ICLR 2021 - Conf. Track Proc., apr 2021. URL
http://arxiv.org/abs/2004.07320.

V. Feldman and C. Zhang. What neural networks memorize and why:
Discovering the long tail via influence estimation. Advances in Neural
Information Processing Systems, 33:2881-2891, 2020.

Fireworks Al. Fireworks ai: Build and deploy large ai models, 2024. URL
https://fireworks.ai/.



128

BIBLIOGRAPHY

J. Frankle and M. Carbin. The lottery ticket hypothesis: Finding sparse, trainable
neural networks. In 7th Int. Conf. Learn. Represent. ICLR 2019, 2019.

J. Frankle, G. K. Dziugaite, D. M. Roy, and M. Carbin. Stabilizing the Lottery
Ticket Hypothesis. 2019. URL http://arxiv.org/abs/1903.01611.

E. Frantar, S. Ashkboos, T. Hoefler, and D. Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint
arXiv:2210.17323, 2022.

K. Fukushima and S. Miyake. Neocognitron: A Self-Organizing Neural Network
Model for a Mechanism of Visual Pattern Recognition. pages 267-285. Springer,
Berlin, Heidelberg, 1982. . URL
https://link.springer.com/chapter/10.1007/978-3-642-46466-9{_}18.

Y. Gal and Z. Ghahramani. Dropout as a bayesian approximation: Representing
model uncertainty in deep learning. In international conference on machine
learning, pages 1050-1059. PMLR, 2016.

Y. Gal, R. Islam, and Z. Ghahramani. Deep bayesian active learning with image
data. In International conference on machine learning, pages 1183-1192. PMLR,
2017.

Y. Gal et al. Uncertainty in deep learning. 2016.

T. Gale, M. Zaharia, C. Young, and E. Elsen. Sparse gpu kernels for deep learning.
In SC20: International Conference for High Performance Computing, Networking,
Storage and Analysis, pages 1-14. IEEE, 2020.

R. Gallager. Variations on a theme by huffman. IEEE Transactions on Information
Theory, 24(6):668-674, 1978.

J. Gawlikowski, C. R. N. Tassi, M. Ali, J. Lee, M. Humt, J. Feng, A. Kruspe,
R. Triebel, P. Jung, R. Roscher, et al. A survey of uncertainty in deep neural
networks. arXiv preprint arXiv:2107.03342, 2021.

S. Girish, S. R. Maiya, K. Gupta, H. Chen, L. S. Davis, and A. Shrivastava. The
lottery ticket hypothesis for object recognition. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 762-771, 2021.

J. Gou, B. Yu, S.J. Maybank, and D. Tao. Knowledge distillation: A survey.
International Journal of Computer Vision, 129(6):1789-1819, 2021.

A. Graves. Practical variational inference for neural networks. Advances in neural

information processing systems, 24, 2011.

Groq. What is an Ipu? Whitepaper, Groq, 7 2024. URL https://wow.groq.com/
wp-content/uploads/2024/07/GroqThoughts_WhatIsALPU-vF.pdf.



BIBLIOGRAPHY 129

C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger. On calibration of modern neural
networks. In International Conference on Machine Learning, pages 1321-1330.
PMLR, 2017.

R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B. C. Lee,
S. Richardson, C. Kozyrakis, and M. Horowitz. Understanding sources of
inefficiency in general-purpose chips. In Proceedings of the 37th annual
international symposium on Computer architecture, pages 37-47, 2010.

S. Han, J. Pool, J. Tran, and W. Dally. Learning both weights and connections for
efficient neural network. In Advances in neural information processing systems,
pages 1135-1143, 2015a.

S. Han, J. Pool, J. Tran, and W. J. Dally. Learning both weights and connections for
efficient neural networks. In Adv. Neural Inf. Process. Syst., 2015b.

S. Han, X. Liu, H. Mao, ]J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally. EIE:
Efficient Inference Engine on Compressed Deep Neural Network. feb 2016a.
URL http://arxiv.org/abs/1602.01528.

S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding. arXiv
preprint arXiv:1510.00149, 2016b.

R. Hashemian. Design and hardware implementation of a memory efficient
huffman decoding. IEEE Transactions on Consumer Electronics, 40(3):345-352,
1994.

K. He, X. Zhang, S. Ren, and ]J. Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770-778, 2016.

Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han. Amc: Automl for model
compression and acceleration on mobile devices. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 784-800, 2018.

S. Hecker, D. Dai, and L. Van Gool. Failure prediction for autonomous driving. In
2018 IEEE Intelligent Vehicles Symposium (1V), pages 1792-1799. IEEE, 2018.

D. Hendrycks and K. Gimpel. A baseline for detecting misclassified and
out-of-distribution examples in neural networks. arXiv preprint
arXiv:1610.02136, 2016.

D. Hendrycks, K. Lee, and M. Mazeika. Using pre-training can improve model
robustness and uncertainty. In International Conference on Machine Learning,
pages 2712-2721. PMLR, 2019.



130

BIBLIOGRAPHY

D. Hendrycks, S. Basart, M. Mazeika, M. Mostajabi, J. Steinhardt, and D. Song.
Scaling out-of-distribution detection for real-world settings. arXiv preprint
arXiv:2104.14947, 2021.

P. Hennessy. A new golden age for computer architecture: Domain-specific
hardware/software co-design, enhanced security, open instruction sets, and
agile chip development. In 2018 ACM/IEEE 45th Annual International Symposium
on Computer Architecture (ISCA), pages 27-29, 2018. .

G. Hinton, O. Vinyals, and J. Dean. Distilling the Knowledge in a Neural Network.
pages 1-9,2015. URL http://arxiv.org/abs/1503.02531.

M. Horowitz. 1.1 Computing’s energy problem (and what we can do about it). In
Dig. Tech. Pap. - IEEE Int. Solid-State Circuits Conf., 2014. ISBN 9781479909186. .

A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam. MobileNet V1. arXiv Prepr. arXiv1704.04861, 2017.
ISSN 0004-6361. .

C. Huang, P. Liu, and L. Fang. Mxqn: Mixed quantization for reducing bit-width
of weights and activations in deep convolutional neural networks. Applied
Intelligence, 51(7):4561-4574, 2021.

G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 4700-4708, 2017.

I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio. Binarized
neural networks. In Adv. Neural Inf. Process. Syst., 2016.

D. H. Hubel and T. N. Wiesel. Receptive fields, binocular interaction and
functional architecture in the cat’s visual cortex. J. Physiol., 160(1):106-154, jan
1962. ISSN 14697793. .

D. A. Huffman. A method for the construction of minimum-redundancy codes.
Proceedings of the IRE, 40(9):1098-1101, 1952.

P. R. Huttenlocher et al. Synaptic density in human frontal cortex-developmental
changes and effects of aging. Brain Res, 163(2):195-205, 1979.

E. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally, and K. Keutzer.
SqueezeNet. arXiv, 2016.

N. N. C. S. IEEE and S. S. IEEE. IEEE-INNS International Joint Conference on
Neural Networks, Baltimore, 1992. page 4012, 1992.



BIBLIOGRAPHY 131

P. Izmailov, D. Podoprikhin, T. Garipov, D. Vetrov, and A. G. Wilson. Averaging
weights leads to wider optima and better generalization. Uncertainty in Artificial
Intelligence, pages 876-885, 2018.

B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam, and
D. Kalenichenko. Quantization and Training of Neural Networks for Efficient
Integer-Arithmetic-Only Inference. In Proc. IEEE Comput. Soc. Conf. Comput. Vis.
Pattern Recognit., pages 2704-2713, 2018. ISBN 9781538664209. .

Q. Jin, L. Yang, and Z. Liao. Adabits: Neural network quantization with adaptive
bit-widths. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 2146-2156, 2020.

M. 1. Jordan and T. M. Mitchell. Machine learning: Trends, perspectives, and
prospects. Science, 349(6245):255-260, 2015.

N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,
S. Bhatia, N. Boden, A. Borchers, R. Boyle, P. L. Cantin, C. Chao, C. Clark,
J. Coriell, M. Daley, M. Dau, ]J. Dean, B. Gelb, T. V. Ghaemmaghami, R. Gottipati,
W. Gulland, R. Hagmann, C. Richard Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt,
J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan, H. Khaitan, D. Killebrew, A. Koch,
N. Kumar, S. Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke,
A. Lundin, G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Nagarajan,
R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick, N. Penukonda,
A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani, C. Severn, G. Sizikov,
M. Snelham, J. Souter, D. Steinberg, A. Swing, M. Tan, G. Thorson, B. Tian,
H. Toma, E. Tuttle, V. Vasudevan, R. Walter, W. Wang, E. Wilcox, and D. H. Yoon.
In-datacenter performance analysis of a tensor processing unit. In Proc. - Int.
Symp. Comput. Archit., 2017a. ISBN 9781450348928. .

N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,
S. Bhatia, N. Boden, A. Borchers, et al. In-datacenter performance analysis of a
tensor processing unit. In Proceedings of the 44th annual international symposium
on computer architecture, pages 1-12, 2017b.

N. P. Jouppi, D. Hyun Yoon, M. Ashcraft, M. Gottscho, T. B. Jablin, G. Kurian,
J. Laudon, S. Li, P. Ma, X. Ma, T. Norrie, N. Patil, S. Prasad, C. Young, Z. Zhou,
and D. Patterson. Ten Lessons From Three Generations Shaped Google’s
TPUv4i : Industrial Product. 2021 ACM/IEEE 48th Annu. Int. Symp. Comput.
Archit., pages 1-14, jun 2021. . URL
https://ieeexplore.ieee.org/document/9499913/.

S.Jung, C. Son, S. Lee, J. Son, J. J. Han, Y. Kwak, S. J. Hwang, and C. Choi.
Learning to quantize deep networks by optimizing quantization intervals with



132

BIBLIOGRAPHY

task loss. In Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., 2019a.
ISBN 9781728132938. .

S. Jung, C. Son, S. Lee, J. Son, J.-J. Han, Y. Kwak, S. J. Hwang, and C. Choi.
Learning to quantize deep networks by optimizing quantization intervals with
task loss. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 4350—4359, 2019b.

A. Jungo, R. Meier, E. Ermis, E. Herrmann, and M. Reyes. Uncertainty-driven
sanity check: application to postoperative brain tumor cavity segmentation.
arXiv preprint arXiv:1806.03106, 2018.

J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray,
A. Radford, J]. Wu, and D. Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco. Gpus and the
future of parallel computing. IEEE micro, 31(5):7-17, 2011.

A.Kendall and Y. Gal. What uncertainties do we need in bayesian deep learning

for computer vision? Advances in Neural Information Processing Systems, 30, 2017.

G. Kestor, R. Gioiosa, D. J. Kerbyson, and A. Hoisie. Quantifying the energy cost
of data movement in scientific applications. In 2013 IEEE international
symposium on workload characterization (IISWC), pages 56-65. IEEE, 2013.

D. P. Kingma and J. L. Ba. Adam: A method for stochastic optimization. In 3rd Int.
Conf. Learn. Represent. ICLR 2015 - Conf. Track Proc., 2015.

A. Kristiadi, M. Hein, and P. Hennig. Learnable uncertainty under laplace
approximations. In Uncertainty in Artificial Intelligence, pages 344-353. PMLR,
2021.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. 2012 AlexNet. Adv. Neural Inf.
Process. Syst., 2012. ISSN 10495258. .

H. Kwon, A. Samajdar, and T. Krishna. Maeri: Enabling flexible dataflow
mapping over dnn accelerators via reconfigurable interconnects. ACM
SIGPLAN Notices, 53(2):461-475, 2018.

B. Lakshminarayanan, A. Pritzel, and C. Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. Advances in neural information
processing systems, 30, 2017.

S. Laughlin. A simple coding procedure enhances a neuron’s information capacity.
Zeitschrift fiir Naturforschung c, 36(9-10):910-912, 1981.



BIBLIOGRAPHY 133

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and
L. D. Jackel. Backpropagation applied to handwritten zip code recognition.
Neural computation, 1(4):541-551, 1989.

Y. LeCun, J. S. Denker, and S. A. Solla. Optimal brain damage. In Adv. Neural Inf.
Process. Syst., pages 598-605, 1990.

J. Lee, C. Kim, S. Kang, D. Shin, S. Kim, and H.-J. Yoo. Unpu: An energy-efficient
deep neural network accelerator with fully variable weight bit precision. IEEE
Journal of Solid-State Circuits, 54(1):173-185, 2018.

J. Lee, D. Kim, and B. Ham. Network Quantization with Element-wise Gradient
Scaling. 2021. URL http://arxiv.org/abs/2104.00903.

N. Lee, T. Ajanthan, and P. H. Torr. SnIP: Single-shot network pruning based on
connection sensitivity. In 7th Int. Conf. Learn. Represent. ICLR 2019, 2019.

H. Li, B. Gao, Z. Chen, Y. Zhao, P. Huang, H. Ye, L. Liu, X. Liu, and J. Kang. A
learnable parallel processing architecture towards unity of memory and
computing. Sci. Rep., 2015. ISSN 20452322. .

H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf. Pruning filters for
efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

Y. Li, S. Xu, B. Zhang, X. Cao, P. Gao, and G. Guo. Q-vit: Accurate and fully
quantized low-bit vision transformer. Advances in Neural Information Processing
Systems, 35:34451-34463, 2022.

J. Lin, Y. Rao, J. Lu, and J. Zhou. Runtime neural pruning. In Adv. Neural Inf.
Process. Syst., 2017.

J. Lin, W.-M. Chen, Y. Lin, C. Gan, S. Han, et al. Mcunet: Tiny deep learning on iot
devices. Advances in Neural Information Processing Systems, 33:11711-11722,
2020a.

J. Lin, J. Tang, H. Tang, S. Yang, W.-M. Chen, W.-C. Wang, G. Xiao, X. Dang,
C. Gan, and S. Han. Awq: Activation-aware weight quantization for on-device

llm compression and acceleration. Proceedings of Machine Learning and Systems, 6:
87-100, 2024.

T. Lin, L. Barba, and M. Jaggi. Dynamic Model Pruning with Fre. ICLR, 2020b.

M. Liu, T.-D. Ene, R. Kirby, C. Cheng, N. Pinckney, R. Liang, ]. Alben, H. Anand,
S. Banerjee, I. Bayraktaroglu, et al. Chipnemo: Domain-adapted llms for chip
design. arXiv preprint arXiv:2311.00176, 2023.



134

BIBLIOGRAPHY

Z.Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang. Learning Efficient
Convolutional Networks through Network Slimming. In Proc. IEEE Int. Conf.
Comput. Vis., 2017. ISBN 9781538610329. .

E.S. Lubana and R. P. Dick. A Gradient Flow Framework For Analyzing Network
Pruning. pages 1-18, 2020. URL http://arxiv.org/abs/2009.11839.

S.Ma, H. Wang, L. Ma, L. Wang, W. Wang, S. Huang, L. Dong, R. Wang, ]. Xue,
and F. Wei. The era of 1-bit llms: All large language models are in 1.58 bits.
arXiv preprint arXiv:2402.17764, 2024.

D.J. C. Mackay. Bayesian methods for adaptive models. California Institute of
Technology, 1992.

W. J. Maddox, P. Izmailov, T. Garipov, D. P. Vetrov, and A. G. Wilson. A simple
baseline for bayesian uncertainty in deep learning. Advances in neural
information processing systems, 32, 2019.

H. Mao and W.]J. Dally. Deep Compression: Compressing Deep Neural. 4th Int.
Conf. Learn. Represent. ICLR, 2016a.

H. Mao and W. ]J. Dally. Deep Compression: Compressing Deep Neural. Iclr 2016,
pages 1-14, 2016b. URL https://arxiv.org/abs/1510.00149.

R. McAllister, Y. Gal, A. Kendall, M. Van Der Wilk, A. Shah, R. Cipolla, and
A. Weller. Concrete problems for autonomous vehicle safety: Advantages of
bayesian deep learning. In Proceedings of the Twenty-Sixth International Joint
Conference on Artificial Intelligence. International Joint Conferences on Artificial

Intelligence Organization, 2017.

L. McInnes, J. Healy, and ]. Melville. Umap: Uniform manifold approximation
and projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

S. A. McKee and R. W. Wisniewski. Memory Wall, pages 1110-1116. Springer US,
Boston, MA, 2011. ISBN 978-0-387-09766-4. . URL
https://doi.org/10.1007/978-0-387-09766-4_234.

Meta Al. Llama 3.1: Open foundation and fine-tuned chat models, 2024. URL
https://ai.meta.com/blog/meta-llama-3-1/.

L. Mi, H. Wang, Y. Tian, and N. Shavit. Training-free uncertainty estimation for
neural networks. 2019.

A. Moffat. Huffman coding. ACM Computing Surveys (CSUR), 52(4):1-35, 2019.

P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz. Pruning Convolutional
Neural Networks for Resource Efficient Inference. nov 2016. URL
http://arxiv.org/abs/1611.06440.



BIBLIOGRAPHY 135

P. Molchanov, A. Mallya, S. Tyree, L. Frosio, and J. Kautz. Importance Estimation
for Neural Network Pruning. jun 2019a. URL
http://arxiv.org/abs/1906.10771.

P. Molchanov, A. Mallya, S. Tyree, L. Frosio, and J. Kautz. Importance estimation
for neural network pruning. In Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
pages 11264-11272, 2019b.

B. Moons and M. Verhelst. A 0.3-2.6 TOPS/W precision-scalable processor for
real-time large-scale ConvNets. IEEE Symp. VLSI Circuits, Dig. Tech. Pap.,
2016-Septe:1-2, 2016a. .

B. Moons and M. Verhelst. A 0.3-2.6 tops/w precision-scalable processor for
real-time large-scale convnets. In 2016 IEEE Symposium on VLSI Circuits
(VLSI-Circuits), pages 1-2. IEEE, 2016b.

G. E. Moore. Cramming more components onto integrated circuits. Proceedings of
the IEEE, 86(1):82-85, 1998.

A.S. Morcos, H. Yu, M. Paganini, and Y. Tian. One ticket to win them all:
generalizing lottery ticket initializations across datasets and optimizers.
(NeurlIPS), 2019. URL http://arxiv.org/abs/1906.02773.

K. Muhammad, A. Ullah, J. Lloret, J. Del Ser, and V. H. C. de Albuquerque. Deep
learning for safe autonomous driving: Current challenges and future directions.
IEEE Transactions on Intelligent Transportation Systems, 22(7):4316—-4336, 2020.

M. P. Naeini, G. Cooper, and M. Hauskrecht. Obtaining well calibrated
probabilities using bayesian binning. In Proceedings of the AAAI conference on
artificial intelligence, volume 29, 2015.

M. Naumov, L. Chien, P. Vandermersch, and U. Kapasi. Cusparse library. In GPU
Technology Conference, 2010.

R. M. Neal. Bayesian learning for neural networks, volume 118. Springer Science &
Business Media, 2012.

A. Niculescu-Mizil and R. Caruana. Predicting good probabilities with supervised
learning. In Proceedings of the 22nd international conference on Machine learning,
pages 625-632, 2005.

NVIDIA. NVDLA Primer — NVDLA Documentation, 2018. URL
http://nvdla.org/primer.htmlhttp://nvdla.org/primer.html{%}0Ahttp:
//nvdla.org/hw/v1/ias/unit{_}description.html.

S. Oh, H. Sim, S. Lee, and J. Lee. Automated Log-Scale Quantization for Low-Cost
Deep Neural Networks. Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
2021a.



136

BIBLIOGRAPHY

S. Oh, H. Sim, S. Lee, and J. Lee. Automated log-scale quantization for low-cost
deep neural networks. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 742-751, 2021b.

I. Osband, C. Blundell, A. Pritzel, and B. Van Roy. Deep exploration via

bootstrapped dqn. Advances in neural information processing systems, 29, 2016.

Y. Ovadia, E. Fertig, J. Ren, Z. Nado, D. Sculley, S. Nowozin, J. Dillon,
B. Lakshminarayanan, and J. Snoek. Can you trust your model’s uncertainty?
evaluating predictive uncertainty under dataset shift. Advances in Neural
Information Processing Systems, 32, 2019.

D. Pandiyan and C.-J. Wu. Quantifying the energy cost of data movement for
emerging smart phone workloads on mobile platforms. In 2014 IEEE
International Symposium on Workload Characterization (IISWC), pages 171-180.
IEEE, 2014.

A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan, B. Khailany, J. Emer,
S. W. Keckler, and W. J. Dally. Scnn: An accelerator for compressed-sparse

convolutional neural networks. ACM SIGARCH computer architecture news, 45
(2):27-40, 2017.

T. Pearce, A. Brintrup, M. Zaki, and A. Neely. High-quality prediction intervals
for deep learning: A distribution-free, ensembled approach. In International
conference on machine learning, pages 4075-4084. PMLR, 2018.

H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean. Efficient neural architecture
search via parameters sharing. In International conference on machine learning,
pages 4095-4104. PMLR, 2018.

M. A. Pimentel, D. A. Clifton, L. Clifton, and L. Tarassenko. A review of novelty
detection. Signal Processing, 99:215-249, 2014.

J. Platt et al. Probabilistic outputs for support vector machines and comparisons to
regularized likelihood methods. Advances in large margin classifiers, 10(3):61-74,
1999.

M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. XNOR-net: Imagenet
classification using binary convolutional neural networks. Lect. Notes Comput.
Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), 9908
LNCS:525-542, 2016. ISSN 16113349. .

B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee, ]. Miguel
Hernédndez-Lobato, G.-Y. Wei, and D. Brooks. Minerva: Enabling Low-Power,
Highly-Accurate Deep Neural Network Accelerators. Technical report.



BIBLIOGRAPHY 137

M. T. Ribeiro, S. Singh, and C. Guestrin. ” why should i trust you?” explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD
international conference on knowledge discovery and data mining, pages 11351144,
2016.

A.-J. Rousseau, T. Becker, J. Bertels, M. B. Blaschko, and D. Valkenborg. Post
training uncertainty calibration of deep networks for medical image
segmentation. In 2021 IEEE 18th International Symposium on Biomedical Imaging
(ISBI), pages 1052-1056. IEEE, 2021.

N. Roy and A. McCallum. Toward optimal active learning through monte carlo
estimation of error reduction. ICML, Williamstown, 2:441-448, 2001.

L. Ruff, J. R. Kauffmann, R. A. Vandermeulen, G. Montavon, W. Samek, M. Kloft,
T. G. Dietterich, and K.-R. Miiller. Unifying review of deep and shallow
anomaly detection. Proceedings of the IEEE, 109(5):756-795, 2021.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by
back-propagating errors. nature, 323(6088):533-536, 1986.

E. Sackinger, B. E. Boser, ]. Bromley, Y. LeCun, and L. D. Jackel. Application of the
ANNA Neural Network Chip to High-Speed Character Recognition, 1992. ISSN
19410093.

N. Sato and W. Tinney. Techniques for exploiting the sparsity or the network
admittance matrix. IEEE Transactions on Power Apparatus and Systems, 82(69):
944-950, 1963.

A. Sebastian, M. Le Gallo, R. Khaddam-Aljameh, and E. Eleftheriou. Memory
devices and applications for in-memory computing, 2020. ISSN 17483395.

B. Settles. From theories to queries: Active learning in practice. In Active learning
and experimental design workshop in conjunction with AISTATS 2010, pages 1-18.
JMLR Workshop and Conference Proceedings, 2011.

C. E. Shannon. A Mathematical Theory of Communication. Bell Syst. Tech. |., 27(3):
379-423, 1948a. ISSN 15387305. .

C. E. Shannon. A mathematical theory of communication. The Bell system technical
journal, 27(3):379-423, 1948b.

H. Sharma, J. Park, N. Suda, L. Lai, B. Chau, J. K. Kim, V. Chandra, and
H. Esmaeilzadeh. Bit fusion: Bit-level dynamically composable architecture for
accelerating deep neural network. In 2018 ACM/IEEE 45th Annual International
Symposium on Computer Architecture (ISCA), pages 764-775. IEEE, 2018.



138

BIBLIOGRAPHY

M. Sharma, S. Farquhar, E. Nalisnick, and T. Rainforth. Do bayesian neural
networks need to be fully stochastic? In International Conference on Artificial
Intelligence and Statistics, pages 7694-7722. PMLR, 2023.

L. Smith and Y. Gal. Understanding measures of uncertainty for adversarial
example detection. arXiv preprint arXiv:1803.08533, 2018.

G. Stix. Encoding theneatness’ of ones and zeroes. Scientific American, 265(3):
54-55, 1991.

P. Stock, A. Joulin, R. Gribonval, B. Graham, and H. Jégou. And the bit goes down:
Revisiting the quantization of neural networks, 2020. ISSN 23318422.

C. Subia-Waud and S. Dasmahapatra. Weight fixing networks. In European
Conference on Computer Vision, pages 415-431. Springer, 2022.

V. Sze, Y.-H. Chen, T.-]. Yang, and J. Emer. Efficient Processing of Deep Neural
Networks: A Tutorial and Survey. mar 2017. URL
http://arxiv.org/abs/1703.09039.

V. Sze, Y.-H. Chen, T.-]. Yang, and J. S. Emer. Efficient Processing of Deep Neural
Networks. Synth. Lect. Comput. Archit., 2020. ISSN 1935-3235. .

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich. GoogLeNet. Proc. IEEE Comput. Soc. Conf.
Comput. Vis. Pattern Recognit., 2014. ISSN 10636919. .

N. Tagasovska and D. Lopez-Paz. Single-model uncertainties for deep learning.
Advances in Neural Information Processing Systems, 32, 2019.

M. Tan and Q. V. Le. EfficientNet: Rethinking Model Scaling for Convolutional
Neural Networks. may 2019. URL http://arxiv.org/abs/1905.11946.

M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard, and Q. V. Le.
Mnasnet: Platform-aware neural architecture search for mobile. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
2820-2828, 2019.

E. Tartaglione, S. Lathuiliére, A. Fiandrotti, M. Cagnazzo, and M. Grangetto.
HEMP: High-order Entropy Minimization for neural network comPression.
2021. . URL http://arxiv.org/abs/2107.05298{%}0Ahttp:
//dx.doi.org/10.1016/j.neucom.2021.07.022.

G. Z. Tau and B. S. Peterson. Normal development of brain circuits.
Neuropsychopharmacology, 35(1):147-168, 2010.



BIBLIOGRAPHY 139

J. Tian, C. Rivera, S. Dj, J. Chen, X. Liang, D. Tao, and F. Cappello. Revisiting
huffman coding: Toward extreme performance on modern gpu architectures.
IEEE International Parallel and Distributed Processing Symposium (IPDPS), pages
1-11, 2021.

H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and H. Jégou. Training
data-efficient image transformers & distillation through attention. In
International conference on machine learning, pages 10347-10357. PMLR, 2021.

UnslothAl Unsloth: A pytorch library for implementing various machine
learning models and algorithms. https://github.com/unslothai/unsloth,
2024. Accessed: 2024-10-05.

J. Vaicenavicius, D. Widmann, C. Andersson, F. Lindsten, J. Roll, and T. Schon.
Evaluating model calibration in classification. In The 22nd International
Conference on Artificial Intelligence and Statistics, pages 3459-3467. PMLR, 2019.

L. Van der Maaten and G. Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han. Haq: Hardware-aware automated
quantization with mixed precision. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 8612-8620, 2019.

T. A. Welch. A technique for high-performance data compression. Computer, 17
(06):8-19, 1984.

M. Welling and Y. W. Teh. Bayesian learning via stochastic gradient langevin
dynamics. In Proceedings of the 28th international conference on machine learning
(ICML-11), pages 681-688, 2011.

S. Wold, K. Esbensen, and P. Geladi. Principal component analysis. Chemometrics
and intelligent laboratory systems, 2(1-3):37-52, 1987.

J. Wu, Y. Wang, Z. Wu, Z. Wang, A. Veeraraghavan, and Y. Lin. Deep x-means:
Re-training and parameter sharing with harder cluster assignments for
compressing deep convolutions. 35th Int. Conf. Mach. Learn. ICML 2018, 12:
8523-8532, 2018.

K. Yamamoto. Learnable Companding Quantization for Accurate Low-bit Neural
Networks. pages 5029-5038, 2021. URL http://arxiv.org/abs/2103.07156.

J. Yang, K. Zhou, Y. Li, and Z. Liu. Generalized out-of-distribution detection: A
survey. arXiv preprint arXiv:2110.11334, 2021.

T.]. Yang, Y. H. Chen, and V. Sze. Designing energy-efficient convolutional neural
networks using energy-aware pruning. In Proc. - 30th IEEE Conf. Comput. Vis.
Pattern Recognition, CVPR 2017, 2017a. ISBN 9781538604571. .



140

BIBLIOGRAPHY

T.-J. Yang, Y.-H. Chen, and V. Sze. Designing energy-efficient convolutional neural
networks using energy-aware pruning. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 5687-5695, 2017b.

H. Yoshizawa and D. Takahashi. Automatic tuning of sparse matrix-vector
multiplication for CRS format on GPUs. In Proc. - 15th IEEE Int. Conf. Comput.
Sci. Eng. CSE 2012 10th IEEE/IFIP Int. Conf. Embed. Ubiquitous Comput. EUC 2012,
2012. ISBN 9780769549149. .

H. Yu, S. Edunov, Y. Tian, and A. S. Morcos. Playing the lottery with rewards and
multiple languages: lottery tickets in RL and NLP. 2019. URL
http://arxiv.org/abs/1906.02768.

X.Yu, T. Liu, X. Wang, and D. Tao. On compressing deep models by low rank and
sparse decomposition. Proc. - 30th IEEE Conf. Comput. Vis. Pattern Recognition,
CVPR 2017, 2017-Janua:67-76, 2017. .

Z.Yu, Y. Shi, T. Huang, and Y. Yu. Kernel Quantization for Efficient Network
Compression. 2020. URL http://arxiv.org/abs/2003.05148.

W. W. Yuhang Li, Xin Dong. Additive Powers-of-Two Quantization: an Efficient
Non-Uniform Discretization for Neural Networks. Iclr, (2014):2016-2019, 2020.
URL https://openreview.net/pdf?id=BkgXT24tDS.

D. Zhang, J. Yang, D. Ye, and G. Hua. LQ-Nets: Learned quantization for highly
accurate and compact deep neural networks. In Lect. Notes Comput. Sci.
(including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), volume 11212
LNCS, pages 373-390, 2018. ISBN 9783030012366. . URL
https://github.com/Microsoft/LQ-Nets.

S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen, and Y. Chen.
Cambricon-x: An accelerator for sparse neural networks. In 2016 49th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 1-12.
IEEE, 2016.

S. Zheng, Y. Shen, C. Zhu, J. Wen, Q. Yu, and X. Liu. Out-of-distribution detection
for reliable reinforcement learning. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2020.

A.Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen. Incremental network quantization:

Towards lossless cnns with low-precision weights, 2017.

H. Zhou, J. Lan, R. Liu, and J. Yosinski. Deconstructing Lottery Tickets: Zeros,
Signs, and the Supermask. (NeurIPS), 2019. URL
http://arxiv.org/abs/1905.01067.



BIBLIOGRAPHY 141

S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou. DoReFa-Net: Training Low
Bitwidth Convolutional Neural Networks with Low Bitwidth Gradients. jun
2016a. URL http://arxiv.org/abs/1606.06160.

S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou. Dorefa-net: Training low
bitwidth convolutional neural networks with low bitwidth gradients. arXiv
preprint arXiv:1606.06160, 2016b.

B. Zoph and Q. V. Le. Neural architecture search with reinforcement learning.
arXiv preprint arXiv:1611.01578, 2016.



	List of Figures
	List of Tables
	Acknowledgements
	1 Introduction
	2 Background
	2.1 Costs and Opportunities
	2.1.1 The Convolution Layer
	2.1.2 The Three Key Properties
	2.1.3 Layered Input-Output Neuronal Hierarchy
	2.1.4 Weight Sparsity
	2.1.5 Re-use Opportunities

	2.2 Hardware for Deep Learning Inference
	2.2.1 Temporal Architecture
	2.2.1.1 Optimisation Strategies within Temporal Architectures

	2.2.2 Spatial Architectures: A New Paradigm for DNN Inference
	2.2.3 Compressed Representations

	2.3 Hardware Realisation of Weight Compression
	2.3.0.1 Huffman Coding

	2.4 Algorithmic Approaches
	2.4.1 Pruning
	2.4.1.1 Lottery Ticket Hypothesis

	2.4.2 Quantisation
	2.4.3 Architecture Improvements
	2.4.4 Architecture Search
	2.4.5 Student-teacher

	2.5 Algorithm:Hardware co-design

	3 Weight Fixing Networks
	3.1 Single Codebook
	3.1.1 Unquantised Elements
	3.1.2 WFN Objectives
	3.1.3 Overview
	3.1.4 Small Relative Distance Change.

	3.2 Method
	3.2.1 Method Outline.
	3.2.2 Clustering Stage.
	3.2.3 Generating the Proposed Cluster Centres.
	3.2.4 Reducing k with Additive Powers-of-two Approximations.
	3.2.5 Minimalist Clustering.
	3.2.6 Training Stage.
	3.2.7 Cosying up to Clusters.

	3.3 Experiment Details
	3.4 Results
	3.5 Additional Analysis
	3.5.1 Layerwise Breakdown
	3.5.2 A Full Metric Comparison
	3.5.3 Pruning Experiments

	3.6 Conclusion

	4 Probabilistic Weight Fixing
	4.1 An Introduction of Ideas
	4.1.1 High-level BNN
	4.1.2 The Two Problems to Solve
	4.1.2.1 Problem One: Modelling
	4.1.2.2 Problem Two: Utilising What We Learn


	4.2 Background on Bayesian Neural Networks
	4.2.1 Origins of Bayesian Neural Networks
	4.2.2 Challenges and Conceptual Shifts
	4.2.3 Advantages of Bayesian Approaches
	4.2.4 Contemporary Research Trends
	4.2.5 Variational BNNs

	4.3 Probabilistic Weight Fixing Networks
	4.3.1 High Level Overview
	4.3.2 PWFN Training
	4.3.3 Large bold0mu mumu false constraint for bold0mu mumu wwfalsewwww .
	4.3.4 Initialization using Relative Distance from Powers-of-two.
	4.3.5 PWFN Clustering.
	4.3.6 Putting it All Together.
	4.3.7 WFN to PWFN
	4.3.7.1 The Proposal Set

	4.3.8 On the Measure of Distance
	4.3.9 To Prune or Not to Prune
	4.3.9.1 The Highlighted Changes


	4.4 Experiments
	4.5 Results
	4.5.1 Entropy Values by Layer
	4.5.2 Distance Measures Compared

	4.6 Conclusion

	5 Towards On-The-Fly Clustering in Weight Fixing Networks
	5.1 On-The-Fly Clustering Approach (COF-PWFN)
	5.2 Method
	5.2.1 Defining Close Proximity
	5.2.2 Clustering Conditions
	5.2.3 Selecting Clusters

	5.3 Algorithm
	5.4 Experiments and Results
	5.4.1 Hyperparameter Exploration
	5.4.2 ImageNet Results


	6 Uncertainty Estimations of BWFN
	6.0.1 The Landscape of Uncertainty Estimations
	6.0.1.1 Uncertainty Estimation in Deep Learning

	6.1 Evaluation Metrics
	6.1.0.1 Brier Score
	6.1.1 Reliability Diagrams
	6.1.2 Maximum Calibration Error (MCE)
	6.1.3 Expected Calibration Error (ECE)

	6.2 Experiments
	6.2.1 Experimental Setup

	6.3 Results
	6.3.1 Projections

	6.4 Compression Vs Calibration
	6.5 Out-of-distribution
	6.5.1 Understanding the Need for OOD Metrics
	6.5.2 Studying OOD Metrics within PWFN
	6.5.3 OOD Experimentation with PWFN
	6.5.3.1 Entropy of Probabilities
	6.5.3.2 Standard Deviation Thresholding
	Visualisation and Interpretation


	6.5.4 Experiment Results and Discussion

	6.6 Conclusion

	7 Discussion and Further Analysis
	7.1 The Thesis Contributions
	7.2 Implications and Future Directions
	7.2.1 Hardware Constraints and Data Movement Costs
	7.2.2 Hardware Realisation of WFN
	7.2.2.1 Codebook-Based Architecture
	7.2.2.2 Huffman Encoding for Weight Indices
	7.2.2.3 Power-of-Two Optimisations
	7.2.2.4 Whole-Network Shared Codebook
	7.2.2.5 Memory-Efficient Implementation

	7.2.3 Uncertainty Estimation in Safety-Critical Applications
	7.2.4 Exploring Accuracy-Compression Trade-offs
	7.2.5 Integration with Other Approaches
	7.2.6 Adapting to Emerging Architectures

	7.3 Conclusion

	Bibliography

