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A B S T R A C T

Here, we introduce a novel set of triple-negative breast cancer (TNBC) cell lines consisting of MDA-MB-468, 
HCC38, and HCC1806 and their sublines adapted to cisplatin, doxorubicin, eribulin, paclitaxel, gemcitabine, 
or 5-fluorouracil. Whole exome sequencing combined with TCGA-derived patient data resulted in the identifi
cation of 682 biomarker candidates in a pan-cancer analysis. Thirty-five genes were considered the most 
promising candidates because they harbored resistance-associated variants in at least two resistant sublines, and 
their expression correlated with TNBC patient survival. Exome sequencing and response profiles to cytotoxic 
drugs and DNA damage response inhibitors identified revealed remarkably little overlap between the resistant 
sublines, suggesting that each resistance formation process follows a unique route. This reflects recent findings 
on cancer cell evolution in patients, supporting the relevance of drug-adapted cancer cell lines as preclinical 
models of acquired resistance. Moreover, all of the drug-resistant TNBC sublines remained sensitive or even 
displayed collateral sensitivity to a range of tested compounds. Cross-resistance levels were lowest for the CHK2 
inhibitor CCT241533, the PLK1 inhibitor SBE13, and the RAD51 recombinase inhibitor B02, suggesting that 
CHK2, PLK1, and RAD51 are potential drug targets for therapy-refractory TNBC. In conclusion, we present novel 
preclinical models of acquired drug resistance in TNBC and the identification of novel candidate therapeutic 
targets and biomarkers for this disease.
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1. Introduction

Triple-negative breast cancer (TNBC) is characterized by the absence 
of estrogen, progesterone, and HER2 receptors [1]. TNBC is responsible 
for approximately 15 % of breast cancer cases and is associated with a 
poorer prognosis than hormone receptor- or HER2-positive breast can
cers [1,2]. Current TNBC therapies are largely based on cytotoxic anti
cancer drugs, including platinum drugs, anthracyclins, eribulin, 
gemcitabine, paclitaxel, and 5-fluorouracil [1]. TNBC often responds 
well initially to cytotoxic chemotherapy, but recurrence and resistance 
are common, eventually leading to therapy failure. This combination of 
an initial high response rate followed by rapid resistance is referred to as 
the ’TNBC paradox’ [1,3]. To improve TNBC therapy outcomes, new 
treatment approaches are needed, particularly those that are effective 
against treatment-refractory disease characterized by acquired resis
tance to cytotoxic chemotherapy.

In contrast to intrinsic drug resistance (which occurs independently 
of therapy and is a consequence of pre-existing often stochastic events in 
cancer cells), acquired resistance is the direct consequence of selection 
and adaptation processes caused by cancer treatment (directed tumor 
evolution) [4–8]. Understanding acquired resistance mechanisms is 
essential for optimizing cancer treatment for patients with 
therapy-refractory tumors.

Drug-adapted cancer cell lines are preclinical models that have been 
shown to reflect clinically relevant acquired drug resistance mechanisms 
in numerous studies [4,9–17]. Furthermore, drug-adapted cell lines 
enable detailed functional and systems-level studies that are not possible 
using clinical samples [4].

Here, we introduce a novel set of three parental TNBC cell lines and 
their 15 sublines adapted to cisplatin, doxorubicin, eribulin, gemcita
bine, paclitaxel, or 5-fluorouracil. These cell lines were characterized by 
whole exome sequencing and the determination of response profiles to 
cytotoxic anti-cancer drugs and a panel of DNA damage repair in
hibitors. The resulting data showed that each resistance formation 
process follows an individual and unpredictable route. The combined 
analysis of resistance-associated mutations in combination with patient 
data from The Cancer Genome Atlas (TCGA) [18] identified 35 novel 
candidate resistance biomarkers for further investigation.

2. Results

2.1. Project cell line panel

Here, we characterized a cell line panel consisting of the parental 
TNBC cell lines MDA-MB-468, HCC38, and HCC1806 and their sublines 
adapted to growth in the presence of cisplatin, doxorubicin, eribulin, 
paclitaxel, gemcitabine, or 5-fluorouracil, which are all drugs used for 
the treatment of TNBC (Fig. 1A, Suppl. File 1) [19–25]. The 
drug-resistant sublines were established by continuous exposure to 
stepwise increasing drug concentrations as previously described [16]. 
All parental cell lines were initially sensitive to therapeutic concentra
tions of the respective drugs, as indicated by IC50 (concentration that 
reduces cell viability by 50 %) values within the range of clinical drug 
plasma concentrations (Cmax) (Suppl. Fig. 1, Suppl. File 1) [26]. The 
relative resistance factors (IC50 drug-adapted subline/IC50 respective 
parental cell line) ranged from 5.5-fold (HCC38rPCL2.5) to 5916.7-fold 
(HCC1806rERI50) (Fig. 1B–Suppl. File 1).

2.2. Characterization of the cell line panel by whole exome sequencing

The cell line panel was investigated by whole exome sequencing. 
Among the identified variants, missense variants were most common, 
followed by synonymous variants (Suppl. Fig. 2A). Insertions/deletions 
(INDELs), frameshift mutations, stop-gain, stop-loss, and splice variants 
were identified at lower frequencies (Suppl. Fig. 2A). Between 217 
(HCC38rDOX40) and 952 (HCC38rGEM20) variants differed in the drug- 

adapted sublines relative to the respective parental cell lines (Suppl. 
Fig. 2B).

We grouped the resistance-associated variants into five categories 
(Fig. 2A, see methods): 1. Gained variants, variants only called in the 
drug-adapted subline but detectable at low confidence in the respective 
parental cell line; 2. De novo variants, variants called in the drug-adapted 
subline but undetectable in the respective parental cell line; 3. Not-called 
variants, variants only called in the parental cell line but detectable with 
low confidence in the resistant subline; 4. Lost variants; variants called in 
the parental cell line but undetectable in the drug-adapted subline; and 
5. Shared variants; variants called in both the parental and the respective 
drug-adapted sublines (Fig. 2A).

The number of gained variants ranged from 44 (HCC38rDOX40) to 
381 (HCC38rGEM20), the number of de novo variants ranged from 31 
(HCC38rDOX40) to 225 (MDA-MB-468rPCL20), the number of not-called 
variants ranged from 88 (HCC38rGEM20 and HCC1806rDOX12.5) to 345 
(MDA-MB-468rPCL20), and the number of lost variants ranged from 129 
(HCC38rGEM20) to 398 (MDA-MB-468rPCL20) (Fig. 2B and C, Suppl. 
File.2 and 3). The number of shared variants that were both called in the 
parental cell lines and their sublines ranged from 128 (MDA-MB- 
468rPCL20) to 368 (HCC38rGEM20) (Fig. 2D, Suppl. File 2 and 3). The 
number of shared variants that increased by at least two-fold in the 
resistant sub-lines vs. the respective parental ranged from four 
(HCC1806r5-F1500) to 21 (MDA-MB-468rCDDP1000), whilst the number 
of shared variants that decreased by at least two-fold ranged from two 
(MDA-MB-468rPCL20) to 24 (HCC38rGEM20) (Fig. 2E, Suppl. File 2).

2.3. Analysis of the distribution of de novo variants

To identify variants that may have a functional role in drug resis
tance, we initially considered the 81 genes that harbored de novo vari
ants in at least two different sublines from more than one parental cell 
line (Fig. 3A, Suppl. File 4). This list included 46 genes that have already 
been reported to be involved in drug resistance in cancer and 33 new 
candidate genes with a possible role in drug resistance (Fig. 3A, Suppl. 
File 4). Notably, 24 of the 33 new candidate genes are reported to be 
relevant in cancer (Fig. 3A, Suppl. File 4).

Four of the five genes with the greatest number of de novo variants in 
the drug-adapted sublines were mucin (MUC) genes. MUC6 had de novo 
variants in 15 sublines, MUC2 in 14 sublines, MUC4 in 13 sublines, and 
MUC16 in nine sublines (Fig. 3A, Suppl. File 4). The MUC genes are large 
genes that are known to be commonly mutated in cancer and have been 
reported to be involved in cancer cell drug resistance [27–31]. De novo 
mutations in CDC27, which has also been linked to drug resistance in 
cancer, were also detected in nine drug-resistant sublines [32,33] 
(Fig. 3A, Suppl. File 4).

GXYLT1, KRTAP4-11, and RGPD4 were amongst those genes, which 
had not previously been associated with drug resistance in cancer that 
displayed de novo mutations in a high number (7) of drug-resistant 
sublines (Fig. 3A, Suppl. File 4). A GXYLT1 mutation promoted metas
tasis in colorectal cancer through MAPK signalling, a pathway known to 
confer resistance to a range of anti-cancer drugs [34–37]. RGPD4 mu
tations are correlated with vascular invasion in HBV-associated hepa
tocellular carcinoma, and it is known that there is an overlap between 
pro-angiogenic, pro-metastatic, and resistance-associated signalling in 
cancer [35,38]. There is no known link between KRTAP4-11 and cancer, 
but KRTAP4-11 expression levels have been reported to predict the 
methotrexate response in rheumatoid arthritis patients [38]. Hence, it 
seems plausible that the products of these genes may be involved in 
cancer cell drug resistance.

Taken together, our analysis identified 48 genes known to be 
involved in cancer cell drug resistance alongside 33 novel candidates 
potentially contributing to therapy failure. Further research will be 
required to characterize the roles of these individual genes in detail.

When we compared the overlaps between de novo variants shared 
between sublines adapted to the same drug, the numbers were too small 
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Fig. 1. Confirmation of the resistance status of the project cell lines. A) Panel of drug-naïve (MDA-MB-468, HCC38, HCC1806) and drug-adapted Triple Negative 
Breast Cancer cell lines. B) Left: dose–response curve; bottom: IC50 values; right: resistance factor (IC50, drug-adapted subline/IC50, respective parental cell line)); 
when drug-naïve and drug-adapted cell lines are treated with the respective agent: cisplatin, doxorubicin, eribulin, paclitaxel, gemcitabine, or 5-fluorouracil. Circles 
indicate drug-naïve cell lines, and crosses indicate drug-adapted cell lines. Green, MDA-MB-468-derived; blue, HCC38-derived; orange, HCC1806-derived. The data 
are from ≥3 independent experiments, and the statistics were calculated using Student’s t-test and are plotted as the means ± SDs. (For interpretation of the ref
erences to color in this figure legend, the reader is referred to the Web version of this article.)
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to draw any meaningful conclusions (Fig. 3B, Suppl. Fig. 3A).
Notably, de novo variants in drug-resistant sublines may not always 

represent actual novel variants that are selected because they contribute 
to cancer cell resistance. Many apparent de novo mutations may have 
already been present in a small fraction of the cells of the parental cell 
line but may not have been detected due to the sequencing depth. Hence, 
overlaps in de novo variants between sublines of the same parental cell 
line can also be used to indicate the levels of relatedness between the 
founding subpopulations of the different resistant sublines.

Analysis of the de novo variants shared between the sublines from the 
same parental cell line indicated the largest overlap. On average, there 
was a 22.6 % overlap among the HCC1806 sublines, followed by a 15.0 
% overlap among the HCC38 sublines and a 7.7 % overlap among the 
MDA-MB-468 sublines (Fig. 3C). However, there were also noticeable 
differences in the overlaps between de novo variants identified in each of 
the sublines from the same parental cell line. For example, only three de 
novo variants were shared between HCC38rCDDP3000 (out of 98 in total, 
3.1 %) and HCC38rPCL2.5 (out of 92 in total, 3.3 %), while 53 variants 
were shared between HCC38rERI10 (out of 131 in total, 40.5 %) and 
HCC38rGEM20 (out of 203 in total, 26.1 %) (Fig. 3C, Suppl. Fig. 3B). 
These numbers suggest that there are no pre-existing cell line sub
populations that are consistently selected in response to anti-cancer drug 
treatment.

2.4. Protein functions related to variants that changed in drug-resistant 
sublines

Next, we used the Gene Ontology (GO) annotation to perform an 
analysis of the protein functions associated with genes present in the de 
novo, gained, not called, and lost variant sets as well as shared variants 
with a two-fold increase or decrease in allele frequency (Suppl. Fig. 4A 
and B).

There was limited overlap between the GO terms for the variants 
detected in the sublines adapted to the same drug (Suppl. Fig. 4C and E). 
The extracellular matrix-related GO terms ‘extracellular matrix constit
uent lubricant activity’, ‘extracellular matrix’, and ‘maintenance of 
gastrointestinal epithelium’ were most common, which reflects the high 
number of variants observed in the mucin genes (Suppl. Fig. 4C and E).

GO term analysis of the sublines from the same parental cell line 
revealed very similar results, again revealing an overrepresentation of 
extracellular matrix-related GO terms (Suppl. Fig. 4D and F). Further 
research will be required to investigate the potential role of mucins and 
the extracellular matrix in acquired drug resistance in TNBC cells.

2.5. Potential clinical relevance of selected variants

The potential clinical relevance of genes harboring de novo, gained, 
and shared variants with a two-fold increase in allele frequency in the 
resistant subline as well as genes harboring truncating variants was 
analyzed using patient data derived from The Cancer Genome Atlas 
(TCGA) [39]. Notably, there were only data available from patients 
treated with cisplatin, doxorubicin, gemcitabine, paclitaxel, and/or 
5-fluorouracil, but no data on eribulin treatment were available.

We performed two analyses, one pan-cancer analysis, in which we 
considered all patient survival data available for the drugs, and a second 
analysis, in which we considered TNBC patients and for which only 
doxorubicin and paclitaxel data were available (Fig. 4A). The pan- 
cancer analysis included data from 29 TCGA cancer types for which 
mutation status and gene expression data were available (Fig. 4B).

Six cases with at least two mutations in a resistance-associated gene 
were associated with patient prognosis (Suppl. File 5). As the number of 
resistance-associated genes with mutations in patients was low, we also 
considered gene expression status associations with prognosis. For 1018 
cases there was a significant association between gene expression and 

Fig. 2. Genomic characterization of drug-adapted cell lines. A) Diagram illustrating the differences between gained, de novo, not called, lost and shared variants. B) 
Count of Gained (blue) and De novo (green) variants, C) count of Lost (orange) and Not-called (pink) variants, D) left panel; count of all Shared (purple) variants, right 
panel; two-fold increase or decrease of shared variants. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.)
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patient prognosis. This included genes, whose products were known to 
play a role in cancer cell drug resistance, such as CHEK2 [40–42] and 
APC [43–45] (Fig. 4C, Suppl. File 5). Moreover, we also identified novel 
candidates, which had not previously been suggested to be involved in 
cancer cell drug resistance, including KIAA2018, EYS, NBPF10, and 
KIAA0586 (Fig. 4C, Suppl. File 5).

We further determined the association of the expression of genes 
harboring de novo, gained, and shared variants with a two-fold increase as 
well as genes harboring truncating variants with patient survival in 
response to treatment with cisplatin, doxorubicin, gemcitabine, pacli
taxel, and 5-fluorouracil (Fig. 4D and E, Suppl. File 5). In total, the 
expression of 682 genes was significantly correlated with patient sur
vival in response to at least one drug in the pan-cancer data. For 513 of 
these 682 genes, gene expression was associated with tumor response to 
the drug of the respective resistant subline (Suppl. File 5). The expres
sion of 91 genes was associated with patient response to two drugs, the 
expression of 51 genes associated with response to three drugs, the 
expression of 21 genes associated with expression to four drugs, and the 
expression of 6 genes associated with response to all five drugs (Fig. 4D, 

Suppl. File 5).
Considering the TNBC data alone, the expression of 165 genes was 

significantly correlated with patient survival in response to either 
doxorubicin, paclitaxel, or both drugs (Fig. 4E, Suppl. File 5). The 
expression of 141 of these 165 genes was associated with tumor response 
to the drug of the respective drug-adapted subline. The expression of 22 
genes was associated with patient response to both doxorubicin and 
paclitaxel (Fig. 4E, Suppl. File 5).

Comparison of the analysis of the 165 genes identified in the TCGA 
analysis with the 81 genes identified in the analysis of de novo variants 
(Suppl. File 4) revealed 35 overlapping genes present in both datasets. 
This included 23 genes that have already been associated with drug 
resistance and 12 genes (ABCD1, AGAP6, CUBN, DNAJC13, FLG, 
GXYLT1, KIAA0586, PABPC3, RGPD3, RGPD4, SETX and USP6) that are 
novel findings (Suppl. File 6).

This study was focused on the identification of biomarker candidates. 
However, since the products of 23 of the 35 identified genes have 
already been shown to be related with resistance, we performed an 
additional pilot experiment to see whether two of the 12 novel 

Fig. 3. Identification of novel candidates associated with therapy failure. A) Flow chart of genes with de novo variants observed in two or more sublines from 
more than one parental cell line. B) Venn diagrams of de novo variants shared between sublines adapted to the same drug. C) Summary of relatedness between 
sublines drug-adapted from the same parental cell line (%).
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Fig. 4. Tumor patient data available for mutations in resistance-associated genes. (A) TCGA pan-cancer datasets for mutation status and gene expression. Only 
patients for which clinical, drug and mutation status/gene expression data was available for were considered in the TCGA pan-cancer analysis. (B) TCGA pan-cancer 
mutation status and expression data available for chemotherapy drugs for 29 TCGA cancer classifications. (C) Kaplan-Meier plots for gene expression with most 
significant association with prognosis in the pan-cancer dataset. Log-rank test was the statistical test used with multiple test correction performed using Benjamini- 
Hochberg method. (D–E) Genes for which expression is significantly associated with patient prognosis. Upset plot showing the number of genes that are associated 
with patient prognosis for (D) pan-cancer and (E) TNBC.
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biomarker candidates may also have a functional role. PABPC3 and 
CUBN were selected, as they both harbored stop-gain mutations in a 
number of the resistant HCC1806 sublines, which may suggest that the 
loss of the function of the respective proteins may contribute to the 
resistance phenotype. For PABPC3, stop-gain mutations were detected in 
HCC1806rCDDP500, HCC1806rERI50, HCC1806rGEMCI20, and 
HCC1806rPCL20. HCC1806rDOX20 and HCC1806r5FU1500 harbored 
PABPC3 missense mutations. Moreover, HCC1806rCDDP500, 
HCC1806r5FU1500, HCC1806rGEMCI20, and HCC1806rPCL20 carried 
CUBN stop-gain mutations.

However, neither siRNA-mediated depletion nor CRISPR/Cas9- 

mdediated knockdown of PABPC3 and CUBN resulted in increased 
resistance of HCC1806 to cisplatin, doxorubicin, eribulin, 5-fluorouracil, 
gemcitabine, or paclitaxel (Suppl. Fig. 5). Moreover, forced expression 
of PABPC3 neither affected HCC1806 sensitivity to these drugs nor the 
sensitivity of the resistant sublines to the respective drugs of adaptation 
(Suppl. Fig. 5). These findings suggest that PABPC3 and CUBN may be 
biomarkers of resistance but are unlikely to be novel drug targets to 
overcome resistance.

Fig. 5. Complex sensitivity patterns to cytotoxic and DDR-targeted agents. A) Heatmap of fold resistance and collateral sensitivity to cytotoxic agents. B) 
Summary of pathways targeted by DNA damage response and repair (DDRR) inhibitors used in screening. C) Heatmap of fold change resistance and collateral 
sensitivity to DDRR inhibitors.
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2.6. Complex sensitivity patterns of drug-resistant sublines to cytotoxic 
drugs

Determining drug sensitivity profiles in the cell line panel against the 
drugs of adaptation, i.e., cisplatin, doxorubicin, eribulin, paclitaxel, 
gemcitabine, and 5-fluorouracil (Fig. 5A, Suppl. File 1), revealed com
plex resistance patterns that did not follow clear, predictable rules. For 
example, two of the three doxorubicin-adapted sublines (HCC38rDOX40 

and HCC1806rDOX12.5) displayed increased (collateral) sensitivity to 
cisplatin compared to the parental cell line, while MDA-MB-468rDOX50 

displayed cross-resistance to cisplatin (Fig. 5A, Suppl. File 1). Moreover, 
all resistant sublines remained sensitive to or showed collateral sensi
tivity to at least one of the other chemotherapeutic agents (Fig. 5A, 
Suppl. File 1). The 5-fluorouracil-resistant HCC1806r5-F1500 subline was 
the only resistant subline that remained sensitive to all other investi
gated cytotoxic drugs (Fig. 5A, Suppl. File 1).

The ATP-binding cassette (ABC) transporter ABCB1 (also known as 
P-glycoprotein and MDR1) is an efflux transporter that mediates resis
tance to many anti-cancer drugs, including doxorubicin, eribulin, and 
paclitaxel [46]. Only five of the nine sublines adapted to the ABCB1 
substrates doxorubicin, eribulin, and paclitaxel (including all three 
eribulin-resistant sublines) displayed cross-resistance to all other ABCB1 
substrates. Among the ABCB1 substrate-adapted sublines, all the 
eribulin-adapted sublines displayed cross-resistance to paclitaxel, and 
all the paclitaxel-adapted sublines displayed cross-resistance to eribulin 
(Fig. 5A, Suppl. File 1). Notably, eribulin and paclitaxel are both 
tubulin-binding agents but differ in their mechanisms of interaction with 
tubulin. Eribulin is a destabilizing agent that binds to the vinca binding 
site of tubulin and inhibits microtubule formation, while paclitaxel is a 
stabilizing agent that binds to the taxane binding site that impairs 
microtubule degradation [47–51]. Further research will be required to 
determine to what extent the tubulin-binding agent cross-resistance 
profile of the tubulin-binding agent-adapted sublines is the conse
quence of the expression of ABCB1 (and/or other transporters), 
tubulin-related resistance mechanisms, or both.

Taken together, it is not possible to predict how resistance to a 
certain drug will affect the sensitivity patterns of the resulting sublines 
to other cytotoxic agents. However, all of the drug-resistant TNBC sub
lines remained sensitive and/or displayed collateral sensitivity to at 
least one of the tested anti-cancer drugs. Future research will be needed 
to elucidate the underlying mechanisms to identify biomarkers for 
personalized therapy approaches that can guide effective drugs to the 
right patients [4].

2.7. Complex sensitivity patterns of drug-resistant sublines to DNA 
damage response (DDR) inhibitors

TNBC cells have been shown to harbor defects in DNA damage repair 
signaling, which can result in a dependence on the remaining intact DNA 
damage repair (DDR) pathways and, in turn, in sensitivity to certain 
DDR inhibitors [52]. Hence, we tested a panel of inhibitors targeting 
critical nodes of DDR signaling in our novel resistant TNBC cell line 
panel (Fig. 5B).

All parental cell lines displayed sensitivity to the tested DDR in
hibitors at therapeutic concentrations, i.e., within the Cmax values re
ported for these agents (for which this information was available) 
(Suppl. Fig. 6). Similar to the results obtained for the cytotoxic anti- 
cancer drugs, the DDR sensitivity profiles were complex and unpre
dictable in the resistant sublines (Fig. 5C, Suppl. File 1). Relative to the 
respective parental cell lines, the sensitivity remained unchanged for 
128 DDR inhibitor/resistant subline combinations. Increased resistance 
(cross-resistance) was detected in 96 DDR inhibitor/resistant subline 
combinations, and increased sensitivity (collateral vulnerability) was 
recorded in 16 DDR inhibitor/resistant subline combinations. Neither 
sublines of the same parental cell line nor sublines adapted to the same 
drugs displayed substantial overlap in their DDR inhibitor sensitivity 

profiles.
Cross-resistance patterns were even inconsistent between DDR in

hibitors with the same targets. For example, different sensitivity patterns 
were observed between the ATR inhibitors ceralasertib and berzosertib 
as well as the CHK1 inhibitors rabusertib, MK-8776, SRA737, and pre
xasertib (Fig. 5C, Suppl. File 1). The reasons for these differences are 
unclear. Notably, the activity of the DDR inhibitors may be modified by 
interactions with additional targets, and off-target resistance mecha
nisms (e.g., processes associated with drug uptake or efflux) may 
contribute to these differences [53].

Notably, cross-resistance levels were lowest for the CHK2 inhibitor 
CCT241533, the PLK1 inhibitor SBE13, and the RAD51 recombinase 
inhibitor B02 among the investigated DDR inhibitors (Fig. 5C, Suppl. 
File 1). Moreover, the expression levels of CHK2, PLK1, and RAD51 
correlated with the expression levels of the proliferation markers MCM7, 
MKI67, and TOP2A in the breast cancer cell lines from DepMap (Suppl. 
Fig. 7).

Given that small molecule inhibitors can exert off-target activities, 
we selected PLK1, whose expression had shown the strongest correlation 
to the proliferation markers in breast cancer cell lines (Suppl. Fig. 7) for 
a preliminary target validation in HCC1806 and its sublines 
HCC1806rCDDP500, HCC1806rDOX12.5, HCC1806rERI50, HCC180 
6r5FU1500, HCC1806rGEMCI20, and HCC1806rPCL20 (Suppl. Fig. 8). 
Indeed, siRNA-mediated PLK1 depletion resulted in a substantial loss of 
viability and the induction of apoptosis (indicated by caspase 3 activa
tion) in HCC1806 and all of its sublines (Suppl. Fig. 8). Moreover, the 
CRISPR/Cas9-mediated knockdown of PLK1 in HCC1806 resulted in 
similar results (Suppl. Fig. 9).

In summary, and in line with the findings from the investigation of 
cytotoxic anti-cancer drugs, the drug-adapted TNBC sublines displayed 
complex, unpredictable sensitivity patterns against DDR inhibitors. This 
further demonstrates that improved future therapies will depend on an 
advanced understanding of the underlying molecular processes that 
enable the identification of biomarkers that can guide effective therapies 
for individual patients after treatment failure [4]. Notably, CHK2, PLK1, 
and RAD51 may have potential as new drug targets for the discovery and 
development of next-line therapies for TNBC patients whose tumors 
have stopped responding to chemotherapy.

2.8. Investigation of patterns in cell line drug response profiles

Finally, we used the delta (Δ) method to identify potential patterns in 
the response of the cell lines to all investigated cytotoxic anti-cancer 
drugs and DDR inhibitors [54]. The IC50 values were transformed to 
ΔIC50 values for each compound (see methods) and correlated across the 
drug panel using linear regression analysis and testing for statistical 
significance (Suppl. Table 1). Positive correlations indicate that 
increased drug resistance is seen with both agents, whilst negative 
correlations indicate that whilst increasing drug resistance is observed 
for one agent, collateral sensitivity is observed for the other agent. In the 
MDA-MB-468, HCC38, and HCC1806 sublines, we observed 19, 20, and 
60 positive correlations and 2, 8, and 1 negative correlation, respec
tively (Suppl. Table 1).

We were most interested in the agents that demonstrated negative 
correlations, as they may identify potential next-line treatments. How
ever, among the 11 negative correlations, there were no consistent re
sults across the cell line panel (Fig. 6). This further confirms that 
acquired resistance mechanisms are complex, individual, and unpre
dictable and that the identification of potential next-line therapies after 
treatment failure will depend on an improved understanding of cancer 
cell evolution enabling therapy monitoring and biomarker-guided 
treatment adaptation.

3. Discussion

In this study, we introduced and characterized a novel set of 15 
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sublines derived from the TNBC cell lines HCC38, HCC1806, and MDA- 
MB-468 that had been adapted to cisplatin, doxorubicin, eribulin, 
paclitaxel, gemcitabine, or 5-fluorouracil.

We applied whole exome sequencing to identify biomarker candi
dates to guide the use of anti-cancer therapies. In the first step, we 
focused on de novo mutations, i.e., mutations found in a resistant subline 
but undetectable in the respective parental cell line. Considering genes 
that displayed de novo mutations in at least two sublines of two different 
parental cell lines resulted in 81 resistance-associated variants, 48 of 
which were already known to be involved in cancer cell drug resistance, 
while 33 variants were novel.

In a second approach, we used TCGA data to investigate the potential 
clinical relevance of genes that harbored resistance-associated variants 
in the resistant sublines. In the pan-cancer dataset, the expression of 682 
of these genes was correlated with patient survival in response to at least 
one of the investigated drugs. However, it is not clear to which extent 
results obtained in TNBC cell lines may be relevant in a pan-cancer 
context. Considering only TNBC, the expression of 165 genes was 
significantly correlated with patient survival.

Comparison of the de novo variant analysis with the TNBC TCGA 
analysis identified 35 overlapping genes. Twenty-three of these genes 
are known to be associated with drug resistance. Twelve genes (ABCD1, 
AGAP6, CUBN, DNAJC13, FLG, GXYLT1, KIAA0586, PABPC3, RGPD3, 

RGPD4, SETX and USP6) are novel findings that may represent novel 
resistance biomarkers that have not been previously associated with 
drug resistance in cancer.

Preliminary findings suggest that mutations in PABPC3 and CUBN 
may be candidate biomarkers, but that they do not play a functional role 
in drug resistance. Further research will be needed to investigate and 
define in more detail the role of the twelve gene variants in cancer 
therapy response and the expression of these genes as biomarkers for the 
tailoring of personalized cancer therapies. Notably, numerous studies 
have shown that drug-adapted cancer cell lines exhibit clinically rele
vant resistance mechanisms [4,9–17].

Interestingly, the analysis of exome sequencing data revealed 
remarkably few overlapping mutations between the investigated resis
tant sublines, including sublines derived from the same parental cell line 
and sublines adapted to the same drug. This may suggest that resistance 
formation might not be predominantly driven by genetic changes. 
However, passaging of the resistant HCC1806 sublines for six passages 
in the absence of drug did not result in a substantial loss of resistance in 
most of the sublines, and all sublines maintained pronounced resistance 
phenotypes (Suppl. Fig. 10). Taken together, this suggests that resistance 
formation is the consequence of a complex, individual, and unpredict
able evolutionary process.

This complexity was confirmed by the determination of drug 

Fig. 6. Lack of trends in drug or inhibitor sensitivity patterns. Graphs demonstrating a negative correlation; collateral sensitivity to one agent but resistance to 
the other (blue); positive correlation; resistance to both agents (red); and no statistical correlation (black) for each set of sublines adapted from the MDA-MB-468, 
HCC38 or HCC1806 TNBC cell lines. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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sensitivity profiles to both cytotoxic anti-cancer drugs and DNA damage 
repair (DDR) inhibitors. Drug-adapted sublines of the same parental cell 
line and sublines adapted to the same drug displayed substantially 
different drug response patterns.

Notably, all the drug-adapted sublines remained sensitive and/or 
displayed increased sensitivity (collateral vulnerability) to a range of 
tested compounds. This suggests that it will be possible in the future to 
establish an improved understanding of the processes underlying ac
quired resistance formation that result in the identification of bio
markers that indicate effective next-line treatments for patients for 
whom currently no effective treatment is available.

Among the investigated DDR inhibitors, the CHK2 inhibitor 
CCT241533, the PLK1 inhibitor SBE13, and the RAD51 recombinase 
inhibitor B02 had the lowest cross-resistance levels. In agreement, PLK1 
depletion affected the viability of HCC1806 and its resistant sublines. 
TNBC cells are known to be subject to replication stress and DNA 
damage due to the activation of oncogenes. Moreover, DNA damage 
pathways are often defective. Hence, TNBC cells appear to depend on a 
limited set of DNA damage repair pathways that are still functional [55]. 
Notably, CHK2, PLK1, and RAD51 have all been described as potential 
drug targets for TNBC in this context [55,56]. Our results in 
drug-resistant TNBC sublines further suggest that CHK2, PLK1, and 
RAD51 are also potential drug targets in TNBC patients after the failure 
of established therapies, particularly if reliable biomarkers are found 
that identify cancer patients who are likely to benefit from such 
treatments.

Notably, drug-adapted cancer cell lines cover only cancer cell- 
specific resistance mechanisms and not tumor microenvironment- 
associated processes [57,58]. Moreover, different approaches have 
been used to establish drug-resistant cancer cell lines in addition to 
continuous exposure to step-wise increasing drug concentrations, the 
approach that we used here. Alternatives include the pulsed exposure of 
cancer cell lines to anti-cancer drugs and the one-step selection of 
resistant cells with a high drug concentration [59–62]. Some authors 
have argued that pulsed and single-step approaches using high drug 
concentrations more closely resemble the clinical situation [59,61] and 
that continuous exposure to increasing drug concentrations could not 
reveal the same heterogeneity [61]. Due to a lack of direct comparative 
studies, conclusive evidence on whether these different approaches 
result in models with different clinical relevance is lacking.

Nevertheless, the results from the characterization of the project cell 
line panel indicated that cancer cell resistance is a complex, individual, 
and unpredictable process. This finding is in agreement with data from 
studies in which cancer cell lines were repeatedly adapted to the same 
drug in independent experiments [8,16,61,63–65]and seems, interest
ingly, also to align with recent findings from a comprehensive analysis of 
cancer cell evolution in lung cancer patients [66–70].

In conclusion, we present a novel set of drug-adapted TNBC cell lines 
as preclinical models of acquired drug resistance. Overlapping genes 
detected through the characterization of de novo variants and patient- 
derived TCGA data identified 35 biomarker candidates for the guid
ance of personalized TNBC therapies for further investigation, including 
12 novel genes that have not been previously associated with drug 
resistance in cancer. Finally, our results show that each cancer cell line 
adaptation process follows an individual, unpredictable route, which 
reflects recent clinical findings from the monitoring of cancer cell evo
lution in patients [66–70]. This further supports the relevance of 
drug-adapted cancer cell lines as preclinical models of acquired resis
tance that can be analyzed and manipulated at a level of detail that is 
impossible in the clinical setting.

4. Materials and methods

4.1. Cell culture

MDA-MB-468, HCC38, and HCC1806 cells were obtained from the 

American Type Culture Collection (ATCC). The drug-adapted sublines 
(Fig. 1A, Suppl. File.1) were established by continuous exposure to 
stepwise increasing drug concentrations as previously described and 
derived from the Resistant Cancer Cell Line (RCCL) collection (https 
://research.kent.ac.uk/industrial-biotechnology-centre/the-resistant 
-cancer-cell-line-rccl-collection) [4,71]. All cell lines but MDA-MB-468 
and its sublines (which were cultivated in DMEM/Ham’s F12) were 
cultured in Iscove’s Modified Dulbecco’s medium (IMDM) supple
mented with 10 % fetal bovine serum (Sigma‒Aldrich, Germany), 2 mM 
L-glutamine, 25 mM HEPES (Fisher Scientific, UK), 100 IU/mL peni
cillin, and 100 μg/mL streptomycin (Life Technologies, UK) at 37 ◦C in a 
humidified atmosphere with 5 % CO2. Each drug-adapted subline was 
continuously cultured in the presence of the specific adaptation drug at a 
defined concentration, as indicated by the cell line name (ng/mL), e.g., 
MDA-MB-468rDOX50, where r = the resistant subline, Dox = doxoru
bicin and 50 = 50 ng/ml.

4.2. Compounds

The following compounds were purchased from the indicated sup
pliers: Adavosertib, Alisertib, Berzosertib, Ceralasertib, MK-8776, Ola
parib, Prexasertib, Rabusertib, Rucaparib, SBE13, Tozasertib (Adooq 
Bioscience), AZD0156, BI2536, Doxorubicin, Gemcitabine (Sell
eckchem), B02, Cisplatin, 5-Fluorouracil (Sigma‒Aldrich), CCT241533, 
SRA737 (a gift from the Institute of Cancer Research), Eribulin (Eisia), 
and Paclitaxel (Cayman Chemicals). All drug stocks were prepared in 
DMSO and stored at − 20 ◦C, except for cisplatin, which was prepared in 
0.9 % NaCl solution and stored in the dark at room temperature.

4.3. Cell growth and viability assays

Cell viability was tested using the 3-(4,5-dimethylthiazol-2-yl)-2,5- 
diphenyltetrazolium bromide (MTT) dye reduction assay after 120 h of 
incubation with each compound, modified as previously described [72,
73]. Concentrations that reduced cell viability by 50 % relative to an 
untreated control (IC50) were determined and used to calculate the 
resistance factor (RF; IC50 of drug-adapted cell line/IC50 of respective 
parental cell line).

4.4. Whole exome sequencing

Whole exome sequencing (WES) libraries were prepared using the 
Nextera Rapid Capture Exome Kit (Illumina). Sequencing was performed 
on a HiSeq 1500 platform in Rapid Run mode with 2 x 100 nucleotide 
paired-end reads. The two lanes of the Rapid Run flow cell provided two 
sets of FASTQ data per cell line.

4.5. Variant calling

FASTQC was used to control the quality of the raw sequence data 
[74] prior to the removal of sequencing adaptors. Trimmomatic (set
tings: NexteraPE-PE.fa:2:30:10 LEADING:3 TRAILING:3 SLIDING WIN
DOW: 4:15 MILEN:36) [75]. Raw FASTQ files were aligned to the human 
reference genome (GRCH37) using Burrows‒Wheeler Alignment 
(v.0.7.17) with an output in sequence alignment map (SAM) format 
applying the default settings -M -R [76–78]. Only paired reads were 
used, and Samtools flagstat was used to print statistics throughout each 
of the subsequent steps [76]. SAM files were input into Picard tools 
SortSam (v.2.17.10), where the read alignments were sorted by coor
dinate and converted to a binary alignment map (BAM) format (Picard 
Toolkit.2019. Broad Institute, GitHub Repository. http://broadinstitute. 
github.io/picard/; Broad Institute). Picard Tools MarkDuplicates 
(v2.17.10) was used for the removal of PCR duplicates (Picard Toolkit. 
2019. Broad Institute, GitHub Repository. http://broadinstitute.github. 
io/picard/; Broad Institute). GenomeAnalysisTK-3.7.0 Realign
erTargetCreator was used to perform base score recalibration, and 
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GenomeAnalysisTK-3.7.0 IndelRealigner was used for INDEL realign
ment MAX_READS = 20000 [79]. SAMtools mpileup was used to 
generate binary variant call format (BCF) files from the BAM files, which 
were then input into BCFtools to call the SNVs and INDELS to generate a 
variant calling format (VCF) [80]. Variants were annotated with VEP 
[81].

4.6. Variant filtering

Only variants in coding regions of the genome were considered. To 
identify high-confidence variants, variants with a Phred score <30, 
variants with fewer than 10 reads supporting the base call, or variants 
with <3 reads supporting the variant were removed. Moreover, common 
variants with a frequency of ≥0.001 % in the genome aggregation 
database (gnomAD) were removed [82]; if not, ≥3 samples were an
notated in The Cancer Genome Atlas (TCGA), or ≥ 10 samples were 
annotated in the Catalogue Of Somatic Mutations In Cancer (COSMIC) 
[39,83,84].

4.7. Definition of variants

Gained variants: variants that are called in the drug-resistant subline 
and are called with low confidence in the parental cell line. De novo 
variants: variants that are called in the drug-resistant subline but not 
called in the parental cell line. Not called variants: variants that are 
called in the parental cell line but not called in the drug-resistant sub
line, even at low confidence. Lost variants: variants that are called in the 
parental cell line and are called in low confidence in the drug-resistant 
subline. Shared variants: variants that are called in both the parental 
and drug-resistant sublines.

4.8. Gene Ontology

Gene Ontology (GO) functional enrichment analysis was conducted 
using G:profiler [85]. Gene lists were submitted as queries to the g:GOSt 
functional profiling tool and run at a significance threshold of g:SCS and 
a user threshold of 0.05.

4.9. The Cancer Genome Atlas (TCGA) analysis

4.9.1. TCGA data retrieval
The data were collected from the UCSC Xena functional genomics 

browser [https://xenabrowser.net]. Batch-corrected gene expression 
data (RNAseq, log2(normalized value + 1)) for 11,060 patients (version 
2016-12-29), clinical data for 12,591 patients (version 2018-09-13), and 
somatic mutation data (HG19) for 9104 patients (version 2016-12-29) 
were downloaded for the TCGA pancancer (PANCAN) cohort. Curated 
drug data were obtained from Moiso 2021 for 4321 patients [86].

4.9.2. Final datasets
The 4 downloaded datasets were filtered to a final dataset for each 

drug for which every data type was available (gene expression, somatic 
mutation, clinical, and drug data). If a patient did not have at least 1 
somatic mutation recorded, they were excluded from further somatic 
mutation analyses. This resulted in final datasets of 683 patients (23 
cancer types) treated with cisplatin, 385 (17) with doxorubicin, 367 (11) 
with fluorouracil, 349 (20) with gemcitabine, and 544 (16) with pacli
taxel for which somatic mutation and clinical data were available (table 
– “mutations/treatment_by_cancer_type_mutation_patients.tsv”). The 
gene expression and treatment data included 765 patients (24 cancer 
types) treated with cisplatin, 571 (18) with doxorubicin, 452 (11) with 
fluorouracil, 438 (21) with gemcitabine, and 828 (15) with paclitaxel 
(table – “expression/treatment_by_cancer_type_expression_patients.tsv). 
Datasets including only TNBC patients were also created for further 
analysis [87]. This was only completed for those patients treated with 
doxorubicin (96 patients) and paclitaxel (63), as the number of patients 

treated with cisplatin (2), gemcitabine (4), and fluorouracil (21) was too 
low for meaningful analysis. For doxorubicin and paclitaxel treatments, 
gene expression and clinical data were available for 93 and 62 TNBC 
patients, respectively, while somatic mutation and clinical data were 
available for 74 doxorubicin- and 49 paclitaxel-treated patients. One 
TNBC patient (TCGA-AR-A256) whose disease-specific survival (DSS) 
data were incomplete was excluded.

4.9.3. Survival analysis
Analysis was performed in R version 4.3.0. Kaplan-Meier (KM) plots 

were generated for mutation status (mutated – MUT or wild type – WT) 
and for gene expression status (high or low) using the survival (v3.5-5) 
and survminer (0.4.9) packages. Somatic nonsynonymous mutations 
were considered in the genes of interest. The cut-off for high/low gene 
expression was calculated using the surv_cutpoint function in survminer, 
which makes use of the R package maxstat (v0.7-25). This gave a 
threshold for high/low expression based on the most significant relation 
with outcome, in this case, disease-specific survival. Any sample with 
gene expression > the calculated threshold was considered to have “high 
expression”, and any sample with gene expression < the threshold was 
considered to have “low expression”. The p value displayed on the KM 
plots was calculated using the log-rank test.

4.10. Western blotting

Whole-cell lysates were prepared using Triton-X sample buffer con
taining protease inhibitor cocktail from Roche. The protein concentra
tion was assessed using DC Protein assay reagent (Bio-Rad Laboratories) 
and proteins were separated by sodium dodecyl sulfate-polyacrylamide 
gel electrophoresis, prior to their transfer to nitrocellulose membranes 
(Thermo Scientific). The following primary antibodies were used at the 
indicated dilutions: GAPDH (Cell Signaling, 211/8L, 1:4000), HSP90 
(C45G5) (Cell Signaling, 4877S, 1:1,000, PLK1 (Cell Signaling, 4535S; 
1:500), PABPC3 (Proteintech, 12625-2-AP, 1:500), CUBN (Santa Cruz, 
sc-518059, 1:500).

Visualization and quantification were preformed using peroxidase- 
labelled secondary antibodies (Calbiochem) and enhanced chem
iluminescence (SuperSignal West FEMTO Substrate; Thermo Scientific) 
or IRDye-labelled secondary antibodies (LI-COR Biotechnology) ac
cording to the manufacturer’s instructions.

4.11. SiRNA-mediated silencing

For siRNA-mediated silencing, 1.2 × 106 cells were transfected with 
2.5 μM ON-TARGET plus human siRNA SMART-pools obtained (Dhar
macon) in resuspension electroporation buffer R (Invitrogen) using the 
Neon transfection system (Invitrogen) according to the manufacturer’s 
recommendation. ON-TARGET plus Non-targeting Pool was used as 
control. Electroporation was performed using two 20 msec pulse of 
1400 mV with the following siRNA duplexes: non-targeting 
(UGGUUUACAUGUCGACUAA; UGGUUUACAUGUUGUGUGA; UGGUU 
UACAUGUUUUCUGA; UGGUUUACAUGUUUUCCUA), PLK1 (GCA
CAUACCGCCUGAGUCU; CCACCAAGGUUUUCGAUUG; GCUCUUCAAU 
GACUCAACA; UCUCAAGGCCUCCUAAUAG) ; CUBN (UAACAG 
CAAUUCACCAUUA; GAACUAUACCUACGAUUUA; CAGGAGAGGUU 
AUGUAUUU; GAUCAUAAUUGCACCUGUA); PABPC3 (GCGCACG
GUUCCACGGUAU; UAGAUGAGAUGAAUGGAAA; AGGCUUACCUCA
CUAACGA; CCCAGGUGCUCCUAGAGUA).

4.12. Lentiviral vectors

CRISPR/Cas9 sgRNAs were designed using CCTop and CRISPRater 
online tools [88,89] and were cloned into the L40C.EFS.mNeonGreen 
vector (Adgene #69146) [90]. The pRRL.PPT.SFFV.MCS.IRES.eGFP was 
generated by replacing the dTomato in the pRRL.PPT.SFFV.MCS.idTo
mato (Addgene #171174). The guide RNAs were 
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GCCAAGCACAATTTGCCGTAGG (PLK1), GAAGTTCACATACGCG 
TAGTTGG (PABPC3), and ATCCTGGAGAAAGAACCTGTAGG (CUBN). 
Codon optimized PABPC3 cDNAs (Twist Bioscience) was cloned into the 
pRRL.PPT.SFFV.MCS.IRES.eGFP vectors (Addgene, #27341) [91]. 
Lentiviral particles were generated by co-transfecting 293T cells with 
the lentiviral constructs, pMD2.G and psPAX2 (Addgene #12259 and 
#12260) using the polyethylenimin-transfection method as previously 
described (Reimer et al., 2017).

4.13. Flow cytometry

Flow cytometry analyses were performed using a FACS Canto II.

4.14. Caspase 3/7 assay

5000 cells/well were plated in white 96 well plates, and the Caspase- 
Glo® 3/7 assay (Promega) was performed according to the manufac
ture’s instruction.

4.15. Correlation with proliferation markers

Gene expression data were obtained from Data Explorer 2.0 within 
the DepMap portal. A custom analysis was performed on a subset of 96 
breast cancer cell lines, selected based on the "Lineage" parameter dur
ing model creation. The "Expression Public 24Q4" dataset was used to 
assess correlations between genes of interest (CHEK2, PLK1, and RAD51) 
and proliferation marker genes (MKI67, TOP2A, and MCM7). Pearson 
correlation coefficients were calculated to quantify the relationships 
between these genes.

4.16. Statistical analysis and data manipulation

GraphPad Prism 6 (GraphPad Software, Inc., USA) was used to 
generate dose‒response curves and determine IC50 values via nonlinear 
regression (with variable slopes). Statistical significance was calculated 
using a two-tailed t-test, assuming unequal variance, in GraphPad Prism 
6 (GraphPad Software, Inc., USA).

The delta method was used as described by Bracht et al., 2006 [54]. 
IC50 values were transformed to Δ IC50 values: Δ IC50 = log (average IC50 
in drug over all cell lines) – log (individual IC50 in drug for each cell line). 
Linear regression analysis of ΔIC50X versus ΔIC50Y, where X and Y 
represent two different compounds from the panel, was performed. The 
Pearson correlation coefficient (r) was used to establish the level of 
significance in a two-tailed test with (n-2) degrees of freedom, where p 
≤ 0.05.
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